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ABSTRACT 
Sub-Arctic peatland ecosystems are undergoing rapid changes due to climate warming. 
Palsa and peat plateau mires, northern peatlands with permafrost as a definitive 
character, are degrading particularly rapidly. Rising temperatures are causing permafrost 
thaw, leading to alterations in hydrology, vegetation structure and microhabitat diversity. 
At the same time, the microinvertebrate fauna, such as oribatid mites (Acari: Oribatida), 
of these mires remain poorly known. Oribatid mites are microscopic (0.1−1mm), mainly 
soil-dwelling arachnids, found in all terrestial ecosystems, where they function as 
decomposers of organic matter. With 11 000 species described worldwide, and densities 
reaching 200 000 individuals per square meter, oribatids are one of the most species-rich 
and abundant soil-living animal taxa. Despite this, oribatids are considered a poorly 
known animal group. Oribatid mites have been shown to be good bioindicators of natural 
and anthropogenic environmental change, but they are rarely included in studies 
detecting ecosystem dynamics in the sub-Arctic region.  

The aims of this thesis were to study the impacts of climate change on oribatid mite 
communities living in sub-Arctic peatlands, and to investigate if oribatid mites can be 
used as bioindicators in studies detecting historical permafrost dynamics. Data was 
collected from peatlands in Northern Fennoscandia, Siberia and Canada, and the studies 
included investigations of contemporary and past oribatid mite communities, covering a 
timescale 6000 years, as well as warming experiments. 

The results of this thesis show that permafrost thaw in peatlands leads to alterations 
in the species composition and dominance structure of oribatid communities. The direct 
impacts of warming on peatland-dwelling oribatid mites are season-dependent: findings 
revealed that summer warming had a positive and winter warming a negative impact on 
oribatid densities. Small-bodied oribatid mites belonging to the genus Suctobelba 
significantly increased in abundance under summertime warming. The taxon richness of 
oribatid mites was negatively affected by year-round warming. The results also reveal 
that oribatid mites are valuable indicators of past permafrost conditions in sub-Arctic 
peatlands. Three permafrost-indicator species, Carabodes labyrinthicus, Neoribates 
aurantiacus and Chamobates borealis, were recorded.  

This thesis provides novel information about the impacts of climate change on sub-
Arctic oribatid mite communities. The studies highlight the conservational importance of 
palsa mires, and the importance of seasonal effects to be included in climate change studies. 
Moreover, findings of this thesis can help to understand the history of permafrost 
aggradation and degradation in peatlands, as oribatid mites can contribute to multi-proxy 
approaches aiming to reconstruct past environmental conditions. The results are 
significant, because understanding of past permafrost dynamics will help to predict future 
climate feedbacks and associated ecosystem shifts in changing sub-Arctic peatlands. 

KEYWORDS: oribatid mites, climate change, sub-Arctic peatlands, permafrost 
dynamics, subfossils  
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TIIVISTELMÄ 
Ilmaston lämpeneminen aiheuttaa nopeita muutoksia subarktisissa suoekosysteemeissä. 
Erityisen herkkiä lämpenemisen vaikutuksille ovat pohjoiset palsasuot, joille on 
tunnusomaista turpeesta muodostuneiden palsojen sisältämä ikirouta. Ilmaston 
lämpeneminen sulattaa palsasoiden ikiroutaa, mikä aiheuttaa muutoksia kosteusoloissa, 
kasvillisuuden rakenteissa ja mikroelinympäristöjen monimuotoisuudessa. Toisaalta 
palsasoiden mikroselkärangattomien, kuten sammalpunkkien (Acari: Oribatida), lajisto 
tunnetaan puutteellisesti. Sammalpunkit ovat mikroskooppisia (0.1−1 mm), pääasiassa 
maaperässä eläviä selkärangattomia, jotka toimivat hajottajina erilaisissa ekosysteemeissä. 
Sammalpunkkilajeja tunnetaan maailmasta noin 11 000, ja yhdellä neliömetrillä niitä voi 
elää 200 000 yksilöä. Runsaudestaan ja monimuotoisuudestaan huolimatta sammalpunkit 
luokitellaan puutteellisesti tunnetuksi eläinryhmäksi. Sammalpunkit ovat aiemmissa 
tutkimuksissa osoittautuneet hyviksi indikaattorilajeiksi, jotka voivat ilmentää 
ekosysteemeissä tapahtuvia muutoksia. Toistaiseksi sammalpunkkeja on kuitenkin 
käytetty subarktisten ekosysteemien muutosten tutkimisessa varsin vähän. 

Tämän työn tavoitteina oli tutkia, miten ilmaston lämpeneminen vaikuttaa subarktisilla 
soilla elävien sammalpunkkien yhteisöihin, sekä selvittää, voiko sammalpunkkeja käyttää 
bioindikaattorilajeina historiallisen ikiroutadynamiikan tutkimisessa. Tutkimuksen aineisto 
kerättiin Pohjois-Fennoskandian, Siperian ja Kanadan ikiroutasoilta. Tutkimuksissa 
kartoitettiin soiden tämänhetkistä sekä historiallista sammalpunkkilajistoa 6000 vuoden 
aikajänteellä. Ilmastonmuutoksen vaikutuksia sammalpunkkien yhteisöihin tutkittiin lisäksi 
lämmityskokeita käyttäen.  

Tutkimukset osoittivat, että ikiroudalla on tärkeä merkitys sammalpunkkien laji-
koostumuksen muokkaajana, ja ikiroudan sulaminen johtaa muutoksin sammalpunkkien 
eliöyhteisöissä. Ilmaston lämpenemisen vaikutukset soilla eläviin sammalpunkkeihin 
riippuvat vuodenajasta: sammalpunkkien tiheydet kasvoivat, kun kesäaikainen lämpötila 
oli korkeampi, mutta vähenivät silloin kun vain talven lämpötilat nousivat. Erityisesti 
pienikokoiset, Suctobelba -sukuun kuuluvat punkit hyötyivät kesäaikaisesta lämpene-
misestä. Ympärivuotinen lämpeneminen vaikutti negatiivisesti sammalpunkkien lajiston 
monimuotoisuuteen. Sammalpunkit osoittautuivat hyviksi ikiroudan indikaattoreiksi. 
Tutkimuksessa löydettiin kolme lajia, Carabodes labyrinthicus, Neoribates aurantiacus 
sekä Chamobates borealis, jotka ilmentävät vahvasti ikiroudan esiintymistä.  

Tämä väitöskirja tuo uutta tietoa ilmaston lämpenemisen vaikutuksista sammalpunkkien 
eliöyhteisöihin. Tutkimustulokset painottavat palsasoiden luonnonsuojelullista merkitystä 
sekä sitä, että ilmaston lämpenemisen vaikutuksia maaperän eliöyhteisöissä tutkittaessa tulisi 
vuodenaikojen vaikutus ottaa paremmin huomioon. Lisäksi, tämän tutkimuksen tulokset 
voivat auttaa ymmärtämään paremmin historiallista ikiroutadynamiikkaa subarktisilla soilla, 
sillä sammalpunkit tuovat niiden tutkimiseen yhden indikaattorin lisää. Menneiden 
ilmastonmuutosten ja niihin liittyvän ikiroutadynamiikan tutkiminen on ensisijaisen tärkeää, 
sillä se auttaa ennustamaan tulevia muutoksia subarktisissa ekosysteemeissä.   

