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1 Introduction

During traumatic brain injury (TBI), movements of the head move back and
forth the brain against the bony interior wall of the skull (Gaetz, 2004). Dur-
ing this movement, areas of varying density in the brain slide over each other
at different speeds, and these movements can cause injuries. Bruising and
swelling of the brain tissue may be caused by a violent impact, generating a
contusion. However, in a low-speed movement, the arising damage may not
be visible to the naked eye. A massive shearing force causes axons to tear
and stretch from the cell body. This event takes the name of axonal shearing
or diffuse axonal injury. Although hours or days have passed since the initial
injury, brain damage may continue to occur over this period of time. When
the axon is damaged, the result is the breakdown of communication among
neurons in the brain. As the torn axons rapidly degenerate, the extracellu-
lar space fills with toxic levels of neurotransmitters, released by the axons
themselves. Consequently, many of the surrounding neurons begin to die in
the following 24 to 48 hours, making worse the initial effects of the injury
(Raghupathi, 2004).

Mild cases of the diffuse axonal injury may lead to symptoms such as:
e Brief loss of consciousness
e Impaired long-term memory
e Reduced problem-solving ability
e Lover social inhibition
e Attention/Perception problems

Several cases of diffuse axonal injury may result in coma and persistent veg-
etative state. Computed tomography (CT) or magnetic resonance imaging
(MRI) may reveal structural brain pathology. Mild traumatic brain injury
(mTBI) typically is not visible on CT and MRI, in fact test results usually
show a normal reading. Those imaging techniques may deficit in the sensitiv-
ity to detect brain dysfunction after a mild injury (Hartikainen et al., 2010).
Patients with mTBI are usually characterized by the presence of cognitive
disabilities. There is a specific interaction among brain regions and cognitive
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abilities. A previous study has reported some evidence that the persistent
symptoms after an mTBI are associated with executive function impairments
(Hartikainen et al., 2010). Different cognitive methods and tests are usually
adopted to check if there is any sign of deficits in the cognitive process (Fu-
jimoto et al., 2004). Also, the analysis of brain connectivity through the
properties of global networks, is an important step in the understanding of
brain functions. Seven global network properties were investigated in this
study. Each of these properties has a specific role in network connectivity:

Small-worldness is the normalized characteristic path length divided by
the normalized clustering coefficient. (Rubinov, Sporns, 2010);

Betweenness-centrality is the shortest section of paths that contain a
node (Rubinov, Sporns, 2010);

Degree is the number of edges that connect one node with the others
(Rubinov, Sporns, 2010);

Normalized clustering coefficient is the measure of the degree to which
nodes tend to cluster with neighbors (Rubinov, Sporns, 2010);

Normalized global efficiency is the measure of how efficient the network
exchanges information (Rubinov, Sporns, 2010);

Normalized characteristic path length is the average of the shortest
path length in the network (Rubinov, Sporns, 2010);

Strength is the measure of connectivity strength across all the nodes
(Rubinov, Sporns, 2010).



2 Review of the literature

TBI is a trauma induced by an external force that leads to the disruption
of brain functions. TBI can be caused by different mechanisms, such as car
accidents, falls, sports, and assaults.

The initial damage caused by an impact represents primary injury. During
the impact, the brain moves back and forth inside the skull, causing bruis-
ing, bleeding of vascular structures, and tearing of nerve fibers. It is not
always related to direct insult, but it can be also associated with structural
changes from the mechanical force applied during the injury. After a blow
to the head, a person may appear neurologically intact, but his or her con-
dition may rapidly decline within minutes. When the brain starts to swell,
it pushes against the skull leading to a reduction of oxygenated blood flow
(Styrke et al., 2007).

Secondary injury is any injury that can develop after the initial injury. The
causes of secondary brain injuries can be divided into intracranial and ex-
tracranial causes. Secondary injury comprises impairment of energy metabolism
that is a consequence of multiple mechanisms which can be intracranial or
extracranial. Intracranial causes include pathological pathways such as hy-
pertension, hematomas, edema, or mitochondrial failure (Merenda, Bullock,
2006). While extracranial causes include hypoxia, hypotension, and acidosis
(Kinoshita, 2016). Other mechanisms from both causes can be the increased
energy need due to systemic trauma responses (Lu et al., 2009), seizures, or
spreading depolarization. The condition is further convoluted by heteroge-
neous temporal evolution of brain injury and individual differences between
the patients. Secondary brain injury worsens what is already happened with
the primary injury, stimulating systemic inflammation, which leads to in-
creased permeability of the blood-brain barrier. This contributes to the
eventual white matter damage (Glushakova et al., 2014). This white matter
damage can be a degeneration of itself associated with delayed microvascular
damage and the prolonged inflammation response (Glushakova et al., 2014).
Moreover, atrophy of white matter traits can result after TBI (Bramlett,
Dietrich, 2002). TBIs are classified according to the severity of the injury
into mild, moderate, and severe, assessed based on the state of consciousness
(Styrke et al., 2007).



