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Abstract 

Corrosion is a major problem affecting the durability of reinforced 

concrete structures. Corrosion related maintenance and repair of 

reinforced concrete structures cost multibillion USD per annum globally. 

It is often triggered by the ingression of carbon dioxide and/or chloride 

into the pores of concrete. Estimation of these corrosion causing factors 

using the conventional models results in suboptimal assessment since they 

are incapable of capturing the complex interaction of parameters. 

Hygrothermal interaction also plays a role in aggravating the corrosion of 

reinforcement bar and this is usually counteracted by applying surface-

protection systems. These systems have different degree of protection and 

they may even cause deterioration to the structure unintentionally.  

The overall objective of this dissertation is to provide a framework that 

enhances the assessment reliability of the corrosion controlling factors. 

The framework is realized through the development of data-driven 

carbonation depth, chloride profile and hygrothermal performance 

prediction models. 

The carbonation depth prediction model integrates neural network, 

decision tree, boosted and bagged ensemble decision trees. The ensemble 

tree based chloride profile prediction models evaluate the significance of 

chloride ingress controlling variables from various perspectives. The 

hygrothermal interaction prediction models are developed using neural 

networks to evaluate the status of corrosion and other unexpected 

deteriorations in surface-treated concrete elements. Long-term data for all 

models were obtained from three different field experiments.  

The performance comparison of the developed carbonation depth 

prediction model with the conventional one confirmed the prediction 

superiority of the data-driven model. The variable importance measure 

revealed that plasticizers and air contents are among the top six 

carbonation governing parameters out of 25. The discovered topmost 

chloride penetration controlling parameters representing the composition 

of the concrete are aggregate size distribution, amount and type of 

plasticizers and supplementary cementitious materials. The performance 

analysis of the developed hygrothermal model revealed its prediction 

capability with low error. The integrated exploratory data analysis 
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technique with the hygrothermal model had identified the surface-

protection systems that are able to protect from corrosion, chemical and 

frost attacks.  

All the developed corrosion assessment models are valid, reliable, robust 

and easily reproducible, which assist to define proactive maintenance plan. 

In addition, the determined influential parameters could help companies 

to produce optimized concrete mix that is able to resist carbonation and 

chloride penetration. Hence, the outcomes of this dissertation enable 

reduction of lifecycle costs.   
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Tiivistelmä 

 

Korroosio vaikuttaa merkittävästi teräsbetonirakenteiden kestävyyteen, ja 

sen aiheuttamat maailmanlaajuiset taloudelliset kustannukset 

rakenteiden huolto- ja korjaustöitten takia ovat vuosittain 

miljardiluokkaa. Korroosion alkusyynä on usein hiilidioksidin ja/tai 

kloridin tunkeutuminen huokoiseen betoniin. Perinteiset menetelmät 

korroosiota aiheuttavien tekijöiden arviointiin eivät ota riittävän hyvin 

huomioon eri tekijöiden ja parametrien vuorovaikutuksia. Hygroterminen 

vuorovaikutus vaikuttaa vahvisterakenteiden korroosion etenemiseen, ja 

sitä pyritään estämään erilaisilla pinnoiteratkaisuilla. Näiden ratkaisujen 

suojaavat ominaisuudet vaihtelevat, ja osin saattavat jopa aiheuttaa ei-

haluttua rakenteiden heikkenemistä. 

Tässä tutkielmassa kehitetään viitekehys, jonka avulla voidaan 

paremmin arvioida korroosiolta suojaavien ratkaisujen luotettavuutta. 

Kehyksen pohjalta rakennetaan datavetoisia malleja karbonatisoitumisen, 

kloridirasituksen sekä hygrotermisen suorituskyvyn ennustamiseen. 

Karbonatisoitumista ennustetaan integroidulla mallilla, jossa käytetään 

neuroverkkoja sekä tehostettuja ja bootstrap-aggregoituja 

kokoonpanopäätöspuita. Kokoonpanopäätöspuuhun pohjautuva 

kloridirasituksen ennustemalli arvioi kloridien tunkeutumiseen 

vaikuttavien tekijöiden merkitystä monista eri näkökulmista. 

Hygrotermisen vuorovaikutuksen mallintamiseen kehitetään 

neuroverkko, joka pyrkii ennustamaan korroosiota ja muita 

odottamattomia pinnoitettujen betonirakenteiden vaurioita. Kaikkia 

malleja varten kerättiin dataa pitkältä aikaväliltä kolmesta eri 

kenttäkokeesta.  

Karbonatisoitumista ennustavan mallin suorituskyky paljastui 

vertailussa paremmaksi kuin perinteisen menetelmän. Tutkimuksessa 

paljastui, että pehmittimen ja ilman koostumuksen vaikutukset 

karbonatisoitumiseen ovat kuuden tärkeimmän tekijän joukossa 

kahdestakymmenestäviidestä tutkitusta. Keskeisimmät betonin 

rakenteeseen vaikuttavista tekijöistä kloridirasituksen suhteen ovat soran 

raekoko, käytettyjen pehmittimien määrä ja laatu, sekä käytetyt 

sementiittilisämateriaalit. Hygrotermisen suorituskyvyn mallin havaittiin 
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ennustavan suorituskykyä hyvin. Integroitu hygrotermisen suorituskyvyn 

malli ja data-analyysimenetelmä tunnisti pinnan suojausmenetelmät, 

jotka suojaavat korroosiolta, kemiallisilta sekä roudan aiheuttamilta 

vaurioilta. 

Kaikki tutkielmassa korroosion arviointiin kehitetyt menetelmät ovat 

luotettavia, robusteja sekä helposti toistettavia, mikä auttaa ennakoivien 

kunnossapitosuunnitelmien tekemisessä. Lisäksi tutkielmassa havaittujen 

merkittävien korroosiota aiheuttavien tekijöiden tunnistaminen auttaa 

yrityksiä optimoimaan sekoitussuhteita betoninvalmistuksessa niin, että 

tuloksena saatavat teräsbetonirakenteet kestävät entistä paremmin 

karbonatisoitumista sekä kloridirasitusta, samalla vähentäen rakennusten 

elinkaarikustannuksia. 
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Chapter 1  

Introduction 

1.1 Background  

Corrosion is one of the foremost critical problems affecting the durability 

of reinforced concrete (RC) structures throughout the world [1–3]. Several 

studies revealed that corrosion related maintenance and repair of RC 

structures cost multibillion USD per annum globally. Repairing of 

corrosion-induced damage in Western Europe alone causes the loss of 5 

billion EUR annually [4]. Some developed countries even expend about 

3.5% of their gross national product for corrosion associated damage and 

its control [5]. Even in repaired RC structures, continued corrosion of 

reinforcement bar accounts for 37% of the failure modes [6], causing costly 

repairs of repairs  [6–8]. 

The process of corrosion in RC structures is divided into two general 

phases: initiation and propagation. In the initiation phase the aggressive 

substances, carbon dioxide (CO2) and chloride ions (Clˉ), are transported 

through the concrete pores towards the surface of the reinforcement bar.  

Since concrete is alkaline with a pore solution pH of 12–13 that protects 

the embedded reinforcement bar from corrosion by forming a thin oxide 

layer on its surface. This layer deteriorates in the presence of Clˉ or due to 

the carbonation of concrete [9,10]. Carbonation is a physicochemical 

phenomenon induced naturally by the ingression of CO2 into the concrete 

pores from the surrounding environment and reacts with hydrated 

cement. The propagation phase covers the time from the onset of 

reinforcement bar corrosion to structural failure. In this phase, the 

deterioration of reinforcement bar depends on the corrosion rate, which is 

mainly governed by two environmental agents: moisture and temperature. 

These agents control the corrosion rate through their effect on the 

electrochemical reactions [11,12].  

Carbonation- and chloride-induced corrosion can diminish the cross-

sectional area and the elongation capacity of the reinforcement bar. This 

causes severe cracking as well as reduction in the load-bearing capacity of 
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the structure. Cracked concrete could allow an additional entry of 

moisture, aggressive gasses and ions, aggravating reinforcement bar 

corrosion and concrete degradation. Subsequently, the strength, safety and 

serviceability of the RC structures will be declined.  

In order to perform in-time and cost-effective maintenance and repair 

decisions, the initiation time of corrosion has to be reliably estimated. In 

practice, simplified Fick’s second law based models are extensively applied 

for predicting carbonation depth and chloride concentration inside the 

concrete. Most of these models and the associated value of input 

parameters have been oversimplified, incomplete, and/or unsuitable for 

the prevailing conditions [13–15]. The use of these oversimplified models 

lacks the ability to capture the complex interactions among the involving 

parameters, causing suboptimal or even improper choice of design and 

maintenance strategies. A better understanding of the complex interacting 

parameters that controls the corrosion of reinforcement bar is a crucial 

step towards the development of reliable models. Indeed, examination of 

CO2 and Clˉ transport in concrete is performed for several years to acquire 

a better understanding of various controlling parameters. Nevertheless, it 

is usually challenging to isolate the influences of particular parameters 

because other controlling parameters are also varying naturally at the same 

time  [16,17]. Identifying the influential predictors using traditional 

statistical methods, such as linear regression method is unachievable since 

the penetration of these aggressive substances in field concrete is a highly 

complicated process involving several nonlinear interactions among the 

parameters. Determining powerful predictors based on linear regression 

method is only applicable for linear or nearly linear models. Hence, 

alternative approaches that are capable of managing multidimensional 

nonlinear parameters are necessary in order to determine the influential 

predictors reliably. 

The conventional carbonation depth and chloride concentration 

prediction models were established based on short-term tests. It has been 

proven from many experimental data that these simplified models, 

especially those developed to predict chloride profile, can only characterize 

the chloride penetration under the exposure conditions for a short period 

of time close to the conditions for which the input parameters of the model 

were deduced [18]. There is no a straightforward method that can be 
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applied for the translation of short-term field data into values that can 

express the long-term performance of concrete structures exposed to field 

environment. Fortunately, several long-term field data are nowadays 

available from real structures and specimens made with several mix 

compositions exposed to carbonation and chloride environment. With the 

advancement of nondestructive technologies for monitoring of corrosion 

controlling parameters in concrete structure, the availability of field data 

subjected to different exposure conditions will increase significantly. Huge 

efforts are being made in the past in other industries to establish powerful 

data-driven methods that can be utilized to perform accurate predictions 

and extract useful information. Thus, in construction industry, examining 

the possibilities of predicting corrosion controlling parameters using 

readily available long-term field data as well as translating them into useful 

knowledge is essential.    

In Finland, corrosion-induced damage on prefabricated RC façade is 

projected to be around 15 million m2 per annum and will grow 2% each 

year [19]. It accounts for about 11–40% of the overall repair costs 

depending on the surface-finishing material types [20]. Substantial 

attempts have been made into devising cost-effective repair methods to 

control the rate of corrosion of reinforcement bar. Surface-protection 

system is one of the economical methods that are widely used to curb the 

corrosion rate by controlling the moisture of concrete [11,21]. The surface-

protection system may have different degrees of protection against 

moisture even with identical generic chemical composition. They may even 

cause unintended damage to the structure since the compositions of the 

materials differ extensively [21]. Therefore, clear understanding of the 

hygrothermal performance of surface-protected concrete is essential since 

uncontrolled hygrothermal interaction may accelerate the corrosion of the 

embedded reinforcement bar. Certainly, hygrothermal transport 

phenomena in concrete and several other building materials are 

thoroughly understood and numerical models have already been 

established [22]. Though models to predict the hygrothermal behaviour of 

concrete have been suggested in the past, none has explicitly integrated 

diverse surface-protection materials and application procedures in their 

model. It is also challenging to provide satisfactory analytical methods to 

assess the performance of the protective measures since understanding the 
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interaction of various types of surface-protection systems with the 

substrate concrete in very dynamic environmental conditions is highly 

complex. In-service hygrothermal monitoring utilizing sensors is a better 

alternative for assessing the performance of surface-protected RC concrete 

elements. Using the sensor data, the hygrothermal interaction can be 

forecasted, which leads to understanding of the condition of corrosion. In 

addition, using the forecasted data and exploratory data analysis 

appropriate surface-protection system can be determined. 

1.2 Research problem 

The research problem of the dissertation is: how to make valid, reliable, 

and robust corrosion assessment of RC structures through realization of 

the complex processes of carbonation, chloride ingress and hygrothermal 

interaction? The research problem is approached through the following 

more detailed research questions:  

Research question one: How to eliminate or mitigate the 

uncertainties observed in the traditional corrosion assessment methods?  

Research question two: How to develop accurate carbonation depth 

prediction model that considers the complex parameter interactions? 

What are the predominant carbonation depth predictors? 

Research question three: What are the significant parameters that 

describe the chloride concentration into concrete?  

Research question four: How to predict the hygrothermal interaction 

inside surface-protected concrete while identifying the appropriate 

surface-protection system? 

Each of the above research questions is answered in one of the annexed 

publications and each article contributes towards addressing the overall 

research problem. The logic on how the publications are interconnected in 

answering the research problem is illustrated in Figure 1.1. The first 

publication answers the research question one. This publication examines 

the recent advances and current practices of corrosions assessment of RC 

structures and recommends methods that mitigate the uncertainties 

observed in the conventional approaches. Research question two is 

addressed by Publication II, which presents the development of an 

optimized and integrated data-driven carbonation prediction model. It 
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also determines influential carbonation depth predicting parameters. 

Research question three is answered by Publication III. This publication 

evaluates the importance of variables that characterize the chloride 

concentration in concrete. The fourth publication provides answer for the 

research question four. It demonstrates how hygrothermal interaction 

inside surface-protected concrete can be predicted using data-driven 

models while identifying the appropriate surface-protection system. 

Research 
question three: 
What are the 
significant 
parameters that 
describe the 
chloride 
concentration 
into concrete? 

Research question two: 
How to develop accurate 
carbonation depth prediction 
model that considers the 
complex parameter 
interactions? What are the 
predominant carbonation 
depth predictors? 
 

Research problem: 
How to make valid, 
reliable, and robust 
corrosion assessment of RC 
structures through 
realization of the complex 
processes of carbonation, 
chloride ingress and 
hygrothermal interaction?  

Research 
question one: 
How to eliminate 
or mitigate the 
uncertainties 
observed in the 
traditional 
corrosion 
assessment 
methods? 
 

Research question four: 
How to predict the 
hygrothermal interaction 
inside surface-protected 
concrete while identifying the 
appropriate surface-protection 
system? 
 

Publication I Publication III 
P

u
b

li
c
a

ti
o

n
 I

V
 

P
u

b
li

c
a

ti
o

n
 I

I 

Figure 1.1. The logic on how the publications are interconnected in answering the research 
problem. 
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1.3 Aim and objectives of the research 

The aim of this dissertation is to provide a framework that enhances the 

assessment reliability of the corrosion controlling factors. The framework 

is realized through the development of data-driven models that evaluate 

corrosion causing and accelerating factors. The objectives are: i) to reliably 

foresee the carbonation depth and to determine the influential predictors 

of carbonation depth; ii) to identify the significance of chloride penetration 

characterizing parameters; and iii) to evaluate the hygrothermal behaviour 

of surface-protected concrete elements.  

A reliable prediction of carbonation depth, chloride profile and 

hygrothermal behaviour is instrumental for realizing optimal design and 

maintenance plans for RC structures. The determination of influential 

predictors will also yield scientific significance that could assist concrete 

researchers to design concrete mix that resist carbonation and chloride 

penetration. All these enable a considerable minimization in lifecycle costs, 

which in turn prevents economic loss. 

1.4 Research methodology and dissertation structure  

All the methods that are devised to assess corrosion causing and 

aggravating factors in this dissertation rely on machine learning 

algorithms and implemented using MATLAB programming language. The 

methods are utilized for developing data-driven models. As any data-

driven models, the development process of these models primarily consists 

of data, data preprocessing and training. The experimental data employed 

for model development and testing are gathered from field experiments.  

The thesis is divided into six chapters. Chapter Two presents the 

theoretical foundation of the thesis by focusing on corrosion causing and 

controlling factors as well as the limitations of the conventional 

carbonation and chloride profile prediction models. It also discusses the 

need for hygrothermal-behaviour prediction approaches for surface-

protected concrete structures. The advantages of data-driven methods that 

mitigate the limitations of the conventional models and the fundamental 

concepts of the machine learning algorithms that are used in developing 

the data-driven models are discussed in the same chapter.   
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The materials and methods that are employed to address the research 

problem of the dissertation are discussed in Chapter Three. It presents the 

development process of data-driven models that predict carbonation 

depth, chloride profile and hygrothermal behaviour. As data-driven 

methodologies, the materials part of this chapter discusses the utilized 

experimental data for the development of carbonation, chloride and 

hygrothermal models in details.  

The core results of the dissertation are presented in Chapter Four. It has 

four sections where each section answers the corresponding research 

questions. It presents the advantages of data-driven approaches in 

mitigating uncertainties that are observed in the conventional corrosion 

prediction methods. The performances of the developed models for 

carbonation depth prediction, and for determining significant predictors 

of carbonation depth and chloride concentration in concrete are discussed. 

The performance of the hygrothermal behaviour prediction model for 

surface-protected concrete element is also discussed in the same chapter.  

Chapter Five presents the discussion of the research results in the context 

of theoretical and practical implications of the research as well as its 

reliability and validity. In addition, recommendations for further research 

are proposed in the same chapter. Finally, the conclusion of the 

dissertation is presented in Chapter Six.  

1.5 Scope of the research 

The scope of the dissertation is to examine and model corrosion causing 

and controlling factors by focusing on carbonation, chloride penetration 

and hygrothermal interaction. All the case structures or experiments in the 

dissertation represent natural Finnish climate. The hygrothermal, 

carbonation and chloride case structures are located in Vantaa, Espoo and 

Kotka, respectively. The environmental exposure classes for examination 

of carbonation, chloride ingress and hygrothermal are XC3 (moderate 

humidity), XD3 (cyclic wet and dry), and XF1 (moderate water saturation, 

without deicing agent), respectively. The maximum exposure time of the 

case structures is two, six, and seven years for hygrothermal, chloride, and 

carbonation investigation, respectively. 
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Chapter 2 

Theoretical foundation 

 

In this chapter, the corrosion process and factors that cause and control 

corrosion are presented. The limitations of the conventional corrosion 

assessment methods are also discussed. The fundamental principles of 

novel data-driven approach that are able to address the recognized 

limitations of the conventional methods are presented.  

2.1 Corrosion process 

Corrosion of reinforcement bar is an electrochemical process. The 

electrochemical potentials to generate the corrosion cells are induced in 

two mechanisms [9,10,12,23]: i) when two different types of metal are 

embedded in concrete or when there is a considerable dissimilarities in the 

surface characteristics of the reinforcement bar, and ii) when there is 

concentration differences in the dissolved ions at the vicinity of the 

reinforcement bar surface. As a result, in cases of mechanism (i), one of the 

two metals becomes anodic and the other cathodic. While, in case of 

mechanism (ii), some parts of the reinforcement bar begin to be anodic 

and the other part of the reinforcement bar becomes cathodic. The primary 

chemical changes occurring at the anodic and cathodic areas as well as the 

resulting rust formation are described by Equations (2.1) to (2.4). 

Furthermore, the corrosion of reinforcement bar in concrete as an 

electrochemical process is schematically illustrated in Figure 2.1. 

 

At the anode, oxidation of iron occurs: 

 

Fe → Fe++ + 2e−.                     (2.1) 

 

At the cathode, reduction of atmospheric oxygen with water occurs: 

 
1

2
O2 + H2O+ 2e

− → 2(OH)−.                        (2.2) 
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When anodic and cathodic reaction products combine: 

 

Fe++ + 2(OH)− → Fe(OH)2.                  (2.3) 

 

Subsequent oxidation reaction results in the formation of rust:  

 

FeO. (H2O)x.                              (2.4) 

  

The anodic and cathodic reaction is responsible for the formation of 

primary corrosion product of metal, Fe(OH)2, but the action of O2 and H2O 

can yield other corrosion products with different colours [9,24,25]. 

Corrosion is often accompanied by a loss of reinforcement bar cross-

sectional area and accumulation of corrosion products which invade a 

larger volume (usually 2 to 6 times) than the original reinforcement bar 

[9,11]. The corrosion product exerts substantial tensile stresses, causing 

cracking and spalling of the concrete cover.  So, structural distress may 

gradually occur due to the bond loss between reinforcement bar and 

concrete or due to loss of reinforcement bar cross-sectional area [26,27].  

The concrete cover provides both chemical and physical protections 

against corrosion of reinforcement bar. Chemical changes caused by the 

ingression of aggressive substances into concrete deteriorate the oxide 

layer at the surface of the reinforcement bar, causing initiation of 

Figure 2.1. Schematic illustration of rebar corrosion in concrete as an electrochemical 
process [19].  
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corrosion. The concrete can also lose its protection capability due to 

cracking. Cracking of concrete let penetration of corrosion causing and 

accelerating agents, such as moisture, aggressive gasses, and ions to the 

vicinity of reinforcement bar surface.  

2.2 Corrosion causing and controlling factors  

Corrosion of reinforcement bar is typically triggered by the ingression of 

CO2 and Clˉ into the concrete pores. Once the corrosion of reinforcement 

bar is initiated, the corrosion rate is mainly controlled by the 

environmental agents, which are moisture and temperature. Since the 

focus of the dissertation is on the above corrosion initiating and controlling 

factors, the process of carbonation, chloride ingression and hygrothermal 

interaction are discussed below.  

2.2.1 Carbonation and chloride ingress 

Normally, concrete is alkaline with a pore solution pH of 12–13 that 

passivizes the embedded reinforcement bar. The passivation of 

reinforcement bar is breakdown due to the existence of Clˉ or by the 

carbonation of the concrete [9–11]. Carbonation is a natural 

physicochemical process caused by the ingression of CO2 from the 

neighbouring environment into the concrete through pores in the matrix 

where the CO2 reacts with hydrated cement [28,29]. The chemical reaction 

of carbonation process is expressed in Equation (2.5). Calcium hydroxide 

(Ca(OH)2) in contact with carbon dioxide (CO2), in the presence of 

moisture, forms calcium carbonate (CaCO3). This chemical reaction slowly 

lowers the alkalinity of the pore fluid from a pH value of about 13 to 9 

[10,29–32]. Though the depletion of alkalinity caused by carbonation 

alters the chemical composition of concrete, its major consequence is that 

it destroys the passive oxide layer of reinforcement bar which ultimately 

initiates corrosion [10,28–35].  

 

Ca (OH)2 + CO2
H2O
→  CaCO3 + H2O.                              (2.5) 
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The ingression of chloride ions is also the principal cause for corrosion of 

reinforcement bar in concrete. Similar to carbonation, the ingression of 

chloride ions does not normally cause damage to the concrete directly. 

Nevertheless, when the amount of chloride concentration at the 

reinforcement bar reaches a certain threshold, depassivation occurs that 

initiates corrosion [36–40]. Chloride ions exist in the cement paste 

surrounding the reinforcement bar react at anodic sites to form 

hydrochloric acid which obliterates the passive protection layer on the 

surface of reinforcement bar. The surface of the reinforcement bar then 

becomes activated locally to form the anode, while the passive surface 

forming the cathode, resulting corrosion initiation in the form of localized 

pitting [10,11,41]. Chloride attack is one of the primary threats for the 

durability of RC structures that are exposed to marine environment and 

deicing salts containing chloride [36–40]. The ingression of Clˉ is notable 

in countries at those latitudes where substantial amounts of deicing salts 

are spread on the roads to melt the ice during the winter. The melted ice 

slurry with intensely concentrated Clˉ from deicing salt splashes to RC 

structures by the moving vehicles. There is even a study that claim Clˉ from 

deicing salt is detected as high as 60th floor of RC building structure located 

1.9 km from a busy highway [42].  

As presented above, the alkaline environment that shields the 

reinforcement bar is vulnerable to deterioration, either by carbonation or 

chloride attack. The penetration rate of these aggressive substances to 

breakdown the passive film is a function of the quality and the thickness of 

the concrete cover as well as the surrounding environment. Generally, the 

corrosion process of reinforcement bar in concrete is divided into two 

stages: initiation and propagation. In case of carbonation-induced 

corrosion, the corrosion initiation stage corresponds to the time required 

for the carbonation front to arrive at the surface of reinforcement bar. In 

chloride-induced corrosion, the corrosion initiation stage corresponds to 

the period for the Clˉ concentration to reach at a specific threshold level 

that damages the protective layer. Once the protective layer has broken, 

corrosion can onset and accelerate very fast in the presence of moisture 

and oxygen. The time taken from onset of corrosion to concrete failure is 

known as the propagation period. The initiation stage compared with the 

propagation period is long. It means that, if appropriate measures are not 
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timely taken, the period relative to the whole service life from the corrosion 

onset to the structural failure is short. Due to this fact, the corrosion 

initiation period has been often utilized to measure the service life of RC 

structures [43,44]. A schematic representation of the conceptual model of 

corrosion stages of reinforcement bar is presented in Figure 2.2.   

The premature failures due to corrosion of reinforcement bar in RC 

structures are among the major challenges of civil infrastructures which 

causes huge economic losses. For instance, the annual total direct cost of 

chloride-induced corrosion in US highway bridges alone exceeds eight 

billion USD. The indirect costs caused by traffic delays and lost 

productivity are projected to be ten times more than the cost of corrosion 

associated maintenance, repair and rehabilitation [45,46]. Even if 

chloride-induced corrosion is normally more pernicious and more 

expensive to repair, carbonation-induced corrosion of reinforcement bar 

affects a wider range of RC structures at a larger scale. Thus, it is a critical 

problem in several parts of the world and presently two-thirds of RC 

structures are subjected to environmental situations that favour 

carbonation-induced corrosion [35,47] . 

Figure 2.2. Corrosion of rebar in concrete structure: initiation and propagation periods 
(Publication I). 
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2.2.2 Hygrothermal behaviour 

The amount of moisture within the concrete is the major factor that 

controls the corrosion rate through their influence on the electrochemical 

reactions at the reinforcement bar-concrete interface and ions transport 

between anodes and cathodes [11]. The surrounding temperature also 

governs the corrosion rate of reinforcement bar since it influences the 

electrochemical reactions and the amount of the moisture that the concrete 

retains [12]. For instance, the corrosion rate varies by more than a factor of 

ten in a regular seasonal temperature range of 5 to 30 °C [2,12,48]. 

Uncontrolled hygrothermal (moisture and temperature) can also cause 

other types of deterioration on concrete. In the presence of high moisture, 

some aggressive substances from internal or external sources can react with 

concrete ingredients leading to concrete damage [9,10,24,28]. For 

example, alkali reaction may take place when alkalis react with aggregates 

to form products that are deleterious to concrete. In low temperature, 

concrete may be damaged by freezing and thawing if the concrete pore 

system is filled with moisture and has reached a critical degree of saturation 

[28,49]. Hence, controlling the hygrothermal condition of RC structures is 

essential to prolong their service life.  

The existence of a large number of RC structures that are subjected to 

corrosion of reinforcement bar and other deterioration mechanisms 

caused by uncontrolled hygrothermal interaction call for cost-effective 

maintenance measures. In the past few decades, substantial efforts have 

been put into devising economical methods to control the moisture 

penetration into RC structures. European Standard - EN 1504 proposes 

surface-protection systems to limit the amount of moisture content, and 

thus control the corrosion rate of reinforcement bar by increasing the 

concrete resistivity under rehabilitation principles P2 – Moisture control 

of concrete and P8 – Increase of the electric resistivity of concrete [21]. 

According to EN 1504, the surface-protection systems that can be applied 

for concrete are categorized into three groups: i) hydrophobic 

impregnation: produces a water-repellent surface with no pores filling 

effect; ii) impregnation: lessens the surface porosity with partial or full 

pores filling effect; and iii) coatings: forms a continuous protective film on 

the concrete surface. 
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The chemical compositions of commonly applied surface-protection 

materials to control the moisture penetration into concrete vary broadly. 

Due to this, the surface-coating systems may behave differently and even 

lead to unintentional damage to the concrete. It may also deliver dissimilar 

degrees of protection against moisture even for those surface-protection 

materials with similar generic chemical composition. All these facts make 

selection of suitable surface-protection system for a particular structure 

challenging.  

In order to capture the hygrothermal behaviour inside surface-protected 

concrete members, details of the temporal change of properties of the 

applied coating materials under environmental and service conditions are 

necessary. Furthermore, a comprehensive understanding of the 

interaction of different surface-protection materials with the substrate 

concrete is indispensable. Some surface-treating materials penetrate into 

the pores of concrete and react with the hydration products of the concrete, 

but some other materials form a continuous layer at the surface of 

concrete. All these conditions create complexity on the hygrothermal 

behaviour assessment of surface-protected concrete.  

2.3 Conventional corrosion assessment models  

As discussed above, carbonation and chloride ion penetration into 

concrete cause initiation of corrosion of reinforcement bar. Reasonably 

accurate prediction of the depth of carbonation and concentration of 

chloride ions is crucial to optimize the design and maintenance programs 

for RC structures. In the past three decades, considerable attempts have 

been performed to develop durability models for RC structures subjected 

to environmental situations that favour carbonation- and chloride-induced 

corrosion. As a result, diverse models and input parameters have been 

established. The complexity degree of the proposed models differ from 

straightforward analytical models presuming uniaxial diffusion into 

concrete, to more complex numerical models which take the physical, 

chemical, and electrochemical processes of gases and ions transport into 

consideration [50–52]. Some of the adopted analytical models and the 

associated value of the input parameters have been suboptimal, 

incomplete, and/or unsuitable for the prevailing circumstances. Due to 



 

16 

 

these facts, the prediction outcomes of different models vary considerably 

even for concrete elements with the same mix proportions that are exposed 

to identical environmental conditions [13]. Though the complex scientific 

models yield rationally precise predictions, they lack user friendliness and 

require well-skilled professionals, making them appropriate only for 

research but not for practical applications. In practice, durability models 

in the form of simple analytical equations on the basis of Fick's second law 

of diffusion are widely applied to predict carbonation depth and chloride 

concentration in concrete.  

Conventionally, the depth of carbonation is evaluated using a simplified 

version of Fick’s second law of diffusion, Equation (2.6) [28,31,34,53,54]. 

This model obeys the square root law and is utilized to predict the 

depassivation time by extrapolating the carbonation depth measured at a 

certain time to the future. 

 

𝑥𝑐(𝑡) =  𝑘 √𝑡,           (2.6) 
 

where 𝑥𝑐(𝑡) is carbonation depth at the time 𝑡 [mm], 𝑘 is coefficient of 

carbonation [mm/year0.5] and expressed as √
2 .𝐷𝐶𝑂2(𝐶1−𝐶2)

𝑎
, where 𝐷𝐶𝑂2  is 

diffusion coefficient for CO2 through carbonated concrete [mm2/year], C1 

is concentration of CO2 for the surrounding environment [kg/m3], C2 is 

concentration of CO2 at the carbonation front [kg/m3], 𝑎 is mass of CO2 per 

unit volume of concrete required to carbonate all the available calcium 

hydroxide [kg/m3], and 𝑡 is the time of exposure to the atmosphere 

containing CO2 [year]. 

The assumptions in Equation (2.6) are: i) diffusion coefficient for CO2 

through carbonated concrete is constant; ii) the amount of CO2 required to 

neutralize alkalinity within a unit volume of concrete is invariant; and iii) 

CO2 concentration varies linearly between fixed boundary values of 𝐶1 at 

the external surface and 𝐶2 at the carbonation front. To evaluate k, the 

carbonation depth of concrete should be determined in advance. It can be 

examined using concrete cores taken from existing structures or by 

performing an accelerated test in laboratory. Indeed, carbonation depth is 

often evaluated by carrying out an accelerated test using higher CO2 

concentration in a controlled environment since carbonation is a slow 
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process [55]. Then using the value of the laboratory measured depth of 

carbonation, the amount of the equivalent k and thus the depassivation 

time of the reinforcement bar is computed. This is a common approach 

even if the accelerated test may not precisely explain the natural 

carbonation process consistently [53]. Equation (2.6) is plausible as far as 

the three assumptions are fulfilled. However, the assumptions are invalid 

in reality. For instance, diffusion coefficient of CO2 varies both temporally 

and spatially. The reason for these variability is that the diffusion of CO2 in 

concrete depends on multiple factors, including concrete mix composition, 

curing conditions and the macro- and micro-environment to which the 

concrete is exposed [31,55,56]. Due to this, Equation (2.6) often fails to 

represent the actual condition of the concrete structures, leading to 

inaccurate carbonation depth prediction [28,56,57]. To minimize some of 

the uncertainties, analytical models which consider direct account of some 

of the carbonation controlling parameters have been proposed. For 

example, the model proposed in fib-MC2010 [58] and DuraCrete 

framework [59], that is given below in Equation (2.7). 

 

𝑥𝑐(𝑡) = √2 .  𝑘𝑒  .  𝑘𝑐  . 𝑅𝑁𝐴𝐶,0
−1  .  𝐶𝑎  .𝑊(𝑡). √𝑡 ,                          (2.7) 

 

where 𝑥𝑐(𝑡) is carbonation depth at the time 𝑡 [mm], 𝑡 is exposure time 

[year], 𝑘𝑒 is environmental function [-],  𝑘𝑐  is execution transfer parameter 

[-], 𝐶𝑎  is CO2 concentration in the air [kg/m³], 𝑊(𝑡) is weather function [-

], 𝑅𝑁𝐴𝐶,0
−1  is inverse effective carbonation resistance of concrete 

[(mm²/year)/(kg/m³)] which is determined at a certain time 𝑡0 using the 

natural carbonation test.  

As observed in Equation (2.7), the fib and DuraCrete model adopt 

Equation (2.6) by linking the carbonation coefficient with parameters of 

the concrete property and the environment condition. There are also other 

models which follow the same principle as Equation (2.7). Summarized list 

of those models can be found in [60]. The majority of the models 

incorporate limited carbonation controlling parameters. The linked 

parameters of these models, such as exposure condition, water-to-cement 

ratio (w/c), and compressive strength, have ordinarily been considered as 

random variables. Though air permeability of concrete relies largely on the 
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w/c, it is also governed by other parameters, e.g.  mineral admixtures [61]. 

The combination of several assumptions and simplifications in the 

prevailing carbonation prediction models lead to a considerable 

uncertainty in their performance. 

The chloride ion concentration in concrete is often estimated by adopting 

a simplified Fick’s second law of diffusion based analytical formula 

described by Equation (2.8) [62]. 

 

𝐶𝑥 = 𝐶𝑖 + (𝐶𝑠 − 𝐶𝑖) (1 − 𝑒𝑟𝑓(𝑥) [
𝑥

2√𝐷𝑛𝑠𝑠𝑡
]),                                                            (2.8) 

 

where  𝐶𝑥  is the Clˉ content measured at average depth 𝑥 [m] after 

exposure time 𝑡 [s][% by mass of concrete], 𝐶𝑠 is the Clˉ content at the 

exposed surface [% by mass of concrete], 𝐶𝑖  is the initial Clˉ content [% by 

mass of concrete], 𝐷𝑛𝑠𝑠  is the diffusion coefficient of Clˉ at nonsteady state 

[m2/s], and 𝑒𝑟𝑓(𝑥) is the error function [-]. 

The foremost limitations of Equation (2.8) are [15,36,63,64]: i) the 

surface chloride content is invariant; ii) the nonsteady diffusion coefficient 

remains constant; and iii) the 𝐷𝑛𝑠𝑠  is assumed to be uninfluenced by 

different 𝐶𝑠 . In real situation, 𝐶𝑠 and 𝐷𝑛𝑠𝑠  cannot be recognized as 

constants. This is due to the fact that the transport properties of Clˉ depend 

on the amount of Clˉ concentration in the pore solution and the intrinsic 

permeability of the concrete. The Clˉ concentration amount varies due to 

the continuous chemical reaction of Clˉ with the dilute cement solution 

and the amount of diffused Clˉ. The concrete permeability property also 

varies during the cement hydration process with time. In another 

perspective, the change of the pore structure of concrete is governed by 

cement type, w/b, exposure time, type of admixtures, and exposure 

conditions. Due to these, both 𝐶𝑠 and 𝐷𝑛𝑠𝑠  are temporally and spatially 

varying parameters [65,66]. It is also comprehended that the Clˉ is 

accumulated in the pore solution of concrete during chloride diffusion 

process. As the amount of Clˉ concentration increases, the mobility of free 

Clˉ slowly becomes weak, and thus lessens the magnitude of 𝐷𝑛𝑠𝑠 . This 

demonstrates that 𝐷𝑛𝑠𝑠  is a function of 𝐶𝑠 and this makes the assumption 

(iii) in Equation (2.8) invalid. Moreover, in Equation (2.8), the error 

function equation takes only diffusion mechanism into consideration. 
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Nevertheless, the ingression of Clˉ into concrete involves a complex 

chemical and physical process that integrates diverse transport 

mechanisms besides diffusion, such as capillary sorption, and permeation. 

All these facts describe the reason behind the failure of Equation (2.8) to 

offer accurate predictions in several cases [64]. In fact, in order to 

undertake the time dependency of 𝐷𝑛𝑠𝑠  and the impact of other influential 

parameters some approaches have been suggested, e.g. fib-MC2010 [58] 

and DuraCrete framework [59]. Equation (2.9) is the most applied formula 

for estimating 𝐷𝑛𝑠𝑠 , but it also fails to eliminate the uncertainty fully 

because the input parameters exhibit substantial scatter. 

 

𝐷𝑛𝑠𝑠(𝑡) = 𝑘𝑒 .  𝑘𝑡 .  𝑘𝑐  . 𝐷0. (
𝑡0

𝑡
)
𝑛

,                                                                             (2.9) 

 

where 𝑘𝑒 is environmental function [-],  𝑘𝑡  is test method function [-], 𝑘𝑐  is 

curing function [-], 𝐷0 is experimentally determined chloride diffusion 

coefficient at time 𝑡0 [m2/s], 𝑡0 is age of concrete at 𝐷0 is measured [year], 

𝑡 is the exposure duration [year], and 𝑛 is the age factor describing the time 

dependency of the diffusion coefficient [-].   

The age factor in Equation (2.9) explains the time dependency of the 

diffusion coefficient based on the concrete mix composition. The 

magnitude of the age factor is often determined based on different concrete 

specimens subjected to various environments for relatively short period of 

time and reveals significant scatter. Several studies demonstrated that the 

age factor is the most sensitive parameter in Equation (2.9) [14,36,67,68]. 

A minimal change in its magnitude leads to a considerable uncertainty in 

the prediction of chloride concentration. The combination of all the above 

discussed assumptions causes considerable uncertainty in the prediction 

of Clˉ concentration in concrete which ultimately affects estimation of the 

time to onset corrosion of reinforcement bar or evaluation of the service 

life of the structure [15,69].  

As elaborated above, the ingression rate of the aggressive substances 

(CO2 and Clˉ) into the concrete pores is predominantly a function of 

concrete properties and environmental circumstances. In a given 

structure, the penetration rate of these substances cannot be constant and 

even they may alter in various parts of the structure. The presented 
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corrosion assessment methods in the form of analytical equations are no 

better than their underlying conceptual base. So, the estimation of 

corrosion onset utilizing Fick’s law based analytical models is uncertain. In 

addition, the rapidly increasing use of combinations of supplementary 

cementitious materials and new technologies are another factors which 

make the traditional models incapable to precisely evaluate the corrosion 

initiation time [69–72]. Hence, developing novel methods that estimate 

the carbonation depth and chloride profile accurately are crucial to 

mitigate premature failure of RC structures caused by corrosion of 

reinforcement bar and the related costs. 

The complexity of several interacting parameters which control the 

initiation of corrosion of reinforcement bar in concrete calls for 

researchers to question how to eliminate or mitigate the uncertainties 

observed in the traditional corrosion assessment methods? This is one of 

the research questions of this dissertation, research question one. Indeed, 

the oversimplified corrosion assessment methods can be integrated with a 

semi-probabilistic uncertainty model to enhance the accuracy as in the 

DuraCrete framework. Nonetheless, this approach cannot eliminate the 

associated uncertainty completely. Uncertainties can be mitigated by 

utilizing readily available long-term data or gathering more and more 

relevant data, and then modelling it using machine learning methods. Such 

data-driven models estimate without assumptions by mapping the 

variables of the input to the output that closely approximate the target 

instances. They do also have the ability of extracting useful knowledge 

from the data, thus contributing to a better understanding of the complex 

and nonlinear interaction of multiple parameters. Fortunately, there are 

readily available long-term field data obtained from real structures and 

specimens made with several mix compositions exposed to carbonation 

and chloride environment. The increment of the availability of more and 

more field data exposed to different exposure conditions is evident since 

nowadays real-time monitoring of several corrosion controlling 

parameters in concrete structure is achievable. 

In another perspective, the broadly utilized Fick’s law based carbonation 

depth and chloride profile prediction models rely on limited number of 

parameters. Certainly, exploration of CO2 and Clˉ transport in concrete is 

conducted for several years to acquire a better understanding of the 
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influential predictors. In order to recognize the effect of different 

parameters, a large number of experiments must be carried out since the 

concrete microstructure is immensely complex and its transport properties 

are controlled by several interacting factors. However, it is generally 

challenging to isolate the effects of particular parameters since other 

governing parameters also vary naturally at the same time [16,17]. Hence, 

determining parameters that characterize the carbonation process and the 

chloride penetration in concrete as well as their interdependency is crucial 

in order to develop parsimonious and precise model. But identifying the 

significance of the parameters using the traditional statistical methods is 

impossible since the carbonation process and the chloride penetration in 

concrete is a complicated process governed by several nonlinear factors. 

All the limitations presented above can be mitigated by adopting various 

types of machine learning methods since they are capable of handling 

highly nonlinear variables with multiple interactions.  

Unlike carbonation and chloride penetration assessment, hygrothermal 

transport phenomena through concrete are well understood and numerical 

models that can be used in practice have already been developed. A 

comprehensive review of hygrothermal simulation models is presented in 

[22]. Although hygrothermal prediction models for concrete are available, 

it is challenging to include the ever increasing of surface-protection 

material types and their application techniques in the models’ library. It is 

a known fact that numerical models can yield accurate predictions of any 

process if and only if the actual material properties are well studied and 

utilized. In addition, hygrothermal interaction in surface-protected 

concrete elements involves multiple temporally varying complex 

interactions. Such a complex problem needs an approach where the most 

important features with the involved multiple interactions are modelled so 

that the behaviour of the system could be reasonably predicted. These 

features can be gathered through long-term in-service monitoring using 

appropriate sensors and predicting the hygrothermal behaviour from the 

gathered data using machine learning techniques is an attractive 

alternative. Furthermore, the gathered and the predicted data, with the 

help of exploratory data analysis technique, could assist to evaluate the 

performance of the applied protection materials while obtaining valid 

information regarding the real hygrothermal behaviour of the concrete. 
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2.4 Machine learning  

Machine learning is a major subfield of artificial intelligence that deals with 

the design and implementation of algorithms to recognize complex 

patterns from data and make intelligent decisions [73–81]. Machine 

learning based models can be predictive to carryout prediction or 

descriptive to discover knowledge from data, or both without assuming a 

predetermined equation as a model [77,82,83]. Even if machine learning 

grew out of the quest for artificial intelligence, its scope and potential are 

more generic. It draws upon ideas from a diverse set of disciplines, 

including Probability and Statistics, Information Theory, Psychology and 

Neurobiology, Computational Complexity, Control Theory and Philosophy 

[80].   

The design process of a machine learning model involves a number of 

choices, including the learning types, the target performance function to 

be learned, a representation of the target function and an algorithm (a 

sequence of instructions used for learning the target function). Based on 

the training conditions, machine learning is classified as supervised, 

unsupervised, semi-supervised and reinforcement learning [77,84]. The 

supervised and unsupervised learning are the most commonly 

implemented learning types in several area of applications [83]. 

Supervised learning: in this learning type, the training dataset comprises 

pairs of 𝑁 input instance 𝑥 and a desired output (target) value 𝑦: {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 . 

A supervised learning algorithm analyses the training data and generates 

an inferred function, which can be applied for mapping new instances. A 

best scenario will allow the algorithm to accurately estimate the target for 

unseen input instances. The process of learning from the training dataset 

can be thought of as a teacher supervising the learning process, hence the 

name supervised learning. The algorithm iteratively performs predictions 

on the training data and is rectified by the teacher. The learning process 

halts when the algorithm attains an acceptable performance level. Based 

on the nature of the target variable, supervised learning problem is 

categorized into two: classification and regression. Supervised learning 

problems where the target variable is defined as a finite set of discrete 

values are called classification whereas those in which the value of the 

target variable is continuous are referred to as regression.  
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Unsupervised learning: in this learning type, the training dataset 

consists of only 𝑁 input instances {𝑥𝑖}𝑖=1
𝑁  and no corresponding target 

values. The goal of unsupervised learning is inferring a function to describe 

hidden structure from the unlabelled data. The most common 

unsupervised learning problem is clustering where the goal is to partition 

the training instances into subsets (clusters) so that the data in each cluster 

display a high level of proximity. Unlike supervised learning, there is no a 

teacher providing supervision as to how the instances should be handled.  

Also, there is no evaluation of the correctness of the structure that is output 

provided by the adopted relevant algorithm. 

In order to perform predictions and/or discover new useful knowledge 

from data using machine learning methods, an algorithm that is capable of 

learning the target function from training data is required. The algorithms 

in machine learning implement different types of methods from various 

fields, such as, pattern recognition, data mining, statistics, and signal 

processing. This allows machine learning to undertake the synergy benefits 

from all these disciplines, and thus results in robust solutions that 

integrates various knowledge domains [81]. Some of the commonly 

adopted powerful algorithms that have been applied in supervised and 

unsupervised learning types are demonstrated in Figure 2.3. It can be 

observed that some algorithms operate under both supervised and 

unsupervised learning types to solve several diverse problems.  

Supervised learning type is the focus of this dissertation since the 

research questions two, three and four deal with regression problems. 

Typically, regression types of problems are handled by developing a 

functional model which is the best predictor of y given input x employing 

a particular training data 𝐷 = {𝑦𝑖 , 𝑥𝑖}1
𝑁 as expressed in Equation (2.10). 

 

𝑦 = 𝐹̂(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐹̂(𝑋),       (2.10) 

 

where 𝑦𝑖 is the output variable, 𝑥𝑖  is the input vector made of all the 

variable values for the ith observation, 𝑛 is the number of variables, and 𝑁 

is the number of instances.  

A typical roadmap for building machine learning models is illustrated in 

Figure 2.4. It consists of the following three major steps:  
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1. Data preprocessing: this step is the most critical one in machine 

learning applications since raw data usually comes in the form 

that is unsuited for the optimal performance of a learning 

algorithm. Due to this, the first step in data preprocessing activity 

is data cleaning. This activity includes replacing missed data, 

removing outliers, and smoothing noisy data. Data cleaning is 

often followed by integration of multiple data sources and data 

transformation to a specific range (normalization) and dimension 

reduction for optimal performance. Removing redundant 

features by compressing the features onto a lower dimensional 

subspace while holding most of the relevant information is also 

essential to make the learning process faster. In addition, in data 

preprocessing phase, the data is randomly divided into training 

and test set. The training set is applied to train and optimize the 

machine learning model, while the test set is used to assess the 

performance of the final model. 

 Figure 2.3. Commonly adopted machine learning algorithms (Publication I). 
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2. Training and selecting a predictive model: as presented earlier, 

there are a wide range of machine learning algorithms that have 

been developed to solve different problems. Each algorithm has 

different feature and the choice mainly depends on the types of 

the problem to be resolved and the available data. So, in this 

phase, at least a handful of different algorithms shall be trained 

in order to select the best performing one (a model that fitted well 

on the training dataset). The most commonly performance 

evaluating metric is the mean-square error (the mean of the 

squared difference between the target and its predicted value). 

3. Evaluating models and predicting unseen data instances: the 

last step is dedicated to model assessment. The main issue that 

machine learning models face is how well they model the 

underlying data. The model can be too specific if it memorized the 
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training dataset and unable to generalize to unseen examples. 

This means that the model overfits the data employed for 

training. The model can also be too generic if it is incapable to 

capture the relationship between the input instances and the 

target values. In another word, it underfits the training data. Both 

overfitted and underfitted models are useless for making valid 

predictions. Hence, the purpose of this step is to evaluate how 

well the model has generalized to new (unseen) data. To do so, 

the test dataset is applied. If the model performs well in the test 

data, it can be applied to predict new future data since it 

generalized the training dataset. 

Machine learning is one of the most significant technological 

developments in recent history. There are a wide spectrum of successful 

practical applications of machine learning in different domains, such as, 

computational finance [85–87], image and speech processing [88–90], 

property valuation [91–93], computational biology [94–96], and energy 

production [97–99]. Although employing machine learning is becoming a 

regular practice in diverse engineering fields, its application for assessing 

durability of concrete is yet limited. 

In this dissertation, supervised learning type is employed since 

estimation of carbonation depth, chloride ingress and hygrothermal 

performance are regression problems and the input and the target data are 

known in the training dataset. The adopted learning algorithms are neural 

network, decision tree, and boosted and bagged ensemble methods. The 

fundamental principles of these algorithms are discussed as follows. 

2.4.1 Neural network 

Neural network is a computational network inspired by biological neural 

networks which comprises partially or fully interconnected simple 

processing units called artificial neurons [100–102]. Each neuron 

processes data locally using similar concepts as learning in the brain. 

Neural network is ideal for supervised learning since the connections 

within the network can be systematically adjusted based on inputs and 

outputs. They are usually categorized based on their architecture (pattern 

of connections between the neurons) and the architecture is intimately 
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connected with the learning algorithm utilized to train the network. The 

common classification are: single-layer feedforward, multilayer 

feedforward, and recurrent networks [100]. Multilayer feedforward and 

recurrent networks were adopted in Publications II and IV to solve the 

research questions two and four, respectively. In this section, only the 

details of the utilized types of neural networks are discussed. 

Multilayer feedforward architecture along with backpropagation training 

technique is broadly employed to solve complex nonlinear regression 

problems [103–106] and this approach is adopted in Publication II of the 

dissertation. This architecture often has three or more layers: input, 

hidden, and output layers. Figure 2.5 shows the architecture of a multilayer 

feedforward neural network (multilayer perceptron) with a single hidden 

layer. The first and the last layers are known as input and output layers, 

respectively. The intermediate layer is called hidden layer which assists to 

execute the necessary computations before conveying the input data to the 

output layer. This network can be seen as a nonlinear parametric function 

from a set of inputs, 𝑥𝑖  , to a set of outputs, 𝑦𝑚. First, linear combinations 

of the weighted inputs are formed. This includes the additional external 

inputs provided to the network, which is known as bias, the neurons 

represented by blue colour in Figure 2.5. Biases have no effect on the 

performance of the network, but they increase the flexibility of the network 

Figure 2.5. A multilayer feedforward neural network with a single hidden layer 
(Publication II). 
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to fit the data. After linear combinations, they are translated to new values 

using an activation function 𝜑(. ), Equation (2.11) [105–107]. Then, the 

outputs of the first-hidden layer neurons are multiplied by the 

interconnection weights of the layer that connect them to neurons of the 

next layer as expressed by Equation (2.12). If the network has multiple 

hidden neurons, this activity continues until the output neurons compute 

the values of the output. 

 

𝑧𝑗 = 𝜑 (∑ 𝑤𝑗𝑖
(1)
𝑥𝑖𝑖 ),        (2.11) 

 

𝑦𝑚 = ∑ 𝑤𝑚𝑗
(2)
𝑧𝑗𝑗 ,                     (2.12) 

 

where 𝑤𝑗𝑖
(1)

 and 𝑤𝑚𝑗
(2)

  are the weights of the network which are initially set 

to random values, and then adjusted during training by backpropagation 

using the response data. 

 The purpose of the activation function is to control the amplitude of the 

output of a neuron in terms of the induced local field 𝑣 and break the 

linearity of a neural network, allowing it to learn more complex functions. 

Depending on the characteristics of the problems, various forms of 

activation functions can be defined [107]. The common ones are linear, 

logistic and hyperbolic tangent activation functions, which are expressed 

by Equations (2.13) to (2.15) and illustrated in Figure 2.6. The vertical and 

the horizontal axes represent the unit’s output and its input, respectively. 

It can be noticed that the hyperbolic tangent function has the same form 

 

Figure 2.6. Activation functions (a) linear, (b) logistic, and (c) hyperbolic tangent. 



 

29 

 

as the logistic. However, the function hyperbolic tangent covers the range 

from [-1 1] whereas the logistic function covers from [0 1]. The linear 

function simply outputs a value proportional to the summed inputs. To 

build nonlinear models, the activation function of the network must be 

nonlinear and a single type of activation function is applied for neurons in 

the same layer. 

 

Linear function:                   𝜑(𝑣) = 𝑣.                   (2.13) 

 

Logistic function:                                    𝜑(𝑣) =
1

1+𝑒−𝑎𝑣
.                 (2.14) 

 

Hyperbolic tangent function:         (𝑣) =
𝑒2𝑣−1

𝑒2𝑣+1
.                   (2.15) 

 

Recurrent neural network differentiates itself from a feedforward neural 

network by having arbitrary feedback connections, including neurons with 

self-feedback [100]. Self-feedback refers to a circumstance where the 

output of a neuron is fed back into its own input. The architectural layout 

of recurrent network takes many different forms depending on the kinds 

of time-series problems. The adopted subclass of recurrent network in 

Publication IV is called nonlinear autoregressive with exogenous inputs 

(NARX). It is one of the popular network and has high capability in 

capturing long-term dependencies since it uses the feedback derived from 

the output at explicit time lags as part of the input data [100,101]. The 

general architecture of the NARX network is illustrated in Figure 2.7. The 

network has a single input that is applied to a tapped-delay-line memory 

of 𝑞 units. It has a unique output that is fed back to the input through 

another tapped-delay-line memory also of 𝑞 units. The values of these two 

tapped-delay-line memories are utilized to feed the input layer of the 

multilayer perceptron. The present input value of the network is 

represented by 𝑢(𝑛), and the respective output value of the network is 

expressed by 𝑦̂(𝑛 + 1). This mean that the output is ahead of the fed-back 

input by one-time unit. So, the data window supplied to the input layer of 

the multilayer perceptron can be denoted as follows: 
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• Present and past input values, 𝑢(𝑛), 𝑢(𝑛 − 1),..., 𝑢(𝑛 − 𝑞 + 1), 

which denote exogenous inputs. This input values comes from 

other sources (outside the network), and 

• Delayed output values, 𝑦̂(𝑛), 𝑦̂(𝑛 − 1),..., 𝑦̂(𝑛 − 𝑞 + 1), on which the 

network output 𝑦̂(𝑛 + 1) is regressed and represents the value of the 

endogenous variables. 

The dynamic behaviour of the NARX network is expressed by Equation 

(2.16). 

 

𝑦̂(𝑛 + 1) = 𝐹(𝑦̂(𝑛),… , 𝑦̂(𝑛 − 𝑞 + 1);  𝑢(𝑛), … , 𝑢(𝑛 − 𝑞 + 1)).                (2.16) 

2.4.2 Decision tree 

Decision tree is a nonparametric hierarchical data structure which 

implements the divide-and-conquer strategy. Decision tree model 

comprises nodes, branches, and leaves. Nodes correspond to domain 

regions that need to be decompounded into smaller regions by splitting. 

Leaves represent domain regions where additional splits cannot be 

 

Figure 2.7.  NARX network with 𝒒 delayed inputs (Publication IV).  
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implemented. Branches connect to descendant nodes or leaves in 

proportion to specific split outcomes. Splits are determined by some 

relational circumstances on the basis of the selected instances that may 

have two or more outcomes. A split can be formally characterized by a test 

function 𝑡 ∶ 𝑋 → 𝑅𝑡 that maps instances into split outcomes. A separate 

outgoing branch is associated with each possible outcome of a node’s split. 

The relationship between the parent node and its descendant nodes, 

theoretically characterized by the branches linking the former to the latter, 

does not often have to be unambiguously delineated in the data structure 

of the decision tree. If a split’s outcome can be explicitly ascertained for 

any attainable instance, then it does partition the domain into disjoint 

subsets, in proportion to the outgoing branches. Hence, it is easy to realize 

that each node 𝑛 of a decision tree complies with a region (subset) of the 

domain (Equation 2.17) determined by the sequence of splits 𝑡1 , 𝑡2, … , 𝑡𝑘  

and their outcomes 𝑟1, 𝑟2, … , 𝑟𝑘 occurring on the path from the root to the 

node [108]. 

 

𝑋𝑛 = {𝑥 ∈ 𝑋|𝑡1(𝑥) = 𝑟1  ∧  𝑡2(𝑥) = 𝑟2 ∧⋅⋅⋅ ∧ 𝑡𝑘(𝑥) = 𝑟𝑘}.    (2.17) 

 

Decision tree is fast learner with high degree of interpretability and 

handles complex nonlinear problems with a large number of observations 

and input variables by reducing them into manageable levels and 

recursively applies the same approach to the sub problems [109–111]. The 

power of this procedure arises from the potential to divide the instance 

space into subspaces and each subspace is fitted with varied models 

[77,110]. A decision tree that is applied for examining regression problems 

can be referred as a regression tree. The basic structure of a regression tree 

is shown in Figure 2.8. The left subfigure denotes the data points and their 

partitions while the right subfigure illustrates structure of the 

corresponding regression tree. As it can be observed from Figure 2.8, 

regression tree is composed of decision and leaf nodes. A test function is 

applied at each decision node and the branches are labelled with discrete 

outcomes of the function. This test procedure starts at the root and 

recursively carried out until leaf nodes are found. The value at the leaf node 

is the output [77]. Regression tree is one of the integrated learning 
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algorithms that are developed in Publication II to predict carbonation 

depth. 