ASIASANAT: sammalpunkit, ilmastonmuutos, subarktiset suot, ikiroutadynamiikka, subfossiilit  
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1 Introduction 

1.1 Changing sub-Arctic peatlands 
Terrestial Arctic and sub-Arctic environments are characterized by long, cold 
winters, short summers and permanently frozen grounds: approximately 24% of the 
ice-free land in the northern Hemisphere is underlain by permafrost (Zhang 2003). 
In this era of climate warming, these cold environments are going through rapid 
changes. Globally, mean annual temperatures have increased by 0.85 °C, over the 
period from 1880 to 2012 (IPCC 2014). In Arctic and sub-Arctic regions climate 
warming is more severe: For several decades already, the surface air temperatures 
have been warming at a rate more than twice the global rate (AMAP 2017).  

Permafrost thaw is one of the most worrying consequences of climatic warming 
in Arctic and sub-Arctic regions (IPCC 2019). Permafrost is defined as 
ground, including rock or soil, which remains frozen (temperature below the 
freezing point of water 0 °C) for more than two years. In the Arctic permafrost is 
continuous, covering more than 90% of the ice-free land area. In the sub-Arctic 
permafrost is usually discontinuous (covering 50-90% of the land area) or sporadic 
(covering 0-50%), and it occurs mostly in peatlands in the form of permanently 
frozen peat hummocks or peat plateaus (International Permafrost Association 2019). 
These peatland complexes are often called palsa mires, and are found in Northern 
Fennoscandia, Siberia, Canada and Alaska. Located at the outer limit of the 
permafrost zone, palsa mires represent a marginal permafrost feature (Luoto et al. 
2004), and thus, are very sensitive to climatic fluctuations (Aalto et al. 2017).  

The occurrence of permafrost in palsa mires depends on several climatic factors, 
including low annual mean temperature (<0.0°C), low precipitation (<500 mm/year) 
and relatively thin snow cover (Seppälä 1988, 1990, 2011). Permafrost 
hummocks, also called palsas, are formed by frost upheaval and contain a frozen 
core of peat and/or silt, with small ice crystals and thin layers of isolated ice, which 
remain frozen throughout the summer (Seppälä 1986). The formation and 
preservation of permanently frozen palsas is dependent on the different thermal 
conductivity of dry and wet peat, the latter being a ten times more effective conductor 
of heat, while dry peat is a good insulator (Seppälä 1994). Palsa mires are considered 
a sub-type or eco-climatic variant of aapa mires, minerotrophic mire complexes 
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common to northern regions (Seppä 2002; Laitinen et al. 2007). Palsa and aapa mires 
share many similarities in vegetation, and the main difference between the two mire 
types is the presence of permafrost in palsa mires.  

At present, palsa mires are degrading throughout Northern Fennoscandia and 
North America (e.g. Karlgård 2008; Thibault et al. 2009; Borge et al. 2017). 
Degradation of permafrost causes alterations in vegetation structure, microhabitat 
diversity, hydrological conditions, nutrient availability and carbon cycling in 
peatland ecosystems, and can lead to increased release of methane and carbon 
dioxide to the atmosphere (Camill et al. 2009; Bosiö 2012; Christensen et al. 2012; 
Voigt et al. 2019). Studies conducted in various locations have revealed via aerial 
images and ground surveys of plant communities that the vegetation in palsa mires 
is changing: palsa hummocks and hummock vegetation such as mosses and 
evergreen dwarf shrubs are decreasing, and wet sites and minerotrophic vegetation 
such as tall graminoids are increasing (e.g. Malmer et al. 2005; Karlgård 2008; Bosiö 
2012).  

Palsa mires are listed as a priority habitat type in the European Union Habitat 
Annex (European Commission 2013), and are important ecosystems in terms of 
nature conservation (Luoto et al. 2004). Permafrost contributes to biodiversity in 
palsa mires by creating a diverse set of microhabitats which are formed in a cyclic 
process of permafrost aggradation and thaw (Luoto et al. 2004). First, permafrost 
hummocks (palsas) are formed by frost heaving. Palsa hummocks rise to a height of 
0.5–10 m above the peatland surface, and create dry nutrient-poor peat islands within 
a minerotrophic fen ecosystem (Fig.1). In the degradation process of permafrost, 
palsa hummocks collapse and consequently form remnants such as peat ridges, 
thermokarst pools, depressions and smaller hummocks (Zuidhoff and Kolstrup 2005; 
Fig. 2). Dynamics of palsa formation and collapse create minerotrophic-
ombrotrophic gradients and water table gradients: in contrast to wet minerotrophic 
habitats, ombrotrophic permafrost hummocks receive water only from precipitation 
(Charman 2002; Luoto et al. 2004). Consequently, microhabitats with several 
different degrees of moisture are formed. However, climate warming has impacted 
the natural cycling processes of permafrost hummock formation and collapse: more 
and more hummocks are collapsing and very few new ones are formed. Changes in 
permafrost dynamics have been reported in number of studies. For example, Fronzek 
(2013) predicted that dry permafrost hummock microhabitats will disappear from 
palsa mires if average temperatures rise by 4°C from the years 1961−1990. Also, 
Borge et al. (2017) predicted that in some areas in Northern Norway, palsas and 
permafrost peat plateaus will be lost by 2030. Moreover, Bosiö et al. (2012) 
predicted 97 % reduction in dry hummock areas in palsa mires in Northern 
Fennoscandia by 2041–2060, compared to the 1961–1990 coverage. Microhabitat 
heterogeneity is known to be an important factor for maintaining invertebrate 
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diversity in peatlands and other ecosystems through increase in niche differentiation 
and resource availability (e.g. Hansen 2000; Verberk 2006). Thus, climate warming 
may lead to changes in invertebrate species composition in northern peatlands, 
through the decrease in microhabitat diversity.  

 
Figure 1.  Palsa hummocks rise 1–10 m above the fen surface. Picture: Reijo Nenonen/Vastavalo. 

 
Figure 2.  Collapsing palsa hummocks create thermokarst pools. Picture: Eero Vilmi/Vastavalo. 
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1.2 Oribatid mites of peatlands 
Oribatid mites (Acari:Oribatida), commonly called moss mites, are microscopic 
(0.1−1mm), mainly soil-dwelling arachnids, and are one of the most abundant and 
diverse groups of microinvertebrates inhabiting peatlands (Behan-Pelletier and 
Bissett 1994). In general, oribatids are an abundant and species-rich animal group: 
11 000 species are described, and up to 200 000 individuals and 50 species can be 
found per one square meter of forest soil (Schatz and Behan-Pelletier 2008; Subίas 
2018). The oribatid fauna of northern peatlands is still poorly documented, but some 
studies have shown that their diversity and abundance might be as high in peatland 
as in forest habitats (Behan-Pelletier and Bissett 1994; Seniczak et al. 2019). 