2.1 Types of traumatic brain injuries

These are different types of primary injuries.

Concussion could cause a brief loss of consciousness but usually
doesn’t lead to permanents problems.

Contusions are divided into coup injuries(the injured part is directly
under the area of impact) and contrecoup (the injured part is the op-
posite side of the impact).

Diffuse axonal injury occurs during the back and forth movement
of the brain inside the skull, causing nerve cells to stretch and shear at
the tissue level. In this way, the transmission of information is lost.

Traumatic subarachnoid hemorrhage (tSAH) is the bleeding into
the subarachnoid space, filled with cerebrospinal fluid(CSF), which acts
as a protection for the brain. tSAH causes brain damage due to toxic
degradation products of blood. which acts as a protection for the brain.

A hematoma occurs as a consequence of blood vessels ruptures. It
is a blood clot. Each hematoma differs from one another according
to the location of the clot: epidural hematoma, subdural hematoma,
intracerebral hematoma.

2.1.1 Definition of mild traumatic brain injury

According to the definition made by the mTBI Committee of the Head In-
jury Interdisciplinary Special Interest Group of the American Congress of
Rehabilitation Medicine (Holm et al., 2005), a patient with an mTBI has
had a physiological disruption of brain function, as manifested by at least
one of the following (Holm et al., 2005):

any period of loss of consciousness of no more than 30 minutes;

any loss of memory for events immediately before or after the accident
with post-traumatic amnesia (PTA) not greater than 24 hours;

any alteration in mental state such as disorientation, at the time of the
accident;

an initial Glasgow Coma Scale (GCS) of 13-15 after 30 minutes.



Glasgow Outcome Scale Extended

The Glasgow Outcome Scale (GOS) is the most used functional outcome
measure for traumatic brain injury (Wilson et al., 1998). The first version of
the Glasgow Outcome Scale was proposed in 1975, defining a five-point scale
of brain injury outcomes (Jennett, Bond, 1975):

1. death

2. persistent vegetative state
3. severe disability

4. moderate disability

5. good recovery

GOSE is an extended version containing eight categories instead of five(Wilson
et al., 1998) and it is considered to be more sensitive to changes than GOS
(Levin et al., 2001).

2.1.2 Symptoms

Patients with mTBI can have a functional disability, as a result of persistent
emotional, cognitive, behavioral, and physical symptoms. These symptoms
are categorized into the following (Holm et al., 2005):

1. physical symptoms of brain injury such as nausea, headache, sensory
loss or fatigue that cannot be related to other causes;

2. cognitive deficits that include attention, perception, memory or execu-
tive functions with no other possible causes;

3. behavioral changes just as irritability or alteration in emotional state.

2.2 Cognitive impairments after mild trau-
matic brain injury

All mental processes essential in thinking, remembering, learning and prob-
lem solving, are summed in the single word of cognition. TBI is associated
with cognitive deficits. Cognitive methods and tests are used to evaluate
these cognitive processes including various aspects of information processing
such as working memory, executive functions, attention, language, sensory



and motor functions. Cognitive problems are determined by a different num-
ber of variables (Rabinowitz, Levin, 2014) such as TBI severity and its com-
plications (Losoi et al., 2015). These problems are also dependent on other
pre-injury factors such as education, stress, neurological and psychological
disorders, resilience, and gender (Carroll et al., 2014). Moderate and severe
TBI is usually characterized by loss of consciousness for a short or long pe-
riod of time (Rabinowitz, Levin, 2014). Instead, mTBI may occur with or
without loss of consciousness but one-third of patients experience functional
impairment within 3 months (McMahon et al., 2014). Memory, attention,
executive functioning, and information processing are the most affected cog-
nitive domains in mTBI, which tend to resolve within 3 to 6 months after
injury (McMahon et al., 2014). Cognitive impairments interfere with every-
day life. Especially, the deficits of the executive system are very common
among patients with mTBI. The executive system region is the prefrontal
region of the frontal lobe with neuronal connections to the brainstem, sub-
cortical and cortical regions (McMahon et al., 2014). There are three main
areas of executive function (McCalla, 2013):

e working memory
e cognitive flexibility
e inhibitory control

The dorsolateral prefrontal cortex is an important area that combines
cognition and behavior in processing of information such as organization
skills, problem solving, and planning ability. The executive function impair-
ment is especially in this area (Lipton et al., 2009).

