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Multiscale lineament and fracture extraction conducted within the Wiborg Rapakivi Batholith 

offers insights both into the brittle bedrock structures of the batholith and to the scale-dependence 

of lineament and fracture analysis results. Multiscale fracture studies from crystalline rocks are 

sparse even though brittle structures in the crystalline bedrock significantly affect the flow models 

of fluids, hydrothermal heat and hydrocarbons, and are the main factor controlling the 

permeability in crystalline rocks. The main goal of this study is to assess the scalability of 

lineament and fracture networks through statistic characterization of lineament and fracture 

datasets extracted from four scales of observation using geometric and topological parameters, 

and by studying the subsequent correlations between the dataset characterizations. The parameters 

are acquired from both the individual lineaments and fractures and from their respective networks. 

Brittle bedrock structures were extracted manually using two principle methods: lineament traces 

were digitized from Light Detection And Ranging (LiDAR) digital elevation models and fracture 

traces were digitized from drone-based orthophotography of bedrock outcrops. Both extractions 

result in two-dimensional datasets and, consequently, all characterizations of these datasets along 

with the scalability analysis results are limited to two dimensions. 

The crystalline Wiborg Rapakivi Batholith is structurally isotropic and lithologically sufficiently 

homogeneous so that the effect of both precursor fabrics and lithological variations can be ignored 

when considering the genesis and emplacement of brittle bedrock structures in the batholith. 

Scalability analyses conducted within this investigation revealed that the results of lineament and 

fracture network extractions are always dependent on the scale of observation. Even 

dimensionless parameters of networks, such as connectivity, were found to follow a scale-

dependent trend: The apparent connectivity of a lineament or fracture network decreases as the 

scale of observation increases. The characterizations of the datasets were used for the 

interpretation of Wiborg Rapakivi Batholith fracture patterns and paleostresses, which could be 

compared to Olkiluoto site studies of paleostresses in southern Finland. 

Keywords: crystalline bedrock, multiscale, fractures, fracture networks, lineaments, lineament 

networks, structural geology, topology 

 



TURUN YLIOPISTO 

Maantieteen ja geologian laitos, geologian osasto 

 

OVASKAINEN, NIKOLAS: Scalability analysis of lineament and fracture networks 

within the crystalline Wiborg Rapakivi Batholith, SE 

Finland 

 

Pro gradu – tutkielma, 78 s. 

Geologia ja mineralogia 

Tammikuu 2020 

 

 
Viipurin rapakivibatoliitin alueella useassa mittakaavassa tehty lineamenttien ja rakojen kartoitus 

antaa tietoa sekä batoliitin hauraista kallioperän rakenteista että lineamentti- ja rakokartoituksen 

tulosten skaalariippuvuudesta. Useassa mittakaavassa tehtävät rakotutkimukset kiteisistä kivistä 

ovat harvinaisia, vaikka kiteisen kallioperän hauraat rakenteet vaikuttavat vahvasti nesteiden, 

kaasujen, hydrotermisen lämmön ja hiilivetyjen virtausmalleihin ja ne ovat kiteisen kallioperän 

permeabiliteetin tärkein kontrolloija. Tämän tutkimuksen tärkein tavoite on lineamentti- ja 

rakoverkkojen skaalautuvuuden tutkiminen. Tutkiminen tapahtuu ensin karakterisoimalla 

tilastollisesti lineamentti- ja rakoaineistoja neljästä eri mittakaavasta käyttäen geometrisiä ja 

topologisia parametrejä, ja sitten tutkimalla aineistojen karakterisointien välisiä korrelaatioita. 

Parametrit ovat sekä yksittäisten lineamenttien ja rakojen että lineamentti- ja rakoverkkojen 

parametrejä.  

Kallioperän hauraat rakenteet kartoitettiin kahdella eri metodilla: lineamenttiviivat digitoitiin 

laserkeilauskorkeusmalleista (LiDAR DEMs) ja rakoviivat digitoitiin lennokilla otetuista 

kalliopaljastumien ortomosaiikkikuvista. Molempien kartoitusten tuloksena oli kaksiulotteisia 

aineistoja, ja tämän takia myös kaikki aineistojen karakterisoinnit ja skaalautuvuusanalyysien 

tulokset ovat kaksiulotteisia. 

Kiteinen Viipurin rapakivibatoliitti on rakenteellisesti isotrooppinen ja litologisesti riittävän 

homogeeninen, jotta sekä edeltävät rakenteet että litologiset vaihtelut voidaan jättää 

huomioimatta, kun tutkimuksen kohteena on batoliitin hauraiden rakenteiden syntyminen. 

Tämän tutkimuksen puitteissa tehdyt skaalautuvuusanalyysit osoittivat, että lineamentti- ja 

rakoverkkokartoitusten tulokset ovat aina riippuvaisia kartoituksen mittakaavasta. Jopa 

yksiköttömät verkkojen parametrit, kuten verkottuneisuus, seurasi skaalariippuvaista trendiä: 

Näennäinen lineamentti- tai rakoverkon verkottuneisuus pienenee, kun mittakaava suurenee. 

Lineamentti- ja rakoaineistojen karakterisointeja käytettiin Viipurin rapakivibatoliitin rakojen 

muodostamien kuvioiden ja paleostressien tulkintaan. Paleostressitulkintoja voi verrata 

Olkiluodossa tehtyihin tutkimuksiin paleostresseistä eteläisessä Suomessa. 

Avainsanat: kiteinen kallioperä, moniskaalainen, raot, rakoverkot, lineamentit, lineamenttiverkot, 

rakennegeologia, topologia 
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1. Introduction 

Within the geological context a fracture is a narrow planar to subplanar discontinuity 

caused by stress within a rock volume (Engelder, 1987; Whittaker et al., 1992; Adler and 

Thovert, 1999). Fractures are an ever-present feature of the bedrock and are formed as a 

result of internal (e.g. thermal and residual) or external (e.g. tectonic) stresses which 

exceed the failure strength of the rock eventually causing the failure to take place (Fossen, 

2016). The patterns of bedrock fracturing depend on the orientation and magnitude of the 

stress causing the fracture, depth of fracture genesis and on the bedrock properties (e.g. 

rock type; Engelder, 1987; Whittaker et al., 1992; Gudmundsson, 2011; Fossen, 2016). 

Fracturing is caused by stress but other factors such as lithology, previously formed 

fractures and precursor fabrics (e.g. bedding and schistosity) often control the 

emplacement of new fractures, resulting fracture patterns and the type of fracturing 

(Engelder, 1987; Whittaker et al., 1992; Rives et al., 1994; Nelson and Nelson, 2001; 

Gudmundsson, 2011). 

Individual fractures sharing specific common properties (e.g. orientation, fracture filling) 

define fracture sets (Fisher, 1995), which form a fracture network within a volume of 

affected rocks (Robinson and Rae, 1984; Adler and Thovert, 1999; Manzocchi, 2002; 

Sanderson and Nixon, 2015). The fractures forming a fracture network are often the result 

of multiple geologic events. Fractures vary from microscopic to continental scales and 

fractures of variable sizes have intrinsic properties related to the scale of observation 

(Tchalenko, 1970; Bonnet et al., 2001). The scale-dependency of fractures has been 

studied in literature (e.g. Bonnet et al., 2001; Bour, 2002; Davy et al., 2010), but the scale-

dependency of fracture networks is less studied. Fracture networks are utilized in e.g. 

bedrock fluid and hydrocarbon reservoir modelling (Mohaghegh, 2013), hydrothermal 

heat transportation (Puress and Narasimhan, 1982) and contaminant transport (Bear, 

1993). The utilization of fracture network models could be enhanced if fracture network 

properties were found to be: 

i) independent of the scale of observation or/and  

ii) if the change of fracture network properties could be predicted as a function 

of the scale of observation similarly to individual fracture properties. 

Fracture network properties include connectivity, fracture abundance, fracture size and 

topological parameters (Ortega and Marrett, 2000; Manzocchi, 2002; Sanderson and 
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Nixon, 2015). If networks observed in two different scales are self-similar having e.g. 

similar values of connectivity or similar values of some other dimensionless parameter, 

this implies an apparent fractal nature that is shared between networks from different 

scales (Bonnet et al., 2001), which could mean that the parameters of a fracture network 

could be predictable using both dimensional and dimensionless parameters (e.g. fracture 

length and fracture network connectivity, respectively). The scale-dependency of both 

dimensional and dimensionless parameters can be assessed by studying the scalability of 

fracture networks (Bonnet et al., 2001). 

Assessing the scalability of lineament & fracture characteristics requires the use of 

multiple scales of observation (Bonnet et al., 2001; Bour, 2002). Using similar 

methodologies for fracture extraction at all scales is not possible because some methods 

are limited by the scale in which they are applicable. For example, fracture extraction 

from outcrop imagery is limited by the size of the outcrops and as a result, the results of 

outcrop fracture extraction do not usually adequately represent the distributions of 

fractures larger than 100 m. The outcrop size also places constraints on capturing an 

adequate sample of bedrock fracturing for a large area (Bonnet et al., 2001). Spatial 

differences in fracturing within a large target area caused by e.g. structurally different 

blocks can be mitigated to some extent by using multiple windows (available outcrops) 

from different localities and combining the extractions of multiple windows into a single 

combined dataset.  

Fracture and fracture networks affect the properties of the bedrock. Especially flow 

models of hydrocarbons, hydrothermal heat and fluids are heavily affected by fracture 

networks (Puress and Narasimhan, 1982; Bear, 1993; Neuman, 2005; Mohaghegh, 2013; 

Sanderson and Nixon, 2018). Hydrocarbon reservoirs in shales are affected by both 

natural fractures and manmade fractures (Mohaghegh, 2013). Hydrothermal heat flow is 

dependent on the porosity of the rock and the properties of the fracture network (Puress 

and Narasimhan, 1982) and groundwater flow is heavily dependent on bedrock fractures 

(Neuman, 2005), potentially allowing different kinds of contaminants, such as 

radionuclides, to flow through the rock (Bear, 1993). Fracture network parameters can 

determine preferred directions, velocities and magnitudes of flow for all of the flow types 

described above (Sanderson and Nixon, 2018). Fractures can act as conduits of fluids 

enriched in metals and as sites of ore emplacement (ore veins) where the network 

connections and properties contribute to the structural control of such ores (Pollard and 

Taylor, 1986; Roberts and Sanderson, 1998). The formation of new fractures is dependent 
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on previous fractures in the rock volume, which is important knowledge when making 

manmade fractures to extract hydrocarbon reservoirs (Sanderson and Nixon, 2018). The 

parameters and information gathered from fractures and fracture networks can be used to 

characterize differences between fracture networks from different structural blocks, rocks 

and localities (Sanderson and Nixon, 2015, 2018) and to characterize the deviation of a 

fracture network locally due to ductile bedrock features (Watkins et al., 2018). Fracture 

networks are especially important in crystalline rocks, wherein permeability caused by 

fractures is orders of magnitude higher than the permeability of the solid crystalline host 

rock (Mitchell and Faulkner, 2008) and even though this is known, multiscale analyses 

of fractures in crystalline rocks are sparse (Genter and Castaing, 1997; Ehlen, 2000; 

Bertrand et al., 2015). Besides the properties of fractures and fracture networks being 

affected by the scale of observation, the scaling characteristics of fracture networks 

themselves offers insights into earthquake prediction, hydrocarbon and groundwater 

reservoir characterization and contaminant transportation within rock masses (Heffer and 

Bevan, 1990; Yielding et al., 1992; Bonnet et al., 2001).  