In peatlands, oribatids inhabit both terrestrial and aquatic microhabitats, 
including dry hummocks, water-saturated hollows, and water bodies such as ponds 
and pools (Behan-Pelletier and Bissett 1994). Oribatids are detrivorous and 
fungivorous decomposers and due to their abundance, are also one of the central 
decomposer groups of organic matter in peatlands (Murvanidze and Kvavadze 
2010). Consequently, oribatids also contribute to nutrient cycling, soil formation, 
litter chemistry and the distribution of fungal spores in soil and peat (Renker et al. 
2005; Schneider et al. 2005; Wickings and Grandy 2011). 

While the main habitat of oribatid mites is the moist soil surface covered with 
mosses, lichens and decaying vegetation litter, they are also found abundantly in a 
variety of other microhabitats such as tree hollows and canopies (Taylor and Ranius 
2014; Salvatulin 2019), decaying wood (Siira-Pietikäinen et al. 2008) and ant nest 
mounds (Elo 2016). They also occur in in aquatic and semi-aquatic habitats and on 
submerged plants (Schatz and Behan-Pelletier 2008), in bird nests (Lebedeva et al. 
2006), and even inside spruce needles (Hågvar 1998). Because of their vast 
abundance in soils, oribatid mites are also often called “soil mites”, however, the 
soils are in fact inhabited not only by oribatid mites, but also by other mite groups 
from the suborders Mesostigmata, Prostigmata and Astigmata (Walter and Proctor 
2013). The group of mesostigmatid mites include many predator species, which feed 
on oribatids (Schneider and Maraun 2009), and are frequently found in sub-Arctic 
peatlands, but do not reach as high densities as oribatid mites. 

Oribatid mites have many names. Because of their morphological appearance, 
oribatids are also commonly called ”beetle mites”, ”armored mites” or ”shell mites”. 
Oribatids have a polished and rounded body shape and hard, shell-like cuticle, 
characteristics that separate them from other mite groups. The hard shells of oribatids 
are well preserved in sediments and peat as fossils and subfossils (partially fossilized 
remains). The oldest recorded oribatid fossil is from the Devonian period, 450 mya 
(Norton et al. 1988), and oribatid mites are known to be one of the oldest animal 
groups on Earth (Schaefer et al. 2010). 
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1.3 Oribatid mites in studies of permafrost 
dynamics in palsa mires 

Even though soil mites, including oribatids, are important contributors to 
decomposition processes and nutrient cycling in soils throughout the Earth, in high 
latitudes their role is particularly important (Ruess et al. 1999). This is because in 
high-latitude soil systems, the biomass and diversity of macrofauna such as 
earthworms is usually low (Ruess et al. 1999), and thus mites, together with 
springtails (Collembola), enchytraeids (Enchytraeidae) and nematodes (Nematoda), 
dominate the soil fauna. Consequently, they also dominate the decomposition and 
soil formation processes (Heal 1997; Sohlenius et al. 1997).  

While the impacts of climate warming on oribatid mites in the Arctic and sub-
Arctic regions have been a focus in a number of research covering, for example, 
direct impacts of warming (Coulson et al. 1996; Dollery et al. 2006; Hågvar and 
Klanderud 2009; Alatalo 2017), alterations in freeze-thaw cycles (Sulkava and Huhta 
2003; Sjursen et al. 2005), and winter ice encapsulation (Coulson et al. 2000), these 
studies have mainly been conducted in tundra and forest ecosystems (except the 
study of Alatalo 2017, which also included peatlands). Currently, there is still a lack 
of knowledge about the effects of permafrost thaw on oribatid mites inhabiting sub-
Arctic peatlands, and the seasonality of impacts of climate warming on peatland 
oribatid fauna. 

In general, oribatid mites have proven to be good bioindicators of natural and 
anthropogenic changes in ecosystems (Gergόcs and Hufnagel 2009; Lehmitz 2014; 
Dirilgen et al. 2016; Lehmitz et al. 2020). Unlike many other members of the soil 
fauna, oribatid mites are often K-strategists, with low reproductive capacity and long 
life cycles (Behan-Pelletier 1999), which makes them particularly suitable 
bioindicators (Gergόcs and Hufnagel 2009). The distribution of oribatid species is 
generally associated with moisture, vegetation and food sources (Gao et al. 2016), 
and in peatlands, important environmental factors that impact oribatid distribution 
include water table depth, local plant diversity, and the phosphorus content in 
Sphagnum tissues (Minor et al. 2019). Thus, the species compositions of oribatid 
mite communities reflect prevailing environmental conditions, and alterations in 
their community assemblages can indicate environmental change. These factors 
make oribatid mites a particularly interesting and important group to study in sub-
Arctic ecosystems, which are undergoing rapid changes due to climatic change.  

1.4 Peatland archives and oribatid mite subfossils 
as indicators of past environmental change 

Peatlands are important ecosystems due to their rich biodiversity, but also as 
ecological archives storing information about vegetation, landscape, climate and 
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human history. Peatlands form particularly useful palaeoenvironmental records 
because of their sensitivity to climatic and hydrological changes, good preservation 
of organic matter in the waterlogged conditions, and due to the stratigraphy of the 
peat deposits providing chronology (Lamarre et al. 2012; Greiser and Joosten 2018). 
Peatland archives contain a wide collection of organic material, which stores 
information about the past species assemblages and form a multi-proxy record of the 
development of the peatland ecosystem and its surroundings (Greiser and Joosten 
2018). These proxies include both plant and animal macro- and microfossils, 
archaeological artefacts, minerals, charcoal, volcanic ash, biochemicals, stable 
isotopes, and other natural or anthropogenic matter that has ended up in the peatland 
(Greiser and Joosten 2018).  

In this era of climatic change, peatland archives are perhaps more important than 
ever, because reconstructions of past environmental conditions in mires help to 
understand how these ecosystems will react to future temperature increases and the 
resulting ecological shifts (e.g. Treat et al. 2016). In particular, in the Arctic and sub-
Arctic regions, the concern about melting of permafrost calls for more investigations 
of past ecosystem dynamics and change. Historical permafrost dynamics can be 
reconstructed by combining analyses of plant macrofossil assemblages and 
succession with radiocarbon dating (e.g. Oksanen 2005; Kuhry 2008; Routh et al. 
2014; Treat et al. 2016; Sannel et al. 2018). Plant macrofossil analyses used to detect 
historical permafrost dynamics are based on plant community succession, 
particularly during rapid shifts of plant and moss assemblages (Oksanen 2005). In 
addition, the absence of certain plant species which do not occur on permafrost can 
indicate permafrost aggradation; however, positive permafrost-specific indicator 
plant species have not been found. Some studies have shown that there are mosses 
that are characteristic for dry palsa hummock habitats, for example Dicranum spp., 
but these do not grow exclusively on permafrost (e.g. Oksanen 2005; Kuhry 2008). 
Thus, it can be difficult to determine the exact timing of permafrost aggradation 
within peatlands based on plant macrofossils (Oksanen and Väliranta, 2006; Treat et 
al. 2016).  