The anterior cingulate cortex is the connection to the emotional limbic
system and the cognitive prefrontal cortex, implicated in empathy, impulse
control, emotions, and decision-making (Lipton et al., 2009).

The orbitofrontal cortex is involved in impulse control, socially appropri-
ate behavior, sensory stimuli, and the ability to evaluate emotional experi-
ences (McCalla, 2013) (Figure2.1).

2.3 Cambridge Neuropsychological Test Au-
tomated Battery
The Cambridge Neuropsychological Test Automated Battery (CANTAB)

was developed at the University of Cambridge. It is composed of 25 tests,
which measure specific aspects of cognitive functions, which are correlated to



Dorsolateral-prefrontal cortex

Orbitofrontal cortex

Anterior cingulate cortex

Figure 2.1: Cognitive regions of the brain cortex. The processing of informa-
tion takes place in the dorsolateral prefrontal cortex; the emotional system
is guided by the anterior cingulate cortex; social behavior arises from the
orbitofrontal cortex.

neural networks. These tests are grouped according to four main cognitive
domains: psychomotor speed, attention, memory, and executive function.
Results in task performance are correlated with changes in brain structure.
The CANTAB tests can be often used to assess neuropsychological perfor-
mance on a high range of metabolic, neurodevelopmental (Luciana, Nelson,
2000), psychiatric (Levaux et al., 2007), neurodegenerative diseases (Foltynie
et al., 2004) and TBI (Maillard-Wermelinger et al., 2009), showing its sensi-
tivity in the detection of impairments in neuropsychological domains (Wild,
Musser, 2014). Attention and reaction time tests are the most analyzed func-
tions to detect disabilities in TBI (Whyte et al., 2006) (Niogi et al., 2008).

Rapid Visual Information Processing

Rapid Visual Information Processing is a measure of sustained attention.
Numbers from 2 to 9 appears in the center of a white box on the screen.
These numbers appear in a random order, at a rate of 100 numbers per
minute. Participants have to detect a sequence of numbers and press the
button in the center of the screen when they see that sequence as quickly as
possible. The test lasts for 7 minutes and the outcome " RVPA” measures the
speed of response, quality of response based on false alarms, and sensitivity.
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Simple Reaction Time

Simple Reaction Time is a measure of motor speed, alertness and, mental
response. Participants have to select the button as soon as they see a square
that appears at intervals on the screen. The test lasts for 6 minutes and the
outcome "SRT” measures the response speed, error of response, and correct
responses.

Frontal lobe dysfunction is considered susceptible to injury after TBI (Har-
tikainen et al., 2010).

2.4 Neuroimaging

2.4.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is considered to be a powerful research
and diagnostic tool in many areas of medicine because it can supply great
soft-tissue delineation for different regions of interest (Jacobs et al., 2007).
The production of an MR image requires the combination of a computer
that is the command and control center and specific equipment (the mag-
net, radiofrequency coils, and gradients) that generates and receives the MR
signal. A magnetic field is able to align hydrogen nuclei(protons) that are
contained in water molecules. The human body is made up of 60 % water
(Lewis, 2017). During an MRI experiment, water protons are excited using
a strong magnetic field (Mori, Barker, 1999). As the MRI scanner applies
the magnetic field, the proton spins are aligned. At the same time, a ra-
dio frequency (RF) current is produced that creates a changeable magnetic
field. The energy that comes out from the magnetic field, is absorbed by the
protons, which flip their spins. Consequently to the shutdown of the field,
the nuclei come back to their resting state as a result of various relaxation
processes (Lewis, 2017). Tissue can be described by two relaxation times
T1 and T2. T1 is the longitudinal relaxation time, which is a measure of
how quickly a proton returns to its ground state (Curry et al., 1990). T2 is
the transverse relaxation time, which is the measure of the proton dephas-
ing time (Allisy-Roberts, Williams, 2007). At this moment, an RF signal is
emitted and thanks to Fourier transformation, the signal is decomposed into
its frequency components (Huettel et al., 2004). According to the intensity
levels of each signal location, there will be different shades of gray in the
image. The variation of the RF pulse sequence creates distinct images. An
RF is characterized by the repetition time (TR) which is the amount of time
between pulse sequences and the time to echo that is the time between the
release of the pulse and its acquisition. The contrasts between body tissues
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are seen between T1 and T2-weighted images. In fact, it is easy to make this
differentiation in the image by looking at the CSF. The T1-weighted image
has dark CSF, while the T2-weighted image has bright CSF (Preston, 2006).
Numerous types of MRI techniques use the difference in MRI properties of
water in the tissues in order to get specific regions of interest (Mori, Barker,
1999). One of the most common types is diffusion-weighted imaging.

