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Abstract 
 

Despite the ubiquity of knowledge attribution in human social cognition, its associated neural and 

cognitive mechanisms are poorly documented. A wealth of converging evidence in cognitive 

neuroscience has identified independent perspective-taking and inhibitory processes for belief 

attribution, but the extent to which these processes are shared by knowledge attribution isn’t presently 

understood. Here, we present the findings of an EEG study designed to directly address this 

shortcoming. These findings suggest that belief attribution is not a component process in knowledge 

attribution, contra a standard attitude taken by philosophers. Instead, observed differences in P3b 

amplitude indicate that knowledge attribution doesn’t recruit the strong self-perspective inhibition 

characteristic of belief attribution. However, both belief and knowledge attribution were observed to 

display a late slow wave widely associated with mental state attribution, indicating that knowledge 

also shares in more general processing of others’ mental states. These results provide a new 

perspective both on how we think about knowledge attribution, as well Theory of Mind processes 

generally. 

 

 

Keywords: Theory of Mind, Mentalizing, Perspective Taking, Self-Perspective Inhibition, 

Knowledge-First, Epistemology 

 

 

 

 

1. Introduction 
 

From as early as we begin to use mental state terms, knowledge attribution is a staple of human social 

cognition (see e.g. Shatz et al. 1983). Throughout the course of daily life, we frequently attribute 

knowledge to others, and experimental evidence indicates that we then base our own beliefs and 

actions on what we take others to know (e.g. Turri 2015; Turri 2017; Turri et al. 2017). The human 

significance of knowledge attribution is reflected in the substantial philosophical effort devoted to 

describing when we do and don’t attribute knowledge to others, the origins of which date back 

millennia to Plato’s Meno and Theaetetus (see Ichikawa and Steup 2018). Despite this, the 

mechanisms underlying knowledge attribution have attracted remarkably little attention and are not 

presently understood. In the past two decades, cognitive neuroscience has made significant progress 

in understanding the neural and cognitive processes underlying the human capacity to accurately 

evaluate and reason about the mental states of others, referred to collectively as “Theory of Mind” 

(ToM; for reviews, see Carrington & Bailey 2009; Mahy et al. 2014; Heleven & Van Overwalle 

2018). However, this research typically uses belief as its paradigm mental state, and knowledge 

attribution has gone systematically overlooked. The extent to which knowledge attribution relies on 

the same neural and cognitive mechanisms as belief attribution is presently unclear. It is the aim of 

the present study to address this shortcoming. 

 

1.1 Knowledge and Belief States 

 

At the conceptual level, this study will employ a broad characterization of knowledge and belief 

states, which derives from widely recognized characteristics of knowledge within epistemology (the 

philosophy of knowledge). Note that this characterization will understand knowledge in a strictly 

propositional sense (i.e. knowledge that something is the case). 

When we judge that someone is in a knowledge state, we attribute to them, roughly speaking, 

a representation of the state of reality that matches how reality actually is (that is to say, is true). This 
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reflects what is often referred to as the “factivity” of knowledge, and it is all-but universally 

considered to be a defining characteristic of knowledge states. As put by Turri, “One of the very few 

things that epistemologists of all stripes agree on is that knowledge requires truth” (2011, 141). We 

might contrast this requirement with attributions of belief states. When we say that someone is in a 

belief state, while we also attribute a state that in some sense represents reality, this is a state that may 

or may not match the state of reality (i.e. could be true or false). 

Crucially, however, when we judge that someone is in a knowledge state, we don’t just 

attribute to them a representation of the state of reality that matches reality—we attribute a 

representation that, in some sense, stably matches reality. While the precise nature of this stability is 

not widely agreed upon, the general idea proliferates epistemological thought, and might be illustrated 

by appeal to a few key examples: For Unger, this meant that “it is not at all accidental” that the state 

matches reality (1968, 158). Goldman expressed this stability in terms of knowledge not just matching 

reality in one’s actual situation, but also in “relevant counterfactual situations” (1976, 771). Pritchard, 

effectively merging these ideas, frames non-accidentally matching reality in terms of matching reality 

in relevant counterfactuals (2005). While the epistemology here is much more complex than 

indicated, the finer details aren’t especially relevant for the present study. The important point is 

simply that, when we attribute a knowledge state to someone, we attribute a state that doesn’t merely 

reflect reality. We attribute to them a state that displays some stability in its reflection of reality.   

While this characterization allows us to understand something about what we attribute when 

we attribute knowledge, it remains unclear how we attribute knowledge. In order to address this 

question, as with the what of knowledge, the present study will also seek to characterize the how in 

relation to the how of belief attribution. This approach will be facilitated by the large body of 

empirical research on the neurocognitive mechanisms of belief attribution, which will form the 

theoretical basis for this study. 

 

1.2 Neural and Cognitive Mechanisms of Belief Attribution 

 

Converging hemodynamic and neuropsychological evidence indicates that there are two distinct 

neurocognitive processes that follow perspective computation during belief attribution: (i) self-

perspective inhibition and (ii) other perspective taking.  

A number of lesion studies have indicated a double dissociation between perspective taking 

and self-perspective inhibition (Apperly et al. 2004; Samson et al. 2004, 2005, 2007). For example, 

a pair of studies from Samson et al. explored when patients with either left temporoparietal junction 

(TPJ) or frontal lesions could correctly infer an agent’s belief about an object’s location, both when 

patients could and couldn’t see the objects location (2004; 2005). While patients with damage to the 

TPJ were unable to accurately to attribute belief of an object’s location, this inability both extended 

to trials where patients lacked independent information about the object’s location and did not appear 

to be explained by any other deficits in inhibitory control (Samson et al. 2004). Conversely, a patient 

with right prefrontal and temporal damage displayed poor performance in tasks where the agent’s 

belief was inconsistent with the patient’s perspective information but was successful in attributing 

belief when independent perspective information was absent (Samson et al. 2005). On this basis, 

Samson et al. concluded that “the inhibition of one’s own point of view and the ability to infer 

someone else’s point of view rely on distinct neural and functional processes” (2005, 1102). 

These neuropsychological findings have been confirmed by a wealth of observations via 

functional imaging, which have identified distinct hemodynamic correlates for other perspective 

taking and self-perspective inhibition during belief attribution. A number of fMRI studies have linked 

the TPJ with perspective taking specifically during belief attribution (Schurz et al. 2013; Schuwerk 

et al. 2014; Schurz et al. 2015; Özdem et al. 2019; see also Heleven & Van Overwalle 2018). For 

example, a study by Schuwerk et al. used a two-phase design to isolate the process of perspective 

taking from antecedent belief computation (2013). In the first phase, participants watch a short video 
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story in which an agent formed either a true or false belief about an object’s location; in the second 

phase, participants were asked to report on either their own belief or the agent’s belief about the 

object’s location. While the TPJ was recruited for both the computation and the perspective-taking 

phases, only the TPJ showed increased activation during perspective taking. Conversely, multiple 

fMRI studies have also reported that the inferior frontal gyrus (IFG) plays a specialized role in self-

perspective inhibition during belief attribution (van Der Meer et al. 2011; Hartwright et al. 2012; 

Hartwright et al. 2015). The consistency of these neural correlates with the regions identified from 

the neuropsychological studies strengthens the hypothesis that perspective taking and self-perspective 

inhibition are distinct neurocognitive processes. 

Additional evidence from functional imaging and neuropsychology indicates that the 

inhibitory control recruited during mental state attribution is a unique neurocognitive process that 

dissociates from more generalized inhibition. Using a design in which participants made both mental 

(i.e. belief attribution) and non-mental judgements under conditions requiring either high or low 

inhibition of self-perspective information, an fMRI study by Hartwright et al. found that the 

ventrolateral prefrontal cortex (vlPFC) displayed greater activation between high-inhibition and low-

inhibition conditions, but only during belief attribution (2015). Moreover, a neuropsychological study 

from Samson et al. observed a double dissociation between self-perspective inhibition during desire 

attribution and non-mental inhibition: Patients with deficits in self-perspective inhibition didn’t 

necessarily display decreased inhibitory control regarding non-self-perspective information, and 

patients with general deficits in inhibitory control didn’t necessarily display deficits in self-

perspective inhibition (2015).  