Previous studies have pointed out that there is a need to develop and test new 
proxy methods, which could be used in studying past and present changes in sub-
Arctic peatlands (Swindles et al. 2015; Gałka et al. 2018). Together with plant 
macrofossils, diatoms, rhizopods, Chironomidae and testate amoeba have been used 
as indicators of past environmental changes and permafrost dynamics in northern 
peatlands (Wetterich et al. 2011; Lamarre et al. 2012, 2013; Gałka et al. 2017; Zhang 
2018). Previously, oribatid mite subfossils from lake sediments (e.g. Solhøy and 
Solhøy 2000; Presthus Heggen et al. 2010; Słowiński et al. 2018), peatlands 
(Markkula 1986) and river floodplains (Krivolutskii and Sidorchuk 2003; Sidorchuk 
2004) have been used to reconstruct past ecosystems.  However, the value of oribatid 
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mites as indicators of historical permafrost dynamics has not been investigated 
before.   

1.5 Aims of the thesis 
The general aims of this thesis were to provide novel information about 1) the 
impacts of climate change on oribatid mites and oribatid mite communities, 2) the 
bioindicator values of oribatid mites in studying past climatic changes and 
permafrost dynamics, in sub-Arctic peatlands, in particular in palsa and peat plateau 
mires.  
 
More specifically, the following were investigated: 

1. In order to estimate the impacts of permafrost thaw on oribatid mite 
communities in sub-Arctic palsa mires, two different field studies were 
conducted. First, the differences of oribatid mite communities in different 
microhabitats in two palsa mires in northern Finland and Norway, one 
well preserved and one degrading, were examined (Paper I). Second, 
oribatid species compositions between palsa mires and non-permafrost 
aapa mires were compared (Paper II). 

2. By using long-term (16 years) experimental warming conducted in a 
peatland in Northern Sweden, the effects of higher year-round, summer, 
and winter temperatures on oribatid mite communities were tested. The 
impacts of higher temperatures on densities, taxon diversity, community 
composition and the composition of morphological, ecological and life-
history traits of oribatid mites were investigated. In addition, the impacts 
of climate manipulation on densities of Mesostigmata, predatory mites 
that feed on oribatids, were investigated. (Paper III). 

3. One aim of this pioneer study was to find indicator oribatid species that 
could serve as new proxies in palaeoecological studies detecting historical 
permafrost dynamics. This was investigated by comparing subfossils 
extracted from peat profiles (covering a time period of approx. 6000 
years), collected from palsa mires in northern Europe (Paper II) and 
Canada (Paper IV), with the present-day oribatid fauna of the same 
locations. Based on literature and findings from study I, permafrost 
dynamics were expected to be reflected in subfossil oribatid mite 
assemblages as changes in species compositions, and their communities 
were expected to include specific permafrost indicator species. 
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2 Materials and Methods 

2.1 Study area 
The research sites consisted of a total of 16 peatland areas, situated in the northern 
parts of Finland, Norway, Sweden, Canada and Russia (Fig. 3). The Fennoscandian 
study areas are located on sporadic or discontinuous permafrost, and the main study 
sites in Canada and Russia lie at the border of discontinuous and continuous 
permafrost zones (Fig. 4, 5). 

 
Figure 3.  Locations of research sites in Finland/Norway, Sweden, Russia and Canada. Map 

source: Wikipedia. 
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Figure 4.  Locations of research sites in Northern Europe. The main research sites were: 

Vaisjeäggi (1), Per Bihtos jeäggi (2), Kuumpijeäggi (3), Usinsk (4), Ferdesmyra (13) and 
Abisko (14). Original map: Vesa Nivala. 

 
Figure 5.  Location of the Herchmer palsa and McClintock peat plateau sites along the railroad between 

Gillam and Churchill in the Hudson Bay area in Canada. Map modified from Kuhry 2008. 
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Study I was conducted in two palsa mires, located in Utsjoki in Finland (Vaisjeäggi) 
and East Varanger (Ferdesmyra) in Norway. Vaisjeäggi in Finland (69°48’N; 
27°14’E), is a relatively well preserved palsa mire, where plenty of palsa hummocks 
were found at the time of sampling. In this area, the mean annual temperature 
recorded at the Kevo Subarctic Research Station (12 km south-west from the mire) 
is -1.6°C, and the mean annual rainfall is 415 mm (average for years 1981−2010, 
Finnish meteorological institute). The Ferdesmyra mire (69°44’N; 29°16’E) in 
Norway, has undergone a major thawing of permafrost, and decrease in size and 
height of palsa hummocks, documented between 1970−2008 (Hofgaard 2009). The 
mean annual temperature for the area is -1°C, and the mean annual rainfall is 470 
mm (Norwegian Meteorological Institute). 

Samples analyzed in study II were collected from peatland sites in Northern 
Finland and Russia. In Finland study sites included Vaisjeäggi, and samples for 
faunal comparisons were also collected from Kuumpijeäggi (69°23’N; 27°13’E) and 
Per-Bihtos jeäggi (69°23’N; 26°07’E), two aapa mires located in Inari. Mean annual 
temperature in Inari is 0.6°C and mean total annual precipitation 500 mm (average 
for years 1981−2010, Finnish meteorological institute). In Russia, the main study 
site was Usinsk mire (65°45’N; 57°30’E), located in the extreme northern taiga 
subzone. In Usinsk, permafrost occurs as isolated patches in the form of small peat 
plateaus, palsa hummocks and palsa strings. The mean annual temperature in the 
nearest town, Ust’-Usa is -1.7 °C, and the mean total annual precipitation is 409 mm 
(average for years 2005−2016, Russian weather archive). In addition, reference data 
was analyzed from eight peatland areas in different parts of Northern Russia (Fig 4). 

Study III was conducted on an experimental site in a mire adjacent to Lake 
Torneträsk in Abisko, Sweden (68°21’N; 18°49’E), where long-term heating of 
Sphagnum dominated mire habitats has been ongoing since 2000. At this site, mean 
annual temperature is -0.1 °C and mean annual precipitation 332 mm (1981−2010, 
National Network Sweden). Permafrost in the site is sporadic, and present only in 
small palsa remnants. Most of the site is permafrost-free. 

Peat profiles analyzed for study IV were collected in Canada from two mires, 
called Herchmer and McClintock, situated in the Hudson Bay Lowlands of 
northeastern Manitoba, along a railway between the towns of Gillam and Churchill 
(Fig. 5). Mean annual temperatures at Churchill Airport and Gillam Airport are -
6.5°C and -3.7°C, respectively (Average for 1981−2010, Canadian climate stations 
data). Annual precipitation is 452.5 mm for Churchill and 496.4 mm for Gillam. In 
the Herchmer mire site (57˚23’N; 94˚11’W) palsa bogs with trees, permafrost-free 
fens and ponds are found, forming a mosaic of habitats. Palsas are raised about 1.5 
m above the fen surface. The McClintock mire (57˚50’N; 94˚12’W) is an extensive 
peat plateau with scattered thermokarst lakes, and at the site the permafrost peat 
plateau is elevated by about 1 m relative to the lake surfaces.  
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2.2 Study design and oribatid sampling 

2.2.1 Sampling of contemporary oribatid fauna 
In study I, three types of microhabitats in two palsa mires were sampled for oribatid 
mites. The sampled microhabitats were selected according to field observations of 
dominant vegetation and presence/absence of permafrost. The presence of 
permafrost was confirmed by a vegetation survey and by detection with an iron 
probe. Microhabitats were: (1) permafrost-underlain palsa hummocks dominated by 
evergreen dwarf shrubs; (2) non-permafrost hummocks dominated by herbs; and (3) 
adjacent wet microhabitats dominated by graminoids. Wet microhabitats included 
minerotrophic internal meadows, and thermokarst ponds, which are formed by 
thawing permafrost. Five replicated samples were taken from each microhabitat, 30 
samples in total. The percentage of vegetation coverage around the sampling plots 
was measured by using vegetation quadrats of 0.5 m2. Moisture content was 
measured from a soil/peat sample taken from each study plot by drying the samples 
at 35°C: the moisture content was calculated as the difference in sample weight 
before and after drying (fresh weight minus dry weight). The sample pH was 
measured in the laboratory using dried and sieved soil (one sample per sampling 
plot) mixed with distilled water (100 ml water, 10 ml dried soil). 