2.4.2 Diffusion-weighted imaging

Diffusion-weighted imaging (DWI) (Basser et al., 1994b) was used to ac-
quire data for this thesis because it is shown to be more sensitive in de-
tecting microstructural abnormalities after mTBI (Gui et al., 2008) (Wilde
et al., 2008). This diffusion technique is based on the water diffusion process,
called random Brownian motion of water molecules, inside a voxel of tissue
(Mori, Barker, 1999) (Hagmann et al., 2006). The diffusion constant of these
molecules can be measured relating signal intensity information to the diffu-
sion process (Mori, 2007). Gradient coils (electromagnetic coils) are applied
to modify the strength of the magnetic field, increasing or decreasing along
a specific direction, which could be parallel to the main field (z) or perpen-
dicular to the main field and also to each other (x,y). The signal intensity is
sensitive to diffusion by applying a pair of gradients to a T2-weighted spin-
echo sequence. As shown in Figure2.2, the gradients are applied in the same
direction, before and after the 180° refocusing phase(Mukherjee et al., 2008).
The diffusion-weighting factor (Figueiredo de et al., 2011) (Stejskal, Tanner,
1965), named b-value (given in units of s/mm?2), reflects different properties,
which are the gyromagnetic ratio (vy), diffusion weighting gradients strength
(G), the length of gradient pulse (0) and the duration (A):

b=~*G**(A —6/3)

By increasing G, 9, and A, the amount of signal loss can be controlled
(Malayeri et al., 2011).
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Figure 2.2: Spin-echo sequence. Factor b depends on G (diffusion weighting
gradients strength), § (the length of gradient pulse), and A (the duration).
RF is for the radiofrequency pulses; Gz is for gradient pulses. These gradients
are applied along the same direction, before and after the 180° refocusing
phase(Mukherjee et al., 2008).

Water molecules move due to the osmotic gradient. When they displace
in the tissue, they produce an attenuated signal during scanning. In the
existence of a microenvironment with abnormal cell membrane or with fewer
cells, water molecules are free to move (Basser et al., 1994b)(Malayeri et al.,
2011). Diffusion-weighted imaging is especially used in stroke diagnostics
(Wittsack et al., 2002). During a stroke, as water molecules move intracellu-
larly, it creates local swelling, which produces a bright signal on the image.
This bright image appearance is a consequence of the high signal intensity
in the area where the lesion is located (Hagmann et al., 2006). This means
that the diffusion of water molecules is directly proportional to the amount
of cells in the tissue (Basser et al., 1994a). Diffusion Tensor Imaging (DTT)
is developed from DWT and it is used to delineate white matter tracts in the
brain (Basser et al., 2000) (Vedantam et al., 2014).

2.4.3 Tractography

The diffusion process can be isotropic if water molecules diffuse along all
directions in the same amount or it can be anisotropic (for living tissue) if
water molecules follow preferential axes (modeled with an ellipsoid in 3-D).
This ellipsoid is defined by six parameters, three lengths () also called eigen-
values and three vectors (v) also called eigenvectors (Mukherjee et al., 2008)
(Basser, Pierpaoli, 2011). DTT is a DWI technique useful to measure the mag-
nitude and the direction of water diffusion. It is possible to calculate DTI
indices from the diffusivities through the three axes. Fractional anisotropy
(FA) and apparent diffusion coefficient (ADC) are two of the most impor-
tant indices (Basser et al., 1994a). FA represents the degree of anisotropy
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and ADC is equivalent to mean diffusivity (MD), which is the measure of
overall diffusivity in the tissue (Alves, 2018) (Vedantam et al., 2014). DTI
data allows 3-D visualization of the fiber tracts (Hagmann et al., 2006).
The structural network also called connectivity matrix, can be reconstructed
from structural connectivity by estimating the number of fibers among the
cortical regions (Tsai, 2018). Tractography is a computer-aided 3-D tract
reconstruction technique suitable to understand tract trajectories and their
connections through which information is transferred between brain regions.
(Mori, 2007). Tractography can vary according to the diffusion modality
used to take data and it depends also on the tracking algorithm used (Hag-
mann et al., 2006). Fiber bundles direction is deduced by measuring diffusion
along different directions. Tractography uses colors of red (left-right), green
(anterior-posterior) and blue (inferior-superior) to differentiate the preferred
direction of diffusion (Sotiropoulos et al., 2013). A line starts to propagate
from the center of the seed pixel based on its own orientation. Then, the
line exits the seed pixel and changes direction based on the second pixel,
creating a smooth curve. For each small step, a new fiber orientation is cal-
culated (Mori, 2007). The streamline is obtained by connecting up a set of
pixels that follow a specific direction. Sometimes it is problematic to fully
reflect the vector information because each point can have more than one
connection. Probabilistic tractography estimates the possible fiber orienta-
tions but also it estimates how each orientation is set along a fiber. All
these paths form a set which is the measure of the connection probability
(Sotiropoulos et al., 2013). Both Bonilha, L. et al. and S Khalsa, et al.
affirm that probabilistic technique is more valid for the connectivity calcu-
lation between cortical regions than deterministic approach (Bonilha et al.,
2015)(Khalsa et al., 2014)(Bastiani et al., 2012). In this thesis, networks
were reconstructed based on probabilistic streamlines tractography and con-
strained spherical deconvolution method, performed on DWI data and gray
matter parcellation (Fischl et al., 2004) was performed on T1-weighted MRI
data (Figure2.3).
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Figure 2.3: Networks reconstruction. Fiber orientation is given by different
colors, which help the whole brain visualization for each tract. In the big
brain picture to the right of the image, the red dots represent the nodes that
are connected by green lines which are the links of this connection. This
architecture represents the network connectivity design (Roine et al., 2019)