The primary goal of this Thesis is to investigate the scalability of fracture networks within 

an isotropic crystalline rock using multiple scales of observation. The Secondary goals of 

this Thesis include: 

I. developing a workflow for lineament & fracture extraction for multiple scales 

of observation,  

II. characterizing the properties of lineament &fracture networks, including 

azimuths, azimuths sets, lengths and topology,  

III. developing new methods (to complement methods used in II) such as 

characterizing age relations between azimuth sets based on the lineament or 

fracture topology and characterizing the anisotropy of connectivity of a 

network, 

IV.  predicting lineament & fracture network properties using results from II 

V. and interpreting paleostresses and fracture patterns in the Loviisa region using 

results from II. 
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To interpret the scalability of lineaments & fracture in this Thesis, six datasets from four 

scales of observation were used (Fig. 1): 

1. 1 : 200 000 LiDAR-scale (Scale 1) 

o 1 : 200 000 LiDAR-scale Loviisa target area (Loviisa_LiDAR dataset) 

2. Detailed LiDAR-scale (Scale 2) 

o Detailed LiDAR-scale Hästholmen target area (Hastholmen_LiDAR 

dataset) 

3. 20 m flight altitude drone-scale (Scale 3) 

o Kasaberget 20 m flight altitude target areas (KB_20m dataset) 

o Kampuslandet 20 m flight altitude target areas (KL_20m dataset) 

4. Detailed ~4 m flight altitude drone-scale (Scale 4) 

o Kasaberget detailed ~4 m flight altitude traces (KB_det dataset) 

o Kampuslandet detailed ~4 m flight altitude traces (KL_det dataset) 

 

 

Figure 1. The four scales of observation in this Thesis: Scale 1: the Loviisa 1 : 200 000 LiDAR-scale target area, Scale 

2: the Hästholmen detailed LiDAR-scale target area and examples from the Scale 3 (20 m drone flight altitude) target 

areas (KB11) and from the Scale 4 (~4 m drone flight altitude) target areas (KL3). All target areas are superpositioned 

with the larger scale target area always being inside a smaller scale target area: Scale 2 target area is inside the Scale 

1 target area, all Scale 3 target areas are inside the Scale 2 target area and all Scale 4 target areas are inside the 

Scale 3 target areas. 
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Two scales of observation were used to extract lineaments from Light Detection And 

Ranging (LiDAR) topographical digital elevation models (DEM) data, and two to extract 

fractures from outcrop imagery. Only the smallest scale of observation, Scale 1, 

(Loviisa_LiDAR) has a single target area for the whole extraction (Figs. 1 and 2) whereas 

the other scales all require multiple target areas, which were subsequently combined, to 

adequately extract lineaments or fractures. Combining the individual target areas was 

done without assessing on the second scale of observation, Scale 2, 

(Hastholmen_LiDAR), while for the third and fourth scales of observation, Scales 3 and 

4, combining target areas was done by assessing the similarity between the individual 

target areas (Section 2.7). This resulted in two datasets for both the third (KB_20m, 

KL_20m) and fourth (KB_det, KL_det) scales of observation due to differences between 

the individual target areas from the two localities (Kasaberget = KB, Kampuslandet = KL; 

Figs. 4 and 25). 

All target areas from all scales of observations are located within a single homogeneous 

crystalline rock type, the Wiborg Rapakivi Batholith (Rämö and Haapala, 1995, 2005), 

which lacks evidence for the presence of contrasting tectonic blocks due its post-tectonic 

timing with respect to the Svecofennian orogeny (Nironen, 1997). Moreover, the effect 

of lithology variations can be largely ignored as the Wiborg Rapakivi Batholith is 

lithologically very homogeneous in nature. For the same reasons, the studied Rapakivi is 

structurally isotropic in character and hence optimal for the purpose of scale comparisons 

and methodology studies. 

 

1.1. Lineaments & fractures 

The analyses and scalability assessment in this Thesis are done using two types of two-

dimensional geological features: lineaments & fractures. Geologically they represent 

different features, but they can be similarly analyzed due to both being extractable as 

polylines in GIS-software. 

1.1.1. Lineaments 

Lineaments in this Thesis are defined to be linear remotely interpreted features extracted 

from observing relief of linear landforms, such as depressions, slopes or valleys in LiDAR 

DEMs (Tiren, 2010), but lineaments are not categorized based on what feature they might 

represent. Lineaments can represent features and discontinuities of the underlying 
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bedrock, but can also be related to quaternary deposits or human interactions with nature 

(Scheiber et al., 2015). Features in the underlying bedrock are often planar structures, 

which often have dips, and depending on the dip of the structure and the topography of 

the surface, these structures can be curved when looking from a map view (Scheiber et 

al., 2015).  

Very rarely a lineament is well visualized in its complete length and some parts of an 

interpreted lineament might be censored by water coverage or terrain coverage such as 

quaternary sediments or glacially reworked sediments (Nyborg et al., 2007; Tiren, 2010). 

Extracted lineaments reflecting structures within the underlying bedrock often represent 

deformation zones, which consist of multitudes of fractures, single large fractures, joints, 

faults or shear zones or any combination of these (Nur, 1982; Ramsay and Huber, 1987; 

Henderson, 1988; Tiren, 2010). These different kinds of bedrock structures affect the land 

cover on top of them, which can be seen in the formation of linear landforms such as 

depressions and valleys (Henderson, 1988). If the intensity of this effect is large enough, 

these linear landforms can be used to extract lineaments that represent features of the 

underlying bedrock. If the effect is too low, the land cover will simply mask bedrock 

features. Since steeply dipping and large magnitude structures have a higher effect on the 

erosion of the bedrock surface compared to smaller or more gently dipping structures, 

large and steeply dipping structures are more likely to appear as lineaments in map view 

(Scheiber et al., 2015). 

Glacially reworked deposits can heavily mask bedrock features, but linear glacial features 

can also have been emplaced on top of bedrock linear features, such as damage zones or 

joints (Rastas and Seppälä, 1981; Skyttä et al., 2015). Esker emplacement is for example 

frequently controlled by the structure and composition of the underlying bedrock 

(Henderson, 1988). These glacial features would enhance bedrock features instead of 

masking them (Rastas and Seppälä, 1981). This enhancement most likely affects the 

lineaments subparallel to the main glacial flow direction. Main glacial flow directions are 

interpretable from glacial striations (Rastas and Seppälä, 1981; Olvmo and Johansson, 

2002). 

Lineaments have a general tendency to follow orthogonal patterns and are restricted to 

low amounts of visible sets (Nur, 1982; Tiren, 2010). These sets typically have angles of 

45–90 degrees between them (Nur, 1982). This general tendency would probably mean 

that most lineament extractions would result in lineament network patterns similar to grid-

like fracture patterns. 
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1.1.2. Fractures 

Bedrock fractures that are extracted from bedrock outcrops can be e.g. joints, fissures, 

faults, veins or small dykes. In this Thesis, fractures are interpreted to be any type of 

brittle discontinuity that formed in response to stress and e.g. no distinction is made 

between the aforementioned fracture types. Most fractures in my study area were joints, 

which are mode I tensile fractures that formed due to an extensional stress field (Engelder, 

1987; Pollard and Aydin, 1988; Bai et al., 2002). Joints open perpendicular to the 

minimum principal stress axis and are good indicators of paleostress, but locally they can 

occur between regionals joints as smaller cross joints (Bai et al., 2002). Infilled fractures 

can contain air, water, minerals or water (Fossen, 2016). Air or water-filled fractures are 

classified as fissures, mineral-filled fractures are classified as veins and magma-filled 

fractures are classified as dykes (Fossen, 2016). Faults are mode II shear fractures along 

which movement relative to the fracture surface has occurred (Whittaker et al., 1992). 

Fractures are three-dimensional subplanar planes, but they appear as semi-linear to linear 

traces when intersecting a planar outcrop. 

The pattern of fracturing is an important tool in interpreting the genesis of the fractures 

and the paleostresses that formed them (Nickelsen and Hough, 1967; Hancock et al., 

1987; Simon et al., 1988; Rives et al., 1994; Bai et al., 2002). Two fracture sets in 

perpendicular angles to each other form an orthogonal fracture pattern, which is the most 

common fracture pattern found on outcrop surfaces (Rives et al., 1994). An orthogonal 

fracture pattern might be formed when the two fracture sets forming the pattern have 

formed independently of each other in two separate stress fields or when the two sets have 

formed concurrently in one regional stress field (Rives et al., 1994). Orthogonal fracturing 

can be subdivided into different types of patterns such as a ladder-type pattern and a grid-

type pattern (Rives et al., 1994). A ladder-type pattern would have one set clearly abutting 

in another, longer set. On the other end is the grid-type pattern where neither set clearly 

abuts into or crosscuts the other set more and the set lengths would be roughly equivalent. 

All intermediate patterns between these two are also possible (Rives et al., 1994). These 

patterns differ in fracture lengths, fracture abutments and fracture cross-cutting relations. 

The numerous different kinds of patterns probably mean that there are multiple different 

processes that create orthogonal azimuth sets (Rives et al., 1994). 
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1.2. Geological background 

1.2.1. Geology of the Wiborg Rapakivi Batholith 

Emplacement of the Wiborg Rapakivi Batholith took place during a period of 1.65-1.62 

Ga (Vaasjoki et al., 1991; Rämö and Haapala, 2005). Overall, rapakivi granites in Finland 

intruded into the Svecofennian crust during a period of 1.67-1.47 Ga in the anorogenic 

mid-Proterozoic magmatic event (Rämö and Haapala, 2005). Rapakivi granites are found 

in areas of thin crust (Luosto et al., 1990; Rämö and Haapala, 2005) attributed to upwards 

bulging of the mantle (Luosto et al., 1990; Haapala and Rämö, 1992; Korja and 

Heikkinen, 1995; Rämö and Haapala, 2005). Mantle bulging and the related emplacement 

of diabase dyke swarms act as evidence of an extensional tectonic regime during the 

emplacement of rapakivi granites (Korja and Heikkinen, 1995; Rämö and Haapala, 1995; 

Nironen, 1997). The magmatic emplacement foci of rapakivi granites might have been 

controlled by petrologically weak zones related to prior subduction zones within the 

lithospheric mantle (Haapala and Rämö, 1992; Rämö and Haapala, 2005) and by listric 

shear zones that caused extension within a thickened crust (Korja and Heikkinen, 1995). 

Rapakivi granites have been associated with two extensional regimes (Nironen, 1997): 

The pre-1.60 Ga Wiborg batholith and other Rapakivi intrusions are associated with an 

E-W trending extensional regime while the post-1.60 Ga intrusions (e.g. Åland, Laitila, 

Vehmaa) are associated with a N–S extension.  
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Figure 2. Overview of background geology, Wiborg batholith geology and LiDAR-scale target areas. 1:1M Bedrock of 

Finland (GTK, 2016) is displayed outside the batholith. Inside the batholith 1:200K Bedrock of Finland is displayed 

(GTK, 2017). Lithological naming has been slightly simplified for both bedrock maps. Even though the scale is five 

times lower outside the batholith, the lithological variation within the batholith is still strikingly lower. Variation within 

the batholith is also only between granitic rocks as shown in the legend. 

 

Polymetallic veins in the Wiborg Rapakivi Batholith near Loviisa have been found to be 

rich in indium among other metals (Valkama, 2019). The polymetallic veins occur in 

multiple orientations, they have been emplaced in both ductile and brittle crustal 

conditions and they occur in multiple generations with varying metal compositions 

(Valkama et al., 2016; Valkama, 2019). Notable orientations include the NE-NNE and 

the NW-NNW -trending veins of generations 2a and 2b that have been formed in brittle 

crustal conditions (Valkama et al., 2016; Valkama, 2019). Generation 2b veins seem to 

cut generation 2a and generation 1 veins implicating a younger age than the veins of 

generations 2a and 1 (Valkama et al., 2016). 

Though the Wiborg Rapakivi Batholith is seemingly structurally isotropic lacking major 

ductile deformation structures there are other types of structures present. Magmatic flow 

structures formed during the emplacement of the rapakivi batholith have been locally 

mapped using anisotropy of magnetic susceptibility (Karell et al., 2014). The Wiborg 
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Rapakivi Batholith is, along with the polymetallic veins (Valkama et al., 2016; Valkama, 

2019), associated with greisen veins, quartz veins and different kinds of dykes, such as 

quartz-feldspar dykes or quartz-porphyry dykes (Rämö and Haapala, 2005). The 

lithological variation within the batholith is strikingly lower than the surrounding country 

rock, which has been illustrated in Figure 2 by displaying the lithology in scale 1 : 

1 000 000 outside the batholith and in scale 1 : 200 000 inside the batholith. Overall, since 

these minor structures do not present significant precursors that could heavily affect the 

fracturing of the bedrock and as the Wiborg Rapakivi Batholith is structurally isotropic, 

the main control on fracturing has been the paleostresses. 

 

1.2.2. Brittle tectonic history of southern Finland after the emplacement of 

the Wiborg Rapakivi Batholith 

The minor post-Svecofennian tectonic events affecting the batholith are linked to the 

Caledonian, Gothian and Sveconorwegian orogenies (Kohonen, 2005; Viola et al., 2011; 

Mattila and Viola, 2014). The paleostress conditions of these brittle events pre-dating, 

synchronous with and post-dating the emplacement of rapakivi granites have been studied 

at the Olkiluoto site in southwestern Finland (Viola et al., 2011; Mattila and Viola, 2014). 

