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Keratins are part of a filamentous structures forming the cytoskeleton. Keratins provide 

structural support and are involved in several cell processes. Keratins are known to affect 

mitochondrial function in the liver but the role in mitochondrial function in the colon is less 

known. In previous studies K8 knockout (K8–/–) in Caco-2 cells leaded to diminished 

mitochondrial respiration and decreased levels mitochondrial and caveolar calcium (Ca2+) 

levels. In this study the involvement of K8 on mitochondrial function was further examined in 

K8–/– Caco-2 cells by microplate reader assays to determine the levels of mitochondrial 

membrane potential (MMP) and cardiolipin (CL), which are both needed for normal 

mitochondrial function. Mitochondrial distribution was studied by immunohistochemistry and 

mitochondrial motility by staining and live cell imaging. Caveolin proteins are involved in Ca2+ 

signaling and mitochondrial function. Therefore, distribution of caveolin-1 (Cav1) was studied 

by immunostaining. Intestinal barrier function is the ability of the epithelial cell layer of the 

intestinal wall to selectively pass substances across. The role of K8 in barrier function in Caco-

2 cells was studied with a Cellzscope+ device. Loss of K8 in Caco-2 leads to decreased levels 

of MMP and CL, increased mobility of mitochondria and fragmented mitochondrial network 

as well to an aggregation of Cav1 protein, all which may affect to the energy metabolism in 

Caco-2 cells. Barrier formation was decreased and delayed in K8–/– compared K8+/+ Caco-2 

cells. In conclusion, this study further support findings on the role of keratins in regulation of 

mitochondrial morphology and function. 
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1. Introduction  

1.1 The cytoskeleton  

The cytoskeleton is a filamentous structure in the cytoplasm of eukaryotic cells 

responsible for maintaining the cell’s shape, cell division and movements of the whole 

cell as well as its internal parts (Alberts et al., 2015; Wickstead and Gull 2011). The 

cytoskeleton keeps the shape and internal structures of the cell in a proper state while at 

the same time allowing cells to change and adapt to their environment and to the state of 

their life cycle (Alberts et al., 2015). This is possible since the cytoskeleton and its 

filaments are highly dynamic structures and are capable of fast reorganization as needed 

for example during cell division (Alberts et al. 2015).  

 

Three types of filaments, microtubules, actin filaments and intermediate filaments (IFs), 

form the network of the cytoskeleton (Bershadsky and Vasiliev, 1988; Bittar and Khurana 

2006; Alberts et al., 2015). Cytoskeletal filaments are assembled from tiny subunits 

(Alberts et al., 2015). Microtubules are composed of tubulin proteins and are needed for 

cell division in the form of the mitotic spindle, sensing or cell movement in the form of 

cilia as well as tracks for transporting intracellular cargoes (Albert et al.,2015). Actin 

filaments are formed by globular actin proteins (Alberts et al., 2015). The cell needs actin 

filaments for cell division, cell movement and to provide mechanical support (Pollard and 

Cooper, 2009). Actin filaments are part of a contractile apparatus, for example, during 

cell division actin filaments together with their associated protein, myosin, form a 

contractile ring forcing the cell to divide into two (Alberts et al., 2015). Intermediate 

filaments work mainly as structural support but are also important for many cell processes 

(Toivola et al., 2010; Margiotta and Bucci, 2016). IFs do not have a major role in cell 

movement as the other filaments do (Alberts et al., 2015). The diameter of IFs, which is 

around 10 nm, is between microtubules (24 nm) and actin filaments (7 nm) (Lodish et al., 

2000). 