In study II, four study sites were sampled, two in palsa and two in aapa mires. 
At each study site, three separate study plots were set, at least 80 m from each 
other. At each plot, soil samples were taken under five types of vegetation: 1. 
Lichen (Cladina spp.); 2. Crowberry (Empetrum hermaphroditum); 3. Cloudberry 
(Rubus chamaemorus); 4. Sphagnum mosses (Sphagnum spp., hollow type); 5. 
Sedge (Carex spp.). Next to each sample, a core was taken in order to analyze the 
soil moisture content (measured similarly to study I, expect the samples were dried 
at 70 °C). 

2.2.2 Subfossil sampling 
Oribatid mite subfossils were analyzed from peat profiles collected from Northern 
Finland and Russia (study II) and Canada (study IV). These profiles were originally 
collected for studies discussing Holocene peatland succession, permafrost dynamics 
and peat accumulation, based on plant macrofossil and physio-chemical analysis 
(Kuhry 1998; Oksanen et al. 2003; Oksanen 2006; Kuhry 2008). As part of these 
studies, the profiles had been dated with the AMS (accelerator mass spectrometry) 
radiocarbon dating method. The peat profiles were excavated from the cleaned edges 
of palsa hummocks and peat plateaus. At the McClintock mire site in Canada, the 
material was also collected from a fen site near the peat plateau using peat samplers. 



Inkeri Markkula 

 20 

All material was stored at -18 °C, and the remaining peat material which had not 
been used for plant macrofossil studies was subsampled for the oribatid subfossil 
analyses conducted here. 

In study II, two drilled peat profile samples were checked at 5−10 cm intervals 
for oribatid mite subfossils; a total of 51 samples were checked (10 cm3 in size). The 
peat profiles were 130 and 250 cm long, the oldest (lowermost) layers being 
approximately 4500 years old (calibrated years BP). In study IV, two peat profiles 
were checked at 2 cm intervals and one profile at 5−10 cm intervals (peat profiles 
154, 162 and 194 cm long); a total of 51 samples (25 cm3 in size) were checked for 
oribatids. The oldest age was approximately 6000 years (calibrated years BP). 
Subfossil data was compared with previously published reconstructions of 
permafrost history based on plant macrofossil analyses from the same locations. 

2.2.3 Experimental design 
Study III was conducted on a climate manipulation experiment (Fig. 6). The 
experiment started in June 2000, when six different treatments, simulating possible 
future climate scenarios with higher summer, spring and winter temperatures and 
increase in winter precipitation, were established (Aerts et al. 2004; Dorrepaal et al. 
2004). The experimental set up used in this study consisted of a control treatment 
and three climate change manipulations: summer warming (June-September), winter 
warming (October-late May) with snow accumulation, and year-round warming. 
Each treatment was replicated five times, so the total number of sampling plots was 
20.  

In the treatments, artificial climate change was imposed by passive warming 
using a modified version of the open-top chambers (OTCs) developed in the 
International Tundra Experiment (Marion et al. 1997). The OTC’s raise air 
temperatures at approximately 5 cm above the soil by 0.5–2.8°C in winter, 0.7–1.2°C 
in spring and by 0.9°C in summer. The soil temperatures (at 5 cm depth) were raised 
in spring by about 1°C, in summer by 0.6–0.9°C and in winter by 0.5–2.2°C (Aerts 
et al. 2009). Increased winter snow accumulation was accomplished as the OTCs 
serve as passive snow traps, when strong winds blow snow into them at the exposed 
site. Winter treatment increased the snow thickness two or threefold.  During 
December–January, the average snow depths were 7.9 cm in the control and 25.5 cm 
in the winter warming treatment. During February–April, the snow depths were 15.7 
and 30.5 cm, respectively. 
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Figure 6.  Abisko experimental site. Picture: Inkeri Markkula. 

2.3 Oribatid extraction and species identification 
Oribatid mites were extracted from the fresh soil samples (studies I, II, III) by using 
Tullgren-Berlese -type funnels (Berlese 1905; Tullgren 1918). Extraction started 
within 48 hours from sampling, and funnels were run until all samples were dry, 4−8 
days depending on the sample size used. In the subfossil studies (II, IV), frozen peat 
samples were thawed at room temperature and mixed with water. Oribatid mite 
subfossils were hand-picked from the solution by using a pipet or pincers within 3 
days of thawing. All oribatid mites were stored in 75 % ethanol. 

Oribatid mites were identified to species or genera, or in some cased to higher 
taxonomic levels, based on Weigmann (2006). In study IV, additional information 
was gained from the Canadian Biodiversity Information Facility 
(https://www.cbif.gc.ca) and Behan-Pelletier and Lindo (2019). All materials are 
stored at the Zoological Museum of the University of Turku. 

2.4 Statistical analyses 
In studies I, II and III, generalized linear mixed models (the Glimmix procedure in 
SAS, with Tukey-Kramer post-hoc multiple comparisons) were used to test 
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differences in oribatid mite abundances: I. In different microhabitats within palsa 
mires; II. Between palsa and aapa mires and III. Between climate manipulation 
treatments.  

Because normality could not be achieved even after data transformations in any 
of the oribatid mite species datasets, negative binomial distribution were used in the 
analyses in studies II and III. In study I, the sample size was different in the two 
study areas, and thus standardized abundance data (number of individuals per 100 
cm2+0.01), and the gamma distribution were used in the analyses. A small number 
(0.01) was added to the original values to omit zero abundance values. 

In study III, Shannon biodiversity indices were calculated to investigate how 
climate manipulations affect oribatid species richness and diversity. Differences in 
biodiversity indices and the mean number of oribatid taxa between climate 
manipulation treatments were tested using Analyses of Variance (ANOVA) with 
Dunn’s post-hoc tests. The same tests were used to test the differences in 
mesostigmatid mite densities between the treatments. Homogeneity of variances 
was tested prior to analyses, and the data was log-transformed to conform to 
normality.  

To illustrate the differences/similarities in oribatid mite community composition 
between microhabitats in palsa mires (study I) and between climate manipulation 
treatments (study III), Non-Metric Multidimensional Scaling (NMDS) with the 
Bray-Curtis similarity index were conducted. To analyze microhabitat and 
vegetation preferences of oribatid mites in palsa and aapa mires (study II), Canonical 
Correspondence Analyses (CCA) were carried out. In CCA analyses, 
presence/absence of lichen and plant species/genera (binary 0/1) and soil humidity 
(continuous, from 0.57 to 0.86), measured at the sampling plots, were used as 
environmental variables. 