Taken together, these findings constitute strong evidence that perspective taking and self-

perspective inhibition during belief attribution are two distinct neurocognitive processes, with distinct 

hemodynamic correlates. However, the extent to which knowledge attribution might share either or 

both of these processes is not presently clear. 

The electrophysiological correlates of belief attribution are not as well understood. A large 

number of EEG studies have observed late slow waves (LSWs) associated with mental state 

attribution, which characteristically begin at least 500 ms after stimulus onset, and can display both 

frontal and parietal scalp distributions (Sabbagh & Taylor 2000; Liu et al. 2004; Liu et al. 2009a/b; 

Zhang et al. 2009; McCleery et al. 2011; Meinhardt et al. 2011; Chen et al. 2012; Geangu et al. 2013). 

Earlier differences between ToM and non-ToM have been also observed for the frontal LSW 

(Sabbagh & Taylor 2000). However, when earlier differences have been observed parietally that are 

consistent with the P3 component (e.g. Sabbagh et al. 2004; Meinhardt et al. 2011), these have been 

previously characterized as differences in the P3 component, not the LSW. Accordingly, here LSWs 

will be individuated from other effects both by latency (> 500ms) and spatial distribution (frontal + 

parietal). 

Despite the large number of studies reporting LSWs in association with mental state 

attribution, it is not clear if this LSW component is correlated with self-perspective inhibition, 

perspective taking, or both. Zhang et al. have concluded that the LSW corresponds with false belief 

reasoning, maintaining that self-perspective inhibition occurs prior to LSW onset (2009). Conversely, 

McCleery et al. have concluded that the LSW is associated with inhibitory control during belief 

attribution (2011). However, both these conclusions rest on questionable bases. Zhang et al. base their 

conclusions largely on the differences in P3 amplitudes between reasoning about true and false 

beliefs, together with the fact that the P3 component has been proposed to reflect an inhibitory 

mechanism (2009). We might question the strength this conclusion given both the distinct 

neurocognitive status of self-perspective inhibition (discussed above) and evidence that the P3 

specifically involves inhibition of extraneous neural processing (see Polich 2011; discussed further 

in §1.4). Similarly, while McCleery et al. base their conclusion on the frontal distribution of the LSW, 

their own source reconstruction shows IFG activation only in “consistent” conditions, in which 

demand for self-perspective inhibition should be lower (2011). By exploring the neurophysiological 
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correlates of previously unexamined attributions, like knowledge, one of the aims of this study is to 

provide new evidence regarding whether the LSW component is associated with self-perspective 

inhibition and/or perspective taking.  

 

1.3 Modeling Knowledge Attribution 

 

In order to understand how self-perspective inhibition and perspective taking might play a role in 

knowledge attribution, we need some way of modeling how belief attribution relates to knowledge 

attribution. There is precedent for two preliminary approaches to modeling the cognitive stages of 

attributing knowledge to others: (i) a composite approach and (ii) a mental state approach. These 

approaches roughly track a key distinction between how philosophers and psychologists think about 

knowledge: Many philosophers of knowledge (i.e. “epistemologists”) don’t tend to count knowledge 

among paradigm mental states like belief and desire, whereas psychologists often do. 

On one approach often favored in epistemology, knowledge attribution is modeled as a 

complex judgement consisting of both belief attribution and additional judgements about non-mental 

states. At a minimum, these judgements about non-mental states will include a judgement about the 

state of reality: Is the belief true? Additionally, the non-mental component will also include 

judgements reflecting whatever separates true belief from knowledge. Let’s call this picture of 

knowledge attribution the “composite model” (CM). Importantly, on this model, belief attribution is 

conceptualized as a stage of knowledge attribution: In the course of attributing knowledge to another 

person, we first evaluate whether they are in the mental state of believing, and then make a series of 

non-mental judgements about the truth and provenance of that belief. In modeling belief attribution 

as a stage of knowledge attribution, we can understand that the CM entails that both self-perspective 

inhibition and perspective taking are components of knowledge attribution. The CM is the model of 

knowledge attribution suggested by the standard way philosophers think about the relationship 

between belief and knowledge. Many epistemologists do not think that knowledge is a mental state, 

and Nagel has even so far as to contend that “the current climate in philosophy is largely hostile to 

the idea that knowledge is a mental state” (2013, 274). Instead, they take knowledge to consist of a 

belief state taken in conjunction with additional non-mental conditions. The CM reflects this 

epistemological perspective by modeling belief attribution as a stage of knowledge attribution. 

Conversely, the standard view of psychologists is that knowledge is a mental state in its own 

right: In attributing knowledge to others, we use our ToM systems to directly evaluate whether they 

are in the mental state of knowing. Importantly, on this mental state approach, belief attribution is not 

conceptualized as a stage of knowledge attribution, but rather as an analogous process. This approach 

to knowledge attribution can be found in the tendency of empirical literature to often list knowledge 

alongside belief and desire as a paradigm mental state (see e.g. McCleery et al. 2011; Bradford et al. 

2015; Ferguson et al. 2017; Hyde et al. 2018). Additionally, two prominent philosophers have also 

argued that knowledge is a mental state (Williamson 2000; Nagel 2013). Despite this, however, 

philosophical support for the view that knowledge is a mental state remains limited (see Fricker 2009; 

Smith 2017). 

Following the mental state approach, there are at least two straightforward ways we might 

model knowledge attribution. The first we might call the “belief-like model” (BlM), on which the 

neurocognitive processes that guide belief attribution are shared by knowledge attribution. 

Importantly, on the BlM, both self-perspective inhibition and perspective taking are component 

processes of knowledge attribution. The BlM is the model implicit in the work of philosophers like 

Nagel (2010; 2013) and Gerken (2013), who have made broad theoretical claims about the cognitive 

architecture of knowledge attribution based primarily on empirical findings from belief attribution. 

In attempting to explain certain patterns of knowledge attribution, Nagel has even maintained that 

self-perspective inhibition is required for accurate knowledge attribution, primarily on the basis of 

the role such inhibitory control plays in the accuracy of belief attribution (2010). 
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Additionally, still taking the mental state approach, there is a second way we might model 

knowledge attribution. Knowledge attribution differs from belief attribution in the crucial respect that 

self-perspective information can be and usually is relevant in determining whether others have 

knowledge, even when that information is inconsistent with other-perspective information. Again, in 

the minimal case, this self-perspective information will involve the truth about the state of reality. 

Even (or perhaps especially) when the truth is not available from the other perspective, it is crucial 

that it is integrated into judgements about knowledge. On a speculative basis, one way this might be 

accomplished is by avoiding the same degree of self-perspective inhibition entailed by belief 

attribution. Instead, knowledge attribution might recruit less, or even no, self-perspective inhibition 

in order to avoid inhibiting epistemically relevant information. Let’s call this the “weakly inhibitory 

model” (wIM) of knowledge attribution. On this model, unlike the CM and BlM, knowledge 

attribution is characterized by weak-to-no self-perspective inhibition during perspective taking.   

 
 Table 1: Summary of key differences between the three preliminary models of knowledge attribution. Note that on all three, knowledge 

attribution is modeled as recruiting the perspective taking characteristic of attributing mental states to others. 

 

1.4 CM, BlM, and wIM: Behavioral and Electrophysiological Predictions 

 

The behavioral predictions of the CM diverge from those of the BlM and wIM in at least one crucial 

respect. On the CM, belief attribution is modeled as one stage of knowledge attribution. Thus, the 

CM predicts longer reaction times (RTs) for knowledge attribution than belief attribution for 

otherwise comparable ToM tasks. The BlM and wIM make no such predictions. Were we to observe 

equivalent RTs for belief and knowledge attribution, or shorter RTs for knowledge than belief, this 

would be inconsistent with the CM. Assuming that the composite and mental state approaches 

represent the only plausible means for modeling belief attribution, we might understand that this 

would then constitute evidence not only against the CM, but also in support of the mental state 

approach. Conversely, greater RTs for knowledge than belief would be consistent with the CM, BlM, 

and wIM. 