2.4.4 Structural brain networks

The brain is a complex network. Mapping its elements and connections is
essential in order to understand its function (Sporns, 2011). Anatomical con-
nectivity studies provide information about brain characteristics, which are
related to cognitive processes and cortical dynamics, but they also furnish
the mechanisms that arise if the structural basis of the brain is disrupted
(Yan et al., 2011). The entire network properties can be investigated by the
application of the model of graph theory-based network analysis (Tsai, 2018)
(Rubinov, Sporns, 2010). This model of a real system gives a map of how
elements are linked to each other (Sporns, 2011). This network connectivity
is also known as "small-world” (Yan et al., 2011). This complex system is
designed by nodes (vertices) and links (edges) between pairs of nodes. Nodes
usually denote brain regions and links denote both anatomical and functional
connections (Vecchio et al., 2017). Graph theory is a mathematical repre-
sentation of vertices that are linked through edges (Vecchio et al., 2017).
The networks are constructed by calculating the network metrics based on
weighted structural network (Gong et al., 2009). One network measure may
mark one or more aspects of global and local brain connectivity (Rubinov,
Sporns, 2010). Edges can be of four types and they are essential to describe
brain networks. These edges can be directed or indirect from the origin to
the destination but also, they can be binary or associated with a weight. A
connection matrix is the simplest representation of a graph in which nodes
are displayed as matrix rows and columns, while edges are displayed as binary
or weighted matrix portals (Gong et al., 2009). Neighbor nodes are the ones
linked by edges and their degree derived from the adjacent matrix (connec-
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tion matrix). Depending on the type of edges, the degree corresponds to the
number of edges connected to a node, or to the number of incoming/outgoing
edges. Degree distribution is formed by all nodes degree and it is very infor-
mative about the network architecture. In this way, it is possible to know
whether or not the node degree varies widely. The connection between nodes
can be direct, which means that there is a single edge or this connection
can be through sequences of intermediate nodes and edges, which take the
name of path. When a path links a node to itself, the path takes the name
of cycle. Nodes can be connected with a traversing sequence of edges from
other nodes. The length of the shortest path reflects the distance between
two nodes. In fact, shortest paths have more effect on the internode com-
munication (Sporns, 2010). Small-world networks combine high clustering
with short path length (Watts, Strogatz, 1998). The networks are composed
of local and global properties. Global properties include the ones across the
entire network, while local properties include the ones related to a specific
considered node (Liu et al., 2017). He and Hevans describe how the detection
and characterization of modules of the brain can facilitate the identification
of those groups with associated components that may be useful for specific
behavioral functions. Figure 2.4 shows the graph-theoretical approach in
which modules connections are dense inside themselves (He, Evans, 2010).
The research demonstrated how changes in brain networks characterize cog-
nitive impairments, after a TBI (Caeyenberghs et al., 2014)(Fagerholm et al.,
2015)(Van Der Horn et al., 2017).
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Figure 2.4: Graph theoretical modeling. (a) and (b) represent clustering co-
efficient of nodes. Nodes are the dots connected by lines which are the edges.
(c) Interestingly, each module has denser connections inside themselves than
between them (He, Evans, 2010).
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3 Aim of the Study