Notable paleostress conditions synchronous with and after the rapakivi granite 

emplacement are shown in (Fig. 3; Stages 4–7 by Mattila and Viola, 2014). The 

temporally first paleostress tensor after rapakivi emplacement (Stage 4) has been 

interpreted to have been caused by a transtensional event related to upper crustal 

stretching and the formation of the Satakunta graben and other intracratonic rifts with σ3 

oriented NE–SW (Kohonen, 2005; Viola et al., 2011; Mattila and Viola, 2014). The next 

tensor (Stage 5) has been interpreted with σ1 oriented NE–SW indicating opposite 

conditions to (Stage 4). This tensor (Stage 5) is temporally associated with the 

emplacement of basaltic dykes (e.g. The 1.26 Ga Sorkka olivine diabase; Kohonen, 2005; 

Viola et al., 2011; Mattila and Viola, 2014). The stress tensor (Stage 6) represents an E–

W shortening event (Viola et al., 2011). The last stress tensor (Stage 7) indicates reverse 

conditions to (Stage 6) with E–W extension related to the Sveconorwegian orogeny 

(Viola et al., 2011; Mattila and Viola, 2014). The Fennoscandian Shield seems to have 

been saturated in regard to brittle structures already during the Mesoproterozoic (1.6–1.0 

Ga) and later tectonic events are commonly linked to reactivation of old structures instead 

of the genesis of new brittle structures (Mattila and Viola, 2014). The exhumation, 
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platform sedimentation of the Iapetus Ocean and foreland sedimentation caused by the 

Caledonian orogen occurred 900–5 Ma (Kohonen, 2005).  

 

Figure 3. Brittle deformation history model based on structural data and calculated paleostress tensors from the 

Olkiluoto site in southwestern Finland (Mattila and Viola, 2014). 
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1.3. KARIKKO-project 

This Thesis is conducted under a Geological Survey of Finland (GTK) coordinated and 

co-funded project, “KARIKKO”, with co-funding from the Finnish research programme 

on nuclear waste management (KYT2022) with contributions from the University of 

Turku. Additional partners are Fortum Oyj and Posiva Oy. The main goals of the project 

are:  

1. Reduce the uncertainties related to the modelling of brittle structures and fracture 

networks in 3D. 

2. Study the scalability of lineament & fracture data derived from contrasting scales 

of observation in southern Finland. 

3. Study and develop lineament & fracture extraction methods. 

4. Advance the geological knowledge of brittle structures within the selected target 

areas in southern Finland. The brittle feature data can be compared to similar data 

from the Olkiluoto site in southwestern Finland. 

5. Investigate automatic trace extraction methods for both lineaments & fractures. 

This Thesis will mostly focus on goals (2.) and (3.). However, the results of this Thesis 

can be applied in conjunction with further studies to reduce the uncertainties related to 

the modelling (1.) and the digitized lineament & fracture traces could function as training 

material for AI-powered automatic trace extraction methods (5.) Some interpretations of 

lineament & fracture genesis will be made in southeastern Finland in the Loviisa region 

to further improve the geological knowledge of the area concerning local paleostresses 

and comparisons to a paleostress interpretation from the Olkiluoto site will be made to 

advance goal (4.). 
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2. Methods & data 

2.1. Workflow and nomenclature 

In this Thesis, four scales of observation and overall 6 datasets will be used to assess the 

scalability of lineament & fracture characteristics (Fig. 1). The individual target areas 

have been combined into the datasets, which are the main target for all 

characterizations, scalability analyses, paleostress interpretations and lineament & 

fracture pattern interpretations (Section 2.7; Fig. 4). Nomenclature used in this Thesis is 

presented in Table 1. 
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Table 1. Nomenclature used in this Thesis. 

Term May refer to Explanation 

LiDAR-scale Scale 1: Loviisa 1 : 

200 000 LiDAR-scale 

LiDAR-scale refers to both LiDAR-

scales of observation unless otherwise 

specified. 

Scale 2: Hästholmen 

detailed LiDAR-scale 

Drone-scale Scale 3: 20 m Flight 

altitude drone-scale 

Drone-scale refers to both drone-

scales of observation unless otherwise 

specified. 

Scale 4: ~4 m Flight 

altitude detailed drone-

scale 

Dataset  Target areas of line extraction have 

been selectively combined to simplify 

analyses between scales of 

observation if there were multiple 

target areas within a scale of 

observation. 

Line Lineament trace Both traces and branches are lines. In 

typical GIS software these are 

commonly polyline features, which 

consist of multiple linear segments.  

Lineament branch 

Fracture trace 

Fracture branch 

Trace Lineament trace Trace is the original extracted feature. 

For lineaments it is a linear interpreted 

(topographical) feature. For fractures 

it is the line of intersection between the 

outcrop surface and a planar fracture 

surface. 

Fracture trace 

Branch Lineament branch Original traces are divided into 

branches based on the nodes of 

interaction between the traces. 
Fracture branch 

Node  Nodes are the points of interaction 

between traces or ends of traces that 

divide traces into branches. Basic 

types: X, Y and I. 

Azimuth Trace orientation All lines have an orientation which 

will be referred to as azimuth. 
Branch orientation 

Azimuth set Lineament set Group of lines that have a subparallel 

azimuth. Sets and set ranges are 

determined manually. 
Fracture set 

Network Lineament network Both are analyzed similarly as fracture 

networks. 
Fracture network 
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Figure 4. Summary of workflow starting from extracted lineaments & fractures and ending in results that will be used 

to characterize datasets, scalability assessment of lineaments & fractures and for the interpretation of paleostresses 

and lineament & fracture patterns in the Wiborg Rapakivi Batholith. 

 

2.2. Digitization of lineaments & fractures 

The results of both lineament & fracture extraction are georeferenced polyline traces 

(Table 1). Digitization is limited to 2D-data for both lineaments & fractures. Linearity 

isn’t a strict rule for either lineaments or fractures due to topographical interference and 

because both bedrock structures causing lineaments and fracture can be subplanar causing 

curved structures on the surface. 
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ArcGIS 10.5.1, GIS platform developed by Esri, was the used tool for digitizing both 

lineaments & fractures. Both were similarly digitized as polylines. For LiDAR-scale 

lineaments additional info, such as the interpreted feature (e.g. esker), was inserted into 

an attribute table when possible, but this info was not used in this Thesis, due to it being 

usually impossible to determine what structure each lineament represents using only 

remote sensing. To create a consistent topology for both lineaments & fractures, a trace 

abutment to another trace had to be digitized absolutely by snapping the digitized traces 

to each other. Without absolute snapping, lineament & fracture abutments couldn’t be 

recognized by GIS-software. Snapped abutments enable the accurate topological analysis 

of both the LiDAR-scale lineaments and the drone-scale fracture (Sanderson and Nixon, 

2015).  

 

2.2.1. Digitization of LiDAR-scale lineaments 

Light Detection And Ranging (LiDAR) data are excellent for creating very accurate 

topographical models of the ground surface, digital elevation models (DEM; Smith and 

Pain, 2009). The resolution of LiDAR DEMs varies but it can be as high as 1 m / pixel, 

which enables very accurate extraction of geomorphological features (e.g. Scheiber et al., 

2015). A DEM consists of equal sized cells with elevation values. DEMs are very often 

visualized using hillshading (Smith and Clark, 2005). Hillshading can highlight subtle or 

small changes in the surface, and enables better extraction of geomorphological features 

(Smith and Clark, 2005).  

LiDAR-scale lineaments were extracted in ArcGIS by drawing polylines on top of the 

hillshaded LiDAR DEM layer. Workflow of lineament extraction is shown in Figure 5. 

This Thesis only very minorly utilized the lineament extraction in LiDAR-scale 1 : 

500 000 which was done as a part of the larger “KARIKKO”-project and not as a part of 

this Thesis. Because the scope of this Thesis is only within the Wiborg Rapakivi 

Batholith, lineament extraction in LiDAR-scale 1 : 500 000 wasn’t utilized. Only the 

revising of 1 : 500 000 LiDAR-scale lineaments to the 1 : 200 000 LiDAR-scale was 

done. Lineament extraction in scale 1 : 500 000 was done for the whole southern Finland, 

extraction in scale 1 : 200 000 (Scale 1) was targeted inside the Wiborg Rapakivi 

Batholith (Fig. 6) around the Loviisa municipality and the detailed LiDAR-scale (Scale 

2) extraction target area was around Hästholmen and nearby islands within the 1 : 200 000 

target area (Fig. 7). The target areas are referred to as Loviisa_LiDAR (Scale 1 dataset) 
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and Hastholmen_LiDAR (Scale 2 dataset), respectively (Section 1). Large parts of both 

the LiDAR target areas were in an archipelago, thus lots of areas were covered by water 

(Fig. 7).  

 

Figure 5. Workflow for the extraction of LiDAR-scale lineaments. 

 

The 1 : 200 000 LiDAR-scale (Scale 1) Loviisa extraction had a fixed scale from which 

all extraction was made and no features visible from further zooming were digitized. The 

lineaments recognized in this scale were however more accurately placed by zooming in 

to avoid later revision of their exact paths. The detailed LiDAR-scale (Scale 2) 

Hästholmen lineament extraction was done using the full resolution/capacity of the 

LiDAR dataset and lineament traces as short as 200 m were extracted. Interpretation 

source dataset (LiDAR), date and interpreter were added as metadata for all interpreted 

lineaments.  
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Figure 6. 1 : 200 000 LiDAR Loviisa target area (Scale 1 Loviisa_LiDAR dataset) 

 

 

Figure 7. Detailed LiDAR Hästholmen target area (Scale 2 Hastholmen_LiDAR dataset). Also contains the bounding 

box in which all drone-scale dataset target areas (KL_20m, KB_20m, KL_det, KB_det), colored with red, are located 

in. 
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Specifications of the LiDAR DEM used in this Thesis are similar to LiDAR specifications 

used in detecting postglacial faults in another GTK-project (Palmu et al., 2015). 

Specifications of the LiDAR dataset are the following: pixel size 2 m / pixel, mean 

altitude error of 0.3 m and it was hillshaded using a multidirectional hillshade function 

with a z factor of 1. Hillshading of a LiDAR DEM can be done by shading from a single 

azimuth, which causes bias in what features are shown (Smith and Clark, 2005). This bias 

can be mostly avoided by applying a multidirectional hillshade (Tzvetkov, 2018). The 

LiDAR DEM dataset used in this Thesis was hillshaded from multiple directions using 

ArcGIS MultiDirectionalHillShadeRasterFunction (ESRI, 2014). 

 

2.2.2.  Digitization of outcrop fractures using drone imagery 

Drone (= Unmanned Aerial Vehicle, = UAV) imaging of well exposed outcrops is used 

for the extraction of fracture traces. Drone imaging was done mostly from outcrops at the 

Baltic Sea shoreline cliffs which were polished by glaciations and well exposed by waves 

and wind and mostly lacked vegetation. The level of exposition varied from cliff to cliff 

with some very well exposed outcrops and some partly covered by moss and lichen.  

Drone imaging for fracture extraction was performed from two altitudes and resulted in 

two scales and resolutions of observation. Flight altitude of 20 m is well suited for the 

extraction from large target areas but lacked the resolution for the smallest fractures (Fig. 

12). Detailed flights were made from smaller target areas and were made from an average 

flight altitude of 4 m. Resolutions of these two flight altitudes are in Table 2.  

 

Table 2. Resolutions of the two used flight altitude for drone imagery. 

Drone Flight Altitude (m) Resolution (cm / pixel) 

20 0.55 

4 0.11 

 

Drone imagery was processed into orthomosaics using standard photogrammetric 

methods (James, 2017). Drone images were taken with minimum 60-70 % overlap to 

achieve a good image quality. The images were georeferenced first by the drone itself and 

later by using VRS-GPS measured ground control points within the target areas. The 

quantity of ground control points for 20 m flight altitude areas (Fig. 8) was 10 points and 
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for 4 m flight altitude areas (Fig. 9) 5–7 points. VRS-GPS measurements of control points 

were taken in situ and applied later when processing images into orthomosaics. 

Processing into orthomosaics was done using Agisoft PhotoScan software, version 1.4.4. 

(Agisoft, 2018).  

Fracture tracing was done on ArcGIS by creating lines on top of the drone orthomosaic 

(Figs. 9 and 10). Traces were made separately to the Scale 3 (20 m flight altitude images) 

and the Scale 4 (~4 m flight altitude images) images although the Scale 4 flight areas were 

inside the Scale 3 flight areas. Copying of the Scale 3 fracture trace data (Fig. 8) into the 

more detailed Scale 4 models (Fig. 9) was mainly avoided due to the amount of revising 

needed to fit the traces to the Scale 4 fractures. The Scale 4 extraction can be assumed to 

be a completely separate interpretation to the Scale 3 fracture traces. 