Statistical analyses were carried out using the PAST software 
(http://folk.uio.no/ohammer/past/), and the SAS software version 6.1. 

2.5 Trait analyses 
In study III, both a taxonomic approach and analyses of morphological, ecological 
and life-history traits were used to test the effects of climate manipulation on oribatid 
mite communities. Three morphological, life-history and ecological traits were used: 
feeding guild, reproductive mode and body size. Information regarding feeding guild 
and reproductive mode was gained from previous studies and literature (e.g. Fischer 
2010, 2014; Farska et al. 2014a, 2014b; Bluhm et al. 2016, for more information see 
Paper III). Information regarding body size was taken from Weigmann (2006), and 
the maximum values of the body length range were used.  
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To study the effects of warming treatments on trait compositions of oribatid mite 
communities, differences in mean trait values (N=5) between treatments were tested 
with ANOVA and Dunn’s post hoc test. Community Weighted Mean (CWM) values 
were calculated prior to analyses by using equations from Garnier et al. (2004): 

CWM = ∑ pi Xi𝑖𝑖  

where X is the trait value of the i-th species, and p is the relative abundance of the  

i-th species. 
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3 Results 

3.1 Impacts of permafrost thaw on oribatid mite 
communities (I, II) 

To investigate the impacts of permafrost thaw on oribatid mite communities, the 
species compositions were compared: 1) between different microhabitats within 
palsa mire ecosystems and 2) between two mire types: palsa mires and non-
permafrost aapa mires. These comparisons were based on the assumption that 
impacts of permafrost thaw on oribatid mite communities will occur through 
alterations in vegetation and microhabitat composition and hydrological conditions, 
all which have been reported in previous studies conducted in palsa mires (eg. 
Malmer et al. 2005; Bosiö et al. 2012). Moreover, previous studies have predicted a 
total loss of permafrost in mires, if average yearly temperatures rise by 4°C from the 
average temperatures of years 1961−1990 (Fronzek 2013; Aalto 2017). 

In study I, the microhabitat preferences of oribatid mites were tested in three 
microhabitats (permafrost hummock, non-permafrost hummock, and wet 
microhabitats) in two palsa mires in Finland and Norway. Based on a dataset that 
consisted of 8101 specimens, identified to 28 species and 6 genera, the community 
compositions of oribatid mites differed significantly between the microhabitats. A 
total of 65 % of the oribatid taxa were characterized as having microhabitat 
preferences, but most of the differences were found between wet microhabitats and 
hummock microhabitats. Because the area covered by dry palsa hummock 
microhabitats is predicted to decrease remarkably during the coming decades in palsa 
mires (Bosiö 2012; Fronzek 2013), particular interest was paid to species which were 
associated with permafrost-underlain microhabitats. Of the identified oribatids 18 % 
showed a preference for palsa hummock microhabitats. The main differences in 
community composition between permafrost-underlain and non-permafrost 
hummocks were caused by the high numbers of one species, Carabodes 
labyrinthicus, in palsa microhabitats (Fig. 7).  

In study II, the data consisted of 3141 oribatid specimens, which were identified 
to 24 species and 6 genera. Most of the oribatid taxa were indifferent to mire type, 
but three species (Carabodes labyrinthicus, Chamobates borealis and Melanozetes 
mollicomus) were significantly more abundant in palsa mires and three species 
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(Carabodes subarcticus, Ceratozetes thienemanni and Conchogneta traegardhi) 
more abundant in aapa mires. When the vegetation preferences of oribatids were 
further tested, it was revealed that species associated with the palsa mire type showed 
preferences for hummock vegetation including lichen, crowberry and cloudberry. 
Oribatid mite communities under lichen stands differed significantly between the 
mire types: in palsa mires Carabodes labyrinthicus was four times more abundant, 
and Chamobates borealis eight times more abundant under Cladina spp. stands than 
in aapa mires. There was no difference in mean humidity in Cladina stands between 
aapa and palsa mires. 

 
Figure 7.  Carabodes labyrinthicus on lichen. Picture: Riikka Elo/Zoological Museum, University of 

Turku. 

3.2 Impacts of simulated climate warming on 
oribatid mite communities (III) 

In study III, the direct impacts of climate warming on oribatid communities were 
examined in a long-term (16 years) warming experiment conducted at a peatland site 
in Northern Sweden. The study was based on findings from previous research, 
reporting that oribatid mite communities are resistant to modest changes in mean air 
and soil temperatures (e.g. Hågvar and Klanderud 2009; Alatalo et al. 2017) but 
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benefit from earlier snow melt, longer growing season and lower soil temperatures 
during winter (Sjursen et al. 2005; Dollery et al. 2006), and on the assumption that 
the impacts of climate warming on organisms may display differently in different 
seasons of the year, an aspect that has not been covered by previous studies.    

Based on 2401 oribatid specimens collected in this study, the results revealed 
that the impacts of warming on oribatid mite communities are season-dependent. 
The results showed that summer and winter warming had contrasting effects on 
oribatid mite communities: densities of oribatid mites were 50 % higher in the 
summer warming treatment plots, than in the winter warming treatment plots. Here 
the small-bodied oribatid mites belonging to genus Suctobelba were significantly 
affected by warming: mean densities of Suctobelba spp. were 65% higher in 
summer warming treatment plots compared to control plots, and 70% higher 
compared to winter warming treatments. Year-round warming had a negative 
effect on the species richness of oribatid taxa, and on the mean densities of 
mesostigmatid specimens.  

The relative dominance structure of the oribatid communities was similar in all 
experiments, and, in contrast to expectations, warming treatments had no significant 
effect on the ecological and life-history trait composition of oribatid mite 
communities.  

3.3 Oribatid mites as indicators of past permafrost 
dynamics (II, IV) 

In studies II and IV conducted in Finland, Russia and Canada, subfossils of oribatids 
from four mire sites were analyzed, and the results were compared with previously 
published reconstructions of permafrost history based on plant macrofossil analyses 
from the same locations (Kuhry 1998, 2008; Oksanen et al. 2003; Oksanen 2006). 
Based on a dataset consisting of 914 subfossil oribatid mites from Northern Finland, 
987 from Northern Russia and 1909 from Canada, the studies demonstrated that 
oribatid mites are valuable indicators of past permafrost conditions in peatlands. 
Permafrost dynamics were reflected as changes in species compositions in oribatid 
mite subfossil assemblages. In particular, at mire sites where permafrost conditions 
were stable, a shift from a community dominated by hygrophilous and aquatic taxa 
to a community consisting of taxa associated with drier habitats was clearly visible. 
At mire sites where repeated aggradation and thaw of permafrost was recorded based 
on plant macrofossil analyses, oribatid taxa associated with drier habitats occurred 
together with hygrophilous taxa in peat layers, which had permafrost in the past. 
Moreover, the results suggest that subfossil oribatid mite remains can reveal periods 
of permafrost, which cannot be determined with certainty based on plant 
macrofossils alone. 
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Three permafrost indicator species were identified from Northern European mire 
sites (Fig. 8). Two of these, Carabodes labyrinthicus and Chamobates borealis 
dominated the oribatid communities in peat layers with permafrost. Of these, C. 
labyrinthicus was also found in two studied mires in the Hudson Bay lowlands in 
Canada. In addition, Neoribates aurantiacus occurred in low numbers in subfossil 
data both in Canada and Northern Europe, where it was associated with permafrost. 
These findings were supported by the present-day datasets. C. labyrinthicus and 
C.borealis were significantly more abundant in palsa mires than in non-permafrost 
aapa mires, and showed preference for dry hummock vegetation. N. aurantiacus was 
clearly associated with the presence of lichens, and because lichen remains are rarely 
preserved in peat deposits, this finding is significant for future investigations. 