2.4.3 Ensemble method 

The idea of an ensemble method is to build a powerful predictive model by 

aggregating multiple machine learning models, each of which solves the 

same original task [76,77,109,112,113]. Normally, generating multiple 

models utilizing different datasets without integrating them into an 

ensemble and directly choosing one of them that performs best does not 

deliver a functional solution. Ensemble methods are applicable to the two 

foremost predictive modelling tasks, classification and regression. In both 

cases, ensemble method provides significant improvement over a single 

model at the expense of investing more computation time due to building 

multiple models. To utilize this potential for superior predictive power, 

suitable techniques for building of base models (models used as inputs for 

ensemble methods) and aggregation are needed [108]. The base models 

often generated using machine learning algorithms. Model aggregation 

comprises integration of base models 𝑚1,𝑚2, … ,𝑚𝑘 into an ensemble 

model 𝑀́ by building a prediction combination strategy that compute 𝑀́(𝑥) 

based on 𝑚1(𝑥),𝑚2(𝑥), … ,𝑚𝑘(𝑥) for arbitrary 𝑥 ∈ 𝑋. The amalgamated 

model 𝑀́ is represented by all of its base models and the strategy applied 

 Figure 2.8. Example of a dataset and its corresponding regression tree (Publication III). 
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for integrating their predictions. Depending on the types of base models as 

well as the applied integration methods, various ensemble methods can be 

formed.  

Though there are several ensemble models in the machine learning 

literature, there are two models that use decision tree learners as a base 

model and have proven to be effective on solving regression problems for 

a wide range of datasets. These ensemble models are: bagging and boosting 

decision trees [76,90,108]. Both types of models are integrated in the 

developed carbonation depth prediction model presented in Publication II 

of the dissertation. Boosting decision tree is adopted in Publication III to 

answer the research question three. 

Bagging decision tree  

In bagging decision tree, the base models are created using the training 

datasets. Multiple randomly drawn bootstrapped samples from the 

original data form the training datasets. This procedure is performed a 

number of times until a large subset of training datasets are formed and 

the same samples can be extracted more than once. On average, every 

formed bootstrapped training dataset hold 𝑁(1 − 1

𝑒
)  ≈ 0.63𝑁 instances, 

where 𝑁 is the total number of samples in the original training dataset. The 

left-out instances in the training dataset are known as out-of-bag 

observations. The final output of the bagging ensemble model is the 

average of the projected output of the individual base models, thereby 

reducing its variance (tendency to learn random things) and provide 

higher stability [77,90,109,114]. The performance of the ensemble model 

is evaluated using the out-of-bag observations. In bagging decision tree, 

the base model fits the training data 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}, 

obtaining the tree’s prediction 𝑓(𝑥) at input vector 𝑥. Bagging averages this 

prediction over a wide array of bootstrap samples. For each bootstrap 

sample 𝐷∗𝑡 , 𝑡 = 1,2, … , 𝑇, the model provides prediction 𝑓∗𝑡(𝑥). The bagged 

estimate is the mean prediction at 𝑥 from 𝑇 trees as described by Equation 

(2.18). 

 

 𝑓𝑏𝑎𝑔(𝑥) =
1

𝑇
∑ 𝑓∗𝑡(𝑥)𝑇
𝑡=1 .                   (2.18) 
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Bagging decision tree, with several base models, provides better 

prediction over a single model. Unlike the base models, overfitting will not 

occur in this ensemble method since the integration of the base models 

cancel it out effectively. Bagging decision tree often builds deep trees. Due 

to this bagging decision tree is time consuming and memory intensive, 

which in turn leads to slow predictions. 

Boosting decision tree 

Boosting can be described as an improvement of bagging that comprises 

multiple base models by shifting the focus toward instances that 

experience difficulty in prediction [90,108,114]. The shift of focus is mainly 

addressed by instance weighting. In contrast to bagging, boosting decision 

tree build simple tree models in a serial manner with advancement from 

one tree model to the other and combining them to boost the model 

accuracy. Each tree is grown from a training dataset 𝐷 =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑁 , 𝑦𝑁)}, using information from previously grown 

trees. A relevant algorithm can be applied to fit the sample training 

datasets 𝐷(𝑡), 𝑡 = 1,2, … , 𝑇, utilizing a sequence of varying weights 

𝑤(1), 𝑤(2), … , 𝑤(𝑇), yielding the tree’s predictions 𝑓(1)(𝑥), 𝑓(2)(𝑥), … , 𝑓(𝑇)(𝑥) 

for each input vector 𝑥 and their corresponding weight vector 𝑤. The 

weight vector is normally started by applying an initial weight 𝑤(1) and 

continually adjusted in every generated base model depending on observed 

residuals. The weight is increased for observations in which the base model 

yields high residuals (poor predictions) and decreased for cases in which 

the model provides low residuals (good predictions). The output of the 

boosted decision tree can be expressed by Equation (2.19), where  {∝𝑡}𝑡=1
𝑇  

are the linear combination coefficients. 

 

𝑓𝑏𝑜𝑜𝑠𝑡(𝑥) = ∑ ∝𝑡 𝑓
(𝑡)(𝑥)𝑇

𝑡=1 .           (2.19) 

   

Various types of strategies for adjustment instance weight and model 

weighting can be applied to create boosting ensemble method. For 

instance, it is possible to apply residuals of previous models as target 

function values for generation of subsequent base model rather than 

instance weighting. This allows the regression algorithm to counteract 
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limitation of the previous models instead of optimizing its training 

performance.  

In boosting decision tree, each tree model can only deliver reasonably 

good predictions on some instances, and therefore more and more trees 

are built to enhance the performance iteratively. Unlike bagging, boosted 

ensemble models utilize shallow trees which make them usually smaller in 

terms of memory, and making prediction faster.  

2.5 Machine learning based variable importance 
measure  

Variable importance measure allows insight into the importance of the 

variables employed in the training dataset. Generally, there are three major 

categories of variable selection methods: filter, wrapper and embedded 

[111,115]. Filter methods are independent of the learning algorithms and 

relies only on the intrinsic characteristic of the data. These methods, 

compared to wrapper methods, are less computationally intensive. 

Wrapper methods demand a prespecified learning algorithm and based on 

the selected algorithm the performance of each variable is used as the 

measure for determining the final subset of variables. These methods are 

computationally intensive but yield better accuracy compared to filter 

methods. Embedded methods include the process of variable selection as 

part of the model development process. These methods combine the 

advantages of the filter and the wrapper methods, in terms of low 

computational costs and an adequate accuracy. 

The ensemble methods (bagging and boosting decision trees) discussed 

above can perform an embedded variable selection. Both bagging and 

boosting decision trees are applied in Publication II. Both models were 

used to evaluate the importance of the input variables in predicting the 

carbonation depth. Ensemble method based on bagging decision tree is 

also implemented in Publication III in order to examine the importance of 

variables that describe the chloride penetration into concrete.  

Variable importance measure based on permutation is one of the 

advanced and reliable embedded selection methods. As the name 

indicated, the variable importance (𝑉𝐼) measure based on this method is 

obtained by randomly permute the 𝑗𝑡ℎ predictor variable 𝑥𝑗  (on each 
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decision tree in the ensemble) with some permutation 𝜑𝑗 among the 

training dataset. Then evaluate the out-of-bag error on this perturbed 

dataset. The importance score for the  𝑗𝑡ℎ variable is computed by 

averaging the difference in out-of-bag error before and after the 

permutation over all the trees. The score is normalized by the standard 

deviation of these differences. Variables which induce large values for this 

score are ranked as more critical than variables which generate small 

values. This process is expressed mathematically in Equations (2.20) to 

(2.22) [116].  

Let 𝛽̅(𝑡) be the out-of-bag instance for a tree 𝑡, with 𝑡 ∈ {1, 2, … , 𝑇}. Then 

the importance of variable 𝑥𝑗  in tree 𝑡 is described by Equation (2.20). 

 

𝑉𝐼(𝑡)(𝑥𝑗) =
∑ 𝐼(𝑦𝑖=𝑦̂𝑖

(𝑡)
)

𝑖𝜖𝛽̅(𝑡)

|𝛽̅(𝑡)|
−
∑ 𝐼(𝑦𝑖=𝑦̂𝑖,𝜑𝑗

(𝑡)
)

𝑖𝜖𝛽̅(𝑡)

|𝛽̅(𝑡)|
,                  (2.20) 

 

where 𝑦̂𝑖
(𝑡) = 𝑓(𝑡)(𝑥𝑖) and 𝑦̂𝑖,𝜑𝑗

(𝑡) = 𝑓(𝑡) (𝑥𝑖,𝜑𝑗) is predicted value for  𝑖𝑡ℎ 

instance before and after permuting its value of variable 𝑥𝑗, respectively. 

By definition,  𝑉𝐼(𝑡)(𝑥𝑗) = 0, if variable 𝑥𝑗 is not in tree 𝑡. 

The measure of variable importance for each variable is determined as 

the average importance over all the trees, Equation (2.21). 

 

𝑉𝐼(𝑥𝑗) =
∑ 𝑉𝐼(𝑡)(𝑥𝑗)
𝑇
𝑡=1

𝑇
.                                          (2.21) 

 

The standardized variable importance is evaluated by applying Equation 

(2.22). As expressed in Equation (2.22), the individual importance 

measures 𝑉𝐼(𝑡)(𝑥𝑗) are computed from 𝑇 samples which are extracted from 

the original dataset. Thus, if every individual measure of variable 

importance 𝑉𝐼(𝑡)(𝑥𝑗) has standard deviation 𝜎, the average importance 

measure from 𝑇 replications has standard error 𝜎 √𝑇⁄ . 

 

𝑉𝐼̃(𝑥𝑗) =
𝑉𝐼(𝑥𝑗)
𝜎

√𝑇

.                    (2.22) 

Permutation based variable importance measure is applied in this 

dissertation to answer the research question three. Another technique has 

also been applied to evaluate the importance of variables in predicting the 
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carbonation depth in order to answer second part of the research question 

two. This is due to the fact that variable importance measure based on 

permutation is impracticable for boosting decision tree, which is one of the 

ensemble methods employed in answering research question two. Details 

of the implemented method for measuring variable importance in case of 

boosting decision tree are presented in Section 3.4.4. 
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Chapter 3 

Materials and methods 

 

In this chapter, the utilized materials and the developed methods for 

assessing corrosion causing and controlling factors are discussed. The 

materials used in Publications II, III, and IV are presented since 

Publication I is based on a thorough literature review. In Publication I, 

materials from secondary sources, which include books, conference, and 

journal articles are used. The purpose of this publication is to examine the 

capability of machine learning methods in addressing the limitations of 

classical corrosion assessment models. As the focus of this dissertation is 

on data-driven corrosion assessment methods, the materials for 

Publications II, III, and IV are experimental data obtained from three 

different case structures.  

All the methods developed in this dissertation rely on machine learning 

approach and implemented using MATLAB programming language. All 

the proposed methods to answer the research questions two, three and four 

of the dissertation are discussed in detail. The methods are utilized for 

developing data-driven models to assess corrosion causing and 

aggravating factors. The assessment includes predictions of carbonation 

depth, chloride profile and hygrothermal performance. In addition, the 

methods are used to discover influential predictors of carbonation depth 

and chloride concentration. As any data-driven models, the development 

process of these models primarily consists of data, data preprocessing and 

training. The experimental data and all the involved activities associated 

with model development process are presented in this chapter.   

3.1 Concrete specimens for carbonation field test 

The experimental data for carbonation study were obtained from concrete 

specimens that were prepared for Finnish DuraInt-project. The specimens 

have diverse mix compositions that represent the current prevalent 

industrial concrete mixes in Finland. This project was carried out jointly 
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by Aalto University and VTT Technical Research Centre of Finland. The 

data were based on 23 concrete specimens. All the specimens were casted 

in steel moulds of size 100 x 100 x 500 mm3 and demoulded after 24 hours. 

Then they were immersed into water for seven days and cured in a 

controlled environment (21 °C temperature and 60% relative humidity). 

The specimens were sheltered and kept on wooden racks at about the age 

of 28 days in Espoo, southern Finland in order to simulate as sheltered 

concrete structures that are exposed to natural conditions (exposure class, 

XC3 (moderate humidity) as shown in Figure 3.1. The annual average CO2 

concentration, temperature, and relative humidity at the storage of 

specimens are 375 ppm, 6 °C and 79%, respectively.  

The carbonation front depths of the concrete specimens, from all sides, 

in a freshly broken surface of 100 x 100 mm2 were measured at the age of 

268, 770, 1825 and 2585 days. The carbonation depths were examined by 

spraying a pH indicator solution of phenolphthalein. The average of the 

carbonation depths measured from the four sides of each concrete 

specimen was considered as the representative value.  

Accelerated carbonation tests were also carried out at the age of 28 and 

56 days for the same concrete mixes. It was executed by exposing the 

concrete specimens to be carbonated in a climatic control test chamber 

Figure 3.1. Sheltered concrete specimens for carbonation field test (Publication II). 
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which was filled with 1% of CO2 and kept in a room with RH 60% and 

temperature 21 °C. The carbonation depths were measured by applying 1% 

phenolphthalein in ethanol solution. Carbonation fronts of two groups of 

concrete specimens after 56 days in the accelerated carbonation chamber 

is shown in Figure 3.2. Surface areas with a pink colour indicate the pH is 

above nine and are the non-carbonated part. The carbonated part of the 

specimens is the area where the colour of the concrete is unchanged.  

3.2 Concrete specimens for chloride field test 

The experimental data for chloride assessment were also acquired from 

concrete specimens of Finnish DuraInt-project. Though the data for both 

carbonation and chloride were obtained from the same project, the 

specimens for each case have dissimilar concrete mixes. The two cases 

were exposed to different field environments. Assessment of chloride 

penetration was performed using data acquired from concrete specimens 

with 18 dissimilar mix proportions. The specimens were casted in wooden 

moulds of size 300 x 300 x 500 mm3 in upright position to perform 

chloride test in the field. Surface treatments (impregnation, form lining, 

copper mortar) were applied on some of the specimens of DuraInt-project 

Figure 3.2. Carbonation fronts of two groups of concrete specimens after 56 days in a 
climatic control chamber (Publication II). 
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to examine their effect on chloride ingression. The concrete specimens 

were placed on the roadside at Kotka, Finland and Borås, Sweden. In this 

dissertation, the experimental data employed for chloride penetration 

assessment were taken from concrete specimens without surface 

treatment that were placed on the side of highway 7 (HW 7) at Kotka, 

representing exposure class XD3 (cyclic wet and dry). The reason for this 

is that the number of surface-treated concrete specimens with dissimilar 

concrete mix was few. In addition, all of them were not situated on the side 

of the thaw-salted road of HW 7 for long period of time. The geographical 

location of Kotka is illustrated in the map in Figure 3.3.  

The amount of deicing salt (NaCl) that spread on HW7 from 2007 – 2013 

(the considered period of experimental data) was about 0.99 kg/m2 with 

an average of 102 salting instances. The daily average number of vehicles 

riding on HW 7 was estimated about 27,000 of which about 13% are heavy 

vehicles. The concrete specimens were placed in an array at a distance of 

4.5 m, 6 m, 8 m, and 10 m from the HW 7 lane.  All the specimens were 

placed on wooden stands which were installed on a gravel bed in order to 

avoid the probable water suction through the lower surfaces of the 

specimens. Field maintenance was performed in regular manner in order 

to assure that the surfaces of the specimens were exposed to splash water 

and water vapour. The chloride concentrations in concrete specimens were 

Figure 3.3. Map of Finland and Kotka where the concrete specimens for chloride field 
tests are located (Publication III). 
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evaluated after one, three, and six years of exposure in the field 

environment. The chloride profile analyses were executed by extracting 

cylinder cores with size of (ø 100 mm, height >100 mm) from the concrete 

specimens. Dust samples were collected from the cored cylinders using a 

profile grinding technique at different depths. The examined depths of 

chloride range from 0.5 mm to 26 mm with increments of diverse orders. 

In addition, the nonsteady-state chloride diffusion coefficient (Dnssm) of all 

the specimens was examined by the rapid chloride migration (RCM) test 

in laboratory. In order to conduct this lab test, concrete cylinder specimens 

(three for each mix categories) with size of (ø 98 mm, height = 250 mm) 

were produced. The specimens were sliced at a thickness of 50 mm to form 

specimens size of (ø 98 mm, height = 50 mm) in accordance with NT Build 

492 [117]. 

3.3 Case structure for hygrothermal measurement 

The experimental data for hygrothermal performance assessment were 

gathered from a six-storey building with surface-protected prefabricated 

RC sandwich panels. The building was constructed in 1972 and is located 

in the city of Vantaa, Finland. The exterior wall of the building is sandwich-

type panels where the thermal insulation lies between two RC panels. They 

are connected to each other by steel trusses. The finishing type of the 

concrete façade members were brushed and coated. The average thickness 

of the outermost layers of the concrete panels is 53 mm with surface area 

of 7.84 m2 (2.82 m width and 2.78 m height). This type of prefabricated RC 

sandwich panels were, and still are, predominantly utilized in Finnish 

multi-storey residential buildings [19,118–120].  

Previously coated six concrete façade members from the southeast side 

of the case building were selected for hygrothermal behaviour 

investigation. The old coating from the outermost layer of the façade 

elements was removed using sand-water blasting method. Among the 

designated six concrete façade members, five of them were repaired with 

surface-protection systems after performing all the essential surface 

preparations. The applied surface treatments are labelled as S1, S2, S4, S5, 

and S6 as illustrated in Figure 3.4. The cleaned but the uncoated façade 
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element is labelled as S3 and used as a reference. The surface treatments 

that were applied on the outermost layer of the façade elements can be 

categorized into two: cementitious and organic coatings. The S1 and S2 

façade elements were treated with cementitious materials, whereas S4, S5, 

and S6 were coated with organic coating materials obtained from different 

Finnish companies. Cementitious coatings form a broad class that ranges 

from true cement-based coatings of a few to 10 mm thick. While, organic 

coatings form a continuous polymeric film on the concrete surface with a 

thickness ranging from 100 to 300 µm [11]. According to European 

Standard EN 1504, all the applied surface treatments in the concrete 

façade elements are able to limit the moisture content and to increase the 

concrete resistivity under rehabilitation principles P2 and P8, respectively. 

The types of the surface treatments applied in the five concrete façade 

members with the application methods are listed in Table 3.1.  

The hygrothermal conditions of the ambient and inside the outermost 

surface-protected RC panels were measured using relative 

humidity/temperature probes. One probe for each concrete façade 

element was installed to measure the inner relative humidity and 

Figure 3.4. Concrete façade elements of the case structure for hygrothermal behaviour 
measurement (Publication IV). 
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temperature, whereas one probe was mounted on the surface of a façade 

for ambient measurement. In order to mount the inner probes, holes were 

bored to a depth of about 40 mm at an approximate angle of 45° at the 

central area of the concrete façade members. Schematic representation of 

the mounted probe is illustrated in Figure 3.5. The cables of the probes 

were connected to a data logger to record the hygrothermal measurements. 

The ambient and the inner hygrothermal conditions were recorded with a 

regular time interval of half an hour for 719 days. Before installing the 

probes, they were calibrated using two-point calibration technique in 

Façade labels Treatment types Application methods 

S1 Coloured cement coating 1 x trowel 
S2 Coloured cement coating 2 x brush 
S4 Impregnation  1 x roller 

Acrylic Paint 2 x roller 
S5 Polyurethane primer 1 x brush 

Polyurethane coating 2 x brush 
S6 Primer 1 x roller 

Filler coating 1 x roller 
Acrylic Paint 2 x roller 

 

Table 3.1. Concrete façade elements: treatment types and application methods 
(Publication IV). 

Figure 3.5. Schematic representation of the installed probe on concrete façade elements 
(Publication IV). 
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accordance with the manufacturer’s guide. The same calibration technique 

was also followed every six months after the installation of the probes.  

3.4 Model development for carbonation depth prediction  

The development process of the carbonation depth prediction model, 

CaPrM, is presented in this section. CaPrM is designed by integrating four 

machine learning algorithms: neural network, decision tree, bagged and 

boosted decision trees. The overall CaPrM development process is shown 

in Figure 3.6. The initial task of the model development process is 

importing gathered experimental raw data that comprises parameters 

which describe the concrete mix ingredients, the concrete properties, the 

curing and field exposure conditions as well as the depth of carbonation 

measured at different ages. Then the execution of basic data exploration 

and data preprocessing follows. In any machine learning based methods, 

data often needs to be cleaned during preprocessing stage before they are 

processed further since unclean data may produce misleading results. For 

example, there may be incorrect or missed values in the training dataset 

and these values need to be rectified so that the model can analyse the data 

appropriately. Preprocessing phase could also include other tasks, such as 

data encoding and normalization.  

After successful data preparation, the next stage is splitting the data into 

training, validation, and test subsets. The training data comprise the values 

of the input and the target parameters in order to learn a general rule that 

maps inputs to the desired output. The employed learning algorithms to 

train the data in the CaPrM were neural network, decision tree, bagged and 

boosted decision trees. These learning algorithms are commonly utilized 

to solve complex nonlinear regression problems efficiently, and thus 

making it suitable for carbonation depth prediction. The novelty of the 

proposed method lies in its ability to integrate the above four powerful 

learning methods and advanced optimization techniques. Each integrated 

algorithm learns from the training data and make predictions. Some of the 

employed machine learning methods requires the user to adjust certain 

controlling parameters in order to optimize their performance. The 

adjustment is carried out by evaluating the performance using validation 

dataset in case of neural network and cross-validation (subset of the 
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training set) for decision tree based learning methods. After performing 

successful training and the necessary parameter adjustment, the 

prediction ability of the proposed carbonation depth prediction method is 

evaluated using a test dataset that are different from the training dataset. 

The integration of the four learning algorithms provides the opportunity to 

select the best performing learning methods among the four choices, by 

comparing the test error matrix, since there is no a single machine learning 

technique that performs optimal all the time. The incorporated ensemble 

methods enable selection of the influential carbonation predictors among 

the considered parameters. The major tasks involved in the development 

process are represented by grey coloured rectangular boxes.  

3.4.1 Data for CaPrM 

The experimental data employed in the CaPrM entail information 

regarding the concrete mix ingredients, the fresh and hardened concrete 

properties, the carbonation periods, the environmental and curing 

conditions, as well as the carbonation depths. The details of the data are 

given in Table 3.2. A total of six kinds of cements, based on the 

categorization of EN 197-1 [121], were utilized. These are Portland cement 

(CEM I 42,5 N-SR, CEM I 52,5 N and CEM I 52,5 R), Portland limestone 

cement (CEM II/A-LL 42,5 R), Portland composite cement (CEM II/A-

M(S-LL) 42,5 N) and Portland slag cement (CEM II/B-S 42,5 N). Portland 

limestone cement (partially replaced with pulverized blast-furnace slag 

(BFS) or fly ash (FA)) was also utilized to produce few of the concrete 

specimens. The water-to-binder ratio (w/b) of the data ranges from 0.40 

to 0.60. Every concrete mixture employs one type of plasticizer obtained 

from three producers, VB-Parmix, Glenium G 51 or Teho-Parmix. An air-

entraining agent (called either Ilma-Parmix or Mischöl) was introduced in 

each concrete mix type. Normally concrete admixtures are broadly 

classified into subcategories based on their chemical nature. Today, 

diverse type of plasticizers and air-entraining agents are available on the 

market from different sources. The performance of the chemical 

admixtures obtained from different sources are less uniform even if they 

are under the same subcategory or even with identical chemical 

compositions [122,123], causing difficulty to standardized them [28]. Due 
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to this fact, the type of plasticizers and air-entraining agents applied for 

producing the concrete specimens are classified based on their brand 

names. It can be seen from Table 3.2 that the fresh concrete properties 

consist of test results of slump, slump flow of self-compacting concrete and 

air content. Tests that define the hardened concrete properties contain 

compressive strength and accelerated carbonation depth. The compressive 

strength of the concrete specimens was performed at the age of 28 days. 

The accelerated carbonation depth was tested at the age of 28 and 56 days.  

It can be observed from Table 3.2 that there are 26 variables representing 

the employed data. Parameters numbered from 1 to 25 were used as input 

parameters and the last parameter, natural carbonation depth, which was 

measured at various age was designated as a target variable. The input 

variables comprise continuous and nominal data types, whereas the target 

variable entails only continuous data type. In Table 3.2, continuous 

variables are represented as C and nominal data types as N. Continuous 

variables are real numbers, such as results of quantitative measurements. 

Nominal variables are non-numeric and descriptive data types.  

3.4.2 Data preprocessing for CaPrM 

Data preprocessing is an essential step in the development process of any 

machine learning based methods. It often includes data encoding, missing 

data processing, data normalization and data partitioning. In the CaPrM 

development process the following data preprocessing tasks were 

executed. 

Data encoding  

Not all machine learning methods process heterogeneous data types 

(continuous and nominal). For instance, decision trees support both 

continuous and nominal data types without any problem, but neural 

network lacks the ability to process nominal data types. Hence, in the 

CaPrM all the non-numeric variables need to be encoded as numerical 

variables since one of the integrated learning methods is neural network. 

To do this, the most commonly applied encoding technique “1-of-N” was 

applied. The encoded variables are listed in Table 3.3. 
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Data normalization 

Normalization of the data before processing them in the neural network is 

a standard practice. It puts different variables on a common scale and is 

highly essential especially if the variables are in divergent scales. All the 

input and target variables are normalized using the formula presented in 

Equation (3.1) [124].  

𝑦 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗
(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
+ 𝑦𝑚𝑖𝑛,     (3.1) 

where 𝑦 is the normalized value of the variable;  𝑦𝑚𝑎𝑥 is the maximum value 

of the normalization range, (+1);  𝑦𝑚𝑖𝑛 is the minimum value of the 

normalization range, (-1);  𝑥 is the original inputs or target variables;  𝑥𝑚𝑎𝑥  

is the maximum value for variable 𝑥; and 𝑥𝑚𝑖𝑛 is the minimum value for 

variable 𝑥. If 𝑥𝑚𝑎𝑥 = 𝑥𝑚𝑖𝑛 or if either 𝑥𝑚𝑎𝑥 or 𝑥𝑚𝑖𝑛 are non-finite, then 𝑦 =

𝑥 and no change occurs. After normalization, the values of the inputs and 

target fall in the interval [-1, 1]. 

Missing data 

In any data driven based models, data quality plays a vital role in 

controlling the performance of the model. The amount of missing data less 

than 1% is generally considered trivial and 1–5% is manageable. 

Nevertheless, 5–15% requires advanced methods to correct it and more 

than 15% may severely impact any kind of interpretation [125]. 

Fortunately, all the gathered experimental data in the CaPrM are complete, 

though the Finnish DuraInt-project has missing values for some of the 

variables. 

Binder materials Curing conditions, product names of plasticizers 
and air-entraining agents 

Nominal input variables Encoded 
output 

Nominal input variables Encoded 
output 

CEM I 42,5 N – SR [1 0 0 0 0 0 0 0] Curing cond. Uncontrolled [1 0 0] 
CEM I 52,5 N [0 1 0 0 0 0 0 0] Controlled [0 1 0] 
CEM I 52,5 R [0 0 1 0 0 0 0 0] Wet [0 0 1] 
CEM II/A-LL 42,5 R [0 0 0 1 0 0 0 0] Plasticizers Glenium G 51 [1 0 0] 

CEM II/A-M(S-LL) 42,5 N [0 0 0 0 1 0 0 0] Teho-Parmix [0 1 0] 
CEM II/B-S 42,5 N [0 0 0 0 0 1 0 0] VB-Parmix [0 0 1] 
CEM II/A-LL 42,5 R & BFS [0 0 0 0 0 0 1 0] Air-ent. agents Ilma-Parmix [1 0] 
CEM II/A-LL 42,5 R & FA [0 0 0 0 0 0 0 1] Mischöl [0 1] 

Table 3.3. 1-of-N encoding for non-numeric variables of the carbonation data (Publication 
II). 

woubi
Rectangle
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Data partitioning 

The data employed in the CaPrM (92 instances and 26 features) were 

divided into training, validation, and test subsets for the neural network 

learning algorithm. The training dataset are utilized for computing the 

gradient and updating the network weights and biases. The validation 

dataset is used to halt the training when the generalization process stops 

improving, and thus avoiding overfitting. The purpose of the test dataset 

is to evaluate the predictive performance of the developed model. The 

training, validation, and test dataset represented 60%, 20% and 20% of the 

original data, respectively. Unlike neural network, the data for the decision 

tree was partitioned into training and test subsets by applying K-fold cross-

validation technique. In case of limited data, K-fold cross-validation 

method is the best alternative in order to attain an unbiased estimate of 

the system performance, which in turn enhance the generalization ability 

of the model without overfitting [77]. In K-fold cross-validation, the 

training data is arbitrarily divided into K subsets with roughly identical 

sizes. One of the K subsets is applied as a test dataset for evaluating the 

model and the remaining (K-1) subsets as a training dataset. In total, K 

models are fit and K validation statistics are obtained. The predictive 

accuracy evaluations from the K-folds are averaged to provide a measure 

of the overall predictive performance of the model. Algorithm 1 presents 

the procedure of K-fold cross validation. In case of bagging decision tree, 

the training and test subset was formed based on the embedded sampling 

CEM II/A-LL 42,5 R &  
BFS 

[0 0 0 0 0 0 1 0]  Air-ent. 
agents 

Ilma-Parmix [1 0] 

CEM II/A-LL 42,5 R & FA [0 0 0 0 0 0 0 1]  Mischöl [0 1] 

Algorithm 1: K-fold cross validation 

Input: Training dataset  𝐷 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… ,𝑁}, where 𝑦 ∈ ℝ 

Output: Cross-validation estimate of prediction error, 𝐶𝑉(𝑓) 

 

1: let randomly partition 𝐷 to 𝐾 roughly equal-sized parts 

2: for the 𝑘𝑡ℎ part  𝑘 = 1,… ,𝐾, fit the model to 𝐾 − 1 parts of the training data 𝐷 

3: do the above for the 𝑘𝑡ℎ part and combine the 𝐾 estimates of the prediction error 

Let 𝑘: {1,… , 𝑛} → {1,… ,𝐾}  denote the indexing function that reveals the partition to which 
observation 𝑖 is assigned by the randomization. Then the prediction error of the cross-validation 
estimate is given by: 

𝐶𝑉(𝑓) =
1

𝐾
∑𝐿 (𝑦𝑖 , 𝑓

−𝑘(𝑖)(𝑥𝑖))

𝐾

𝑘=1

 

where 𝑓−𝑘(𝑥) denote the function fitted with the 𝑘𝑡ℎ part of the data removed. 
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procedure that underline in the method as presented in Section 2.4.3. In 

case of boosting decision tree, the original data were partitioned into 

training and test subset, covering 70% and 30% respectively. Using the 

training dataset, decision trees were grown sequentially until optimal size 

of the boosting ensemble is defined by cross validation. The applied data 

partitioning in the CaPrM modelling process is presented in Table 3.4 

along with data size and type of algorithms.  

3.4.3 Training for CaPrM 

The adopted training algorithm in case of neural network is the fastest 

backpropagation algorithm that updates weight and bias values according 

to Levenberg-Marquardt optimization [126]. This algorithm computes the 

error contribution of each neuron after a batch of training data is 

processed. The error computed at the output is distributed back through 

the network layers in order to adjust the weight of each neuron. So, the 

network can learn the internal representations that allow mapping of the 

25 input variables to the output (carbonation depth measured at different 

exposure times).  

The Levenberg-Marquardt algorithm was formulated to approach 

second-order training speed without computing the Hessian matrix 

[127,128]. When the performance function has the form of a sum of 

squares, then the Hessian matrix can be estimated and described by 

Equation (3.2). 

𝐻 = 𝐽𝑇𝐽.    (3.2) 

The gradient can be computed and expressed by Equation (3.3). 

𝑔 = 𝐽𝑇𝑒,    (3.3) 

Applied algorithms Instances Features Data partitioning 

Neural network 92 26 60/20/20 
Decision tree 92 26 10-fold cross validation 
Bagging decision tree 92 26 63/37 
Boosting decision tree 92 26 70/30

Table 3.4.  Type of algorithms, data size, and data partitioning applied in the CaPrM 
modelling process. 
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where 𝐽 is the Jacobian matrix that holds first derivatives of the network 

errors with respect to the weights and biases, and 𝑒 is a vector of network 

errors.  

The Levenberg–Marquardt algorithm uses this approximation to the 

Hessian matrix in the Newton-like update, Equation (3.4). 

 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽
𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒,                        (3.4) 

 

where scalar parameter 𝜇 will ensure that matrix inversion will always 

yield a result.  

Levenberg–Marquardt algorithm is effective and firmly suggested for 

neural network training [127,128]. This algorithm is fast when training 

neural networks measured on sum-of-squared error since it is tailored for 

such type of functions. Indeed, for large networks, it requires a huge 

memory as the Hessian matrix inversion needs to be computed every time 

for weight updating and there may be several updates in each iteration. So, 

the speed gained by second-order approximation may be completely lost 

[128]. 

The fundamental architecture of the neural network model integrated in 

the CaPrM is identical with Figure 2.5. It has three layers: an input, a 

hidden and an output layer. The optimal number of neurons in the hidden 

layer was determined based on the generalization error after performing a 

number of trainings. The activation functions allocated for the hidden 

layer was hyperbolic tangent transfer function. This function generates 

outputs between -1 and 1 as the input of the neuron goes from negative to 

positive infinity. Linear transfer activation function was assigned to the 

output layer of the network since nonlinear activation function may distort 

the predicted output. It transfers the neuron’s output by simply returning 

the value passed to it. The input layer did not have an activation function 

as their role is to transfer the inputs to the hidden layer. Detail of the 

applied transfer functions are presented in Section 2.4.1. The learning rate 

of 0.1 was applied during the model training to update the weights and 

biases. The updates are obtained by multiplying the learning rate with the 

negative gradient. The larger the learning rate is the bigger the step, and 

thus the algorithm becomes unstable. A learning rate that is too small 

require more training to converge since steps towards finding optimal 

parameter values which minimize the loss function are tiny. The applied 
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learning rate yields small generalization error with reasonable 

computational time.   

Validation dataset is utilized to stop the network training early if its 

performance on this dataset fails to improve. Generally, the validation 

error (the error on the validation dataset) will decrease during the initial 

training phase. But it will typically begin to increase when the network 

begins to overfit the data as illustrated in Figure 3.7. When the validation 

error rises, the training is halted and the weights that were generated at 

the minimum validation error are utilized in the network. This approach 

usually gives the best generalization. The test dataset does not have any 

effect on network training, but it is used to evaluate the generalization of 

the network further. The training and the test performance of the network 

is discussed in Section 4.2. A MATLAB built-in function, trainlm, was 

applied to train the neural network part of the CaPrM using the training 

dataset presented in Section 3.4.1. 

Decision tree is one of the integrated learning methods in the CaPrM. A 

MATLAB function, fitrtree, was applied to grow a regression tree.  In a 

similar way presented in Section 2.4.2, this function builds a tree that 

yields the best prediction of the outcome for the training dataset. It 

partitioned the feature space into a set of rectangles recursively, and then 

fit a simple model in each one. This process recursively repeated until it 

fulfils stopping criteria. The applied function is able to grow deep decision 

Training Error 

Validation Error  

Number of epochs 

E
rr

o
r 

Stopping point 

Figure 3.7. Illustration of training and validation errors as a function of epochs (training 
cycles). 
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trees by assigning the following three default values as stopping criteria: i) 

𝑁 − 1 for maximal number of decision split, where 𝑁 is the sample size of 

the training dataset, ii) one for minimum number of leaf node 

observations, and iii) ten for minimum number of branch node 

observations. The model developer can change the default values when 

building a regression tree in order to control its depth. In the CaPrM, the 

default three stopping criteria were implemented for fitting the tree using 

a training dataset which entails information regarding the concrete mix 

ingredients, the fresh and hardened concrete properties, the carbonation 

periods, the environmental and curing conditions, as well as the 

carbonation depths. 

The developed decision tree was cross validated to yield accurate 

prediction for new dataset since this method mitigates overfitting by 

testing for out-of-sample performance as part of tree building. Ten-fold 

cross validation was applied to evaluate the tree model as it has been the 

most common in machine learning based modelling practices. In fact, 

studies show that ten is the optimal number of folds that optimizes the 

time it takes to finalize the test while minimizing the bias and variance 

associated with the validation process [129]. Ten-fold cross validation 

randomly partitioned the training dataset into ten parts and trains ten new 

trees, each one on nine parts of the data. It then tests the predictive 

accuracy of each new tree on the data excluded in training of the 

corresponding tree. The mean square of the validation error was 

considered to evaluate the prediction performance of the developed 

decision tree. The generalization ability of the model was also examined 

using a test (previously unseen) dataset. The overall performance of the 

model is presented in Section 4.2.  

Bagging and boosting decision trees are the two ensemble methods that 

are integrated in the CaPrM. As discussed in Section 2.4.3, the 

fundamental principle of an ensemble method is to aggregate multiple 

base models in order to enhance the prediction performance of a model. A 

MATLAB function, fitensemble, was used to build both bagging and 

boosting decision trees. This function returns a trained ensemble tree 

model that comprises the results of an ensemble of multiple decision tree 

based models. The development procedure of the base trees for both 

ensemble methods is the same as of the decision tree presented above. The 

main differences between the two methods are on sampling of the training 
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dataset and the aggregation method of the trees. The pseudocode of the 

bagging decision tree is shown in Algorithm 2. It starts by defining the 

number of regression trees  𝑇 to be built. It then randomly draws multiple 

bootstrap samples from the original training dataset to create new training 

datasets 𝐷∗𝑡  in order to build 𝑇 number of regression trees. Generally, a 

large number of trees will result in better accuracy but making it 

computationally expensive. In order to identify the optimal tree size, the 

bagging decision tree was trained using 300 trees and its MSE was 

computed using the out-of-bag instances. Then the out-of-bag error was 

evaluated with respect to the number of trees. The optimal number of trees 

that yield the lowest MSE was 150 trees. Using the newly formed training 

dataset, the bagging decision tree built an ensemble of 150 trees for 

predicting carbonation depth as a function of the multidimensional input 

variables. The performance of the developed bagging decision tree in 

predicting the carbonation depth was evaluated using the test dataset. The 

test outcomes of the model are presented in Section 4.2.   

The boosted decision tree generally learned the training dataset 𝐷 = 

{(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… ,𝑁} in sequence with improvement from one model to the 

next. As discussed in Section 2.4.3, there are several types of boosting 

ensemble methods. CaPrM adopted LSBoost (least-squares boosting) 

algorithm to minimize the cross-validated mean-square error of the 

ensemble. The applied LSBoost algorithm is summarized in Algorithm 3. 

It begins from the null model with residuals 𝑟𝑖 = 𝑦𝑖 for all 𝑖 in the training 

dataset. Then it fit a decision tree to the residuals from the model instead 

Algorithm 2: Bagging  

Input: Training dataset  𝐷 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… ,𝑁}, where 𝑦 ∈ ℝ                

Output: Bagged decision tree 
 

1: let 𝑇 be a total number of regression trees 

2: for 𝑡 = 1,2, … ,𝑇 do  

3:      create bootstrap samples 𝐷∗𝑡 with equal number of intsances from a dataset 𝐷 

4:      fit a tree 𝑓∗𝑡(𝑥) to the bootstrap sample 𝐷∗𝑡 

5: end for 

Output the bagged model 

6: 𝑓𝑏𝑎𝑔(𝑥) =
1

𝑇
∑ 𝑓∗𝑡(𝑥)𝑇
𝑡=1  
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of the outcome 𝑦. Sequentially, the algorithm updates the residuals by 

adding the newly generated decision tree into the fitted function. Each of 

these trees can be small to a certain extent by controlling the parameter 𝑑 

in the algorithm. By fitting small trees to the residuals, the 𝑓 will be slowly 

boosted in areas where the performance is weak. The shrinkage parameter 

(learning rate) 𝜆 slows down the learning process further. For a small value 

of 𝜆, the iteration number needed to attain a certain training error increase. 

In the CaPrM, the assigned learning rate was 0.1 and the number of trees 

was 150. Finally, the 150 tree models are combined to form a strong 

ensemble model. The prediction ability of the boosted decision tree was 

evaluated using a test dataset. The test results are presented in detail in 

Chapter Four. 

3.4.4 Measuring importance of carbonation predictors  

Besides predicting the depth of carbonation, the developed ensemble 

methods were applied to evaluate the importance of the input variables in 

estimating the carbonation depth. There are several ways to measure the 

importance of variables. Variable importance measurement by permuting 

out-of-bag observations (discussed in Section 2.4.3) is one of the 

commonly used methods. Nevertheless, in CaPrM another technique was 

applied since the described method is impracticable for boosting decision 

tree model. To measure the variable importance, predictorImportance 

Algorithm 3: LSBoost   

Input: Training dataset  𝐷 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… ,𝑁}, where 𝑦 ∈ ℝ                

Output: Boosted decision tree, 𝑓𝐿𝑆 𝐵𝑜𝑜𝑠𝑡(𝑥) 
 

1: let 𝑇 be a total number of regression trees and 𝜆 is the learning rate 

2: initialize 𝑓(𝑥) = 0 and 𝑟𝑖 = 𝑦𝑖 for all 𝑖 in the training data set 

3: for 𝑡 = 1,2, … ,𝑇 do  

4:      fit a tree 𝑓𝑡 with 𝑑 splits (𝑑 + 1 terminal nodels) to the training data (𝑥, 𝑟) 

5:      update 𝑓 by adding in a shrunken version of the new tree:  𝑓(𝑥) ← 𝑓(𝑥) + 𝜆𝑓𝑡(𝑥)  

6:      update the residuals: 𝑟𝑖 ← 𝑟𝑖 − 𝜆𝑓
𝑡(𝑥𝑖) 

7: end for 

Output the boosted model 

8: 𝑓𝐿𝑆 𝐵𝑜𝑜𝑠𝑡(𝑥) = 𝑓(𝑥) = ∑ 𝜆𝑓𝑡(𝑥)𝑡
𝑡=1  
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function in MATLAB was applied for both bagging and boosting ensemble 

methods.  This function averages the predictive measure of association for 

all input variables (predictors) over all trees in the ensemble. The 

predictive association measure is a value that shows the resemblance 

between decision rules that split observations. Among all viable decision 

splits that are compared to the best split (identified by growing the tree), 

the optimal surrogate decision split (that uses a correlated predictor 

variable and split criterion) provides the maximum predictive association 

measure. The second-best surrogate split yields the second-largest 

predictive association measure.  

Assume 𝑥𝑗 and 𝑥𝑘 are input variables 𝑗 and 𝑘, respectively, and 𝑗 ≠ 𝑘. At 

node t, the predictive association measure, 𝜉
𝑗𝑘

, between the best split 𝑥𝑗 <

𝑢 and a surrogate split 𝑥𝑘 < 𝑣 is described by Equation (3.5). 

𝜉𝑗𝑘 =
min  (𝑃𝐿 ,𝑃𝑅)−(1−𝑃𝐿𝑗𝐿𝑘−𝑃𝑅𝑗𝑅𝑘)

min  (𝑃𝐿 ,𝑃𝑅)
,    (3.5) 

where 𝑃𝐿 is the proportion of observations in the left child of node t, such 

that 𝑥𝑗  <  u ;  𝑃𝑅 is the proportion of observations in the right child of node 

t, such that 𝑥𝑗 ≥ 𝑢; 𝑃𝐿𝑗𝐿𝑘is the proportion of observations at the left child

node t, such that 𝑥𝑗 < 𝑢 and 𝑥𝑘 < 𝑣; 𝑃𝑅𝑗𝑅𝑘  is the proportion of observations

at right child node t, such that 𝑥𝑗 ≥ 𝑢 and 𝑥𝑘 ≥ 𝑢; 𝜉
𝑗𝑘

 is a value in (–∞, 1]. 

If 𝜉
𝑗𝑘
> 0, then 𝑥𝑘 < 𝑣 is a worthwhile surrogate split for 𝑥𝑗 < 𝑢. Note:

observations with missing values for 𝑥𝑗 or 𝑥𝑘 do not provide to the 

proportion computation. 

The computed estimates of variable importance for the bagging and 

boosting decision trees are presented in Section 4.2. Every input variable 

employed in the training dataset to foresee the carbonation depth has one 

value. Variables that have obtained high value mean that they are 

important for the ensemble.  

3.5 Model development for chloride profile prediction 

In this section, the development process of chloride profile prediction 

model based on ensemble method is discussed. The ultimate purpose of 

the model is to determine the variables that are describe best the 
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penetration of chloride into concrete. The model development process has 

four main steps: i) data, ii) bootstrap samples, iii) building multiple 

models, and iv) aggregation as shown in Figure 3.8. As any machine 

learning based model, the first step of the model development process is 

importing the experimental data. Though executing data preprocessing 

tasks is a standard practice, they were not performed during this model 

development process. This is due to the fact that the adopted ensemble 

method does not require data encoding and normalization. In addition, 

there are no missed values in the employed data that call for handling of 

missing values. The next step of the model development process is data 

partitioning to train and validate the model. The training sets are formed 

by drawing multiple bootstrap instances randomly from the dataset using 

bagging method. On average, each training set consists of about 63% of the 

original dataset. Any remaining samples (out-of-bag observations) after 

bootstrapping from the dataset are applied to evaluate the performance of 

the model training. The third step is building multiple chloride profile 

prediction models by utilizing the bootstrapped samples. The final step is 

aggregation of the models output in order to form an ensemble model. This 

is carried out by combining the predicted output of each model as 

discussed in Section 2.4.3. Once the ensemble model is created, the 

variable importance (VI) measures were carried out in order to determine 

the significance of chloride penetration controlling parameters in concrete. 

The whole process was iterated 𝑖 times to attain reliable results and then 

the average of these results become the VI measures.  

3.5.1 Data for chloride prediction model 

The data employed in the model entail information regarding the concrete 

mix ingredients, the fresh and hardened concrete properties, the field 

conditions and the chloride profiles measured at various exposure times. 

The details of the data are given in Table 3.5. A total of five types of 

cements, in accordance with the classification of EN 197-1 [56], were 

utilized to produce the concrete specimens. These are Portland cement 

(CEM I 42,5 N-SR and CEM I 52,5 R), Portland limestone cement (CEM 

II/A-LL 42,5 R), Portland composite cement (CEM II/A-M(S-LL) 42,5 N) 

and Portland slag cement (CEM II/B-S 42,5 N). Similar to the data utilized 

for carbonation depth prediction, few of the specimens adopted here were 
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also produced using Portland limestone cement partially substituted with 

BFS or FA. The same types of plasticizers and air-entraining agents as in 

carbonation were also employed and classified based on their brand names 

for the same reason. The w/b ratio of the data spans from 0.38 to 0.51.  

The data for the fresh concrete properties comprise test results of slump, 

density, and air content. Hardened concrete properties contain laboratory 

test results of pore volume, density (wet and dry), air void, compressive 

strength, carbonation diffusion coefficient and chloride migration 

coefficient. The test results of the pore volume provide information about 

the porosity of the concrete at early hardening phase. This property was 

tested at the same age with the wet and dry density which is at about the 

age of two days. The air void of the hardened concrete specimens was 

evaluated by thin-section analysis. The compressive strength was tested at 

the age of 28 days. The carbonation diffusion coefficient was computed 

after determining the carbonation depth of the concrete specimens at the 

age of 28 days. The chloride diffusion coefficient was examined at the age 

of three months. 

The total number of variables employed in the data is 33. Variables 

numbered from 1 to 32 were assigned as input variables and the last 

variable (chloride profile of each specimen) was allocated as a target 

variable. The input variables encompass continuous and nominal data 

types whereas the target variable comprises only continuous data type. The 

continuous and the nominal data types are designated as C and N in Table 

3.5, respectively.  

3.5.2 Training of chloride prediction model 

Bagging decision tree was developed to examine the importance of chloride 

penetration predicting parameters in concrete. The fundamental building 

process of bagging decision tree is described in Algorithm 2 (Section 3.4.3). 

Similar to CaPrM, the ensemble model was built in MATLAB but using a 

function known as TreeBagger. Ensembles created using TreeBagger 

algorithm have more functionality than those constructed with 

fitensemble. Both functions grow decision trees in the ensemble using 

bootstrap samples of the data, but the former selects a random subset of 

variables at each decision split and every tree involves several splits. Due   

to this, the ensemble method generated using TreeBagger function some-



64 

V
a

ri
a

b
le

s 
ca

te
g

o
ry

 
N

o
. 

V
a

ri
a

b
le

 s
u

b
ca

te
g

o
ri

es
 

D
es

cr
ip

ti
o

n
 

U
n

it
s 

T
yp

e
s 

a
n

d
 r

a
n

g
e 

S
h

o
rt

 n
a

m
e

 

C
o

n
cr

et
e 

m
ix

 

in
g

re
d

ie
n

ts
 

1 
B

in
d

er
 t

yp
es

 
C

E
M

 I
 4

2
,5

 N
 –

 S
R

 
- 

N
: 

(1
 =

 C
E

M
 I

 4
2

,5
 N

 –
 S

R
, 

2
 =

 

C
E

M
 I

 5
2

,5
 R

, 
3

 =
 C

E
M

 I
I/

A
-L

L
 

4
2

,5
 R

, 
4

 =
 C

E
M

 I
I/

A
-M

(S
-L

L
) 

4
2

,5
 N

, 
5

 =
 C

E
M

 I
I/

B
-S

 4
2

,5
 N

, 
6

 

=
 C

E
M

 I
I/

A
-L

L
 4

2
,5

 R
 &

 b
la

st
-

fu
rn

a
ce

 s
la

g
, 

7
 =

 C
E

M
 I

I/
A

-L
L

 

4
2

,5
 R

 &
 f

ly
 a

sh
) 

B
in

d
. 

ty
p

es
 

C
E

M
 I

 5
2

,5
 R

 
- 

C
E

M
 I

I/
A

-L
L

 4
2

,5
 R

 
- 

C
E

M
 I

I/
A

-M
(S

-L
L

) 
4

2
,5

 N
 

- 

C
E

M
 I

I/
B

-S
 4

2
,5

 N
 

- 

C
E

M
 I

I/
A

-L
L

 4
2

,5
 R

 &
 b

la
st

-f
u

rn
a

ce
 s

la
g

 
- 

C
E

M
 I

I/
A

-L
L

 4
2

,5
 R

 &
 f

ly
 a

sh
 

- 

2
 

W
a

te
r 

to
 b

in
d

er
 r

a
ti

o
 

- 
C

: 
0

.3
7

 t
o

 0
.5

1 
w

/b
 

3
 

C
em

en
t 

co
n

te
n

t 
[k

g
/m

3
] 

C
: 

2
17

.2
2

 t
o

 4
5

1 
C

em
en

t 

4
 

B
la

st
-f

u
rn

a
ce

 s
la

g
 c

o
n

te
n

t 
[k

g
/m

3
] 

C
: 

0
 t

o
 2

17
.2

2
 

B
F

S
 

5
 

F
ly

 a
sh

 c
o

n
te

n
t 

[k
g

/m
3
] 

C
: 

0
 t

o
 1

0
6

 
F

A
 

6
 

T
o

ta
l 

ef
fe

ct
iv

e 
w

a
te

r 
[k

g
/m

3
] 

C
: 

15
9

.5
0

 t
o

 1
8

0
.4

0
 

T
o

ta
l 

ef
f.

 w
a

te
r 

7
 

A
g

g
re

g
a

te
 c

o
n

te
n

t 
 

T
o

ta
l 

a
g

g
re

g
a

te
  

[k
g

/m
3
] 

C
: 

17
0

6
 t

o
 1

8
9

5
 

T
o

ta
l 

A
g

g
. 

8
 

A
g

g
re

g
a

te
 <

 0
.1

2
5

 m
m

  
[%

]*
 

C
: 

2
.4

0
 t

o
 4

.5
0

 
A

g
g

. 
<

0
.1

2
5

 m
m

 

9
 

A
g

g
re

g
a

te
 <

 0
.2

5
0

 m
m

 
[%

]*
 

C
: 

6
.6

0
 t

o
 1

1.
4

0
 

A
g

g
. 

<
0

.2
5

0
 m

m
 

10
 

A
g

g
re

g
a

te
 <

 4
 m

m
 

[%
]*

 
C

: 
3

6
.3

0
 t

o
 5

2
.5

0
 

A
g

g
. 

<
4

 m
m

 

11
 

P
ro

d
u

ct
 n

a
m

e 
o

f 
p

la
st

ic
iz

er
s 

G
le

n
iu

m
 G

 5
1 

- 
N

: 
(1

 =
 G

le
n

iu
m

 G
 5

1,
 2

 =
 T

e
h

o
-

P
a

rm
ix

, 
3

 =
 V

B
-P

a
rm

ix
) 

P
la

s.
 p

ro
. 

n
a

m
e

 

T
eh

o
-P

a
rm

ix
 

- 

V
B

-P
a

rm
ix

 
- 

12
 

P
la

st
ic

iz
er

s 
co

n
te

n
t 

[%
]*

*
 

C
: 

0
.6

0
 t

o
 2

.5
4

 
P

la
st

ic
iz

er
s 

13
 

P
ro

d
u

ct
 n

a
m

e 
o

f 
a

ir
-e

n
tr

a
in

in
g

 

a
g

en
ts

 

Il
m

a
-P

a
rm

ix
 

- 
N

: 
(1

 =
 I

lm
a

-P
a

rm
ix

, 
2

 =
 M

is
ch

ö
l)

 
A

E
A

 p
ro

. 
n

a
m

e
 

M
is

ch
ö

l 
- 

14
 

A
ir

-e
n

tr
a

in
in

g
 a

g
en

ts
 c

o
n

te
n

t 
[%

]*
*
 

C
: 

0
.0

1 
to

 0
.0

6
 

A
ir

-e
n

t.
 a

g
en

ts
 

F
re

sh
 c

o
n

cr
et

e 

p
ro

p
er

ti
es

 

15
 

B
a

si
c 

p
ro

p
er

ti
es

  
S

lu
m

p
 

[m
m

]
C

: 
4

0
 t

o
 1

8
0

S
lu

m
p

 

16
 

D
en

si
ty

 
[k

g
/m

3
] 

C
: 

2
2

8
7

 t
o

 2
3

9
5

D
en

si
ty

 

17
 

A
ir

 c
o

n
te

n
t 

 
[%

] 
C

: 
3

.4
0

 t
o

 6
.9

0
A

ir
 c

o
n

t.
 

18
 

P
o

re
 v

o
lu

m
es

 a
n

d
 d

en
si

ty
 

A
ir

 p
o

re
s 

[%
] 

C
: 

3
.5

5
 t

o
 6

.9
9

A
ir

 p
o

re
s 

T
a

b
le

 3
.5

. 
D

es
cr

ip
ti

o
n

 o
f 

v
ar

ia
b

le
s 

em
p

lo
y

ed
 i

n
 t

h
e 

ch
lo

ri
d

e 
d

a
ta

se
t 

(C
: 

co
n

ti
n

u
o

u
s 

a
n

d
 N

: 
n

o
m

in
a

l,
 P

u
b

li
ca

ti
o

n
 I

II
).

 



65 

* c
o

m
p

a
re

d
 w

it
h

 t
h

e 
to

ta
l 

a
g

g
re

g
a

te
, 

**
co

m
p

a
re

d
 w

it
h

 t
h

e 
to

ta
l 

b
in

d
er

 m
a

te
ri

a
ls

, 
**

*  
b

y 
w

ei
g

h
t 

o
f 

co
n

cr
et

e

H
a

rd
en

ed
 c

o
n

cr
et

e 

p
ro

p
er

ti
es

 

19
 

T
o

ta
l 

p
o

ro
si

ty
 

[%
] 

C
: 

17
.5

2
 t

o
 2

0
.3

9
 

T
. 

p
o

ro
si

ty

2
0

 
C

a
p

il
la

ry
 +

 g
el

 p
o

ro
si

ty
 

[%
] 

C
: 

12
.8

7
 t

o
 1

4
.6

8
 

C
+

G
 p

o
ro

si
ty

 

2
1 

D
en

si
ty

 (
w

e
t)

 
[k

g
/m

3
] 

C
: 

2
5

0
2

 t
o

 2
5

8
1 

D
en

si
ty

 (
w

) 

2
2

 
D

en
si

ty
 (

d
ry

) 
[k

g
/m

3
] 

C
: 

2
3

5
4

 t
o

 2
4

2
7

 
D

en
si

ty
 (

d
) 

2
3

 
T

h
in

 s
ec

ti
o

n
 r

es
u

lt
s 

T
o

ta
l 

a
ir

 p
o

re
s 

 
[%

] 
C

: 
1.

9
0

 t
o

 5
.9

0
 

T
. 

a
ir

 p
o

re
s

2
4

 
A

ir
 p

o
re

s 
<

0
.8

0
0

 m
m

 
[%

] 
C

: 
0

.8
0

 t
o

 4
.6

0
 

A
P

 <
0

.8
0

0
 m

m
 

2
5

 
A

ir
 p

o
re

s 
<

0
.3

0
0

 m
m

 
[%

] 
C

: 
0

.6
0

 t
o

 3
.5

0
 

A
P

 <
0

.3
0

0
 m

m
 

2
6

 
S

p
ec

if
ic

 s
u

rf
a

ce
 

[m
m

2
/m

m
3
] 

C
: 

12
.8

0
 t

o
 3

6
.5

0
 

S
. 

su
rf

a
ce

2
7

 
S

p
a

ci
n

g
 f

a
ct

o
r 

(<
 0

.8
0

0
 m

m
 p

o
re

s)
 

[m
m

]
C

: 
0

.1
8

 t
o

 0
.5

1
S

F
 <

 0
.8

0
0

 m
m

 

2
8

 
M

ec
h

a
n

ic
a

l 
p

ro
p

er
ty

 
C

o
m

p
re

ss
iv

e 
st

re
n

g
th

  
[M

P
a

] 
C

: 
3

8
 t

o
 5

8
.5

0
C

o
m

p
. 

st
r.