1.1.1 Intermediate filaments 

IFs are a heterogenous group of cytoskeletal filaments found almost in all metazoans 

(Hesse et al. 2011; Cooper and Sunderland, 2000). Expression of IFs is tissue and cell 

type specific (Strelkov and Herrmann, 2003; Toivola et al., 2010). IFs are more stable 

structures than other cytoskeletal filaments and are responsible for forming supportive 

skeleton of the cell and giving protection against mechanical stress (Toivola et al., 2010; 
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Alberts et al., 2015). IFs are also involved in the regulation of nuclear organization, cell 

signaling and cell cycle among others (Margiotta and Bucci, 2016). IFs form direct and 

indirect connections with several other cell structures, such as microtubules, cell junctions 

and the plasma membrane (Lodish et al., 2000). The importance of IFs for normal function 

of the human body is shown by IF mutations, since over 80 human diseases have been 

recognized to have connections to IF mutations (Sun et al. 2016) 

1.1.2 Types of intermediate filaments 

Other cytoskeletal filaments, actin and microtubules, are formed by only one type of 

proteins, while there are over 50 known IF proteins today (Cooper and Sunderland, 2000). 

These IF proteins are categorized into six types, mostly according to differences and 

similarities in their amino acid sequence (Table 1). (Cooper and Sunderland, 2000; 

Herrmann and Aebi, 2000; Lodish et al., 2000; Szeverenyi 2008; Kornreich et al., 2015; 

Leduc and Etienne-Manneville, 2015).  

 

Keratins form the two first IF types: Type I acidic keratins and type II basic or neutral 

keratins. Keratins are most abundant in epithelial cells (Herrmann and Aebi, 2000; Lodish 

et al., 2000) and can be found in soft structures, e.g. in cells or hard structures e.g. horns 

or nails that are built from keratins after complex differentiation processes (Herrmann 

and Aebi, 2016). Type III IFs are formed by muscle cell-specific desmin and synemin 

found in skeletal muscle cells, vimentin IFs found in endothelial cells, fibroblasts and 

leukocytes, as well as some IFs expressed in peripheral neurons. (Cooper and Sunderland, 

2000). Three different neurofilament IF proteins form the type IV IF protein group. Type 

IV neurofilaments are suggested to play important roles in supporting axons of motor 

neurons as well as in the development of central nervous system neurons. (Cooper and 

Sunderland, 2000). Type V IFs are nuclear lamins found in a nuclear envelope of all cell 

types (Cooper and Sunderland, 2000). Type VI IFs is formed by phakinin and filensin, 

which are found specifically from lens (Kornreich et al., 2015). 
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1.1.3 Structure of intermediate filaments 

Despite being formed by a heterogenous group of proteins, all IFs share a similar structure 

with a central rod domain formed by a coiled-coil structure of two axially oriented and 

parallel α-helical chains. At both sides of this central domain are more variable non-

helical amino-(N)-terminal head and carboxyl-(C)-terminal tail domains (Figure 1). 

(Geisler and Weber, 1982; Lodish et al., 2000; Parry et all., 2007; Herrmann and Aebi, 

2016; Nafeey et al., 2016). The central domain contains three linker domains, called L1, 

L12 and L2, which divide the α-helix rod into four sub-helixes. These regions are called 

coil 1A, coil 1B, coil 2A and coil 2B (Figure 1). These coils form conserved areas of IFs 

since the length and number of amino acids are identical between different IFs on these 

sub-helices expect in coil 1B. (Herrmann et al., 2009) The head and the tail domains on 

the other hand exhibit highly variable sequences and sizes between different IFs. A typical 

IF contains 310 amino acids (Lees et al., 1988).  

 

 

 

 

 

Type Protein Location

I Acidic keratins Epithelial cells

II Basic keratins Epithelial cells

III Vimentin
Desmin
Glial fibrillary acidic factor
Peripherin
Synemin

Mesencymal cells
Muscle cells
Astroglial cells
Neurons
Skeletal muscle cells

IV Neurofilaments–L-M-H
Internexin
Nestin

Neurons
Neurons
CNS and muscle precursor
cells

V Nuclear Lamins Universal (Nuclear
membranes)

VI Phakinin, Filensin Lens

Table 1. Classification of intermediate filaments. IF proteins can be divided into 

6 types. Type I-II are keratins, type III IFs consist of muscle cell and neuronal IFs, 

type IV IFs are mostly formed by neuronal IFs, type V is formed by nuclear lamins 

found from all cell type and type VI IFs consist of lens specific IF proteins.  
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1.1.4 Assembly of intermediate filaments 

While actin filaments and microtubules are hollow tubes, IFs organize themselves into 

stable structures resembling ropes. The assembly process of IFs starts with dimer 

formation: the central rod domains of two monomers fold around each other, leading to 

formation of coiled-coil dimers. Next dimers are joined to form antiparallel tetramers. 