 

Figure 8. Drone orthomosaics and digitized fracture traces from the Scale 3 areas. 
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Figure 9. Drone orthomosaics and digitized fracture traces from the Scale 4 target areas. 

 

2.3. Lineament & fracture network characterization using topology 

A fracture network is formed by the interaction of individual fractures within a rock 

volume (Sanderson and Nixon, 2015). Fractures can interact with each other by 

intersecting or abutting. Conversely, the lack of interaction is expressed by isolated 

fracture termination not associated with other fractures. Both interaction and the lack of 

interaction characterize the fracture network as a whole. The concept of fracture networks 

will be similarly applied to both fractures and lineaments within this Thesis, referred to 

as fracture and lineament networks, respectively. However, most of the topological 

network concepts are only established for fracture networks in literature. 

Relationships between the fracture or lineament traces are the primary interest in the 

topological analysis of networks. These relationships along with the individual traces both 

affect the physical rock properties (Ortega and Marrett, 2000; Manzocchi, 2002; Mäkel, 

2007; Sanderson and Nixon, 2015). Topology is a mathematical tool that is used in the 

characterization of networks based on connectivity and continuity (Ortega and Marrett, 

2000; Manzocchi, 2002; Mäkel, 2007; Sanderson and Nixon, 2015). Topological 

characteristics of a network are unchanged when the network is distorted by ductile 

transformations such as stretching or squeezing (Sanderson and Nixon, 2015). The 

topology can be changed by tearing, which changes the connections between fractures. 

This tearing could be the formation of a new fracture or the reactivation of an old one. 
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The fracture or lineament network that exists now is the result of all these tears, which 

are the lineaments & fractures (Sanderson and Nixon, 2015).  

A lineament & fracture network can be interpreted as a graph that consists of branches 

and nodes that are derived from the relationships between traces (Sanderson and Nixon, 

2015; Sanderson et al., 2019). Planar structures, such as fractures, that intersect an outcrop 

surface are visible as two-dimensional traces. These two-dimensional traces can also 

intersect other traces and every such intersection in a graph is defined as a node (Table 1; 

Sanderson and Nixon, 2015; Sanderson et al., 2019). Nodes can be locations of interaction 

between two traces or a location where a trace ends. More than two traces are not allowed 

to interact at a single node and two traces cannot end in the same node. Branches are 

defined as the line segments between two nodes. One branch always has two defining 

topological nodes, one as both endpoints. 
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Figure 10. Illustration of both node and branch classifications and the interactions of traces with sample areas and the 

interpretation area. This Thesis uses definitions established for the NetworkGT-toolbox (Nyberg, et al., 2018). A: 

Illustrates a situation when both wanted sample area and the interpretation area are stacked. This is always the case 

in this Thesis. B: Illustrates a situation when the sample area is within the interpretation area for extracting parameters 

specifically from that sample area instead of the whole interpretation area. Multiple sample areas can be inside a 

single interpretation area. 
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2.3.1. Nodes 

Nodes are categorized into three basic types: X, Y and I (Fig. 10; Manzocchi, 2002; 

Mäkel, 2007; Sanderson and Nixon, 2015). Y-nodes define an interaction where two 

traces are abutting: One trace ends to the other. I-nodes define the end of a trace when it 

doesn’t abut in another trace.  

The different nodes can be counted and plotted on a ternary XYI-plot and the node counts 

can be themselves used to estimate lineament & fracture network properties (Manzocchi, 

2002; Mäkel, 2007; Sanderson and Nixon, 2015). A lineament & fracture network 

dominated by I-nodes is interpreted to have lower connectivity than a network consisting 

of more X and Y -nodes (Manzocchi, 2002). X-nodes are the most significant factor for 

increasing network connectivity because they connect four branches with each other. Y-

nodes connect three branches with each other and are therefore relatively less of a factor 

in increasing network connectivity. Relative Y- and I-node counts in a network are related 

to the genesis and development of the fracture system (Manzocchi, 2002). As fracture 

lengths increase more and more branches with an I-node as an original endpoint reach 

another fracture and form a Y-node. Low I-node count fracture networks can roughly be 

classified into less developed and higher Y-node count networks represent a more 

developed network (Manzocchi, 2002). The XYI-plot has the tree types of nodes plotted 

using their relative quantities. These XYI-ternary diagrams can be enhanced with the 

addition of parameter Connections per trace / branch due to the fact that the parameter is 

directly calculable from the relative node counts (Sanderson and Nixon, 2015). 

Connections per branch is plotted as multiple lines on the unified figure in the results. 

Ternary plotting of nodes assumes that  

𝑃𝑋 + 𝑃𝑌 + 𝑃𝐼 = 1  (1) 

applies to the node data, where PX is the relative proportion of X-nodes, PY is the relative 

proportion of Y-nodes and PI is the relative proportion of I-nodes.  

Ternary XYI-node plots are plotted for all individual target areas for the purpose of 

assessing combining target areas into datasets (See Section 2.7) and after datasets have 

been established, XYI-node plots will also be shown for all the datasets. 

The target area for extraction is always limited and trace interactions with both a sample 

boundary and interpretation boundary must be defined (Fig. 6; Nyberg et al., 2018). 

Sample and interpretation areas represent the areas in which the topological and other 
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parameters are calculated from and where valid extraction of traces has been done, 

respectively. To address the effect of the sampling bias, two further node types have been 

introduced; U- and E-nodes. U-nodes are endpoints where a branch ends at or after the 

interpretation area boundary. U-nodes are not actual nodes used in any analyses, instead 

they act as symbols for the unknown length of a branch. E-nodes mark the end of a 

fracture branch at the boundary of the target sample area (Nyberg et al., 2018). The 

difference between the interpretation area and the target sample area is shown in Figure 

10. E-type nodes do not give any information about the lineament & fracture network as 

such but are an indicator of sampling bias and can be used to weigh the associated 

branches differently, if needed, in analyses. E- and U-nodes are regarded as having 

negligent proportions and negligible effects on the ternary XYI-node plots. 

 

2.3.2. Branches 

Branches are made by dividing lineament or fracture traces between the topological nodes 

(Fig. 10; Sanderson and Nixon, 2015). Branches are polylines (Table 1) and therefore all 

trace polyline parameters can be calculated similarly for branches. Branch length is the 

length of a branch and the azimuth of a branch can be calculated from the branch 

endpoints (nodes). Branches can be categorized based on the two end nodes of the branch 

(X-, Y- or I- nodes). There are six types of branch configurations with the different nodes 

as endpoints: (X–X, X–Y, X–I, Y–Y, Y–I, I–I). The two end nodes of the branch also 

define a broader topological type for the branch, because the nodes can be classified as 

either isolated (I => I) or connected (X, Y => C). The branches can therefore be classified 

into three main types in regard to topology: I–I, I–C and C–C (Fig. 10; Sanderson and 

Nixon, 2015). 

The classification of branches (I–I, I–C, C–C) can be used to plot the classified branch 

counts onto a ternary plot to estimate lineament & fracture network properties (Ortega 

and Marrett, 2000; Sanderson and Nixon, 2015). I–I-branches represent branches that are 

completely disconnected from the rest of the network, I–C-branches represent branches 

that are connected to the network from the other endpoint but the other endpoint is 

disconnected and C–C-branches are connected from both endpoints. The connectivity of 

a network is higher the more C–C- and C-I-branches there are compared to I–I-branches 

(Ortega and Marrett, 2000; Sanderson and Nixon, 2015). The branch classification ternary 

plot has the tree types of branches plotted using their relative quantities. Connections per 
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branch parameter can be plotted on to a branch classification ternary plot (Ortega and 

Marrett, 2000; Sanderson and Nixon, 2015). The Connections per branch parameter line 

on the plot shows the parameter values in a randomly generated fracture or lineament 

network (Sanderson and Nixon, 2015). Variations from the plotted line represent non-

randomly generated fracture networks. 

 

2.3.3. NetworkGT 

NetworkGT is the primary tool used for turning lineament & fractures traces to lineament 

& fracture networks and obtaining the nodes and branches of the networks. The 

NetworkGT workflow (Fig. 11) and definitions of nodes and branches and target areas 

are the same (Fig. 10; Nyberg et al., 2018). Sampling strategy in this Thesis was always 

the same: the sample area was always equivalent with the interpretation boundary (Fig. 

10A). NetworkGT does the computational work required to create a graph of nodes and 

branches from a given lineament or fracture network (Nyberg et al., 2018). NetworkGT 

is used for the automated calculation of multiple topological and trace abundance 

parameters, but these can be calculated easily outside NetworkGT as well by using the 

original trace data along with NetworkGT computed branch and node data. Node and 

branch data are extracted from NetworkGT and analyzed further for better analysis and 

plotting capabilities using self-made Python scripts. Both lineament and fracture traces 

are analyzed through the same NetworkGT workflow (Fig. 11). This gives us access to 

comparable output data from multiple different scales and two different methods of 

extraction. Results from geometrical and topological analyses are used for comparing 

different scales of observation in this Thesis (Fig. 11). 
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Figure 11. NetworkGT workflow (Nyberg et al., 2018). Output data analyses were also done outside NetworkGT, but 

the main workflow is similar. Imagery in our work represents the LiDAR hillshaded DEM and the drone imagery. 

 

2.4. Challenges in lineament & fracture extraction 

Lineament & fracture extractions were done with similar workflow and using the same 

ArcGIS platform, but there are unique challenges related to the contrasting datasets 

utilized within the process. Whether the basis is LiDAR or drone images, neither enable 

totally accurate extraction of features.  

In this Thesis the lineaments were extrapolated subjectively from one linear landform to 

the next enhancing the connectivity of the resulting lineament networks. For example, 

lineaments were traced from one island to the other with no topographical evidence of the 

lineament between the islands due to water coverage if such interpretation seemed 

suitable. If the lineaments were truncated only to the areas without censoring effects (e.g. 
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water or terrain coverage), this would result in the extraction of shorter lineaments and 

lineament networks with lower connectivity. The results of such extraction would not 

adequately represent our sample area. This subjective bias of extrapolation will on the 

other hand make extracted lineaments longer than in nature, but that’s also a question of 

scale of observation: Long linear features in one scale consist of many smaller features if 

observed in a larger scale (Fig. 12; Tchalenko, 1970; Bonnet et al., 2001). This applies to 

both lineaments & fractures. 

 

Figure 12. A simple example from one of my target areas of how the feature length and connectivity depends on the 

scale of observation. The enhanced extraction capability to extract smaller fractures when using the detailed imagery 

(0.11 cm / pixel resolution) compared to the 20 m imagery (0.55 cm / pixel resolution) is displayed. 

 

Reproduction of lineament maps is difficult (Burns et al., 1976) which places its own 

uncertainties on scalability comparisons, but in this Thesis all the used lineament & 

fracture interpretations have been made by the same person, which might at least remove 

the internal differences in interpretations. However, if the work would be carried out again 

by someone else, the end results might differ. 

Drone images are limited by resolution, which can be increased by surveying the same 

area at lower altitude, which simultaneously increases the scale of observation. Lower 

resolution tends to result in less accurate extraction of fractures and more uncertainty in 
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the general identification of both fracture lengths and interactions between fractures. The 

outcrops were rarely completely planar, which causes topographical distortions in the 

images. These distortions cause uncertainty in some interpreted fracture traces. 

In both lineament extraction and fracture extraction, the accurate tracing of the entire 

length of the feature is arbitrary in certain situations (Fig. 13; Peacock, Sanderson, 

Bastesen, Rotevatn, & Storstein, 2019) and especially so for lineaments due to terrain and 

water coverage. Each example in Figure 13 shows a situation where the continuation of 

a fracture trace is arbitrary and all examples apply to datasets of this Thesis. Splaying, 

branching and censoring of traces makes it very subjective whether to continue a trace or 

whether to end it (Fig. 13; Sanderson and Nixon, 2015). This problem of continuity is 

mostly avoided if the traces are divided into branches (Section 2.3.2) and nodes (Section 

2.3.1) and the features are analyzed as a graph of branches and nodes instead of the 

original fracture traces (Sanderson and Nixon, 2015). The total feature length will be 

biased if the feature in question extends beyond the target area. A method where one 

person is digitizing with a computer and another is in the field giving real-time 

information about fracture details and interactions has been developed. This method could 

alleviate the uncertainties in fracture extraction and enable for the better analysis of whole 

trace lengths (Hardebol and Bertotti, 2013), but such a method wasn’t used in this Thesis 

due to time and manpower constraints. 