 

2
9

 
D

u
ra

b
il

it
y 

p
ro

p
er

ti
es

 
A

cc
el

er
a

te
d

 c
a

rb
o

n
a

ti
o

n
 c

o
ef

fi
ci

en
t 

 
[m

m
/d

0
.5

] 
C

: 
1.

5
8

 t
o

 3
.9

6
k

a
cc

 

3
0

 
C

h
lo

ri
d

e 
m

ig
ra

ti
o

n
 c

o
ef

fi
ci

en
t 

[m
2
/s

] 
C

: 
1.

4
0

 t
o

 1
5

.0
9

x
10

-1
2

D
n

ss
m

 

F
ie

ld
 c

o
n

d
it

io
n

s 
3

1 
F

ie
ld

 c
o

n
d

it
io

n
s 

E
x

p
o

su
re

 t
im

e
 

[y
ea

r]
 

C
: 

1 
to

 6
E

x
p

o
. 

ti
m

e
 

3
2

 
D

is
ta

n
ce

 f
ro

m
 h

ig
h

w
a

y 
la

n
e 

 
[m

]
C

: 
4

.5
0

 t
o

 1
0

D
is

. 
fr

o
m

 H
W

 

C
h

lo
ri

d
e 

p
ro

fi
le

s 
3

3
 

C
h

lo
ri

d
e 

p
ro

fi
le

s 
C

h
lo

ri
d

e 
co

n
ce

n
tr

a
ti

o
n

 a
t 

va
ri

o
u

s 
d

ep
th

 
[%

]*
**

 
C

: 
0

 t
o

 0
.1

0
C

h
lo

ri
d

e 
p

ro
fi

le
 



66 

times referred as random forest algorithm. The basic development step of 

random forest algorithm is summarized in Algorithm 4. In this 

dissertation, the developed ensemble method referred as bagging decision 

tree instead of random forest.  

The first step for development of a powerful bagging decision tree is 

determining a suitable leaf size for each decision tree in the ensemble. In 

fact, the default minimal leaf size of the adopted algorithm to build bagging 

decision trees is five. Trees grown with this value are usually very deep and 

optimal for determining the predictive power of an ensemble. Bagging 

decision trees grown with larger leaves may not lose their predictive power 

while reducing training and prediction time as well as memory usage. Due 

to these facts, it is necessary to find the optimal leaf size. This can be 

attained by building ensemble trees employing the training dataset with 

dissimilar leaf sizes and rational number of trees. Then assess which of the 

tree configuration option offers the least mean-square error (MSE). To 

determine the suitable leaf size, ensemble trees with tree size of 100 and 

leaf sizes of 5, 10, 20, 50 and 100 were built. For each ensemble trees, the 

out-of-bag predictions were computed by averaging over predictions from 

Algorithm 4: Random forest 

Input: Data  𝐷 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… ,𝑁}, where 𝑦 ∈ ℝ

Output: Random forest (Bagged decision tree) 

1: let 𝑇 and 𝐵 be a total number of regression trees and nodes, respectively 

2: for 𝑡 = 1, 2, … , 𝑇 do  

3:      create a bootstrap sample 𝐷∗𝑡 with equal number of intsances from a dataset 𝐷 

4: grow a random-frost tree 𝑇𝑡 to the bootstrapped data until the minimum node 

size is reached 

5:      for  𝑏 =  1,… , 𝐵 do 

6:           select  𝑚  variables at random from the 𝑝 variables 

7:           choose the best split among the 𝑚 variables 

8:           split the node into two daughter nodes 

9:      end for 

10: end for 

Output the random forest 

11: 𝑓𝑟𝑓(𝑥) =
1

𝑇
∑ 𝑇𝑡(𝑥)
𝑇
𝑡=1
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all trees in the corresponding ensembles. Then the MSEs of each ensemble 

trees were computed by averaging the squared difference between the 

predicted responses of the out-of-bag and the target responses. The MSEs 

obtained by the ensemble methods for the examined leaf and tree sizes are 

shown in Figure 3.9. Even if the errors for leaf size five and ten are 

comparable as can be seen from Figure 3.9, leaf size five provides the 

lowest MSE. Therefore, to carryout effective model training the leaf and 

the tree sizes were designated as five and 100, respectively. Using the 

identified configuration, trees were grown for each bootstrap replica and 

train each tree in the ensemble. The bootstrap replicas comprise 

information about the concrete’s mix ingredients, the fresh and hardened 

concrete properties, the field conditions as well as the chloride profiles 

measured at different ages. 

3.5.3 Measuring importance of chloride predictors  

The objective of the variable importance analysis is to determine the 

degree of significance of each variable which are embedded in the dataset 

Figure 3.9. Mean-square errors to determine optimal tree and leaf sizes for chloride 
profile prediction model (Publication III). 
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in predicting the chloride concentration in concrete. It was discussed 

above that the ensemble decision trees of CaPrM built using fitensemble 

algorithm had applied a function, predictorImportance, to examine 

how influential the input variables in predicting the carbonation depth.  Its 

equivalent for TreeBagger algorithm is a function called 

OOBPermutedVarDeltaError. This function gives a numeric array of size 

(1-by-number of variables) consisting of significance measure for each 

input variable. This was executed by arbitrarily permuting out-of-bag data 

across a single variable at a time and predicting the increase in the out-of-

bag error due to the permutation. This measure was computed for each 

tree in the ensemble then averaged them and the averaged value was 

divided by the standard deviation over the whole ensemble. This process 

was reiterated ten times since this number of iterations offered stable 

outcome with rational computational time. The ultimate variable 

importance measure for each variable was evaluated by averaging the 

results of the ten iterations. The higher the value of the variable 

importance measure the greater the significance of the variable in 

predicting the chloride concentration in concrete. The process of out-of-

bag variable importance measurement by permutation is already 

discussed in detail in Section 2.4.3 and summarized by Algorithm 5.  

In order to evaluate the significance of variables from various 

perspectives, ten bagged decision tree based chloride profile prediction 

models were developed by following the same procedure presented above. 

Based on the parameters in their input dataset, the ten models were 

categorised into two groups: Model A and Model B. The details of the 

classifications of the ten models are presented in Table 3.6. Model A 

utilized all parameters presented in Table 3.5 except chloride profiles as 

input parameters. Model B employed input parameters representing only 

concrete mix ingredients, field exposure conditions, and chloride 

migration coefficients. The purpose of Model B was to study the 

importance of fresh and hardened concrete tests in predicting the chloride 

profile. In both model categories, the target dataset was the chloride 

profile. Each group was further divided into three scenarios to analyse the 

parameter’s significance by excluding the influence of the exposure time 

and distance from highway. The number of instances and features 
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considered in each model is different and presented in Table 3.7 along with 

the adopted type of algorithm and data partitioning. 

The first scenario (A.1 and B.1) takes into account all the respective 

variables of Models A and B as described above. The second scenario (A.2 

and B.2) is identical with scenario one except the employed chloride 

profiles comes only from the specimens located at 4.5 m. The intention of 

this scenario is to avoid the distance effect on predicting the chloride 

profile and concentrate on the influence of other parameters. The focus of 

the third scenario is to eliminate the influence of the exposure time by 

considering the chloride profile measured at a specific exposure time. 

Under this scenario, there are three models in each model group (A.3(i),  

Algorithm 5: Out-of-bag VI measure by permutation   

Input: Data  𝐷 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… ,𝑁}, where 𝑦 ∈ ℝ                

Output:  Out-of-bag VI measure  

 

Let  𝐷∗𝑡 the bootstrap samples and  𝑝  is the number of predictors in the training 

dataset. 

1: for 𝑡 = 1,2, … ,𝑇 do  

2:      identify the out-of-bag instances for a tree 𝑡, 𝛽̅(𝑡) ⊆ {1,… , 𝑝} 

3:      estimate the out-of-bag error 𝑦(𝑡) 

4:      for each predictor variable 𝑥𝑗,  𝑗 ∈ 𝛽̅
(𝑡) 

5:           randomly permute the instances of 𝑥𝑗 

6: estimate the model error, 𝑦̂𝜑𝑗
(𝑡)

, using the out-of-bag instances containing the 

permuted values of 𝑥𝑗 

7: take the difference 𝑦𝑗
(𝑡)
= 𝑦𝜑𝑗

(𝑡)
− 𝑦(𝑡)// Predictor variables not split when 

growing tree 𝑡 are attributed a difference of 0.//               

8:           for each predictor variable in the training dataset, 𝐷∗𝑡   

9:                compute the mean, 𝑦𝑗 of the differences over the learners, 𝑗 = 1,… , 𝑝 

10:                standard deviations,  𝜎𝑗 of the differences over the learners,  𝑗 = 1,… , 𝑝     

11:           end for 

12:      end for   

13: end for  

Output out-of-bag VI measure for 𝒙𝒋   

14: 𝑉𝐼̃(𝑥𝑗) =
𝑦̅𝑗 

𝜎𝑗
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A.3(ii), A.3(iii) and B.3(i), B.3(ii), B.3(iii)) since the chloride concentration 

in the concrete specimens were analysed at three different exposure times 

(one, three, and six years). All these models employed the chloride profiles 

measured at the depth of 0.5 mm, 1.5 mm, 3 mm, and 5 mm since the 

amount of chloride was examined in all concrete specimens at these 

depths. Each model was run ten iterations and the final variable 

importance measure was evaluated by averaging the results of the ten 

iterations. The findings are presented in Section 4.3 in detail. 

3.6 Model development for hygrothermal prediction 

The development process of the hygrothermal prediction model is 

discussed in this section and illustrated in Figure 3.10. The rectangular 

boxes coloured in grey in the figure represent the major tasks of the 

modelling procedure. As in any other data-driven models, the initial step 

was importing the monitored hygrothermal data. The data comprise the 

hygrothermal measurements of the ambient and the inner surface-

protected concrete façade elements. After importing the data, data 

exploration was executed in order to comprehend and visualize the 

principal characteristics of the dataset. This activity is usually carried out 

by utilizing customized visual analytical tools. Data preprocessing was the 

next essential step and this task needs to be carried out before the data 

being processed further. Data preprocessing, especially in neural network 

based models, could also involve other tasks as discussed in Section 3.4.2. 

The next important step after data preprocessing was data partitioning in 

which the data were divided into training, validation, and test sets. The 

training dataset is a set of hygrothermal data that are utilized to train the 

adopted neural network algorithm (Nonlinear autoregressive with 

Table 3.7.  Type of algorithm, data size, and data partitioning used to build chloride 
profile prediction models. 

Applied 
algorithms 

Model types  Instances  Features Data partitioning 

Bagged 
decision tree 

Model A.1 and B.1 522 33 63/37 
Model A.2 and B.2 345 32 63/37 
Model A.3(i) and B.1(i) 215 32 63/37 
Model A.3(ii) and B.2(ii) 120 32 63/37 
Model A.3(iii) and B.2(iii) 189 32 63/37 
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external input, NARX). The purpose of the validation dataset is to assist 

the network to halt training when the generalization process stops 

improving and thus preventing overfitting. The test dataset was utilized to 

evaluate the performance of the developed neural network based 

hygrothermal prediction model.  

3.6.1 Data and its preprocessing for hygrothermal model  

The data employed in the hygrothermal prediction model entail four 

variables: ambient relative humidity, ambient temperature, inner relative 

Figure 3.10. Hygrothermal prediction model development process (Publication IV). 
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humidity, and inner temperature. The data were gathered from two years 

of in-service monitoring of the concrete façade elements in the case 

structure. The data were recorded with a regular time interval of half an 

hour. The ambient relative humidity and temperature were designated as 

the input variables. The target variables were the values of the relative 

humidity and the temperature measured inside the concrete façade 

members. Both temperature and relative humidity values are numeric, and 

units used for them were °C and %, respectively. The size of the data 

utilized to predict the hygrothermal behaviour inside each concrete façade 

element is given in Table 3.8. 

During the hygrothermal modelling process, data encoding was 

unrequired since the utilized data entail only numerical variables. The 

applied data normalization and data partitioning procedure were exactly 

the same as the procedure presented in Section 3.4.2.  All the data were 

normalized by transforming the values of the input and the target variables 

in the interval [-1, 1]. The data (size of 719 instances and two features) were 

also randomly divided into three clusters: training, validation, and test 

datasets which hold 75%, 15% and 10% of the dataset, respectively.  

Missing data processing was carried out since about 6% of the monitored 

hygrothermal data were missed for successive days at particular times 

from every surface-protected façade element. To substitute the missing 

data and eliminate the noise from the monitored hygrothermal data, a 

moving average filter technique was applied. This method smooths and 

replaces the missing data with the average of the neighbouring data points 

defined within the span [130] and is expressed by Equation (3.6). 

Table 3.8. Type of algorithm, data size, and data partitioning applied to build 
hygrothermal prediction model. 

 
Applied 
algorithm 

Façade 
element 

Algorithms  Instances  Features Data 
partitioning 

NARX 

S1 
Relative Humidity 719 2 75/15/10 
Temperature 719 2 75/15/10 

S2 
Relative Humidity 719 2 75/15/10 
Temperature 719 2 75/15/10 

S4 
Relative Humidity 719 2 75/15/10 
Temperature 719 2 75/15/10 

S5 
Relative Humidity 719 2 75/15/10 
Temperature 719 2 75/15/10 

S6 
Relative Humidity 719 2 75/15/10 
Temperature 719 2 75/15/10 
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𝑥𝑠(𝑖) =
1

2𝑀+1
(𝑥(𝑖 +𝑀) + 𝑥(𝑖 +𝑀 − 1) + ⋯+ 𝑥(𝑖 − 𝑀)),      (3.6) 

 

where 𝑥𝑠(𝑖) is the smoothed value for the 𝑖𝑡ℎ data point, 𝑀 is the number 

of neighboring data points on either side of 𝑥𝑠(𝑖), and 2𝑀 + 1 is the span. 

3.6.2 Training of hygrothermal prediction model 

The model training process was carried out using a function narxnet in 

MATLAB. This function builds a NARX network with the default 

hyperbolic and linear transfer functions in the hidden and output layers, 

respectively. The hyperbolic activation function produces outputs in the 

range between -1 and 1 whereas the linear transfer function computes the 

neurons output by simply transferring the value given to it. As discussed 

in Section 2.4.1, the NARX network has generally two inputs. In case of the 

considered NARX network, one of the inputs is from the monitored 

hygrothermal data (e.g. ambient temperature/relative humidity), and the 

other input is a feedback connection obtained from the output of the model 

(e.g. predicted inner temperature/relative humidity). For each of these 

inputs, there is a tapped-delay-line memory to store previous values. In 

order to complete the architecture of NARX network, the number of 

tapped-delay-line memories and hidden neurons should also be assigned. 

The default number of the tapped-delay-line memories and hidden 

neurons for narxnet function is 2 and 10, respectively. These default 

values were employed for creation of the initial NARX network that 

predicts the hygrothermal performance inside surface-treated concrete 

element. Then the network was tested with other values and all training 

performances were compared. The comparison is necessary to identify the 

optimal number of hidden neurons and the tapped-delay-line memories 

that yield the best performance. The determined optimal values were 

utilized in the model as the final configuration of the model. The basic 

graphical representation of the designed NARX network for modelling the 

hygrothermal behaviour of the case structure is identical with Figure 2.7. 

After the configuration of the NARX network was completed, the next 

task was inputting the preprocessed hygrothermal data for model training. 

Since the network contains tapped-delay-lines, it is vital to fill initial values 
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on the delay-line memories of the inputs and the outputs of the network. 

This was carried out by applying a command, preparets, which 

automatically shifts the input and the target time series as many steps as 

required to fill the initial delay states. This function also reformats the 

input and the target data whenever the network is redesigned with 

different numbers of delays. After the training data is ready, the network 

was trained using a Levenberg-Marquardt algorithm. It is a fast, powerful, 

and widely applied algorithm to solve several types of problems. Details of 

this algorithm are already discussed in Section 3.4.3.  

The performance of the network training was evaluated using the 

validation dataset for different networks with varying number of tapped-

delay-line memories and hidden layer neurons. After performing several 

trainings, tapped-delay-line memories of two and hidden layer neurons of 

ten were identified as the optimal ones that provide the least generalization 

errors. Tapped-delay-line memories of two units mean that the output of 

the designed network, 𝑦̂(𝑛 + 1), is fed back to the input of the network 

through delays, 𝑦̂(𝑛), and 𝑦̂(𝑛 − 1) as the output of the network is a 

function of these delays. The training performance of the developed NARX 

model to predict the relative humidity in concrete façade element S4 is 

illustrated, as an example, in Figure 3.11. It can be clearly observed that the 

network has been trained smoothly and any overfitting/underfitting has not 

been occurred. The best validation performance is obtained at nine epochs 

(full training cycles on the training dataset) with MSE of 1.05. The MSE of 

test dataset (which was randomly generated) is 1.16. After successful 

training, the performance of the model in evaluating the hygrothermal 

behaviour inside all surface-treated concrete façade elements were tested 

using the last 90 days of the data, which were not utilized during the model 

trainings as well as validation processes. The details of the training 

performance and the prediction ability of the developed hygrothermal 

prediction models on the last 90 days for all façade elements are presented 

in Section 4.4. 
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3.7 Exploratory data analysis development for 
visualization   

In this section, the development process of exploratory data analysis 

(EDA) technique is presented. Its primary aim is to visualize the condition 

of corrosion and other deterioration mechanisms caused unintentionally 

by the implemented surface-protection systems in a more realistic 

manner. EDA is an essential step in any data-driven modelling process, 

and it is often applied after data collection and preprocessing, where the 

data is merely visualized, plotted, and manipulated without any 

presumption. It assists to assess the data quality and build optimal models. 

EDA is not only guide for building a useful model but also assist to 

understand the output of the model.  

The data image technique was applied for visualizing the status of 

corrosion, frost and chemical attacks in surface-protected concrete façade 

elements using the hygrothermal data. MATLAB programing language was 

Figure 3.11. Validation performance of the trained NARX model that employs relative 
humidity data obtained from the ambient and inside S4. 
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used for displaying these images employing imagesc function. This 

function uses  x and y values to specify the data size in respective 

directions, and then generates an image with dataset to scaled values with 

direct or indexed colours to indicate the magnitude of each variable for 

each observation. As the hygrothermal data were monitored with a regular 

interval of short time and comprise missed values, producing and 

visualization of the status of corrosion, frost and chemical attacks in the 

concrete elements is not a straightforward task. The following 

fundamental steps were carried out. 

Step 1: smooth the data to reduce irregularities of the 

monitored/predicted time-series hygrothermal data to deliver a 

clearer view of the true underlying behaviour. 

Step 2: translate the data to status of corrosion, frost and chemical 

attacks by utilizing predefined conventions.   

Step 3: display the image by applying the imagesc function and add a 

colour scale to the image. 

Step 4: define the coordinates of the missed values in concrete façade 

elements which comprise the missed data. 

Step 5: represent the missed data using the coordinates defined in step 

4. 

The visualized conditions of corrosion, frost, and chemical attacks of 

surface-protected concrete façade elements of the case structure are 

presented and analysed in Section 4.4.  
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Chapter 4 

Results 

This chapter presents the main results of the dissertation. The 

presentation of the results is organised into four sections based on the four 

research questions. Each section presents the core results of one of the 

research questions that are discussed in Chapter One.  

4.1 Need for data-driven approaches  

Publication I answers the research question of “how to eliminate or 

mitigate the uncertainties observed in the traditional corrosion 

assessment methods?”. To answer this question, Publication I 

concentrates on: i) examining the limitations of the conventional corrosion 

assessment methods, and ii) reviewing the recent advances and future 

directions on the concrete durability assessment. The focus in this section 

is on the findings of (ii) as the first task has already been discussed in 

Section 2.3.  

The findings of Publication I revealed that there had been few attempts 

to predict the carbonation depth and the chloride concentration in 

concrete using machine learning methods.  The few proposed carbonation 

depth prediction modes are listed in Table 4.1. The majority of these works 

were based on short-term tests which were aimed to characterize the 

carbonation resistance of concrete at laboratory. They also consider few 

parameters, missing some of the important ones that describe the 

microstructure of concrete. The model proposed in [131] take into account 

39 input parameters, but some of them do not describe the condition well. 

This is due to the fact that the data were collected from concrete specimens 

exposed to natural environment located in different exposure conditions. 

The data were acquired from 88 literatures. All works, except those 

executed by the author of this dissertation [132–134], failed to perform a 

certain crucial data optimization steps during the model development 

process. Without following these steps, some parameters may become 
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irrelevant and/or redundant for representing the carbonation process, 

which ultimately reduces the performance of the model.   

Similar to the carbonation depth prediction models, the existing 

machine learning based chloride concentration prediction models largely 

employ data generated from accelerated laboratory tests as seen in Table 

4.2. These models were applied to characterize the chloride permeability 

of concrete. The purpose of the models was to reduce or fully substitute the 

rapid chloride penetration test since its experimental determination in 

laboratory is usually resource and time consuming. Except [135], all the 

related work failed to perform data optimization techniques. Unlike the 

existing works, the model developed in this dissertation is based on long-

term field tests, taken into account 32 input parameters and performed 

data optimization technique. The main purpose of the developed model is 

to determine the influential parameters that predict the chloride profile of 

concrete besides making chloride profile prediction. 

In both carbonation and chloride cases, the majority of the existing 

models have adopted neural network algorithm. Unlike these works, the 

developed models in this dissertation employs neural network and other 

learning algorithms including decision trees and ensemble methods. 

Examining the ability of various machine learning algorithms for 

prediction of the corrosion causing factors is essential in order to identify 

 Table 4.1. Data-driven models that are proposed for carbonation depth prediction.  

Work Main learning  
algorithm type 

Exposure  
environment 

Exposure         
duration 

No. of input 
parameters 

Data       
optimization  

Lab Field Long Short 

[161] Neural Network X ✓ ✓ X 6 X 

[131] Neural network X ✓ ✓ X 39 X 

[162] Neural network ✓ X X ✓ 5 X 

[163] Adaptive neuro-fuzzy 
inference system 

X ✓ ✓ X 6 X 

[132] Neural network ✓ X X ✓ 15 ✓ 
[164] Neural network ✓ X X ✓ 3 X 

[133] Decision tree  
Bagged decision tree 

✓ X X ✓ 15 ✓ 

This 
work 
[134] 

Neural network  
Decision tree  
Bagged decision tree 
Boosted decision tree 

X ✓ ✓ X 25 ✓ 

X = not applicable, ✓= applicable, Short < 52 weeks, Long ≥ 52 weeks 
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the algorithm that performs best. This is due to the fact that the relative 

prediction power of any machine learning algorithms primarily depends 

on the details of the considered problems. Without experimenting, it is 

impossible to identify the powerful algorithms that excel a given problem.  

The previous attempts to predict carbonation depth and chloride 

concentration using data-driven models are encouraging but a lot of 

improvements have to be carried out. The shortcomings of the previous 

works can be summarized as follows. First of all, the majority of the models 

have employed few data to train the models which are acquired from short-

term tests. Secondly, the models missed some important input parameters 

that describe the carbonation and the chloride ingress process. Thirdly, 

most of them adopted only one type of learning algorithm. Fourthly, the 

few models that considered several parameters failed to perform certain 

crucial data optimization steps during the model development process. 

The performance of the proposed machine learning based carbonation 

depth and chloride profile prediction models can be improved 

Table 4.2. Data-driven models proposed for evaluating chloride penetration (directly or 
indirectly).  

Work Problem type Main learning  
algorithm type 

Exposure 
environment 

Exposure  
duration 

No. of 
input  
param
eter 

Data 
optimiz
ation Lab Field Long Short 

[165] Permeability Neural network ✓ X ✓ X 5 X 

[166] Permeability Neural network ✓ X X ✓ 6 X 

[135] Permeability Support vector 
regression  

✓ X X ✓ 7 ✓ 

[45] Permeability Neural network ✓ X X ✓ 2 - 6  X 

[167] Permeability Neural network 
Adaptive neuro-
fuzzy inference 
system 

✓ X X ✓ 4 X 

[168] Permeability Neural network ✓ ✓ X ✓ 6 X 

[169] Diffusion 
coefficient 

Neural network ✓ X X ✓ 7 X 

[170] Diffusion 
coefficient 

Neural network ✓ X X ✓ 4 X 

[171] Diffusion 
coefficient 

Neural network ✓ X X ✓ 8 X 

[54] Diffusion 
coefficient 

Neural network ✓ X X ✓ 8 X 

This 
work 
[172] 

Influential 
predictors 

Bagged decision 
tree 

X ✓ ✓ X 32 ✓ 

   X = not applicable, ✓= applicable, Short < 52 weeks, Long ≥ 52 weeks 
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considerably by addressing the above shortcomings, which is the 

contribution of Publications II and III of the dissertation. 

The results of Publication I also demonstrated that machine learning will 

be a core to the next generation corrosion assessment method due to the 

emerging use of wireless sensors for monitoring RC structures. Today, 

there are several studies which show the applicability of wireless sensors 

for monitoring RC structures spanning from earlier-age parameters to 

environmental situations that can initiate or accelerate corrosion of 

reinforcement bar [136–140]. Monitoring of various parameters without 

extracting knowledge or inference from the monitored data is pointless. 

So, the integration of machine learning and wireless monitoring will form 

a principal component in the inspection, assessment, and management of 

RC structures. Eventually, it will bring a paradigm shift in durability 

assessment of RC structures. The future recommended layout of aging 

management method for RC structures is shown in Figure 4.1. As seen in 

the figure, the sensors that are integrated in the structure will continuously 

deliver real-time data regarding the temporal and spatial changes of the 

monitored parameters that control corrosion of reinforcement bar or other 

deterioration mechanisms. The sensors data will be transferred to a cloud 

storage that gives substantial benefit because data from various streams 

can be accessed and shared with Internet connectivity from anywhere. 

Such a monitoring system can be seen as a reliable nondestructive 

technique that provides valuable in-service data without the participation 

of inspection crews on the field. This approach will be more cost effective 

than performing periodic field testing in the long term, considering the 

cost of labour, the costs to the users, and their safety [141,142]. Condition 

assessment and prediction of the structure can be executed remotely and 

rapidly without the need for empirical models. The prediction enables a 

more realistic condition assessment of a structure and accurately timed 

maintenance measures, which in turn reduces the associated costs 

considerably. Moreover, the proposed system can learn the synergic effect 

of different deterioration mechanisms and discover new useful knowledge 

using data of several parameters monitored by various sensors. The 

discovered knowledge will assist engineers to come up with optimal 

solutions that improve the durability of RC structures as well as to define 

proactive maintenance plan. 
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4.2 Carbonation depth prediction  

The development process of the carbonation depth prediction model 

(CaPrM) has been discussed in Section 3.4 and in this section the 

performance result of CaPrM is presented. This section is arranged into 

three subsections. The first subsection elaborates the performance of the 

developed carbonation prediction model and its validity. The second 

subsection presents the set of influential variables that describe the 

carbonation depth. The comparison of CaPrM versus traditional 

carbonation prediction model is presented in the last subsection. These 

three subsections answer the research question two of the dissertation, 

“how to develop accurate carbonation depth prediction model that 

considers the complex parameter interactions? What are the 

predominant carbonation depth predictors?”.  

4.2.1 CaPrM performance  

CaPrM was trained using a dataset generated from concrete specimens 

that are exposed to natural carbonation for long term at field environment. 

The training dataset comprise information regarding the concrete mix 

ingredients, the fresh and hardened concrete properties, the carbonation 

periods, the environmental and curing conditions, as well as the 

carbonation depths. The training performance of CaPrM is illustrated in 

Figure 4.2, demonstrating the measured versus the predicted carbonation 

depth of all the integrated learning algorithms. The coefficient of 

correlation (R-values) were applied to examine the training accuracy of 

each learning algorithms. This parameter indicates how well the integrated 

learning algorithms regress the carbonation depth on the input variables. 

It can be observed from Figure 4.2 that the R-values of all of the four 

utilized learning algorithms surpass 0.90. This confirms that all the 

integrated machine learning methods track the real carbonation depth 

competently during the model training phase. Observably, neural network 

has attained the best learning performance (R=0.97), followed by decision 

tree (R=95), boosted decision tree (R=0.94), and bagged decision tree 

(R=0.91). It can also be noticed that, except neural network, all the 

learning algorithms exhibit a slight tendency to underestimate the depth 
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of carbonation when the carbonation depth is large. The reason is the 

available number of large carbonation depths in the training dataset was 

few. For example, measurements of carbonation depth above 3 mm 

represent only about 9% of the total observation. The lack of sufficient 

number of data in the training dataset causes for the underestimation in 

this range.  

As any machine learning model, the validity of the developed model 

should be evaluated using a test dataset which is extracted from the 

Figure 4.2. Training performance of the CaPrM. Y and T are predicted and measured, 
respectively (Publication II).  
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original data but different from training dataset. The purpose is to test the 

real performance of the model since data-driven models may introduce 

error due to high bias and variance. High bias can cause the learning 

algorithm to miss the relevant association between the input and the target 

variables, resulting underfitting. High variance can cause the learning 

algorithm to model the random noise in the training dataset rather than 

the desired outputs and causing overfitting [82]. These can make a 

prediction model unstable and therefore unsuitable for solving real-world 

applications. Hence, the optimal data-driven models should have the best 

trade-off between the bias and the variance. This is often controlled by 

altering the model’s capacity (ability to fit a wide variety of functions).  

The training and test error of all the integrated learning algorithms in the 

CaPrM were checked to detect any overfitting and/or underfitting. 

Overfitting occurs when the difference between the error of training and 

test is far too high. Underfitting happens when the model is unable to 

acquire a sufficiently low error value on the training dataset. To detect 

overfitting and/or underfitting, the following error measurements were 

carried out: mean-square error (MSE), root-mean-square error (RMSE), 

and mean-absolute error (MAE). The MAE, also called the absolute loss, is 

an average of the absolute residuals/errors (the difference between the 

predicted and the actual value) and measured in the same units as the data. 

MSE is the mean of the squared difference between the target and the 

predicted value. It is the most widely employed loss function for regression 

models. RMSE is simply the square root of the MSE. Sometime RMSE is 

preferable than MSE because understanding of error values of MSE is 

difficult due to the squaring effect, particularly, if the target value 

represents quantities in unit of measurements. RMSE retains the original 

units as MAE. The MSE, RMSE, and MAE are calculated using Equations 

(4.1), (4.2), and (4.3), respectively. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1 ,                                     (4.1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑁
𝑖=1 ,                     (4.2) 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑖 − 𝑌̂𝑖|
𝑁
𝑖=1 ,                     (4.3) 

 

where 𝑌̂𝑖  is the predicted output value, 𝑌𝑖  is the measured target value, and 

𝑁 is the number of observations. 

The performance evaluation using the above statistical measures 

confirm that all the integrated learning algorithms predict the carbonation 

depth with rationally low error on previously unseen data. Average of ten 

round statistical performance indicators (MSE, MAE, and RMSE) of all the 

learning methods are given in Table 4.3. The difference between the 

training and the test errors of all the integrated learning algorithms is 

small, confirming the generalization ability of the CaPrM. The lower the 

statistical errors in training and testing phases are the superior the 

performance of the model. It can be easily noticed from Table 4.3 that the 

neural network algorithm outperformed all the other models. The MSE of 

the neural network algorithm is the lowest both in training and testing 

stages compared to the other integrated learning algorithms. For instance, 

the MSE of the boosted decision tree is increased by 9% in the model 

training phase while by 10% in the testing phase. This demonstrates that 

the neural network algorithm integrated in the CaPrM has a balanced 

trade-off between bias and variance errors, confirming its high learning 

and generalization abilities. Among decision tree based algorithms, 

boosted decision tree has a high generalization ability with errors at 

training phase (MSE=0.21, MAE=0.23 and RMSE=0.46) and testing 

phase (MSE=0.26, MAE=0.31, and RMSE=0.51). Though, MAE of the 

decision tree is slightly less than the bagged decision tree, its MSE value 

revealed that it has relatively weak generalization ability. Indeed, these 

Table 4.3. Average of ten round statistical performance measurements for CaPrM. 

 Dataset Learning method Training error Test error 

MSE MAE RMSE MSE MAE RMSE 

After 
variable  

selection 

Neural network 0.1895 0.1962 0.4353 0.2417 0.2860 0.4916 

Decision tree 0.3696 0.2436 0.6079 0.4189 0.3232 0.6473 

Bagged decision tree 0.2820 0.2498 0.5310 0.3770 0.3415 0.6140 

Boosted decision tree 0.2068 0.2326 0.4548 0.2649 0.3061 0.5147 

Before 
variable 
selection 

Neural network 0.3664 0.2624 0.6053 0.3522 0.3860 0.5935 

Decision tree 0.4106 0.3325 0.6408 0.5295 0.4491 0.7276 

Bagged decision tree 0.3998 0.3298 0.6323 0.4907 0.4391 0.7005 

Boosted decision tree 0.3371 0.3094 0.5806 0.3749 0.4116 0.6123 

 



 

88 

 

results are valid only for the utilized particular dataset. The performance 

of each learning algorithms may vary if a different data were employed. 

This would not be a problem in CaPrM since it always provides the 

opportunity to select the best performing one by comparing the validation 

errors of the four integrated learning algorithms.  

The performance evaluations discussed above are after integrating the 

variable selection technique. The statistical measures before incorporation 

of variable selection method in the model development process were also 

evaluated and presented in Table 4.3. The motive for evaluating results of 

both approaches was to demonstrate the importance of implementing 

variable selection methods in enhancing the prediction ability of the 

model. According to the statistical measures, incorporation of variable 

selection technique in modelling process improved the prediction ability 

of all the integrated learning algorithms in CaPrM considerably. It can be 

observed from Table 4.3 that after implementing variable selection the 

MSE of the neural network was reduced by a factor of about 1.5 followed 

by boosted decision tree with 1.4 reduction factor. Similarly, the MSE of 

the standalone decision tree and the bagged decision tree have decreased 

by 26% and 30%, respectively. This proofs that integration of variable 

selection methods in CaPrM modelling process leads to its prediction 

performance enhancement.  

The test residuals (the difference between the actual and the predicted 

carbonation depths) of the four integrated models are computed and their 

distributions are visualized with boxplot in Figure 4.3. The median of the 

residuals is represented by a red line within the blue box that covers the 

middle 50% (25th–75th percentiles) of the residuals. The whiskers go down 

to the smallest and up to the largest values. Residuals greater than 1.5 box 

lengths above the whiskers are outliers and designated by a red plus sign. 

It can be clearly seen from Figure 4.3 that the median of residuals of the 

neural network is about in the middle of the box and distributed around 

zero. In another word, the residuals have a constant variance pattern and 

normally distributed. This confirms that the neural network based 

carbonation prediction model is accurate on average for all tested data. 

The median of the residuals of decision tree and bagged decision tree are 

almost zero. The medians of bagged and boosted decision trees are closer 

to the first quartile than to the third quartile. This indicates that the 
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distributions of the residuals are slightly skewed to the right. Generally, 

the boxplot of the residuals of a single run test validates that all the 

integrated models learn the nonlinear relation of the input variables and 

are able to predict the carbonation depth with high accuracy. 

4.2.2 Carbonation depth predictors 

The second part of the research question two aims to determine the 

predominant carbonation depth predictors. Discovering the most 

informative set of variables that describe the carbonation depth is vital in 

order to develop efficient and parsimonious carbonation depth prediction 

model. To determine the influential variables, the predictive power of all 

the utilized input parameters of the dataset was examined using the 

ensemble methods (bagged and boosted decision trees). These methods 

provide variable importance weight, which are computed by aggregating 

the weights over the trees in the ensemble. Variables with a higher 

importance score are indicative of their significance in predicting 

carbonation depth. The importance score of all the considered input 

parameters that were deduced from the bagged and boosted decision trees 

are shown in Figure 4.4. It can be clearly noticed from the figure that 

accelerated carbonation depth, w/b and compressive strength are the 

Figure 4.3. Boxplot of residuals of the CaPrM model (Publication II). 
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topmost three predicting parameters of carbonation depth for the 

considered data. These determined top three carbonation predictors are 

well-known parameters and they have already been considered in several 

empirical models. It is known that cement types affect the carbonation 

process, but it was not identified as influential parameter by the models. 

Figure 4.4. Measures of carbonation predictor parameters (Publication II). 
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This does not mean that this variable is uninformative. It only means that 

this variable was unpicked by the ensemble trees since other variables 

encode the same information. For instance, cement types are already 

described by both w/b and compressive strength. The compressive 

strength of concrete is not only affected by the w/b and cement types but 

also by other factors such as aggregate size distribution. Hence, 

compressive strength describes the carbonation process better than the 

combination of individual parameters that influence the strength of 

concrete.  

Next to the top three parameters, the amount of plasticizers, the air 

content, and the carbonation period are the predominant carbonation 

depth predictors. This is an interesting finding since the identified 

parameters, except the carbonation period, are overlooked in various 

conventional models. In fact, there are few studies that demonstrate the 

effect of different types of plasticizers in improving the carbonation 

resistance of concrete through their influence on the pore structure and 

the morphology of the hydrated product [143,144]. Other studies show the 

impact of air content on carbonation process by conducting experiment on 

air-entrained concrete [145,146]. According to the studies, air-entraining 

admixtures increase the carbonation resistance of concrete. Those studies 

were made on concrete specimens of different mix compositions exposed 

to indoor and outdoor environments. Though air-entraining admixture is 

one of the influential factors that control the carbonation process, it was 

not identified as among the top predictors. This is due to the fact that the 

effect of the air-entraining admixtures is already explained by the air 

content of the concrete. So, this describes the reason for air content of the 

concrete being identified as among the top carbonation predictor. The 

significance of aggregate size distribution in predicting the carbonation 

depth is noticeable in Figure 4.4, although it is not among the top six 

descriptors. The reason is that it controls the air permeability of gases. The 

finding of  aggregate size distribution as influential predictor is supported 

by earlier research  [30,147]. This parameter is also missed in several 

conventional models. 

The importance measure does not identify some known significant 

parameters, such as supplementary cementitious materials, curing, and 

environmental conditions. In case of supplementary cementitious 
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materials, the reason is that they have already been expressed by w/b and 

the combination of other variables, for example, accelerated carbonation 

depth, comprehensive strength, and air content. The use of similar curing 

and environmental conditions for all concrete specimens was the reason 

for these parameters to be unidentified by the model. It can be observed 

from Figure 4.4 that the ranks provided by both learning methods, bagged 

and boosted decision trees, are fairly similar. Cumulatively, about 87% of 

the total influence is attributed by the top six significant parameters in 

both models. 

4.2.3 Comparison of CaPrM and conventional models  

The prediction performance of the CaPrM was compared with the 

conventional Fick’s second law based carbonation depth prediction model. 

To execute a fair comparison, the natural carbonation coefficient for each 

concrete type was determined and employed in the conventional model 

given in Equation (2.6). The natural carbonation coefficient of each 

concrete type was computed using the carbonation depth measured at the 

age of 268 days. Using this coefficient in Equation (2.6), the carbonation 

depths at the ages of 770, 1825 and 2585 days were predicted. Then the 

performance of the model was evaluated by analysing the mean-square 

error difference between the computed and the measured carbonation 

depths. The MSE of the conventional model was 0.51, which is larger than 

the MSE of the CaPrM as can be seen from Table 4.3. The error difference 

is significant, about two-fold compared with the MSE of neural network 

and boosted decision tree. The MAE of the conventional model was 0.50, 

which is more than 1.7 times the MAE of the neural network of the CaPrM. 

The residual distribution of the traditional model is presented in Figure 

4.5 since the error statistics alone do not deliver sufficient information 

regarding their distribution. This figure comprises two plots (a boxplot and 

a histogram plot). These two plots are essential to check the normality of 

the residual distribution. It can be observed from the boxplot that the 

residuals median of the traditional carbonation prediction model is higher 

than any of the integrated models in the CaPrM (illustrated in Figures 4.3 

and 4.5). The whisker of the conventional carbonation prediction model 

ranges from -1 to 1.76 which is greater than from all integrated models in 
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the CaPrM. This demonstrated that the number of underestimate and 

overestimate predictions of the carbonation depth by the traditional model 

is considerably higher than the CaPrM. The histogram plot shows the 

histogram of the residuals with the best-fitting normal curve. It can be 

noticed that the shape of the histogram is asymmetric and skewed to the 

right direction. The estimated mean (𝜇) and standard deviation (𝜎) of the 

fitted normal distribution curve is 0.30 and 0.64, respectively. Unlike the 

Figure 4.5. Residual of the conventional carbonation model: as a boxplot and histogram 
with a distribution fit. 
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conventional model, the residual distribution of the neural network of the 

CaPrM is more closely resembles a symmetric normal distribution as can 

be seen in Figure 4.3. This shows that mean of the error is close to zero. All 

these facts confirmed the superiority of the CaPrM over the conventional 

model.  

Though the traditional carbonation depth prediction model based on 

Fick’s second law of diffusion is commonly applied, it is unable to provide 

accurate predictions as presented above. The main reason for this is that 

the dependence between concrete carbonation and its conditioning factors 

is inherently complex and time dependent. So, it is impossible or too 

complex to describe them mathematically. In the presence of readily 

available data, machine learning algorithms can characterize the 

carbonation process very well since it has the ability to learn the complex 

interrelation among the governing factors. Unlike the conventional model, 

machine learning based models are able to discover patterns that never 

been observed before.  

4.3 Significance of chloride penetration controlling 
parameters 

The third publication answers the research question three of the thesis, 

“what are the significant parameters that describe the chloride 

concentration into concrete?”.  The influential parameters that describe 

the chloride profile were determined and evaluated using the developed 

chloride profile prediction model that was discussed in Section 3.5. The 

model is developed using bagging decision trees and employed long-term 

field experimental data that are acquired from the Finnish DuraInt-

project. Ten models were established by utilizing diverse input dataset. In 

order to examine the importance of fresh and hardened concrete tests in 

predicting the chloride profile, the ten models were categorized into two 

groups: Model A and Model B. That is, Model A utilizes all the input 

variables whereas Model B excludes the fresh and hardened concrete test 

variables except chloride migration coefficient, Dnssm. The reason for 

keeping Dnssm in the dataset is that this parameter is considered as one of 

the best indicators of the resistance of the concrete to chloride ion 

ingression. Each group was further divided into three scenarios 
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employing: i) all the input variables, ii) all the input variables except 

distance from highway, and iii) all the input variables except exposure 

time. The model classification details can be referred from Table 3.6. 

4.3.1 Chloride profile predictors using all variables  

In this scenario, the training dataset consists of all the respective input 

parameters of the Models A and B. The parameter importance measures 

for both Models (A.1 and B.1) were performed and shown in Figure 4.6. It 

can be clearly seen from Figure 4.6 that the distance from highway is the 

primary parameter which controls the chloride profile in both models. This 

is the anticipated outcome since the quantity of chlorides splashed on the 

concrete surfaces heavily depends on the distance between the highway 

lane and the specimens. The nearer the distance the higher is the amount 

of the splashed chlorides. Next to distance from highway, compressive 

strength, cement content, total effective water, binder types, and exposure 

time are the five influential predictors in Model A.1. Even if this model 

comprises numerous parameters from fresh and hardened concrete 

properties, the discovered influential chloride profile predictors are from 

concrete mix ingredients. This demonstrated that the influence of 

advanced laboratory tests performed at early age is impotent in predicting 

the chloride profile holistically.  

 In the case of Model B.1, the significant parameters next to distance from 

highway are cement content, total effective water, binder types, exposure 

time, and w/b ratio. In both models, supplementary cementitious 

materials have the lowest influence in predicting the chloride 

concentration in concrete. Indeed, it is renowned that supplementary 

cementitious materials are mainly utilized to boost the resistance of 

concrete against chloride permeability because they can reduce the size of 

large pores and capillaries. However, they were not recognized as a 

significant chloride profile predictor since their types and quantities are 

already described by the binder types and w/b, respectively. The type of 

air-entraining agents is also appeared to be powerless for predicting the 

chloride concentration in concrete as confirmed by the results of Model A.1 

and B.1. This parameter was classified based on their production name 

(due to the same reason mentioned in Section 3.4.1), and thus it appeared 
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as “AEA pro. name” in Figure 4.6. Though, the types of chemical 

admixtures generally influence the pore structure of concrete, the finding 

of this study confirmed that the air-entraining agent types (unlike type of 

plasticizers) do not affect the chloride permeability property of concrete. 

The utilized air-entraining agents in this dissertation were produced from 

either fatty acid soap or vinsol resin. So, it is worth to mention that this 

finding is only valid for the employed type of air-entraining agents, mix 

composition and exposure conditions. Other types of air-entraining agents 

may behave differently in concrete specimens exposed to the same or 

different environments.   

In this scenario, the chloride migration coefficient (Dnssm) is recognized 

as a trivial parameter in predicting the chloride profile. The reason for this 

is that the chloride transport properties rely on the intrinsic permeability 

of the concrete, which is varying with time throughout the cement 

hydration process as well as based on the amount of chloride concentration 

Figure 4.6. Variable importance measures of chloride profile for scenario one 
(Publication III). 
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in the pore solution. Additionally, the incorporation of chloride profiles 

quantified from specimens composed of various binder types and located 

at various distances with different exposure times diminish the 

significance of Dnssm in predicting concentration of chloride in concrete. 

Though Dnssm is the most widely adopted parameter to evaluate the 

resistance of concrete against chloride ingress, discovering it as an 

insignificant predictor is not a new phenomenon. There is a study based 

on long-term experiment that corroborates the inability of Dnssm obtained 

from accelerated lab test in characterizing the long-term chloride 

permeability of concrete exposed to real environmental conditions [148]. 

The power of Dnssm in describing the resistance of concrete against chloride 

ingress is evaluated in Section 4.3.2 and 4.3.3 by excluding the parameter 

distance from highway and exposure time, respectively.   

4.3.2 Chloride profile predictors at fixed distance   

In order to examine the significance of parameters independent of 

specimen’s distance from highway, the chloride profile measured only at 

4.5 m and all the respective input parameters of this scenario were 

employed in the dataset of Models A.2 and B.2. The choice of this distance 

is due to the presence of higher number of specimens at this distance, 

acquiring more chloride profile in the dataset. The top six most significant 

chloride profile predictors determined in this scenario are illustrated in 

Figure 4.7. It can be observed that the exposure time is the foremost 

powerful predictor of chloride concentration in concrete for Models A.2 

and B.2 with importance measure of 0.43 and 0.44, respectively. The 

discovered six topmost significant chloride profile predictors have about 

77% and 85% of the collective contributions to the ensemble Models A.2 

and B.2, respectively. These are substantial percentage of contributions 

given the fact that the number of utilized input parameters for Model A.2 

was 31 whereas for Model B.2 was 16. The variable importance measures 

of each corresponding parameters of the two models are comparable as 

can be seen from their rank in Figure 4.7. The importance variable 

measures of the top six significant chloride profile predictors with their 

percentile contribution for both models are presented in Table 4.4. As it 

can be noticed from Table 4.4, the exposure time has a relative 
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contribution of 40.8% in Model B.2. The w/b parameter with a 12.3% 

contribution is the second leading variable. Aggregate <0.125 mm is the 

third predominant parameter that had 10.4% contributions to the chloride 

profile prediction. Cumulatively, 63.5% of the total influence is attributed 

by these three significant parameters. The Dnssm, plasticizers type, and 

aggregate <4 mm parameters are the next significant variables which 

represent 9.1%, 7.2% and 5.6% of contributions in predicting the amount 

of chloride concentration in concrete, respectively.  

Unlike scenario one, the variable importance analysis demonstrated that 

the chloride migration coefficient (Dnssm) is among the six significant 

Figure 4.7. Variable importance measures of chloride profile for scenario two 
(Publication III). 



 

99 

 

chloride concentration predictors in both models. The most probable 

reason for this is that the distance from highway lane is fixed, and thus the 

amount of the splashed surface chloride is identical for all the specimens 

included in the models. Despite the same amount of splashed surface 

chloride, the amount of chloride concentrations in the concrete specimens 

varies because of the continuous chemical reaction of chlorides with the 

dilute cement solution. Thus, discovering the Dnssm as a significant 

predictor confirms that it is a function of the amount of chloride at the 

concrete surface. The other laboratory test which is identified as a powerful 

chloride profile predictor by Model A.2 is the air content. Discovering the 

air content as a potential chloride profile predictor by Model A.2 out of the 

considered 16 types of fresh and hardened concrete tests is an interesting 

finding. The air content test was carried out on fresh concrete using 

pressure method in accordance with EN 12350-7 [149]. All the concrete 

specimens considered in this study employ air-entraining admixtures. The 

discovery of the air content as a powerful predictor indirectly represents 

the air-entraining admixtures since the air content is largely controlled by 

this admixture. Though the purpose of this admixture is to improve the 

resistance of the concrete against frost attack, it also influences the 

chloride ingress into the concrete. Even if very little research has been 

performed on understanding the effect of air-entraining admixtures on 

chloride transport, there is a study which demonstrates their power in 

controlling the transport processes of gases and ions into the concrete 

[150]. The finding of only air content as influential predictor out of the 

considered 16 types of fresh and hardened concrete tests demonstrates 

that several advanced laboratory tests executed at early age are 

Model A.2 
 

Model B.2 
Variable name VI 

measures 
[-] 

Contribution 
[%]* 

 Variable name VI 
measures 
[-] 

Contribution 
[%]* 

Expo. Time 0.4273 37.62  Expo. time 0.4431 40.78 
w/b  0.1300 11.45  w/b 0.1333 12.27 
Air cont. 0.0837 7.37  Agg. <0.125 mm 0.1133 10.43 
Agg. <0.125 mm 0.0828 7.29  Dnssm 0.0991 9.12 
Dnssm 0.0804 7.08  Plas. pro. Name 0.0784 7.22 
Agg. <4 mm 0.0790 6.96  Agg. <4 mm 0.0613 5.64 

    *compared with the total contributions of all input variables utilized in respective models. 

 

Table 4.4. Importance measure of influential variables and their percentile contribution 
for Models A.2 and B.2 (Publication III). 



 

100 

 

insignificant in predicting the chloride concentration in concrete in this 

scenario.  

Among the parameters that describe the concrete mix ingredients, w/b 

and aggregate size distribution appeared to be the leading influential 

predictors of chloride penetration into the concrete pores. The reason for 

this is that w/b and aggregates govern the pore structure of the cement 

paste and thus influence the chloride ion transport properties. It is a well-

known fact that chloride transportation in concrete through aggregates is 

trivial since aggregates that are used to produce concrete are generally 

dense. Nonetheless, at the interfacial transition zone (ITZ) where the 

cement paste in the vicinity of aggregate surface exhibits lower cement 

content and higher porosity compared with the cement paste in areas far 

away from the aggregate. The ITZ covers a considerable portion of the total 

cement paste volume and governed by the aggregate size distribution 

[16,151]. This may explain why aggregate size distribution influences the 

chloride transport property of concrete. Parameters that describe the 

concrete mix ingredients such as the type of cement, the supplementary 

cementitious materials, and the chemical admixtures are not discovered as 

powerful predictors by Model A.2. This is due to the fact that their effect is 

already explained by the air content since this test is predominantly 

governed by the type and amount of cement, the supplementary 

cementitious materials, and the chemical admixtures.  

It can be observed that the type of plasticizers is determined as a 

significant predictor by Model B.2. This model considers only parameters 

from concrete mix ingredients and Dnssm. The identified parameter (type of 

plasticizers) is appeared as “plas. pro. name” in Figure 4.7 since product 

name of concrete admixtures were applied to classify them. The 

plasticizers applied in the concrete mix were based on Polycarboxylate, 

Melaminsulfonate or Polycarboxsylate Ether. The discovery of type of 

plasticizers as a predominant chloride profile predictor is an interesting 

finding. This parameter is not considered in the conventional chloride 

concertation prediction models. Indeed, there are several studies which 

demonstrated that plasticizers alter the pore characteristics of the 

hardened concrete. But the effect of type of plasticizers on chloride 

permeability is still insufficiently studied. There is a study based on short-

term test that confirm the same finding [152]. 
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4.3.3 Chloride profile predictors at three different ages   

The intention of this scenario is to examine the effect of the input 

parameters in characterizing the chloride profile at particular exposure 

times. The determined top six parameters that describe well the 

penetration of chloride into concrete at various years of exposure are 

illustrated in Figure 4.8. Similar to scenario one, distance from highway is 

the leading significant parameter in both models, Model A.3 and B.3. In 

fact, this is the anticipated result as the chloride profile is highly dependent 

on the amount of chloride at the concrete surface. Next to distance from 

highway, the compressive strength, the total effective water and the 

cement content are the three powerful chloride profile predictors 

identified by Model A.3 at one, three, and six years of exposure. It is well 

understood that the chloride permeability of concrete depends 

predominantly on the porosity and interconnectivity of the pore system in 

the concrete. The above identified three parameters directly/indirectly 

govern the porosity and interconnectivity of the pore system, and thus 

their selection as chloride profile indicators are evident. The amount of the 

total effective water and cement are also identified as powerful predictors 

of chloride profile by Model B.3 at all age groups. The influence of these 

two parameters in describing the chloride permeability is recognized by 

numerous studies and used in conventional models. They are commonly 

represented as water-to-cement ratio (w/c). In all models, the w/b ratio 

was employed as one of the training input parameters but not as w/c since 

different type of supplementary cementitious materials, including blast-

furnace slag and fly ash were utilized to produce some of the concrete 

specimens. Identifying the w/b as one of the influential predictors 

indirectly demonstrates that the supplementary cementitious materials 

are powerful in predicting the chloride concentration in concrete. As the 

number of occurrences of blast-furnace slag and fly ash are limited in the 

original dataset, the model recognized the cement amount and the total 

effective water as more powerful chloride profile predictors than the w/b.  

It can be noticed from Model A.3 (i) that the amount of plasticizers and 

the binder types are among the influential chloride profile predictors for 

concrete specimens. When the exposure time is increased from one to 

three and six years, the power of plasticizers as a predictor to evaluate the 
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chloride resistance of concrete has vanished. In case of Model A.3 (ii) and 

A.3 (iii), air pores as well as capillary and gel porosity from concrete 

properties are determined as significant predictors. Though these two 

models have considered 18 types of fresh and hardened concrete 

properties, only those that describe the strength and the air void of the 

Figure 4.8. Variable importance measures of chloride profile for scenario three 
(Publication III). 
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hardened concrete were discovered as influential chloride profile 

predictors. The chloride migration coefficient which is commonly used as 

an indicator of chloride permeability of concrete is not among the 

identified influential predictors.  

The variable importance measure of Model B.3 revealed that the amount 

and type of plasticizers and the Dnssm are among the influential descriptor 

of the chloride profile at one-year exposure than older ages. The 

supplementary cementitious materials appeared to be more informative 

for describing chloride ingress into concrete pores at three and six years of 

exposure but not at earlier age. The utilization of supplementary 

cementitious materials in concrete alters the kinetics of hydration. This 

change modifies the microstructure of the concrete, and thus changing its 

long-term durability properties [153–155]. This reason explains why the 

supplementary cementitious materials characterize the chloride 

concentration at older ages. As in supplementary cementitious materials, 

the importance of the aggregate size distribution in predicting the chloride 

profile also appeared to be less significant at the age of one year. For 

example, three predictors representing aggregate size distribution (Agg. 

<0.125 mm, Agg. <0.250 mm, and Agg. <4 mm) got importance ranks of 

11th, 12th and 13th, respectively in Model B.3(i). Whereas they got 5th, 6th and 

9th in Model B.3(ii), and 4th, 6th and 8th in Model B.3(iii). Some of the 

parameters are not shown in Figure 4.8 since it consists only the top six 

predictors due to readability reason. These three aggregate size 

distributions contribute about 7%, 13%, and 15% in predicting the chloride 

penetration at the age of one, three, and six years, respectively. This can be 

described by the alteration of the ITZ properties over time.  

The significance measure of the aggregate size distribution and the 

aggregate content on concrete exposed to deicing environment at specific 

exposure times that are determined by the developed model is illustrated 

in Figure 4.9. In Model A.3 (utilizes all input parameters), it can be 

observed that the contribution of the aggregate size distribution in 

describing the ingression of chloride ions into concrete has increased with 

exposure time. In Model B.3 (employs all parameters from concrete mix 

ingredients, distance from highway and Dnssm), the influence of the 

aggregate size distribution is insignificant at earlier age than exposure time 

of three and six years. However, the reverse phenomenon has been 
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observed in case of aggregate content in both models with even negative 

importance measure at later age. This demonstrates that after some years 

of exposure, aggregate content does not have a predictive power to 

determine the chloride concentration in concrete. There are studies that 

concluded the aggregate content influences the chloride penetration into 

concrete but not the aggregate size distribution [16,17]. But they come up 

with this finding by validating the model with mortars exposed to chloride 

for short term, three weeks and 15 months. The evaluation at one-year 

exposure time in Figure 4.9 also shows aggregate content influences the 

chloride penetration more than the aggregate size distribution, but it is the 

opposite at three and six years of exposure. In addition to the aggregate 

size distribution, findings of Publication III revealed that utilization of 

supplementary cementitious materials in concrete production plays a role 

in characterizing the chloride penetration into concrete at later age. Hence, 

all these confirm that generalizing results that are acquired from short-

term laboratory/field examination is inappropriate.  