The different cognitive demands entailed by knowledge attribution on the composite, belief-

like, and weakly inhibitory models also correspond with diverging electrophysiological predictions, 

which might be tested via EEG. This study has been designed primarily to test those predictions 

associated with the amplitude of the P3 event-related potential (ERP) component. Roughly speaking, 

ERPs depict microvolt-scale changes in electrical potential related to some stimulus or task (i.e. 

“event”), which are generally measured at the scalp level. While these changes in potential can reveal 

millisecond-level changes in neural activity, the spatial resolution is not as precise. Moreover, as the 

signal-to-noise ratio for single-trial ERPs is quite low, they are usually averaged over tens or hundreds 

of trials in order to gain a usable signal. ERPs are especially useful for research into the brain and 

cognition, as they display a number of widely documented “components,” deflections in potential 

with a characteristic polarity, latency, and scalp distribution, which index processing in the brain. 

Thus, by comparing differences in an ERP component between conditions (i.e. the component’s 

amplitude or latency), we can infer differences in neural processing between conditions (for more, 

see Luck 2014). 

As already indicated, the ERP component of primary interest to the present study is the P3. 

Ubiquitous for tasks requiring stimulus discrimination, the P3 component has been hypothesized to 

 
Belief attribution stage? 

Strong self- 

perspective inhibition? 
Composite Model (CM) Yes Yes 
Belief-like Model (BlM) No Yes 

Weakly Inhibitory Model (wIM) No No 
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reflect a general inhibitory mechanism for “extraneous” neural activity during stimulus discrimination 

(Polich 2007, 2137). Note that while this inhibitory hypothesis isn’t integral to the present account, it 

does provide a helpful explanatory framework for understanding the P3 component. There are a 

number of cognitive factors known to modulate P3 amplitude which the inhibitory hypothesis 

explains (see Polich 2011 for more): One such factor is target stimulus probability. P3 amplitude is 

notably greater for less frequent target stimuli (Duncan‐Johnson & Donchin 1977), which we might 

understand as reflecting the fact that, as “low probability stimuli can be biologically important, it is 

adaptive to inhibit unrelated activity to promote processing efficiency” (Polich 2007, 2137).  

Another classical P3 finding comes from dual-task paradigms: When participants are required 

to complete a discrimination task and some additional task simultaneously, the P3 amplitude for the 

discrimination task decreases with increasingly demanding additional tasks (Isreal et al. 1980; 

Kramer et al. 1983). On the inhibitory P3 hypothesis, this correlation can be understood in the 

following way: High processing demands for the additional task limit the available neural resources 

for the inhibitory mechanism responsible for the P3, thus resulting in a reduced P3 amplitude (Polich 

2011). In addition to explicit dual-task studies, a similar P3 effect has been observed for other 

discrimination tasks that entail additional cognitive processes. The best example of this comes from 

n-back tasks, which, despite not strictly being “dual tasks,” strongly recruit working memory 

concurrently with stimulus discrimination. As demands on working memory increase (i.e. as n 

increases), P3 amplitudes for the stimulus matching component of the n-back decrease (Watter et al. 

2001; Covey et al. 2017; Pergher et al. 2019). As with explicit dual tasks, this can be understood as 

“reflecting a reallocation of attention and processing capacity away from the processes relative to 

which the P300 is generated” (Watter et al. 2001). This is the principle on which the 

electrophysiological predictions of this study are built: During stimulus discrimination, demand for 

neural resources from additional cognitive processes can reallocate resources away from the 

inhibitory mechanism that produces the P3, resulting in reduced P3 amplitudes.  

The operative difference between, on the one hand, the composite and belief-like models and, 

on the other hand, the weakly inhibitory model is the extent to which self-perspective inhibition is 

recruited during knowledge attribution: On the wIM, knowledge attribution is characterized by an 

absence of the strong self-perspective inhibition entailed by the BlM and CM. This means that, when 

discriminating between visual stimuli (e.g. cartoons) on the basis of the knowledge states depicted by 

the stimuli, the BlM entails higher additional processing demands than the wIM, making the P3 

component a plausible candidate for adjudicating between the BlM and wIM. Assuming that P3 

amplitudes will correlate primarily with additional processing demands, similarly, e.g., to n-back 

tasks, the predictions of the CM and BlM diverge from those of the wIM in the following way: On 

both the CM and BlM, strong self-perspective inhibition engages concurrently with perspective taking 

during knowledge attribution, either as a component process of belief attribution (CM) or in a 

knowledge attribution process that recapitulates the neurocognitive mechanisms of belief attribution 

(BlM). In this context, “strong” will be understood in a functional, albeit circular sense, on which 

“strong self-perspective inhibition” entails a sufficiently high demand for neural resources to, at least 

when recruited in conjunction with perspective taking, systematically interfere with resource 

allocation for the P3 mechanism. Therefore, both the CM and BlM predict a reduced P3 amplitude 

for knowledge attribution, comparable to that of belief attribution. Conversely, the wIM doesn’t entail 

any strong (self-perspective) inhibitory demands for knowledge attribution during perspective taking. 

On the weakly inhibitory model, if knowledge attribution recruits self-perspective inhibition at all, it 

does so to a significantly lesser degree than belief attribution, which wouldn’t to the same degree 

interfere with resource allocation to the P3 mechanism. Therefore, the wIM predicts a higher P3 

amplitude for knowledge attribution than for belief attribution. The behavioral and 

electrophysiological predictions of the CM, BlM, and wIM are summarized in table 1. 



 7 

Finally, it should be noted that the present experiment has been carefully designed so that 

differences in P3 amplitude might be reasonably assumed to primarily reflect additional processing 

demands during stimulus discrimination. Most importantly, this means ensuring (i) tasks are kept 

simple enough to preclude P3 differences associated with discrimination difficultly or uncertainty, 

and (ii) target stimuli frequencies are kept similar enough between conditions to avoid P3 differences 

associated with differences in target probability (see 

Polich 2011; Luck 2014, ch. 3). The veracity of this 

assumption is itself empirically verifiable, as there are a 

number of observations that would be inconsistent with 

it (see §4.2). It should also be noted that this experiment 

assumes that in the case of belief attribution, the 

resource demand from self-perspective inhibition can 

indeed be great enough to reduce the resources available 

for the P3. While we have good theoretical reason to suppose this may be the case, previous EEG 

studies investigating belief attribution (see above) have generally avoided the straightforward 

stimulus discrimination design most conducive to such an effect. However, were it the case that belief 

attribution simply cannot produce this P3 effect, it would be immediately clear from the results of 

this study. 

 

 

2. Methods 
 

2.1 Overview 

 

For each trial, participants viewed a simple illustration of a man (“Steve”) sitting at a table (see fig. 

1). For any given trial, there were between zero to three cylinders illustrated on the table. Sometimes 

Steve couldn’t see all the cylinders from his perspective, but the entire table was always visible from 

the participant’s perspective. The experiment followed a simple 1 factor (judgement type) design with 

4 levels: (i) judgement about non-mental state of reality; (ii) belief attribution; (iii) belief attribution 

+ judgement about non-mental state of reality; (iv) knowledge attribution. Identical stimuli were used 

for every condition. The tasks were divided into blocks, with verbal instructions provided at the start 

of each block.  

 

2.2 Participants 

 

Data from 32 participants were included in this study (8 male, 24 female; 4 left handed, 28 right 

handed). Mean participant age was 23.2 years (range: 19-32). Participants were all university students 

living in Turku, Finland. No compensation was offered for participation, but psychology students 

were entitled to received course credit. All participants self-reported that they had not previously been 

diagnosed with any neurological or psychiatric disorders. All participants provided full informed 

consent, in accordance with the Declaration of Helsinki. 