 
Figure 8.  Indicator oribatid species: A) Carabodes labyrinthicus, B) Carabodes subarcticus, C) 

Chamobates borealis, D) Neoribates aurantiacus. Carabodes subarcticus (B) is 
abundant in aapa mires. Picture: Riikka Elo/Zoological Museum, University of Turku. 

 

A) B)

C) D)
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4 Discussion 

4.1 Peatland oribatid communities and the current 
climatic change 

The effects of climate change on soil communities may occur through direct and 
indirect pathways. Direct pathways are driven by alterations in soil physical 
properties, for example in microclimate and soil structure, and indirect pathways are 
mediated by changes in below-ground resource availability, following from the 
plants' responses to warming (Mori et al. 2014). In sub-Arctic peatlands, changes in 
plant communities, hydrology and soil carbon dynamics, resulting from climatic 
warming and permafrost thaw, are currently occurring. Consequently, changes in 
microinvertebrate communities can be expected to take place, and in turn, changes 
in microarthropod communities can impact vegetation and carbon dynamics, as 
microarthropods contribute to decomposition processes and nutrient cycling. In 
addition, alterations in densities of predators (e.g. mesostigmatid mites) and species 
interactions resulting from changes in resource availability may further impact 
microarthropod communities. 

The results from the studies I and II suggest that permafrost thaw will alter 
species compositions and dominance structures of oribatid mite communities in sub-
Arctic mires, and lead to a decrease in abundance of species associated with 
permafrost. This particularly applies to one species, Carabodes labyrinthicus, which 
was clearly associated with permafrost and dry hummock vegetation including 
lichen, which it feeds on (Ermilov 2011; Hågvar et al. 2014). Interestingly, another 
species in the Carabodes genus also known to feed on lichen, C. subarcticus, was 
abundant among Cladina spp. in aapa mires, but not in palsa mires, where C. 
labyrinthicus prevailed. As the geographic distributions of the two species overlap, 
this finding may be a result of interspecies competition. This is in line with previous 
research by Mumladze et al. (2013) reporting that interspecific interactions, in 
particular food-niche differentiation, play a significant role in structuring species 
compositions of oribatid communities in Holarctic peat bogs. It has been shown that 
C. labyrinthicus can endure both low humidity and very low temperatures (Sømme 
1981), which probably explains its dominance in palsa hummocks, which are barren 
and cold microhabitats, especially in winter. Moreover, palsa hummocks seem to be 
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one of the main habitats of C. labyrinthicus in the mountain birch area in Northern 
Finland: According to my records, it occurs only in low numbers in the birch forests 
surrounding palsa mires (Markkula, unpublished data).  

Previous studies have shown that litter and resource heterogeneity resulting from 
diverse plant communities are important factors structuring the species compositions 
and diversity of oribatid communities (e.g. Hansen and Coleman 1998; Hansen 2000; 
Nielsen et al. 2010). In peatlands, vegetation diversity, especially of mosses, seems 
to be important for the diversity of oribatid mites (Minor et al. 2016; Seniczak et al. 
2019). In study I, 65 % of the oribatid taxa showed microhabitat preferences, most 
of these between wet graminoid-dominated, and dry, dwarf shrub-dominated 
hummock microhabitats. Even though none of the identified oribatid species 
occurred strictly in permafrost underlain habitats, the results showed distinct 
communities in different microhabitats. Thus, the predicted reduction in dry 
hummock areas and increase in graminoid and carpet moss vegetation as a result of 
permafrost thaw (Bosiö et al. 2012), can be expected to lead to alterations in oribatid 
communities in palsa mires. 

In general, in Arctic and sub-Arctic areas, there are great seasonal changes in 
temperature and the light regime, to which all living organisms need to adapt. Soil-
dwelling organisms also have to cope with seasonal environmental variability, 
including shifts from frozen soil in winter to very wet and cold soil during spring 
when the snow melts, then to warmer and drier soil in summer, and again back to 
frozen soil in winter. Given this, seasonality of the effects of climate warming may 
be of great importance for soil-dwelling organisms. However, this aspect has not 
been covered in previous experimental studies addressing the impacts of climate 
warming on oribatid mites. Here, study III revealed that the effects of simulated 
summer and winter warming on oribatid mite communities contrast; the densities of 
oribatids increased when summer temperatures were higher, but decreased under 
winter-time warming. The results are partly in line with previous studies reporting 
that oribatid mites benefit from earlier snow melt and a longer growing season 
associated with climatic warming (Dollery et al. 2006), but also from lower soil 
temperatures during winter (Sjursen et al. 2005). Moreover, the results suggest that 
the overall impacts of warming on oribatid mite communities in sub-Arctic peatlands 
are likely to depend on season-specific changes rather than on the increase in average 
yearly temperatures. As for the diversity of oribatid taxa, there was no difference 
between the seasons, but year-round warming had a negative effect on the taxon 
richness. 

Based on earlier findings, species responses to climate manipulations were 
predicted to be dependent on body size and feeding mode, and consequently, the trait 
composition of oribatid mite communities were expected to be altered by warming. 
These predictions were based on studies reporting that small-bodied oribatid mites 
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benefit from higher temperatures (Lindo 2015), and that increased temperatures 
cause changes in the relative proportions of fungi and bacteria in soil, which may 
affect fungivoric and bacterivoric oribatid mites (Blankinship et al. 2011; Garcia-
Palacios et al. 2015; Asemaninejad et al. 2018). However, the results did not support 
the expectations that the responses of oribatid species to warming will depend on 
their body size and feeding mode, as neither species nor trait composition of oribatid 
communities were altered by warming. However, even though the composition of 
traits were not affected, the higher abundances of oribatid mites under summer 
warming treatment was related to body size, which is in accordance with previous 
findings of Lindo (2015).  

The responses of soil invertebrate communities to warming are assumed to be 
habitat-specific, for example, a recent study from Greenland reported that climate 
warming impacts on arthropod communities are much more pronounced in dry than 
in wet habitats (Koltz et al. 2018). Moreover, drought is known to have negative 
effects on soil microarthropods (Blankinship et al. 2011; Lindo et al. 2012), but, 
microarthropods living in peatland ecosystems can benefit from reductions in soil 
moisture due to changes in aerobic conditions and increase in habitable pore spaces 
(Turnbull and Lindo 2015). It is noteworthy that the warming experiment used here 
was in relatively wet microhabitat dominated by Sphagnum spp. The results could 
have been different if the study would have been conducted in the palsa hummock 
microhabitat, which differs from fen sites in terms of oribatid species composition 
and moisture levels. Moreover, because summer-time precipitation may play an 
important role in oribatid responses to warming, it would be beneficial if studies 
investigating warming impacts would be repeated for at least two consequent years. 