These tetramers are capable of further assembling into protofilaments by joining to each 

other at the ends. Mature IFs are formed when several protofilaments are folded around 

each other (Figure 2). (Cooper and Sunderland, 2000) Single IF filaments can further 

organize themselves to larger IF bundles (Nafeey et al., 2016). In contrast to actin 

filaments and microtubules, which are polar, both ends of IFs are similar, and thus IFs are 

apolar with no minus or plus ends (Cooper and Sunderland, 2000). 

IFs can be categorized into three assembly groups based on their polymerization with 

other IF monomers to form coiled-coil dimers. Group I and II keratins are featured by the 

need of a type I keratin to pair with a type II keratin to from a mature IF filament 

(assembly group 1). IF Group III and IV IFs are mostly homopolymeric IF proteins, 

although they can form heteropolymers within other members in their own group 

(assembly group 2). Group V nuclear lamins do not polymerize with other IF groups 

(assembly group 3). (Herrmann and Aebi, 2000). IFs may arrange themselves to form 

complex subcellular networks, which structures are somewhat dependent on the 

functional role of the IFs (Jacob et., 2018). For example, when keratin tetramers join 

laterally and these already laterally associated keratin tetramers further anneal 

longitudinally, keratin filaments grow forming eventually complex networks (Nafeey et 

al., 2016).  

 

 

 
1B COOHNH

α-helical central coiled-coil domain Tail domainHead domain

L1 L12 L2
2A 2B1A

Figure 1. Structure of intermediate filaments. IFs are formed by α-helical central 

coiled-coil domain divided by three linkers, non-helical head amino-(N) terminal and 

tail carboxyl-(C)-terminal domains. Modified from: Childs, G. 2014. Intermediate 

Filaments [http://www.cytochemistry.net]. 
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1.1.5 Keratins 

Keratins, which form the biggest and most distinct subgroup of IFs, are found mostly in 

epithelial cells (Lodish et al., 2000; Schweizer et al., 2006). Keratin network extends from 

the plasma membrane to the edge of the nucleus (Fortier et al., 2013). 54 functional 

keratin genes have been found from the human genome, and these are divided into two 

types: 28 genes are type I keratins and 26 genes belong to type II keratins. Also 13 

nonfunctional keratin genes exist in human genome. (Coulombe and Omary, 2002; 

Schweizer et al., 2006). Type I and type II keratins cannot form homodimers and instead 

make 1:1 obligatory heterodimers, which are then assembled to filaments in a similar way 

as other IFs. (Lodish et al., 2000). Expression of keratins and hetero-dimer pair formation 

is tissue-, cell type- and development stage-specific (Herrmann and Aebi, 2000; Lodish 

et al., 2000; Loschke et al., 2015). Some keratins are building blocks for appendages, such 

as hair or nails, and based on this type I and type II keratins can be further divided into 

type I and type II epithelial and hair keratins (Herrmann and Aebi, 2016). Type I keratins 

K1-K8 and type II keratins K9-K24 are classified as epithelial keratins (Schweizer et al., 

2006). The formation of keratin networks is mostly regulated by post-translational 

 

IF dimers a form
tetramer

Tetramers align
longditudinal

Four of these
longitudinal

aligned tetramers
form a protofiber

Several protofibers
eventually form a 

mature
intermediate

filament

NH COOH

NHCOOH

Figure 2. Assembly of intermediate filaments. Two IF monomers forms coiled-coil 

dimer. Two of these dimers are then joined to form tetramers. Several tetramers are then 

joined from end to end. Several tetramers eventually join, and form mature IF. Modified 

from: Childs, G. 2014. Intermediate Filaments [http://www.cytochemistry.net]. 
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modifications, such as phosphorylation, sumoylation and acetylation, controlling keratin 

assembly, disassembly and function (Loschke et al., 2015) 