 The data of an additional 5 participants was excluded from this study, 2 due to a clear 

misunderstanding of at least one task (false-alarm rate > .75 each) and 3 due to poor recording quality. 

 

2.3 Design and Procedure 

 

Before starting the experiment, participants were verbally provided with a background story to 

accompany the stimuli. Concurrently, specific stimuli were shown to the participant in order to 

illustrate certain points of this background story. The story conveyed the following information: 

Steve’s job is to sit at the table and count the number of cylinders. Sometimes Steve will be able to 

 P3: K > B P3: K = B 

RT: K > B wIM CM or BlM 

RT: K ≤  B  wIM BlM 

Table 2: Summary of Model Predictions for Knowledge 

(K) and Belief (B) Attribution 
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see the entire table, but other times he can only see part of the table. Steve’s boss has told Steve that 

there will never be any cylinders that he cannot see. Therefore, however many cylinders Steve can 

see will be the number of cylinders Steve thinks are on the table. However, sometimes there will be 

a cylinder that Steve cannot see. In such cases, he’s wrong about the number of cylinders on the table. 

This means that Steve only actually knows the number of cylinders on the table when he can see the 

whole table. 

After this background story, participants were shown a series of test stimuli to gauge whether 

they could accurately judge (i) the number of cylinders on the table, (ii) how many cylinders Steve 

thought were on the table, and (iii) whether Steve knew how many cylinders were on the table. This 

procedure was repeated, with feedback from the administrator, until participants could accurately 

attribute both belief and knowledge for cases in which Steve could and couldn’t see the entire table. 

The aim of this pre-experimental procedure was to ensure participants shared a common sense in 

which they were to understand mental state terms, especially “knows,” for purpose of the experiment. 

Additionally, great care was taken to provide all instructions in mental terms (e.g. “when Steve can 

see the whole table”), not non-mental terms (i.e. “when there is no partition”), in order to minimize 

the risk of participants applying a non-ToM heuristic to complete the ToM tasks (see §4.3 for 

evidence of this procedure’s success). 

 The experiment utilized 25 different stimuli, each of which consisted of the same illustration 

of “Steve” sitting at a table. Stimuli differed in the number of cylinders on the table (0-3), the 

arrangement of those cylinders, and whether a partition blocked Steve’s view of the back half of the 

table (see fig. 1). Each stimulus was presented for a maximum duration of 4 seconds, with a one 

second interstimulus interval consisting of a white fixation cross presented between every stimulus. 

Participant responses were recorded via the spacebar of a computer keyboard. Participants were 

instructed to use only one hand for responding, were permitted to select their dominate hand, and 

were instructed to otherwise keep still while completing the tasks. When a response was registered, 

the current stimulus presentation ended immediately, starting the routine for the next stimulus. 

  

 

Figure 1: Six representative stimuli, with (below) and without (above) partition 
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The four experimental conditions of this study were defined by the task participants were 

instructed to complete. Each of these was a go/no go task that referred to two cylinders:  

 

(T) The “truth” task elicited a judgement about the non-mental state of reality. Participants 

were instructed to press spacebar when there were exactly two cylinders on the table.  

 

(B) The “belief” task elicited a belief attribution. Participants were instructed to press spacebar 

when Steve thought that there were exactly 2 cylinders on the table.  

 

(TB) The “true belief” task elicited a composite judgement consisting of both a belief 

attribution and a judgement about the non-mental state of reality. Participants were 

instructed to press spacebar when Steve thought that there were two cylinders on the 

table and there were indeed two cylinders on the table.  

 

(K) The “knowledge” task elicited a knowledge attribution. Participants were instructed to 

press spacebar when Steve actually knew that there were two cylinders on the table.  

 

The key functional difference between the TB and K conditions is that Steve can never have 

knowledge of the number of cylinders on the table when there is a partition on the table. This is 

because the partition brings with it the easy possibility that Steve’s representational states could fail 

to match reality, therefore precluding these states from displaying the stability in matching reality 

that characterizes knowledge states. Nonetheless, he might of course still have a true belief in the case 

that nothing is behind the partition. 

The experiment was divided into 12 blocks of 50 trials each. Stimulus order was randomized 

within each block. Every block used the same set of stimuli, which entailed varying target stimulus 

probabilities between conditions (P(T) = P(B) = .44;  P(TB) = .32; P(K) = .25). Each block consisted 

of only one task, and task instructions were confirmed verbally before the start of each block. 3 blocks 

were devoted to each task, so that participants completed a total of 150 trials for each task. Blocks 

for a given task were completed consecutively, so that that participants wouldn’t move on to a new 

task until all three blocks for their present task were complete. Block order was partially 

counterbalanced between participants by alternating between four block sequences (K-TB-B-T; T-B-

TB-K; B-T-K-TB; TB-K-T-B) 

Stimuli were presented using a VPixx Technologies VIEWPixx /EEG display, and stimulus 

presentation was managed via PsychoPy3 (Peirce et al. 2019). 

 

2.4 EEG Recording and Preprocessing 

 

EEG was recorded continuously using a Mega Electronics NeuroOne Tesla system (sampling rate: 

500Hz). Participants were fitted with 30 passive electrodes arranged in the Easycap M3 (10/20) 

layout. Two EOG electrodes (1cm below/beside the left eye) were used to record eye movements. All 

electrodes were brought below 5k and referenced to the nose during recording. 

 EEG data was preprocessed off-line using the MNE toolbox for Python (Gramfort et al. 2013). 

Each channel was re-referenced to the mean of all channels. Bad channels were identified manually 

and interpolated. Data was band-pass filtered from .1-40 Hz. Blink and saccade artifacts were 

identified via automated MNE functions and used in an independent component analysis (ICA) to 

help identify eye-movement components. The ICA decomposition was computed using an otherwise 

identical dataset filtered with a high-pass boundary of 1 Hz, and this decomposition was then applied 

to the primary (i.e. .1 Hz) dataset. The automated identification of eye-movement components in the 

ICA was verified manually to avoid over-removal of components, and the data was inspected visually 

before epoching. 
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ERP analysis was restricted to correct attributions/positive judgements (i.e. only the “go” 

trials): Stimulus-locked epochs were taken for every trial in which a participant registered a correct 

response, from 200 ms before stimulus onset to 800 ms after stimulus onset. Baseline correction to 

the 200 ms pre-stimulus interval was applied automatically during epoching. Epochs were visually 

inspected, and those displaying muscle artifacts were rejected manually (participant mean = 3, SD = 

4.8). 

 

2.5 Statistical Analysis 

 

Behavioral measures were analyzed using linear mixed-effects models. Analysis of reaction time data 

used task (T, B, TB, K) as the single fixed effect, with a random intercept for each subject. For error 

data, separate models were computed for miss rate (MR) and false-alarm rate (FAR). Both models 

used task as the single fixed effect with a random intercept for each subject. 

 Epoched EEG data was analyzed using one-factor repeated-measures ANOVAs of 

spatiotemporal data points (30 channels x 500 samples) of subject average ERPs, with the number of 

trials automatically equalized between conditions. The F-values for each data point were then 

transformed using threshold-free cluster enhancement (TFCE; E = .5, H = 2; Smith & Nichols 2009), 

and p-values for the TFCE-transformed values were obtained using a permutation test (N 

permutations = 10,000), taking the maximum statistic over all points to compensate for the multiple 

comparison problem. This analysis was conducted first over all four conditions (T, B, TB, and K; 

non-sphericity corrected using the Greenhouse-Geisser method) and then for each two-condition pair. 

Both the four-condition and pairwise analyses extended over the entire epoch (-200 to 800 ms). Effect 

sizes (Cohen’s d) for significant pairwise effects were calculated using differences between 

conditions at local maxima. All ERP analyses were performed using the MNE toolbox for Python 

(Gramfort et al. 2013). All statistical tests assume an alpha level of .05. 

 

 

3. Results 
 

3.1 Behavioral Results 

 

3.1.1 Reaction Time 

 

With K as the reference class, the model estimated an RT 

of 789 ms (t = 22.3; p < .001; 95% CI = [719, 860]). 