In another perspective, the findings of this scenario confirmed that Dnssm 

derived from the chloride profile at early age is not always describing the 

chloride profile of concrete. Though this property is widely applied as a 

durability indicator, it appeared to be impotent to describe the chloride 

permeability of concrete in the case of Model A of this scenario where a 

range of fresh and hardened concrete properties were considered for 

training the model. But the Dnssm becomes a significant descriptor at the 

age of one year in the case of Model B of this scenario where only the 

concrete mix ingredients and the Dnssm were considered for the model 

training. This proofs that best indicators of chloride permeability of 

concrete determined from short-term experiment are not always powerful 

predictors. Similar to scenario two, the aggregate size distribution, the 

amount and type of plasticizers and the supplementary cementitious 

materials were discovered as best indicators of chloride profile of concrete. 

These parameters are missed in the conventional chloride concentration 

prediction models. 

Overall, distance from highway, compressive strength, total effective 

water and cement content are the top four best predictors of chloride 

profile in all age groups identified by Model A.3. These parameters, except 

compressive strength, are also among the top three influential predictors 
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of chloride ingress in all age groups in case of Model B.3. The remaining 

significant predictors identified by each model are varying at each 

exposure time. Indeed, it is well known that transport of chloride ions into 

concrete pores decreases with exposure time due to the change in 

microstructure. Even depending on the exposure condition, the chloride 

ions may leach out from the concrete pores, which in turn lessen the 

chloride concentration. For instance, 45% of the cases utilized in this 

scenario showed that the chloride profiles measured at one year of 

Figure 4.9. Significance measure of aggregate size distribution and aggregate content 
with respect to exposure time in Models A.3 and B.3 (Publication III). 
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exposure is larger than those after three years of exposure. Similarly, 39% 

of the concretes exposed to six years had lower chloride concentration than 

those exposed only for three years. Even, 35% of the cases revealed that 

the chloride profile after six years of exposure is lower than those after only 

one year of exposure. This may explain why some of the discovered 

predictors are varying at different exposure time and the complexity of 

chloride profile predictions. 

4.3.4 Evaluating prediction power of the influential parameters 

The contribution of the determined top six influential parameters in 

predicting the chloride penetration in all the above three scenarios was 

evaluated using unseen data. The evaluation was carried out using the 

respective models of the scenarios by employing three input data 

categories. In the first category, the inputs were all parameters presented 

in Table 3.5. The second category entails the top six significant parameters 

that were determined by the ensemble method in their respective models. 

In the third category, the most widely utilized parameters in the classical 

models (cement content, total effective water, chloride migration 

coefficient, exposure time and distance from highway lane) were 

employed. The contributions of the parameters considered in the three 

categories were evaluated using the MSE of the ten models. The MSEs of 

the models for all the three categories are given in Table 4.5. These MSE 

values are average of ten iterations. It can be recognized from Table 4.5 

that the MSEs of all models which consider the top six significant 

parameters (second category) is smaller compared with the first category. 

The decrement in MSEs is noticeably large except in case of Models A.2 

and B.2. This result demonstrates that the use of several parameters does 

not warrant accurate predictions. It is also recognized that the MSEs of all 

models with top six influential parameters is smaller than the MSEs of the 

third category except Models A.2 and A.3(i). For example, 19% reduction 

in MSE is perceived in Model B.3(iii) of the second category compared to 

that of the third category. In the same model, the second category achieved 

34% less MSE than the first category. This proofs that data-driven models 

that take into account the influential parameters have the ability to provide 

a more accurate chloride-profile prediction.  
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4.4 Hygrothermal behaviour prediction  

In this section, the results of Publication IV which answers the research 

question four, “how to predict the hygrothermal interaction inside 

surface-protected concrete while identifying the appropriate surface-

protection system?”, are discussed. As presented in Section 3.6, the 

surface-protection systems were applied on the five outermost layer of the 

façade elements of the case structure and labelled as S1, S2, S4, S5, and S6. 

S1 and S2 are coated with cementitious materials, whereas S4, S5, and S6 

are treated with organic coating materials that are obtained from different 

manufacturers.  

The hygrothermal prediction model was developed by utilizing two years 

of the monitored data. The training performance of the model for 

predicting the relative humidity and temperature inside all surface-

protected concrete façade members are illustrated in Figure 4.10 and 

Figure 4.11, respectively. It is clearly seen from Figure 4.10 that the 

performance of the applied surface treatments in controlling the relative 

humidity is varying. The relative humidity in S1 and S2 is largely above 

90% and 80% respectively, whereas in S5 and S6 it is above 70%. The 

relative humidity in S4 is mostly in the range between 60% and 100%.  The 

temperature interaction in all façade members are almost in the same 

range as seen in Figure 4.11. It can also be observed that the correlation 

coefficients (R-values) for the prediction of the inner relative humidity and

Model names Mean-square error 

Category 1 Category 2 Category 3 

A.1 1.43E-04 1.21E-04 1.37E-04 
B.1 1.37E-04 1.18E-04 1.35E-04 
A.2 1.70E-04 1.64E-04 1.58E-04 
B.2 1.60E-04 1.52E-04 1.59E-04 
A.3(i) 8.66E-05 7.29E-05 6.93E-05 
A.3(ii) 2.31E-04 1.62E-04 1.67E-04 
A.3(iii) 4.10E-04 3.01E-04 3.36E-04 
B.3(i) 8.66E-05 7.26E-05 7.80E-05 
B.3(ii) 2.30E-04 1.62E-04 1.69E-04 
B.3(iii) 3.75E-04 2.80E-04 3.33E-04 

 

Table 4.5. Chloride profile prediction models’ error on the three categories (Publication 
III). 
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Figure 4.10. Training performance of hygrothermal model: inner relative humidity. Y 
and T are predicted and measured, respectively. 
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Figure 4.11. Training performance of hygrothermal model: inner temperature. Y and T 
are predicted and measured, respectively. 
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temperature for all façade elements are close to one. This demonstrates 

that the developed model, during the training phase, track effectively the 

actual measured relative humidity and temperature inside the surface-

protected concrete façade members.  

The validity of any successfully trained machine learning based model is 

evaluated based on their generalization capability. Such a model should be 

able to perform well when it is presented with unseen data within the range 

of the input parameters that are utilized during the model training phase. 

The performance of the developed hygrothermal models in predicting the 

inner hygrothermal behaviour were tested using the unseen datasets of the 

ambient relative humidity and temperature which covers the 

measurements of the last 90 days. The measured and the predicted relative 

humidity and temperature in concrete façade element S4 is illustrated in 

Figure 4.12. It can be seen that the predicted relative humidity and 

temperature are almost similar with the actual ones. The MSE of the 

predicted inner relative humidity and temperature were 7.89 and 2.44, 

respectively. The MAE of the predicted relative humidity and temperature 

were 4.04 and 0.89, respectively. As the MAE value has the same unit as 

the data, the average errors of the relative humidity and the temperature 

are about ±4% and ±0.89 °C, respectively. The MSEs and MAEs of the 

temperature are smaller than the relative humidity since the ambient 

temperature does not fluctuate extensively unlike the ambient relative 

humidity. Overall, the test results confirmed that the developed model 

predicts the hygrothermal behaviour inside surface-protected concrete 

façade element with rationally low error despite some missing data in the 

training dataset. 

The test errors of the developed hygrothermal models for each concrete 

façade elements are presented in Table 4.6. These values are the average 

of ten statistical measures for each façade element. Although the model 

development principles are identical, each model was optimized for each 

façade elements because their hygrothermal behaviours are dissimilar due 

to the difference in the applied surface-protection materials and methods. 

The lower the value of the error statistics (MSE, RMSE, and MAE) is the 

better the prediction accuracy of the model. The small MSE values of the 

predicted relative humidity and temperature confirm that the developed 

model has high generalization capability. It can be observed from Table 
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4.6 that the MSE, MAE and RMSE of the temperature are smaller 

compared to their corresponding values of the relative humidity. The MSE 

and RMSE of the temperature are almost equal for all façade members. 

Though the error measures for each façade elements are different, the 

error values are generally low which proof the suitability of the developed 

model for examining the hygrothermal performance in surface-protected 

concrete façade elements. 

The developed data-driven hygrothermal prediction models were able to 

learn the hygrothermal interrelation inside surface-protected concrete 

façade elements using data obtained from sensors and perform fairly 

accurate prediction without the need for other mathematical solutions. 

The prediction allows to perform a pragmatic evaluation of the case 

structure in order to make rationally accurate schedule for maintenance 

measures, which in turn lessens the associated costs remarkably. With the 

availability of long period of measured hygrothermal data, the 

performance of the developed models adaptively enhances and thus able 

to generate more long-term predictions. In addition, increasing the 

number and types of the monitored structures that are situated in different 

locations results in getting more divers data that help to make the model 

results to be applicable for a wide range of cases.  

4.4.1 Corrosion status of façade elements 

In order to determine the protection performance of the applied surface-

treatment systems against corrosion of reinforcement bar, the correlation 

between the hygrothermal and the corrosion rate is needed. The corrosion 

rate of the embedded reinforcement bar can be computed using Equation 

(4.4) [156–158]. 

Table 4.6. Statistical performance measurement of the developed hygrothermal 
prediction model on test dataset (Publication IV). 

 Façade 
element 

MSE  MAE  RMSE 
Relative 
humidity 

Temperature  Relative 
humidity 

Temperature  Relative 
humidity 

Temperature 

S1 3.5074 2.8867  5.0236 0.7265  1.8728 1.6990 

S2 4.3062 2.7960  4.4686 0.7756  2.0751 1.6721 

S4 5.8039 2.8320  3.9995 0.8875  2.4091 1.6829 

S5 4.0053 2.5812  4.1923 0.8125  2.0013 1.6066 

S6 3.9371 2.5936  4.4386 0.6289  1.9842 1.6105 
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𝑟 = 𝐶𝑇𝑟𝑜,           (4.4) 

 

where 𝑟 is the rate of corrosion [µm/year], 𝐶𝑇  is the temperature 

coefficient, and 𝑟𝑜 is the rate of corrosion at +20 °C [µm/year]. 𝐶𝑇   and 

𝑟𝑜 are time-variant variables which are dependent on the temperature and 

relative humidity inside the concrete, respectively. For carbonated 

concrete, 𝐶𝑇  and 𝑟𝑜  can be described by Equations (4.5) to (4.7) [156,158]. 

 

𝐶𝑇 = 1.6 ∙ 10
−7(30 + 𝑇)4,                                                                    (4.5) 

 

𝑟𝑜 = 190 ∙ (𝑅𝐻)
26  when 𝑅𝐻 ≤ 0.95,                                                          (4.6) 

 

𝑟𝑜 = 2000 ∙ (1 − 𝑅𝐻)
2  when 𝑅𝐻 > 0.95,                                                     (4.7) 

 

where 𝑇 is the inner temperature [°C] and  𝑅𝐻 is the inner relative 

humidity [%] of the pore structure. 

The corrosion rate was computed by employing the measured and the 

predicted hygrothermal data only for the last one year of the data. The 

computed corrosion rate values are translated to corrosion status based on 

the classification (passive, low, moderate, and high) as given in Table 4.7, 

[159,160]. The corrosion state of the last one year is visualized by utilizing 

the developed exploratory data analysis technique (Section 3.7) and it is 

illustrated in Figure 4.13. The developed data exploratory method helps to 

easily visualize the corrosion status of the façade elements throughout the 

year. The unidentified amount of the corrosion rate due to the malfunction 

of the hygrothermal probes in the reference concrete façade member is left 

blank in the figure (white colour). It can be noticed from Figure 4.13 that 

the state of corrosion analysed using the monitored and the predicted data 

is almost identical. In both situations, the corrosion status for the concrete 

façade members S4, S5, and S6 is low and passive, whereas for S1, S2, and 

Corrosion rate [µm/year] State of corrosion 

< 1 Passive 
1- 5 Low 
5-10 Moderate 
>10 High 

 

Table 4.7. Classification of corrosion status.  
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S3 it ranges from passive to high. Among all the façade elements, S1 and 

S2 provide poor protection against the progression of corrosion. Even if 

the surface of both façade elements were coated by the same materials 

from different manufacturers, the coating applied on façade element S1 

offers the poorest protection. This reveals that not only the type of the 

coating materials but also their source and/or application technique has 

influence on the protection performance of the coating. It can also be 

observed that the corrosion status is varying within a short period of time 

in façade elements S1 and S2. This demonstrates that corrosion rate 

prediction based on the traditional instantaneous electrochemical 

measurement may under or overestimates its value. Hence, 

implementation of a long-term hygrothermal monitoring and modelling 

strategy is essential.  

4.4.2 Status of frost and chemical attacks  

As discussed in Section 2.2.2, surface-protection systems are commonly 

applied on the surface of RC structures to protect the corrosion of 

reinforcement bar since they act as a physical barrier preventing the 

penetration of moisture. Nevertheless, some of the applied surface-

protection systems may cause other type of deteriorations unintentionally. 

Due to this, the effectiveness of the surface-protection systems was 

evaluated by considering the effect of moisture on frost and chemical 

attacks. To analyse these attacks, four risk levels were defined 

(insignificant, slight, medium, and high) as in [28] and presented in Table 

4.8. 

The sensitivity of the surface-treated concrete façade elements for frost 

and chemical attacks on the second year was analysed using the monitored 

and the predicted data based on the defined risk levels. It is visualized 

Effective relative humidity Risk levels 

Frost attack Chmical attack 

Very low (RH < 45%) Insignificant Insignificant 
Low (RH = 45-65%) Insignificant Insignificant 
Medium (RH = 65-85%) Insignificant Insignificant 
High (RH = 85-98%) Medium Slight 
Saturated (RH > 98%) High High 

 

Table 4.8. Risk level classification of frost and chemical attacks. 
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using the developed exploratory data analysis method and illustrated in 

Figure 4.14. The unknown deterioration risk levels caused by the failure of 

the hygrothermal probes in the reference façade element is left blank and 

represented in the figure by white colour. It can be noticed from Figure 

4.14 that the sensitivity differences between the monitored and the 

predicted data are inconsiderable for both type of attacks. Organic coatings 

outperform the cementitious ones in protecting the concrete elements 

against frost and chemical attacks while hindering the rate of corrosion. 

The cementitious coatings applied on the surface of S1 and S2 façade 

elements are ineffective in defending the concrete against frost and 

chemical attacks. Coating applied on surface of S1 is less protective than 

S2. This confirmed that the coating application techniques and their 

source influence the performance of the surface treatment in protecting 

against corrosion as well as frost and chemical attacks. 
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Chapter 5 

Discussion  

This chapter presents the implications of the dissertation findings as well 

as the reliability and validity of the undertaken research. It also discusses 

recommendation for future research directions. The discussion of 

theoretical and practical implications of the research to the scientific 

community, society and companies is necessary in order to facilitate the 

transfer of the discovered knowledge and methodologies. Assuring the 

reliability and validity of the research is vital in order to confirm the 

credibility of the findings of this dissertation.   

5.1 Theoretical implications  

As discussed in Chapter Two, the conventional models that predict the 

carbonation depth and the chloride concentration in concrete rely on 

limited parameters. Clear understanding of the significance of all involving 

parameters that describe the carbonation process and the penetration of 

chloride ions into concrete is critical in order to develop reliable and 

reasonably precise prediction models. The research results of this 

dissertation have established methods for prediction of carbonation depth 

and the ingression of chloride ions into concrete as well as measuring of 

parameters significance. These methods are based on machine learning 

techniques.    

The findings based on the developed method of parameters significance 

measure revealed that accelerated carbonation depth, w/b and 

compressive strength are the three foremost powerful predictors of the 

carbonation depth. These are well recognized parameters and have been 

considered in the conventional models. The next three determined 

carbonation depth predictors are the amount of plasticizers, the 

carbonation period, and the air content. This is an interesting finding since 

these parameters, except the carbonation period, are overlooked in various 

conventional models. This finding is supported by the previous works 

[143,144]. These earlier researches claimed that different types of 
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plasticizers govern the carbonation resistance of concrete through their 

influence on the pore structure and the morphology of the hydrated 

product. The research results of this dissertation also highlight the 

importance of air-entraining admixtures in characterising the carbonation 

process. Though the main purpose of air-entraining admixtures is to 

improve the resistance of the concrete against frost attack, it also affects 

the carbonation process. In fact, the discovered parameter by the CaPrM 

was the air content. This parameter can explain the effect of air-entraining 

admixtures as they heavily controlled it. The finding of air-entraining 

admixtures as influential descriptor is complemented by earlier researches 

[145,146]. These researches were made on concrete specimens of different 

mix compositions exposed to indoor and outdoor environments. They 

pointed out that the air-entraining admixtures increase the carbonation 

resistance of concrete.  

The discovered topmost powerful predictors of chloride penetration 

representing the mix composition of the concrete are cement content, 

amount of total effective water, aggregate size distribution, supplementary 

cementitious materials, amount and type of plasticizers. The cement 

content and the amount of total effective water (usually designated in the 

form of water-to-cement ratio, w/c) are taken into consideration in 

numerous traditional chloride concentration prediction models. 

Nevertheless, the aggregate size distribution is not considered in the 

conventional models and its role in describing chloride penetration into 

concrete is often controversial. There are earlier researches that concluded 

the aggregate content influences the chloride penetration into concrete but 

not the aggregate size distribution [16,17]. But they come up with this 

finding by validating the model with mortars exposed to chloride 

environment for short term, three weeks and 15 months. Indeed, the 

findings of this dissertation agree with [16,17] for the case of one year 

exposure but contradicting them at older ages (three and six years). In 

addition to the aggregate size distribution, the findings of this research 

revealed that utilization of supplementary cementitious materials in 

concrete production plays a role in characterizing the chloride penetration 

into concrete at later age. Contrary to the aggregate size distribution, the 

amount and type of plasticizers describe the chloride profile of concrete at 

one-year exposure than older age. All these findings confirm that 
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generalizing results that are acquired from short-term laboratory/field 

examination is inappropriate. 

The dissertation discovered the amount and type of plasticizers as a 

predominant descriptor of the chloride profile. This parameter is not 

considered in the conventional chloride concertation prediction models. 

Indeed, there are several studies which demonstrated that plasticizers 

alter the pore characteristics of the hardened concrete. However, the effect 

of the type of plasticizers on chloride permeability is still insufficiently 

studied. The finding of the type of plasticizers as influential predictor of 

chloride profile is supported by previous study in [152]. The findings of 

this dissertation also showed that the air-entraining admixture influences 

the chloride ingress into the concrete. This parameter is not taken into an 

account by the conventional models. Even if very few researches have been 

performed on understanding the effect of air-entraining admixtures on 

chloride transport, the research in [150] is in line with the above finding.  

Among several advanced fresh and hardened concrete properties, the 

compressive strength was determined as an influential descriptor of 

chloride concentration in concrete. This is not a new finding and it has 

been considered by several conventional models as a predictor. Next to this 

parameter, Dnssm
 was discovered as a predominant chloride profile 

predictor. The significance of this predictor is higher at earlier age than 

exposure time of three and six years. In scenario where a range of fresh 

and hardened concrete properties were considered, the findings revealed 

that the prediction power of Dnssm to describe the chloride profile has 

diminished. Other few properties that describe the pore volume of the 

concrete (air content, air pores as well as capillary and gel porosity) 

characterize the chloride concentration better than Dnssm. All these facts 

demonstrate that several advanced laboratory tests executed at early age 

are insignificant in predicting the chloride concentration in concrete. In 

addition, the nonsteady-state chloride diffusion coefficient derived from 

the chloride profile at early age is not always describing the chloride profile 

of concrete. 

All the above findings have important theoretical implications. The 

results of the developed data-driven models proof their ability in isolating 

the effect of particular parameters out of several interdependent complex 

corrosion causing parameters. Understanding the contribution of 
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parameters in predicting the carbonation depth and the chloride 

penetration could help researchers to focus their research on concrete 

materials that can resist well carbonation and chloride ingression. In 

addition, discovering the optimal influential parameters that best predict 

the carbonation depth and the chloride profile is critical in order to develop 

parsimonious and accurate model. In another perspective, the results of 

this dissertation serve as a show case for researchers to conduct similar 

scientific research on other concrete deterioration mechanisms by 

adopting data-driven models. 

5.2 Practical implications  

The penetrations of CO2 and Clˉ into concrete are the predominant factors 

that initiate corrosion of reinforcement bar. Accurate estimations of the 

carbonation depth and the chloride concentration in concrete are crucial 

to make realistic decisions regarding the maintenance plan of RC 

structures. Establishing analytical models that fully represent the 

carbonation process and the chloride ingression is challenging. This is due 

to the complex nature of the degradation mechanisms as well as the 

availability of a wide variety of concrete mix types and exposure 

conditions. In another perspective, once the corrosion initiates, the rate of 

corrosion is primarily governed by the hygrothermal interaction through 

their influence on the electrochemical reactions. In this dissertation, data-

driven models that evaluate the carbonation depth, chloride profile and 

hygrothermal behaviour were developed.   

The carbonation depth and chloride profile prediction models were able 

to discover new influential parameters which were missed in the 

conventional models. The discovered useful knowledge could assist 

companies to produce concrete that has the ability to resist against 

carbonation and/or chloride attack. Using the developed models, the 

material engineer/concrete designer can evaluate the performance of the 

newly designed concrete against carbonation and chloride penetration. 

Both models can be applied to evaluate the depth of carbonation and the 

chloride profile anywhere as far as there is a readily available input data to 

train them. All these facts have huge economical implication to the society 
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since the models assist in designing optimal concrete mixes and defining 

proactive maintenance plan, which in turn minimize the lifecycle costs. 

The developed data-driven hygrothermal model is a practical approach 

to evaluate the performance of surface-protection systems. This model 

along with the exploratory data analysis technique allows a more realistic 

evaluation of corrosion condition and other deterioration mechanisms 

caused unintentionally by the implemented surface-protection systems. In 

practice, this evaluation result helps the engineer/owner in choosing 

appropriate surface-protection system for the RC structure under 

consideration. As in any data-driven models, longer-term prediction 

becomes achievable when the amount of training data increases. This 

helps in determining the deterioration of the surface-protection materials 

well in advance, leading to proactive maintenance which ultimately saves 

the lifecycle costs substantially.  

All the developed data-driven models are robust and reproducible with 

no or little effort by anyone who already has data or can acquire 

monitoring systems to collect data. The models with long-term data can be 

used to carryout corrosion assessment of structures accurately, which in 

turn enable to perform timed maintenance measures. Indeed, as presented 

in Section 4.1, with the advancement of sensing technologies, 

infrastructure of the next generation will integrate the physical 

infrastructures with cyber infrastructures which comprise wireless 

sensors, networks and computing devices. There is no doubt that data-

driven based models presented in this dissertation will be the integral 

components of tomorrow’s cyber-physical infrastructure systems. So, the 

developed models will play a substantial role in making proactive decisions 

and/or preparing short- and long-term plans to manage RC structures 

efficiently. 

5.3 Reliability and validity  

The reliability and validity of the research undertaken in this dissertation 

have been confirmed. All the findings of this research were deduced using 

the developed data-driven prediction models of carbonation depth, 

chloride penetration, and hygrothermal interaction. The validity of all the 

models was verified with unseen data and the verification outcomes have 
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proofed their high accuracy prediction capability. The reliability of all the 

models was validated by using different unseen/test dataset and analysing 

the residuals. Detail verification procedures of all the developed models 

are presented in Chapter Four. The resulting residuals of all the models fell 

within the acceptable range and demonstrated the high generalization 

ability of the models. To ensure the stability of the models that are 

developed to determine the significance of parameters, the whole 

processes were reiterated ten times and the average of the ten outputs were 

taken as a final result. Though, the averaged values were taken into 

consideration, the difference among the ten outcomes were insignificant. 

All these facts confirm that the research outcomes of this dissertation are 

reliable and valid.  

Lack of spatially dispersed experimental data can be seen as limitations 

of this dissertation. The models that were developed to examine the 

significance of parameters in predicting chloride profile employ data 

obtained from concrete specimens which were located at Kotka, Finland. 

These specimens were placed in identical altitude and experience similar 

multi-deterioration actions throughout the field experiment period. Due 

to this, factors describing the boundary conditions of the concrete 

specimens, the amount and frequency of sprinkled deicing salt in the 

highway, the climatic situations, the altitude where the concrete specimens 

placed, the amount of carbon dioxide in the environment and the traffic 

density, are the same. It is obvious that these parameters play a significant 

role on the chloride penetration, and thus incorporating data from 

different field experiments could help to measure the importance of these 

factors. The same is also true in the case of the CaPrM. All the concrete 

specimens employed as input data for the CaPrM were placed at Espoo, 

Finland. The curing conditions and methods as well as the environmental 

situations for all concrete specimens were identical. Due to this, it was 

impossible to measure the importance of these parameters in predicting 

the carbonation depth. The data utilized in the hygrothermal model were 

also gathered from surface-protected concrete façade of a building situated 

in Vantaa, Finland. Except the applied coating materials and their 

application methods, all the conditions that govern the hygrothermal 

performance such as the concrete mix composition, the depth of concrete 

cover, and the curing condition of the concrete panels were identical. This 
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was the reason for considering only the hygrothermal data for model 

training. It would have been interesting if these parameters were different 

and able to evaluate their effect on predicting the hygrothermal 

performance of surface-protected concrete panels.  In addition, the data 

come from a single structure, lacking consideration of different 

environmental conditions. This limits the application of the model results 

in a wide range of cases.   

5.4 Recommendations for future research 

In this thesis, the addressed degradation mechanisms that cause and 

control the corrosion of reinforcement bar are carbonation, chloride 

penetration and hygrothermal interaction. These degradation 

mechanisms were dealt separately using data obtained from three 

different case structures, one for each deterioration mechanism. In fact, 

the chloride penetration study was carried out using concrete specimens 

exposed to deicing salts as well as freezing and thawing. But the effect of 

freeze-thaw cycling was not separately studied due to lack of spatially 

disperse concrete specimens in the training dataset. In reality, all the 

described degradation mechanisms affect the corrosion of reinforcement 

bar simultaneously or consequently. It is a well-known fact that the 

influence of the synergic deterioration progresses faster and severe than 

the effect caused by any single degradation process. With the advancement 

of durability sensors, it will soon be practical to simultaneously monitor all 

the parameters which describe the degradation mechanisms in a single 

concrete element. In the future, it is highly recommended to monitor all 

corrosion causing and controlling mechanisms simultaneously in a single 

concrete element in both laboratory and field environments. In addition, 

data should be collected from spatially dispersed RC structures. Once data 

are available, it is possible to follow the same modelling approaches that 

were presented in this dissertation and the significance of various 

parameters involved in the synergic deterioration mechanisms on 

corrosion of reinforcement bar can be understood. After determining the 

influence of several complex interacting parameters on corrosion of 

reinforcement bar, more reliable and valid model can be established in 

order to assess the corrosion of reinforcement bar. This assessment helps 
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to define proactive maintenance plan that enable reduction of lifecycle 

costs. The discovered knowledge could also assist researchers and 

designers working in concrete durability to produce concrete that resist 

well these deterioration mechanisms.   
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Chapter 6 

Conclusions  

In this dissertation a data-driven framework for evaluating corrosion 

causing and accelerating factors in concrete structures is presented. The 

framework was realized through the developed data-driven carbonation 

depth, chloride profile and hygrothermal performance prediction models. 

By utilizing these models i) better prediction accuracy for all the models 

has been achieved; ii) previously overlooked influential carbonation and 

chloride predicting parameters have been discovered; iii) it has been 

discovered that the influence of some of the chloride profile predicting 

parameters vary significantly based on exposure time, and iv) efficient 

surface-protection materials that protect concrete façade elements from 

corrosion as well as chemical and frost attacks have been determined.  

The thesis demonstrated that estimation of corrosion onset utilizing 

conventionally applied corrosion assessment methods in the form of 

analytical equations is uncertain since they are formulated by considering 

several simplifications and assumptions. The developed data-driven 

models mitigate uncertainties by mapping inputs (multiple complex 

corrosion controlling parameters) to the output that closely approximate 

the desired output values. The mapping was performed through learning 

algorithms that are capable of handling highly nonlinear interacting 

parameters with rational computational time. This allows evaluating all 

the influential parameters as a group rather than individually, which in 

turn ensures the reliability of the prediction since imperative dependencies 

are not overlooked.  

The performance comparison of the developed carbonation depth 

prediction model with the conventional one confirmed the prediction 

superiority of the developed data-driven carbonation model. The error 

difference between the two was significant. The conventional one has 

about two-fold more MSE than the developed data-driven carbonation 

model. The performance analysis of the developed data-driven 

hygrothermal model revealed its prediction capability with low error. This 

data-driven approach is a better alternative method since understanding 
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the interaction of different surface-protection systems with the substrate 

concrete is a highly complex process. The integrated exploratory data 

analysis technique with the hygrothermal model had eased the challenge 

of selecting appropriate surface-protection materials that protect 

effectively from corrosion as well as chemical and frost attacks. 

The developed carbonation depth and chloride profile prediction models 

discovered the best predictors of carbonation depth and chloride 

ingression by measuring the significance of all the considered input 

parameters. Among the input parameters, the amount of plasticizers and 

the air content are the most predominant carbonation depth predictors. 

These two parameters are overlooked in various conventional models 

despite few studies that demonstrate the effect of plasticizers in improving 

the carbonation resistance of concrete. In case of chloride penetration, the 

aggregate size distribution, the amount and type of plasticizers, and the 

supplementary cementitious materials are among the discovered 

influential predictors. These parameters are missed in the conventional 

chloride concentration prediction models. This finding corroborates that 

several advanced laboratory tests (except those describe the air-void 

characteristics of concrete) executed at early age are insignificant in 

predicting chloride concentration in concrete. This proofs that best 

predictors of chloride permeability of concrete determined from short-

term experiment are not always powerful predictors in long term. By 

employing the determined influential parameters, the MSE of the chloride 

profile prediction was decreased by up to 19% compared to the results that 

employ only conventionally agreed variables. This improvement in MSE 

confirmed that the developed data-driven models have the capability of 

determining optimal subset of influential variables that best predict the 

chloride profile. In addition, the parameters importance measure revealed 

that the effects of supplementary cementitious materials are more 

pronounced at a later age, whereas chloride migration coefficient 

influences at earlier age. It also demonstrated that several of the early-age 

fresh and hardened concrete property tests are insignificant in describing 

the chloride ingression into concrete. This proofs that evaluation of long-

term chloride transport into concrete using short-term tests is unrealistic.   

Understanding the influential predictors help companies to produce 

optimized concrete mix that is able to resist carbonation and chloride 
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penetration and thus enable reduction of lifecycle costs. The same models 

can be applied to evaluate the performance of the newly designed concrete 

against carbonation and chloride penetration if they are exposed to similar 

conditions that are used in training the models. In addition, discovering 

the optimal influential parameters that best predict the carbonation depth 

and chloride profile assists researchers to develop efficient and 

parsimonious corrosion assessment models as well as focus their research 

on concrete materials that can resist well these deteriorations. 

Furthermore, the results of this dissertation serve as a show case for 

researchers to conduct similar scientific researches on other concrete 

deterioration mechanisms by developing data-driven models.   

The developed models play substantial roles in making proactive 

decisions and/or preparing short- and long-term plans to manage RC 

structures efficiently. All the developed corrosion assessment models are 

robust and reproducible with no or little effort by anyone who already has 

data or can acquire monitoring systems to gather data. The prediction 

results of the models adaptively adjust depending on the input data (the 

composition of the case structure and exposure conditions). With the 

advancement of sensing technologies, the next generation infrastructure 

will have sensing systems integrated into them, making data driven based 

condition assessments the primary choice. Therefore, the presented data-

driven framework will be one of the key components for smart aging 

management of RC structures. 
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Accurate service-life prediction of structures is vital for taking appropriate measures in a time- and cost-effective
manner. However, the conventional prediction models rely on simplified assumptions, leading to inaccurate es-
timations. The paper reviews the capability of machine learning in addressing the limitations of classical predic-
tion models. This is due to its ability to capture the complex physical and chemical process of the deterioration
mechanism. The paper also presents previous researches that proposed the applicability of machine learning in
assisting durability assessment of reinforced concrete structures. The advantages of employingmachine learning
for durability and service-life assessment of reinforced concrete structures are also discussed in detail. The grow-
ing trend of collecting more andmore in-service data using wireless sensors facilitates the use of machine learn-
ing for durability and service-life assessment. The paper concludes by recommending the future directions based
on examination of recent advances and current practices in this specific area.
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1. Introduction

The durability and service life of the reinforced concrete (RC) struc-
tures are one of the foremost problems faced by the construction

industry for the past few decades. Degradation of RC structures induced
by corrosion causes severe problem all over the globe [1–8]. It has been
reported that corrosion associated maintenance and repair of RC struc-
tures cost multibillion USD per annum. Repairing of corrosion-induced
damage in Western Europe alone costs 5 billion EUR annually [9]. Sur-
prisingly, for corrosion related damage and control, some developed
countries spend nearly 3.5% of their gross national product (GNP) [10].
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In another perspective, continued corrosion of reinforcement bar
(rebar) is also the most prevalent form of deterioration in repaired RC
structures, which accounts for 37% of the failure modes [11–13]. This
leads to costly and time consuming repairs of repairs.

Clear understanding of the concrete performance is critical in order
to estimate the durability and the service life of a structure. Most of
the time, performance of concrete is assessed under the influence of sin-
gle deteriorationmechanism. However, in reality, several complex deg-
radation mechanisms affecting the performance of concrete can act
simultaneously or consequently [14,15]. The effect of the synergic deg-
radation mechanisms is more faster and severe than the effect of any
single action participating in the deterioration process [16–18]. Measur-
ing the influence of the combined degradationmechanisms in laborato-
ry and translating the results to an actual structure is impracticable.
Moreover, concrete performance investigation either in laboratory or
in field often tends to be time consuming and costly (directly and indi-
rectly) [19]. For instance, conventional in-service inspection and main-
tenance programs of highway structures cause traffic delay which
accounts for between 15%–40% of the construction costs [20]. Hence,
cost-effective reliable prognosis of the concrete performance while in
service, from economy and safety perspective, is prerequisites of life-
cycle management of RC structures.

The implementation of durabilitymonitoring systems in RC structures
could allow identifying deterioration at an early stage. The accessibility of
short- and long-term data with spatial and temporal resolution from the
monitoring system is a critical underlying necessity for better durability
assessment of RC structures. Data collected from the monitoring system
have to be analysed efficiently in order to use them for estimation of
the remaining service life of a structure. Indeed, data on their own are
pointless unless either knowledge or an inference is extracted out from
them. Machine learning can be implemented to analyse the monitored
complex data and it can deliver more accurate results that can guide
better decisions even in real-time without human intervention, e.g.,
fault diagnosis [21], and tsunami early warning system [22]. Machine
learning techniques have been used extensively for a broad range of
applications and its employment in civil engineering is not new. Current-
ly, machine learning technique has a broad application prospects in the
field of civil engineering to solve complex practical problems.

The objectives of this paper are threefold: (i) to present the current
practice on durability assessment focusing on penetration of aggressive
substances into concrete causing corrosion of rebar; (ii) to discuss the
role of machine learning techniques in improving the accuracy of dura-
bility and service-life assessments; and (iii) to give an insight on the fu-
ture direction of durability monitoring and service-life prediction of RC
structures.

The structure of the paper is as follows. In Section 2, the conditions
causing corrosion of rebar in RC structures are presented. The conven-
tional models which are used to evaluate the durability and the remain-
ing service life of RC structure along with their limitations are also
discussed in the same section. The fundamental knowledge onmachine
learning is provided in Section 3. In Section 4, the application ofmachine
learning techniques, in two specific areas, in the field of civil engineer-
ing is discussed. In Section 5, the current practices of machine learning
techniques in durability and service-life assessment aswell as durability
monitoring systems are presented. The future direction of durability
monitoring and service-life prediction approach is also explained in
the same section. Finally, conclusion is presented in Section 6.

2. Durability and service life of RC structures

Corrosion of rebar in concrete is typically triggered by ingression of
either carbon dioxide (CO2) or chloride ions (Cl−) into the concrete
pores. Naturally, concrete is alkaline with a pore solution pH of 12–13
that passivizes embedded rebar. The passivation of rebar is deteriorated
by the occurrence of Cl− or by the carbonation of concrete [23–25]. Car-
bonation is a physicochemical phenomenon induced naturally by the

ingression of CO2 into the concrete pores from the surrounding environ-
ment and reacts with hydrated cement [26,27]. Both carbonation- and
chloride-induced corrosion of rebar may diminish its cross-sectional
area, degrade its elongation ability and cause serious cracks to the con-
crete, which in turn reduces the load-bearing capacity of the structure
considerably. Cracked concrete could offer more ready access to mois-
ture and aggressive gases and ions such as oxygen (O2), CO2 and Cl−

leading to aggravated rebar corrosion and degradation of concrete. Con-
sequently, the serviceability, strength, safety and service life of concrete
structures will be diminished [6–8,28]. Although chloride-induced cor-
rosion of rebar is normally more harmful and costly to repair, carbon-
ation-induced corrosion of rebar may attack a broader area of RC
structures at a bigger scale. It is estimated that about two-thirds of the
total concrete structures are exposed to favourable environmental situ-
ations for carbonation-induced corrosion [29,30].

The deterioration process of RC structure caused by corrosion can be
divided into two phases: initiation and propagation. In case of carbon-
ation-induced corrosion, the corrosion initiation phase corresponds to
the diffusion of CO2 gas into concrete while the rebar remains passivat-
ed. In chloride-induced corrosion, the corrosion initiation phase corre-
sponds to the process of Cl− penetrating into concrete. The
propagation period covers the time from the onset of rebar corrosion
to structural failure. This period is relatively short comparedwith corro-
sion initiation stage. Due to these, the duration of the initial stage has
been regularly used to specify the durability and service life of RC struc-
tures [31,32]. The conceptual model of rebar corrosion process illustrat-
ing the initiation and propagation phases is shown in Fig. 1.

2.1. Deterioration models

Deterioration models are crucial for accurately predicting the perfor-
mance of concrete and thus tomake effective decision regardingmainte-
nance and rehabilitation of RC structures. In the past three decades,
considerable attempts have been made to develop durability models
for RC structures exposed to environmental conditions that favour for
carbonation- and chloride-induced corrosion. Accordingly, various
models and input parameters have been established. The complexity
level of the developed models vary from simple analytical models as-
suming uniaxial diffusion into concrete, tomore sophisticated numerical
modelswhich considers the physical, chemical, and electrochemical pro-
cesses of gas and ion transport [33–36]. Some of the applied analytical
models and the related value of input parameters have been incorrect,
incomplete, and/or unsuitable for the prevailing conditions. Due to
these facts, the prediction results differ substantially even for the same
concrete matrix exposed in identical conditions [37]. Though the com-
plex scientific models provide reasonably accurate predictions, they
lack user friendliness and demand highly skilled professional making
them suitable only for research, but not for practical design applications.
In practice, empirical deterioration models in the form of simple analyt-
ical equations on the basis of Fick's second lawof diffusion are commonly
adopted to model penetration of CO2 and Cl− into concrete.

2.1.1. Carbonation model
Concrete carbonation has been recognized as one of themajor cause

of early deterioration, serviceability loss and safety of RC structures. It is
an essential index of durability. The classic carbonation depth prediction
model deduced from Fick's second law of diffusion is shown in Eq. (1)
[26,38–41]. This model obeys the square root law and can be applied
to foresee the depassivation time by extrapolating the carbonation
depth measured at a certain time to the future.

xc tð Þ ¼ k
ffiffi
t

p
; ð1Þ

where xc(t) is carbonation depth at the time t in [mm], k is carbonation

coefficient [mm/year0.5] which is equivalent to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:DCO2

ðC1−C2Þ
a

q
, DCO2

is
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diffusion coefficient for CO2 through carbonated concrete [mm2/year],
C1 is CO2 concentration in the surrounding environment [kg/m3], C2 is
CO2 concentration at the carbonation front [kg/m3], a is mass of CO2

per unit volume of concrete needed to carbonate all the available calci-
um hydroxide [kg/m3], and t is exposure time to the atmosphere hold-
ing carbon dioxide [year].

2.1.2. Chloride model
Prediction of chloride profile is a necessary procedure since chloride

attack affects the remaining service life of RC structures. Through the
years several models have been developed to predict chloride concen-
tration inside the concrete. Despite the availability of numerousmodels,
empirical models are most commonly utilized to estimate the chloride
profile in concrete. Eq. (2) is an empirical formula based on Fick's second
law of diffusion applied to evaluate long-term chloride penetration in
concrete [42]

Cx ¼ Ci þ Cs−Cið Þ 1−erf xð Þ
x

2
ffiffiffiffiffiffiffiffiffiffi
Dnsst

p
� �� �

; ð2Þ

where Cx is the Cl− contentmeasured at average depth x [m] after expo-
sure time t [s][% bymass of concrete], Cs is the computed Cl− content at
the exposed surface [% by mass of concrete], Ci is the initial Cl− content
[% by mass of concrete], Dnss is the diffusion coefficient of Cl− at non-
steady state [m2/s], and erf(x) is the error function [−].

2.2. Modelling uncertainty

The initiation period of carbonation-induced corrosion is the total
time needed for the carbonation front to arrive at a depth of the con-
crete cover. If the carbonation coefficient k and the concrete cover thick-
ness are known, the initiation time can be calculated using simplified
Fick's law based formula, Eq. (1). The assumptions in Eq. (1) are: (i) dif-
fusion coefficient for CO2 through carbonated concrete is constant; (ii)
amount of CO2 required to neutralize alkalinity within a unit volume
of concrete is invariant; and (iii) CO2 concentration varies linearly be-
tween fixed boundary values of C1 at the external surface and C2 at
the carbonation front. To determine k, the concrete carbonation depth
must be measured in advance either by measuring the carbonation
depth of an existing structure or by carrying out an accelerated test. In-
deed, carbonation is usually examined by executing an accelerated test
using higher CO2 concentration in a controlled environment since the

process is slow [43]. Then, using the measured carbonation depth the
equivalent k, and thus the time of depassivation of the rebar, can be
computed. This approach is commonly adopted though the accelerated
test may not always explain the natural carbonation process precisely
[39]. Eq. (1) is plausible as far as the three assumptions are fulfilled
but CO2 diffusion coefficient varies both temporally and spatially. The
reason for these variability is that the diffusion of CO2 relies onmany pa-
rameters, such as CO2 concentration, concrete composition, curing and
environmental conditions [38,43,44]. Due to this, Eq. (1) usually fails
to represent the real state of the concrete structures, which in turn
leads to incorrect carbonation depth prediction [26,44,45]. To minimize
some of the assumptions, empirical models have been suggested which
take into direct account the influence of some factors that govern the
rate of carbonation e.g. the model proposed in fib-MC2010 [46] and
DuraCrete framework [47], Eq. (3)

xc tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:ke: kc:R−1

NAC;0:Cs

q
:W tð Þ:

ffiffi
t

p
; ð3Þ

where xc(t) is carbonation depth at the time t in [mm], t is time in
[year], ke is environmental function [−], kc is execution transfer param-
eter [−], Cs is CO2 concentration in the air in [kg/m3],W(t) is weather
function [−], RNAC ,0

−1 is inverse effective carbonation resistance of con-
crete in [(mm2/year) / (kg/m3)] which is determined at a certain time
t0 using the natural carbonation test NAC in [(mm2/year) / (kg/m3)].

As seen in Eq. (3), the fib and DuraCrete models adopt Eq. (1) by
linking the coefficient of carbonation with factors of the concrete mate-
rial and the environment. There are also other models which follow the
same principle. The linked parameters have normally been regarded as
random variables which define the concrete properties that dominate
the ingress rate of CO2, such as exposure, water to binder ratio (w/b),
and compressive strength. The physical-chemical phenomena related
with transport of CO2 through the concrete are largely controlled by
its permeability. Even though the permeability coefficient of concrete
depends mainly on the w/b, it is also influenced by other parameters
such as aggregate distribution, age, curing condition, and the inclusion
of chemical or mineral admixtures. The majority of the enhanced
models do not include all such governing factors which control the car-
bonation process. Integrating two ormore of thesemodels does not also
solve the problemeither. The combination of several simplifications and
assumptions in the prevailingmodels for carbonation prediction lead to
a substantial uncertainty in their performance.

Fig. 1. Conceptual model of rebar corrosion process.
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In engineering practice, the penetration of Cl− into concrete is often
evaluated by adopting a simplified empirical formula based on Fick's
second law of diffusion described by Eq. (2). This equation has down-
sides that make the Cl− prediction into concrete uncertain. The fore-
most limitations of Eq. (2) are the following assumptions [28,48–50]:
(i) the surface chloride content (Cs) remains constant; (ii) the non-
steady diffusion coefficient (Dnss) is invariant; and (iii) value of Dnss can-
not be compared for different Cs. Nevertheless, in real condition, Cs and
Dnss cannot be recognized as constants. This is due to the transport
properties of Cl− relying on the intrinsic permeability of the concrete
and the amount of Cl− concentration in the pore solution. The perme-
ability is changing during the process of cement hydration with time.
The amount of Cl− concentration varies due to the continuous chemical
reaction of Cl− with the dilute cement solution and the amount of dif-
fused Cl−. In another perspective, the alteration of capillary pore struc-
ture of concrete is controlled by cement type, w/b, age, type of
admixtures, and exposure condition. Due to these, both Cs and Dnss are
varying with time and space [51,52]. It is also recognized that the Cl−

is accumulated in the concrete pore solution during the chloride diffu-
sion process. As the amount of Cl− concentration rises, the mobility of
free Cl− gradually becomes weak which in turn diminishes the value
of Dnss. This shows that Dnss is a function of Cs and the assumption (iii)
considered in Eq. (2) is invalid. In addition, in Eq. (2), the error function
equation considers only diffusion mechanism. However, the penetra-
tion of Cl− into concrete involves a complex physical and chemical pro-
cess that combines various transport mechanisms other than diffusion
such as capillary sorption, and permeation. All these facts explain why
Eq. (2) model fail to deliver accurate predictions in several instances
[50]. Indeed, in order to address the time dependency of Dnss and effect
of other influential factors some approaches have been proposed e.g. in
fib-MC2010 [46] andDuraCrete framework [47]. Themost common one
is expressed by Eq. (4). Thismodel also fails to eliminate the uncertainty
fully since the input variables exhibit considerable scatter. The combina-
tion of all the presented assumptions causes a substantial uncertainty in
the output of the model, specifically the time to corrosion initiation or
estimation of the remaining service life [49,53]. This uncertainty could
have severe outturn regarding insufficient design, planning of inspec-
tion andmaintenance, and thus shortens the service life of the structure
and increases the lifecycle cost.

Dnss tð Þ ¼ ke:kt :kc:D0:
t0
t

� �n

; ð4Þ

where ke is environmental function [−], kc is test method function [−],
kc is curing function [−], D0 is experimentally determined chloride dif-
fusion coefficient at time t0 [m2/s], t0 is age of concrete atD0 ismeasured
[year], t is the exposure duration [year], and n is the age factor describ-
ing the time dependency of the diffusion coefficient [−].

As discussed above, penetration rate of CO2 and Cl− into the con-
crete structure is mainly a function of concrete properties and environ-
mental conditions. In real structure, the ingress rate of these substances
cannot be constant and even theymay change in different parts of a sin-
gle element. So, depassivation of the rebar causedby carbonation and/or
chloride attack is enormously complex. The empirical degradation
models in the form of analytical equations presented in Section 2.1.1
and 2.1.2 are no better than their underlying conceptual base. Thus, du-
rability estimation using Fick's law based empirical models are uncer-
tain. In fact, such simple empirical deterioration models can be
integrated with a semi-probabilistic uncertainty model to improve the
reliability as included in the DuraCrete framework. However, this ap-
proach cannot eliminate the associated uncertainty fully. Uncertainty
can be eliminated by gathering more and more accurate data and
analysing it using machine learning techniques. This methods estimate
without uncertainty or assumptions and continuously learn from the
observed data in order to improve their accuracy score.

3. Machine learning

Machine learning is a major subfield in artificial intelligence that
deals with the design and development of algorithms to identify com-
plex patterns from experimental data, without assuming a pre-
established equation as a model, and make decisions intelligently [54–
62]. Machine learning basedmodels can be either predictive to perform
predictions or descriptive to gain knowledge from data, or both [58,63,
64]. Althoughmachine learning grew out of the quest for artificial intel-
ligence, its scope and potential is much more general. It encompasses
thoughts from a various set of disciplines, including Information Theory,
Probability and Statistics, Psychology and Neurobiology, Control Com-
putational Complexity, Theory and Philosophy [61].

Developing a machine learning model involves a small number of
design choices: (i) the type of training experience; (ii) the target func-
tion to be learned; (iii) a representation of the target function; and
(iv) an algorithm for learning the target function from training in-
stances. Depending on the resources of training,machine learning is cat-
egorized as supervised, unsupervised, semi-supervised and
reinforcement learning [58,65]. The supervised and unsupervised learn-
ing are the most widely adopted types of machine learning in several
fields of application, including engineering [64].

Supervised learning: starting from a training database that contains
input instances and desired outputs, its goal is to build a function (or
model) to precisely predict the unknown target output of future in-
stances. The key characteristic of supervised learning is the existence
of a “teacher” and the training input-output data. If the goal is to predict
continuous target variables, the task is known as regression. But, if the
goal is to predict discrete target variables, the task is said to be
classification.

Unsupervised learning: starting from a training database that in-
volves input instances, its goal is to divide the training examples into
clusters so that the data in every cluster demonstrate a high level of
proximity. Unlike supervised learning, the labels for the data are un-
available in unsupervised learning.

In machine learning methods, an algorithm has to be developed to
solve problems. The algorithms in machine learning adopt various
methods from various fields, for example, pattern recognition, data
mining, statistics and signal processing. This enables machine learning
to take advantage of the synergy from all these fields, which in turn
leads to robust solutions that use different domains of knowledge
[62]. Some of the most influential algorithms that have been widely
used in supervised and unsupervised learning types are illustrated in
Fig. 2. It can also be noted that some of the algorithm types operate
under different learning types to solve various problems.

Nowadays, there are awide spectrum of successful practical applica-
tions of machine learning in different domains such as: computational
finance [66–68], image and speech processing [69–71], property valua-
tion [72–74], hydrology [75–78], computational biology [79–82], and
energy production [83–85]. Although employing machine learning is
becoming popular in several fields of engineering, its implementation
in durability and service-life assessment of RC structures is yet limited.

4. Application of machine learning techniques in civil engineering

Over the past few decades, machine learning techniques have been
adopted for modelling the real-world problems because of their enor-
mous capacity to capture interrelationships among data pairs of input
and output which are nonlinear, unknown or complex to formulate.
Though the application of machine learning in service-life assessment
of concrete is limited, it has been in use in other civil engineering prob-
lems. The first uses of machine learning techniques, three decades ago,
comprises testing of various prevailing methods on easy problems
(e.g. knowledge acquisition to conceptual design of steel members
[86], management tool development to control structural safety [87]).
The selection of machine learning algorithms during that time mainly
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was based on their obtainability but not their applicability to the target
problem [59]. Due to this, the applied problem representation was a
simplification controlled by the inadequacy of the obtainable machine
learning algorithms. Then slowly, complex problems were taken into
consideration. Among the applications, structural health monitoring
and evaluation of concrete properties andmix design are themost com-
mon ones. In this section, the implementations of machine learning
methods in these two applications are discussed.

4.1. Structural health monitoring (SHM)

Structural damage caused by operation and environment is an inev-
itable process for civil structures. Early identification of damage in a
structure bymeans of SHM system is imperative in order to ensure pub-
lic safety and reliability of in-service structures while avoiding econom-
ic losses [88–91]. It involves monitoring of a structure over time using
dynamic response measurements spaced at regular intervals of time,
extraction of damage-sensitive features and statistical examination of
the extracted features to learn the current health status of the system.

SHMsystemhas been increasingly used in several structures, mainly
long-span bridges, large dams and tall buildings, enabling smooth shift
from time-based to condition-based maintenance. Several researches
have been carried out in this field of interest recently, either in model-
driven or data-driven approaches [89,92]. In SHM, a classic model-driv-
en approach uses a numerical model (often based on finite element
analysis (FEA)) of the structure which relates discrepancies between
measured data and the data produced by the model to identify a dam-
age. This approach is computationally expensive due to an iterative
analysis of a computer simulation model [90]. In addition, a numerical
model may not accessible all the time in practice and does not precisely
capture the exact performances (e.g. materials, geometry and boundary
conditions) of the real structure invariably [93]. Accordingly, the results
obtained from FEA are often not accurate enough for a precise assess-
ment of structural health. Unlike a model-driven approach, a data-driv-
en approach creates a model by learning from measured data and then
performs a comparison between the model and measured responses in
order to identify damage. This approach adoptsmethods in pattern rec-
ognition, or more generally, in machine learning [89]. The recent ad-
vances in sensing techniques, internet technologies, and wireless
communications are increasingly facilitating and allowing practical de-
ployment of large and dense sensor networks for SHM. These make

data-driven approach well convenient for early damage detection in a
continuous and real-time manner [90].

The implementation of machine learning methods to detect struc-
tural damage is often observed under the categorization of supervised
learning, where data from healthy and damaged conditions were need-
ed. Single machine learning algorithms such as neural network (NN),
support vector machine (SVM), support vector regression (SVR), and
genetic algorithm (GA) are attractive ones for detection of structural
damage because of their robustness and efficacy in dealing with inade-
quate information, uncertainty, and noise [89,94–96]. Hybrid methods
such as multi-objective genetic algorithm (MOGA), neuro-fuzzy (NF)
and wavelet neural network (WNN) [97–99] have also been proposed
for different problems in SHM area. Table 1 reveals the usability of sev-
eral types of machine learning algorithms in evaluating the structural
health and dam behaviour. The performance comparisons of all studies
revealed that machine learning based models outperforms the model-
driven approach and found to be satisfactorily accurate.

4.2. Concrete properties and mix design

Mechanical properties of concrete, such as compressive strength,
elastic modulus, splitting tensile and shear strength are taken into con-
sideration in designing concrete structures. Compressive strength of
concrete can be predicted using empirical formula in the form of linear
or non-linear regression equations in order to save time and costs [111–
114]. Measurement of elasticmodulus is complicated and time consum-
ing. Due to this, it is often acquired from the stress–strain relations of
concrete under compression [115–117]. Indeed, several national build-
ing codes adopt empirical formulas that correlate the elastic modulus
with compressive strength, including American Concrete Institute
(ACI) [118] and Comité Euro-International du Béton (CEB) [119]. Similar
to modulus of elasticity, splitting tensile of concrete is often estimated
through the compressive strength due to the complexity, cost and
time-consuming nature of the test. Empirical regressionmodels derived
from experimental data is also used to evaluate shear strength of RC el-
ement [120]. The conventional empirical models to evaluate the me-
chanical properties of concrete were formulated by a fixed equation
based on a limited experimental data and factors. They are effective
just for explaining their own experimental outcomes applied for their
calibration. If the original data is altered, then it is a must to update
the model coefficients and the form of the equation. Thus, the

Type of AlgorithmsAlgorithm CategoriesLearning Types

Supervised 
Learning

Unsupervised 
Learning

Machine
Learning

k-Means
Neural Networks
Gaussian Mixture
Hidden Markov Model
Hierarchical

Neural Networks 
Decision Trees
Ensemble Methods
Nonlinear Regression

Support Vector Machines
Naive Bayes
Discriminate Analysis
Nearest Neighbour
Neural Networks 
Decision Trees
Ensemble Methods
Nonlinear Regression

Regression

Classification 

Clustering

Fig. 2.Machine learning types with commonly adopted algorithms.
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conventional models may be unsuitable for determining mechanical
properties of new concrete because the correlation between constitu-
ents and concrete characteristics for some concrete types are highly
nonlinear [112–114,121–123]. Furthermore, it is challenging to come
up with a universally agreed mathematical model. Dry shrinkage is an-
other key property of concrete and its value has great importance for
assessing the ability for long-term operation of concrete structures. In
the past five decades, several empirical equations for shrinkage estima-
tion were proposed in different codes such as ACI [124], CEB [125].
However, it is difficult to get accurate results using these formulas in
some cases because dry shrinkage is influenced by numerous factors as-
sociated with the concrete composition, the size of specimen, the qual-
ity of its constituents, and the environmental conditions [126].

Concrete mix design is the process of determining appropriate con-
stituents and their relative quantities in order to produce a concrete that
meets the desired strength, workability and durability as minimal cost
as possible. Conventional algorithms of concrete mix proportion are
merely formon a generalization of preceding practicewhich is often ob-
tainable as empirical formulas or as tables. Because of the uncertainty of
concrete constituents (e.g. chemical and mineral admixtures, cement,
and fine and coarse aggregates), the conventional algorithms of con-
crete mix proportion are a trial and error exercise, which results in ad-
ditional costs, and time [127].