 

Figure 13. Modified illustration of causes of bias and uncertainty in trace extracting (Peacock et al., 2019). A: 

Represents a node location where either branch on the left (A1, A2) could be interpreted to be a continuation of the 

branch on the right (A3). B: A trace (B1) almost intersects another (B2) and care must be taken not to snap the trace 

(B1) to end at the other (B2). C: Two traces (C1, C2) form a linkage structure and it’s entirely arbitrary, how you could 

continue the trace. D: A trace (D1) curves and interacts with another trace (D2) to form a tetrahedron structure. E: A 

Y-node where the continuation of either trace on the right (E1, E2) to the left (E3) is arbitrary. F: For example, a 

boulder can cause an area of no exposure, where the continuation of traces is arbitrary (F1, F2). G: A shadow can 

similarly cause an area of low exposure between traces (G1, G2) 
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Manual extraction of fractures and lineaments generally leads to lower amount of 

fractures than automatic, computer-driven, methods (Abdullah et al., 2010; Vasuki et al., 

2014; Bonetto et al., 2017). Manual extraction has an inherent bias caused by subjective 

interpretation of each feature and varying goals for each extraction (Bond et al., 2015; 

Scheiber et al., 2015; Andrews et al., 2019). The reproducibility of the results is difficult 

as not even the same person might make the same interpretation multiple times (Burns et 

al., 1976). Flaws of an automatic system are more easily quantifiable due to the result 

being easier to reproduce. Manual extraction is however suited for the creation of a stable 

topology for further topological analyses, but the bias of manual extraction then extends 

into the topological results as well (Prabhakaran et al., 2019). 

 

2.5. Field observations 

Field observations of fractures and their parameters were made to support the geological 

interpretation of the drone images and to broadly assess the similarities between different 

drone-scale target areas. Measurements were primarily inputted into a GTK published 

mobile app, Kapalo. Dip and dip direction were the principal measured parameters with 

some further kinematic and mineralogical observations. Apertures of fractures were not 

possible to be accurately measured from eroded outcrop surfaces. Rock type observations 

were made if applicable (e.g. veins, dykes, clear lithological boundary). Since all the 

study areas were located in the Wiborg Rapakivi Batholith, lithological variation was 

negligible. Underground fracture dips were measured in tunnels under Hästholmen.  

Field verifications of extracted lineaments were not made and no structural stereonets are 

therefore available for the structures represented by lineaments extracted from LiDAR 

DEMs. The usage of stereonets would be a method only available for fracture data and to 

avoid using knowledge not available for all scales of observation stereonet and overall 

3D data analysis is kept at a minimum. The dip and dip direction data can however be 

used to estimate the main dip constraints for the azimuth sets. 

 

2.6. Glacial striations 

The possible enhancement and effect of glaciations on LiDAR-scale lineaments is 

explored using glacial striations obtained from the GTK (2015). Glacial striations will be 

cropped to the Loviisa 1 : 200 000 LiDAR-scale target area (Fig. 6). The cropped 
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striations will be visualized on a map and on rose plots. The striations are visualized 

without any weighting in an azimuth equal-radius rose plot and the mean azimuth in each 

plot is visualized. Striations are vector-data, not axial-data, and therefore are visualized 

without the mirroring of data from one half of the plot to the other half. 

 

2.7. Assessing the combining of target areas into datasets and defining azimuth 

sets 

Drone-scale (Scales 3 and 4) target areas were combined into datasets based on the scale 

of observation, locality and field observations. The combinations of target areas are 

assessed using fracture network connectivity visualizations (XYI-ternary plots, see 

Section 2.3.1) and fracture azimuth plots from all individual target areas (Fig. 4) with 

some aid from field observations from the target areas. XYI-ternary plots will be used to 

determine if some target areas vary significantly in connectivity compared to the others 

within the same scale of observation. Lineament & fracture azimuths from all individual 

target areas are also used to define azimuth sets that are applicable to all target areas for 

all scales of observation (Fig. 4), if such sets can be defined.  

 

2.7.1. Lineament & fracture azimuths and azimuth sets 

Fractures and lineaments can be divided into azimuth sets based on their trends (Fisher, 

1995). Azimuth sets are discrete groups of lineament or fracture lines with similar 

azimuths. The azimuth sets are manually defined for discrete intervals. Only the azimuth 

of lines was used to categorize the lines into discrete sets as no additional attribute data 

except length is available. 

Rose plots of lineament & fracture branches will be used to identify azimuth sets for both 

lineaments & fractures. Two groups of rose plots will be shown: rose plots from all 

individual target areas and rose plots from all datasets. Rose plots from all individual 

target areas are used to define the azimuth sets and to assess the similarity between target 

areas for the purpose of combining target areas. Rose plots from datasets are used in all 

further analyses (e.g. characterization of datasets, scalability analysis, paleostress 

interpretations) 

The rose plots in the results are made by mirroring individual bars 180 degrees from the 

0–180 degree range to the 180–360 degree range on the left side due to both lineament & 
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fracture traces and branches being axial data. The azimuth rose plots are weighted with 

the length of the branches and are equal-radius wedge diagrams (Sanderson and Peacock, 

2020). All azimuths of branches are flipped to between 0–180 degrees before assigning 

them to sets. This flipping is sensible because the data is axial: A trace or a branch has 

two azimuths, one in direction X and another in direction X ± 180 degrees. Azimuth sets 

will be given in range 0–180 degrees. 

The defined azimuth sets are applied for all scales of observation and target areas instead 

of making set interpretations for all target areas or datasets individually. This will be 

problematic if the sets aren’t similarly apparent in all scales of observation, but in that 

case, it would be clear that the azimuth sets are scale-dependent. The sets might locally 

have varying exact mean azimuths in different individual target areas, but the set limits 

are defined to be wide enough to catch most variations. Azimuth sets might not be as well 

visible in the combined datasets as in the individual target areas and the full range of 

azimuths for each set is better visualized using individual target areas. Some sets might 

only be visible in individual target areas. 

 

2.8. Methods to characterize datasets from different scales of observation 

This section will contain the methods used to characterize datasets from different scales 

of observation. The characterization results are to study the scalability of lineament & 

fracture networks. The results are also used to interpret paleostresses and lineament & 

fracture network patterns. The methods are applied to the datasets defined in Sections 1 

and 2.7 and using the defined azimuth sets (Section 0). 

 

2.8.1. Length distribution modelling 

To determine the scaling of fracture and lineament lengths for all datasets, both traces and 

branches were visualized using a plot with both the vertical axis and the horizontal axis 

as logarithmic. This plot is used to determine whether the trace and branch length 

distributions follow power law scaling (Sornette et al., 1990; Davy, 1993; Bonnet et al., 

2001; Davy et al., 2010). If such scaling is observed, it is possible to fit a regression trend 

line into the plot that follows density Function 2 (Bonnet et al., 2001). In Function 2, n(L) 

stands for the complementary cumulative number, L stands for line length, C is a constant 

and a is the exponent of power law scaling. The trend line of the function is linear if both 
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x- and y-axis are logarithmic. Modelling length distributions using power law scaling 

often requires the determination of cut-offs, which are the lower limits of each dataset in 

which they follow the power law scaling (Bonnet et al., 2001). This lower limit would in 

length distributions be the minimum length until which the power law scaling is valid. 

The cut-offs can be a result of the resolution: The resolution of an image or a DEM always 

causes a limit on how small features it is possible to extract from it.  

𝑛(𝐿) = 𝐶 × 𝐿𝑎  (2) 

The complementary cumulative number for each line in a length distribution is usually 

normalized using the area value of the target area from which the length distribution has 

been extracted from. In this Thesis the normalization value is determined by dividing the 

area from which the length distribution is determined by the area of the largest involved 

target area. The exact methodology of area normalization affects the constant value, but 

not the exponent value in Function 1. 

Only power-law plots will be shown in this Thesis due to clear cut-offs in all length 

distributions when plotting them on double logarithmic plots and due to determined 

power-law scaling exponent values being abundant in literature (e.g. Marrett, 1996; 

Ortega and Marrett, 2000; Bonnet et al., 2001; Bertrand et al., 2015). The cut offs for all 

length distributions have been manually determined for all datasets by visually 

determining the length at which the length distribution curve starts turning horizontal as 

the value of length decreases. The assignment of cut offs is most certainly subjective and 

can be a significant source of error. A big uncertainty is caused by varying sample sizes 

in different scales of observation: LiDAR-scale lineament traces are much less numerous 

than drone-scale fracture traces, which will also somewhat skew numerical estimations 

for the fitting of a function to a distribution. The varying sample sizes of lineament & 

fracture traces and branches will be visualized using a combination of a histogram and a 

hexagonally binned color plot. 

 

2.8.2. Lineament & fracture network parameters 

Fracture & lineament abundance and size parameters can be calculated from both the 

original traces and the branches (Sanderson and Nixon, 2015). The parameter 

nomenclature in this Thesis (Tables 3 and 4) follows the nomenclature established by 
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Sanderson and Nixon (2015). For parameters that can be derived from both traces and 

branches: 

• P is used as the main symbol when the calculation is done using the original traces. 

• B is used when the calculation is done using branches. 

 

Table 3. Symbol explanations. 

Symbol Explanation 

A Area of target area 

NX Absolute X-node count 

NY Absolute Y-node count 

NI Absolute I-node count 

PX Relative X-node count 

PY Relative Y-node count 

PI Relative I-node count 

NB Absolute branch count 

NL Absolute trace count 

 

Table 4. Function explanations and value ranges. 

Function Explanation Value range 

LC Characteristic length for traces 0, ∞ 

BC Characteristic length for branches 0, ∞ 

CL Connections per trace 0, ∞ 

CB Connections per branch 0, 2 

P20 Areal frequency for traces 0, ∞ 

B20 Areal frequency for branches 0, ∞ 

P21 Fracture intensity for traces 0, ∞ 

B21 Fracture intensity for branches 0, ∞ 

P22 Dimensionless intensity for traces 0, ∞ 

B22 Dimensionless intensity for branches 0, ∞ 
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Characteristic lengths for traces (LC) and branches (BC) are simply the mean length of 

traces or branches in a target area.  

Some parameters of lineament & fracture networks are scale-dependent, which means 

that values from different scales of observation vary greatly. This makes plotting them on 

a linear vertical axis difficult, which is remedied by plotting them on a logarithmic vertical 

axis. This will however dampen differences between values, which must be taken into 

account when comparing between drone-scale dataset values. 

 

2.8.2.1. Connections per trace / branch 

Connections per line uses the original traces to calculate a measure of connectivity 

(Balberg and Binenbaum, 1983; Sanderson and Nixon, 2015). Connections per line will 

be referred to as Connections per trace this Thesis to avoid confusions between lines and 

traces (Table 1). Connections per branch uses branches instead of the original traces as a 

measure of connectivity (Sanderson and Nixon, 2015). 

In Function 3, CL denotes the connections per trace parameter (Balberg and Binenbaum, 

1983). The parameter can have values anywhere between 0 and infinity. Connections per 

trace is given by 

𝐶𝐿 =
4(𝑁𝑌+𝑁𝑋)

𝑁𝐼+𝑁𝑌
.    (3) 

Connections per branch (Sanderson and Nixon, 2015) is given by 

 

𝐶𝐵 =
(3𝑁𝑌+4𝑁𝑋)

𝑁𝐵
.    (4) 

Connections per branch is always lower than connections per trace for the same network. 

Connections per branch can have values between 0 and 2 (Table 4). A value of 2 would 

indicate a completely connected network consisting of only X- and Y- nodes, while a 

value of 0 would indicate that there are only I-nodes in the network. 

These two parameters differ in how the topological node amounts are used in the 

functions. If a network consists of only X- and Y-nodes, the value of connections per 

trace can still vary even though a network of only X- and Y-nodes can be regarded as 

completely connected (Sanderson and Nixon, 2015). The value of connections per branch 
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will on the other hand give a value of 2, when the network consists of only X- and Y-

nodes, which is the maximum value of connections per branch and indicates a completely 

connected network (Sanderson and Nixon, 2015). Both parameters are dimensionless and 

therefore parameter values from all scales of observation can be plotted without a 

logarithmic vertical axis.  

 

2.8.2.2. Areal frequency P20 / B20 

Areal frequency gives the count of either traces or branches in a target area (Sanderson 

and Nixon, 2015). The amount of traces is always lower than the amount of branches and 

therefore the value of areal frequency for branches is always equal to or higher than the 

value for traces. Areal frequency for traces is given by 

𝑃20 =  𝑁𝐿 / 𝐴  (5) 

and areal frequency for branches is given by 

𝐵20 =  𝑁𝐵 / 𝐴.  (6) 

Areal frequency is scale-dependent and differences between the scales of interpretation 

are large when comparing the drone-scale and LiDAR-scale datasets. Areal frequency 

will therefore be plotted on a logarithmic vertical axis.  