Significant differences were found between K and both T 

(beta = -86 ms; t = -12; p < .001; 95% CI = [-100, -72]) 

and TB (beta = +60 ms; t = 8; p < .001; 95% CI = [45, 

75]). There was no significant difference between K and 

B (beta = +.1 ms; t = .02; p = .98; 95% CI = [-14, 14]). 

Observed effect sizes (Cohen’s d) were .42 for T-K and 

.27 for K-TB. 

 

 

3.1.2 Errors 

 

Error rates were very low (mean MR < .001; mean FAR = .001) No significant differences were found 

between conditions for either miss rates or false-alarm rates.  

 

 

Figure 2:  Mean observed reaction times for each 

condition. Error bars are +/- 2 standard errors. 
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3.2 ERP Components 

 

 

3.2.1 All Conditions 

 

Observed differences between conditions (fig. 3) were indicative of four distinct clusters: (1) the P3b, 

(2) a posterior LSW, (3) a frontal LSW, and (4) a late, right-lateralized temporal effect. 

 

Cluster #1: Channel Pz displayed a local maximum (p = .002) at 430 ms, which was most 

compatible with an effect at around 300-500 ms with a central centroparietal distribution. This effect 

was characterized by a greater amplitude for the T and K conditions than the B and TB conditions, 

and was maximal at the Pz, Cz, CP1, and CP2 electrodes (fig. 4). The latency, shape, and distribution 

of cluster #1 are all indicative of the parietal P3 component, P3b, (Polich 2011), and its onset is too 

early to be characteristic of the posterior LSW. On this basis, as well as the ubiquity of the P3 

component for tasks requiring visual discrimination, we can reasonably understand cluster #1 to 

denote greater P3b amplitude for the T and K conditions than the B and TB conditions.   

 

Cluster #2: Channel Pz displayed a local maximum (p = .002) at 674 ms, which was most 

compatible with an effect at around 600-800 ms with a central occipitoparietal distribution. This effect 

was characterized by a greater amplitude for the B, TB, and K conditions than the T condition, and 

was maximal at the Pz, P3, and P4 electrodes (fig. 5). The shape, latency, and distribution of cluster 

Figure 4: Grand average ERPs for the four channels displaying the maximal P3b effect across all conditions (Pz, Cz, CP1, and 

CP2). The F-map depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (channel Pz, p = 

.002). 

Figure 3: Raster diagram depicting TFCE-transformed F-values observed over all conditions. Only the points for which the 

permutation test observed a significant difference (p < .05) are visible. 
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#2 are indicative of the posterior LSW widely associated with mental state attribution. Accordingly, 

we might characterize cluster #2 as denoting greater posterior LSW amplitude for the conditions 

involving mental state attribution (B, TB, K) than the condition not requiring mental state attribution 

(T).  

 

Cluster #3: Channel Fz displayed a local maximum (p = .003) at 668 ms, which was most 

compatible with an effect at around 600-800 ms with a partially right-lateralized frontocentral 

distribution. This effect defies simple characterization, but displayed increasingly negative potentials 

for, in order, the T, B, TB, and K conditions. This effect was maximal at the Fz, Fp1, Fp2, F3, F4, 

and FC2 electrodes (fig. 6). The latency, shape, and distribution of cluster #3 are all indicative of the 

frontal LSW widely associated with mental state attribution. 

 

Cluster #4: Channel TP8 displayed a local maximum (p = .003) at 616 ms, which was most 

compatible with an effect at around 500-800 ms with a right-lateralized temporoparietal 

Figure 5: Grand average ERPs for the four channels displaying the maximal posterior LSW effect across all conditions (Pz, P3, and 

P4). The F-map depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (channel Pz, p = .002). 

Figure 6: Grand average ERPs for the seven channels displaying the maximal frontal LSW effect across all conditions (Fz, Fp1, Fp2, 

F3, F4, and FC2). The F-map depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (channel 

Fz, p = .003). 

Figure 7: Grand average ERPs for the two channels displaying the maximal right temporoparietal effect across all conditions (TP8 

and T8) The F-map depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (channel TP8, p = 

.003). 
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distribution. This effect is roughly characterized by a more negative potential for the B and TB 

conditions vs. the T and K conditions, and was maximal at the TP8 and T8 electrodes (fig. 7). 

 

3.2.2 Pairwise Comparisons 

 

Pairwise comparisons identified significant local maxima for every two-condition pair, with the 

exception of B-TB. The clusters most consistent with these local maxima are described below. It is 

especially important to observe that because K and B RTs don’t significantly differ, these ERP 

differences are not confounded by RT differences. 

Between the K and T conditions, two significant clusters were identified. Cluster #1: K 

amplitude > T amplitude at approximately 500-800 ms; central occipitoparietal distribution maximal 

at Pz, P3, P4, O1, and O2; local maximum at 662 ms (channel P3, p = .025); large effect size (d = 

.89). The latency, distribution, and shape of cluster #1 indicate a greater posterior LSW for K than T. 

Cluster #2: K amplitude > T amplitude at approximately 500-800 ms; central prefrontal distribution 

maximal at Fp1 and Fp2; local maximum at 656 ms (channel Fp1, p = .024); large effect size (d = 

.81). The latency, distribution, and shape of cluster #2 indicate a stronger (i.e. more negative) frontal 

LSW for K than T. 

Between the K and B conditions, three significant clusters were identified. Cluster #1 (fig. 8):  

K amplitude > B amplitude at approximately 300-600 ms; central parietal distribution maximal at Pz; 

local maximum at 434 ms (channel Pz, p = .03); medium effect size (d = .66). The latency, 

distribution, and shape of cluster #1 indicate that it possibly reflects contributions from both the P3b 

and posterior LSW. As the latency of both the onset and local maximum are uncharacteristic of the 

posterior LSW, the best explanation for the earlier difference in cluster #1 is that it reflects a greater 

P3b amplitude for K than B. Cluster #2: K amplitude > B amplitude at approximately 500-800 ms; 

central frontal distribution maximal at Fz, F3, and F4; local maximum at 676 ms (channel F3; p = 

.02); large effect size (d = .80). The latency, distribution, and shape of cluster #2 indicate a stronger 

(more negative) frontal LSW for K than B. Cluster #3: B amplitude > K amplitude at approximately 

500-800 ms; right temporoparietal distribution maximal at T8 and TP8; local maximum at 680 ms 

(channel T8, p = .016); large effect size (d = .88). The latency, distribution, and shape of this cluster 

indicate a stronger negative potential for B than K in the right temporoparietal effect identified in all-

conditions cluster #4. 

Between the K and TB conditions, one significant cluster was identified: K amplitude > TB 

amplitude at approximately 300-600 ms; central parietal distribution maximal at Pz and CP1; local 

maximum at 444 ms (channel Pz, p = .04); large effect size (d = .81). The latency, distribution, and 

shape of this cluster indicate that it likely reflects contributions from both the P3b and LSW. As the 

latency of both the onset and local maximum are uncharacteristic of the LSW, the best explanation 

for the earlier difference is that it reflects a greater P3b amplitude for K than TB. 

Figure 8: Grand average ERPs for the channel displaying the maximal P3 effect for the K-B pairwise comparison (Pz) The F-map 

depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (p = .03). 
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Between the T and B conditions, three significant clusters were identified: Cluster #1: T 

amplitude > B amplitude at approximately 300-500 ms; central centroparietal distribution maximal 

at Pz, Cz, CP1, CP2, and P4; local maximum at 378 ms (channel Pz, p = .004); large effect size (d = 

.84). The latency, distribution, and shape of this cluster all indicate a greater P3b amplitude for T than 

B. Cluster #2: B amplitude > T amplitude at approximately 500-800 ms; central parietal distribution 

maximal at Pz, P3, and P4; local maximum at 666 ms (channel Pz, p = .01); large effect size (d = .90). 

The latency, distribution, and shape of cluster #2 all indicate a greater posterior LSW for B than T. 