Developing accurate and reliable models to evaluate the concrete
properties andmix design can optimize costs and timeby delivering en-
gineers with crucial data. The potential of machine learning algorithms
have been harnessed for modelling such properties in order to over-
come the drawbacks of traditional empirical regressionmodels. A num-
ber of single or hybrid machine learning algorithms have been used to
develop accurate and effective models for predicting concrete proper-
ties andmix design of various concrete types including fibre–reinforced
polymer (FRP) concrete. Table 2 presents list of studies which demon-
strates the applicability of machine learning methods in designing mix
proportions and evaluating concrete properties. The studies adopt vari-
ous machine learning algorithms, such as neural network (NN), genetic
programing (GP), fuzzy logic (FL), support vectormachine (SVM), adap-
tive network-based fuzzy inference system (ANFIS), and fuzzy inference
system (FIS). All these studies concluded that machine learning tech-
niques are powerful tool to evaluate concrete properties without
being influenced by data complexity, incoherence, or incompleteness.
They are also a better option for selecting suitable material proportions
for the desired strength and rheology of concrete mixes. This leads to
ecological and economical mix design process by reducing the number
of trial mixes.

5. Recent advances and future directions in durability and service-
life assessment

Deterioration of the RC structures caused by corrosion of rebar has
been mainly assessed using the carbonation and/or chloride empirical
models developed fromexperimental data. Suchmodels limit the ability
to predict accurately the time taken for depassivation of rebar since the
penetration of CO2 and Cl− into concrete are governed by several pa-
rameters that are complex to describe mathematically. The penetration
of these aggressive substances into concrete structures are controlled by
several factors includingmaterial properties, castingmethod, workabil-
ity, curing conditions, and themacro- andmicro-environment to which
the RC structure is exposed. In addition, the rapidly growing use of
blended supplementary cementitious materials and new technologies
are another factors which make the conventional empirical models in-
capable of accurate evaluation of the time to onset of rebar corrosion
[53,144–146]. These limitations of the empirical models are the reasons
for failing to attain conditions for optimized choice of suitable design,
planning of inspection and maintenance that will assure an extended
service life.

5.1. Recent advances

Models should be able to considermost of the influential parameters
which govern the deterioration mechanisms in order to accurately pre-
dict the extent of deterioration and/or the remaining service life of a
structure. Certainly, developing empirical carbonation and/or chloride
models which fully address the controlling factors is challenging be-
cause the concrete behaviour is a function of several factors that are bur-
densome to express mathematically. Hence, developing machine
learning based prediction model that can learn from the existing long-
term in-service data is an attractive alternative. In the rest of this sub-
section, the current direct or indirect application of machine learning
methods in assisting the evaluation of carbonation depth and chloride
penetration is discussed.

Buenfeld et al. [147] adopted NN to predict carbonation depth based
on large amount of data, around 6600, drawn from various literatures.
The proposed model employ 39 input parameters describing the ce-
ment compositions, supplementary cementitious materials, concrete
mix proportions, accelerated test conditioning, curing condition, and
exposed environment regime and conditions. The performance of the
model was tested with data obtained from 20 research papers. The pre-
diction for real structures were found to be as accurate as for naturally
exposed specimens. Lu and Liu [148] proposed two NN based models,

Table 1
Reported application of machine learning techniques in structural health monitoring.

Researchers Problem types Case structures Algorithms

Hao and Xia [100] Detection and/or identification of structural
damage

One-span steel portal frame and aluminium cantilever
beam

Genetic algorithm

Chou and Ghaboussi [94] Truss bridges
Yan et al. [101] Beams on ocean platform Neural network
Yun et al. [102] Steel frame structure
Lee et al. [103] Simple beam and multi-girder bridge
Cha and Buyukozturk
[97]

Steel structure Multi-objective genetic
algorithm

Satpal et al. [104] Aluminium beams Support vector machines
Yan et al. [101] Beams on ocean platform
Feng et al. [96] Identification of structural parameters Concrete highway bridge Neural network
Soyoz and Feng [105] Concrete bridge
Karimi et al. [106] Concrete dam
González and Zapico
[107]

Seismic damage identification Buildings with steel moment-frame structure Neural network

Mata [108] Dam behaviour assessment Concrete dam Neural network
Kao and Loh [109]
Ranković et al. [110] Support vector regression
Su and Wen [99] Wavelet neural network
Ranković et al. [98] Neuro-fuzzy
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back-propagation neural network (BPNN) and the radial basis function
neural network (RBFNN), to predict the carbonation depth of
prestressed concrete. Data for training and testing were generated by
conducting an accelerated carbonation test in the laboratory. The
input parameters considered the stress level of concrete, w/b, cement
to fine aggregate ratio, cement to coarse aggregate ratio and exposure
time. The model verification test demonstrated that both the proposed
NN based models had a high prediction and generalization capability
in evaluation of carbonation depth. Taffese et al. [149] developed NN
based carbonation depth prediction model. It employed a total of 15
input variables which characterize the concrete mix ingredients and
the exposure time. Unlike severalmodels, the authors incorporated var-
iable selection methods to choose most appropriate parameters, and
eliminate unrelated and/or redundant ones from the original input ex-
perimental data to create robust learning models. The performance as-
sessment of the model demonstrated that it foresees reasonably well
with enhanced generalization capability. Xiang [150] suggested SVM
to predict the concrete carbonation depth. Real historical datawhich en-
tails water to cement ratio, cement content and exposure time were
assigned as input variables. The prediction performance was compared
with those from NN modelling and it is noted that the SVM has higher
precision and generalization capability. Zhitao et al. [151] also adopted
SVM to predict concrete carbonation depth. They employed the same
input parameters which were considered by Xiang's study. The predic-
tion ability of SVM model was compared with BPNN model. The result
showed that both models are effective in evaluating carbonation
depth and SVM has higher prediction capability than BPNN. There are
also other studies which demonstrate the applicability of machine
learning in predicting carbonation depth [152–154]. These models are
mainly based on neural network algorithm and consider limited subset
of influential variables which controls the carbonation process. For in-
stance, Bu et al. [152] developed DE-BP (Differential Evolution-Back
Propagation) neural network basedmodel. Thismodel is a hybrid of dif-
ferential evolution algorithm and back propagation neural network. The
training data comprises parameters of w/b, cement content and expo-
sure time (age). The authors tested the accuracy of the model using ex-
perimental data. The test result confirmed that the hybrid DE-BP neural
network model provides high prediction accuracy. Luo et al. [153] pro-
posed BPNN which is optimized by the particle swarm optimization
(PSO) to predict the carbonation depth. The input data used to train

the model involves three parameters which are water to cement ratio,
cement content and relative humidity. The performance examination
of the model revealed that the model has a good ability in predicting
carbonation depth with a faster convergence. Liu et al. [154] studied
the prediction ability of RBFNN and BPNNN model in predicting con-
crete carbonation depth using three factors as input. The authors con-
cluded that both models predict the carbonation front with high
accuracy and RBFNN has superior prediction ability than BPNN.

Taffese et al. [155] adopted three decision tree based learning algo-
rithms (regression tree, bagged and reduced bagged ensemble regression
tree) to predict the carbonation depth. Experimental data from laboratory
testswere used to develop themodel. Themodel employed 15 influential
input parameters consisting of concrete mixture ingredients and the car-
bonation depth. The model performance test revealed that the ensemble
methods predict the carbonation depthwith reasonably lower error than
the regression tree. Among the ensemble methods, reduced bagged en-
semble regression tree has superior performance with relatively better
generalization capability. Besides predicting the carbonation depth, the
bagged ensemble regression tree discovered important variables that in-
fluenced the carbonation process. The influences of these variables on the
carbonation process were not well known previously. The same authors,
in another work, [156] developed an optimized and integrated carbon-
ation prediction model (named CaPrM) by adopting four machine learn-
ing techniques. CaPrM is developed using experimental data gathered
from concrete specimens kept in sheltered natural environment for
about seven years. CaPrM utilized 25 input variables which entail infor-
mation regarding the ingredients used to produce the concrete speci-
mens, fresh and hardened properties of the concrete. The integrated
learning methods are NN, decision tree and ensemble methods (bagged
and boosted decision trees). The integration of the four algorithms pro-
vides the opportunity to select the best performing learning methods
since their relative performance alters when a condition varies. The pre-
diction capability assessment of CaPrM revealed that all the integrated
machine learning techniques estimate the depth of carbonation with
minimal error. In addition, CaPrM helped to identify other influential pa-
rameters which were disregarded in the prevailing empirical models and
to rank the parameters according to their importance in the carbonation
process.

Peng et al. [157] proposed a NN with cascade-correlation architec-
ture to predict the chloride profiles diffused through concrete pores.

Table 2
Reported application of machine learning in concrete mix design and properties.

Researchers Problem types Types of concrete Algorithms

Uysal and Tanyildizi [128] Prediction of compressive strength Self-compacting Neural network
Prasad et al. [129]
Siddique et al. [130]
Prasad et al. [129] High performance Neural network
Cheng et al. [111] Hybrid of FL, SVM & GA
Dantas et al. [131] Concrete with construction and demolishing (C&D)

waste
Neural network

Duan et al. [132]
Naderpour et al. [133] FRP reinforced Neural network
Nazari and Sanjayan [134] Geopolymers Support vector machine
Nazari and Shadi [135] Prediction of splitting tensile

strength
High performance Neural network, genetic programing

Sarıdemir [136] Various Genetic programing
Ahmadi-Nedushan [137] Prediction of elastic modulus Normal and high strength Adaptive network-based fuzzy inference

system
Demir [138] Neural network
Yan and Shi [117] Support vector machine
Demir and Korkmaz [123] High strength Fuzzy logic
Lee and Lee [139] Prediction of shear strength FRP reinforced Neural network
Bashir and Ashour [140]
Nasrollahzadeh and Basiri
[141]

Fuzzy inference system

Mansour et al. [120] Reinforced Neural network
Bal and Buyle-Bodin [126] Prediction of drying shrinkage Various Neural network
Mermerdaş and Arbili [142] Concretes incorporate silica fume & fly ash
Ji et al. [127] Concrete mix design Normal and high strength Neural network
Khan [143] High performance
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The input data comprises of five parameters which are cement content,
fly ash, calcium nitrite solution,microsilica, and exposure time. The pre-
diction ability of the suggested model was tested using unseen experi-
mental data. The test result demonstrated that, in both steady and
unsteady, the prediction outcomes are in good agreement with the ex-
perimental results. Inthata et al. [158] predicted chloride penetration
by applying NN algorithm. The utilized experimental data covers nor-
mal and high strength concrete specimens which contain ground poz-
zolans such as fly ash, bottom ash and rice husk ash. Six parameters
were assigned as input parameters in which five of them describe the
concrete mix design (w/b, percent replacement, testing ages, pozzolans
types, and aggregate to cement ratio) and one of them is a compressive
strength. The assigned target parameters were chloride penetration
which was obtained from rapid chloride penetration test (RCPT) and
chloride depth. The RCPT is a method to evaluate the chloride perme-
ability of concrete on the basis of the electric charge passing through
them. The model were tested and compared with linear and non-linear
regression techniques. The comparison result revealed that the present-
edNNbasedmodel have superior capability to predict chloride penetra-
tion and depth than linear and non-linear regression methods. Gilan et
al. [159] developed a hybrid support vector regression (SVR) – particle
swarm optimization (PSO) model to predict the chloride permeability
of concrete containingmetakaolin (MK). A total of 25 different concrete
mix proportions were prepared to generate the training-testing data-
base. The model employed eight input parameters consisting of cement
content, MK type, amount of MK, coarse aggregate content, fine aggre-
gate content, amount ofwater, exposure time and value of surface resis-
tivity. The total charge passed through the concrete specimens was
assessed and utilized to determine the chloride permeability of each
concrete. In their work, a sequential forward feature selection technique
was employed to attain a parsimonious model with precise prediction
outcomes by selecting only a subset of variables. The performance of
the proposed hybridmodel was compared with ANFISmodel. The com-
parison results showed that the SVR-PSO model has strong potential to
predict chloride permeability with high degree of precision and robust-
ness. Ghafoori et al. [160] studied the prediction ability of NN in
predicting chloride permeability of self-consolidating concretes based
on their mix compositions which includes binder content, w/b, coarse
aggregate content, fine aggregate content, amount of air-entraining ad-
mixture andhigh rangewater reducer. Variousmodelswere established
by altering the number of parameters andmixtures assigned to training
and testing. The performances of themodels were comparedwith those
from linear and nonlinear regression models. The test results demon-
strated that NN models have higher prediction ability than models ob-
tained by linear and nonlinear regressions, especially when testing
evaluations were selected from the boundaries of mix compositions.
Boğa et al. [161] presented NN and ANFIS model for prediction of chlo-
ride permeability of concrete. In their study, concrete specimens com-
prising only ground granulated blast furnace slag (GGBFS), calcium
nitrite-based corrosion inhibitor (CNI) and a combination of these con-
stituents in different ratios were utilized. The proposed models
employed curing types, curing time, and ratio of GGBFS and CNI as
input parameters and chloride permeability obtained from RCPT as a
target variable. The test evaluation revealed that both models predict
the chloride permeability with reasonably low error. Yasarer and Najjar
[162] developed BPNN based chloride permeability predictionmodel to
reduce or fully substitute the rapid chloride penetration test. This is due
to the fact that, unlike conventional approaches, determination of chlo-
ride permeability usingmachine learning techniques is time and cost ef-
fective because its experimental determination in laboratory is often
time and recourse consuming. The authors employed data obtained
from Kansas Department of Transportation. These data are either pre-
pared in the laboratory or gathered from field. Six input parameters
were assigned,which are ovendryweight, saturated surface dryweight,
weight in water, curing time, specific gravity, and percentage of water
absorbed. The total charge passed through the concrete sample was

set as a target parameter. These parameters are not well considered in
other studies. The performance evaluation of the model proved that
NN is an efficient method to develop accurate chloride permeability
prediction model. The model was compared with their counterpart re-
gression-basedmodels and it showed that NNmodel has outperformed
them.

Song andKwon [41] adoptedBPNN to estimate chloride diffusion co-
efficientwhich is a decisive factor for quantification of chloride profile in
concrete element. The employed training data entails eight input vari-
ables. Seven of them are components from concrete mix design and
the remaining one is the exposure time. They verified the performance
of the proposedmodel by comparingwith the experimental results. The
verification test revealed that the proposed NN based chloride diffusion
coefficient prediction model yields high precision. The authors also ar-
gued that the model has an advantage of applicability to different con-
crete mix design. Kim et al. [163] were also able to accurately predict
diffusion coefficient of chloride using NN algorithm. They considered
seven mix components: w/b, content of cement, ground granulated
blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), sand, and
coarse aggregate as input parameters. The chloride profiles based on
the diffusion coefficient from NN were compared with test results
which were kept in submerged condition for six months. The proposed
model revealed that NN can assist to reasonably predict chloride pene-
tration in the concrete. Lizarazo-Marriaga and Claisse [164] presented
NN based method to determine the chloride diffusion coefficient for
concrete. The method employed measurement of the electrical proper-
ties of concrete as input variables. The prediction accuracy of the pro-
posed methodology was evaluated by comparing with the
experimental data. The comparison of the results demonstrated that
the employed NN methodology can yield precise concrete diffusivity
values. Hodhod and Ahmed [165] developed a model using BPNN by
considering w/b, cement content, FA and slag content as well as curing
age as input parameters. The prediction accuracy of the proposedmodel
was compared with the experimental results. The verification outcome
demonstrated that the proposedmodel has high accuracy for predicting
the chloride diffusion coefficient and confirms that NNbasedmodels are
practical and beneficial. Tarighat and Erfanimanesh [166] employed NN
to predict chloride diffusion coefficient for concrete. The proposed
model utilized four input parameters including type of aggregates, w/
b, binder content, and condensed SF to cementitious materials ratio.
The prediction ability of the model was tested using experimental
data and it is found that the model has ability to predict chloride diffu-
sion coefficient accurately. Delnavaz et al. [167] suggested NN based
chloride diffusion coefficient prediction method. It employed input pa-
rameters encompass w/b, SF content and exposure condition of the
specimens. The specimens were exposed to simulated marine environ-
ments including atmospheric, submerged, and tidal zone. The target pa-
rameter was chloride diffusion coefficient. The performance evaluation
of the proposed model confirmed that the proposed model has the ca-
pability to predict the chloride diffusion coefficient with high precision.
Mazer and Geimba de Lima [168] proposed fuzzy logic based chloride
diffusion coefficient prediction model. Parameters of the concrete mix
design and the environment were considered in the model develop-
ment. The performance examination showed that the model has a
good capability in estimating the diffusion coefficient of chlorides.

There are also successful applications of machine learning for
coupled transport processes in concrete (e.g. CO2 and Cl−). The pur-
poses of the applications are mainly to evaluate the penetration rate of
the aggressive substances and to investigate factors governing their
transport. For instance, Cho et al. [169] proposed ANFIS based model
to predict carbonation depth of RC member. The data utilized for the
model training were obtained from field inspections of nine buildings
which reflect the effect of the combined deterioration, including car-
bonation diffusion coefficient, surface chloride ion concentration, chlo-
ride diffusion coefficient, compressive strength, and crack width. The
performance evaluation revealed that the proposed model estimate
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the carbonation depths with high accuracy. Delnavaz and
Ramezanianpour [170] adoptedNN to examine the association between
concrete mix design and chloride diffusion coefficients in carbonated
and non-carbonated concretes. The model employed w/b, SF content,
rapid chloride ion permeability test value and capillary absorption coef-
ficient as input variables. The chloride diffusion coefficientwas assigned
as a target parameter.With the help of the proposedmodel, the authors
were able to draw relationships between chloride diffusion coefficients
and concrete mix design in carbonated and non-carbonated concretes.
Marks et al. [171,172] utilized J48 algorithm to describe the relation be-
tween concretemix composition and the chloride resistancewhichwas
examined by rapid chloride permeability test. The model was trained
using data which describes the concrete mix design and chloride per-
meability in order to induce rules. Based on the generated rules they
were able to effectively classify plain and modified concretes as good,
acceptable and unacceptable resistance to chloride penetration.
Parichatprecha and Nimityongskul [173] adopted NN algorithm to in-
vestigate the effect of water and cement content, w/b, and the replace-
ment of FA and SF on the chloride permeability of high performance
concrete (HPC). The proposed model was trained and tested by
employing data obtained from experiments and previous researches.
The test results indicated that the proposed model is reliable and accu-
rate. Using the NN based simulatingmodel they were able to determine
the optimum cement content for designing durable HPC. They also rec-
ognized that increasing the amount of SF results in diminishing the
chloride permeability to a greater degree than FA. In addition, their
study presented how NN can be utilized to beneficially predict chloride
permeability across a broad range of concrete mix parameters of HPC.

The use of machine learning in predicting carbonation depth and
chloride profile in the models discussed above is encouraging, though
majority of the models have adopted only NN algorithms. Studying
other learning methods is necessary to achieve optimal accuracies
since it is impossible to identify machine learning algorithms that per-
form exceptionally well for a certain problem in advance unless other-
wise tested. Relative power of any machine learning based models
greatly relies on the details of the considered problems. A single
model (e.g. NN) may achieve greatest results on problems of particular
data, but may not be true for a different data. Unlike the conventional
models, machine learning based models are capable to address nearly
all the governing factorswhich control the ingress CO2 andCl− into con-
crete pores. This permits to assess all the governing factors as a cluster
rather than separately and thus ensures the prediction reliability be-
cause crucial dependencies will not be disregarded. In another perspec-
tive, identifying the degree of influence of each parameter which
controls the degradation mechanisms in traditional approach is
unachievable because of the availability of several unknown aspects.
On the other hand, the machine learning approaches can reflect the in-
herent relationships among all parameters since they have capabilities
to handle complex patterns from a large data.

5.2. Future directions

As seen in the above subsection, the advantages of machine learning
in assessing durability and service life of RC structures is evident. It is al-
ready recognized that machine learning has an essential and encourag-
ing role in the aging management of RC structures. The performance of
machine learning depends on the amount of data and inclusion of suffi-
cient parameters in the data. To gather these data, monitoring systems
are needed. The advancement of monitoring systems and machine
learning algorithms adopted in assessing concrete properties and struc-
tural health is illustrated in Fig. 3. It can be observed that in 1990swired
sensors have been deployed to assess performance of structures. Wired
monitoring systems entail high-priced communication cables to be
mounted and maintained periodically. Due to the associated high
costs, wired monitoring systems are not broadly implemented [174].
With the improvements in wireless sensor networks, in 2000s, the

attainment of inexpensive wireless structure monitoring systems have
become practicable. Recently, there are a rising number of studies dem-
onstrating the use of wireless sensors for monitoring RC structures. The
systems can be adopted to monitor parameters covering from earlier-
age to environmental condition that can result in concrete degradation
[175]. Durability monitoring based on wireless sensors can transform
the way of inspecting structures to a rapid, remote, automated, and ob-
jective manner. They can be considered as a reliable non-destructive in-
service monitoring system that delivers data about real-time ingress
profile of substances. In addition, in long term, continuous remotemon-
itoring using wireless sensors can bemore economical than conducting
periodic field experimenting, taking the labour cost, safety of users and
the costs to the users into consideration [176,177]. More recently, smart
wireless sensor provide a promising alternative to the traditional sensor
systems. It is small in size and equipped with an independent on-board
microprocessor with reliable wireless communication technology.
Hence, there is no doubt that, wireless sensors gradually would become
an integral part of aging management of RC structures.

The deployment of embedded sensors to monitor concrete proper-
ties had been demonstrated by several researchers [176,178]. Today,
there are more than fifty different types of sensors for monitoring of
structural changes, rebar corrosion, concrete chemistry, moisture and
temperature state [175,179]. To mention few relevant cases, there are
a wide range of studies that employed sensors for monitoring corrosion
of rebar and/or aggressive substances causing corrosion [180–183].
Likewise, sensor-based monitoring systems to assess parameters that
are controlled by the ambient environment, such as relative humidity
and temperature, have been widely used in RC structures [175,184–
187]. Monitoring of these parameters will provide crucial information
about the extent of deteriorations, such as rebar corrosion, carbonation,
freeze–thaw cycles and alkali–aggregate reaction [188]. Generally,
monitoring RC structures allows a more informed performance assess-
ment of the concrete and an early-warning indicator of incipient prob-
lems. It would also provide valuable data that can be used to calibrate
the existing service-life prediction models, and thus better estimation.
Moreover, the utilization of data from monitoring systems in combina-
tion with empirical models for service-life prediction leads to extra sav-
ings in lifecycle costs since planning and scheduling of maintenance
programs can be optimized further [175–179].

Already, one way or another, data-driven prognostics based on em-
bedded sensors and historical experimental data had been applied by
combining with empirical model to predict the service life of RC struc-
tures. Though these approaches improve the performance prediction,
they still rely on the empirical formula which has limitations (as
discussed in Section 2.2). Since there was no long-term data from pa-
rameters that mainly controls the deterioration mechanisms, integrat-
ing the output obtained from the machine learning algorithms with
the conventional models was inevitable. In future, durability and ser-
vice-life assessment of RC structure will rely only on data obtained
from continuous monitoring through various wireless sensors and ma-
chine learning. Machine learning techniques are powerful for extracting
insights and developing predictivemodels from large data.Moreover, as
illustrated in Fig. 3, the adoptedmachine learning algorithms for SHMas
well as evaluation of concrete properties and mix design are increasing.
This indicates that machine learning is already becoming a prevalent al-
ternative approach in aging management of RC structures.

The integration of wireless sensors and machine learning tools to
evaluate the performance and service life of structures will form an im-
perative component in the inspection, evaluation and management of
RC structures. The evaluation can be done remotely and rapidly by
installing sensors at different locations, transmitting the sensor data
wirelessly and analysing the data using machine learning techniques.
All these are done without the involvement of inspection crews to the
site. Layout of the future preferred aging management method for RC
structures is illustrated in Fig. 4. As seen in the layout figure, the
employed sensors in the structure will provide information about the
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spatial distribution and temporal changes of the degradation governing
parameters. The sensors data will be transmitted to a cloud-based stor-
age server. It has a great advantage since, with the help of Internet con-
nectivity, diverse streams of data can be displayed, retrieved and shared
from any place. Condition assessment of the structure can be carried out
by adopting explanatory data analysis remotely. Machine learning can
learn the complex interrelation among factors obtained from the sen-
sors data and perform prediction without the need for empirical
model. The prediction allows for a more reasonable method to a prag-
matic evaluation of the service life of a structure and accurately sched-
uled repair measures, and thus lessens the costs of maintenance
remarkably. As the quantity of obtainable data for learning grows, the
performance of machine learning based models adaptively enhances
generating more reliable predictions. In addition, the use of different
sensors enables the machine learning to learn the combined effect of
various deterioration mechanisms. In fact, measuring the impact of
the combined deterioration mechanisms in laboratory and converting
the outcomes to real structure is unattainable. Hence, the integration
of sensors and machine learning techniques would substitute the

traditional performance assessment methods the latter often consider
the influence of single deterioration mechanism. It also plays a signifi-
cant role in extracting previously unknown knowledge. The discovered
knowledge will assist to come up with optimal solutions that improve
the durability of the structure.

6. Conclusions

This paper established the importance and applicability of machine
learning for durability and service life assessment of RC structures by
closely analysing its capability in addressing the limitations of the com-
monly used empirical models. Machine learning algorithms can learn
the complex interrelation among prominent parameters that control
the degradation mechanisms and perform service-life prediction accu-
rately in real time without the need for empirical model. The paper
also reviewed previously demonstrated application ofmachine learning
methods for SHM as well as concrete properties and mix design. In ad-
dition, the recently proposed machine learning application for assisting
durability assessment of RC structures are also presented. Due to the

Fig. 3. Advancement of sensors and machine learning algorithms adopted in assessing concrete properties and structural health.
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Fig. 4. Layout of the future preferred condition assessment and service-life prediction methods for RC structures.
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emerging use of wireless sensors for continuous monitoring of struc-
tures, machine learning based models would likely be the future pre-
ferred non-destructive and reliable durability assessment method,
bringing a paradigm shift in service-life prediction. This approach
helps to accurately plan repair measures and thus enables a substantial
reduction in maintenance and lifecycle costs. Furthermore, machine
learning based models have the ability to learn the synergic effect of
several degradation mechanisms using data obtained from various sen-
sors, enabling them to find hidden insights. The discovered knowledge
will assist the experts to optimize the concrete mix to produce durable
concrete and optimal repairing methods. This work can be extended
further by considering all aspects ofmachine learningmethods in appli-
cations of several civil engineering areas.

References

[1] ACI (American Concrete Institute), Protection of Metals in Concrete Against Corro-
sion, ACI 222R-01, 2001.

[2] G.K. Glass, Reinforcement corrosion, in: J. Newman, B.S. Choo (Eds.), Adv. Concr.
Technol. 2 Concr. Prop, Elsevier L, Butterworth-Heinemann, Oxford 2003, pp. 8/
1–9/27.

[3] Z. Wang, Q. Zeng, L. Wang, Y. Yao, K. Li, Corrosion of rebar in concrete under cyclic
freeze–thaw and chloride salt action, Constr. Build. Mater. 53 (2014) 40–47, http://
dx.doi.org/10.1016/j.conbuildmat.2013.11.063.

[4] B. Pradhan, Corrosion behavior of steel reinforcement in concrete exposed to com-
posite chloride–sulfate environment, Constr. Build. Mater. 72 (2014) 398–410,
http://dx.doi.org/10.1016/j.conbuildmat.2014.09.026.

[5] E. Sistonen, Service Life of Hot-dip Galvanised Reinforcement Bars in Carbonated
and Chloride-contaminated Concrete, Helsinki University of Technology, 2009
(http://urn.fi/URN:ISBN:978-952-248-168-9).

[6] B. Yu, L. Yang, M. Wu, B. Li, Practical model for predicting corrosion rate of steel re-
inforcement in concrete structures, Constr. Build. Mater. 54 (2014) 385–401,
http://dx.doi.org/10.1016/j.conbuildmat.2013.12.046.

[7] M. El-Reedy, Steel-reinforced Concrete Structures: Assessment and Repair of Cor-
rosion, CRC Press, Boca Raton, FL, 2008http://dx.doi.org/10.1201/9781420054316.

[8] Y. Zhou, B. Gencturk, K. Willam, A. Attar, Carbonation-induced and chloride-in-
duced corrosion in reinforced concrete structures, Mater. Civ. Eng. 27 (2015),
04014245. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001209.

[9] G. Markeset, S. Rostam, O. Klinghoffer, Guide for the Use of Stainless Steel Rein-
forcement in Concrete Structures, Oslo, 2006.

[10] J.R. Mackechnie, M.G. Alexander, Repair Principles for Corrosion-damaged Rein-
forced Concrete Structures, Department of Civil Engineering, University of Cape
Town, 2001.

[11] S.L. Matthews, J.R. Morlidge, Performance based rehabilitation of reinforced con-
crete structures, in: M.G. Alexander, H.-D. Beushausen, F. Dehn, P. Moyo (Eds.),
Concr. Repair, Rehabil. Retrofit. II 2nd Int. Conf. Concr. Repair, Rehabil. Retrofit.
ICCRRR-2, CRC Press, Leiden 2008, pp. 277–278, http://dx.doi.org/10.1201/
9781439828403.ch100.

[12] W.Z. Taffese, E. Sistonen, Service life prediction of repaired structures using con-
crete recasting method: state-of-the-art, Procedia Eng. 57 (2013) 1138–1144,
http://dx.doi.org/10.1016/j.proeng.2013.04.143.

[13] B. Bissonnette, P.H. Emmons, A.M. Vaysburd, Concrete repair: research and practice
– the critical dimension, in: M.G. Alexander, H.-D. Beushausen, F. Dehn, P. Moyo
(Eds.), Concr. Repair, Rehabil. Retrofit. II 2nd Int. Conf. Concr. Repair, Rehabil. Ret-
rofit. ICCRRR-2, CRC Press, Leiden 2008, pp. 275–276, http://dx.doi.org/10.1201/
9781439828403.ch99.

[14] A. Holst, H. Budelmann, H.-J. Wichmann, Improved sensor concepts for durability
monitoring of reinforced concrete structures, in: F.-K. Chang (Ed.), Proc. 8th Int.
Work. Struct. Heal. Monit. (IWSHM 2011), DEStech Publications, Inc., Lancaster
2011, pp. 1472–1479.

[15] ACI (American Concrete Institute), Service-life Prediction—State-of-the-art Report,
ACI 365.1R-00, 2000 43.

[16] F.H. Wittmann, T. Zhao, F. Jiang, X. Wan, Influence of combined actions on durabil-
ity and service life of reinforced concrete structures exposed to aggressive environ-
ment, Restor. Build. Monum. 18 (2014) 105–112, http://dx.doi.org/10.1515/rbm-
2012-6510.

[17] A. Costa, J. Appleton, Concrete carbonation and chloride penetration in a marine
environment, Concr. Sci. Eng. 3 (2001) 242–249.

[18] M.G. Grantham, Understanding defects, testing and inspection, in: M.G. Grantham
(Ed.), Concr. Repair a Pract. Guid, CRC Press, Boca Raton, FL 2011, pp. 1–55.

[19] W. McCarter, T. Chrisp, G. Starrs, A. Adamson, E. Owens, P. Basheer, et al., Develop-
ments in performance monitoring of concrete exposed to extreme environments,
Infrastruct. Syst. 18 (2012) 167–175, http://dx.doi.org/10.1061/(ASCE)IS.1943-
555X.0000089.

[20] W. McCarter, T. Chrisp, G. Starrs, N. Holmes, L. Basheer, M. Basheer, et al., Develop-
ments in monitoring techniques for durability assessment of cover-zone concrete,
2nd Int. Conf. Durab. Concr. Struct, Hokkaido University Press, Sapporo 2010,
pp. 137–146.

[21] P.K. Wong, Z. Yang, C.M. Vong, J. Zhong, Real-time fault diagnosis for gas turbine
generator systems using extreme learning machine, Neurocomputing 128 (2014)
249–257, http://dx.doi.org/10.1016/j.neucom.2013.03.059.

[22] I.E. Mulia, T. Asano, A. Nagayama, Real-time forecasting of near-field tsunami
waveforms at coastal areas using a regularized extreme learning machine, Coast.
Eng. 109 (2016) 1–8, http://dx.doi.org/10.1016/j.coastaleng.2015.11.010.

[23] L. Bertolini, B. Elsener, P. Pedeferri, R.B. Polde, Corrosion of Steel in Concrete: Pre-
vention, Diagnosis, Repair, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
2004http://dx.doi.org/10.1002/3527603379.

[24] A.M. Neville, J.J. Brooks, Concrete Technology, second ed. Prentice Hall, Harlow,
2010.

[25] P.K. Mehta, P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials,
third ed. McGraw-Hill, New York, 2006http://dx.doi.org/10.1036/0071462899.

[26] fib (International Federation for Structural Concrete), Structural Concrete: Text-
book on Behaviour, Design and Performance, fib, Lausanne, 2009.

[27] B. Lagerblad, Carbon Dioxide Uptake During Concrete Life Cycle – State of the Art,
2005.

[28] B. Saassouh, Z. Lounis, Probabilistic modeling of chloride-induced corrosion in con-
crete structures using first- and second-order reliability methods, Cem. Concr.
Compos. 34 (2012) 1082–1093, http://dx.doi.org/10.1016/j.cemconcomp.2012.
05.001.

[29] R. Neves, F.A. Branco, J. De Brito, A method for the use of accelerated carbonation
tests in durability design, Constr. Build. Mater. 36 (2012) 585–591, http://dx.doi.
org/10.1016/j.conbuildmat.2012.06.028.

[30] A. Köliö, T.A. Pakkala, J. Lahdensivu, M. Kiviste, Durability demands related to car-
bonation induced corrosion for Finnish concrete buildings in changing climate,
Eng. Struct. 62–63 (2014) 42–52, http://dx.doi.org/10.1016/j.engstruct.2014.01.
032.

[31] C.G. Nogueira, E.D. Leonel, Probabilistic models applied to safety assessment of re-
inforced concrete structures subjected to chloride ingress, Eng. Fail. Anal. 31
(2013) 76–89, http://dx.doi.org/10.1016/j.engfailanal.2013.01.023.

[32] J. Zhang, Z. Lounis, Nonlinear relationships between parameters of simplified diffu-
sion-based model for service life design of concrete structures exposed to chlo-
rides, Cem. Concr. Compos. 31 (2009) 591–600, http://dx.doi.org/10.1016/j.
cemconcomp.2009.05.008.

[33] Y. Hosokawa, K. Yamada, B. Johannesson, L.-O. Nilsson, Development of a multi-
species mass transport model for concrete with account to thermodynamic
phase equilibriums, Mater. Struct. 44 (2011) 1577–1592, http://dx.doi.org/10.
1617/s11527-011-9720-2.

[34] K. Henchi, E. Samson, F. Chapdelaine, J. Marchand, Advanced finite-element predic-
tive model for the service life prediction of concrete infrastructures in support of
asset management and decision-making, in: L. Soibelman, B. Akinci (Eds.), Proc.
2007 Int. Work. Comput. Civ. Eng, American Society of Civil Engineers, Reston
2007, pp. 870–880, http://dx.doi.org/10.1061/40937(261)103.

[35] E. Bastidas-Arteaga, A. Chateauneuf, M. Sánchez-Silva, P. Bressolette, F. Schoefs, A
comprehensive probabilistic model of chloride ingress in unsaturated concrete,
Eng. Struct. 33 (2011) 720–730, http://dx.doi.org/10.1016/j.engstruct.2010.11.008.

[36] O.-P. Kari, Long-term Ageing of Concrete Structures in Finnish Rock Caverns as Ap-
plication Facilities for Low- and Intermediate-level Nuclear Waste, Aalto Universi-
ty, 2015 (http://urn.fi/URN:ISBN:978-952-60-6052-1).

[37] F. Papworth, A whole of life approach to concrete durability—the CIA concrete du-
rability series, in: F. Dehn, H.-D. Beushausen, M.G. Alexander, P. Moyo (Eds.), Concr.
Repair, Rehabil. Retrofit. IV Proc. 4th Int. Conf. Concr. Repair, Rehabil. Retrofit, CRC
Press, Leiden 2015, pp. 213–219, http://dx.doi.org/10.1201/b18972-30.

[38] K.Y. Ann, S.W. Pack, J.P. Hwang, H.W. Song, S.H. Kim, Service life prediction of a
concrete bridge structure subjected to carbonation, Constr. Build. Mater. 24
(2010) 1494–1501, http://dx.doi.org/10.1016/j.conbuildmat.2010.01.023.

[39] O.P. Kari, J. Puttonen, E. Skantz, Reactive transport modelling of long-term carbon-
ation, Cem. Concr. Compos. 52 (2014) 42–53, http://dx.doi.org/10.1016/j.
cemconcomp.2014.05.003.

[40] C.L. Page, Corrosion and protection of reinforcing steel in concrete, in: C.L. Page,
M.M. Page (Eds.), Durab. Concr. Cem. Compos, Woodhead Publishing Ltd., Cam-
bridge, U.K. 2007, pp. 136–186.

[41] H.-W. Song, S.-J. Kwon, Evaluation of chloride penetration in high performance
concrete using neural network algorithm and micro pore structure, Cem. Concr.
Res. 39 (2009) 814–824, http://dx.doi.org/10.1016/j.cemconres.2009.05.013.

[42] O.P. Kari, J. Puttonen, Simulation of concrete deterioration in Finnish rock cavern
conditions for final disposal of nuclear waste, Ann. Nucl. Energy 72 (2014)
20–30, http://dx.doi.org/10.1016/j.anucene.2014.04.035.

[43] P. Schiessl, S. Lay, Influence of concrete composition, in: H. Böhni (Ed.), Corros.
Reinf. Concr. Struct, Woodhead Publishing Limited, Cambridge, U.K. 2005,
pp. 91–134.

[44] R. Neves, F. Branco, J. De Brito, Field assessment of the relationship between natural
and accelerated concrete carbonation resistance, Cem. Concr. Compos. 41 (2013)
9–15, http://dx.doi.org/10.1016/j.cemconcomp.2013.04.006.

[45] fib (International Federation for Structural Concrete), Code-type Models for Con-
crete Behaviour: State-of-the-art Report, fib, Lausanne, 2013.

[46] fib (International Federation for Structural Concrete), fib Model Code for Concrete
Structures 2010, Ernst & Sohn, Berlin, 2013.

[47] DuraCrete, DuraCrete Final Technical Report: Probabilistic Performance Based Du-
rability Design of Concrete Structures, 2000.

[48] L. Tang, L.-O. Nilsson, P.A.M. Basheer, Resistance of Concrete to Chloride Ingress:
Testing and Modelling, Boca Raton, FL, 2011, http://dx.doi.org/10.1201/b12603.

[49] J. Marchand, E. Samson, Predicting the service-life of concrete structures – limita-
tions of simplified models, Cem. Concr. Compos. 31 (2009) 515–521, http://dx.
doi.org/10.1016/j.cemconcomp.2009.01.007.

[50] C. Andrade, R. D'Andrea, N. Rebolledo, Chloride ion penetration in concrete: the re-
action factor in the electrical resistivity model, Cem. Concr. Compos. 47 (2014)
41–46, http://dx.doi.org/10.1016/j.cemconcomp.2013.09.022.

11W.Z. Taffese, E. SistonenAutomation in Construction 77 (2017) 1–14

http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0005
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0005
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0010
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0010
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0010
http://dx.doi.org/10.1016/j.conbuildmat.2013.11.063
http://dx.doi.org/10.1016/j.conbuildmat.2014.09.026
http://urn.fi/URN:ISBN:978-952-248-168-9
http://dx.doi.org/10.1016/j.conbuildmat.2013.12.046
http://dx.doi.org/10.1201/9781420054316
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001209
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0045
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0045
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0050
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0050
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0050
http://dx.doi.org/10.1201/9781439828403.ch100
http://dx.doi.org/10.1201/9781439828403.ch100
http://dx.doi.org/10.1016/j.proeng.2013.04.143
http://dx.doi.org/10.1201/9781439828403.ch99
http://dx.doi.org/10.1201/9781439828403.ch99
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0070
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0070
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0070
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0070
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0075
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0075
http://dx.doi.org/10.1515/rbm-2012-6510
http://dx.doi.org/10.1515/rbm-2012-6510
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0085
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0085
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0090
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0090
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000089
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000089
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0100
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0100
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0100
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0100
http://dx.doi.org/10.1016/j.neucom.2013.03.059
http://dx.doi.org/10.1016/j.coastaleng.2015.11.010
http://dx.doi.org/10.1002/3527603379
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0120
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0120
http://dx.doi.org/10.1036/0071462899
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0130
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0130
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0135
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0135
http://dx.doi.org/10.1016/j.cemconcomp.2012.05.001
http://dx.doi.org/10.1016/j.cemconcomp.2012.05.001
http://dx.doi.org/10.1016/j.conbuildmat.2012.06.028
http://dx.doi.org/10.1016/j.engstruct.2014.01.032
http://dx.doi.org/10.1016/j.engstruct.2014.01.032
http://dx.doi.org/10.1016/j.engfailanal.2013.01.023
http://dx.doi.org/10.1016/j.cemconcomp.2009.05.008
http://dx.doi.org/10.1016/j.cemconcomp.2009.05.008
http://dx.doi.org/10.1617/s11527-011-9720-2
http://dx.doi.org/10.1617/s11527-011-9720-2
http://dx.doi.org/10.1061/40937(261)103
http://dx.doi.org/10.1016/j.engstruct.2010.11.008
http://urn.fi/URN:ISBN:978-952-60-6052-1
http://dx.doi.org/10.1201/b18972-30
http://dx.doi.org/10.1016/j.conbuildmat.2010.01.023
http://dx.doi.org/10.1016/j.cemconcomp.2014.05.003
http://dx.doi.org/10.1016/j.cemconcomp.2014.05.003
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0200
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0200
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0200
http://dx.doi.org/10.1016/j.cemconres.2009.05.013
http://dx.doi.org/10.1016/j.anucene.2014.04.035
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0215
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0215
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0215
http://dx.doi.org/10.1016/j.cemconcomp.2013.04.006
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0225
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0225
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0230
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0230
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0235
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0235
http://dx.doi.org/10.1201/b12603
http://dx.doi.org/10.1016/j.cemconcomp.2009.01.007
http://dx.doi.org/10.1016/j.cemconcomp.2013.09.022


[51] G. Morcous, Z. Lounis, Prediction of onset of corrosion in concrete bridge decks
using neural networks and case-based reasoning, Comput. Civ. Infrastruct. Eng.
20 (2005) 108–117, http://dx.doi.org/10.1111/j.1467-8667.2005.00380.x.

[52] Y.-M. Sun, T.-P. Chang, M.-T. Liang, Kirchhoff transformation analysis for determin-
ing time/depth dependent chloride diffusion coefficient in concrete, J. Mater. Sci.
43 (2008) 1429–1437, http://dx.doi.org/10.1007/s10853-007-2304-4.

[53] J.C. Walraven, Design for service life: how should it be implemented in future
codes, in: M.G. Alexander, H.-D. Beushausen, F. Dehn, P. Moyo (Eds.), Concr. Repair,
Rehabil. Retrofit. II 2nd Int. Conf. Concr. Repair, Rehabil. Retrofit. ICCRRR-2, CRC
Press, Leiden 2008, pp. 3–10, http://dx.doi.org/10.1201/9781439828403.sec1.

[54] R. Bekkerman, M. Bilenko, J. Langford, Scaling up machine learning: introduction,
in: R. Bekkerman, M. Bilenko, J. Langford (Eds.), Scaling up Mach. Learn. Parallel
Distrib. Approaches, Cambridge University Press, New York 2012, pp. 1–22.

[55] V. Cherkassky, F. Mulier, Learning From Data: Concepts, Theory, and Methods, sec-
ond ed. John Wiley & Sons, Inc., Hoboken, NJ, 2007.

[56] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Morgan
Kaufmann, Waltham, MA, 2012.

[57] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and
Techniques: Practical Machine Learning Tools and Techniques, Morgan Kaufmann,
Burlington, MA, 2011.

[58] E. Alpaydin, Introduction to Machine Learning, second ed. MIT Press, Cambridge,
MA, 2010http://dx.doi.org/10.1017/S0269888910000056.

[59] Y. Reich, Machine learning techniques for civil engineering problems, Microcomput.
Civ. Eng. 12 (1997) 295–310, http://dx.doi.org/10.1111/0885-9507.00065.

[60] V.M. Karbhari, L.S.-W. Lee, Vibration-based damage detection techniques for struc-
tural health monitoring of civil infrastructure systems, in: V.M. Karbhari, F. Ansari
(Eds.), Struct. Heal. Monit. Civ. Infrastruct. Syst, Woodhead Publishing Limited,
Cambridge, U.K. 2009, pp. 177–212.

[61] T. Mitchell, Machine Learning, McGraw Hill, 1997.
[62] M. Kanevski, V. Timonin, A. Pozdnukhov, Machine Learning for Spatial Environ-

mental Data: Theory, Applications, and Software, EPFL Press, Lausanne,
2009http://dx.doi.org/10.1201/9781439808085.

[63] S. Marsland, Machine Learning: An Algorithmic Perspective, Chapman and Hall/
CRC, Boca Raton, FL, 2009.

[64] K.P. Murphy, Machine learning: a probabilistic perspective, Machine Learning: A
Probabilistic Perspective, Cambridge, MA, 2012.

[65] M. Ivanović, M. Radovanović, Modern machine learning techniques and their ap-
plications, in: A. Hussain, M. Ivanović (Eds.), Electron. Commun. Networks IV
Proc. 4th Int. Conf. Electron. Commun. Networks, CRC Press, Leiden 2015,
pp. 833–846, http://dx.doi.org/10.1201/b18592-153.

[66] T. Harris, Credit scoring using the clustered support vector machine, Expert Syst.
Appl. 42 (2015) 741–750, http://dx.doi.org/10.1016/j.eswa.2014.08.029.

[67] A. Takeda, T. Kanamori, Using financial risk measures for analyzing generalization
performance of machine learning models, Neural Netw. 57 (2014) 29–38, http://
dx.doi.org/10.1016/j.neunet.2014.05.006.

[68] M.J. Kim, D.K. Kang, Ensemblewith neural networks for bankruptcy prediction, Expert
Syst. Appl. 37 (2010) 3373–3379, http://dx.doi.org/10.1016/j.eswa.2009.10.012.

[69] K. Di, W. Li, Z. Yue, Y. Sun, Y. Liu, A machine learning approach to crater detection
from topographic data, Adv. Space Res. 54 (2014) 2419–2429, http://dx.doi.org/10.
1016/j.asr.2014.08.018.

[70] G. Dede, M.H. Sazlı, Speech recognition with artificial neural networks, Digit. Signal
Process. 20 (2010) 763–768, http://dx.doi.org/10.1016/j.dsp.2009.10.004.

[71] W.W. Hsieh, Machine Learning Methods in the Environmental Sciences: Neural
Networks and Kernels, Cambridge University Press, Cambridge, 2009http://dx.
doi.org/10.1017/CBO9780511627217.

[72] W.Z. Taffese, Case-based reasoning and neural networks for real estate valuation,
in: V. Devedžic (Ed.), Proc. 25th IASTED Int. Multi-conference Artif. Intell. Appl,
ACTA Press, Anaheim, CA 2007, pp. 84–89.

[73] B. Park, J.K. Bae, Using machine learning algorithms for housing price prediction:
the case of Fairfax County, Virginia housing data, Expert Syst. Appl. 42 (2015)
2928–2934, http://dx.doi.org/10.1016/j.eswa.2014.11.040.

[74] W.Z. Taffese, A survey on application of artificial intelligence in real estate industry,
in: M.Y. Hamid, A. Chekima, G. Sainarayanan, N. Prabhakaran, P. Anthony, F. Wong,
et al., (Eds.), Proc. Third Int. Conf. Artif. Intell. Eng. Technol, Universiti Malaysia
Sabah, Kota Kinabalu 2006, pp. 710–715.

[75] K.W. Chau, C.L. Wu, A hybrid model coupled with singular spectrum analysis for
daily rainfall prediction, J. Hydroinformatics 12 (2010) 458–473, http://dx.doi.
org/10.2166/hydro.2010.032.

[76] R. Taormina, K.-W. Chau, Data-driven input variable selection for rainfall–runoff
modeling using binary-coded particle swarm optimization and extreme learning
machines, J. Hydrol. 529 (2015) 1617–1632, http://dx.doi.org/10.1016/j.jhydrol.
2015.08.022.

[77] W.Wang, K. Chau, D. Xu, X.-Y. Chen, Improving forecasting accuracy of annual run-
off time series using ARIMA based on EEMD decomposition, Water Resour. Manag.
29 (2015) 2655–2675, http://dx.doi.org/10.1007/s11269-015-0962-6.

[78] C.L. Wu, K.W. Chau, Y.S. Li, Methods to improve neural network performance in
daily flows prediction, J. Hydrol. 372 (2009) 80–93, http://dx.doi.org/10.1016/j.
jhydrol.2009.03.038.

[79] A. Lavecchia, Machine-learning approaches in drug discovery: methods and appli-
cations, Drug Discov. Today 20 (2015) 318–331, http://dx.doi.org/10.1016/j.drudis.
2014.10.012.

[80] G. Wang, K.-M. Lam, Z. Deng, K.-S. Choi, Prediction of mortality after radical
cystectomy for bladder cancer by machine learning techniques, Comput. Biol.
Med. 63 (2015) 124–132, http://dx.doi.org/10.1016/j.compbiomed.2015.05.015.

[81] D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning algorithms
with their applications in bioinformatics, in: H.R. Arabnia, Q.-N. Tran (Eds.), Softw.

Tools Algorithms Biol. Syst, Springer-Verlag, New York 2011, pp. 191–199, http://
dx.doi.org/10.1007/978-1-4419-7046-6.

[82] S. Zhang, K.-W. Chau, Dimension reduction using semi-supervised locally linear
embedding for plant leaf classification, in: D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J.
Kang, V. Bevilacqua (Eds.), Emerg. Intell. Comput. Technol. Appl. 5th Int. Conf.
Intell. Comput. ICIC 2009, Ulsan, South Korea, Sept. 16-19, 2009. Proc, Springer,
Berlin Heidelberg, Heidelberg 2009, pp. 948–955, http://dx.doi.org/10.1007/978-
3-642-04070-2_100.

[83] A. Vaughan, S.V. Bohac, Real-time, adaptive machine learning for non-stationary,
near chaotic gasoline engine combustion time series, Neural Netw. 70 (2015)
18–26, http://dx.doi.org/10.1016/j.neunet.2015.04.007.

[84] S. Jurado, À. Nebot, F. Mugica, N. Avellan, Hybrid methodologies for electricity load
forecasting: entropy-based feature selection with machine learning and soft com-
puting techniques, Energy 86 (2015) 276–291, http://dx.doi.org/10.1016/j.energy.
2015.04.039.

[85] A. Kialashaki, J.R. Reisel, Development and validation of artificial neural network
models of the energy demand in the industrial sector of the United States, Energy
76 (2014) 749–760, http://dx.doi.org/10.1016/j.energy.2014.08.072.

[86] T. Arciszewski, M. Mustafa, W. Ziarko, A methodology of design knowledge acqui-
sition for use in learning expert systems, Int. J. Man Mach. Stud. 27 (1987) 23–32,
http://dx.doi.org/10.1016/S0020-7373(87)80042-1.

[87] J.R. Stone, D.I. Blockley, B.W. Pilsworth, Towards machine learning from case
histories, Civ. Eng. Syst. 6 (1989) 129–135, http://dx.doi.org/10.1080/
02630258908970553.

[88] S. Zheng, Z. Li, H. Wang, A genetic fuzzy radial basis function neural network for
structural health monitoring of composite laminated beams, Expert Syst. Appl.
38 (2011) 11837–11842, http://dx.doi.org/10.1016/j.eswa.2011.03.072.

[89] N.L. Khoa, B. Zhang, Y. Wang, F. Chen, S. Mustapha, Robust dimensionality
reduction and damage detection approaches in structural health monitoring,
Struct. Health Monit. 13 (2014) 406–417, http://dx.doi.org/10.1177/
1475921714532989.

[90] S.-S. Jin, S. Cho, H.-J. Jung, Adaptive reference updating for vibration-based struc-
tural health monitoring under varying environmental conditions, Comput. Struct.
158 (2015) 211–224, http://dx.doi.org/10.1016/j.compstruc.2015.06.001.

[91] S. Yuan, L. Wang, G. Peng, Neural network method based on a new damage signa-
ture for structural health monitoring, Thin-Walled Struct. 43 (2005) 553–563,
http://dx.doi.org/10.1016/j.tws.2004.10.003.

[92] S. Saadat, M.N. Noori, G.D. Buckner, T. Furukawa, Y. Suzuki, Structural health mon-
itoring and damage detection using an intelligent parameter varying (IPV) tech-
nique, Int. J. Non Linear Mech. 39 (2004) 1687–1697, http://dx.doi.org/10.1016/j.
ijnonlinmec.2004.03.001.

[93] F. Salazar, M.A. Toledo, E. Oñate, R. Morán, An empirical comparison of machine
learning techniques for dam behaviour modelling, Struct. Saf. 56 (2015) 9–17,
http://dx.doi.org/10.1016/j.strusafe.2015.05.001.

[94] J.-H. Chou, J. Ghaboussi, Genetic algorithm in structural damage detection, Comput.
Struct. 79 (2001) 1335–1353, http://dx.doi.org/10.1016/S0045-7949(01)00027-X.

[95] B.A. Story, A Comparative Array of Artificial Neural Networks for Use in Structural
Impairment Detection, Texas A&M University, 2012.

[96] M.Q. Feng, D.K. Kim, J.-H. Yi, Y. Chen, Baseline models for bridge performancemon-
itoring, J. Eng. Mech. 130 (2004) 562–569, http://dx.doi.org/10.1061/(ASCE)0733-
9399(2004)130:5(562).

[97] Y.-J. Cha, O. Buyukozturk, Modal strain energy based damage detection using
multi-objective optimization, in: A. Wicks (Ed.), Struct. Heal. Monit. Vol. 5 Proc.
32nd IMAC, A Conf. Expo. Struct. Dyn. 2014, Springer, Cham 2014, pp. 125–133,
http://dx.doi.org/10.1007/978-3-319-04570-2_14.

[98] V. Ranković, N. Grujović, D. Divac, N. Milivojević, A. Novaković, Modelling of dam
behaviour based on neuro-fuzzy identification, Eng. Struct. 35 (2012) 107–113,
http://dx.doi.org/10.1016/j.engstruct.2011.11.011.

[99] H.Z. Su, Z.P. Wen, Combination model monitoring dam safety with wavelet neural
network, in: Z. Wu, M. Abe (Eds.), Proc. First Int. Conf. Struct. Heal. Monit. Intell.
Infrastruct, A. A. Balkema, Lisse 2003, pp. 593–600.

[100] H. Hao, Y. Xia, Vibration-based damage detection of structures by genetic algo-
rithm, J. Comput. Civ. Eng. 16 (2002) 222–229, http://dx.doi.org/10.1061/
(ASCE)0887-3801(2002)16:3(222).

[101] B. Yan, Y. Cui, L. Zhang, C. Zhang, Y. Yang, Z. Bao, et al., Beam structure damage
identification based on BP neural network and support vector machine, Math.
Probl. Eng. 2014 (2014) 1–8, http://dx.doi.org/10.1155/2014/850141.

[102] C.-B. Yun, J.-H. Yi, E.Y. Bahng, Joint damage assessment of framed structures using a
neural networks technique, Eng. Struct. 23 (2001) 425–435, http://dx.doi.org/10.
1016/S0141-0296(00)00067-5.

[103] J.J. Lee, J.W. Lee, J.H. Yi, C.B. Yun, H.Y. Jung, Neural networks-based damage detec-
tion for bridges considering errors in baseline finite element models, J. Sound Vib.
280 (2005) 555–578, http://dx.doi.org/10.1016/j.jsv.2004.01.003.

[104] S.B. Satpal, A. Guha, S. Banerjee, Damage identification in aluminum beams using
support vector machine: numerical and experimental studies, Struct. Control.
Health Monit. (2015)http://dx.doi.org/10.1002/stc.1773.

[105] S. Soyoz, M.Q. Feng, Long-term monitoring and identification of bridge structural
parameters, Comput. Civ. Infrastruct. Eng. 24 (2009) 82–92, http://dx.doi.org/10.
1111/j.1467-8667.2008.00572.x.

[106] I. Karimi, N. Khaji, M.T. Ahmadi, M. Mirzayee, System identification of concrete
gravity dams using artificial neural networks based on a hybrid finite element–
boundary element approach, Eng. Struct. 32 (2010) 3583–3591, http://dx.doi.
org/10.1016/j.engstruct.2010.08.002.

[107] M.P. González, J.L. Zapico, Seismic damage identification in buildings using neural
networks and modal data, Comput. Struct. 86 (2008) 416–426, http://dx.doi.org/
10.1016/j.compstruc.2007.02.021.