 

In addition to the traditional and well-known function of providing mechanical support 

to cells, keratins have roles in signaling pathways, transportation, stress protection, cell 

migration and apoptosis, and they organize cellular organelles and affect protein targeting 

and synthesis (Kellner and Coulombe, 2009; Fortier et al., 2013; Kumar et al., 2015; 

Lähdeniemi et al., 2017). For example, keratins have been shown to regulate cell growth 

via mTOR signaling (Kellner and Coulombe, 2009) and keratins affect the localization or 

levels of glucose transporters (GLUT), ion transporters and monocarboxylate transporter 

1 (MCT1) (Toivola et al., 2004; Vijayraj et al., 2009; Alam et al., 2013; Helenius et al., 

2015; Asghar et al., 2016).  

1.2 The intestine 

The gastrointestinal (GI) tract is a hollow tube which goes from the mouth to the anus 

(Patton and Thibodeau, 2016). One way of dividing the GI tract is to separate it into two 

parts: the upper GI tract and the lower GI tract (Treuting et al., 2012; Treuting and Dintzis, 

2012; Patton and Thibodeau, 2016). The lover digestive tract is made up of the small 

intestine, which can be divided into duodenum, jejunum and ileum, and large intestine 

(colon), which is formed by the caecum, colon and rectum (Rao and Wang, 2010; 

Treuting and Dintzis, 2012; Griffiths and Megan, 2015). The lower GI tract is responsible 

for digestion, absorption of nutrients, water and electrolytes and discarding waste 

(Steegenga et al., 2012; Patton and Thibodeau, 2016). The GI tract also functions in 

immune response (Ray and Wang, 2010).  

1.2.1 The colon 

The colon, the longest part of the large intestine, being around 1.5-meter-long in adult, is 

divided into four parts: the ascending, transverse, descending and sigmoid colon (Patton 

and Thibodeau, 2016). The ascending colon begins at the end of caecum, and is followed 

by the transverse colon, which is the largest part of the colon. After the transverse colon 

lies the descending colon. The descending colon is followed by the last part of the colon, 

the S-curved sigmoid colon which joins to the rectum. (Griffiths and Megan, 2015) 

The wall of the colon is divided into four layers similar to the rest of GI tract; the mucosa, 

submucosa, muscularis and serosa (Rao and Wang, 2010; Treuting and Dintzis, 2012; 

Griffiths and Megan, 2015; Patton and Thibodeau, 2016). The innermost layer of the 
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colon, the mucosa, is formed by a layer of simple columnar epithelial cells, the lamina 

propria and the muscularis mucosae. Colon epithelium has transverse folds and tubular 

glands, also called as crypts, which increase its surface area. (Treuting and Dintzis, 2012; 

Steegenga et.,al 2012; Griffiths and Megan, 2015) Goblet cells, enteroendocrine cells, 

enterocytes and Paneth cells can be found from the mucosa of the colon (Treuting and 

Dintzis, 2012; Griffiths and Megan, 2015). Most of the absorption takes place at the 

mucosa where enterocytes absorb nutrients and goblet cells secrete mucus (Griffiths and 

Megan, 2015; Standring 2016). Submucosa is formed by blood vessels, connective tissue 

and the nerves and muscularis layer is formed by two layers of smooth muscle; the outer 

one is made of longitudinal muscle fibers and the inner one from circular muscle fibers, 

making it responsible of movements and contraction of the colon. The thin outermost 

layer of the colon, called serosa, is formed by simple squamous epithelial cells producing 

fluid to protect outside of the colon from irritation with its surroundings. (Griffiths and 

Megan, 2015; Standring, 2016) 

The colon functions as a storage and fermentation place for undigested macronutrients 

and absorbs water. The colon is also a home for microorganisms, which are important for 

the immune system, produce vitamins and are responsible for above-mentioned 

fermentation. (Garret et al., 2010; Steegenga et al., 2012) The wall of the colon also works 

as a selective barrier that keeps indigestible compounds, which are turned to faeces, and 

harmful microorganisms on the luminal side, while making the absorption of nutrients, 

vitamins and water possible (Watson et al., 2005; Teshima et al., 2012 Standring, 2016). 