Cluster #3: B amplitude > T amplitude at approximately 500-800 ms; right temporal distribution 

maximal at TP8, T8, and F8; local maximum at 614 ms (channel TP8; p = .017); medium-to-large 

effect size (d = .77). The latency, distribution, and shape of this cluster indicate a stronger negative 

potential for B than T in the right temporoparietal effect identified in all-conditions cluster #4. 

Between the T and TB conditions, two significant clusters we identified: Cluster #1: T 

amplitude > TB amplitude at approximately 300-500 ms; central centroparietal distribution maximal 

at Pz, Cz, CP1, and CP2; local maximum at 414 ms (channel Cz, p = .004); large effect size (d = .81). 

The latency, distribution, and shape of this cluster all indicate a greater P3b amplitude for T than TB. 

Cluster #2: TB amplitude > T amplitude at approximately 500-800 ms; central parietal distribution 

maximal at Pz, P3, and P4; local maximum at 680 ms (channel P4, p = .016); medium-to-large effect 

size (d = .75). The latency, distribution, and shape of cluster #2 all indicate a greater posterior LSW 

for TB than T. 

No significant differences were found between the B and TB conditions. 

These comparisons clarify the four significant differences between conditions identified in the 

all-condition ANOVA: (1) P3b amplitude for both T and K were greater than those for both B and 

TB, and no significant differences between T and K P3b amplitudes were identified. (2) The B, TB, 

and K conditions all demonstrated greater posterior LSW amplitude than the T condition. (3) The K 

condition displayed greater frontal LSW negativity than both the B and T conditions, which were the 

only significant differences observed for the effect. (4) The B condition displayed a more negative 

potential than both the K and T conditions in the right temporoparietal effect, which were the only 

significant differences observed for this effect. 

 

Figure 9: Grand average ERPs for the channels displaying the maximal P3 effect for the T-B pairwise comparison (Pz, Cz, CP1, CP2, 

and P4) The F-map depicts TFCE-transformed F-values, and the solid vertical line indicates the local maximum (p = .004). Note also 

the transition to the posterior LSW effect around 500 ms. 
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4. Discussion 

 

The primary aim of this study was to gain new insight into the neurocognitive mechanisms 

responsible for knowledge attribution, which had previously gone largely overlooked. We were 

especially interested in the question of whether knowledge is attributed (i) like a mental state, as is 

commonly assumed by psychologists, or (ii) a composite judgement partially constituted by belief 

attribution, as is commonly assumed by philosophers. The results of this study provide quite 

compelling behavioral and electrophysiological evidence in favor of the thesis that knowledge is 

attributed like a mental state. Moreover, these results further indicate that knowledge attribution, 

unlike belief attribution, does not recruit strong self-perspective inhibition during perspective taking. 

In addition to deepening our understanding of knowledge attribution, this study also sought to 

enhance our more general understanding of the electrophysiological correlates of Theory of Mind 

processes, especially the ubiquitous LSW components. As LSWs were observed during both 

knowledge and belief attribution, these results suggest that it is not correlated with self-perspective 

inhibition, likely reflecting some other ToM process, such as perspective taking.  

 

4.1 Reaction Times: Contra the Composite Model 

 

The reaction time data collected in this study constitutes clear evidence against the composite model 

of knowledge attribution. Per the CM, belief attribution is a stage of knowledge attribution. This then 

predicts that, for otherwise comparable tasks, knowledge attribution should require more processing 

time than belief attribution. The failure to observe any significant difference in RTs between the K 

and B conditions is inconsistent with this prediction. Additionally, the data from the TB condition 

confirms the assumption that additional processing stages of a composite judgement results in longer 

RTs than simple mental state judgements. In sum, this behavioral data strongly suggests that our 

cognitive systems attribute knowledge like a mental state, not a composite of belief attribution with 

other judgements about non-mental reality. These findings are consistent with observations from 

experimental philosophy indicating that knowledge attributions can occur in the absence of belief 

attribution (Myers‐Schulz & Schwitzgebel 2013; Murray et al. 2013). 

 local max p-vals latency channels effect size 

P3b Cluster Pz @ 430 ms .002 300-500 ms Pz, Cz, CP1, CP2 - 

K-B (+) Pz @ 434 ms .03 300-600 ms Pz .66 

K-TB (+) Pz @ 444 ms .04 300-600 ms Pz, CP1 .81 

T-B (+) Pz @ 378 ms .004 300-500 ms Pz, Cz, CP1, CP2, P4 .84 

T-TB (+) Cz @ 414 ms .004 300-500 ms Pz, Cz, CP1, CP2 .81 

Posterior LSW Pz @ 674 ms .002 600-800 ms Pz, P3, P4 - 

K-T (+) P3 @ 662 ms .025 500-800 ms Pz, P3, P4, O1, O2 .89 

B-T (+) Pz @ 666 ms .01 500-800 ms Pz, P3, P4 .90 

TB-T (+) P4 @ 680 ms .016 500-800 ms Pz, P3, P4 .75 

Frontal LSW Fz @ 668 ms .003 600-800 ms Fz, Fp1, Fp2, F3, F4, FC2 - 

K-T (-) Fp1 @ 656 ms .024 500-800 ms Fp1, Fp2 .81 

K-B (-) F3 @ 676 ms .02 500-800 ms Fz, F3, F4 .80 

Right TP Effect TP8 @ 616 ms .003 500-800 ms TP8, T8 - 

B-K (-) T8 @ 680 ms .016 500-800 ms TP8, T8 .88 

B-T (-) TP8 @ 614 ms .017 500-800 ms TP8, T8, F8 .77 

Table 3: Summary of significant ERP findings. P-values and effect sizes (Cohen’s d) are for local maxima. The latencies and channels 

provided are for clusters most consistent with observed local maxima. Order of pairwise comparisons indicates condition with the 

greater amplitude, and the following +/- indicates polarity (e.g. “K-T (-)” indicates a greater negative potential for K vs. T).  
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A previous study from Phillips et al. (2017) also reported RTs inconsistent with the CM’s 

prediction that RTs for judgements about knowledge should be greater for those about belief. 

However, unlike the present study, Phillips et al. reported lower RTs for knowledge than belief. This 

difference likely stems from multiple key differences between the two studies: (1) While the present 

study looked specifically at knowledge/belief attribution, Phillips et al. only reported data for 

knowledge/belief evaluation. That is, judgements both for and against knowledge/belief were 

analyzed together. (2) Perhaps more significantly, the Phillips et al. study used epistemic vignettes, 

as opposed to the simple ToM cartoons used in the present study, which undoubtedly entailed more 

complex judgements. We see evidence for more complex judgements in the much longer RTs 

observed by Phillips et al. (around 2.5 seconds), and this likely made the study better equipped to 

measure fine-grained differences between judgements about belief and knowledge. Nevertheless, all 

the empirical findings discussed here point in the same direction: Belief attribution is not a stage of 

knowledge attribution. 

 

4.2 The P3b Component: Self-Perspective Inhibition 

 

This study observed statistically significant differences between tasks in the amplitudes of the P3b 

ERP component, with both the K and T conditions displaying greater P3b amplitudes than both the 

B and TB conditions. These results constitute evidence against the composite model of knowledge 

attribution, on which belief attribution is a stage of knowledge attribution. These results also 

constitute evidence against the belief-like model of knowledge attribution, on which self-perspective 

inhibition is strongly recruited during perspective taking. Instead, these results are consistent with the 

weakly inhibitory model of knowledge attribution, on which knowledge attribution is characterized 

by an absence of strong self-perspective inhibition during perspective taking. This result represents 

what is perhaps the most significant finding of this study. The following presents the rationale for this 

inhibitory interpretation in more detail. 