12 W.Z. Taffese, E. SistonenAutomation in Construction 77 (2017) 1–14

http://dx.doi.org/10.1111/j.1467-8667.2005.00380.x
http://dx.doi.org/10.1007/s10853-007-2304-4
http://dx.doi.org/10.1201/9781439828403.sec1
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0270
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0270
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0270
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0275
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0275
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0280
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0280
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0285
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0285
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0285
http://dx.doi.org/10.1017/S0269888910000056
http://dx.doi.org/10.1111/0885-9507.00065
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0300
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0300
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0300
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0300
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0305
http://dx.doi.org/10.1201/9781439808085
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0315
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0315
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0320
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0320
http://dx.doi.org/10.1201/b18592-153
http://dx.doi.org/10.1016/j.eswa.2014.08.029
http://dx.doi.org/10.1016/j.neunet.2014.05.006
http://dx.doi.org/10.1016/j.eswa.2009.10.012
http://dx.doi.org/10.1016/j.asr.2014.08.018
http://dx.doi.org/10.1016/j.asr.2014.08.018
http://dx.doi.org/10.1016/j.dsp.2009.10.004
http://dx.doi.org/10.1017/CBO9780511627217
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0360
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0360
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0360
http://dx.doi.org/10.1016/j.eswa.2014.11.040
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0370
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0370
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0370
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0370
http://dx.doi.org/10.2166/hydro.2010.032
http://dx.doi.org/10.1016/j.jhydrol.2015.08.022
http://dx.doi.org/10.1016/j.jhydrol.2015.08.022
http://dx.doi.org/10.1007/s11269-015-0962-6
http://dx.doi.org/10.1016/j.jhydrol.2009.03.038
http://dx.doi.org/10.1016/j.jhydrol.2009.03.038
http://dx.doi.org/10.1016/j.drudis.2014.10.012
http://dx.doi.org/10.1016/j.drudis.2014.10.012
http://dx.doi.org/10.1016/j.compbiomed.2015.05.015
http://dx.doi.org/10.1007/978-1-4419-7046-6
http://dx.doi.org/10.1007/978-3-642-04070-2_100
http://dx.doi.org/10.1007/978-3-642-04070-2_100
http://dx.doi.org/10.1016/j.neunet.2015.04.007
http://dx.doi.org/10.1016/j.energy.2015.04.039
http://dx.doi.org/10.1016/j.energy.2015.04.039
http://dx.doi.org/10.1016/j.energy.2014.08.072
http://dx.doi.org/10.1016/S0020-7373(87)80042-1
http://dx.doi.org/10.1080/02630258908970553
http://dx.doi.org/10.1080/02630258908970553
http://dx.doi.org/10.1016/j.eswa.2011.03.072
http://dx.doi.org/10.1177/1475921714532989
http://dx.doi.org/10.1177/1475921714532989
http://dx.doi.org/10.1016/j.compstruc.2015.06.001
http://dx.doi.org/10.1016/j.tws.2004.10.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.03.001
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.03.001
http://dx.doi.org/10.1016/j.strusafe.2015.05.001
http://dx.doi.org/10.1016/S0045-7949(01)00027-X
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0475
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0475
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:5(562)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:5(562)
http://dx.doi.org/10.1007/978-3-319-04570-2_14
http://dx.doi.org/10.1016/j.engstruct.2011.11.011
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0495
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0495
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0495
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
http://dx.doi.org/10.1155/2014/850141
http://dx.doi.org/10.1016/S0141-0296(00)00067-5
http://dx.doi.org/10.1016/S0141-0296(00)00067-5
http://dx.doi.org/10.1016/j.jsv.2004.01.003
http://dx.doi.org/10.1002/stc.1773
http://dx.doi.org/10.1111/j.1467-8667.2008.00572.x
http://dx.doi.org/10.1111/j.1467-8667.2008.00572.x
http://dx.doi.org/10.1016/j.engstruct.2010.08.002
http://dx.doi.org/10.1016/j.compstruc.2007.02.021


[108] J. Mata, Interpretation of concrete dam behaviour with artificial neural network
and multiple linear regression models, Eng. Struct. 33 (2011) 903–910, http://dx.
doi.org/10.1016/j.engstruct.2010.12.011.

[109] C.-Y. Kao, C.-H. Loh, Monitoring of long-term static deformation data of Fei-Tsui
arch dam using artificial neural network-based approaches, Struct. Control. Health
Monit. 20 (2013) 282–303, http://dx.doi.org/10.1002/stc.492.

[110] V. Ranković, N. Grujović, D. Divac, N. Milivojević, Development of support vector
regression identification model for prediction of dam structural behaviour, Struct.
Saf. 48 (2014) 33–39, http://dx.doi.org/10.1016/j.strusafe.2014.02.004.

[111] M.-Y. Cheng, J.-S. Chou, A.F.V. Roy, Y.-W.Wu, High-performance concrete compres-
sive strength prediction using time-weighted evolutionary fuzzy support vector
machines inference model, Autom. Constr. 28 (2012) 106–115, http://dx.doi.org/
10.1016/j.autcon.2012.07.004.

[112] U. Atici, Prediction of the strength of mineral admixture concrete using multivari-
able regression analysis and an artificial neural network, Expert Syst. Appl. 38
(2011) 9609–9618, http://dx.doi.org/10.1016/j.eswa.2011.01.156.

[113] J.-S. Chou, C.-F. Tsai, A.-D. Pham, Y.-H. Lu, Machine learning in concrete strength
simulations: multi-nation data analytics, Constr. Build. Mater. 73 (2014)
771–780, http://dx.doi.org/10.1016/j.conbuildmat.2014.09.054.

[114] I.-C. Yeh, L.-C. Lien, Knowledge discovery of concrete material using Genetic Oper-
ation Trees, Expert Syst. Appl. 36 (2009) 5807–5812, http://dx.doi.org/10.1016/j.
eswa.2008.07.004.

[115] I. Saini, P. Chandramouli, Prediction of elastic modulus of high strength concrete by
Gaussian process regression, Sci. Eng. Res. 4 (2013) 197–198.

[116] A.H. Gandomi, A.H. Alavi, Applications of computational intelligence in behavior
simulation of concrete materials, in: X.-S. Yang, S. Koziel (Eds.), Comput. Optim.
Appl. Eng. Ind, Springer, Berlin 2011, pp. 221–243, http://dx.doi.org/10.1007/
978-3-642-20986-4_9.

[117] K. Yan, C. Shi, Prediction of elastic modulus of normal and high strength concrete
by support vector machine, Constr. Build. Mater. 24 (2010) 1479–1485, http://
dx.doi.org/10.1016/j.conbuildmat.2010.01.006.

[118] ACI (American Concrete Institute), Building Code Requirements for Structural Con-
crete (ACI 318-95) and Commentary (ACI 318R-95), AC1318-95 AC1318R-95,
1995.

[119] CEB (Comité Euro-International du Béton), CEB-FIP Model Code 90, 1993.
[120] M.Y. Mansour, M. Dicleli, J.Y. Lee, J. Zhang, Predicting the shear strength of rein-

forced concrete beams using artificial neural networks, Eng. Struct. 26 (2004)
781–799, http://dx.doi.org/10.1016/j.engstruct.2004.01.011.

[121] A. Behnood, K.P. Verian, M.M. Gharehveran, Evaluation of the splitting tensile
strength in plain and steel fiber-reinforced concrete based on the compressive
strength, Constr. Build. Mater. 98 (2015) 519–529, http://dx.doi.org/10.1016/j.
conbuildmat.2015.08.124.

[122] J.-K. Kim, S.H. Han, Y.C. Song, Effect of temperature and aging on the mechanical
properties of concrete: part I. Experimental results, Cem. Concr. Res. 32 (2002)
1087–1094, http://dx.doi.org/10.1016/S0008-8846(02)00744-5.

[123] F. Demir, K.A. Korkmaz, Prediction of lower and upper bounds of elastic modulus of
high strength concrete, Constr. Build. Mater. 22 (2008) 1385–1393, http://dx.doi.
org/10.1016/j.conbuildmat.2007.04.012.

[124] ACI (American Concrete Institute), Guide for Modeling and Calculating Shrinkage
and Creep in Hardened Concrete, ACI 209.2R-08, 2008.

[125] Z.P. Bažant, S. Baweja, Creep and shrinkage prediction model for analysis and de-
sign of concrete structures: model B3-short form, in: A. Al-Manaseer (Ed.),
Adam Nev. Symp. Creep Shrinkage-Structural Des. Eff. ACISP-194, American Con-
crete Institute (ACI), Farmington Hills, MI 2000, pp. 85–100.

[126] L. Bal, F. Buyle-Bodin, Artificial neural network for predicting drying shrinkage of
concrete, Constr. Build. Mater. 38 (2013) 248–254, http://dx.doi.org/10.1016/j.
conbuildmat.2012.08.043.

[127] T. Ji, T. Lin, X. Lin, A concrete mix proportion design algorithm based on artificial
neural networks, Cem. Concr. Res. 36 (2006) 1399–1408, http://dx.doi.org/10.
1016/j.cemconres.2006.01.009.

[128] M. Uysal, H. Tanyildizi, Estimation of compressive strength of self compacting con-
crete containing polypropylene fiber and mineral additives exposed to high tem-
perature using artificial neural network, Constr. Build. Mater. 27 (2012) 404–414,
http://dx.doi.org/10.1016/j.conbuildmat.2011.07.028.

[129] B.K.R. Prasad, H. Eskandari, B.V.V. Reddy, Prediction of compressive strength of SCC
and HPC with high volume fly ash using ANN, Constr. Build. Mater. 23 (2009)
117–128, http://dx.doi.org/10.1016/j.conbuildmat.2008.01.014.

[130] R. Siddique, P. Aggarwal, Y. Aggarwal, Prediction of compressive strength of self-
compacting concrete containing bottom ash using artificial neural networks, Adv.
Eng. Softw. 42 (2011) 780–786, http://dx.doi.org/10.1016/j.advengsoft.2011.05.
016.

[131] A.T.A. Dantas, M.B. Leite, K. de J. Nagahama, Prediction of compressive strength of
concrete containing construction and demolition waste using artificial neural net-
works, Constr. Build. Mater. 38 (2013) 717–722, http://dx.doi.org/10.1016/j.
conbuildmat.2012.09.026.

[132] Z.H. Duan, S.C. Kou, C.S. Poon, Prediction of compressive strength of recycled aggre-
gate concrete using artificial neural networks, Constr. Build. Mater. 40 (2013)
1200–1206, http://dx.doi.org/10.1016/j.conbuildmat.2012.04.063.

[133] H. Naderpour, A. Kheyroddin, G.G. Amiri, Prediction of FRP-confined compressive
strength of concrete using artificial neural networks, Compos. Struct. 92 (2010)
2817–2829, http://dx.doi.org/10.1016/j.compstruct.2010.04.008.

[134] A. Nazari, J.G. Sanjayan, Modelling of compressive strength of geopolymer paste,
mortar and concrete by optimized support vector machine, Ceram. Int. 41
(2015) 12164–12177, http://dx.doi.org/10.1016/j.ceramint.2015.06.037.

[135] A. Nazari, S. Riahi, Prediction split tensile strength and water permeability of high
strength concrete containing TiO2 nanoparticles by artificial neural network and

genetic programming, Compos. Part B Eng. 42 (2011) 473–488, http://dx.doi.org/
10.1016/j.compositesb.2010.12.004.

[136] M. Sarıdemir, Empirical modeling of splitting tensile strength from cylinder com-
pressive strength of concrete by genetic programming, Expert Syst. Appl. 38
(2011) 14257–14268, http://dx.doi.org/10.1016/j.eswa.2011.04.239.

[137] B. Ahmadi-Nedushan, Prediction of elastic modulus of normal and high strength
concrete using ANFIS and optimal nonlinear regression models, Constr. Build.
Mater. 36 (2012) 665–673, http://dx.doi.org/10.1016/j.conbuildmat.2012.06.002.

[138] F. Demir, Prediction of elastic modulus of normal and high strength concrete by ar-
tificial neural networks, Constr. Build. Mater. 22 (2008) 1428–1435, http://dx.doi.
org/10.1016/j.conbuildmat.2007.04.004.

[139] S. Lee, C. Lee, Prediction of shear strength of FRP-reinforced concrete flexural mem-
bers without stirrups using artificial neural networks, Eng. Struct. 61 (2014)
99–112, http://dx.doi.org/10.1016/j.engstruct.2014.01.001.

[140] R. Bashir, A. Ashour, Neural network modelling for shear strength of concrete
members reinforced with FRP bars, Compos. Part B Eng. 43 (2012) 3198–3207,
http://dx.doi.org/10.1016/j.compositesb.2012.04.011.

[141] K. Nasrollahzadeh, M.M. Basiri, Prediction of shear strength of FRP reinforced con-
crete beams using fuzzy inference system, Expert Syst. Appl. 41 (2014) 1006–1020,
http://dx.doi.org/10.1016/j.eswa.2013.07.045.

[142] K. Mermerdaş, M.M. Arbili, Explicit formulation of drying and autogenous shrink-
age of concretes with binary and ternary blends of silica fume and fly ash, Constr.
Build. Mater. 94 (2015) 371–379, http://dx.doi.org/10.1016/j.conbuildmat.2015.
07.074.

[143] M.I. Khan, Mix proportions for HPC incorporating multi-cementitious composites
using artificial neural networks, Constr. Build. Mater. 28 (2012) 14–20, http://dx.
doi.org/10.1016/j.conbuildmat.2011.08.021.

[144] M. Marks, D. Jozwiak-Niedzwiedzka, M.A. Glinicki, Application of machine learning
for prediction of concrete resistance to migration of chlorides, in: A.M. Brandt, J.
Olek, I.H. Marshall (Eds.), Proc. Int. Symp. “Brittle Matrix Compos. 9”, Woodhead
Publishing Ltd. and Institute of Fundamental Technological Research, Warsaw
2009, pp. 227–236.

[145] F. Papworth, A whole of life approach to concrete durability—the CIA concrete du-
rability series, in: F. Dehn, H.-D. Beushausen, M.G. Alexander, P. Moyo (Eds.), Concr.
Repair, Rehabil. Retrofit. IV 4th Int. Conf. Concr. Repair, Rehabil. Retrofit. ICCRRR-4,
CRC Press, Leiden 2015, pp. 213–219, http://dx.doi.org/10.1201/b18972-30.

[146] S.W. Tang, Y. Yao, C. Andrade, Z.J. Li, Recent durability studies on concrete struc-
ture, Cem. Concr. Res. 78 (2015) 143–154, http://dx.doi.org/10.1016/j.cemconres.
2015.05.021.

[147] N.R. Buenfeld, N.M. Hassanein, A.J. Jones, An artificial neural network for predicting
carbonation depth in concrete structures, in: I. Flood, N. Kartam (Eds.), Artif. Neural
Networks Civ. Eng. Adv. Featur. Appl, American Society of Civil Engineers, Reston,
VA 1998, pp. 77–117.

[148] C. Lu, R. Liu, Predicting carbonation depth of prestressed concrete under different
stress states using artificial neural network, Adv. Artif. Neural Syst. 2009 (2009)
1–8, http://dx.doi.org/10.1155/2009/193139.

[149] W.Z. Taffese, F. Al-Neshawy, E. Sistonen, M. Ferreira, Optimized neural network
based carbonation prediction model, Int. Symp. Non-Destructive Test. Civ. Eng.
(NDT-CE 2015), Bundesanstalt für Materialforschung und –prüfung (BAM), Berlin
2015, pp. 1074–1083.

[150] R. Xiang, Prediction of concrete carbonation depth based on support vector regres-
sion, in: Q. Liu, M. Zhu (Eds.), Third Int. Symp. Intell. Inf. Technol. Appl, IEEE Com-
puter Society, Los Alamitos, CA 2009, pp. 172–175, http://dx.doi.org/10.1109/IITA.
2009.469.

[151] L. Zhitao, H. Hongming, Z. Shengli, Research on support vector machine's predic-
tion of concrete carbonization, in: Q. Luo (Ed.), Int. Semin. Bus. Inf. Manag, IEEE
Computer Society, Los Alamitos, CA 2008, pp. 319–322, http://dx.doi.org/10.
1109/ISBIM.2008.206.

[152] N. Bu, G. Yang, H. Zhao, Prediction of concrete carbonization depth based on DE-BP
neural network, in: Q. Luo, M. Zhu (Eds.), Third Int. Symp. Intell. Inf. Technol. Appl.
IITA 2009, IEEE Computer Society, Los Alamitos, CA 2009, pp. 240–243, http://dx.
doi.org/10.1109/IITA.2009.252.

[153] D. Luo, D. Niu, Z. Dong, Application of neural network for concrete carbonation
depth prediction, in: J. Olek, J.Weiss (Eds.), Proc. 4th Int. Conf. Durab. Concr. Struct,
Purdue University Press, West Lafayette, IN 2014, pp. 66–71, http://dx.doi.org/10.
5703/1288284315384.

[154] Y. Liu, S. Zhao, C. Yi, The forecast of carbonation depth of concrete based on RBF
neural network, in: Q. Zhou, J. Luo (Eds.), Second Int. Symp. Intell. Inf. Technol.
Appl. IITA 2008, IEEE Computer Society, Los Alamitos, CA 2008, pp. 544–548,
http://dx.doi.org/10.1109/IITA.2008.402.

[155] W.Z. Taffese, E. Sistonen, J. Puttonen, Prediction of concrete carbonation depth
using decision trees, in: M. Verleysen (Ed.), Proc. 23rd Eur. Symp. Artif. Neural
Networks, Comput. Intell. Mach. Learn, ESANN 2015, pp. 415–420.

[156] W.Z. Taffese, E. Sistonen, J. Puttonen, CaPrM: carbonation prediction model for re-
inforced concrete using machine learning methods, Constr. Build. Mater. 100
(2015) 70–82, http://dx.doi.org/10.1016/j.conbuildmat.2015.09.058.

[157] J. Peng, Z. Li, B. Ma, Neural network analysis of chloride diffusion in concrete, J.
Mater. Civ. Eng. 14 (2002) 327–333, http://dx.doi.org/10.1061/(ASCE)0899-
1561(2002)14:4(327).

[158] S. Inthata, W. Kowtanapanich, R. Cheerarot, Prediction of chloride permeability of
concretes containing ground pozzolans by artificial neural networks, Mater. Struct.
46 (2013) 1707–1721, http://dx.doi.org/10.1617/s11527-012-0009-x.

[159] S.S. Gilan, H.B. Jovein, A.A. Ramezanianpour, Hybrid support vector regression –
particle swarm optimization for prediction of compressive strength and RCPT of
concretes containing metakaolin, Constr. Build. Mater. 34 (2012) 321–329,
http://dx.doi.org/10.1016/j.conbuildmat.2012.02.038.

13W.Z. Taffese, E. SistonenAutomation in Construction 77 (2017) 1–14

http://dx.doi.org/10.1016/j.engstruct.2010.12.011
http://dx.doi.org/10.1002/stc.492
http://dx.doi.org/10.1016/j.strusafe.2014.02.004
http://dx.doi.org/10.1016/j.autcon.2012.07.004
http://dx.doi.org/10.1016/j.eswa.2011.01.156
http://dx.doi.org/10.1016/j.conbuildmat.2014.09.054
http://dx.doi.org/10.1016/j.eswa.2008.07.004
http://dx.doi.org/10.1016/j.eswa.2008.07.004
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0575
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0575
http://dx.doi.org/10.1007/978-3-642-20986-4_9
http://dx.doi.org/10.1007/978-3-642-20986-4_9
http://dx.doi.org/10.1016/j.conbuildmat.2010.01.006
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0590
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0590
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0590
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0595
http://dx.doi.org/10.1016/j.engstruct.2004.01.011
http://dx.doi.org/10.1016/j.conbuildmat.2015.08.124
http://dx.doi.org/10.1016/j.conbuildmat.2015.08.124
http://dx.doi.org/10.1016/S0008-8846(02)00744-5
http://dx.doi.org/10.1016/j.conbuildmat.2007.04.012
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0620
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0620
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0625
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0625
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0625
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0625
http://dx.doi.org/10.1016/j.conbuildmat.2012.08.043
http://dx.doi.org/10.1016/j.conbuildmat.2012.08.043
http://dx.doi.org/10.1016/j.cemconres.2006.01.009
http://dx.doi.org/10.1016/j.cemconres.2006.01.009
http://dx.doi.org/10.1016/j.conbuildmat.2011.07.028
http://dx.doi.org/10.1016/j.conbuildmat.2008.01.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.016
http://dx.doi.org/10.1016/j.advengsoft.2011.05.016
http://dx.doi.org/10.1016/j.conbuildmat.2012.09.026
http://dx.doi.org/10.1016/j.conbuildmat.2012.09.026
http://dx.doi.org/10.1016/j.conbuildmat.2012.04.063
http://dx.doi.org/10.1016/j.compstruct.2010.04.008
http://dx.doi.org/10.1016/j.ceramint.2015.06.037
http://dx.doi.org/10.1016/j.compositesb.2010.12.004
http://dx.doi.org/10.1016/j.eswa.2011.04.239
http://dx.doi.org/10.1016/j.conbuildmat.2012.06.002
http://dx.doi.org/10.1016/j.conbuildmat.2007.04.004
http://dx.doi.org/10.1016/j.engstruct.2014.01.001
http://dx.doi.org/10.1016/j.compositesb.2012.04.011
http://dx.doi.org/10.1016/j.eswa.2013.07.045
http://dx.doi.org/10.1016/j.conbuildmat.2015.07.074
http://dx.doi.org/10.1016/j.conbuildmat.2015.07.074
http://dx.doi.org/10.1016/j.conbuildmat.2011.08.021
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0720
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0720
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0720
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0720
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0720
http://dx.doi.org/10.1201/b18972-30
http://dx.doi.org/10.1016/j.cemconres.2015.05.021
http://dx.doi.org/10.1016/j.cemconres.2015.05.021
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0735
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0735
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0735
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0735
http://dx.doi.org/10.1155/2009/193139
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0745
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0745
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0745
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0745
http://dx.doi.org/10.1109/IITA.2009.469
http://dx.doi.org/10.1109/IITA.2009.469
http://dx.doi.org/10.1109/ISBIM.2008.206
http://dx.doi.org/10.1109/ISBIM.2008.206
http://dx.doi.org/10.1109/IITA.2009.252
http://dx.doi.org/10.5703/1288284315384
http://dx.doi.org/10.5703/1288284315384
http://dx.doi.org/10.1109/IITA.2008.402
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0775
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0775
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0775
http://dx.doi.org/10.1016/j.conbuildmat.2015.09.058
http://dx.doi.org/10.1061/(ASCE)0899-1561(2002)14:4(327)
http://dx.doi.org/10.1061/(ASCE)0899-1561(2002)14:4(327)
http://dx.doi.org/10.1617/s11527-012-0009-x
http://dx.doi.org/10.1016/j.conbuildmat.2012.02.038


[160] N. Ghafoori, M. Najimi, J. Sobhani, M.A. Aqel, Predicting rapid chloride permeability
of self-consolidating concrete: a comparative study on statistical and neural net-
work models, Constr. Build. Mater. 44 (2013) 381–390, http://dx.doi.org/10.
1016/j.conbuildmat.2013.03.039.

[161] A.R. Boğa, M. Öztürk, İ.B. Topçu, Using ANN and ANFIS to predict the mechanical
and chloride permeability properties of concrete containing GGBFS and CNI,
Compos. Part B Eng. 45 (2013) 688–696, http://dx.doi.org/10.1016/j.compositesb.
2012.05.054.

[162] H. Yasarer, Y.M. Najjar, Characterizing the permeability of Kansas concrete mixes
used in PCC pavements, Int. J. Geomech. 14 (2014), 04014017. http://dx.doi.org/
10.1061/(ASCE)GM.1943-5622.0000362.

[163] Y.-Y. Kim, B.-J. Lee, S.-J. Kwon, Evaluation technique of chloride penetration using
apparent diffusion coefficient and neural network algorithm, Adv. Mater. Sci.
Eng. (2014)http://dx.doi.org/10.1155/2014/647243 (Article ID, 13 pages).

[164] J. Lizarazo-Marriaga, P. Claisse, Determination of the concrete chloride diffusion co-
efficient based on an electrochemical test and an optimization model, Mater.
Chem. Phys. 117 (2009) 536–543, http://dx.doi.org/10.1016/j.matchemphys.
2009.06.047.

[165] O.A. Hodhod, H.I. Ahmed, Developing an artificial neural network model to evalu-
ate chloride diffusivity in high performance concrete, HBRC J. 9 (2013) 15–21,
http://dx.doi.org/10.1016/j.hbrcj.2013.04.001.

[166] A. Tarighat, A.H. Erfanimanesh, Artificial neural network modeling of chloride dif-
fusion coefficient and electrical resistivity for ordinary and high performance semi-
lightweight concretes, 34th Our World Concr. Struct, CI-Premier Pte Ltd., 2009

[167] A. Delnavaz, A.A. Ramezanianpour, H.R. Ashrafi, The analysis of chloride diffusion
coefficient in concrete based on neural network models, in: A.A. Tasnimi (Ed.),
Third Int. Conf. Concr. Dev, Building and Housing Research Center, Tehran 2009,
pp. 775–782.

[168] W.Mazer, M. Geimba de Lima, Numericalmodel based on fuzzy logic for predicting
penetration of chloride ions into the reinforced concrete structures - first esti-
mates, in: V.P. de Freitas, H. Corvacho, M. Lacasse (Eds.), XII DBMC 12th Int. Conf.
Durab. Build. Mater. Compon, FEUP Edições, Porto, 2011.

[169] H.-C. Cho, H. Ju, J.-Y. Oh, K.J. Lee, K.W. Hahm, K.S. Kim, Estimation of concrete car-
bonation depth consideringmultiple influencing factors on the deterioration of du-
rability for reinforced concrete structures, Adv. Mater. Sci. Eng. 2016 (2016) 1–18,
http://dx.doi.org/10.1155/2016/4814609.

[170] A. Delnavaz, A.A. Ramezanianpour, The assessment of carbonation effect on chlo-
ride diffusion in concrete based on artificial neural network model, Mag. Concr.
Res. 64 (2012) 877–884, http://dx.doi.org/10.1680/macr.11.00059.

[171] M. Marks, M.A. Glinicki, K. Gibas, Prediction of the chloride resistance of concrete
modified with high calcium fly ash using machine learning, Materials (Basel) 8
(2015) 8714–8727, http://dx.doi.org/10.3390/ma8125483.

[172] M. Marks, D. Jozwiak-Niedzwiedzka, M.A. Glinicki, Automatic categorization of
chloride migration into concrete modified with CFBC ash, Comput. Concr. 9
(2012) 375–387, http://dx.doi.org/10.12989/cac.2012.9.5.375.

[173] R. Parichatprecha, P. Nimityongskul, Analysis of durability of high performance
concrete using artificial neural networks, Constr. Build. Mater. 23 (2009)
910–917, http://dx.doi.org/10.1016/j.conbuildmat.2008.04.015.

[174] B. Aygün, V.C. Gungor, Wireless sensor networks for structure health monitoring:
recent advances and future research directions, Sens. Rev. 31 (2011) 261–276,
http://dx.doi.org/10.1108/02602281111140038.

[175] N. Barroca, L.M. Borges, F.J. Velez, F. Monteiro, M. Górski, J. Castro-Gomes, Wireless
sensor networks for temperature and humidity monitoring within concrete struc-
tures, Constr. Build. Mater. 40 (2013) 1156–1166, http://dx.doi.org/10.1016/j.
conbuildmat.2012.11.087.

[176] W.J. McCarter, Ø. Vennesland, Sensor systems for use in reinforced concrete struc-
tures, Constr. Build. Mater. 18 (2004) 351–358, http://dx.doi.org/10.1016/j.
conbuildmat.2004.03.008.

[177] D. Cusson, Z. Lounis, L. Daigle, Durability monitoring for improved service life pre-
dictions of concrete bridge decks in corrosive environments, Comput. Civ.
Infrastruct. Eng. 26 (2011) 524–541, http://dx.doi.org/10.1111/j.1467-8667.2010.
00710.x.

[178] W. McCarter, T. Chrisp, A. Butler, P.A. Basheer, Near–surface sensors for condition
monitoring of cover-zone concrete, Constr. Build. Mater. 15 (2001) 115–124,
http://dx.doi.org/10.1016/S0950-0618(00)00060-X.

[179] K. Kumar, S. Muralidharan, T. Manjula, M.S. Karthikeyan, N. Palaniswamy, Sensor
systems for corrosion monitoring in concrete structures, Sens. Trans. Mag. 67
(2006) 553–560.

[180] J.M. Gandía-Romero, R. Bataller, P. Monzón, I. Campos, E. García-Breijo, M.
Valcuende, et al., Characterization of embeddable potentiometric thick-film sen-
sors for monitoring chloride penetration in concrete, Sensors Actuators B Chem.
222 (2016) 407–418, http://dx.doi.org/10.1016/j.snb.2015.07.056.

[181] S.P. Karthick, S. Muralidharan, V. Saraswathy, K. Thangavel, Long-term relative per-
formance of embedded sensor and surface mounted electrode for corrosion mon-
itoring of steel in concrete structures, Sensors Actuators B Chem. 192 (2014)
303–309, http://dx.doi.org/10.1016/j.snb.2013.10.123.

[182] A. Brenna, L. Lazzari, M. Ormellese, Monitoring chloride-induced corrosion of car-
bon steel tendons in concrete using a multi-electrode system, Constr. Build.
Mater. 96 (2015) 434–441, http://dx.doi.org/10.1016/j.conbuildmat.2015.08.037.

[183] G. Qiao, G. Sun, Y. Hong, Y. Qiu, J. Ou, Remote corrosion monitoring of the RC struc-
tures using the electrochemical wireless energy-harvesting sensors and networks,
NDT E Int. 44 (2011) 583–588, http://dx.doi.org/10.1016/j.ndteint.2011.06.007.

[184] W.Z. Taffese, E. Sistonen, Neural network based hygrothermal prediction for dete-
rioration risk analysis of surface-protected concrete façade element, Constr. Build.
Mater. 113 (2016) 34–48, http://dx.doi.org/10.1016/j.conbuildmat.2016.03.029.

[185] F. Al-Neshawy, J. Piironen, S. Peltola, E. Sistonen, J. Puttonen, Network system for
assessing the moisture and thermal behaviour of repaired concrete building fa-
cades, Inf. Technol. Constr. 16 (2011) 601–616.

[186] A. Norris, M. Saafi, P. Romine, Temperature and moisture monitoring in concrete
structures using embedded nanotechnology/microelectromechanical systems
(MEMS) sensors, Constr. Build. Mater. 22 (2008) 111–120, http://dx.doi.org/10.
1016/j.conbuildmat.2006.05.047.

[187] W.Z. Taffese, F. Al-Neshawy, J. Piironen, E. Sistonen, J. Puttonen, Monitoring, evalu-
ation and long-term forecasting of hygrothermal performance of thick-walled con-
crete structure, Proc. OECD/NEA WGIAGE Work. Non-Destructive Eval. Thick.
Concr. Struct, OECD, Prague 2014, pp. 121–143.

[188] M. Raupach, J. Gulikers, K. Reichling, Condition survey with embedded sensors re-
garding reinforcement corrosion, Mater. Corros. 64 (2012) 141–146, http://dx.doi.
org/10.1002/maco.201206629.

14 W.Z. Taffese, E. SistonenAutomation in Construction 77 (2017) 1–14

http://dx.doi.org/10.1016/j.conbuildmat.2013.03.039
http://dx.doi.org/10.1016/j.conbuildmat.2013.03.039
http://dx.doi.org/10.1016/j.compositesb.2012.05.054
http://dx.doi.org/10.1016/j.compositesb.2012.05.054
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000362
http://dx.doi.org/10.1155/2014/647243
http://dx.doi.org/10.1016/j.matchemphys.2009.06.047
http://dx.doi.org/10.1016/j.matchemphys.2009.06.047
http://dx.doi.org/10.1016/j.hbrcj.2013.04.001
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0830
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0830
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0830
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0835
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0835
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0835
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0835
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0840
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0840
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0840
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0840
http://dx.doi.org/10.1155/2016/4814609
http://dx.doi.org/10.1680/macr.11.00059
http://dx.doi.org/10.3390/ma8125483
http://dx.doi.org/10.12989/cac.2012.9.5.375
http://dx.doi.org/10.1016/j.conbuildmat.2008.04.015
http://dx.doi.org/10.1108/02602281111140038
http://dx.doi.org/10.1016/j.conbuildmat.2012.11.087
http://dx.doi.org/10.1016/j.conbuildmat.2012.11.087
http://dx.doi.org/10.1016/j.conbuildmat.2004.03.008
http://dx.doi.org/10.1016/j.conbuildmat.2004.03.008
http://dx.doi.org/10.1111/j.1467-8667.2010.00710.x
http://dx.doi.org/10.1111/j.1467-8667.2010.00710.x
http://dx.doi.org/10.1016/S0950-0618(00)00060-X
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0895
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0895
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0895
http://dx.doi.org/10.1016/j.snb.2015.07.056
http://dx.doi.org/10.1016/j.snb.2013.10.123
http://dx.doi.org/10.1016/j.conbuildmat.2015.08.037
http://dx.doi.org/10.1016/j.ndteint.2011.06.007
http://dx.doi.org/10.1016/j.conbuildmat.2016.03.029
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0925
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0925
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0925
http://dx.doi.org/10.1016/j.conbuildmat.2006.05.047
http://dx.doi.org/10.1016/j.conbuildmat.2006.05.047
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0935
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0935
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0935
http://refhub.elsevier.com/S0926-5805(17)30055-9/rf0935
http://dx.doi.org/10.1002/maco.201206629


Publication II 

 

 

 

 

Taffese, Woubishet Zewdu; Sistonen, Esko; Puttonen, Jari. 2015. 

CaPrM: Carbonation prediction model for reinforced concrete using 

machine learning methods. Journal of Construction and Building 

Materials, volume 100, pages 70–82. ISSN 0950-0618. 

https://doi.org/10.1016/j.conbuildmat.2015.09.058. 

 

© 2015 Elsevier Ltd. Reprinted with permission 

  



 

 



CaPrM: Carbonation prediction model for reinforced concrete using
machine learning methods

Woubishet Zewdu Taffese ⇑, Esko Sistonen, Jari Puttonen
Department of Civil and Structural Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland

h i g h l i g h t s

� Integrating machine learning methods enhances carbonation prediction accuracy.
� Feature selection method improves the performance of the carbonation prediction.
� Plasticizers, air and aggregate contents are also essential for predicting carbonation.
� Accelerated carbonation testing fails to represent fully the natural conditions.
� The median ratio of carbonation coefficients (kacc/knat) varies with time.
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a b s t r a c t

Reliable carbonation depth prediction of concrete structures is crucial for optimizing their design and
maintenance. The challenge of conventional carbonation prediction models is capturing the complex
relationship between governing parameters. To improve the accuracy and methodology of the prediction
a machine learning based carbonation prediction model which integrates four learning methods is
introduced. The model developed considers parameters influencing the carbonation process and enables
the user to choose the best alternative of the machine based methods. The applicability of the method is
demonstrated by an example where the carbonation depths are estimated using the developed model
and verified with unseen data. The evaluation proofs that the model predicts the carbonation depth with
a high accuracy.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbonation of concrete has been identified as one of the
foremost cause of premature degradation, loss of serviceability
and safety of reinforced concrete structures [1–5]. It is a natural
physicochemical process caused by the penetration of carbon diox-
ide from the surrounding environment into the concrete through
pores in the matrix where the carbon dioxide reacts with hydrated
cement [6,7]. Calcium hydroxide (Ca(OH)2) in contact with carbon
dioxide (CO2) forms calcium carbonate (CaCO3) as shown in Eq. (1).
This chemical reaction may gradually reduce the alkalinity of the
pore fluid from pH value around 13–9 [7–11]

CaðOHÞ2 þ CO2 �!H2O CaCO3 þH2O ð1Þ

Even if the reduction of alkalinity caused by carbonation
changes the chemical composition of concrete, its main practical
consequence is that it destroys the passive oxide layer of steel rein-
forcement and eventually corrosion of the steel bars will be initi-
ated [6–14]. It is a serious problem in many parts of the world
and currently two-thirds of all structural concrete is exposed to
environmental conditions that favor carbonation-induced
corrosion [14,15]. Hence, accurate carbonation prediction model
is a key to make realistic decisions on maintenance plan of rein-
forced concrete structures. In this work, a carbonation prediction
model is developed using optimized and integrated machine learn-
ing methods. Neural network, decision tree, bagged decision tree
and boosted decision tree are incorporated in the model with the
purpose of achieving the best prediction.
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2. Background

Conventionally, carbonation depth is reasonably estimated
using a simplified version of Fick’s second law of diffusion,
Eq. (2) [5,6,9,13,16]

xcðtÞ ¼ k
ffiffi
t

p
; ð2Þ

where xcðtÞ is carbonation depth at the time t in [mm] , k is coeffi-

cient of carbonation [mm/year0.5] which is equals to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�DCO2

ðC1�C2Þ
a

q
,

DCO2 is diffusion coefficient for CO2 through carbonated concrete
½mm2=year�, C1 is concentration of CO2 for the surrounding environ-
ment ½kg=m3�, C2 is concentration of CO2 at the carbonation front
½kg=m3�, a is mass of CO2 per unit volume of concrete required to
carbonate all the calcium hydroxide available ½kg=m3� and t time
of exposure to the atmosphere containing carbon dioxide ½year�.

The assumptions in Eq. (2) are: (i) diffusion coefficient for CO2

through carbonated concrete is constant, (ii) amount of CO2

required to neutralise alkalinity within a unit volume of concrete
is constant and (iii) CO2 concentration varies linearly between
fixed boundary values of C1 at the external surface and C2 at the
carbonation front.

The carbonation coefficient k is a relative indicator of carbona-
tion resistance of a concrete, which characterize the influence of
concrete intrinsic factors on carbonation, curing and the exposed
condition. The carbonation depth of the concrete should be mea-
sured first either by an accelerated carbonation test or by measur-
ing the carbonation depth of an existing structure in order to
determine the carbonation coefficient [17]. Since carbonation is a
slow process, it is often investigated by performing accelerated test
with higher CO2 concentration in a controlled environment. Then,
the measured carbonation depth is applied to calculate the equiv-
alent carbonation coefficient using Eq. (2). This approach is used
even if the accelerated test may not always describe the natural
carbonation accurately enough [5]. Eq. (2) is valid as long as the
diffusion coefficient for carbon dioxide is constant in time and
location. But, in real exposure, diffusion of CO2 cannot be constant
and depends on several factors, such as CO2 concentration, con-
crete composition, curing and environmental conditions
[9,17,18]. Eq. (2) often fails to represent the actual condition of
the concrete structures which may lead to inaccurate estimation
of the carbonation depth [6,18,19]. To address these limitations,
a number of improved models which considers the concrete
quality and the environmental and execution factors have been
developed, e.g. the model proposed in fib-MC2010 [20], Eq. (3)

xcðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ke � kc � R�1

NAC;0 � Cs

q
�WðtÞ �

ffiffi
t

p
; ð3Þ

where xcðtÞ is carbonation depth at the time t in [mm], t is time in
[year], ke is environmental function [–], kc is execution transfer
parameter [–], Cs is CO2 concentration in the air in [kg/m3], WðtÞ
is weather function [–], R�1

NAC;0 is inverse effective carbonation
resistance of concrete in [(mm2/year)/(kg/m3)] which is determined
at a certain time t0 using the natural carbonation test NAC in
[(mm2/year)/(kg/m3)].

This and many other models adopt Eq. (2) by linking the coeffi-
cient of carbonation with factors of the concrete material and the
environment. The linked parameters have normally been regarded
as random variables which define the concrete properties that
dominate the ingress rate of CO2 such as exposure, water to binder
ratio (w/b) and compressive strength. Most of the improved mod-
els do not encompass all the influential parameters which govern
the carbonation process. Combining two or more of these models
does not address the problem. The combination of many assump-
tions and simplifications in the existing carbonation prediction

models causes a considerable uncertainty in their performance.
These models may fail to achieve conditions for optimized selec-
tion of appropriate design, maintenance and rehabilitation strate-
gies that will assure a long service life. Hence, an advanced
model that considers most of the parameters is absolutely neces-
sary. Accurate prediction can be developed if all influential param-
eters evaluated as a group rather than individually because
imperative dependencies may be overlooked.

Developing an advanced carbonation prediction model which
addresses all the influential parameters, without adding many
assumptions, is a challenging task since the behavior of concrete
is a function of many parameters that are complex to describe
mathematically. Standard laboratory tests alone are not reliable
enough to predict long-term carbonation as the concrete
microstructure alters due to time-dependent chemical processes
of cement paste and in addition to its interaction with the environ-
ment. The lack of general agreement on how to translate result of
accelerated carbonation test performed in laboratory to concrete
exposed to natural conditions for long-term is another problem
[1,18]. Therefore, developing carbonation prediction model that
can learn from readily available long-term field data using machine
learning methods is a lucrative alternative. Even though this
approach is becoming a common practice in various engineering
fields, its application in the assessment of the durability of concrete
structures is yet limited.

3. Research problem and related work

The restrictions of the conventional Fick’s law based carbona-
tion prediction calls for the use of learning based models, as dis-
cussed in Section 2. Appropriate learning methods which map
the input variables to output variables that closely approximate
the target can be seen as a tempting alternative. A wide variety
of machine learning methods are available for developing models
based on experimental data. Neural networks, decision trees, and
ensemble methods are among them. Even though, there are a num-
ber of machine learning techniques, only neural network method
has been used for carbonation prediction [21–25]. Relative
strengths of the available models based on machine learning are
of keen interest to researchers. No one knows in advance which
machine learning techniques will excel for a given problem unless
otherwise experimented. Comparative strength of machine learn-
ing models strongly depends on the details of the problems
addressed. One model (e.g. neural network) may perform best on
problems of specific dataset, but may not be true for a different
dataset. Therefore, the carbonation prediction ability of the well-
known machine learning models needs to be investigated.

In another perspective, most of the existing neural network
based carbonation prediction models do not employ all the neces-
sary parameters that influence the microstructural properties of
concrete. The common parameters utilized in most of the available
models are composition and amount of cement and water to
cement ratio (w/c) to describe the concrete properties. These
parameters are not sufficient to predict the concrete carbonation
since it is a function of many parameters and ignoring other influ-
ential variables weakens the prediction performance of the model.
Indeed, there are few neural network based models which consider
many parameters but lacked to perform certain essential pre-
processing steps during the model development. It is known fact
that incorporating more information regarding the concrete prop-
erties enhances the learning performance of the model. However,
some parameters may be irrelevant or redundant for the carbona-
tion prediction and even degrade the learning performance. For
these reasons, it is essential to apply a special process to recognize
the most important variables during the model development.
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The aim of this work is to address the limitations of existing
learning based carbonation prediction models. This work explores
the applicability of machine learning methods for carbonation pre-
diction. Based on the exploration, a better performing carbonation
prediction model is developed using optimized and integrated
machine learning techniques. The model integrates neural net-
work, decision tree, bagged decision tree and boosted decision tree.

4. Machine learning

Machine learning is a major sub-field in artificial intelligence. It
employs learning methods to recognize complex patterns from
empirical data, without assuming a predetermined equation as a
model, and make intelligent decisions [26–30]. The model can be
predictive to make predictions in the future or descriptive to gain
knowledge from data, or both [26,31]. Algorithms of machine
learning characteristically fall into one of two learning types:
supervised or unsupervised learning [30,32–34]. Supervised learn-
ing consists of input and output variables whereas in unsupervised
learning there is no output. The former is trying to learn in order to
predict a class or a value, while the latter is trying to group similar
examples together or to find interesting patterns in the data.
Supervised learning problems are classified into two clusters: clas-
sification and regression [29,32]. In classifications, the output
domain is a finite discrete set of categories (classes), while in
regression the output domain is the set of real numbers.

The carbonation prediction problem is a regression one since
our main aim is predicting the numeric value of the carbonation
depth knowing the value of the input variables. Regression is the
problem of building a functional model which is the best predictor
of y given input x using a given training data D ¼ fyi; xigN1 as
described in Eq. (4)

y ¼ F̂ðx1; x2; . . . ; xnÞ ¼ F̂ðXÞ; ð4Þ
where yi is the outputs variable, xi is the input ‘‘vector” made of all
the variable values for the ith observation, n is the number of vari-
ables; N is the number of observations.

Neural network, decision tree and ensemble methods are the
foremost well-known machine learning techniques for their good
capability at modeling uncertain and nonlinear regression prob-
lems. These techniques have been adopted with a great success
for solving broad range complex nonlinear regression problems,
for example, energy production [35], computational finance [36]
and computational biology [37]. Nevertheless, in concrete research
only neural network is commonly used to model nonlinear regres-
sion problems, for instance, chloride penetration in concrete [16],
chloride threshold of pitting corrosion [38], time to corrosion
[39], hygrothermal forecasting in thick-walled concrete [40] and
corrosion currents of reinforced concrete [41]. The proposed car-
bonation prediction model integrates neural network, decision tree
and ensemble (bagged and boosted decision tree) methods.

4.1. Neural network

Neural network consist of partially or fully interconnected sim-
ple processing units called artificial neurons [42–44]. Neural net-
works can be classified in a number of different ways depending
on their architecture which is intimately linked with the learning
algorithm used to train the network. Multilayer feedforward archi-
tecture and backpropagation training procedure is widely used for
nonlinear regression problems [45–48]. This architecture usually
has three or more layers. The first and the last layers are input
and output layers whereas the intermediate layers (hidden layers)
which aids in performing useful computations before directing the
input into the output layer. The architectural graph in Fig. 1

illustrates the layout of a multilayer feedforward neural network
with a single hidden layer. The network can be viewed as a flexible
nonlinear parametric function from a set of inputs, xi, to a set of
outputs, ym. First linear combinations of the weighted inputs are
formed, and then transformed using a nonlinear activation func-
tion uð�Þ [47–49], Eq. (5). The aim is to limit the amplitude of the
output neuron. The outputs of these first-layer neurons are multi-
plied by the layer of the interconnection weights that connect
them to the next layer of neurons. This process continues until
the output nodes compute their outputs. For neurons in the same
layer, the same activation functions are used. Various forms of acti-
vation functions can be defined depending on the characteristics of
applications [49]

zj ¼ u
X
i

wð1Þ
ji xi

 !
; ð5Þ

ym ¼
X
j

wð2Þ
mj zj; ð6Þ

where wð1Þ
ji and wð2Þ

mj are the synaptic weights of the network which
are initially set to random values, and then adjusted during training
by back propagation using the response data.

4.2. Decision tree

Decision tree is a nonparametric hierarchical data structure
implementing the divide-and-conquer strategy. It manages a com-
plex regression problem by reducing them into simpler problems
and recursively applies the same strategy to the sub-problems.
Solutions of sub-problems can be combined to yield a solution of
the complex problem. The power of this approach comes from
the ability to split the instance-space into subspaces and each sub-
space is fitted with different models [26,50]. Decision trees can be
applied to datasets having both a large number of cases and a large
number of variables. They exhibit a high degree of interpretability
[50,51] and composed of internal decision nodes and terminal
leaves (see Fig. 2). The left subfigure plots the data points and par-
titions them while the right one shows the corresponding decision
tree structure. Each decision node implements a test function with
discrete outcomes labeling the branches. Given an input, at each
node, a test is applied and one of the branches is taken depending
on the outcome. This process starts at the root and is repeated
recursively until a leaf node is hit, at which point the value written
in the leaf constitutes the output [26].

4.3. Ensemble methods

Ensemble methods build a predictive model by integrating mul-
tiple models, each of which solves the same original task, in order

Fig. 1. A multilayer feedforward neural network with a single hidden layer.
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to improve the generalization ability, which in turn enhances
prediction performance [26,32,51–53]. Among prominent types
of ensemble methods, bagging and boosting are the ones used
commonly [53,54]. Bagging technique draws multiple bootstrap
random samples from the dataset to form a new training dataset.
This is repeated until a large subset of training datasets is
generated and the same observations can be drawn more than
once. On average, each generated bootstrapped training set con-
tains n 1� 1

e

� � � 0:63n observations, where n is actual dataset. Data
points which are omitted in the training dataset are ‘‘out of bag”
observation. Bagging trains each model in the ensemble using
the randomly drawn subset of the training set. The final prediction
value of the ensemble of trees for unseen (out of bag) data is the
average of the predicted output of the individual trees
[26,51,54,55]. Whereas boosting method trains the training dataset
in sequence with improvement from one model to the next. It
manipulates a data point weight for each training example in order
to generate diverse models. The final output of the ensemble is the
weighted average of the output from all its members [54,55].

5. CaPrM modeling process

In this section, the development steps of the proposed CaPrM
model are presented. CaPrM is an optimized and integrated
machine learning based carbonation prediction model. As any
machine learning based models, the major development phases
of CaPrM consists of data, training, validation and testing. The
workflow of CaPrM model is illustrated in Fig. 3. The gray colored
rectangular boxes represent the main processes/tasks of the mod-
eling procedure. The major inputs into the process are shown in
uncolored rectangular boxes.

As it is seen in Fig. 3, the first task is finding appropriate exper-
imental dataset that includes features which influence the carbon-
ation of concrete and then perform data exploration. The main aim
of the data exploration task is to find a good set of features for
developing a carbonation prediction model since some features
are better for predicting the target than others. In machine learning
modeling approach, data usually requires some pre-processing
before they are analyzed further. For instance, there may be miss-
ing values in the data and these values need to be cleaned so the
model can analyze the data properly. Pre-processing step could
also involve other tasks such as data encoding and normalization.
After making the data ready, the next step is dividing them into
training, validation and test sets. Training dataset is used to build
up carbonation prediction algorithms which includes neural net-
work, decision tree, bagged and boosted decision trees. These
learning algorithms are selected and integrated because they are
widely used for nonlinear regression problems. Each integrated
learning algorithms should run on the experimental training
dataset. Some learning algorithms require the user to determine
certain control parameters. These parameters may be adjusted by

optimizing performance on a subset (a validation set) of the train-
ing set, e.g. neural network or via cross-validation in decision tree
based models. If the obtained results in the validation process are
unsatisfactory, variable selection based optimization technique
will be adopted in order to select most relevant variables subset.
After all the necessary parameter adjustment and learning are car-
ried out, the performance of the resulting function should be mea-
sured on a test set that is separate from the training set. The
integration gives the opportunity to select the best performing
one among the four choices, by comparing the validation error
matrix, since there is no single learning algorithm that works best
all the time.

6. Application of the CaPrM model

In this section application of the CaPrM model is presented in
detail using experimental data obtained from Finnish DuraInt-
project. Details of the data, training and validation of the model
are discussed in the following subsections.

6.1. Experimental data

In this work, the data used for the development of carbonation
prediction model were prepared for Finnish DuraInt-project. This
project was carried out in cooperation with Aalto University and
VTT Technical Research Centre of Finland. In Finnish DuraInt-
project concrete specimen from 23 different mix proportion, which
represents mainly prevailing common industrial mixes in Finland,
were prepared. Two specimens were prepared for each concrete
mix types. All the specimens were casted in steel molds of size
100 � 100 � 500 mm3 and demoulded after 24 h. Then, they were
immersed into water for 7 days and cured in a controlled environ-
ment (21 �C temperature and 60% relative humidity). Field carbon-
ation of the specimens started at about the age of 28 days in Espoo,
southern Finland. The specimens were sheltered and kept on woo-
den racks as seen in Fig. 4. The yearly average CO2 concentration,
temperature and relative humidity at storage of specimens are
375 ppm, 6 �C and 79%, respectively.

The obtained dataset consists of information about the mixes
used for the specimens as well as its fresh and hardened properties.
The major ingredients that are used to produce the concrete mixes
are presented in Table 1. A total of six types of cements, according
to the classification of EN 197-1 [56], are utilized. These are Port-
land cement (CEM I 42,5 N-SR, CEM I 52,5 N and CEM I 52,5 R),
Portland limestone cement (CEM II/A-LL 42,5 R), Portland compos-
ite cement (CEM II/A-M(S-LL) 42,5 N) and Portland slag cement
(CEM II/B-S 42,5 N). Partially replaced Portland limestone cement,
CEM II/A-LL 42,5 R, with pulverized blast-furnace slag and fly ash
are also used in the experiment. The water to binder ratios (w/b)
ranges from 0.40 to 0.60. Each concrete mix employs one plasti-
cizer type from three producers, VB-Parmix, Glenium G 51 or

1

1

x > 1

y > 1

yes no

yes no

Decision node

Leaf node

Fig. 2. Example of a dataset and the corresponding decision tree.

W.Z. Taffese et al. / Construction and Building Materials 100 (2015) 70–82 73



Teho-Parmix. Every concrete mix types also employ an air-
entraining agent (named either Ilma-Parmix or Mischöl). The fresh
and the hardened concrete properties with curing and exposed
conditions are also presented in Table 1. The fresh concrete prop-
erties comprised of slump, slump flow of self-compacting concrete
(SCC) and air content. The properties defined for hardened concrete
include compressive strength and accelerated carbonation. The
compressive strength of the concrete specimens is tested at the
age of 28 days. While accelerated carbonation test is performed
by exposing the non-carbonated concrete specimens in a climatic
control chamber for 28 and 56 days. The test chamber with the
concrete specimens to be carbonated is filled with 1% of CO2. The
test chamber is placed in a room with RH 60% and temperature

21 �C. The carbonation depth is tested by 1% phenolphthalein in
ethanol solution. The binder type and the w/b ratio of every con-
crete mixture are presented in Table 2.

In Finnish DuraInt-project carbonation front depth, from all
sides, in a freshly broken surface of 100 � 100 mm2 were measured
at every time of measurement. The depth was determined by
spraying a pH indicator solution of phenolphthalein. The arith-
metic mean of carbonation depths measured from the four sides
of every specimen was considered as the representative value.
The carbonation reading was taken at the age of 268, 770, 1825
and 2585 days. The readings of the Finnish DuraInt project will
continue far into the future. Carbonation front of two groups of
concrete specimens after 56 days in the accelerated carbonation
chamber is illustrated in Fig. 5. Surface areas with a pink color indi-
cate the pH is above 9 and are non-carbonated part. The carbon-
ated parts of the specimens are the area where the color of the
concrete is unchanged.

6.1.1. Data types
In CaPrM model 25 input variables which control the carbona-

tion process are considered. It includes concrete mixture ingredi-
ents, curing conditions, exposure environment, age of concrete at
testing, and fresh and hardened properties of the specimens (listed
in Table 1). The target variable is the carbonation depth of every
concrete type measured at various ages. The input variables consist
of continuous and nominal data types. Continuous variables are
real numbers, such as results of quantitative measurements (e.g.
amount of cement, density and compressive strength). Nominal
variables are non-numeric and descriptive data types (e.g. types
of cement, product name of plasticizers and air-entraining agents).

Fig. 3. Workflow of CaPrM model.

Fig. 4. Concrete specimen exposed to natural conditions at field.
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6.1.2. Data pre-processing
In machine learning data pre-processing includes data encod-

ing, missing data processing, data normalization and data parti-
tioning. In CaPrM modeling the following data pre-processing
tasks are performed.

6.1.2.1. Data encoding and normalization. Some of the machine
learning techniques supports only continuous data types as input
variables. For example, decision trees can process heterogeneous
input data (continuous and nominal) without any problem but
neural network lacks the ability to work with nominal variables.
Since the proposed CaPrM model employs neural network, all
non-numeric variables such as binder types, product name of plas-
ticizers and air-entraining agents should be encoded as numerical
variables. To do so, the most widely applied ‘‘1-of-N” encoding
method is implemented. The encoded variables are listed in
Table 3.

Normalization of the inputs and the target variables before pro-
cessing them in the neural network is a standard practice. It puts
different variables on a common scale and is very important espe-
cially where the inputs are generally on a wide different scale.
Since MATLAB neural network toolbox is used for modeling, it
automatically normalizes both the input and target variables. In

Table 1
Details of the concrete specimens and its exposure conditions.

Ingredients, fresh and hardened properties, curing and exposure conditions Types and conditions Units Short name

Cement types CEM I 42,5 N – SR – Cem. types
CEM I 52,5 N –
CEM I 52,5 R –
CEM II/A-LL 42,5 R –
CEM II/A-M(S-LL) 42,5 N –
CEM II/B-S 42,5 N –

Additives Pulverized blast-furnace slag [kg/m3] BFS
Fly ash (FA) [kg/m3] FA
Silica fume (SF) [kg/m3] SF

Water/(Cement + BFS + FA + SF) Ranged from 0.37 to 0.60 – w/b

Cement content [kg/m3] Cement

Total effective water [kg/m3] Total eff. water

Aggregate content Total aggregate [kg/m3] Total Agg.
Aggregate <0.125 mm [%]* Agg. <0.125 mm
Aggregate <0.250 mm [%]* Agg.<0.250 mm
Aggregate <4 mm [%]* Agg. <4 mm

Product name of plasticizers Glenium G 51 – Plas. pro. name
Teho-Parmix –
VB-Parmix –

Plasticizers [%]** Plasticizers

Product name of air-entraining agents Ilma-Parmix – AEA pro. name
Mischöl –

Air-entraining agents [%]** Air-ent. agents

Fresh concrete properties Slump value [mm] Slump
SCC slump-flow/T50 [mm/s] Slump-flow/T50
Air content [%] Air cont.

Curing conditions Uncontrolled – Curing cond.
Controlled –
Wet –

Exposure conditions Temperature [�C] Temp.
Relative humidity [%] RH
CO2 concentration [ppm] CO2 conc.

Hardened concrete properties Compressive strength [MPa] Comp. str.

Carbonation properties Accelerated carbonation depth [mm] Acc. carb. dep.
Age of the concrete at carbonation testing [days] Carb. period
Natural carbonation depth [mm] Nat. carb. dep.

* Compared with the total aggregate.
** Compared with the total binder materials.

Table 2
Binder types and w/b ratios of the concrete specimens.