1.2.2 Keratins and colon 

Colon epithelial cells express type I keratins K18, K19 and K20 and type II keratins K7 

and K8. The most abundant keratin is K8, while also K18 and K19 are common and found 

throughout the whole length of the colon crypt. In lesser amount K7, located in the base 

of the crypt and K20, located in the upper part of the crypt, can be found in the colon. 

(Figure 3) (Zhou et al., 2003). In the colon K8 forms heteropolymers with K18, K19 or 

K20 (Zhou et al., 2013) and mice lacking K8 lose protein expression of most other 

keratins as well (Baribault et al. 1994; Asghar et al., 2016).  

Keratins seem to play several roles in the colon. The importance of keratins for normal 

colon function has been proven in mice by knocking out K8 (K8‒/‒ mice) which leads to 

several problems. K8 knockout mice develop a colon inflammation phenotype (Baribault 

et al., 1994; Habtezion et al, 2005; Habtezion 2011), intestinal barrier function is 
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disrubted, and tumorigenesis is increased in colon 

cancer models (Misiorek et al., 2016). Absence of 

K8 leads to impaired energy metabolism in the 

colon (Helenius et al., 2015), colonic hyperplasia, 

diarrhea, reduced apoptosis, and the inflammation 

of the colon in these mice are similar to what is seen 

in inflammatory bowel diseases (IBD) (Baribault, 

et al., 1994; Habtezion et al., 2005). K8/K18 have 

been proven to affect differentiation of colon 

epithelia by affecting the signaling of Notch1 

(Lähdeniemi et al., 2017). Some K8 mutations 

have also been found in a low number of 

inflammatory bowel diseases (IBD) patients 

(Owens et al., 2004) and some evidence suggest an 

association between K8 and IBD (Jong and 

Drenth, 2004), but the results are still controversial to some other studies (Büning et al., 

2004; Tao et al., 2007).  

 

1.2.3 Colon diseases 

 

Inflammatory bowel diseases (IBD) are a group of polygenic diseases affecting the colon 

and other parts of the GI tract (Jong and Drenth, 2004) and affect a huge number of people 

worldwide. The most common IBD diseases are ulcerative colitis (UC) and Crohn’s 

disease (CD). CD can affect the whole GI tract but is mostly found in the colon and the 

ileum, while UC is only seen in the colon or in the rectum (Abraham and Cho, 2009; 

Mulder et al., 2014). UC is a mucosal inflammation with symptoms of abdominal pain 

and bloody diarrhea, while CD is a transmural inflammation with skip lesions (Mulder et 

al., 2014). Ulcerations of intestinal epithelia can be seen in both UC and CD. These 

ulcerations further disturb normal barrier function of the intestine (Zupancic et al., 2014).  

The prevalence of IBD has been high especially in industrial countries, but the incidence 

is going up also in developing countries (Malik, 2015). The estimated of number of people 

with IBD in Europe is 3.7 million and in North America 1.5 million and IBD healthcare 

costs are rising (van der Have et al., 2014). The prevalence of IBD in Finland has 

increased from 216 per 100 000 citizen in 1994 to 595 per 100 000 in 2008 (Jussila et al., 

2013). The causes behind IBD are not clear, but it is an outcome of microbiological and 

 

K8

K7

K18 K19 K20

Figure 3. Keratin expression in 

the crypt of the colon. K8, K18 

and K19 are the most common 

keratins expressed in the whole 

length of the colon crypts. 

Modified from: Zhou et al., 2003. 
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environmental factors, combined with genetical susceptibly (Jong and Drenth, 2004; 

Motte et al., 2003).  