The differences in P3b amplitude observed in this study are consistent with a straightforward 

explanation via resource allocation during P3 generation. As discussed above (§1.4), when the 

resource demands of additional, concurrent processes are sufficiently large during stimulus 

discrimination, this can limit the resources available for the inhibitory mechanism that produces the 

P3 component, thus resulting in a reduced P3 amplitude. We see this reflected clearly in the reduced 

P3 amplitudes for the belief attribution condition (B), confirming our assumption that (at least when 

engaged concurrently with perspective taking) the self-perspective inhibition recruited by belief 

attribution is strong enough to interfere with resource allocation to the P3 mechanism. This 

observation was facilitated in part by specific design features of this study, which increased the 

likelihood that we would observe this P3 effect for belief attribution. Most importantly, the block 

design meant that stimulus processing/recognition wasn’t an antecedent condition for the recruitment 

of self-perspective inhibition. Participants knew to inhibit their own perspective even before stimuli 

were presented. Additionally, this study was careful to ensure that tasks would indeed lead 

participants to discriminate between stimuli on the basis of whether they depicted belief/true 

belief/knowledge states, maximizing the probability of producing this P3 effect. 

Next, if we understand the composite judgements in the TB condition as computed serially 

(i.e., per the instructions, participants first attribute belief before assessing the truth value of that 

belief), we might also easily explain the reduced P3 amplitudes in the TB condition as reflecting the 

belief attribution stage of that task. 

In contrast with the B and TB conditions, the truth condition (T) displayed a classically 

pronounced P3 component, with a significantly greater amplitude. This is easily explained by the fact 

that the task in the T condition is just a simple stimulus discrimination, without any ToM processing 

demands.  
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Finally, on the weakly inhibitory model of knowledge attribution, the resource allocation 

framework also provides a straightforward explanation for the observed greater P3 amplitude of the 

K condition when compared to both the B and TB conditions. If self-perspective inhibition is recruited 

at all, the process isn’t demanding enough to significantly interfere with resource allocation during 

P3 generation. In contrast with belief, when we attribute knowledge, our cognitive systems aren’t 

required to recruit an additional resource-intensive process. Accordingly, on the wIM, we shouldn’t 

expect the same decreased P3 amplitudes associated with additional processing demands interfering 

with resource allocation to the P3 mechanism. This explanatory framework is not available on either 

the CM nor the BlM, both of which entail that knowledge attribution recruits the same strong self-

perspective inhibition as belief attribution. 

As a number of additional cognitive factors are known to modulate P3 amplitude, the 

possibility of an alternative explanation must be acknowledged. Beyond considerations of resource 

allocation, larger P3 amplitudes are also notably associated with (1) lower probability of target stimuli 

and (2) more difficult stimulus discrimination, and lower P3 amplitudes are often associated with (3) 

greater uncertainty of whether stimuli are targets (Polich 2011; Luck 2014). However, the results of 

this experiment are not consistent with a straightforward explanation via (1) or (2). Not only are the 

differences in target probability between conditions not especially large (.25-.44), but the T and B 

conditions, which displayed different P3b amplitudes, have equal target probabilities (.44). For this 

reason, the observed differences cannot be explained by a target probability effect alone. Similarly, 

the T condition cannot be reasonably thought to entail the most difficult discrimination, so the large 

P3b amplitude displayed is inconsistent with an explanation according to discrimination difficulty 

alone. Nevertheless, a more complex explanation involving both probability and difficultly cannot be 

ruled out. Additionally, while it cannot be ruled out that these findings are correlated with greater 

participant uncertainty during the B and TB conditions, there is nothing in the behavioral data that 

would indicate this. 

 

4.3 The LSWs and Late Right Temporoparietal Effect: Theory of Mind Processing 

 

The later differences between conditions observed by this study provide a number of additional 

insights into how the brain processes mental state attributions. 

The latency and functional characteristics of the frontal and posterior late effects observed in 

this study are indicative of the LSWs widely associated with ToM tasks (Sabbagh & Taylor 2001; 

Liu et al. 2004; Liu et al. 2009a/b; Zhang et al. 2009; McCleery et al. 2011; Meinhardt et al. 2011; 

Chen et al. 2012; Geangu et al. 2013). The B, TB, and K conditions all displayed significantly greater 

late posterior positivity than the T condition, and the K condition displayed significantly greater late 

frontal negativity than the T and B conditions. 

McCleery et al. have suggested that differences in LSWs observed during false-belief tasks 

are reflections of differences in inhibitory control (2011, 12853). To the extent that this might be 

understood as inhibitory control of self-perspective information, the results of the present study 

indicate that such a hypothesis is unlikely. Per the P3b results, it appears that knowledge attribution 

recruits significantly less self-perspective inhibition than belief attribution. Were it the case that the 

posterior LSW corresponded with self-perspective inhibition, we would then expect greater posterior 

late positivity for B and TB than K. Similarly, were it the case that the frontal LSW corresponded 

with self-perspective inhibition, we would expect greater late negativity for B and TB than K. As we 

didn’t observe either, it is likely that these LSWs are instead associated with some other ToM process 

or processes. Furthermore, because the same posterior late positivity was observed for both 

knowledge and belief attribution, it appears that the posterior LSW is a reflection of more general 

ToM processing, which isn’t unique to belief attribution. However, as this increased late positivity 

has been previously observed to be absent for desire attribution (Liu et al. 2009a), we also have reason 

to think that this LSW doesn’t reflect processing general to all mental state attribution. Conversely, 
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the present findings indicate that the frontal LSW is a reflection of processing specific to knowledge 

attribution, at least to the extent that it is not shared by either belief attribution or judgements about 

non-mental reality.  

Additionally, these LSW results indicate that it is unlikely that participants were employing a 

non-ToM heuristic strategy for the K task. Although participants were given instructions in strictly 

mental terms, it was possible that they might have employed a simple heuristic when completing the 

K condition, which avoided ToM processing entirely: press spacebar when there are two cylinders 

and no partition. The observation of a more positive posterior LSW for the K condition, matching the 

other conditions that involved judgements about mental states, indicates that this wasn’t the case. 

Nevertheless, there remains a good deal to be learned about the LSW components and their 

relation to Theory of Mind. The present study observed a more positive posterior slow wave in 

association with ToM tasks. However, while these results are similar to those presented by Liu et al. 

(2009a), a number of other studies have observed more negative (Sabbagh & Taylor 2000; Sabbagh 

et al. 2004; Liu et al. 2004) late posterior components associated with mental state attribution. As 

Meinhardt et al. have previously speculated, differences in LSW polarity likely derive from 

differences in tasks used to elicit them (2011, 74). Additionally, while several previous studies have 

reported differences in the frontal LSW between belief attributions and non-mental tasks (Sabbagh & 

Taylor 2000; Liu et al. 2004; Liu et al. 2009a/b), there were no significant differences observed 

between the present study’s non-mental (T) and belief attribution (B) conditions. For these reasons, 

it is likely that the LSWs observed in the present study reflect neurocognitive mechanisms that are 

related but not identical to those of the LSWs observed by previous studies. 

In addition to the frontal and posterior late slow waves, this study also observed a late effect 

displaying a right temporoparietal scalp distribution. This effect was characterized by a greater 

negative potential for the B condition vs. both the K and T conditions. These functional characteristics 

might be explained as differences in processing associated with mental content that doesn’t match 

reality: As a number of fMRI studies have previously observed, the processing of mental states with 

false content is correlated with increased right temporoparietal activation vs. the processing of beliefs 

with true content (Sommer et al. 2007; Schuwerk et al. 2014; Bardi et al. 2017; Özdem et al. 2019). 

Because neither the T nor K conditions require the processing of mental content that doesn’t match 

reality, but the B condition does, it is possible that the differences between these conditions and the 

B condition reflect this increased activation associated with processing false content. Given this, the 

findings of the present study then provide insight into the time course of the right temporoparietal 

processing associated specifically with false mental content. As this difference doesn’t appear under 

after 500 ms, at least for the procedure of the present study, this indicates that it reflects a later process 

than the earlier self-perspective inhibition observed to interfere with the P3-generating mechanism. 