Mix number Binder type Water/
binder

1 CEM II/B-S 42,5 N 0.41
2 CEM I 42,5 N – SR 0.42
3 CEM II/A-M(S-LL) 42,5 N 0.42
4 CEM II/A-LL 42,5 R 0.42
6 CEM I 52,5 R 0.42
6 CEM II/A-LL 42,5 R & BFS KJ400 0.37
7 CEM II/A-LL 42,5 R & FA – Fineness N, Class A 0.38
8 CEM II/A-M(S-LL) 42,5 N 0.42
9 CEM II/A-M(S-LL) 42,5 N 0.42

10 CEM II/A-M(S-LL) 42,5 N 0.42
11 CEM II/A-M(S-LL) 42,5 N 0.42
12 CEM II/A-M(S-LL) 42,5 N 0.42
13 CEM II/A-M(S-LL) 42,5 N 0.42
14 CEM II/B-S 42,5 N 0.47
15 CEM II/A-M(S-LL) 42,5 N 0.49
16 CEM I 52,5 N 0.46
17 CEM II/A-LL 42,5 R 0.51
18 CEM I 52,5 R 0.40
19 CEM II/A-M(S-LL) 42,5 N 0.50
20 CEM II/B-S 42,5 N 0.60
21 CEM II/A-M(S-LL) 42,5 N 0.58
22 CEM I 52,5 N 0.54
23 CEM II/A-LL 42,5 R 0.54
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this way, the network output always falls into a normalized range
[�1, 1]. It also transforms back into the units of the original target
data. So, there is no need for a separate normalization process [57].

6.1.2.2. Missing data. Quality of input variables is one of the impor-
tant factors in enhancing prediction accuracy of any machine
learning based models. The presence of missing values is a recur-
rent problem in different research areas that affect quality of data.
The Finnish DuraInt-project consist missing values for some vari-
ables. Fortunately, all the variables which are considered in CaPrM
modeling have no missing values.

6.1.2.3. Data partitioning. For neural network the data is split into
three subsets: training, validation and testing. The training dataset
is used for computing the gradient and updating the network
weights and biases. During the training process, neural network
requires a validation procedure to halt the training when the
generalization process stops improving. The test dataset is used
to measure the predictive performance of the model. However, in
decision tree based models, the data is divided into two subsets:
training and validation. The training dataset is used for learning
whereas the validation dataset is used to assess the performance
of model built in the training phase. This is a common practice in
machine learning methods since one has a limited amount of data.

6.2. Training

The prediction ability of machine learning based models highly
depends on the quality and behavior of the data. One learning
method may be superior over the other for specific training and
validation dataset, but if the dataset is changed the performance

may also change. As discussed in the above sections neural net-
work, decision tree, bagged and boosted decision trees are inte-
grated in CaPrM model. This integration provides the opportunity
to select the best performing learning methods among the four
choices.

The graphical representation of the neural network in the
CaPrM model is basically identical with Fig. 1. The model has three
layers: an input layer, a hidden layer and an output layer. Input
variables are assigned as input neurons. The optimal number of
neurons in the hidden layer is determined based on the generaliza-
tion error after executing several trainings. The measured carbon-
ation depth is assigned as output neuron. The applied learning
algorithm is Levenberg–Marquardt [58]. It is the fastest backprop-
agation procedure that updates weight and bias values in the neg-
ative gradient direction. The activation functions selected for the
hidden layer is tan-sigmoid transfer function so that the model
can learn the nonlinear relationships between input and target
variables. Linear transfer activation function is applied in the out-
put layer.

The structure of the decision tree in the CaPrM model is the
same as that of the tree presented in Fig. 2. The only difference is
that the leaf contains real numbers (which are measured carbona-
tion depth) instead of class labels. The learning process in decision
tree follows the divide-and-conquer strategy. The bagged decision
trees draw multiple bootstrap random samples from the training
dataset to form a new training datasets. Using this new training
datasets, the bagged decision trees make an ensemble of trees for
predicting carbonation depth as a function of the input variables.
The final prediction value of the ensemble of trees is the average
of the predicted output of the individual trees. The boosted deci-
sion tree learns the training dataset in sequence with improvement
from one model to the next. It uses least squares boosting algo-
rithm to minimize mean-square error of the ensemble. The final
output of the ensemble is weighted average of the output from
all its members.

6.3. Validation and testing

Cross-validation technique is used to evaluate the performance
of the developed CaPrM model. Several types of cross-validation
methods can be applied for a given machine learning system. If
the available dataset is limited, k-fold cross-validation method is
the best alternative in order to achieve an unbiased estimate of
the model performance [26]. In k-fold cross-validation, the original
data is randomly divided into k subsets with roughly equal sizes.
Each of the k sets is used as a validation dataset while the remain-
ing dataset are used as a training set to fit the model. In total, k
models are fit and k validation statistics are obtained. The predic-
tive accuracy assessments from the k-folds are averaged to give a
measure of the predictive performance of the model. The adopted
value of k in this work is 10 which is a typical value in machine
learning practice.

Fig. 5. Carbonation fronts of two groups of concrete specimens after 56 days in a
climatic control chamber.

Table 3
1-of-N encoding process for non-numeric variables.

Binder materials Curing conditions, product names of plasticizers and air-entraining agents

Nominal input variables Encoded output Nominal input variables Encoded output

CEM I 42,5 N – SR [10000000] Curing cond. Uncontrolled [100]
CEM I 52,5 N [01000000] Controlled [010]
CEM I 52,5 R [00100000] Wet [001]
CEM II/A-LL 42,5 R [00010000] Plasticizers Glenium G 51 [100]
CEM II/A-M(S-LL) 42,5 N [00001000] Teho-Parmix [010]
CEM II/B-S 42,5 N [00000100] VB-Parmix [001]
CEM II/A-LL 42,5 R & BFS KJ400 [00000010] Air-ent. agents Ilma-Parmix [10]
CEM II/A-LL 42,5 R & FA – fineness N, class A [00000001] Mischöl [01]
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Performance of the trained CaPrM models is statistically
measured using the validation dataset for decision tree based
models. But, in neural network, test dataset is applied for evaluat-
ing the model performance since the validation dataset is used as
part of training platform to optimize the hyperparameters of the
learning algorithm. For regression model mean square error
(MSE), root mean square errors (RMSE), and mean absolute error
(MAE) are commonly used statistical measures. The MAE, also
called the absolute loss, is an average of the absolute residuals/
errors (the difference between the predicted and the actual value)
and measured in the same units as the data. MSE is the mean of the
squared difference between the target and its predicted value. It is
the most widely employed loss function for regression model.
RMSE is simply the square root of the MSE. Sometime RMSE is
preferable than MSE because understanding of error values of
MSE is difficult due to the squaring effect, particularly, if the target
value represents quantities in units of measurements. RMSE
retains the original units as MAE. MSE, RMSE, and MAE are
calculated using Eqs. (7, 8 and 9), respectively

MSE ¼ 1
n

Xn
i¼1

Yi � Ŷ i

� �2
; ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Yi � Ŷ i

� �2vuut ; ð8Þ

MAE ¼ 1
N

XN
i¼1

Yi � Ŷ i

��� ���; ð9Þ

where Ŷ i is the predicted output value, Yi is the measured target
value, and N is the number of observations.

If the obtained results in the validation process are unsatisfac-
tory, variable selection based optimization technique will be
adopted. The variable selection is a technique to select most rele-
vant variables subset, and removes irrelevant and redundant vari-
ables according to some criterion from the original input variables
to build robust learning models [26,30,32,59]. Indeed, having more
information about the concrete properties, the performance of the
learning method is expected to be better. It is also equally true that
some variables may be irrelevant for predicting carbonation which
ultimately degrades the learning performance. Therefore, pertinent
variables have to be selected after the initial validation test.

There are three major categories of variable selection methods:
filter, wrapper and embedded [60,61]. Ensemble methods can
perform an embedded variable selection. These methods use all
the variables to generate a carbonation prediction model and
deduce the importance of the variables. A standalone decision tree
also provides embedded measure of variable but it is not
recommended. This is due the fact that standalone decision trees

are produced by a greedy algorithm that generates an unstable
model [60]. Therefore, in CaPrM model, ensemble methods are
applied to select variables which have more predictive pieces of
information compared to other variables. The important variables
identified by bagged and boosted decision tree are presented in
Table 4. These variables are identified after a number of iterations
and ranked according to their occurrence. The ranks in bagged and
boosted ensemble methods are quite similar.

7. Results and analysis

In this section, the training and testing performances of the
CaPrM integrated models are presented. The performances of the
models are described using the statistical measures discussed in
Section 6.3 and the average of ten test results are listed in Table 5.
In MSE, RMSE, and MAE, the lower the value of the error statistics
is the better the prediction accuracy of the model. It can be easily
observed from Table 5 that neural network has statistically outper-
formed all other models. Among the decision tree based models
(decision tree, bagged and boosted decision trees), boosted deci-
sion tree performs best with better generalization capability.
MAE of decision tree is smaller than bagged decision tree. How-
ever, their MSE value confirmed that decision tree generalized
the test data poorly than bagged decision tree. It is worth to
mention that these results are valid for the considered dataset. If
a different dataset is employed, the performance may differ.

The initial validation test results of the CaPrM model before
incorporating variable selection method is also presented in
Table 5. The purpose is to demonstrate the contribution of variable
selection in the improvement of the models performance. The
same statistical performance evaluation methods were applied as
the above cases. According to the result, variable selection
enhances the performance of all the integrated models signifi-
cantly. This confirms the advantage of considering variable
selection in carbonation prediction modeling.

Experimentally measured and predicted carbonation depths
obtained from training dataset for all integrated learning methods
are shown in Fig. 6. As it is clearly seen, the correlation coefficients
(R-values) for all methods are above 0.90. The higher the correla-
tion coefficient indicates that all the models track the actual mea-
sured carbonation depth well during training phase. In Fig. 6, a
slight tendency of an underestimation for higher carbonation
depth is also observed. The reason for the underestimation is that
the available dataset with higher carbonation depth are fewer
compared to the lower carbonation depth. For instance, carbona-
tion depths which are greater than 3 mm cover only about 9% of
the total observation. The lack of sufficient training and validation
dataset for higher carbonation depth leads to the underestimation
in this range.

Table 4
Important variables identified by bagged and boosted ensemble methods with their
rank.

Variables Rank

Bagged decision tree Boosted decision tree

Acc. carb. dep. 1 1
Comp. str. 2 3
w/b 3 2
Plasticizers 4 4
Carb. period 5 6
Air cont. 6 5
Cement 8 7
Total Agg. 9 9
Agg. <0.250 mm 7 8
Agg. <0.125 mm 10 10

Table 5
Average of ten round statistical performance measurements.

Dataset Learning
method

MSE MAE RMSE

Validation (before variable
selection)

Neural network 0.3522 0.3860 0.5935
Decision tree 0.5295 0.4491 0.7276
Bagged decision
tree

0.4907 0.4391 0.7005

Boosted decision
tree

0.3749 0.4116 0.6123

Validation (after variable
selection)

Neural network 0.2417 0.2860 0.4916
Decision tree 0.4189 0.3232 0.6473
Bagged decision
tree

0.3770 0.3415 0.6140

Boosted decision
tree

0.2649 0.3061 0.5147
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The distribution of the residuals of the CaPrMmodel is also ana-
lyzed. The residuals are calculated based on the differences
between target and predicted carbonation depth values. The med-
ian, maximum, minimum and outlier values of residuals for the
four integrated models are presented in Fig. 7 as a boxplot. The plot
represents residuals of a random single run. The median is shown
as a red line within the box. The blue box covers the middle 50%
(25th–75th percentiles) of the residuals. The whiskers go down
to the minimum and up to the maximum values. Residuals greater

than 1.5 box lengths above the whiskers are outliers and shown as
red plus sign.

The residuals median of the neural network model is almost in
the middle of the box and distributed around zero. This shows that
the residuals have a constant variance patterns and normally dis-
tributed. In the decision tree and bagged decision tree the median
of residual is close to zero. The decision tree has fewer residuals far
from the median. The median of bagged and boosted decision tree
are nearer to the first quartile than to the third quartile, indicating

Fig. 6. Regression plot for predicted vs. measured carbonation depth for training dataset.
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that the residuals distributions are slightly skewed to the right.
Generally, the boxplot of the residuals of a single run test
demonstrate that all the models learn the nonlinear relation of
the input variables and are able to capture the complex nature of
the carbonation process with reasonably high accuracy.

8. Discussions

To avoid corrosion of steel reinforcement an accurate carbona-
tion prediction model is crucial to make realistic decisions about
service life of a structure or to evaluate possibilities for extending
it. The complex nature of the carbonation process in combination
with a wide variety of concrete mixtures and exposure conditions
makes reaching at an equation which fully represent the carbona-
tion process is challenging. As seen in the results received by the
case study, machine learning based models are able to predict with
a reasonably high accuracy without assuming a predetermined
equation as a model.

Analysis of the results of the developed CaPrM model demon-
strates its practical applicability in assisting service-life prediction
of reinforced concrete structures. It captures the changes of the
concrete due to aging and interaction with the exposure environ-
ment. The model is also easy to use and allows the users to switch

from one learning method to another and make necessary adjust-
ments for further optimization. The CaPrM model runs all the
employed learning methods consequentially, measure their accu-
racy and provide their performance error in a matrix. In the CaPrM
model the performance of each learning methods varies depending
on the training dataset and the end user has the advantage of
choosing the method that outperforms the others.

In the CaPrM modeling 25 input variables are processed. The
predictive power of the variables is measured using ensemble
methods. Typical importance weight of all the input variables
inferred by bagged and boosted decision trees are shown in
Fig. 8. It can be observed that accelerated carbonation depth, w/b
and compressive strength are the most influential variables for
prediction of the carbonation depth. These are well known param-
eters and have been considered in most of the analytical models.
But next to these variables, plasticizers, air content, carbonation
period and distribution of aggregate play considerable role in
predicting the carbonation depth as clearly seen in Fig. 8. This is
a useful finding because plasticizers, air content and aggregate
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distribution were overlooked in several existing analytical models.
It is known that the role of CO2, curing condition, relative humidity
and temperature is significant in carbonation process but their
importance is not shown in the figure. This is due to the use of
one curing method and identical environmental exposure condi-
tions for all concrete specimens in the Finnish DuraInt-project.

The accelerated and the field (natural) carbonation depth of the
concrete specimens were obtained by following the procedure pre-
sented in Section 6.1. The accelerated carbonation was measured
after exposing the concrete specimens in a climatic control cham-
ber for 28 days, whereas the natural carbonations of the specimens
were taken at the age of 268, 772, 1825 and 2585 days. The accel-
erated and the natural carbonation coefficients were calculated
using Eq. (2) and their correlations is illustrated in Fig. 9. The accel-
erated coefficient generally shows a good correlation with the nat-
ural carbonation coefficient. The value of the correlation coefficient
is 0.87. Other existing studies have also confirmed the good corre-
lation between the accelerated and natural carbonation coeffi-
cients [18,62].

Analysis is performed to check the correctness of the conven-
tional carbonation coefficient mathematical model which is

expressed in Eq. (2). According to the mathematical model, the car-
bonation coefficient is assumed constant. If this assumption is
valid the ratio of accelerated to natural carbonation coefficients
(kacc/knat) at different age should be about the same value. How-
ever, the median ratio (kacc/knat) is not similar with time as demon-
strated in Fig. 10. The variation is statistically significant, for
example, about 26% difference in median ratio (kacc/knat) between
carbonation periods of 268 and 1825 days is observed. If the ratio
of the accelerated to the natural carbonation at the age of 268 days
is assumed to be correct, the conventional model expressed in Eq.
(2) underestimate the carbonation depth at the age of 772 and
1825 days. This certainly confirms that the assumption of carbon-
ation coefficient as constant with time leads to a considerable
uncertainty in the prediction accuracy. Although the aim of the
accelerated carbonation testing method is to provide a better
understanding about what is likely to occur when the concrete is
exposed to the natural environment, all the above findings of this
study indicate that the accelerated testing fails to represent fully
the natural conditions.

Another assumption in conventional models is that carbonation
rate depends on square root of time. However the experimental
data reveals that this assumption is invalid for some concrete
mix types. As seen in Fig. 11, the carbonation depth at the age of
2585 days for concrete mix types 1, 9, 10, 14, 16, 17, 19 and 22
is less than that of 1825 days, which accounts for about 35%. Even
if these results are different from other researches, it is not a new
phenomenon, there are studies with the same findings [63,64].
Simply using time-independent carbonation rate as in the conven-
tional models is not a valid approach generally. All these confirm
the limitations of the conventional carbonation prediction model
in providing reliable results.

In practice, carbonation depth prediction is often carried out up
to the corresponding service life of concrete structures, which is
typically 50 years or more. As similar learning based prediction
models, CaPrM can generalize the problem at hand only within
the range of the input variables. Thus, to make prediction for
longer period, the model should be trained with new dataset con-
sisting of long-term experimental data or long-term predictions
can be achieved by using CaPrM and extrapolation. The CaPrM
model determines the time dependence of carbonation depth
within the time range of the training and the use of this depen-
dency with an appropriate fitting function may allow extrapolation
to longer periods.

The training data of CaPrM are acquired from Finnish DuraInt-
project where the curing methods and environmental exposure
conditions are the same for all concrete specimens. Indeed, it is
possible to add more carbonation depths collected from various
experimental data which encompass different concrete mix types,
fresh and hardened concrete properties, exposure and curing con-
ditions. This will make the CaPrM model more universal prediction
model while enhancing the accuracy of the model as the general-
ization ability of the model increases because of the additional
data. The CaPrM model can also be adopted with no or little effort
by anyone who has experimental data.

9. Conclusions

An optimized and integrated machine learning based carbona-
tion prediction model is developed and presented in this work.
The novelty of the proposed model lies in its ability to integrate
multiple powerful learning methods that can solve nonlinear
regression problems efficiently. The integrated learning methods
are neural network, decision tree and ensemble methods (bagged
and boosted decision trees). The integration provides the opportu-
nity to select the best performing learning methods among the four
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choices because their relative performance alters when a dataset is
changed. In addition, unlike the conventional models, the proposed
model is able to consider almost all the influential parameters
which govern the carbonation process. This allows evaluating all
influential parameters as a group rather than individually which
in turn ensures the reliability of the prediction since imperative
dependencies are not overlooked.

The model is trained and tested using a dataset obtained from
the Finnish DuraInt-project. The test performance of the presented
model demonstrated that all the integrated learning methods pre-
dict the carbonation depth with rationally low error. The statistical
performance indicators, MSE, RMSE, and MAE were applied to
measure the prediction accuracy. In the utilized training dataset,
neural network statistically outperformed all other models. The
neural network had a MSE 0.2417, RMSE 0.4916, and MAE
0.2860. The employed variable selection method enhances the per-
formance of all the integrated models. In addition, the ensemble
trees identified important variables for prediction of the carbona-
tion depth which was not considered in most of the existing ana-
lytical models. The performance results of the integrated model
confirms the usability of the CaPrM model in assisting designers
to optimize the concrete mix or structural design as well as to
define proactive maintenance plan. Therefore, engineers as well
as designers could incorporate the CaPrM model in practice to
achieve more accurate results.
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h i g h l i g h t s

� Ensemble methods are able to determine the optimal subset of influential variables.
� Chloride migration coefficient influences the chloride transport at earlier age.
� Several early age concrete tests are impotent in predicting the chloride ingress.
� Aggregate size distribution is among the predominant predictors of chloride ingress.
� Evaluation of long-term chloride transport using short-term tests is unrealistic.
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a b s t r a c t

Conventional chloride ingress prediction models rely on simplified assumptions, leading to inaccurate
estimations. Reasonable simplifications can be achieved if and only if the effects of all interacting vari-
ables are clearly known. In this work, ensemble methods to discover significant parameters that control
chloride ingress using long-term field data is developed and presented. The models are trained using
dataset consisting of variables describing the concrete mix ingredients, fresh and hardened properties,
field conditions as well as chloride profiles. The results analyses confirm that the models are able to
determine the optimal subset of the influential variables that best predicts the chloride profile from
the input dataset.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Chloride attack is one of the predominant threats for the dura-
bility of reinforced concrete (RC) structures exposed to de-icing
salts containing chloride [1–5]. The ingress of chloride ions is
remarkable in countries at those latitudes where a large amount
of de-icing salts are applied in winter to melt the ice on the roads.
The melt ice slurry with extremely concentrated chloride ions from
de-icing salt flows or splashes to RC structures by the moving vehi-
cles. In some cases, chloride ions from de-icing salt is observed in
RC structure situated 1.9 km from a busy highway and as high as
60th floor of a building [6]. In normal condition, the penetration
of chloride does not result in damage to concrete directly.

However, when the chloride concentration at the steel reinforce-
ment bar (rebar) reaches a certain threshold value, they undergoes
de-passivation and initiates corrosion [1–5]. Globally, corrosion of
rebar induced by de-icing salt adversely affects the serviceability
and safety of RC structures and has caused huge economic loss
due to premature rehabilitation of civil infrastructures [1,5,7].
The total direct cost of chloride-induced corrosion in US highway
bridges alone exceeds eight billion USD per annum. The indirect
costs caused by traffic delays and lost productivity are predicted
to be ten times more than the cost of corrosion related mainte-
nance, repair and rehabilitation [7,8]. Hence, reliable quantitative
evaluation of the amount of penetrated chloride concentration in
the concrete is vital to mitigate premature failure of structures.

Through years of research, several models and input parameters
have been established to foresee chloride concentration inside the
concrete to make reliable and cost-effective maintenance and

http://dx.doi.org/10.1016/j.conbuildmat.2017.02.014
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repair decisions. The complexity level of the established models
vary from simple analytical models assuming uniaxial diffusion
into concrete, to more sophisticated numerical models which con-
siders the physical, chemical, and electrochemical processes of gas
and ion transport [9–11]. Some of the utilized analytical models
and the associated value of input parameters have been incorrect,
incomplete, and/or unsuitable for the prevailing conditions. Due to
these facts, the prediction results differ substantially even for the
same concrete matrix exposed in identical conditions [12]. Though
the complex scientific models provide reasonably accurate predic-
tions, they lack user friendliness and demand highly skilled profes-
sional, making them suitable only for research, but not for practical
design applications. Despite the accessibility of numerous models,
empirical ones are widely used to foresee the chloride concentra-
tion in concrete [13–17].

Empirical chloride ingress prediction models rely on simplified
assumptions, leading to inaccurate estimations. Reliable simplifi-
cation can be achieved if and only if the effect of the interacting
variables is understood. In this work, models based on ensemble
methods are developed to discover the significance of the parame-
ters that influence the chloride ingress in concrete. The contribu-
tions of this work are: (i) chloride ingress prediction models
using long-term field data (ii) evaluating the significance of
early-age chloride transport property in determining long-term
chloride penetration in concrete; (iii) determining the most
influential variables which govern the penetration of chloride in
concrete by employing three scenarios; and (iv) validating the
identified subset of influential variables in improving chloride
ingress prediction accuracy.

The structure of this paper is as follows. In Section 2, the impor-
tance of this research is elaborated. The fundamental knowledge
on an ensemble method is presented in Section 3 since this tech-
nique is adopted to develop chloride ingress prediction models
which ultimately used to investigate the significance of the param-
eters which govern chloride penetration in concrete. In Section 4,
details of the chloride ingress prediction models development pro-
cess is presented. The models are developed by utilizing ensemble
methods. It is the core part of this work, since all the influential
parameters are determined using these models. The models
employ long-term experimental data exposed to de-icing environ-
ment. In Section 5 results and their analyses are explained in detail.
Discussions of the findings and the conclusions of the work are
presented in Sections 6 and 7, respectively.

2. Research significance

In practice, empirical chloride penetration prediction models in
the form of simple analytical equations on the basis of Fick’s sec-
ond law of diffusion are commonly adopted to model penetration
of chloride into concrete. Numerous models based on Eq. (1) have
been published to predict the amount of chloride penetration and
thus to evaluate the full or remaining service life of RC structure.
Nevertheless, these models have several limitations that create
uncertainty on the accuracy of the chloride ingress prediction.
One of the foremost limitations of Eq. (1) is the assumption of
the non-steady diffusion coefficient (Dnss) as invariant [13,18–20].
In real situation, Dnss cannot be recognized as constants. This is
due to the transport properties of chloride relying on the intrinsic
permeability of the concrete, which is changing during the process
of cement hydration with time. In another perspective, the alter-
ation of capillary pore structure of concrete is controlled by cement
type, water to binder (w/b) ratio, exposure time, admixtures type,
and exposure condition. Due to these, Dnss is varying with time and
space [21,22]. In addition, in Eq. (1), the error function equation
considers only diffusion mechanism. However, the penetration of
chloride into concrete involves a complex physical and chemical

process that combines various transport mechanisms other than
diffusion such as capillary sorption, and permeation. All these facts
explain why Eq. (1) based models fail to deliver accurate predic-
tions in several instances [13].

Cx ¼ Ci þ ðCs � CiÞ 1� erfðxÞ
x

2
ffiffiffiffiffiffiffiffiffiffi
Dnsst

p
� �� �

ð1Þ

where Cx is the content of chloride ion measured at average depth x
[m] after exposure time t [s][% by mass of concrete]; Cs is the calcu-
lated content of ion at the exposed surface [% by mass of concrete];
Ci is the initial content of chloride ion [% by mass of concrete]; Dnss is
the non-steady state diffusion coefficient of chloride ion [m2/s.];
and erfðxÞ is the error function [�].

In order to address the time dependency of Dnss and effect of
other influential factors different model codes have been proposed,
e.g. in fib-MC2010 [23] and DuraCrete framework [24]. Most of the
codes share the same expression as in Eq. (2).

DnssðtÞ ¼ ke:kt:kc:D0:
t0
t

� �n

ð2Þ

where ke is environmental function [–], kt test method function [–],
kc curing function [–], D0 is experimentally determined chloride
diffusion coefficient at time t0 [m2/s], t0 is age of concrete at D0 is
measured [year], t is the exposure duration [year], and n is the
age factor [–].

The age factor describes the time dependency of the diffusion
coefficient depending on the concrete composition. Its value is
usually described by few parameters from concrete mixing ingre-
dients, especially cementitious materials. The value of the age fac-
tor is usually determined based on various concrete specimens
exposed to different environments for relatively short period of
time and exhibits considerable scatter. Several studies demon-
strated that the age factor is the most sensitive parameter in Eq.
(2) [1,25–27]. A slight variation in its value causes a substantial
uncertainty in chloride profile prediction, which in turn affects
estimation of the time to corrosion initiation. This uncertainty
may shorten the service life of the structure and increases the life-
cycle cost due to improper prediction.

As discussed above, the widely applied chloride penetration
prediction models (Eq. (1) and (2)) relies on limited factors. Indeed,
examination of chloride transport in concrete is performed for sev-
eral years to acquire a better understanding of various controlling
parameters. To recognize the influence of various parameters, a
large number of experiments should be performed since the
microstructure of concrete is highly complex and its transport
properties are controlled by numerous interacting variables.
Nevertheless, it is usually challenging to isolate the influences of
particular parameters because other controlling parameters are
also vary naturally at the same time [28,29]. Hence, evaluating
the importance of Dnss and other parameters that influence chlo-
ride ingression in concrete is essential in order to develop parsimo-
nious and accurate chloride ingress prediction model.

Variable importance analysis technique can be applied to deter-
mine the main variables that influence the chloride ingress in con-
crete. Identifying important variables using traditional statistical
methods, such as linear regression method is not achievable. The
reason for this is that chloride ingress in concrete in field environ-
ment is a complex process controlled by numerous nonlinear
factors, including concrete mix composition, external chloride con-
centration, climatic condition, exposure time, position and surface
orientation of the concrete [30]. Variable importance analysis
based on linear regression methods is only applicable for linear
or nearly linear models. Therefore, alternative approaches which
manage high-dimensional nonlinear features that reliably identify
influential predictor variables are required.
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Unlike conventional variable importance analysis approaches,
machine learning algorithms are powerful in identifying and
understanding the effect of complex interacting factors. Among
machine learning algorithms, an ensemble method is a nonpara-
metric algorithm that can handle highly nonlinear features with
extensive interactions. Recently, the use of ensemble method to
identify the influential parameters among numerous interacting
factors has been proposed in certain civil engineering areas, e.g.
hydrology [31], and building performance [32]. Though, the use
of ensemble method has considerable advantage in determining
complex relationship of nonlinear variables, it has not been com-
monly employed in concrete durability studies. Extended applica-
tions of machine learning in concrete durability including
ensemble method are discussed in [33]. In this work, an ensemble
method is developed to evaluate degree of importance of variables
which govern the chloride ingress using long-term field experi-
ments exposed in de-icing environment. The outcomes from this
method not only benefit in understanding the characteristics of
the chloride penetration in concrete, but also provide valuable
information regarding the Dnss degree of significance in predicting
chloride ingress in concrete.

3. Ensemble method

Since a machine learning ensemble method is developed to
evaluate the effect of Dnss, it is worth to discuss the fundamentals
of machine learning before elaborating on the applied ensemble
method. Machine learning is one of a primary subfield in artificial
intelligence. It utilizes learning algorithms to identify complex pat-
terns from experimental data and perform intelligent decisions
without assuming a predefined equation as a model [34–36].
Machine learning models can be either predictive to perform fore-
casts or descriptive to get new knowledge from a dataset, or both
[34]. Characteristically, machine learning algorithms are classified
into two learning types: supervised or unsupervised learning
[37,38]. Supervised learning algorithms are increasingly adopted
in modelling concrete properties [39–42]. Supervised learning
comprises of input and output variables but unsupervised learning
do not entails output variables. The former learning type is applied
to predict a class or a value, while the latter learning type is used to
cluster alike instances together or to discovery interesting patterns
in the data. Supervised learning problems are categorized into two
groups: classification and regression [37]. In classifications, the
output domain is a finite discrete set of categories but in regression

it is a set of real numbers. This research deals with regression
learning problem as chloride profile is a numeric value that results
from multiple nonlinear interacting factors. Regression problem
generally defined as the problem of developing a practical model
which is the best predictor of y given input x using a given training
data D ¼ fyi; xigN1 as defined in Eq. (3).

y ¼ F̂ðx1; x2; . . . ; xnÞ ¼ F̂ðXÞ ð3Þ
where yi is the outputs variable, xi is the input ‘‘vector” made of all
the variable values for the ith observation, n is the number of vari-
ables; N is the number of observations.

In machine learning, ensemble methods are integration of sev-
eral base models built within a given learning algorithm in order to
enhance the generalization ability over a single model [34,37,43].
Unlike a statistical ensemble, a machine learning ensemble
denotes finite set of alternative models and usually allows for a
lot more flexible structure to exist among those alternatives. In this
work, decision trees based ensemble of machine learning algo-
rithms is adopted. Decision tree is a nonparametric hierarchical
data structure, which apply the divide-and-conquer strategy. It
handles complex problems by simplifying them into manageable
extents and recursively implements the same approach to the
sub-problems. Solutions of sub-problems can be integrated to deli-
ver a solution of the complex problems. The ability of this approach
arises from the capacity to divide the instance-space into sub-
spaces and each sub-space is fitted with diverse models [34,44].
Decision tree applied for analysing regression problems known as
regression tree. The fundamental structure of a regression tree is
illustrated in Fig. 1. The left subfigure represents the data points
and partitions them and the right subfigure displays the corre-
sponding regression tree structure. As it is seen in the figure,
regression tree is composed of decision and leaf nodes. Every deci-
sion node applies a test function with discrete outcomes labelling
the branches. Given an input, at each node, a test is implemented
and one of the branches is chosen based on the result. This proce-
dure begins at the root and is recursively performed several times
until a leaf node is hit, at which point the value listed in the leaf
comprises the output [34]. Regression trees are fast learners that
exhibit a high degree of interpretability and manage nonlinear
numerical and categorical predictors with a large number of obser-
vations and input variables [43–45]. Indeed, a simple decision tree
can be applied for variable importance (VI) analysis but a single
tree may lead to overfitting since they are formed by a greedy algo-
rithm where locally-optimal decisions are solved at each node. It

Fig. 1. Examples of a dataset and corresponding regression tree.
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means that, a minor alteration to the data can provide a complete
different output. Therefore, ensemble of multiple base models have
to be adopted to avoid the effect of overfitting and increase gener-
alization over a single decision tree [45].

Ensemble methods based on decision tree, bagging and boost-
ing, are two of the most widely applied techniques [46]. Bagging
method randomly draws multiple bootstrap observations from
the dataset to build a new training dataset. This activity is carried
out several times till a large subset of training datasets is produced
and the identical samples can be drawn more than once. On aver-
age, every generated bootstrapped training dataset holds
N 1� 1

e

� � � 0:63N observations, where N is the number of samples
in the dataset. Samples which are excluded in the training dataset
are known as out-of-bag observations. In the ensemble, bagging
trains each model by utilizing the randomly drawn subset of the
training set. The final output of the bagging ensemble of trees for
out-of-bag dataset is the average of the estimated output of the
single trees. Whereas boosting method trains the training dataset
in sequence with enhancement from one model to the next. It
employs a data point weight for each training observations in order
to build various models. The final output of the boosting ensemble
is the weighted mean of the output from all its members.

The developed ensemble method delivers measure of variable
importance (the individual parameter effects of the inputs on the
chloride profile output). In order to obtain the variable significance
measure, for each decision tree, randomly permute the j-th predic-
tor variable xj with some permutation uj among the training set.
Then compute the out-of-bag error on this perturbed dataset.
The importance score for the j-th feature is evaluated by averaging
the difference in out-of-bag error before and after the permutation
over all trees. The score is normalized by the standard deviation of
these differences. Variables which generate large values for this
score are ranked as more significant than variables which induce
small values. This procedure is described by Eq. (4)(6) [47].

Let bðtÞ be the out-of-bag sample for a tree t, with
t 2 f1;2; . . . ; Tg. Then the variable importance of variable xj in tree
t is expressed by Eq. (4).

VIðtÞðxjÞ ¼

X
ibðtÞ

Iðyi ¼ ŷðtÞi Þ

jbðtÞj �

X
ibðtÞ

Iðyi ¼ ŷðtÞi;uj
Þ

jbðtÞj ð4Þ

where ŷðtÞi ¼ f ðtÞðxiÞ and ŷðtÞi;uj
¼ f ðtÞðxi;uj

Þ is predicted value for i-th

observation before and after permuting its value of variable xj,

respectively. By definition, VIðtÞðxjÞ ¼ 0, if variable xj is not in tree t).
The variable importance score for each variable is evaluated as

the average importance over all trees, Eq. (5).

VIðxjÞ ¼

XT
t¼1

VIðtÞðxjÞ

T
ð5Þ

The standardized variable importance is computed by utilizing
Eq. (6). Its rationale is the following: As presented in Eq. (4), the
individual importance scores VIðtÞðxjÞ are evaluated from T boot-
strap samples which are randomly drawn from the original dataset
and are identically distributed. Hence, if each individual variable
importance VIðtÞðxjÞ has standard deviation r, the average impor-

tance from T replications has standard error r=
ffiffiffi
T

p
.

~VIðxjÞ ¼ VIðxjÞ
rffiffi
T

p ð6Þ

In this work, the ensemble method using bagging approach is
developed to analyse the variable importance of the inputs on
the chloride profile. This method is a well appropriate method

for measuring VI, at least, for three reasons: (i) they are random
models; (ii) they use several base learners; (iii) they require a
few hypotheses regarding the data and can manage large number
variables. All these factors make the ensemble method robust
against changes in data and avoid overfitting.

4. Model development for variable importance measure

In this section, the development steps of ensemble method
based chloride profile prediction model and the process of variable
importance measure are presented. The purpose of the model is to
analyse importance of variables on chloride penetration. The work-
flow of the model development process is revealed in Fig. 2. From
this figure, it can be noticed that the model development has four
major steps: (i) data, (ii) bootstrap samples, (iii) building multiple
models, and (iv) aggregation.

The first step, data, is the prerequisite for developing any
machine learning based models. Data usually requires some pre-
processing before they are utilized for model development. Data
pre-processing often involves tasks of data encoding, missing data
processing, data normalization and data partitioning. Performing
such tasks before processing them in model training phase is
almost a standard practice. Data encoding, missing data processing
and data normalization tasks are not performed in this work
because the developed model does not require data encoding and
normalization as well as there are no missed values in the utilized
experimental dataset. Data partitioning is presented as a second
step after data pre-processing. The data is partitioned to training
and testing set. The training sets are generated by randomly draw-
ing multiple bootstrap samples from the original dataset using
bagging method. On average, each training set comprises about
63% of the original dataset. Any left out instances from the original
dataset (out-of-bag observations) are used as test sets. These data
sets are necessary to evaluate the performance of the model. The
third step is building multiple chloride profile prediction models
by employing the bootstrap samples. The final step is aggregation
of the models output, which is done by averaging the predicted
output of each model built in step three in order to form an ensem-
ble model. Once the model is formed, it is possible to analyse the VI
measures. The whole process is iterated i times to achieve more
reliable results and then the average value of i VI measures is con-
sidered for selection of the optimal subset of significant variables.

4.1. Data details

Long-term experimental data is utilized in this work. The exper-
imental data were produced for Finnish DuraInt-project, which
was performed in collaboration with Aalto University and VTT
Technical Research Centre of Finland. In DuraInt-project concrete
specimens with 18 dissimilar mix proportions, which mainly rep-
resent industrial mixes in Finland were prepared. The specimens
were casted in upright position in wooden moulds of size
300 � 300 � 500 mm3 to carry out chloride field test. Surface treat-
ments (impregnation, form lining, Cu-mortar) were applied on cer-
tain specimens to investigate their effect on chloride penetration.
The concrete specimens were placed on the road side at Kotka,
Finland and Borås, Sweden. The data utilized in this work is col-
lected from the non-surface treated specimens situated on the side
of highway 7 (HW 7) at Kotka. The geographical location of Kotka is
shown in the map in Fig. 3.

The concrete specimens were exposed to NaCl de-icing agent
for 6 years (2007–2013). The yearly average amount of de-icing
salt that spread on HW7 during this period was about 0.99 kg/m2

with an average of 102 salting occasions. The daily average number
of vehicles passing on HW 7 was estimated about 27,000 in which
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Fig. 2. workflow of the chloride ingress prediction model.

Fig. 3. Map of Finland and kotka where the concrete specimens are located.
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about 13% are heavy vehicles. A local weather station besides the
HW 7 was installed. It continuously registered the weather varia-
tions including relative humidity, dew point temperature, road
surface temperature and rain at every six minute intervals. The
detailed description regarding the salting and the weather condi-
tion can be referred in [48]. The concrete specimens were posi-
tioned in array at a distance of 4.5 m, 6 m, 8 m, and 10 m from
the HW 7 lane. The schematic illustration of the placement is
shown in Fig. 4. All the specimens were kept on wooden stands
which were installed on a gravel bed in order to avoid the probable
water suction through the lower surfaces of the specimens. Regular
field maintenance was executed to assure that the specimen’s sur-
faces were exposed to splash water and water vapour. The amount
of the splashed chloride on the specimens located at the same dis-
tance is assumed to be equal. The chloride profiles in concrete
specimens were examined after 1, 3 and 6 years of exposure in
the field environment. The chloride content analyses were carried
out by taking cylinder cores with size of (ø 100 mm, h > 100 mm)
from the field specimens. Dust samples were collected from the
cored cylinders using a profile grinding method at different depths.
The analysed chloride depth ranges from 0.5 mm to 26 mm with
increments of diverse orders.

The data collected from the specimens and utilized in the model
contains information about the concrete mix ingredients and the
ingredients are listed in Table 1. A total of five kinds of cements,
in accordance with the categorization of EN 197-1 [56], were
employed. These are Portland cement (CEM I 42,5N-SR and CEM I
52,5 R), Portland limestone cement (CEM II/A-LL 42,5 R), Portland
composite cement (CEM II/A-M(S-LL) 42,5N) and Portland slag
cement (CEM II/B-S 42,5 N). Partially substituted Portland lime-
stone cement, CEM II/A-LL 42,5 R, with pulverized blast-furnace
slag (BFS) and fly ash (FA) are also utilized for preparing some of
the specimens. The w/b ratio of the data ranges from 0.38 to
0.51. Each concrete specimen consists of one type of plasticizer
(named VB-Parmix, or Glenium G 51 or Teho-Parmix) and an air-
entraining agent (named either Ilma-Parmix or Mischöl). All the
plasticizer and air-entraining agents were produced by different
manufacturers. The typical mix compositions of concrete speci-
mens which are placed at Kotka are presented in Table 2.

The dataset also comprised of fresh and hardened properties of
the specimens. The fresh concrete properties include slump, den-
sity and air content. The air content was examined using pressure

gauge method. Properties of the hardened specimen encompass
laboratory test results of pore volume, density (wet and dry), air
void, compressive strength, carbonation diffusion coefficient and
chloride migration coefficient. The pore volume results provide
information regarding the concrete porosity at early hardening
phase. The wet and dry density of the specimens was determined
at the same age with the pore volume analysis, at about the age
of two days. The air void of the hardened concrete specimens
was performed by thin section analysis. The size of the prepared
thin sections, two from each specimen, was 35 mm � 55 mm
� 25 mm. The compressive strength test was carried out using
a set of three standard cube specimens with size of
150 � 150 � 150 mm3 at the age of 28 days. The carbonation diffu-
sion coefficients were also examined using accelerated carbonation
test by exposing the specimens in a climatic control chamber filled
with 1% of CO2 for 28 days. Then the carbonation depths were
tested using 1% phenolphthalein in ethanol solution to calculate
the carbonation diffusion coefficients. The chloride diffusion coef-
ficient is measured by the rapid chloride migration (RCM) and
abbreviated as Dnssm. The concrete specimens were casted in cylin-
ders (ø98 mm, h250 mm) to make this examination in laboratory.
Three specimens were produced for each concrete mix categories.
The specimens were sliced at a thickness of 50 mm to produce
specimen size (ø98 mm, h50 mm) and perform the chloride pene-
tration test at the age of three months in accordance with NT Build
492 [49]. All the discussed properties of the fresh and the hardened
specimens are also presented in Table 1. In addition, the field con-
ditions which contain information about the exposure time and
distance from highway lane are included in Table 1.

It can be observed from Table 1 that there are a total of 33 vari-
ables representing the concrete mix ingredients, fresh and hard-
ened properties, field conditions and chloride profiles. Variables
numbered from 1 to 32 are designated as input variables and the
last variable (chloride profile of every specimen) is assigned as a
target variable. The input variables comprise of continuous and
nominal data types whereas the target variable consist only con-
tinuous data type. In the table continuous variables are repre-
sented as C and nominal data types as N. Continuous variables
are real numbers, such as results of quantitative measurements
(e.g. w/b, cement and aggregate content) whereas nominal vari-
ables are non-numeric and descriptive data types (e.g. binder
types, product name of plasticizers and air-entraining agents).

Fig. 4. Schematic representation of the concrete specimens for chloride penetration studies.
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Table 1
Description of variables employed in the dataset (C: continuous and N: nominal).

Variables category No. Variable subcategories Description Units Types and range Short name

Concrete mix ingredients 1 Binder types CEM I 42,5N – SR – N: (1 = CEM I 42,5N – SR, 2 = CEM I 52,5 R,
3 = CEM II/A-LL 42,5 R, 4 = CEM II/A-M(S-LL) 42,5N,
5 = CEM II/B-S 42,5N, 6 = CEM II/A-LL 42,
5 R & blast-furnace slag,
7 = CEM II/A-LL 42,5 R & fly ash)

Bind. types
CEM I 52,5 R –
CEM II/A-LL 42,5 R –
CEM II/A-M(S-LL) 42,5N –
CEM II/B-S 42,5N –
CEM II/A-LL 42,5 R & blast-furnace slag –
CEM II/A-LL 42,5 R & fly ash –

2 Water to binder ratio – C: 0.37 to 0.51 w/b
3 Cement content [kg/m3] C: 217.22 to 451 Cement
4 Blast-furnace slag content [kg/m3] C: 0 to 217.22 BFS
5 Fly ash content [kg/m3] C: 0 to 106 FA
6 Total effective water [kg/m3] C: 159.50 to 180.40 Total eff. water
7 Aggregate content Total aggregate [kg/m3] C: 1706 to 1895 Total Agg.
8 Aggregate < 0.125 mm [%]* C: 2.40 to 4.50 Agg. <0.125 mm
9 Aggregate < 0.250 mm [%]* C: 6.60 to 11.40 Agg. <0.250 mm
10 Aggregate < 4 mm [%]* C: 36.30 to 52.50 Agg. <4 mm
11 Product name of plasticizers Glenium G 51 – N: (1 = Glenium G 51, 2 = Teho-Parmix,

3 = VB-Parmix)
Plas. pro. name

Teho-Parmix –
VB-Parmix –

12 Plasticizers content [%]** C: 0.60 to 2.54 Plasticizers
13 Product name of

air-entraining agents
Ilma-Parmix – N: (1 = Ilma-Parmix, 2 = Mischöl) AEA pro. name
Mischöl –

14 Air-entraining agents content [%]** C: 0.01 to 0.06 Air-ent. agents

Fresh concrete properties 15 Basic properties Slump [mm] C: 40 to 180 Slump
16 Density [kg/m3] C: 2287 to 2395 Density
17 Air content [%] C: 3.40 to 6.90 Air cont.

Hardened concrete properties 18 Pore volumes and density Air pores [%] C: 3.55 to 6.99 Air pores
19 Total porosity [%] C: 17.52 to 20.39 T. porosity
20 Capillary + gel porosity [%] C: 12.87 to 14.68 C + G porosity
21 Density (wet) [kg/m3] C: 2502 to 2581 Density (w)
22 Density (dry) [kg/m3] C: 2354 to 2427 Density (d)
23 Thin section results Total air pores [%] C: 1.90 to 5.90 T. air pores
24 Air pores < 0.800 mm [%] C: 0.80 to 4.60 AP < 0.800 mm
25 Air pores < 0.300 mm [%] C: 0.60 to 3.50 AP < 0.300 mm
26 Specific surface [mm2/mm3] C: 12.80 to 36.50 S. surface
27 Spacing factor (<0.800 mm pores) [mm] C: 0.18 to 0.51 SF < 0.800 mm
28 Mechanical property Compressive strength [MPa] C: 38 to 58.50 Comp. str.
29 Durability properties Accelerated carbonation coefficient [mm/d0.5] C: 1.58 to 3.96 kacc
30 Chloride migration coefficient [m2/s] C: 1.40 to 15.09 � 10�12 Dnssm

Field conditions 31 Field conditions Exposure time [year] C: 1 to 6 Expo. time
32 Distance from highway lane [m] C: 4.50 to 10 Dis. from HW

Chloride profiles 33 Chloride profiles Chloride concentration at various depth [%]*** C: 0 to 0.10 Chloride profile

* Compared with the total aggregate.
** Compared with the total binder materials.
*** By weight of concrete.
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4.2. Model building process

In this subsection, the process of ensemble method based model
development and variable importance measure are discussed. The
model is developed using Matlab programming language. The fun-
damental structure of the developed ensemble trees are identical
as of the tree presented in Fig. 1 and uses bagging algorithm. The
algorithm randomly generate a number of subsamples, or boot-
strap replicas, from the original dataset which entails information
regarding the concrete’s mix ingredients, fresh and hardened prop-
erties, field conditions as well as chloride profiles. In the model, the
bootstrap replicas are the training dataset, and out-of-bag observa-
tions are used as test dataset. Unlike other machine learning meth-
ods, there is no need to divide the data into training and test
subsets since they are embedded in the sampling procedure.

In the model development process, the initial important step is
identifying an appropriate leaf size for each regression trees. This
can be achieved by constructing ensemble method utilizing the
training dataset with different leaf size and reasonable number
of trees. Then evaluate which of the tree configuration choice pro-
vides least mean square error (MSE). The MSE is computed by aver-
aging the squared difference between the predicted responses of
the out-of-bag and the target responses. To do so, an ensemble
method with tree size of 100 and leaf sizes of 5, 10, 20, 50 and
100 was constructed. The mean square error attained by the
ensemble method for the tested leaf and tree sizes is illustrated
in Fig 5. Though the errors are comparable for two cases (leaf size

5 and 10), leaf size 5 yields the lowest mean square error. Hence, to
perform efficient computations the size of leaf and trees were
selected as 5 and 100, respectively for model development. Using
this tree configuration, trees are grown for each bootstrap replica
and train each regression trees in the ensemble. Two regression
trees grown from two different bootstrap replicas often yield
dissimilar predictions and due to this the ensemble combines by
averaging the predictions of all the trees that are grown for all
the bootstrap replicas.

After performing chloride profile prediction using the devel-
oped ensemble method, the next main task is performing variable
importance analysis. The purpose of the analysis is to figure out the
degree of importance of each variable which are employed in the
dataset in predicting the chloride profile. The variable importance
was evaluated using a function which provides a numeric array of
size (1-by-number of variables) comprising importance measure
for each input variable. This is performed by randomly permuting
out-of-bag data across a single variable at a time and predicting the
increase in the out-of-bag error due to the permutation. This mea-
sure is evaluated for every regression tree in the ensemble, then
averaged and the averaged value is divided by the standard devia-
tion over the whole ensemble. This procedure is repeated ten times
as this number of iteration tend to provide stable result with rea-
sonable computational time. The final variable importance mea-
sure is considered by averaging the results of the ten iterations.
The higher the variable importance score, the greater the influence
of the variable on chloride profile predictions.

5. Results and analyses

The results of the degree of variable importance analyses based
on the developed models are discussed in this section. Based on the
analyses the influential factors, which control the penetration of
chloride in concrete exposed to de-icing environment, were evalu-
ated. To determine the influential factors, the results of ten models
were analysed. The ten models were categorized into two groups:
models A and models B according to the variables in their training
dataset. The models in A category employs all variables presented
in Table 1, except chloride profiles as input parameters. The models
in category B utilize all variables concerning concrete mix ingredi-
ents, field exposure conditions, and chloride migration coefficients
as inputs. In both model categories the target dataset is the chlo-
ride profile. The reason for this categorization is to examine the
significance of fresh and hardened concrete test results in control-
ling chloride profile. Each group of the model further classified into
three scenarios. In the first scenario the training dataset encom-
passes all respective input variables of the model A and B at which
the chloride profiles measured on all specimens at different ages.
The second scenario is the same as scenario one, the only differ-
ence is the included chloride profiles comes from the specimens

Table 2
Concrete mix compositions of non-surface treated specimens situated on the side of HW 7 at Kotka.

Bind. types w/b Cement BFS FA Total eff. water Total Agg. Plasticizer Air-ent. agents

CEM II/B-S 42,5N 0.41 405 0 0 165 1746 0.69 0.01
CEM I 42,5N – SR 0.42 387 0 0 161 1796 0.78 0.02
CEM II/A-M(S-LL) 42,5N 0.42 428 0 0 179 1709 0.80 0.01
CEM II/A-LL 42,5 R 0.42 421 0 0 176 1748 0.82 0.02
CEM I 52,5 R 0.42 417 0 0 175 1737 0.87 0.06
CEM II/A-LL 42,5 R & BFS 0.38 217 217 0 163 1725 1.26 0.03
CEM II/A-LL 42,5 R & FA 0.38 344 0 106 173 1706 1.01 0.02
CEM II/B-S 42,5N 0.47 339 0 0 160 1808 0.67 0.01
CEM II/A-M(S-LL) 42,5N 0.49 333 0 0 163 1847 0.60 0.01
CEM II/A-LL 42,5 R 0.51 337 0 0 172 1833 0.78 0.01
CEM I 52,5 R 0.40 451 0 0 180 1722 2.54 0.05

Fig. 5. Mean square error versus the number of grown trees for five different leaf
sizes.
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located at 4.5 m. The purpose of this scenario is to eliminate the
importance of distance on chloride profile prediction and focus
on the remaining parameters. In the third scenario the focus is in
removing the effect of exposure time by targeting the chloride pro-
file measurement taken at specific year. Since the measurement of
the specimen carried out at three different exposure times, there
are three models under this scenario (1, 3, and 6 years). The detail
of the classifications and the ten models are presented in Table 3.
All the models considered the chloride profiles taken at the depths
of 0.5 mm, 1.5 mm, 3 mm and 5 mm since the amount of chloride
was analysed in all concrete specimens at these depths. Then the
variable importance of each variable is averaged.

5.1. Scenario 1: variable importance measure for all conditions

Models A.1 and B.1 were developed according to the specifica-
tions given in Table 3 and the measure of the variable importance
for both cases were carried out. The variable importance score of
models is plotted in Fig. 6. It can be observed that distance from
highway is the foremost factor which influences most the chloride
profile in both models. This is the expected result because the
amount of chlorides splashed on the concrete surfaces is heavily
relay on the distance between the specimens and highway lane.
The farther the distance, the lesser is the quantity of the splashed
chlorides. The next five influential variables in model A.1 were
compressive strength, cement content, total effective water, binder
types, and exposure time. Though this model entails several vari-
ables from fresh and hardened concrete properties, the identified
influential variables are mostly from concrete mix ingredients. This
indicates that the effect of advanced laboratory tests carried out at
early age is insignificant in predicting the chloride concentration in
concrete. In case of model B.1, the influential variables next to dis-
tance from highway are cement content, exposure time, total effec-
tive water, binder types, exposure time, and w/b ratio. In both
models, supplementary cementitious materials, product name of
plasticizers, and air-entraining agents have the lowest effect in
predicting the chloride profile. It is well known that supplementary
cementitious materials are generally applied to increase the con-
crete resistance against chloride permeability since they can
diminish the volume of large pores and capillaries. But they are
not identified as influential variable since their amount and types
are already explained by the combination of binder types and
w/b ratio (which are already determined as significant variables).
Laboratory based chloride transport test, Dnssm, is also identified

as insignificant in predicting chloride profile in this scenario. This
is due to the fact that transport properties of chloride depend on
the intrinsic permeability of the concrete, which is changing with
time during the process of cement hydration as well as the quan-
tity of chloride concentration in the pore solution. In addition,
the inclusion of chloride profiles measured from specimens placed
at different distance with various exposure time plays a role in
diminishing the importance of Dnssm. Hence, to make sure of the
correctness of this result, other scenarios which eliminate the
effect of specimens distance and exposure time have to be
considered.

5.2. Scenario 2: variable importance measure at fixed distance

To make the analyses of variables importance independent of
specimen’s distance from highway, only chloride profile measured
at 4.5 m were considered in the dataset of the model. The reason
for choosing this distance is that the availability of highest number
of specimens, allowing to acquire more chloride profile in the
dataset. After performing successful training of the models, the
embedded variable importance scores were computed. The top
six most influential parameters are illustrated in Fig. 7. It can be
clearly seen that exposure time is the leading parameters govern-
ing the penetration of chloride into concrete for A.2 and B.2 models
with score of 0.43 and 0.44, respectively. The identified six upper-
most significant variables have about 77% and 85% of collective
contributions to the ensemble model A.2 and B.2, respectively.
These are considerable amount of contributions considering the
fact that the number of employed predictors for model A.2 is 31
whereas model B.2 is 16. It can also be noted that the variable
importance measures of every respective parameters (according
to their rank) of the two models are comparable. The importance
variable measures and their percentile contribution of the influen-
tial predictors for both models are listed in Table 4. As it is seen
from Table 4, exposure time of the concrete in field environment
is the most influential variable with a relative contribution of
40.78% in model B.2. The w/b parameter with a 12.27%
contribution is the second most predominant feature. Aggre-
gate < 0.125 mm is another variable that had 10.43% contributions
to prediction. Cumulatively, 63.47% of the total influence is attrib-
uted by these three influential factors. The variables Dnssm, plasti-
cizers type, and aggregate < 4 mm are the next most influential
parameters which represent 9.12%, 7.22% and 5.64% of contribu-
tions in predicting the chloride profile, respectively.

Table 3
Description of ten models.

Scenario Model A Model B Description

Model
name

Input variables
category

No. of
variables

Model
name

Input variables
category

No. of
variables

1 A.1 All variables* 33 B.1 All concrete mix
ingredients*,
field conditions* and
Dnssm

18 Entails data at which the chloride profiles measured
on all specimens at different ages.

2 A.2 All variables* except
dis. from HW

32 B.2 All concrete mix
ingredients*,
expo. time and
Dnssm

17 Consists of data at which the chloride profiles measured
on specimens only located at 4.5 m away from HW 7.

3 A.3(i) All variables* except
expo. time

32 B.3(i) All concrete mix
ingredients*,
dis. from HW and
Dnssm

17 Entails data of specimens at which the chloride profiles
measured at 1 year of exposure.

A.3(ii) B.3(ii) Ditto but at 3 years of exposure.
A.3(iii) B.3

(iii)
Ditto but at 6 years of exposure.

* Refer Table 1 for details of the variables.
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Fig. 6. Variable importance measures for chloride profile dataset based on scenario 1.

Fig. 7. Variable importance measures for chloride profile dataset based on scenario 2.
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The variable importance analysis revealed that most of the
identified powerful predictors from both models are variables that
describe the concrete mix ingredients as illustrated in Fig. 7. This
demonstrated that almost all the advanced lab tests performed at
early age, except Dnssm, are impotent in predicting the chloride pro-
file in concrete. Among concrete mix ingredients, variables such as
w/b and aggregate volume fraction are appeared to be the most
significant parameters controlling chloride penetration. This is
due to the fact that w/b and aggregates controls the pore structure
of the cement paste which in turn impacts the transport properties.
Indeed, aggregates utilized to produce concrete are often dense
and thus chloride transportation through them is negligible. Nev-
ertheless, at the presence of interfacial transition zone (ITZ) where
the cement paste in the vicinity of aggregate surface reveals lower
cement content and greater porosity compared with cement paste
in regions far away from the aggregate. The ITZ covers a substantial
portion of the total cement paste volume and controlled by the
aggregate size distribution [28,50]. This may explain the observed
significance of aggregate size distribution on the chloride transport
property of concrete.