After an mTBI, many patients do not immediately notice psychological prob-
lems or impairments in their cognitive abilities. Their conventional brain
images are usually normal and do not give an explanation for their symp-
toms. Their cognitive problems often appear as diminished working ability
(Binder, 1997). This study investigates the associations of global brain net-
works properties with two CANTAB domains (Rapid Visual Processing At-
tention and Simple Reaction Time) on average eight months after an mTBI.
With combining network properties and CANTAB results, we aimed to de-
tect interaction among brain regions and cognitive abilities, which may be
related to mTBI. Structural brain connectivity networks may be important
in the process of mTBI diagnosis.
The work is based on the following hypothesis:

e We hypothesized that structural connectivity disruption following mTBI
represented by global network connectivity measures is associated with
neuropsychological findings.
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4 Materials and methods

4.1 Subjects

Eighty-five patients with mTBI were used in this study. One subject was ex-
cluded from the study because its CANTAB results were very different from
other patients and possibly erroneous, so finally, only eighty-four subjects
were considered. As gender and age may affect the white matter proper-
ties (Bartzokis et al., 2004)(Hsu et al., 2008), these data will be included
(Table4.1). All the mTBI subjects included in the study were diagnosed
clinically having an mTBI using the GCS in a range from 13 to 15. These
patients underwent a head MRI scanning at about eight months after the in-
jury. The CANTARB tests were performed on the same day as the time of the
MR scan. Patients were only divided into two groups of recovery according
to the GOSE outcome: patients with complete recovery having GOSE = 8
and patients with incomplete recovery with GOSE <8.

4.2 Data acquisition

All MRI images were acquired with a Siemens Magnetom Trio 3T scanner
(Siemens Healthcare, Erlangen). For DWI data, spin-echo echo-planar imag-
ing was used with a repetition time of 11.7 s, an echo time of 106 ms, a
field of view of 192 x 192mm, a voxel size of 2 x 2 x 2mm, and applying
a b-value of 1000s/mm? in 64 directions. Finally, magnetization-prepared
rapid acquisition with gradient echo was used to collect T1-weighted images
(Brant-Zawadzki et al., 1992), using an echo time of 2.98 ms, a flip angle of
9 degrees, and a voxel size of 1 x 1 x 1mm.

4.3 Image processing

Data preprocessing was done with FSL that is the Functional Magnetic
Resonance Imaging of the Brain Software Library (Jenkinson et al., 2012).
The raw data were denoised and after that, they were corrected for bias
field, eddy current distortions, and subject motion. Distortion reduction for
echo planar imaging was done with a nonlinear registration to T1-weighted
data (Gallichan et al., 2010). Constrained spherical deconvolution (CSD)
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Table 4.1: Demographic Data Table

Complete Incomplete
Overall recovery recovery p-value

Variable n =284, n=31 n=>52 n=_84
Age (years)
Mean (SD) 46.6 (20.0) 43.1(21.2) 48.3(19.1) 0.256°
Gender (male/female) 58/26 24/7 33/19 0.189b

Male [N(%)] 69(%) 42.1(%) 57.9(%)

Female [N(%)] 31(%) 26.9(%) 73.1(%)

Glasgow Outcome Scale

Extended
8 [N(%)] 31(%)
Missing 1

2 Univariate t-test
b Chi-square test

method (Tournier et al., 2004) was used to calculate fiber orientation distri-
butions and probabilistic streamline tractography was performed in MRtrix3
(Tournier et al., 2007) (Tournier et al., 2012). Parcellation of the cerebral cor-
tex was executed using FreeSurfer (Fischl, 2012) with the Desikan-Killiany
atlas (Desikan et al., 2006). Finally, 84 gray matter areas resulted in the
structural brain connectivity network.

4.4 Graph theoretical analysis

Graph theoretical analysis was used to investigate structural brain connectiv-
ity networks by using Brain Connectivity Toolbox (Rubinov, Sporns, 2010)
and customized Matlab scripts. The Brain Connectivity Toolbox! is widely
used by many brain-imaging researchers. Seven global network properties
(Small-worldness; Betweenness centrality; Degree; Normalized clustering co-
efficient; Normalized global efficiency; Normalized characteristic path length;
Strength) and three local network properties (Betweenness centrality; Local
efficiency; Strength) were investigated by comparing them to 100 randomized
networks with an equal degree, weight and strength distribution (Rubinov,

lhttps://sites.google.com/site/bctnet/Home
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Sporns, 2010).

4.5 Cambridge Neuropsychological Test Au-
tomated Battery

Neuropsychological performance was assessed using the computerized neu-
ropsychological test automated battery CANTAB. According to the fact that
for this study global properties are analyzed, two out of the twenty-one tests
performed seemed to be better suited to the side of global cognitive func-
tioning. Relevant domains for this thesis involve attention and executive
functions, including the two tests: ”Rapid Visual Information Processing”
and ”Simple Reaction Time”?. These two tests evaluate those cognitive func-
tions most related to the global aspect of the brain.