Finally, it cannot be ruled out that the late differences observed here are at least partially 

attributable to differences in RT. However, as K and B display all these late ERP differences despite 

showing no differences in RT, and TB and B display no late ERP differences despite significant RT 

differences, these effects cannot be understood as solely a function of RT.  

 

4.4 General Discussion 

 

Taken together, these results suggest the following characterization of the ToM processes that we 

utilize in attributing knowledge: At least in the case of simple perceptual knowledge, knowledge 

attribution is characterized by other perspective taking in the absence of strong self-perspective 

inhibition. The present study alone is insufficient to determine whether this means that knowledge 

attribution requires no self-perspective inhibition at all, or rather that it simply requires less inhibitory 

control over self-perspective information than belief attribution. Regardless of which of these 

ultimately proves correct, it is clear that self-perspective inhibition need not play the same strong role 

in knowledge attribution that it does in belief attribution. This reduced role for self-perspective 
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inhibition reflects the relevance of self-perspective information during knowledge attribution. When 

determining whether some agent is in the state of knowing, we often appeal to self-perspective 

information about the state of reality, which frequently isn’t available from the agent’s perspective. 

Accordingly, inhibiting this information would be counterproductive to efficient knowledge 

attribution. This contrasts with belief attribution, on which such self-perspective information will 

never be relevant, and therefore might be categorically inhibited. In this way, we might understand 

that the weakly inhibitory model of knowledge attribution appears to track a key difference between 

the information required for successful knowledge vs. belief attribution. 

In addition to the neurocognitive mechanisms of knowledge attribution, the findings of this 

study also contribute to a deeper understanding of the temporal dynamics of self-perspective 

inhibition itself. First, on the basis of LSW latency (600-800 ms), it has been previously suggested 

that inhibitory control is recruited later in belief state attribution (McCleery et al. 2011). However, 

the results of the present study indicate that self-perspective inhibition can engage early enough to 

contribute to differences in the P3b component (around 300ms). This early recruitment of self-

perspective inhibition was aided by the design of this study, as participants knew whether they needed 

to inhibit their own perspective before stimuli were presented, and whether inhibition was required 

remained consistent for the duration of each 150-trial block sequence. 

Finally, this study has a few key implications regarding the way philosophers think about 

knowledge and knowledge attribution. The most notable of these is that, at least in these cases of 

simple perceptual knowledge, knowledge is attributed like a mental state, not a composite. It is not 

trivial to assume that we can conclude on this basis that knowledge is indeed a mental state. However, 

such an approach has been defended by at least one prominent epistemologist (Nagel 2013, §4). 

Additionally, this appears to be the simplest available explanation for why treating knowledge like a 

mental state on the part of our ToM systems produces accurate judgements about knowledge: 

Knowledge is indeed a mental state. Given that this is the case, this would then mean that the bulk of 

epistemologists are mistaken in rejecting the idea that knowledge is a mental state. This would have 

significant ramifications for how epistemologists theorize about knowledge, as it is fundamentally at 

odds with the standard theoretical framework employed in the philosophy of knowledge (see 

Williamson 2000, ch. 1).   

The cognitive differences between belief and knowledge attribution also call into question the 

philosophical practice of constructing theoretical arguments about knowledge attribution on the basis 

of the cognitive properties of belief attribution (see e.g. Nagel 2010; Gerken 2012). The danger of 

this practice is especially highlighted by Nagel’s egocentric bias account of certain anomalous 

patterns of knowledge attribution (2010), which assumes analogous roles for self-perspective 

inhibition in belief and knowledge attribution. This study offers a clear demonstration that such an 

assumption, at least generally, is mistaken. While it could still be that there is some connection 

between belief and knowledge, on which certain cognitive properties of knowledge attribution can 

still be inferred from those of belief attribution, we can now understand that such a connection needs 

to be established before any such inference might safely occur. This underscores the importance of 

establishing the cognitive architecture of knowledge attribution empirically. 

 

4.5 Limitations 

 

There are a couple limitations of this study that warrant further discussion, perhaps the most 

significant of which is the confounding of target probability with experimental condition. As 

previously mentioned (§4.2), P3 amplitude is known to be higher for stimuli with lower probabilities. 

We have a number of reasons to think that target probability was not the driving factor in the P3 

differences observed in this study: (1) The B and TB conditions, which differed in target probability, 

displayed no significant P3 differences. (2) The T and B conditions, which did not differ in target 

probability, did display significant P3 differences. (3) The ordering of P3 amplitudes was generally 
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not consistent with target stimulus probability. Nevertheless, keeping in mind that most of the 

observed P3 results cannot be explained as target probability effects, it cannot be completely ruled 

out that the moderate difference in target probability between the K and B conditions is responsible 

for at least some of the observed differences in P3 amplitude. While this is undoubtedly an unfortunate 

limitation of the present study, it should be noted that this limitation was not easily avoidable. First, 

we might note that in performing tasks like those used in this study, there is a non-trivial risk that 

participants might misunderstand mental state terms, especially “knowledge.” It is not uncommon for 

the word “knowledge” to be used to non-literally to refer to states more closely resembling belief 

(e.g. “protagonist projection:” Holton 1997; Buckwalter 2014). Accordingly, it was decided that one 

crucial aspect of this study’s design was that it should be determinable from behavioral data (e.g. 

false-alarm and miss rates) whether participants were actually understanding “knowledge” in the 

literal sense. Otherwise, it wouldn’t be clear whether participants were even making knowledge 

attributions in the first place. Practically, this means there need to be stimuli that depict B and/or TB, 

which don’t depict K. However, at least for simple scenarios that might be unambiguously depicted 

with ToM cartoons, {stimuli depicting K states} is a subset of {stimuli depicting TB states}, which 

is itself of course a subset of {stimuli depicting B states}. Indeed, most epistemologists working 

within the analytic project would even go so far as to say that there are no K states that are not also 

TB states. This nested structure of K, TB, and B states limited our options for presenting stimuli that 

depict B/TB without depicting K. While target probability could be equalized across conditions, this 

would require the use of different stimuli sets for different conditions. As this would then mean that 

any observed difference between conditions would be confounded with differences in stimuli, this 

was decided against. Instead, the design of this study reflected an effort to strike a balance between 

(i) the need for B- and TB-depicting stimuli that didn’t depict K and (ii) the need to minimize target 

probability differences between conditions, all while using a single set of stimuli for all conditions. 

A second limitation of this study is that it cannot definitively rule out alternative 

interpretations for the greater demand for neural resources during belief vs. knowledge attribution. 

For example, rather than a greater demand for inhibitory control, one might think that belief 

attribution entails the representation of non-obtaining states of reality to a greater extent than 

knowledge attribution. Nevertheless, while such an interpretation is well suited to the belief-like 

model of knowledge attribution, it is still inconsistent with the composite model: On the CM, a belief 

attribution is a stage of knowledge attribution, so there can be no processing inherent to belief 

attribution that doesn’t then also occur for knowledge attribution. Thus, even if the differences in 

neural resource allocation indicated by this study do not derive from differences in self-perspective 

inhibition, they still support the conclusion that belief attribution is not a stage of knowledge 

attribution. However, evidence collected in this study casts doubt on such an alternative explanation 

for the P3 effect. The late time course of the right temporoparietal effect indicates that, at least on our 

specific experimental procedure, this representation of non-obtaining states of reality may not occur 

early enough to interfere with the P3-generating mechanism. 

 

5. Conclusion 
 

The findings of this study provide an important insight into the neurocognitive mechanisms that guide 

knowledge attribution. Most importantly, not only is belief attribution not a stage of knowledge 

attribution, but knowledge attribution doesn’t require the strong self-perspective inhibition 

characteristic of belief attribution. These results allow us to better understand how our ToM systems 

generate attributions for different types of mental states, contributing to a fuller picture of how we 

think about the mental states of others. These results also raise a number of important questions in 

the philosophy of knowledge, especially regarding the reluctance of epistemologists to accept that 

knowledge is a mental state, as well as the philosophical practice of transposing the cognitive 

mechanisms of belief attribution directly onto questions about knowledge.  
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