 

IBD also increases the risk of developing colorectal cancer (CRC) (Ullman and Itzkowitz, 

2011). CRC is the third most diagnosed cancer, causing the third most of deaths from all 

cancer types (Rawla et al., 2019). What exactly causes CRC is not totally clear, but it is 

an outcome of genetic errors e.g. in genes affecting cell proliferation, apoptosis, 

differentiation and migration, and epigenetic changes caused by lifestyle choice such as 

diet and level of physical activity (Hirose et al., 2011; Watson and Collins 2011). 

Alterations in the gut microbiome is also one of the factors affecting the development of 

CRC (Datta et al., 2017). In K8 knockout mice models, the lack of K8 increases 

permeability of the intestine and leads to changes in gut microbiota, also K8 expression 

was lower in both human and mice cancer samples (Liu et al., 2017) and lack of K8 leaded 

also inducible CRC (Misiorek et al., 2016). It was suggested by Misiorek et al., 2016 that 

loss of K8 leads to increased levels of caspase-1 (due to activation of inflammasome). 

Caspase-1 increases IL-18 expression leading to increased levels of IL-22 via 

downregulation of IL-22 inhibitor. IL-22 activates STAT3 pathway leading to epithelial 

proliferation and defects in epithelial barrier. Therefore, it seems that keratins could work 

in preventing colon tumorigenesis by maintaining intestinal barrier, affecting 

inflammation and by having a role in keeping gut microbiota at a healthy state (Misiorek 

et al., 2016; Liu et al., 2017). 

 

1.2.4 Barrier function 

 

In addition to the digestive role of the GI tract, the luminal epithelium of the intestine also 

serves as a barrier between the intestine and rest of the body. Barrier function is the ability 

of the intestinal wall to selectively pass substances across it. The selective movement of 

molecules across the epithelial cell layer is achieved through a transcellular pathway by 

the help of transporters and channels or through endocytosis (Figure 4) (Teshima et al., 

2012). Another way to go through the intestinal barrier is not by the help of channels or 

transporters but instead through tight junctions (TJs), which is defined as a paracellular 

pathway (Figure 4) (Teshima et al., 2012). The intestinal barrier makes absorption of only 

useful nutrients from the intestine possible and lets the immune system detect antigens, 

while at the same time preventing other harmful intraluminal, molecules from passing 

through the single-cell layer of epithelial cells of the intestinal wall, keeping the harmful 
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environment of the intestine separate from the rest of the body (Teshima et al., 2012, 

Watson et al., 2005).  

 

Maintenance of the barrier 

function is essential for the proper 

function of the intestine (Peng et 

al., 2007) and one of the most 

important tasks of intestinal 

epithelial cells is to create this 

barrier (Ma et al., 2000). Defects in 

intestinal permeability has been 

associated with several disease 

conditions, such as in Crohn’s 

disease, UC and colon cancer 

(Minkholm et al., 1994; Miki et al., 

1998; Arnott et al., 2000).  

 

Several evidence show that keratins are needed for the maintenance of epithelial integrity 

(Liu et al., 2017). The lack of K8 in mice has been shown to lead impaired intestinal 

barrier formation (Wang et al., 2007; Misiorek et al., 2016). Certain human K8/K18 

disease mutations have been shown to lead increased permeability of a monolayer of 

colorectal cancer cells via changes in the distribution of certain junction proteins on an in 

vitro colonocyte model (Zupancic et al., 2014). In keratinocytes keratins 5 and 14 have a 

role in the maintenance of TJs, which are needed to maintain the barrier function and 

mutations in these keratins leads to down-regulation of junction proteins (Liovic et al., 

2009). K1 expression has been shown to be decreased in IBD patients and treatment of 

Caco-2 cells overexpressing K1, with IL-1β, substance diminishing barrier function, 

indicates that K1 hinders the effects of IL-1β, since Caco-2 cells maintained intact barrier 

despite the IL-1β treatment (Dong et al., 2017). Finally, it has also been shown that K8 is 

needed for maintaining placental barrier function (Jaquemar et al., 2003). 