 

2.8.2.3. Fracture intensity P21 / B21 

Fracture intensity gives the total sum of trace or branch lengths in a target area (Mauldon 

et al., 2001; Sanderson and Nixon, 2015). The total trace and branch lengths are equal in 

the same area so therefore P21 is equal to B21. Fracture intensity for both traces and 

branches can therefore be given by 

𝑃21 = 𝐵21 =  𝑁𝐿 ∗ 𝐿𝐶 / 𝐴.  (7) 

Fracture intensity is scale-dependent and differences between the scales of interpretation 

are large when comparing the drone-scale and LiDAR-scale lineament datasets. Fracture 

intensity will therefore be plotted on a logarithmic vertical axis.  
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2.8.2.4. Dimensionless intensity P22 / B22 

Dimensionless intensity is calculated by multiplying fracture intensity with the 

characteristic length of either traces or branches depending on if a trace or branch 

parameter is wanted (Sanderson and Nixon, 2015). Dimensionless intensity should be 

scale-independent and comparisons between different scales should be possible in 

absolute values without a logarithmic vertical axis in plots. Dimensionless intensity for 

traces is given by 

𝑃22 =  𝑃21 ∗ 𝐿𝐶   (8) 

and dimensionless intensity for branches is given by 

𝐵22 =  𝑃21 ∗ 𝐿𝐵 .  (9) 

 

2.8.3. Cross-cutting and abutting relationships 

An abutment occurs when a lineament or fracture trace ends in another trace. These 

abutments are always Y-nodes. The abutments can give information about age 

relationships between lineaments & fractures. Normally, the feature that was generated 

first cannot abut in a feature that was formed later and therefore the feature that ends in 

another must be younger than the other feature. Gathering Y-node data from between 

azimuth sets can be used to roughly estimate and verify interpretations of age relations 

between azimuth sets (Procter and Sanderson, 2018). However, there are many 

uncertainties in Y-abutting data. Secondary joints, cross-joints (Procter and Sanderson, 

2018) and reactivations of joints can all cause abutments where the older abuts in the 

newer azimuth sets. Also, the assumption that a whole azimuth set was formed 

simultaneously is probably quite unlikely in a well-developed fracture or lineament 

network. 

Using the statistical data offered by analyzing Y-node data along with X-node 

crosscutting relationships between azimuth sets it’s possible to at least roughly estimate 

age relations between azimuth sets (Procter and Sanderson, 2018). It’s also possible to 

observe if the same age relations are found in different scales of observation. Cross-

cutting and abutting relationships are used for the interpretation of lineament or fracture 

patterns of the network (Rives et al., 1994). 
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2.8.4. Anisotropy of connectivity 

Lineament & fracture networks aren’t isotropic and the anisotropic properties of a 

network have an effect on the permeability of the studied rock (Bond et al., 2013). 

Anisotropy of a lineament & fracture network has been calculated and visualized in 

numerous ways (Bond et al., 2013; Watkins et al., 2018) using different kinds of datasets. 

DFN models, which have been built using well and seismic data (Bond et al., 2013), have 

been used to interpret anisotropy. 2D fracture trace maps have been used to make ellipse 

visualization of fracture network anisotropy (Watkins et al., 2018). I’ve devised a method 

that takes the connectivity of the lineament & fracture network into account to calculate 

and visualize the anisotropy of connectivity of the lineament or fracture network. The 

development of this method is described in Section 3.9.1. 
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3. Results 

3.1. Example area characterization 

Figure 14 serves as an illustrative summary of a drone-based orthomosaic image, 

extracted fracture traces and analyses made from these traces. The outcrop seen in the 

orthomosaic is from the Kampuslandet locality (Fig. 8). Branches and nodes are not 

visualized to avoid clutter, but branch and node data was used for most shown plots and 

for the calculation of their underlying parameters. The azimuth sets shown (Fig. 14C) 

weren’t uniquely defined from the example target area, instead they followed the same 

azimuth sets defined in Section 3.2. All other results are calculated from this exact 

example target area KL5. 
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Figure 14. Example target area of KL5 from the Kampuslandet locality with most parameters calculated and plotted 

from this target. Shown parameters: A. Azimuth rose plots for both traces and branches length-weighted and non-

weighted. B. Trace and branch length distributions. C. Sets visualized. D. XYI. E. Branch Classification. F. Original 

orthomosaic. G. Anisotropy of connectivity. H. Cross-cutting and abutting relationships. 
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3.2. Assessing the combining of target areas and defining azimuth sets 

Drone-scale target areas were combined into a total of 4 datasets (Section 1). The target 

areas for each dataset were defined based on target area locality of either Kasaberget or 

Kampuslandet (Fig. 25) and based on field observations of different fracture intensities 

between the two localities. XYI-plots and azimuth rose plots from individual target areas 

(Figs. 15–17) show no significant variations within the defined datasets (Sections 1 and 

2.7; Figure 4) and, for this reason, merging individual drone-scale target areas into 

datasets is justified. Scale 3 Kasaberget target areas (Fig. 15) vary slightly in connectivity, 

but this could be due to a low number of sample sizes in some target areas. Azimuth rose 

plots from all individual target areas (Figs. 18–20) show that the main sets varied in 

intensity between target areas, but the two main sets were almost always still detectable. 

It is important to note that no systematically deviating azimuth sets are visible from any 

individual target area and all the individual target area azimuths can be utilized in the sub-

division of the fracture trace data into the azimuth sets. 
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Figure 15. XYI-ternary plots from Kasaberget individual target areas. Grouped based on datasets. 
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Figure 16. XYI-ternary plots from Kampuslandet individual target areas. Grouped based on datasets. 

 

 

 

Figure 17. XYI-ternary plots from LiDAR target areas. 
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Figure 18. Azimuth length-weighted rose plots for Kasaberget target areas. Grouped based on datasets. FoL = 

Fraction of total length i.e. how much total branch length of a dataset is within an azimuth set. 
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Figure 19. Azimuth length-weighted rose plots for Kampuslandet target areas Grouped based on datasets. FoL = 

Fraction of total length i.e. how much total branch length of a dataset is within an azimuth set. 

 

 

Figure 20. Azimuth length-weighted rose plots for LiDAR target areas. FoL = Fraction of total length i.e. how much 

total branch length of a dataset is within an azimuth set. 
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The four drone-scale datasets that were made from combining target areas can be used 

for some estimations of errors, such as if target areas were found to be from structurally 

distinctly different rock units. If drone-scale datasets were limited to one dataset per scale 

of observation, such observations couldn’t be made. 

Three azimuth sets were defined from the individual rose plots, set 0 was defined to range 

45–90 degrees (NE–E), set 1 was defined to range 125–170 degrees (~S-SE) and set 2 

was defined to range 171–15 degrees (~N). Rose plots (Figs. 18–20) show two easily 

identifiable main azimuth sets 0 and 1 in all individual target areas and the azimuth sets 

extend into the LiDAR-scale dataset target areas (Hastholmen_LiDAR and 

Loviisa_LiDAR; Fig. 20). The third set, 2, is best visible in rose plots from the 

Kampuslandet locality (KL3, KL4, KL2_1; Fig. 19). Comparisons between individual 

target areas show that all the sets varied locally in orientations. The set limits defined here 

cover almost the whole range of azimuths to catch the same broad sets from all individual 

target areas (Table 5; Fig. 21).  

Table 5. Defined azimuth sets. 

Set Set range (°) Additional info 

0 45, 90  

1 125, 170  

2 171, 15  

-1 - Consists of all leftover azimuths. Shown only in some analyses. 

 

 

Figure 21. Visualization of azimuth sets that were defined from the target areas (Table 5). 
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3.3. Length distribution modelling 

Figure 22 contains both the length distribution data and fit for traces and branches using 

the datasets from all scales. Cut-offs have been applied on the plots on the right and fits 

to Function 2 are shown. Some parameters to numerically define the fit of the function 

are shown: MSLE stands for mean squared logarithmic error and R^2 stands for R 

squared. 

These parameters are somewhat skewed by differences in sample sizes between different 

scales of observation by weighting the goodness of fit more on the more numerous drone-

scale lines, which should be taken into account (Fig. 23).  

The scaling attribute of the length distributions is the exponent of the function. For traces 

the exponent is -1.86 and for branches -1.96 (Fig. 22).  

 

Figure 22. Length distributions for both traces and branches and the cut off version with the fit. Values for the fit 

function are shown along with two goodness-of-fit parameters MSLE and R^2.  
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Figure 23. Visualization of sample size differences between the scales of observation. The lighter the color the more 

features there are. 

 

3.4. Lineament & fracture branch azimuths 

Sets 0 and 1 are quite well visible in all datasets except for the Scale 2 

Hastholmen_LiDAR dataset which shows much more variability in azimuths (Fig. 24). 

When comparing between the drone-scale datasets the azimuth sets seem to be quite 

similarly clustered in azimuth and quantity: Set 0 is the most abundant whereas set 1 

shows less scatter in orientation. In the Scale 1 Loviisa_LiDAR dataset, sets 0 and 1 seem 

to have reversed in character compared to the drone-scale: Set 0 is less scattered in 

azimuth and less abundant whereas set 1 is more scattered in azimuth and more abundant. 

Set 2 is well visualized in only the Scale 4 KL_det dataset. 
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Figure 24. Azimuth length-weighted rose plots for all datasets. FoL = Fraction of total length i.e. how much total 

branch length of a dataset is within an azimuth set. 
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3.5. Dip constraints on fractures 

Dip and dip direction data from measured fractures are shown in Figure 25. The two main 

sets are apparent in Kampuslandet and Kasaberget localities. Hästholmen measurements 

are collected relatively near to Kasaberget and quite a bit further away from 

Kampuslandet. To define valid dips for all the azimuth sets it is required to collect 

measurements from all fracture sets without bias, which is difficult and slow. Some 

fracture orientations might be better exposed on a particular outcrop surface and not all 

fractures are suitable for the extraction of dip due to polished outcrop surfaces. Stereonets 

are therefore not used to interpret azimuth sets in this Thesis. Main sets were both 

observable in the field and by using the rose plots of digitized fracture traces. The 

stereonets show that most fracture planes are subvertical (Fig. 25). 

 

Figure 25. Stereonets to show the dip measurements of fractures taken from different localities. Stereonet fractures 

have been visualized using the azimuth sets (Fig. 21). The map contains the localities of the Scale 3 target areas. Scale 

4 target areas are located inside the underlined Scale 3 target areas: KB4 is inside KB3, KB8 is inside KB7 and KL3 

& KL4 are inside KL2_2. 
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3.6. Glacial striations  

Striation data from the Geological Survey of Finland have been cropped to the 1 : 200 000 

Loviisa target area (Fig. 26). The striations are attributed to different glacial periods, 

though large portions have been attributed to an unknown age. Overall the striations have 

a clear and significant SSE-trend with some variance, depending on the relative age of 

the striations (Fig. 26). 

 

Figure 26. Striations in the 1 : 200 000 Loviisa Target Area. The blue arrows represent the mean azimuth for each 

corresponding relative age group. Modified data from GTK, 2015. 
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3.7. Lineament & fracture network parameters 

3.7.1. XYI and branch classification plots 

Figure 27 shows the datasets plotted on a single XYI-plot and on a branch classification 

plot. In the plot KB_20m and KL_20m datasets are stacked almost perfectly on top of 

each other. The different scales of observation seem to have a correlation that has been 

drawn with the trend arrow (Fig. 27). In the branch classification plot Scale 4 datasets 

seem to have more relative quantities of both I–I- and I–C-branches. The connectivity 

seems to be highest for the Scale 1 Loviisa_LiDAR dataset and lowest for the Scale 4 

datasets in both plots. Both the XYI-plot and the branch classification plot seem to 

indicate a trend of connectivity dropping as the scale of observation increases from Scale 

1 all the way to Scale 4. The trend of branch proportions follows the theoretical line of 

randomly assigned nodes to branches, which reinforces the observation that the topology 

of a network changes depending on the scale of observation (Sanderson and Nixon, 2015): 

Changes along the line should represent changes in network topology. 

 

Figure 27. Contains both the XYI and branch classification ternary plots, connections per branch parameter visualized 

and drawn manually interpreted trends. 
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3.7.1. Lineament & fracture abundance, size and topological parameter 

plots 

Two types of trends can be observed from the lineament & fracture network parameter 

plots (Fig. 28): 

1. The following parameter values decrease when moving towards more detailed 

scales of observation i.e. increasing the scale 

a. Connections per trace / branch (Functions 3 and 4) 

b. Dimensionless intensity P22 / B22 (Functions 8 and 9) 

2. The following parameter values increase when moving towards more detailed 

scales of observation i.e. increasing the scale 

a. Areal frequency P20 / B22 (Functions 5 and 6) 

b. Fracture intensity P21 (Function 7) 

Other observations (Fig. 28): 

3. Kampuslandet has higher areal frequency, fracture intensity and dimensionless 

intensity than Kasaberget for both traces and branches. 