Microarthropods’ responses to warming can also depend on other factors such 
as predation and interspecific competition. For example, Koltz et al. (2018) reported 
an increase in numbers of herbivores and parasitoids and decrease in numbers of 
springtails and mites under higher seasonal temperatures. Laboratory experiments 
have shown that predation by mesostigmatid mites has a strong negative effect on 
small-bodied oribatid mites (Schneider and Maraun 2009). In this study, densities of 
mesostigmatid mites decreased under year-round warming, however, the changes 
were not concomitant with those of oribatid mites, suggesting a minor role for 
predation in the studied system.  

4.2 Oribatid mites as indicators of ecosystem 
changes in the past 

Sensitivity to climate changes makes peatlands valuable with their 
palaeoenvironmental records. Historical permafrost dynamics in sub-Arctic 
peatlands can be reconstructed by combining analyses of plant macrofossil 
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assemblages and vegetation succession together with radiocarbon dating (e.g. Routh 
et al. 2014; Treat et al. 2016; Sannel et al. 2018). However, the lack of positive 
permafrost indicator plant species causes challenges, such as difficulties in the exact 
timing of permafrost aggradation. At the same time, the need to understand past 
climate events, permafrost dynamics and associated ecological shifts in Arctic and 
sub-Arctic ecosystems is perhaps greater than ever, as this kind of understanding 
helps predict future climate feedbacks. For this reason, studies II and IV aimed to 
find permafrost-specific oribatid species, which could be used as indicators in 
palaeoecological studies detecting historical permafrost dynamics in peatlands 
across the circumpolar sub-Arctic. 

In my studies three indicator species, Carabodes labyrinthicus, Neoribates 
aurantiacus and Chamobates borealis were found. Of these, C. labyrinthicus and N. 
aurantiacus were recorded in research sites both in Northern Europe and Canada. 
According to the results of the two studies, the identified oribatid indicator species have 
a good potential to be used as proxies in palaeoecological studies and can help in the 
timing of historical permafrost aggradation events. In addition, based on the data 
analyzed from a fen site in Canada in Hudson Bay lowlands, it was found that oribatid 
mite subfossils can reveal past permafrost events, which could not be otherwise 
determined with certainty based only on plant macrofossil analyses alone (see paper IV).  

Results from these two studies are in accordance with earlier studies showing that 
oribatid mites are useful indicators of past environmental change (e.g. Solhøy and 
Solhøy 2000; Presthus Heggen et al. 2010; Słowiński et al. 2018). However, 
palaeoecological peatland studies, which use oribatid mites as bioindicators, are few 
in number (but see Markkula 1986 for a study in peatland oribatid subfossils, and 
Krivolutskii & Sidorchuk 2003 and Sidorchuk 2004 for river flood plains). One of the 
limitations in oribatid mite subfossil studies is the taxonomic difficulty. It is common 
that important body parts that are used in identification of specimens are lacking in 
fossils (Luoto 2009). This caused problems with one of the indicator species identified 
in this study, N. aurantiacus, which easily loses parts of its pteromorph as subfossil, 
making definite identifications impossible. For this reason, the numbers of N. 
aurantiacus were probably too low in the subfossil record. On the other hand, oribatid 
mites belonging to the genus Carabodes are less difficult to identify to species level, 
because the distinctive features of these species, such as characteristics of the 
notogaster and the surface sculpture, are usually visible in subfossil specimens. 
Interestingly, new DNA based species identification methods, such as DNA barcoding, 
have the potential to complement species identification with more accuracy, and are 
already being used for the identification of current soil mite communities (Young et 
al. 2012). Hence, these methods, together with methodological improvements in 
preserving ancient DNA (aDNA), could in future also be applied to oribatid subfossils, 
which would then enhance studies of past permafrost dynamics.  



 32 

5 Conclusions 

This thesis provided novel information about the impacts of climate change on 
oribatid mites, a relatively poorly known soil animal group, in sub-Arctic peatlands 
(I, II, III). Three oribatid mite species, which could serve as permafrost-specific 
bioindicators in studies reconstructing past climate changes and permafrost 
dynamics, were presented (II, IV). 

While simulated higher temperatures had no impact on species compositions of 
oribatid mite communities, permafrost dynamics were found to be an important 
factor in structuring oribatid species compositions.  Even though climate warming 
will impact oribatid mite communities in sub-Arctic peatlands both directly (higher 
air and soil temperatures) and indirectly (permafrost thaw leading to changes in 
hydrology, vegetation and microhabitat compositions), the indirect effects have 
received less attention. This thesis is among the pioneer studies investigating the 
impacts of permafrost thaw on soil invertebrate communities. The findings of this 
thesis also highlight the importance of seasonal effects to be included in studies 
investigating the effects of climate warming on soil faunal communities. 

Palsa mires are vulnerable ecosystems listed as a priority habitat in the European 
Union (European Commission 2013). Permafrost, which is currently melting rapidly, 
is the definitive character of palsa mires, and known to play an important role in 
different ecosystem functions. The findings of this thesis are in line with earlier 
studies (e.g. Luoto et al. 2004) reporting that permafrost dynamics are an important 
factor supporting biodiversity in palsa mires.  

In general, sub-Arctic ecosystems are relatively simple in terms of biodiversity. 
However, in areas of low species diversity, loss or gain of even a single species can 
have strong impacts on ecosystem functions (Chapin and Körner 1995; 
Heemsbergen et al. 2004; Roscher et al. 2004). Changes in species compositions of 
oribatid mite communities caused by permafrost thaw, and the possible reductions 
in oribatid richness caused by higher temperatures, may impact ecosystem functions 
in northern peatlands through alterations in the decomposition, nutrient and carbon 
cycles. However, the overall consequences of climate warming on belowground 
ecosystem functions in sub-Arctic ecosystems are still unclear, and more studies 
addressing this topic are needed.  



Conclusions 

 33 

In the upcoming decades, temperatures will continue to rise in sub-Arctic and 
Arctic areas. Therefore, it is now more important than ever to study how different 
organisms and communities, in different habitats, at all ecosystem levels and in 
different seasons, respond to the changes that are about take place during climate 
warming. Palaeoecological studies reconstructing past environmental conditions 
have an important role in this, as knowledge on past ecosystem changes helps to 
estimate future shifts (e.g. Swindles et al. 2015; Gałka et al. 2018). Multi-proxy 
analyses, in which different indicators, such as plant macrofossils and testate 
amoebae and invertebrates, are analyzed in parallel, make these palaeoecological 
interpretations more accurate (Loisel and Garneau 2010). Here, another group, the 
soil-dwelling oribatid mites, were shown to be similarly valuable permafrost 
indicators providing a new proxy for palaeoecological studies. Moreover, oribatid 
mite subfossils should in future be included in analyses of past environmental 
changes as they can help to detect past permafrost dynamics in palsa and peat plateau 
mires and can reveal areas that had permanently frozen peat layers in the past. 
Currently, permafrost covers 24% of the exposed land in the Northern Hemisphere 
and vast amounts of it lies under tundra. As in palsa mires, the permafrost under 
tundra is melting, and as impacts of permafrost thaw on soil invertebrate 
communities in tundra ecosystems remain poorly known, these changes should be 
addressed in future studies with a multidisciplinary approach including the 
ubiquitous oribatid mites. 
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