2CANTAB

21



4.6 Statistical analysis

SPSS (IBM SPSS statistic, version 26.0) was used for analysis. Normality
test (Shapiro-Wilk Test) was performed for each variable to check if the sam-
ple distribution was normal. Data was considered consistent with normality
if p-value >0.05. Since four of the global metrics follow a normal distribution,
while three deviate from it, two correlation approaches were used. Global
network properties were correlated with the outcome GOSE. For normal vari-
ables (Betweenness centrality, Degree, Normalized clustering coefficient, and
Strength), a parametric partial correlation was performed, instead, a non-
parametric Spearman partial correlation was performed for non-normal data
(nefficiency, nlambda, and SW). RVPA and SRT were correlated with all the
seven global properties using a Spearman partial correlation. In order to cor-
rect the results for multiple comparisons, Bonferroni’s correction method was
used and the p-value <0.007 was considered significant (Nichols, Hayasaka,
2003). A multivariate t-test for RVPA and SRT was performed to asses if
there were any significant differences among complete and incomplete recov-
ery patients. Age and gender were considered as covariates for all statistical
analyses.
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5 Results

The study sample consisted of 84 subjects (age 47 & 20 years) and they were
assessed for the outcome at about eight months post-injury (Table4.1). A
total of 77.4% were male with complete recovery and 22.6% were female with
complete recovery. In total, 31% of subjects had a GOSE = 8. No significant
correlation was found between global network properties and either RVPA
and SRT tests.

Dividing patients into recovery groups (complete/incomplete), SRT and RVPA
were also tested for correlation. This test was performed to see if any corre-
lations could be observed between the global metrics and the tests, dividing
patients based on their outcome. Also, in this case, the results were no sig-
nificant. On that account, contrary to hypotheses, no associations between
global properties and cognitive tests were observed. The results of the cor-
relation analyses were shown in figures 5.1 and 5.2.
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Figure 5.1: Correlation of global networks and rapid visual processing atten-
tion. The regression line shows the direction of the correlation between vari-
ables. The subjects are spread all over the plot, resulting in a non-correlated
interaction.
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Figure 5.2: Correlation of global networks and simple reaction time. All the
subjects are concentrated in the first part of the plot with a lower reaction
time. The plots do not show any correlation.
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RVPA and SRT were compared between the recovery groups to see if there
is any difference in RVPA or SRT between groups with complete/incomplete
recovery. As shown in figure 5.3, no significant difference between the com-
plete recovery group (blue) and the incomplete recovery group (orange) was
evident. There is no variability between the mean of all of the groups. No
significant differences were found in mean scores between the two groups
(RVPA with p = 0.877; SRT with p = 0.721).
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Figure 5.3: Boxplots of Cambridge Neuropsychological Test Automated Bat-
tery tests in patients with complete or incomplete recovery

In the same way, as can be seen from figure 5.4, there are not any dif-
ferences in global network properties between patients with complete and
incomplete recovery. Subjects are equally distributed in both cases of recov-
ery.
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The possible relationship between global network properties and the pa-
tient outcome GOSE was examined.
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Figure 5.5: Degree and Strenght correlations with Outcome (GOSE)

The results of the correlation analysis are shown in figure 5.5.
From parametric partial correlation, Degree and Strength were positively
correlated with the outcome (p= 0.0068, r= 0.229 ; p= 0.001, r= 0.356).
Regarding strength scatter plot, it seemed that the correlation line is hor-
izontal, which usually means that there is no correlation. But having a
correlation coefficient of 0.356, it is a weak correlation.
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6 Discussion

The purpose of this study was to investigate the association of global brain
network properties with two different CANTAB domains on average eight
months at their chronic stage, after mTBI. After mTBI, patients deal with
cognitive problems which often appear as diminished working ability.

The usage of a neuropsychological test is a common element in the TBI eval-
uation (Girard et al., 1996), such as in the detection of cognitive impairment
after a TBI in athletes (Echemendia et al., 2001). In fact, a decrease in at-
tention, memory, and other functional performances was found by neuropsy-
chological test, which provides the quantification of brain function in injured
athletes (Tysvaer, Lochen, 1991)(Chen et al., 2004 ) (Echemendia et al., 2001).
Furthermore, neuropsychological tests are criticized, because they are not
considered perfectly suitable for the prediction of cognitive disability (Sherer
et al., 2002). This is because the neuropsychological assessment does not
test the ability needed in the real world functioning (Sbordone, Long, 1996)
(Hart, Hayden, 1986). We hypothesized that by combining global network
properties and two CANTAB domains, it could be possible to identify some
interactions among brain regions and cognitive abilities, which characterize
mTBI.