4. The same trends that apply to trace datasets apply similarly to branch datasets. 

The intensity of some of the trends differ, which is especially noticeable when comparing 

the dimensionless intensity P22 and the dimensionless intensity B22 plots (Fig. 28): 

Values of P22 for the Scale 1 Loviisa dataset are relatively much higher than values of 

other datasets. Mean lengths of traces and branches (Fig. 29) could possibly explain the 

trend intensity difference: Lineament traces are cut into more parts than fracture traces 

when dividing them into branches. 

Connections per trace values for all the datasets are higher than connections per branch 

values for that same dataset. Both plots can however be similarly interpreted: The 

apparent connectivity of a lineament & fracture network decreases as the scale of 

observation increases (Scale 1 → Scale 4). The values for areal frequency are very similar 

for traces and branches. Values of fracture intensity are equal for traces and branches. 
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Figure 28. Discrete interval barplot visualizations for parameters: Connections per Trace/Branch, Dimensionless 

Intensity, Areal Frequency and Fracture Intensity. Some parameters require plotting with a logarithmic Y-axis due to 

the parameter being dimensional. Parameter values, rounded to two decimals, are shown above bars. Fracture 

Intensity B21 for branches is not shown due to it being equal to P21. 
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Figure 29. Mean lengths for traces and branches in all the datasets. Lengths are given in meters and are rounded to 

two decimals. 

 

3.8. Cross-cutting and abutting relationships between azimuth sets 

Abutting and cross-cutting relationships are plotted as barplots in Figure 30. The 

relationships are shown between all three azimuth sets and for all datasets. Observations 

from the plots (Note that observations have been marked in Figure 30) are as follows: 

1. There are roughly equal amounts of X- and Y-nodes between sets 0 and 1 in drone-

scale datasets, but for LiDAR-scale datasets the Y-node count is around half of 

the X-node count. 

2. Set 2 traces abut to other sets in drone-scale Kasaberget datasets. 

3. Set 1 abuts to set 2 in drone-scale Kampuslandet datasets. Set 0 doesn’t abut to 

set 2 in the Scale 3 Kampuslandet dataset but does so in the Scale 4 Kampuslandet 

dataset. 

4. Low sample sizes for relationships with set 2 in Scale 2 Hästholmen and Scale 1 

Loviisa datasets makes interpretations arbitrary. 
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Figure 30. Visualization of cross-cutting and abutting relationships between all azimuth sets for all datasets. Y-axis 

represents the quantity of X- and Y-nodes of interaction between the azimuth sets. Includes the visualization of azimuth 

sets and observations from text have been marked (Obs. 1, 2, 3, 4). 
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3.9. Anisotropy of connectivity 

3.9.1. Definition 

Branches that are classified as C–C (Fig. 10) are the branches that connect other branches 

together to form a possible pathway for fluid flow inside a fracture or lineament network. 

C–C-branches would be a defining factor in the connectivity of a lineament & fracture 

network. Ternary branch attribute plots (Fig. 27) use these branch classifications to 

visualize lineament & fracture network connectivity (Sanderson and Nixon, 2015). A 

ternary plot will however not capture the anisotropy of how the C–C-branches are 

oriented in a lineament & fracture network. 

Length-weighted rose plots show the distribution of branch lengths depending on 

azimuth. When considering the anisotropy of a whole lineament & fracture network, it 

isn’t interesting to deterministically interpret which fractures the possible fluid might 

flow through or to even use narrow azimuth bins, such as the 10 degree bins in this Thesis 

(Fig. 24). Instead it’s more interesting to stochastically interpret the directions in which 

there are connected pathways of C–C-branches and to see if there are differences between 

directions. Locally individual fractures are obviously important as pathways, but 

anisotropy of connectivity tries to model the overall lineament & fracture network with 

the simple 2D data available (Fig. 31).  

The digitized 2D-networks contain no additional attribute information about the fractures 

and hence anisotropy of connectivity only considers the geometrically derived properties 

of branches (Section 2.5.2.): 

1. Branch Length 

2. Branch Azimuth 

3. Branch Classification 

Anisotropy of connectivity uses the branch length and branch azimuth as the weight of 

each branch in calculations for discrete orientations (Fig. 31). Branch classification usage 

refers to only using branches that are classified as C–C in calculating anisotropy.  
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Figure 31. Illustration of calculating Anisotropy of Connectivity for branch data. 

 

Anisotropy of connectivity is calculated for discrete orientations from 0 to 180 degrees in 

30 degree intervals of τ (Fig. 32). The interval could be smaller but that would increase 

the calculation time with negligible benefits. The value of anisotropy is the sum of 

projected branch C–C lengths (Fig. 31). Symbol used for the length of such branch is 𝐵𝐶𝐶. 

Projection in this case means to calculate the length of a projected branch on a line that is 

in the direction that is being calculated. Projection is done using the cosine of the angle 

between the calculation orientation and the azimuth of the branch (Fig. 31). Input 

azimuths must be in range 0–180 degrees, which means that azimuths not in this range 

have been flipped to this range, which is valid for axial-data, such as branches.  

𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 (𝜏) =  ∑ (𝐵𝑖
𝐶𝐶 × 𝑐𝑜𝑠(𝜏 − 𝛽𝑖)),𝑛

𝑖=1 𝑤ℎ𝑒𝑛 |𝜏 − 𝛽𝑖| < 90 (10) 

𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 (𝜏) =  ∑ (𝐵𝑖
𝐶𝐶 × 𝑐𝑜𝑠(𝜏 − 𝛽𝑖 − 180)),  𝑤ℎ𝑒𝑛𝑛

𝑖=1 |𝜏 − 𝛽𝑖| > 90 (11) 

This anisotropy value, given in meters, is meant for within target area or dataset 

comparisons. It is not normalized to the target area or dataset area size. It is meant as a 

simple visualization of branch connectivity differences in different directions within a 

target area or dataset.  
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Similarly to all other parameters of fractures and lineament & fracture networks, 

anisotropy of connectivity can be used to compare different scales of observation as it is 

extractable from all scales of observations. It works similarly to the azimuth rose plots in 

scalability analysis to see if the same orientations in different scales of observation have 

different or similar properties in regard to connectivity (Fig. 32). 

 

 

Figure 32. Example of an anisotropy of connectivity plot with explanations. 

 

3.9.2. Anisotropy of connectivity results 

Observations from visualized anisotropy of connectivity values (Fig. 33): 

1. Anisotropy is controlled by the two main azimuth sets 0 and 1 in Kasaberget and 

Kampuslandet datasets.  

2. Scale 3 Kasaberget and Scale 3 and Scale 4 Kampuslandet datasets are quite 

isotropic in regard to connectivity with highest connectivity values at the edges of 

the apparent squares.  
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o Square shape of the anisotropy visualization is caused by the combined 

effect of the two main azimuth sets of 0 and 1 in addition to set 2. Fractures 

not categorized into a defined azimuth set must also have an effect. 

3. Scale 4 Kasaberget dataset has clearly the highest connectivity in the azimuth of 

set 0. 

4. Scale 2 Hästholmen and Scale 1 Loviisa lineament connectivity is anisotropic 

with the highest connectivity in the azimuth of set 1. 

 

Figure 33. Visualizations of anisotropy of connectivity for all datasets. Observations (Obs.) 3 and 4 from text have 

been marked. 
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4. Discussion 

4.1. Length distribution modelling using power-law scaling 

Correlation of results of trace and branch lengths from the different scales of observation 

utilized power-law scaling. This choice was not further evaluated in this Thesis, even 

though other scaling laws for fractures exist (Bonnet et al., 2001). Especially, when 

considering the scaling of branch lengths, power-law scaling isn’t a certainty. Branch 

lengths might also follow a lognormal distribution without the need for cut-offs 

(Sanderson and Nixon, 2015).  

Bonnet et al. (2001) collected fracture length distribution analyses from multiple sources 

and created a compilation of power law exponent values from varying fracture datasets. 

Some analyses were done using multiple scales which enables comparisons to my 

multiscale power law exponent value for traces. However, most compiled fracture 

datasets (Bonnet et al., 2001) are from sedimentary rocks and all of the target areas of my 

datasets are in a crystalline rock. As a rough observation the value of -1.86 for the 

exponent of trace length distributions fits with values in the compilation and with values 

for multiscale length distributions (Bonnet et al., 2001). A multiscale fracture analysis of 

the Tamariu granite from Spain (Bertrand et al., 2015) can be used to compare The 

Wiborg Rapakivi Batholith results with those from another crystalline rock mass. The 

value for multiscale lineament & fracture trace exponent in the Tamariu granite is -1.96 

(Bertrand et al., 2015). A variation of ±0.1, when compared to my value of -1.86, might 

more than likely be inside the error margins of determining the power law exponent in 

this Thesis and it could therefore be interpreted as insignificant. 

The cut-offs that are determined in power law modelling could be used to limit the length 

of fractures that are extracted in a given scale of observation, which would lead to less 

work in extracting lineaments or fractures. In quantity, the smallest extracted traces in 

every scale sum up to a very high fraction of overall extracted traces. If the cut-offs are 

applicable, it would severely shorten the time needed to manually extract traces. It is also 

of interest if these cut-offs represent the true limits of “good” data from a target area or if 

instead extracting all possible fractures would always be necessary. 

The power law exponent values for branch length distributions are scarce in literature, 

and it has been suggested that power law scaling wouldn’t fit branches as well as traces 

(Sanderson and Nixon, 2015). No significant reasons why power law scaling couldn’t be 

applied to branches are interpretable from branch data in this Thesis. The similar 
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workflow of assigning cut-offs can be done with fitting of a power law function to 

branches. The fit is both visually and numerically good for the cut length data (Fig. 22). 

The branch length distributions differ visually when compared to the length distributions 

of traces. All branch length distributions have a more curved shape and are visually 

similar to each other. The upper curve to horizontal is a good indicator of the cut-off for 

branch distributions and it is apparent in all scales of observation. The exponent value of 

-1.96 is close to the exponent values of traces, but how comparisons between trace and 

branch exponents should be made hasn’t been determined. 

A significant uncertainty is the jump between Scales 2 and 3 from LiDAR-scale to drone-

scale (Fig. 22). Almost no data of trace lengths from 10 meters all the way to 200 meters 

and no data of branch lengths from 2 meters to 60 meters is extracted using drone-scale 

imagery and LiDAR DEMs in this Thesis. To create data for these intermediate scales 

either much larger polished outcrops (larger than the ones available in the Loviisa region) 

or a more accurate LiDAR elevation model are required. Small structures will however 

likely not create lineaments that are interpretable from any LiDAR elevation model. 

 

4.2. Azimuths, azimuth sets and anisotropy 

Sets 0 and 1 are clear in all datasets, but their characteristics differ between datasets (Fig. 

24). The relative length-weighted abundance of lineaments & fractures changes when the 

scale of observation decreases from Scale 4 to Scale 1: There is more length-weighted 

abundance in set 0 compared to set 1 in drone-scale datasets, whereas in LiDAR-scale 

datasets there is more length-weighted abundance in set 1 compared to set 0 (Fig. 24). 

This phenomenon isn’t distinct in the drone-scale anisotropy visualizations (Fig. 33). 

Only the Kasaberget Scale 4 dataset has clearly highest connectivity in the azimuth of set 

0 which is similarly distinct in the area’s rose plot. The relative higher amount of set 1 

compared to set 0 in LiDAR-scales 1 and 2 is noticeable in the anisotropy visualizations 

with pronounced higher connectivity in that azimuth (Fig. 33). 

An explanation for the phenomenon of distinctly higher length-weighted abundance and 

connectivity in the azimuth of set 1 in LiDAR datasets might come from glacial processes. 

The striations within Scale 1 Loviisa target area have a distinct main mean flow direction 

of roughly SSE (Fig. 34). The glacial enhancement of lineaments would most likely 

enhance linear features in this orientation which would cause the enhancement of 

lineaments within set 1. This enhancement is also possibly noticeable in the Scale 2 
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Hästholmen dataset though with less intensity (Fig. 34): Set 1 has more length-weighted 

abundance than set 0. Glacial enhancement of lineaments could explain the quantity 

differences between sets 0 and 1 but it wouldn’t explain the lower variation within set 0 

in the Scale 1 Loviisa dataset (Fig. 34).  