1.3 Mitochondria  

Mitochondria are dynamic subcellular organelles whose shape can vary between different 

cell types and conditions (Youle and van der Bliek, 2012). Mitochondria are formed from 

two lipid membrane layers: the inner membrane, which forms folds called cristae, and the 

 

tight junctions

transcellular route paracellular route

Figure 4. Intestinal barrier function. 

Intestinal barrier function is the ability of the 

intestine wall to selectively pass substances 

across. Molecules can cross the intestinal wall 

by two routes, through tight junctions via the 

paracellular route, or via channels and 

transporters or through endocytosis via 

transcellular route.  
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smooth outer membrane layer (Nicholls and Ferguson, 2013). The inner membrane layer 

surrounds the mitochondrial matrix and contains enzyme complexes responsible for 

oxidative phosphorylation (OXPHOS) needed for energy metabolism and electron 

transport proteins, such as cytochrome c (Youle and van der Bliek, 2012). The outer 

membrane layer surrounds an intermediate space and the inner membrane (Youle and van 

der Bliek, 2012).  

Mitochondria are main organelles responsible for production of energy in OXPHOS at 

the mitochondrial inner membrane (Jacobson et al., 2002; Jones, et al., 2017). In addition 

to energy production, mitochondria also have a role in apoptosis, in calcium (Ca2+) 

signaling and production of reactive oxygen species (ROS) (Jacobson et al., 2002). 

Mitochondrial Ca2+ signaling controls the amount and the signaling of Ca2+ in a whole 

cell and works in protection against intracellular Ca2+ spikes which could harm the cell 

(Duchen et al., 2008; Schwarz and Leube, 2016).  

1.3.1 Mitochondria and energy metabolism 

Mitochondria are organelles responsible for production of energy in a cell in the form of 

the adenosine triphosphate (ATP) produced in the citric acid cycle (also known as 

tricarboxylic acid cycle or as Krebs cycle) and in an electron transport chain (ETC) in 

OXPHOS (Bratic and Trifunovic, 2010; Crowley et al., 2016; van der Bliek et al., 2017). 

Due to ATP production capacity mitochondria are often referred to as a powerhouse of 

the cell.  

 

The citric acid cycle, containing eight enzymatic phases, takes place in the mitochondrial 

matrix. Acetyl CoA produced from carbohydrates, proteins and fats is taken into the citric 

acid cycle and oxidation of the molecule leads to formation of FADH2 and NADH and 

several other compounds. FADH2 and NADH work as electron donors in the ETC at the 

inner mitochondrial membrane. During OXPHOS electrons are moved from FADH2 or 

NAHD through protein complexes to oxygen in ETC (Figure 5). The electrons move from 

high energy to a lower energy level releasing energy. NADH releases its electrons directly 

to oxidative phosphorylation complex I (CI) and FADH2, being weaker electron donor, 

gives electrons to complex II (CII) instead of CI and less energy is produced this way. 

The electrons move from CI/CII to electron carrier ubiquinone (Q), which releases them 

to complex III (CIII). In turn, CIII transfers electrons further to the second electron carrier 

cytochrome c that passes them to complex IV (CIV), which finally transfers them to an 

oxygen, yielding H2O (Figure 5). Part of the released energy is used to form a proton 



12 
 

gradient when oxidative phosphorylation complexes pump protons into the intermediate 

space. This proton gradient cause protons to move back into the matrix through ATP 

synthase, which uses this proton flow to generate ATP from adenosine diphosphate 

(ADP). ATP is further used as an energy source for cells. (Berg et al., 2002; van der Bliek 

et al., 2017).  