Contrary to expectations, this study did not find any association between
global network properties and neurophysiological tests. These findings are
in contrast to other previous studies, where global network properties were
significantly correlated with executive function performance (Caeyenberghs
et al., 2014) (Sharp et al., 2014).

Some studies report that neuropsychological tests may be invalid after a
TBI (Moore, Donders, 2004) (Donders, Boonstra, 2007). Sometimes, some
factors such as patients with pre-injury history of psychiatric problems may
contribute to invalid tests (Mooney et al., 2005) In this study, executive func-
tions could be probably the most affected cognitive function if we considered
a p-value<0.05. However, having adjusted for FWE-correction (p<0.007),
there are no significant values that explain it through global properties and
CANTAB tests.

Van der Horn, et al. conducted a study on brain networks in mTBI in
2017. They were looking for an interaction between functional networks,
complaints, depression, and anxiety. All network measures showed the same
values for both healthy controls and mTBI patients, suggesting that there is
a week influence of mTBI on network functions (Horn van der et al., 2017).
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From our analysis, there are also no differences in the mean of global network
properties between patients with complete and incomplete recovery.

Even though no clear associations with neuropsychological tests were found,
we could say that two global network properties Degree and Strength are
significantly correlated with patients outcomes. Degree is one of the most
important properties in a brain network as it is the number of edges that
connect one node with the others. This means that higher is the degree,
higher will be the number of connection in the network. Strength is the mea-
sure of connectivity strength across all the nodes (Liu et al., 2017). Both of
them are important properties of a network because they are related to the
connection between nodes, which could characterize the connectivity.

The correlation line of the plots 5.5 showed a not perfectly horizontal line,
which is a moderate correlation. These plots suggest that as the two global
properties values increase, so does the patient recovery, approaching com-
plete recovery. It can be concluded that, when patients have a trauma, the
global network properties decrease. From our results, this correlation could
demonstrate that structural brain networks are affected by the trauma. In
fact, they are directly proportional to each other. As the properties increase,
the patient’s condition is better and near to complete recovery. This finding
is supported by some evidence of research, which demonstrates a decrease in
structural connectivity in the white matter networks in TBI patients, sug-
gesting how structural connectivity changes after TBI (Caeyenberghs et al.,
2012). Several studies adopted the structural connectivity analysis to exam-
ine abnormal structural connectivity features in TBI or to reveal if there is
any relationship between network connectivity measures and neuropsycho-
logical outcomes (Yuan et al., 2017) (Kasahara et al., 2010). A prior study
discovered that in subjects with persistent symptoms after mTBI, changes
in structural connectivity are linked to these symptoms (Yuan et al., 2015).
Detection of network abnormalities can be helpful to predict cognitive im-
pairments after TBI (Sharp et al., 2014), such as the observation of reduced
connectivity within the motor network (Kasahara et al., 2010). Further-
more, it usually takes over 1 year after trauma to have improvements in

cognitive performance especially in executive function and working memory
(Dall’Acqua et al., 2017).

Limitations of the study

The main limitation of this study was that we do not have baseline CANTAB
results on the patients and we are therefore unable to completely state that
the CANTAB results are affected by TBI. Based on previous studies, the
CANTAB tests were considered effective in finding differences in functional
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level between healthy individuals and individuals with mild cognitive im-
pairment (Saunders, Summers, 2010) (Egerhézi et al., 2007). Although it
is capable of measuring general cognition, Smith et al. (Smith et al., 2013)
affirmed that the CANTAB tests might not be capable of measuring spe-
cific cognitive functions. This finding was also validated by another research,
which confirmed that CANTAB tests were not able to discern one specific
cognitive function from another (Lenehan et al., 2016).

Limitations of the current study could also be caused by the small sample
size and by DWI acquisition.
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7 Conclusion

By investigating the possible relationship between global network properties
and neuropsychological tests, this thesis has shown different results from the
starting statement. The initial hypothesis that the global network properties
were related to neuropsychological findings has not been confirmed. Inter-
estingly, all global network properties do not show any important correlation
with the RVPA and SRT tests. In addition, other results arised from the
analysis. When the patient reaches the complete recovery, the global net-
work properties have high values. In conclusion, it could be hypothesized
that any decrease in global network properties is related to a decrease in
recovery after mTBI. The results of this study need to be validated in an
external cohort.
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