 

Figure 34. Comparison between striation azimuths and LiDAR-scale lineament azimuths. FoL = Fraction of total 

length i.e. how much total branch length of a dataset is within an azimuth set. 

 

The scalability of fracture azimuths has been studied in the Tamariu granite (Bertrand et 

al., 2015), where the azimuths were found not to be independent of the scale of 

observation and, similar to my datasets, the relative proportions in different azimuths 

changed with the scale of observation (Fig. 24). However, the main azimuths of sets are 

similarly observable from all scales of observation in my datasets and in the Tamariu 

granite study (Bertrand et al., 2015). 

According to the anisotropy of connectivity observations (Section 3.9.2) rough estimates 

of optimal 2D fluid flow pathways differ depending on the scale of observation when 

using lineament & fracture traces (Fig. 33). This is possibly due to glacial enhancement 

of lineaments in azimuths sub-parallel with the glacial flow. Glacial features such as 

eskers are however significant groundwater aquifers and flow tunnels (Ala-aho et al., 

2013) and just as glacial flow enhances lineaments in flow azimuths it might enhance 

fluid flow in glacial flow directions. To estimate the intensity of fluid flow, the XYI-node 

proportion values (Fig. 27) could be used to get closer to a numerical estimate of fluid 

flow intensity.  

The Scale 2 Hästholmen dataset azimuths are the most varied compared to all other 

datasets (Fig. 24). Sets 0 and 1 are definable but barely and not without the observations 
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from other datasets. This is possibly caused by the limitations of the LiDAR data used in 

this Thesis: Scale 2 lineaments might not adequately represent underlying bedrock 

features and instead they represent quaternary processes. 

 

4.3. Cross-cutting and abutting relationships between azimuth sets 

Observations from the cross-cutting and abutting relationships between sets 0 and 1 

shows no distinct abutting relationships (Fig. 30): Neither set seems to abut more in the 

other. Set 2 has two kinds of abutting relationships to sets 0 and 1 when comparing the 

Kasaberget and Kampuslandet drone-scale datasets (Fig. 30). In Kasaberget set 2 abuts 

to other sets, but in the Scale 4 Kampuslandet dataset other sets abut to set 2. Fractures 

from set 2 were best observed in the field in the Scale 4 Kampuslandet dataset target areas 

with pronounced damage zones around them (Fig. 9). The set is also best observable from 

rose plots from the Scale 4 Kampuslandet dataset (Fig. 19). Set 2 represents similar 

azimuths to polymetallic veins (Valkama et al., 2016; Valkama, 2019) found somewhat 

northeast of the drone-scale target areas of this thesis, but defining the exact relations to 

these veins is impossible without e.g. geochemical studies and age determinations of 

fracture fillings. 

Azimuth set 2 might represent fractures that occur only in some localities and fractures 

in this azimuth elsewhere might represent secondary fractures of the two main sets 0 and 

1. Such secondary fractures would usually abut in the main fracture which would explain 

abutment relationships in the Kasaberget datasets. It could be interpreted that set 2 

fractures in the Kampuslandet locality are older than sets 0 and 1, at least locally. Strict 

spatial extent and low overall abundance of set 2 fractures might also be why relationships 

in the Scale 2 Hästholmen and Scale 1 Loviisa datasets between lineaments of sets 0 and 

2 and sets 1 and 2 are so scarce; Set 2 oriented brittle bedrock structures might only rarely 

have enough magnitude to cause enough topographical distortions to appear as 

lineaments. 
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4.4. Orthogonal fracturing and paleostresses 

Both azimuth plots and cross-cutting and abutment relations between two roughly 

orthogonal sets (sets 0 and 1) show a distinct grid-type fracture (Rives et al., 1994) and 

lineament pattern (Nur, 1982; Tiren, 2010). The two orthogonal sets both crosscut and 

abut in each other (Fig. 30). For drone-scale datasets the quantity of cross-cutting and 

abutting between sets 0 and 1 is roughly equal. For LiDAR-scale datasets there’s only 

half the amount of Y-nodes compared to X-nodes. This is most likely due to abutting 

relationships being difficult to detect in LiDAR-scale lineament extraction.  

A grid-type pattern could imply two independent stress events (Nickelsen and Hough, 

1967; Hancock et al., 1987; Simon et al., 1988; Rives et al., 1994). A grid-type pattern 

could be explained by two independent paleostress tensors that are the reverse of each 

other with σ3 switching places with σ1 after the genesis of the first set of fractures. The 

shear strength of the first fracture set would’ve been high either due to high normal stress 

or due to healing and closing of the fractures, in which case the second set could cross-

cut the first (Rives et al., 1994) and it could explain why there are no significant 

differences in abutment quantities between the two main sets (Fig. 30). However, the 

significant amounts of abutments between the main sets visualized by the cross-cutting 

and abutting relationships (Fig. 30) could be better explained by simultaneous genesis, 

where both sets might have formed with low regional differential stress enabling σ2 and 

σ3 to switch places locally and multiple times (Rives et al., 1994). 

Tensile fractures occur in perpendicular angles to σ3 (Nur, 1982; Adler and Thovert, 1999; 

Bai et al., 2002). If the extracted lineaments & fractures are interpreted as tensile 

structures, it is possibly to roughly interpret the paleostress conditions required to create 

azimuth sets visible in shown azimuth plots from different datasets. No significant age 

relations could be interpreted between the main found sets 0 and 1, but by using the 

paleostress tensors interpreted from the Olkiluoto site, speculation is possible (Viola et 

al., 2011; Mattila and Viola, 2014). Set 1 could have been formed as a result of stress 

tensor of Stage 4 shown in Figure 3 and set 1 as a result of stress tensor of Stage 5 (Mattila 

and Viola, 2014). The defined azimuths of both sets fit the tensors quite well. According 

to this interpretation set 1 features would be relatively older than set 0 features which 

however isn’t visible in the cross-cutting and abutting relationships between the sets 0 

and 1 (Fig. 30). The cross-cutting and abutting relationships (Fig. 30) would fit better 

with the alternative origin of both sets forming almost simultaneously during either Stage 

4 or Stage 5. Set 2 is best explained by the orientation of the last stress tensor of Stage 7. 
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However, the cross-cutting and abutting relationships derived from interactions between 

the three sets seems to indicate the opposite: Set 2 seems to be relatively the oldest of the 

sets (Section 3.8; Fig. 30). 

 

4.5. Lineament & fracture abundance, size and topological plot discussion 

XYI and branch classification plots show a distinct decrease in lineament & fracture 

network connectivity as the scale moves from Scale 1 all the way to Scale 4 (Fig. 27) i.e. 

as the scale of observation increases. Lineaments are more connected than fractures which 

is also noticeable in the connections per trace/branch parameter plots (Fig. 28). Enhanced 

lineament network connectivity could be due to the inherent uncertainty in mapping 

lineament abutments and ends. The decreased Scale 4 fracture network connectivity when 

compared to Scale 3 could be explained due to larger features splitting into smaller 

features (Fig. 12). As the scale of observation increases the features might become more 

and more disconnected (Tchalenko, 1970; Bonnet et al., 2001).  

Areal frequency and fracture intensity are highest for drone-scale datasets, with highest 

fracture abundance and size in the Kampuslandet datasets, and lowest for LiDAR-scale 

datasets. Dimensionless intensity is however the opposite, it is highest for LiDAR-scale 

datasets and especially high in the Scale 1 Loviisa dataset. The values from Scale 3 and 

Scale 4 datasets are close to each other, but the logarithmic plot dampens some of the 

difference.  

Overall all the parameters (Fig. 28) are seemingly scale-dependent with variance in the 

intensity of this dependency. In the usage and presentation of these parameters it should 

always be displayed from which scale of observation they were extracted in. 

 

4.6. Predicting lineament & fracture network parameters 

The scalability of lineament and fracture parameters as well as lineament and fracture 

network parameters defines how and if these parameters can be predicted. In this Thesis 

there are four scales of observations covering a large range of lineaments & fractures. It 

is of interest if the results of this Thesis could be obtained using fewer scales of 

observation. This can be assessed by simulating using less scales of observations than 

available and by interpreting trends of parameter value dependency on the scale of 

observation. 
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Predictions always contain uncertainty due to incomplete data or inaccuracy of 

measurement and such uncertainties in predicting should also be made known. Some 

scale of observation and the type of methodology used for fracture extraction might be 

flawed which might be detectable when comparing it to the data from other scales of 

observation. These comparisons would require more datasets from more scales of 

observations than the two in this Thesis. 

The exponent of the power-law scaling is a numerical parameters used to model fracture 

length scaling (Bonnet et al., 2001). It can be determined using a single scale of 

observation but more than likely this isn’t accurate enough to predict beyond this scale of 

observation and determining the cut-off is difficult with only a single length distribution. 

Extraction of both lineaments & fractures is faster the smaller the scale of observation. 

Ideally the exponent of power-law scaling could be determined using the fastest methods, 

which would in the case of this Thesis be the Scale 1 Loviisa and Scale 2 Hästholmen 

LiDAR lineament extractions. Fig. 35 shows examples of determining the exponent of 

power-law scaling using a limited number of scales of observation and using both trace 

and branch length distributions. 
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Figure 35. Determination of power-law scaling exponent using a limited amount of scales of observation. Cut-off values 

are identical to values used in determinations from all datasets. 

 

Table 6. Summary of power-law scaling exponents using different datasets. 

Feature All datasets Scale 1 and 2 (LiDAR) 

datasets 

Scale 1 (LiDAR) and 3 

(drone) datasets 

Traces -1.86 -1.58 -1.8 

Branches -1.96 -1.87 -1.96 

 

As summarized in Table 6 the usage of only LiDAR-scale traces or branches results in 

inaccurate parameter values for the exponent of power-law scaling. Using the Scale 1 

Loviisa dataset along with the Scale 3 datasets the exponent is the same (-1.96) as with 

using all the datasets from all the scales (-1.96) for branch length distributions. The 
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exponent could seemingly be obtained accurately for branch lengths by using only Scales 

1 and 3 (1 : 200 000 Loviisa LiDAR-scale and 20 m flight altitude drone-scale). The trace 

exponent value (-1.8) from the datasets of these two scales is also quite close to the value 

from all datasets (-1.86). 

By studying the rough trends of abundance, size and topological parameter changes with 

the scale of observation some rough estimations of scale-dependency of different 

parameters could be established. A rough prediction could be made that connectivity 

parameters (e.g. relative XYI-node counts, branch class counts and connections per 

trace/branch) calculated from Scale 2 lineament data represent the maximum limits of 

connectivity values in a wide target area. Drone-scale extraction results would always be 

lower than these maximum values. Similar rough estimations could be applied to other 

parameters.  
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5. Conclusions 

• The length distribution of multiscale lineaments & fractures can be modelled with 

power-law scaling for both traces and branches. Exponent of power-law scaling 

for traces in the Thesis datasets within the Wiborg Rapakivi Batholith is -1.86 and 

for branches -1.96. 

• The determination of the exponent of power-law scaling doesn’t require extraction 

of lineaments & fractures in all scales of observation and is obtainable accurately 

for branch lengths and somewhat less accurately for traces with only two scales 

of observation: 

o 1 : 200 000 LiDAR-scale (Scale 1) 

o 20 m flight altitude drone-scale with a resolution of 0.55 cm / pixel (Scale 

3) 

• All lineament & fracture abundance, size, topological and connectivity parameters 

used in this Thesis are seemingly scale-dependent with variance in the intensity 

of this dependency. In the usage and presentation of these parameters it should 

always be displayed from which scale of observation they were extracted in. 

o The apparent topological connectivity of a lineament or a fracture network 

decreases as the scale of observation increases. 

• Abutment relations between lineaments are difficult to detect from LiDAR data. 

• Cross-cutting and abutting relationships can be derived from trace and node data 

of lineament or fracture network. These relationships between lineament or 

fracture sets offers insights into the genesis of lineaments & fractures and to the 

interpretation of lineament or fracture network patterns. 

• A simple visualization of lineament & fracture network connectivity can be made 

using the classification of branches, branch lengths and branch azimuths. The 

visualization possibly offers information about preferred fluid flow pathways in 

fractured rock when used in conjunction with azimuth rose plots and XYI-node 

plots. 

• The orthogonal fracturing in the Loviisa region in southeastern Finland represents 

a grid-type patterned network and its genesis either requires the reversal of an 

originally NE–SW oriented σ3 or regionally low differential stress causing σ3 and 

σ2 to switch places multiple times during fracture genesis locally or regionally. 

Both genesis alternatives are compatible with paleostress observations from the 

Olkiluoto site in southwestern Finland (Stages 4 and 5 by Mattila and Viola, 

2014). 
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