Unlike scenario 1, chloride migration coefficient is recognized
as influential parameter where the effect of distance from highway
lane is excluded. The chloride penetrations into the concrete spec-
imens are controlled by their pore structures which are governed
by the employed mix ingredients. The chloride profile primarily
differs because of the continuous chemical reaction of chlorides
with the dilute cement solution but not the amount of the splashed
surface chloride as it is assumed as the same for all considered
specimens in the model. Hence, finding the chloride migration
coefficient, Dnssm, as influential predictor confirmed that it is a
function of chloride content at the surface of the concrete.

5.3. Scenario 3: variable importance measure at three different ages

In this scenario, the focus is on the influence of input variables
at specific exposure times. The variable importance measure for
the chloride profile dataset at different ages is plotted in Fig. 8. It
can be observed that distance from highway is the foremost influ-
ential parameters in all models. This is the expected result because
the amount of chloride at the concrete surface differs according to
the distance. The other most significant variables in model A.3 are
compressive strength, total effective water and cement content.
These properties and transport characteristics are linked to the
concrete pore structure. Concrete with high compressive strength
often have low porosity and thus high resistance to chloride pene-
tration. The amount of cement and total effective water also influ-
ences the porosity of the concrete. These two parameters are
identified as the most influential chloride profile predictor in all
B.3 models too. The effect of these two parameters in controlling
the chloride permeability is well noted by several studies and they
are often expressed as water to cement ratio (w/c). In the devel-
oped models, w/b ratio was used as one of the training input vari-
ables but not w/c since there is other cementitious materials in the

concrete mix ingredients. The considered binder types were
cement, blast-furnace slag, and fly ash. In this scenario, the number
of instances in the training dataset which entails blast-furnace slag
and fly ash are very limited as shown in Table 2. Due to this the
model identified the amount of cement, total effective water, and
w/b as prominent predictors individually.

It can be noted that incorporation of supplementary cementi-
tious materials have little influence on the chloride transport at
the early age but its significance increases with years of exposure
time. Similar to supplementary cementitious materials, aggregates
size distribution appeared to be less influential in predicting
chloride concentration in concrete at the early age. For instance,
three predictors representing aggregates size distribution (Agg.
<0.125 mm, Agg. <0.250 mm, and Agg. <4 mm) obtained impor-
tance ranks of 11th, 12th and 13th by model B.3(i), though only
the first six important variables are shown in the Fig. 8 due to read-
ability reason; 5th, 6th and 9th by model B.3(ii), and 4th, 6th and
8th by model B.3(iii). These three predictors have about 7%, 13%,
and 15% contributions at the age of 1, 3 and 6 years, respectively.
This can be explained by the characteristics change of the ITZ over
time. In cases of plasticizers, opposite phenomenon is observed. In
addition, the variable importance analyses of B.3 model revealed
that the chloride transport properties of the concrete specimens
can be described better by the chloride migration coefficient
(Dnssm) values at earlier age than older age.

6. Discussions

The variable importance measure of the above three scenarios
demonstrated that the influences on the chloride penetration into
concrete exposed to de-icing environment mainly come from dis-
tance from highway, exposure time, and concrete mix ingredients.
The most governing parameters from the concrete mix ingredients
which are discovered by this work are cement content, amount of
total effective water, aggregate size distribution and supplemen-
tary cementitious materials. The effect of cement content and
amount of total effective water (often represented in the form of
w/c ratio) is usually considered in several conventional chloride
profiles prediction models. However, the effect of aggregate size
distribution is often missed and controversial. Some studies
reported that the influence of aggregate size distribution on chlo-
ride ingress is mainly due to the presence of ITZ which forms an
interconnected network and facilitates chloride transport through
them [50]. Other studies concluded that the aggregate content con-
trols the chloride transport into concrete is significant but not
aggregate size distribution [28,29]. These studies argued that
increasing aggregate content produces more ITZ, but this is coun-
teracted by the decrease in total porosity since more paste is
substituted by the non-porous aggregate particles. The finding of
this work agreed with the former studies. As presented in
scenario 3 and shown in Fig. 9, the contribution of aggregate size
distribution in controlling chloride penetration in model A.3 has

Table 4
Importance measure of influential variables and their percentile contribution for models A.2 and B.2.

Model A.2 Model B.2

Variable name VI measures [–] Contribution [%]* Variable name VI measures [–] Contribution [%]*

Expo. Time 0.4273 37.62 Expo. time 0.4431 40.78
w/b 0.1300 11.45 w/b 0.1333 12.27
Air cont. 0.0837 7.37 Agg. <0.125 mm 0.1133 10.43
Agg. <0.125 mm 0.0828 7.29 Dnssm 0.0991 9.12
Dnssm 0.0804 7.08 Plas. pro. Name 0.0784 7.22
Agg. <4 mm 0.0790 6.96 Agg. <4 mm 0.0613 5.64

* Compared with the total contributions of all input variables utilized in respective models.
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increased with exposure time but, in case of aggregate content, it is
vice versa. The importance of aggregate size distribution in model
B.3 is significant at exposure time of 3 and 6 years than earlier age.
However, opposite phenomenon is observed in case of aggregate
content. Even aggregate content with negative importance mea-
sure is noticed in both models. This implies that this variable do
not have power in predicting chloride profile in concrete at some

years of exposure. This study also revealed that, employment of
supplementary cementitious materials in concrete mixes plays a
role in controlling the ingression of chloride at later age. These
effects are due to the continuous property change of the ITZ and
binding capacity of the concrete [51–53]. All these results confirm
the incapability of short-term laboratory or field examination in
assessing the chloride profile. Hence, models should rely on data

Fig. 8. Variable importance measures for chloride profile dataset based on scenario 3.
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from long-term field experiments for reliable chloride ingress
prediction.

Though chloride transport in concrete is affected by several fac-
tors, most of the existing conventional models take into an account
only the effect of w/c ratio and the chloride migration coefficients
to represent the time dependency of the chloride penetration into
concrete. To validate the importance of the newly determined sub-
set of influential variables, the chloride profile prediction error is
analysed using three input categories. In the first category, the
input variables are the same as in Table 3 for all models. In the sec-
ond category, only the determined top six influential variables are
employed in their respective models. In the last category, the most
commonly considered variables in the conventional models are
utilized. These variables are the amount of cement and total effec-
tive water from concrete mix ingredient category, chloride migra-
tion coefficient and field conditions. The same ten models
presented in Section 5 are adopted to predict the chloride profile
by employing the input variables described in each category. The
predictive power of the ensemble method is evaluated using out-
of-bag observations. Mean square error (MSE) is adopted to evalu-
ate the performance of the models in each category since it is the
most common accuracy measure of a learning model. The MSE is
computed by averaging the squared difference between the pre-
dicted responses of the out-of-bag and the target responses. The
MSE results for all input categories are presented in Table 5. These
MSE values are average of ten iterations. It can be noticed from
Table 5 that the MSEs of all models which employ variables
described in second category is small compared with the first cat-
egory. The MSEs reduction is considerably large except models A.2
and B.2. It can also be recognized that the MSEs of all models in

second category, except Model A.2 and A.3(i), is smaller than the
MSEs of the third category. For instance, 19% decrease in MSE is
observed in model B.3(iii) of second category compared to that of
the third category. In the same model, the second category has
34% less MSE than the first category. This proofs that the developed
models are more reliable in determining the subset of the signifi-
cant variables, which can improve the generalization ability, for
the chloride prediction models.

Evaluation of chloride penetration into concrete by employing
many or very limited parameters lead to predictions with reduced
accuracy as can be seen from Table 5. More improvements should
be made to conventional models in order to represent the effect of
the concrete mix design in more appropriate manner. This can be
achieved by understanding the effect of the identified influential
variables and their interactions quantitatively. As this study
demonstrates the effect of influential parameter in different sce-
nario is varying considerably with time. This makes translating
chloride profile results from short-term tests to long-term as well
as from one scenario result to another one is inappropriate. Thus,
the effect of all influential concrete mix ingredients on chloride
transport needs to be calibrated with long-term field data to yield
reliable prediction.

According to the results of this work, variables from fresh and
hardened concrete tests except compressive strength and Dnssm

have insignificant influence on the chloride profile prediction. All
concrete specimens are placed in the same elevation near to
highway 7 at Kotka, Finland and experiencing similar multi-
deteriorating actions over their life. Due to this, the effect of factors
governing the boundary conditions of the concrete specimens
including, the amount and frequency of sprinkled de-icing salt, ele-
vation of the specimens, the actual climatic condition, amount of
carbon dioxide in the environment and the traffic density are the
same. It is obvious that these parameters play a significant role
on the chloride penetration and thus incorporating data from dif-
ferent field experiments could help to measure the importance of
factors affecting the boundary conditions of the concrete. The
measure of the variable importance is based on the experimental
dataset and thus the selected influential variables are only valid
for the ranges of dataset provided in Table 1. Enrichment of the
experimental dataset covering different exposure conditions
enable to understand the combined effect of various deterioration
mechanisms on chloride transport into concrete. Once the govern-
ing parameters and their interaction are understood, it is possible
to enhance the reliability of the traditional models since reason-
able simplifications can be established.

Fig. 9. Significance of aggregate size distribution and aggregate content vs exposure time in models A.3 and B.3.

Table 5
Performance comparison of three categories.

Model names Mean square error

Category 1 Category 2 Category 3

A.1 1.43E�04 1.21E�04 1.37E�04
B.1 1.37E�04 1.18E�04 1.35E�04
A.2 1.70E�04 1.64E�04 1.58E�04
B.2 1.60E�04 1.52E�04 1.59E�04
A.3(i) 8.66E�05 7.29E�05 6.93E�05
A.3(ii) 2.31E�04 1.62E�04 1.67E�04
A.3(iii) 4.10E�04 3.01E�04 3.36E�04
B.3(i) 8.66E�05 7.26E�05 7.80E�05
B.3(ii) 2.30E�04 1.62E�04 1.69E�04
B.3(iii) 3.75E�04 2.80E�04 3.33E�04
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7. Conclusions

Ensemble methods based models to measure the importance of
variables that control the chloride ingress in concrete exposed to
de-icing environment were developed and presented in this work.
The ensemble methods are based on bagged regression tree and
utilized long-term field data. The input variables employed in
the models were concrete mix ingredients, fresh and hardened
properties, and field conditions and the chloride measurement
at different depth in concrete was assigned as a target variable.
Ten models were developed by employing different input dataset.
The models were categorized into two groups in order to evaluate
the effect of fresh and hardened tests. Each group was further
divided into three scenarios in order to analyse the variables
importance without the effect of exposure time and distance from
highway. Using the ten models, variables of importance were
analysed and the most influential ones were determined. The
chloride profile prediction capacity of the most influential
variables were analysed through MSE. Compared to results that
employ conventionally agreed variables, up to 19% decrease in
MSE result has been achieved by relying only on the determined
subset of influential variables. The improvement in MSE results
confirmed the models capacity in determining the optimal subset
of influential variables that best predict the chloride profile
from the input dataset. The main conclusions drawn from this
work are:

� Chloride migration coefficient (Dnssm): It was identified that
Dnssm carried out at early age in laboratory was recognized as
influential parameter in the scenario where the dataset covers
only concrete placed at the same distance. This demonstrated
that the Dnssm is a function of chloride content at the surface
of concrete in contrary to the assumption of conventional mod-
els. The influence of Dnssm on the chloride transport property
was significant at earlier than older age. It was also discovered
that fresh and hardened tests performed at early age are
recognized, excluding compressive strength and Dnssm, to be
impotent in predicting the chloride ingress in concrete.

� Concrete mix ingredients: It was noticed that binder types,
cement content, total effective water and aggregate size distri-
butions are the influential variables which controls the chloride
penetration in concrete. These factors except aggregate size
distribution are well known in controlling transport properties
of concrete. The effect of aggregate size distribution in the chlo-
ride transport properties of concrete is controversial. The result
of this work demonstrated that aggregate size distribution is
among the predominant predictors and its influence increases
with exposure time. The same phenomenon was also observed
in case of supplementary cementitious materials. Plasticizers
had considerable effect on the chloride transport at the early
age but its contribution reduced significantly after some years
of exposure.

� Short- and long-term tests: The results demonstrated that the
contribution of each influential variable in the considered
scenarios was noticeably changing with time. This indicates
that evaluation of long-term chloride transport property of
concrete using indicators obtained from short-term tests is
unrealistic. Hence, long-term field data is essential to under-
stand well the effect of all influential interacting variables on
chloride permeability.

Therefore, using the ensemble method along with appropriate
analyses is a promising approach to isolate the effect of complex
interacting factors and determine the significance of variables,
which in turn leads to better understanding of the chloride trans-
port mechanisms in concrete.
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h i g h l i g h t s

� Neural network can realistically predict hygrothermal condition in concrete.
� Hygrothermal prediction model can be adopted to evaluate the corrosion rate.
� Hygrothermal prediction model is vital to foresee risk of various deteriorations.
� Exploratory data analysis assists in selecting appropriate protection systems.
� Performance of surface treatments is influenced by their application method.
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a b s t r a c t

Accurate prediction of hygrothermal behavior in the concrete is vital requirements to make more realistic
service-life extension decisions. In this work, a neural network based hygrothermal prediction model to
estimate a temporal hygrothermal condition in surface-protected concrete façade members is developed
and presented. The model learns the case-specific features of hygrothermal behavior using the two years
temperature and relative humidity data obtained from the installed probes. The performance evaluation
confirms that the model describes the hygrothermal behavior inside the concrete façade with a high
accuracy. This in turn enables to assess the corrosion rate as well as deterioration risk levels caused by
frost and chemical attacks while identifying the appropriate surface protection system.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental agents cause different types of physical and
chemical damage, such as corrosion of reinforcing bar (rebar), frost
and chemical attacks in reinforced concrete (RC) structures.
Corrosion-induced deterioration of RC structures is one of the most
serious problem throughout the world [1–6]. It has been reported
that corrosion related maintenance and repair of RC structures
costs multibillion USD annually worldwide. Even, some industrial
countries, spend as much as 3.5% of their gross national product
(GNP) for corrosion associated damage and control [7]. The total
building repair cost in Finland is estimated about 5.5 billion Euro

per annum, of which about 30% involves external structures such
as façades, balconies and roofs. The repair volume of corrosion-
induced damage on prefabricated RC façade is predicted to be
about 15 million m2 per year and will grow 2% annually since it
is the dominant technology in Finnish building industry [8].
Depending on the surface finishing type of the façades, it accounts
for about 11–40% of the repair costs [9]. Frost attack is another
most common cause of deterioration to concrete façades in Nordic
climate [10–12].

The moisture content is the main factor in controlling the corro-
sion rate through their influence on the electrochemical reactions
at the rebar/concrete interface and through their influence on ion
transport between anodes and cathodes [13]. Not only the mois-
ture content but also the surrounding temperature influence the
rate of the electrochemical reactions and the amount of the
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moisture that the concrete retains [14]. The corrosion rate varies
by more than a factor of ten in a common seasonal temperature
range from 5 to 30 �C [4,14,15]. In cold climate, concrete may be
damaged by freezing and thawing if the pore system of the con-
crete is filled with moisture and has reached a critical degree of
saturation. Moreover, in the presence of high moisture and aggres-
sive substances, some chemical reactions which cause damage on
the concrete can take place [16–19]. For instance, alkali reaction
may occur in concrete when alkalis from the cement, or from an
external sources, react with certain aggregates to form products
that are deleterious to concrete.

A large number of RC structures are subjected to deteriorations
due to uncontrolled hygrothermal factors and the significant repair
costs related to them calls for cost-effective repair measures. In the
past few decades, considerable efforts have been put into devising
economical repair techniques to extend the service life of RC struc-
tures. Limiting the moisture penetration into RC structure is one of
the potential ways to prolong their service life since all the major
degradation mechanisms, such as corrosion of rebar, frost and
chemical attacks, require high moisture content in the concrete.
European Standard – EN 1504 suggests that surface protection sys-
tems to reduce moisture content and control corrosion of rebar by
increasing concrete resistivity under rehabilitation principles
P2 – Moisture control of concrete and P8 – Increase of the electric
resistivity of concrete, respectively [20]. According to EN 1504, the
surface protection treatments for concrete are classified into three
groups. i) hydrophobic impregnation: produces a water-repellent
surface with no pores filling effect; ii) impregnation: reduces the
surface porosity with partial or total pores filling effect; and iii)
coatings: produces a continuous protective film on the concrete
surface.

Since compositions of the surface protection materials to limit
the penetration of moisture into concrete vary widely, the surface
protection systems may behave differently and even cause unin-
tentional damage to the structure. In addition, it may provide dif-
ferent levels of protection against moisture even with similar
generic chemical composition. Due to these, selection of appropri-
ate surface protection system for a given structure is challenging.
Thus, continuous hygrothermal monitoring of surface-protected
concrete is necessary. This provides more reliable information
about the actual hygrothermal behavior of the concrete. Neverthe-
less, in-service monitoring the hygrothermal performance of the
concrete throughout its service life is not practical due to cost
and time limitations. Hence, developing an efficient model which
can predict the hygrothermal situation inside the surface-
protected concrete based on ambient climatic condition is essen-
tial. In another perspective, to select appropriate surface protection
system, analysis of data obtained from monitoring system and/or
model is crucial. Data are useless on their own until one extracts
knowledge or inferences from them. The lack of advanced data
analysis makes the selection process suboptimal and even danger-
ous in some cases. The objectives of this work are threefold: i) to
develop a hygrothermal prediction model for surface-protected
Finnish concrete façade elements using long-term in-service mon-
itored data; ii) to foresee the corrosion rate and deterioration risk
levels due to frost and chemical attacks; and iii) to analyze the per-
formance of various surface protection system in regulating the
hygrothermal behavior of the concrete panel.

The structure of this paper is as follows. In Section 2, the signif-
icance of this research is presented. Architecture of artificial neural
network is discussed in Section 3 since it is used to model the
hygrothermal behavior of the case structure. In Section 4, detail
of the case structure and the hygrothermal monitoring procedure
is presented. Section 5 elaborates the hygrothermal prediction
model development procedure. The model is trained, validated
and tested using two years hygrothermal data of the case structure.

The performance of the developed hygrothermal prediction model
is analyzed in Section 6. In Section 7, the time-variant corrosion
rate of rebar in surface-protected concrete elements is quantita-
tively evaluated using the monitored and predicted hygrothermal
data. The deterioration risk levels associated with corrosion, frost
and chemical attack is performed by adopting advanced explora-
tory data analysis techniques. Performance of surface protection
systems against moisture is also analyzed and presented in this
section. Finally, Section 8 presents the summary, conclusions and
applicability of the study.

2. Research significance

Long-term in-service hygrothermal monitoring of surface-
protected concrete using sensors is necessary for assessing the per-
formance of the applied protection material. There are earlier
works which demonstrate the use of sensors for monitoring
hygrothermal status inside concrete element [21–24]. Although
implementation of long-term monitoring system (which consists
of probes, cables, and data acquisition equipment) is necessary,
such a system cannot be implemented to monitor continuously
for the whole service life time of the structure due to resource lim-
itations. Thus, modelling the hygrothermal performance of the
concrete using the monitored data as well as the ambient air tem-
perature and relative humidity is vital. Indeed, hygrothermal trans-
port phenomena through concrete and many other exterior
building envelopes are well understood and numerical models
have already been developed. A comprehensive review of relevant
building envelope simulation models is found in [25]. Even though
hygrothermal prediction models have been proposed in the past,
none has explicitly incorporated various concrete surface protec-
tion materials and application methods in their material libraries.
Numerical models can provide reliable simulations of an actual
process only if appropriate material models are available and
utilized.

Modelling of hygrothermal performance inside a surface-
protected concrete member requires information of the temporal
change of properties of coating materials under environmental
and service conditions, which can be obtained by on-site monitor-
ing. In addition, fundamental understanding of the interaction of
various surface protection systems with an existing concrete is
highly required. Some of the surface protection materials can pen-
etrate inside the concrete pores and react with the hydration prod-
ucts of concrete but some of the other materials form a continuous
layer at the concrete surface.

Due to the complex characteristics of interactions, developing a
model to predict hygrothermal performance inside surface-
protected concrete is challenging. Such a problem requires
approach where the most essential features of a complex problem
with multiple interactions are modelled so that the system behav-
ior can be predicted reliably. Learning system behavior from
observed data using machine learning methods is an effective
alternative. Among several machine learning techniques, artificial
neural network is commonly used due to its capability of capturing
nonlinear and complex underlying characteristics of any physical
process with a high degree of accuracy [26,27]. Artificial neural
networks have been successfully used for various tasks in civil
engineering applications, for example, structural behavior [28–
31], earthquake prediction [32–34], and prediction of concrete
properties [35–40]. However, their application in the research field
of concrete repair is yet limited. In this work, hygrothermal predic-
tion model for surface-protected Finnish concrete façades using
artificial neural network is developed. The model is trained, vali-
dated and tested using two years of in-service monitored
hygrothermal data.
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3. Artificial neural network

Artificial neural networks, commonly referred to as neural net-
works, are computational networks inspired by biological neural
networks which consists of partially or fully interconnected simple
processing units called artificial neurons [41–43]. The model of an
artificial neuron, which forms the basis for designing neural net-
works, is shown in Fig. 1. It basically consists of a set of synapses,
an adder, an activation function and a bias. A set of synapses is
characterized by a weight of its own. Specifically, a single xj at
the input of synapse j connected to network k is multiplied by
synaptic weight wkj. An adder is used for summing the input sig-
nals, weighted by the respective synapses of the neuron. An activa-
tion function, uð:Þ, is applied for limiting the amplitude of the
output of a neuron. Various forms of activation functions can be
defined depending on the characteristics of applications. The bias
bk has the effect of increasing or lowering the net input of the acti-
vation function, depending on whether it is positive or negative,
respectively.

A neuron k, can be mathematically described by Eqs. (1) and (2).

bk ¼
Xm
j¼1

wkjxj; ð1Þ

yk ¼ uðvkÞ ¼ uðbk þ bkÞ; ð2Þ

where bk is the linear combiner output due to the input signal;
x1; x2, . . ., xm are the input signals; wk1, wk2, . . ., wkm are the synaptic
weights of neuron k; bk is the bias; uð:Þ is the activation function;
and yk is the output signal of the neuron.

Neural networks can be classified in a number of different ways
depending on their architecture (pattern of connections between
the neurons) which is intimately linked with the learning algo-
rithm used to train the network. Fundamentally neural network
architectures are classified into three classes: single-layer feedfor-
ward network, multilayer feedforward networks, and recurrent
network [41]. Recurrent network has one or more feedback loops
and is widely used for nonlinear time-series problems. It attempts
to incrementally build the autocorrelation structure of a series into
the model internally, using feedback connections relying solely on
the current values of the input(s) provided externally. The idea
behind such networks is that a network should learn the dynamics
of the series over time from the present state of the series, which is
continuously fed into it, and that the network should then use this
memory when forecasting [41,42]. Based on the kinds of time-
series problems, the architectural layout of recurrent network
takes many different forms. Non-linear autoregressive with exoge-
nous inputs (NARX) model is one of the popular subclass of recur-

rent neural network. It has a capacity in capturing long-term
dependencies as it includes inputs at explicit time lags [42,44].

In NARX model, external inputs are presented to the network
with those fed back from the output [41,42]. The architecture of
a generic NARX model is shown in Fig. 2. The model has a single
input that is applied to a tapped-delay-line memory of q units. It
has a single output that is fed back to the input via another
tapped-delay-line memory also of q units. The contents of these
two tapped-delay-line memories are used to feed the input layer
of the multilayer perceptron. The present value of the model input
is denoted by uðnÞ , and the corresponding value of model output is
denoted by ŷðnþ 1Þ; that is, the output is ahead of the input by one
time unit. Thus, the signal vector applied to the input layer of the
multilayer perceptron consists of a data window made up as
follows:

� Present and past values of the input, namely, uðnÞ, uðn� 1Þ, . . .,
uðn� qþ 1Þ, which represent exogenous inputs originating
from outside the network,

� Delayed values of the output, namely, ŷðnÞ, ŷðn� 1Þ, . . .,
ŷðn� qþ 1Þ, on which the model output ŷðnþ 1Þ is regressed
and represents the value of the endogenous variables.

The dynamic behavior of the NARX model is described by Eq.
(3).

ŷðnþ 1Þ ¼ FðŷðnÞ; . . . ; ŷðn� qþ 1Þ; uðnÞ; . . . ;uðn� qþ 1ÞÞ ð3Þ
In this work NARX network is adopted to develop a hygrother-

mal prediction model inside surface-protected concrete façade ele-
ments using in-service monitored data since it provides a concise
representation for a wide class of nonlinear problems.

4. Hygrothermal monitoring of case structure

In this section detail of the case structure and the hygrothermal
monitoring strategy is presented.

4.1. Case structure

In this work a six-story building with prefabricated RC sand-
wich panels was selected for investigating its hygrothermal perfor-
mance. The building is situated in the city of Vantaa, Finland. It was
constructed in 1972 and the finishing of the exterior concrete
façade elements were brushed and painted. The panels used in
exterior wall are sandwich-type panels where thermal insulation
lies between two RC panels. The two concrete panels are connected
to each other by steel trusses. The average thickness of the outer-
most layers of the concrete panels is 53 mm and their surface area
is 7.84 m2 with 2.82 m width and 2.78 m height. This type of con-
crete façade panels were, and still are, mainly used in Finnish mul-
tistory residential buildings [8,12,45,46]. Concrete façade elements
of the case structure are illustrated in Fig. 3.

Six concrete façade elements from the southeast side of the case
building were designated for examination. All the necessary sur-
face preparations were done before repairing the concrete façade
elements with surface protection systems. The old paint of con-
crete façade elements was removed by sand water blasting. Surface
protective systems were applied on five elements (S1, S2, S4, S5,
and S6) as shown in Fig. 3. The applied surface protection systems,
based on the outermost layer, can be grouped into two: cementi-
tious and organic coatings. The outermost layer of the façade ele-
ments labelled S1 and S2 are coated with cementitious materials,
whereas S4, S5, and S6 are treated with organic coating materials
from various manufacturers. Cementitious coatings and layers
form a wide category that ranges from true cement-based coatingsFig. 1. Nonlinear model of a neuron, labelled k [41].
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of a few to less than 10 mm thick. Whereas, organic coatings form a
continuous polymeric film on the surface of the concrete, of a
thickness ranging from 100 to 300 lm [13]. According to EN
1504, all the applied surface protection systems can be used to
limit moisture content and thereby to increase the concrete resis-
tivity under rehabilitation principles P2 and P8, respectively.
Cleaned façade element labelled S3 was left uncoated for reference

purpose. The type of the applied concrete surface protection mate-
rials with the application methods are presented in Table 1.

4.2. Hygrothermal monitoring procedure

A total of six relative humidity/temperature probes were uti-
lized to measure relative humidity and temperature at the surface
and inside the concrete façade elements. Five of the probes were
installed into the façade members to measure the inner relative
humidity and temperature, whereas one probe was mounted on
the surface of a façade to measure the ambient hygrothermal con-
dition. The probes were calibrated using two-point calibration
method before installation in accordance with the manufacturer
guide. The same calibration method was also applied every six
months after installation. This calibration method adjusts both off-
set and gain. In order to install the probes, five holes were bored to
a depth of about 40 mm at an approximate angle of 45� at the cen-
ter area of the concrete façade elements. Then the holes were
cleaned out and plastic sleeves were inserted into it. At this point,
the probes were pushed into the plastic sleeve and sealed. The
cable probes were connected to a data logger to record the
hygrothermal measurements. Schematic representation of the
installed probe is shown in Fig. 4. The length of the probe is
69 mm and it can measure the hygrothermal condition inside con-
crete at a desire depth from 30 to 90 mm. In the case structure, the
concrete panel at the bottom of the holes releases humidity into
the space around the probe until equilibrium is reached. Then
the hygrothermal measurements were taken with a regular time
interval of half an hour for 719 days. The same type of probe was
used to measure surface shade air temperature and relative
humidity of the concrete panel.

The reliability and the accuracy of the measured data depend on
the reliability and the accuracy of the utilized monitoring system.
The measurement ranges of the probe for relative humidity is 0–
100% and temperature is �20 to +60 �C. The accuracy of the rela-
tive humidity probe is ±2% and ±3% when the relative humidity
is ranged from 0 to 90% and 90 to 100%, respectively. In case of
temperature, the accuracy is ±0.4 �C at +20 �C [47]. All these con-
firm that the monitoring system is reliable and accurate enough
for the intended purpose.

Fig. 2. NARX network with q delayed input and outputs.

Fig. 3. Concrete façade elements of the case structure.

Table 1
Surface protection materials applied on concrete façade elements of the case
structure.

Façade labels Treatment types Application methods

S1 Colored cement coating 1 � trowel
S2 Colored cement coating 2 � brush
S4 Impregnation 1 � roller

Acrylic Paint 2 � roller
S5 Polyurethane primer 1 � brush

Polyurethane coating 2 � brush
S6 Primer 1 � roller

Filler coating 1 � roller
Acrylic Paint 2 � roller
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5. Hygrothermal modelling process

In this section, the development steps of the proposed
hygrothermal prediction model are presented. As any model based
on the machine learning, the major development phases consist of
data, training, validation, and testing. The workflow of this
hygrothermal prediction model is illustrated in Fig. 5. The grey col-
ored rectangular boxes represent the main processes or tasks of the
modelling procedure. The major inputs into the process are shown
in uncolored rectangular boxes.

It can be noted from the workflow that the modelling task is
started by importing a dataset which includes the monitored
hygrothermal measurements of the ambient air and from inside
the concrete façade members. Then data exploration is performed

in order to understand and visualize the main characteristics of the
dataset. This part is often performed using visual analytic tools. In
any machine learning based models, data pre-processing is often
performed before they are analyzed further. For instance, there
may be missing values in the data and these values need to be
cleaned so the model can analyze the data properly. Pre-
processing step, especially in neural network based model, could
also involve other tasks such as data normalization in order to
put different variables on a common scale. After making the data
ready, the next step is splitting them into training, validation and
test sets. Training dataset is a set of examples used for training
the neural network. Validation dataset is used to prevent overfit-
ting. After making the necessary optimization, the predictive
power of the network is evaluated using the test dataset. In the
next subsections, all the major tasks are discussed in detail.

5.1. Data

As discussed in the previous section, about two years monitored
hygrothermal data inside surface-protected concrete façade were
collected in the earlier research. These data are analyzed and
employed to develop a hygrothermal model based on a neural
network.

5.1.1. Data types
In the hygrothermal model proposed, four variables in which

two are input and two target variables are considered. Outdoor rel-
ative humidity and temperature of ambient air are the input vari-
ables. The target variables are the values of relative humidity and
temperature of concrete façade members measured inside the con-
crete façade member. The value of the temperature and relative
humidity is numeric and units used for them are �C and %,
respectively.

5.1.2. Data exploration
The recorded hygrothermal data covers about a period of two

years, from 21 October 1998 to 08 October 2000. The daily-
averaged values of relative humidity and temperature are illus-
trated in Figs. 6 and 7, respectively. Both figures shows hygrother-
mal data of the ambient and the inner which was measured inside
surface-protected façades and the reference concrete façade. It can
be seen that some data are missing from the hygrothermal obser-
vations for consecutive days at different patch of time. Data miss-
ing from certain measured parameters is a recurrent problem in
different fields because of various reasons. In this case, technical
errors were the main cause for the loss of data. The hygrothermal
data of all the panels, except the reference façade element, were
lost during the same period of time. There are more missed data
in the reference façade member, but this does not affect the com-
parison of hygrothermal trends between the reference and surface-
protected concrete façade elements.

As it can be seen in Fig. 6, the ambient relative humidity fluctu-
ates widely. The inner relative humidity in all surface-protected
concrete façades, except for about the first 200 days, do not follow
the same trend as the reference. After about a year, the inner rela-
tive humidity of surface-protected concrete façade elements
(except S1) is lower compared to the inner relative humidity of
the reference panel. However, a strong association is observed
among the relative humidity values measured from the concrete
façade S5 and S6. In the case of temperature, all the surface-
protected concrete façades inner temperature seems to have a sim-
ilar trend with temperature of the reference concrete panel and the
ambient as shown in Fig. 7.

In order to visualize the stability of the relative humidity across
the thickness of the panel, a contour plot is generated using
MATLAB. A contour plot is a graphic representation of the relation-

Fig. 4. Schematic representation of the installed probe.

Fig. 5. Workflow of the developed hygrothermal prediction model.
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ships among three variables in two dimensions. Two variables are
for x and y axes, and a third variable z is for contour levels. Axis x
represents the time and axis y represents the cross sectional depth
of the façade elements. Element z is a 2-by-2 matrix that contains
values of relative humidity at the surface and inside the concrete
façade elements (at a diagonal depth of 40 mm or a perpendicular
depth of about 30 mm from the surface). The x values correspond
to the column indices of z and the y values correspond to the
row indices of z. The contour levels are chosen automatically and
plotted as isolines. The area between the isolines is color-coded
to indicate the values interpolated. Fig. 8 is a contour plot which
illustrates the depth-time dependency of relative humidity of the
panels for the last 90 days. The choice of 90 days is for better visu-

alization. The outer surface of the panel is represented by the depth
value 0 mm. From the contour plot, it is also possible to estimate
the relative humidity at various depths across the thickness of
the façade elements. It can be observed that the relative humidity
in the concrete façade elements S1, S2, and S3 is mostly above 80%,
whereas in the façade elements S4, S5, and S6 it remains below
80%.

5.1.3. Data pre-processing
Data pre-processing includes data encoding, missing data pro-

cessing, data normalization, and data partitioning. They are com-
monly considered in all the models based on the machine

Fig. 6. Daily-averaged relative humidity values of the ambient shade air and inside concrete façade elements.

Fig. 7. Daily-averaged temperature values of the ambient shade air and inside concrete façade elements.
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learning. In the proposed hygrothermal modelling the following
data pre-processing tasks are performed.

5.1.3.1. Data normalization. Normalization of the inputs and the
target variables before processing them in the neural network is
a standard practice. It puts different variables on a common scale
and is very important especially where the inputs generally have
widely different scales. All the input and target variables are nor-
malized using the algorithm expressed in Eq. (4) [48]. In this
way, the normalized inputs and targets that are returned will all
fall in the interval [�1, 1].

y ¼ ðymax � yminÞ � ðx� xminÞ
ðxmax � xminÞ þ ymin; ð4Þ

where y is the normalized value of the variable; ymax is the maxi-
mum value of the normalization range, (+1); ymin is the minimum
value of the normalization range, (�1); x is the original inputs or
target variables; xmax is the maximum value for variable x ; and
xmin is the minimum value for variable x. If xmax ¼ xmin or if either
xmax or xmin are non-finite, then y ¼ x and no change occurs.

5.1.3.2. Missing data. Quality of input variables is one of the impor-
tant factors in enhancing prediction accuracy of any machine
learning models. Missing values are a recurrent problem in differ-
ent research areas that affect quality of data. The amount of miss-
ing data <1% is generally considered trivial, 1–5% manageable.
Nevertheless, 5–15% require advanced methods to handle, and
>15% may severely impact any kind of interpretation [49]. In our
case structure, in total about 6% of hygrothermal data are missed
for consecutive days at different patch of time from each surface-
protected façade members. For supplementing the missed values
of the time series within the range of known data it is important
to develop accurate prediction model [50,51]. In order to replace
the missing data as well as to eliminate the noise of the monitored
hygrothermal data in surface-protected façade elements, a moving
average filter method is applied. This technique smooths and sub-
stitutes the missing data with the average of the neighboring data
points defined within the span [52]. It is represented by the differ-
ence equation, Eq. (5).

xsðiÞ ¼ 1
2M þ 1

ðxðiþMÞ þ xðiþM � 1Þ þ � � � þ xði�MÞÞ; ð5Þ

where xsðiÞ is the smoothed value for the ith data point, M is the
number of neighboring data points on either side of xsðiÞ, and
2M þ 1 is the span.

5.1.3.3. Data partitioning. As seen in the work flow figure, the mon-
itored hygrothermal data is divided into three subsets: training,
validation, and testing. The training dataset is used for computing
the gradient and updating the network weights and biases. During
the training process, neural network requires a validation proce-
dure to halt the training when the generalization process stops
improving. The test dataset is used to measure the predictive per-
formance of the model.

5.2. Model training

In this section, the structure of the model for predicting the rel-
ative humidity and temperature of the façade element S4 is pre-
sented. One façade member is sufficient since the fundamental
technique of hygrothermal performance prediction is the same
for all members. So there is no special reason for choosing façade
element S4 for illustrating the model training.

NARX network is adopted to train the hygrothermal behavior of
the case structure using the monitored temperature and relative
humidity data of the ambient air and inside concrete façade ele-
ments. The model has one target (e.g. inner temperature/relative
humidity) and two inputs, one is an external input (e.g. ambient
shade air temperature/relative humidity), and the other is a feed-
back connection from the output of the model (e.g. predicted inner
temperature/relative humidity). Since all the conditions of the con-
crete panels are identical, other influential factors which govern
the inner hygrothermal performance, such as concrete composi-
tion, concrete depth, curing time and condition are not assigned
as input parameters to the model.

The NARX network codes were written in MATLAB to model and
simulate hygrothermal prediction model using two years of in-
service monitored data. The fundamental graphical representation
of the developed NARX network is identical with Fig. 2. A tapped-
delay-line memory of two units was assigned for both the input
and feedback. The network consists of ten hidden neurons and
one output neuron. The optimal number of neurons in the hidden
layer and a tapped-delay-line memory were determined based on
the generalization error after several trainings. The input and tar-

Fig. 8. Relative humidity inside concrete façade elements for the last 90 days.
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get values are randomly divided into three clusters: training, vali-
dation, and testing. The training dataset holds 75% of the dataset.
Training begins with the third data point since a tapped-delay-
line memory of two units is assigned. The applied training algo-
rithm is the Levenberg-Marquardt [48]. This algorithm is an itera-
tive technique that locates the minimum of a multivariate function
that is expressed as the sum of squares of non-linear real-valued
functions and is the fastest method for training [53–55]. The type
of the activation functions selected for the hidden layers is a hyper-
bolic tangent transfer function as this is a common approach [48].
The hyperbolic tangent transfer function generates outputs
between �1 and 1 since the input of the neuron net goes from neg-
ative to positive infinity. Linear transfer function is applied as acti-
vation function in the output layer because a non-linear activation
function may distort the predicted output. It calculates the output
of the neurons by simply returning the value passed to it. The input
layer has not an activation function as its role is to transfer the
inputs to the hidden layer.

5.3. Model validation and testing

The validation and testing dataset represent 15% and 10%,
respectively. Validation dataset is used to measure the network
generalization, and to halt training when the generalization stops
improving. Test dataset are used to measure network performance
during and after training. The mean square error (MSE), the root
mean square error (RMSE), and the mean absolute error (MAE)
are used to measure the performance of the model statistically.
All these indicators measure the spread between the monitored
and the predicted output from the network.

MSE is the mean of the squared difference between the target
and its predicted value. It is the most widely employed loss func-
tion and described in Eq. (6).

MSE ¼ 1
n

Xn

i¼1

ðYi � Ŷ iÞ
2
; ð6Þ

RMSE is simply the square root of the MSE, Eq. (7) and mea-
sured in the same units as the data. Sometime the RMSE is prefer-
able to the MSE because understanding error values of the MSE is
difficult due to a squaring effect, particularly, if the target value
represents quantities in units of measurements.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðYi � Ŷ iÞ
2

vuut ð7Þ

MAE, also called the absolute loss, is an average of the absolute
residuals/errors (the difference between the predicted and the
actual value). It is mathematically expressed by Eq. (8). MAE
retains original units as also RMSE.

MAE ¼ 1
N

XN
i¼1

jYi � Ŷ ij ð8Þ

where Ŷ i is the predicted output value, Yi is the measured target
value, and N is the number of observations.

6. Performance evaluation of the hygrothermal model

Hygrothermal prediction for concrete façade members were
conducted using the neural network model developed in Section 5.
The training, validation and testing performance of the proposed
model is presented in this section. A successfully trained network
is characterized by its ability to predict the hygrothermal behavior
inside concrete façade members for the data on which it was
trained. The training performance of the developed hygrothermal
model for predicting temperature and relative humidity is shown
in Fig. 9. As it is clearly seen, the correlation coefficients (R-
values) for relative humidity and temperature predictions are close
to 1. The high correlation coefficient indicates that the developed
model track the actual measured relative humidity and tempera-
ture well during the training phases.

The validity of any effectively trained machine learning based
model is determined by its ability to generalize its predictions
beyond the training data and to perform well when it is presented
with unseen data from within the range of the input parameters
used in the training. The validity of the developed model was
tested using the dataset which covers the measurements of the last
90 days (11 July 2000 to 8 October 2000). The model was trained in
this environmental conditions (from within the range of the input
parameters used in the training) only once, i.e., from July to Octo-
ber 1999. The prediction performance of the developed hygrother-
mal model for the last 90 days was analyzed statistically. The MSE
of relative humidity and temperature were 7.8890 and 2.4421,
respectively. The MAE of relative humidity and temperature were
4.0426 and 0.8876, respectively. The test result confirms that the
model predicts the hygrothermal performance inside the concrete
with a reasonably low error despite the limitation of the represen-
tative data from the specific testing period in the training dataset.
The errors, MSE and MAE, of temperature are smaller than relative
humidity. This is because there is a strong correlation between the

Fig. 9. Regression plot for predicted vs. measured relative humidity and temperature for training dataset in concrete façade element S4.
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inner and the ambient temperature. In addition, the ambient tem-
perature does not fluctuate widely unlike the ambient relative
humidity. When the model is trained with large dataset the error
will definitely be reduced. The measured and predicted relative
humidity and temperature in concrete façade element S4 is shown
in Fig. 10.

The residuals, the differences between the measured and pre-
dicted relative humidity and temperature values, are computed
using the test dataset. The median values of the residuals with
their median, maximum, minimum, and outlier values for concrete
façade member S4 are presented in Fig. 11 as a boxplot. The plot
represents residuals of a random single run. The median is shown
as a red line within the box. The blue box covers the middle 50%
(25th to 75th percentiles) of the residuals. The whiskers go down
to the minimum and up to the maximum values. Residuals greater
than 1.5 box lengths above the whiskers are outliers and shown as
red plus sign. The residual median for temperature is about in the
middle of the box and distributed around zero. This shows that the
residuals have a constant variance patterns and they are normally
distributed. The residual median for relative humidity is closer to
zero and nearer to the third quartile than to the first quartile, indi-
cating that the residuals distributions are slightly skewed to the
left. A single outlier is observed in residuals box blot of tempera-
ture. Generally, the boxplot of the residuals of a single run test
demonstrates that the developed hygrothermal model learns from
the nonlinear relation of the input variables and is able to capture
the complex nature of the hygrothermal interaction with a good
accuracy.

The accuracy of the developed hygrothermal model is measured
using the statistical measures which are discussed in Section 5 and
the average of ten test results are listed in Table 2. Though the
principles of the model development are the same, the model is
optimized for each façade member to achieve a better performance
since surface-protection materials and methods are different for
every member. The lower the value of the error statistics (MSE,
RMSE, and MAE) is, the better the prediction accuracy of the model.
The small MSE values of the predicted relative humidity and tem-
perature confirm that the model has high ability to generalize. MSE
of the temperature is smaller than MSE value of the relative

humidity. They are also nearly equal for all façade members. The
MAE errors of the temperature are small compared to their corre-
sponding values of the relative humidity. Generally, from the error
metrics presented in Table 2, it can be observed that the error val-
ues are reasonably low. This proves the suitability of the proposed
model for evaluating the hygrothermal status in the surface-
protected façade members of the case structure.

7. Deterioration risk and coating performance analysis

In this section, the necessity of hygrothermal monitoring and
modelling of surface-protected concrete façade members from
controlling of corrosion rate, frost and chemical attacks perspec-
tives is discussed. Performance of surface protection systems
against moisture and thermal is also presented by analysing the
monitored hygrothermal data.

7.1. Corrosion rate

In practice, corrosion rate is often estimated by taking instanta-
neous electrochemical measurements. The value of corrosion cur-
rent is determined from the Tafel plots of polarization curves
which are used to calculate the corrosion rate and the state of cor-
rosion. Table 3 presents the four groups of the state of corrosion
which are classified based on values of corrosion current or corro-
sion rate.

Carbonation-induced corrosion of rebar is the most common
degradation mechanism of concrete façades in Finland [10,12].
The carbonation process breaks the passive protection layer of
rebar and thus causing the initiation of corrosion. Once initiated,
the deterioration of rebar depends on the corrosion rate. Though,
corrosion rate is influenced by several factors, in carbonated con-
crete, it is greatly governed by moisture-relative terms [4,13,18].
Corrosion rate is much lower when the relative humidity inside
the concrete is less than 75%. It increases significantly when the
inner relative humidity increases at 95%. The inner temperature
has a significant impact on the corrosion rate [4,13–15]. The rate
of corrosion of rebar in concrete is computed using Eq. (9) [58–60].

r ¼ CTro; ð9Þ

Fig. 10. Measured and predicted hygrothermal performance in concrete façade element S4.
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where r is the rate of corrosion [lm/year], CT is the temperature
coefficient, and ro is the rate of corrosion at +20 �C [lm/year]. CT

and ro are time-variant variables which are dependent on the tem-
perature and relative humidity inside the concrete, respectively.
And, for carbonated concrete, they can be described by Eqs. (10)–
(12) [58,60].

CT ¼ 1:6 � 10�7ð30þ TÞ4; ð10Þ

ro ¼ 190 � ðRHÞ26; when RH 6 0:95; ð11Þ

ro ¼ 2000 � ð1� RHÞ2; when RH > 0:95; ð12Þ
where T is inner temperature in �C and RH is relative humidity.

The corrosion rate of rebar in the concrete façades is computed
using the above equations. The computation is done using the
monitored and the predicted hygrothermal data only for the last
one year of the monitoring period. The computed corrosion rate
values are translated to corrosion progress based on the classifica-
tion (passive, low, moderate, and high) presented in Table 3 and
shown in Fig. 12. The unknown value of the corrosion rate due to
the malfunction of the hygrothermal probes in the reference façade
element is left blank in the figure (white color). It can be observed
from Fig. 12 that the difference of corrosion progress evaluated
using the monitored data and data predicted by the hygrothermal
model is insignificant. In both cases, the state of corrosion for the
concrete façade elements S4, S5, and S6 is low and passive;
whereas for S1, S2, and S3 it ranges from passive to high. Among
all façade members, S1 and S2 offer poor protection against the
progress of rebar corrosion. Even though, both of the elements
were protected by the same coating materials from different man-
ufacturers, S1 provides the poorest protection. This indicates that,
not only the type of the coating materials but also the working
method as well as the source affect the performance of the protec-
tion against corrosion. In addition, it can be seen that the state of

corrosion is varying within a short period of time in S1 and S2. This
reveals that prediction of corrosion rate based on the conventional
instantaneous electrochemical measurement will under or overes-
timates the value. Therefore, implementation of a long-term
hygrothermal monitoring and modelling strategy is necessary. If
long-term monitoring strategy is applied, it is possible to track
the corrosion status reasonably well which in turn enable determi-
nation of the optimum intervention time improving the cost-
effectiveness of the maintenance and repairing measures.

7.2. Frost and chemical attacks

Earlier in this paper, it is presented that concrete surface protec-
tion systems act as a physical barrier to control the penetration of
moisture and thus slows down the corrosion rate. However, some
surface protection methods may cause unintended consequences
of damage. Hence, the effectiveness of the surface protections must
be evaluated by considering its effect on other deterioration mech-
anisms which are governed by the hygrothermal interactions such
as frost and chemical attacks.

Concrete may be severely damaged by frost action if the pore
system of the concrete is filled with moisture and has reached a
critical degree of saturation. In most cases, critical saturation cor-
responds to very high moisture contents and normally it requires
long time exposure to moisture flow [61]. Indeed, the mechanisms
leading to frost damage are not entirely clarified. However, it is
generally accepted that because of the surface tension in the small
capillaries pores, the water freezes at temperatures below 0 �C and
the amount of frozen water increases continuously as the temper-
ature decreases. It may increase in volume of approximately 9%
[13,17–19]. Hydrostatic pressure on the unfrozen water caused
by the volume increase of the ice which has already formed, osmo-
tic pressures as well as a redistribution of water in the pore system
may lead to high internal stresses which may seriously damage the
concrete, particularly as the number of freeze-thaw cycles
increases [16–18,62].

Chemical attacks on concrete manifest themselves into detri-
mental physical effects, such as increase in the porosity and per-
meability, decrease in the strength, cracking, and spalling.
Concrete deteriorations caused by chemical attacks are associated
primarily with chemical changes occurring within the hydrated
cement matrix. Two forms of chemical attacks, namely, sulfate
attack and alkali-aggregate reaction in their various forms are
the most widespread threat to concrete durability. Sulfate attack
results from the deleterious chemical reaction between soluble
sulfates and constituents of cement in the occurrence of moisture
[13,17–19,63]. Sulfates ions may present in concrete from gypsum
(calcium sulfate), often present as an additive in blended cements,
or from external environment. The chemical reaction products pro-
duced occupy a greater volume than the compounds they replace
and the cement paste may be destroyed; thus expansion and dis-
ruption of the concrete may result. Examples of sulfate attack
include formation of ettringite, delayed ettringite, and thaumasite
[63]. Alkali-aggregate reaction occurs in concrete when alkalis
from the cement, or from an external sources, react with certain

Fig. 11. Residuals boxplot of temperature and relative for concrete façade element
S4.

Table 2
Statistical performance measurement of the developed hygrothermal model.

Façade element MSE MAE RMSE

Relative humidity Temperature Relative humidity Temperature Relative humidity Temperature

S1 3.5074 2.8867 5.0236 0.7265 1.8728 1.6990
S2 4.3062 2.7960 4.4686 0.7756 2.0751 1.6721
S4 5.8039 2.8320 3.9995 0.8875 2.4091 1.6829
S5 4.0053 2.5812 4.1923 0.8125 2.0013 1.6066
S6 3.9371 2.5936 4.4386 0.6289 1.9842 1.6105
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aggregates in the presence of moisture to form products that are
deleterious to concrete [13,17–19]. The expansion, deterioration
and perhaps even failure of concrete structural elements resulting
from alkali-aggregate reaction in the concrete are due to swelling
pressures developing as a result of the reactivity within the fabric
of the concrete which are sufficient to produce and propagate
microfractures [64]. Different forms of alkali-aggregate reaction
have been occurred, such as: alkali-silica reaction, alkali-silicate
reaction and alkali-carbonate reaction.

Frost and chemical attacks will occur only when there is suffi-
cient moisture in the concrete pores. According to [16,65], concrete
members with a medium internal relative humidity of 65–85%
have an insignificant risk for deterioration by frost attack. This is
because the presence of air in capillary pores reduces the pressure
upon freezing as they act as expansion chambers. However, for
concrete with high internal relative humidity (85–95%) and a sat-
urated concrete (>98%), the damage risk related with frost attack
is medium and high, respectively. Similarly, the risk of the concrete
damage caused by chemical reactions with the presence of low or
medium amount of moisture in the concrete is insignificant.
Whereas, concrete with high moisture content (internal relative
humidity >98%) the risk of concrete damage is high [16,18,65].
Frost and chemical attacks sensitivity of the concrete façade ele-
ments for the last one year is analyzed and illustrated in Fig. 13.
The analysis is carried out using the data from the probes and
the predicted data by the hygrothermal model. The unknown dete-
rioration risk levels due to the failure of the hygrothermal probes
in the reference façade member is left blank and represented in
the figure by white color. It can be observed from Fig. 13 that the
frost and chemical attacks sensitivity difference using the data
from the model and probes is insignificant. The performance of
organic coatings is superior to the cementitious ones in protecting

the concrete against frost and chemical attacks while hindering the
corrosion rate as presented in the above subsection. The cementi-
tious coatings applied on façade elements S1 and S2 are not effec-
tive enough in protecting the concrete against frost and chemical
attacks. Cementitious coating material applied in S1 is less protect-
ing than the cementitious material applied in S2 concrete façade.
This confirms that the coating application methods and the source
of the product influence the performance of the surface treatment.

7.3. Performance of coatings

The performance of the applied surface protection systems in
controlling moisture and thermal transport to the concrete façade
members is analyzed. The monthly difference in values of relative
humidity (RHdiff = RHamb � RHinside) and temperature (Tdiff = Tamb -
� Tinside) between ambient air and inner part of the concrete façade
member for the last one year is illustrated as boxplots in Figs. 14
and 15, respectively. The green line represents the mean values
of RHdiff and Tdiff. It can be observed that there is a strong match
in the trends of RHdiff between organic coatings S4, S5, and S6 as
well as between cementitious coatings S1 and S2. As the box size
of the plots indicates, RHdiff from March to May 2000 is large for
almost for all concrete façade members. The mean of RHdiff of S1
and S2 is below zero with relatively high values throughout the
year. This confirms that the surface treatments applied on façade
elements S1 and S2 encapsulate the internal moisture; indicating
cementitious coatings are not effective enough in protecting the
concrete against moisture. Accordingly, the risk of concrete dam-
age will be high since it offers favorable conditions for several
major degradation mechanisms. However, this kind of coating
might have positive effect to lower risk of other deterioration
types. In several instances, the mean of RHdiff in S4, S5 and S6 is
above zero. This demonstrated that organic coatings offer an effec-
tive and reliable solution in controlling the moisture and thus min-
imizes deterioration risks associated with moisture. From Fig. 15, it
can be observed that the box size of S1 is small throughout the year
except March and April 2000. This revealed that the temperature
difference between ambient air and inside S1 falls within a small
range. The mean temperature curves of concrete façade members
S4, S5, and S6 which are treated by organic coatings have similar
trend. In all concrete façade elements the mean Tdiff is below zero

Table 3
Ranges of the corrosion rate [56,57].

Corrosion current [lA/cm2] Corrosion rate [lm/year] State of corrosion

<0.1 <1 Passive
0.1–0.5 1–5 Low
0.5–1.0 5–10 Moderate
>1.0 >10 High

Fig. 12. One year corrosion status in the concrete façade elements of the case structure (1999–2000).
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Fig. 13. One year frost and chemical attacks sensitivity of concrete façade elements (1999–2000).

Fig. 14. Boxplot of relative humidity difference between ambient air and inside façade members (1999–2000).
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throughout the year, except S1, and around zero from October to
January. This reveals that temperature inside concrete façade
member is higher than the ambient air. However, in many
instances, the mean temperature inside reference façade member
is greater than all surface protected members, indicating that the
coating systems limit the temperature gradient.

8. Discussions

Hygrothermal monitoring and modelling can be seen as inter-
twined actions. The monitoring system provides information about
the hygrothermal performance of surface-protected concrete panel
for a specific period of time. The hygrothermal prediction model
estimates the hygrothermal state of the panel using meteorological
ambient air temperature and relative humidity after learning the
interrelation using the monitored data. Hygrothermal data
obtained from monitoring system/model can be used to evaluate
the corrosion rate and other potential deterioration caused unin-
tentionally by the applied surface protection systems, such as frost
and chemical attacks. This allows for a more rational approach to a
realistic assessment of the structure and reasonably timed repair
measures, which in turn reduce the maintenance costs signifi-
cantly. As the amount of available data for learning increase, the
performance of neural network based model adaptively improve
to produce meaningful and reliable predictions. In addition, the
adopted advanced exploratory data analysis techniques would
allow identifying essential relations and patterns. Without system-
atic monitoring and modelling, it is not plausible to maintain sig-
nificant level of reliability regarding the performance of coatings,
corrosion rate and deterioration caused by frost and chemical
attacks in surface-protected concrete elements.

The developed hygrothermal prediction model will significantly
promote the management of various deteriorations controlled by

hygrothermal interactions in the case structure. Indeed, the model
can be used globally if necessary features are included. These fea-
tures may include concrete composition, geolocation, concrete
geometry, façade orientation, various surface protection materials,
and distance from aggressive environments. The features shall be
monitored in several case studies and the monitored data used
for training the model. The adopted advanced exploratory data
analysis techniques can also be used to analyze other types of
monitored data in research field of concrete. In the present work,
the developed model was tested using 90 days and the hygrother-
mal behavior was predicted with a reasonably low error. The
authors plan to test the model using a long-term data in order to
investigate whether the two years data is sufficient for capturing
the ageing effect of the surface protection materials until their
life-time.

9. Conclusions

In this work, hygrothermal prediction model was developed.
The model was carried out using NARX recurrent neural network
architecture. It used ambient relative humidity and ambient tem-
perature data as input. Relative humidity and temperature data
measured inside surface-protected concrete façade member at a
diagonal depth of 40 mm were assigned as target. The proposed
model was trained, validated, and tested using data of two years.
The test performance of the presented model demonstrated that
the model predicts the hygrothermal performance inside the con-
crete with a reasonably low error. The hygrothermal data obtained
from the model were used to compute the corrosion rate and to
foresee the deterioration risk levels caused by frost and chemical
attacks. In addition, with exploratory data analysis techniques,
the performance of the applied surface protection systems against
moisture and thermal was analyzed. The proposed model as well

Fig. 15. Boxplot of temperature difference between ambient air and inside façade members (1999–2000).
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as the adopted advanced exploratory data analysis techniques
allows for a more rational approach to a realistic assessment of
various deterioration mechanisms controlled by hygrothermal
interactions as well as the performance of the surface treatments.
It allows identifying appropriate surface protection system against
moisture, which in turn enables a considerable minimization in
maintenance and lifecycle costs.
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