1.3.2 Mitochondrial membrane potential 

During ATP production in OXPHOS, positively charged protons are actively transferred 

across the inner membrane into the intermembrane space of mitochondria by the work of 

proton pumps. This eventually leads to the formation of a negative charge inside the 

mitochondrial matrix and this proton gradient is harnessed to a production of ATP in 

OXPHOS. This internal negative charge is known as mitochondrial membrane potential 

(MMP). (Crowley et al., 2016) MMP is an essential force for transportation of charged 

 

 Figure 5. Oxidative phosphorylation (OXPHOS). Citric acid cycle (CAC) produce 

NADH and FADH which are used as electron donors in electron transport chain 

(ETC). During OXPHOS electrons are moved through protein complexes from 

FADH2 or NAHD to the oxygen in ETC at the same time protons (H+) are pumped 

into the mitochondrial intermembrane space forming proton gradient which is used by 

ATP synthase to generate ATP from ADP. ATP is the main energy source for the cell. 

Modified from: OpenStax.2016. Chapter 7 Cellular respiration. In: Biology. 

OpenStaxCnx Biology.  
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molecules, some of which are required for proper function of mitochondria (Zorova et al., 

2018). Many mitochondrial processes, such as Ca2+ uptake and ATP production in 

OXPHOS, are dependent on MMP (Jones et al., 2017; Koopman et al., 2008). 

Mitochondrial organization is maintained by fission and fusion and in absence of normal 

membrane potential the balance of these two processes is disturbed leading to a 

fragmented mitochondrial network (Jones et al., 2017). Both optic atrophy-1 (OPA1) 

GTPase and mitofusins 1 and 2 responsible for fusion as well as dynamin-related protein 

I driving fission are affected by membrane potential (Jones et al., 2017). Since its crucial 

role for normal mitochondrial function, MMP is considered as a factor determining 

mitochondrial viability (Zorova et al., 2018) 

1.3.3 Mitochondrial cardiolipin 

Cardiolipin (CL) is a bisphosphatidyl glycerol lipid found mostly in the inner membrane 

of mitochondria, where 20% of lipids are CLs (Yan and Kang, 2012). CL is very 

hydrophobic and acidic as it is composed of a backbone of glycerol linking two 

phosphatidylglyceride groups into a dimeric structure of the CL, with four discrete alkyl 

groups (Jiang et al., 2000; Yan and Kang, 2012). CL is synthesized by mitochondria itself 

with the help of cardiolipin synthase and several other synthases, phosphatases and 

enzymes (Schlame and Haldar, 1993; Tamura et al., 2013). CL interacts with several 

mitochondrial proteins and it is needed for optimal function of many of these proteins, 

although the proteins do not require CL for normal function (Duncan et al., 2018; Schlame 

and Haldar, 1993). CL is essential for many important mitochondrial processes including 

apoptosis and OXPHOS (Yan and Kang, 2012; Yu et al., 2017). CL regulates synthesis 

and/ or ensures optimal activity of oxidative phosphorylation complex I (CI) (Yu et al., 

2017), complex III (Lange et al., 2001), complex IV (Malkamäki and Sharma, 2019) and 

complex V (Acehan et al., 2011). CL interacts with the mitochondrial ADP/ATP carrier 

and since CL binds to a conserved residue on that carrier, which is common for all of 

mitochondrial carriers, it is proposed that CL could play a role in the function of all of 

mitochondrial carrier proteins (Duncan et al., 2018). CL also plays a role in cristae 

membrane integrity, which is an important factor for a formation of MMP (Ikon and 

Ryan, 2017). Elevated CL content has been associated with several pathologies e.g. 

Parkinson disease (Tyurina et al., 2013), Barth syndrome (Xu et al., 2016) and heart 

failure (Dolinsky et al., 2016).  
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1.3.4 Mitochondria and intermediate filaments 

Several evidence suggest that mitochondria and the cytoskeletal filaments would have 

connections between each other (Kang, et al., 2008; Winter et al., 2008). It has been 

shown that some of IFs have a role in regulating mitochondria, for example the lack of or 

changes in vimentin has been shown to increase mitochondrial movement and 

fragmentation as well as disturbing anchoring of mitochondria to the cytoskeleton 

(Nekrasova et al., 2011). Binding of vimentin to mitochondria has also been shown to 

increase MMP, and phosphorylation of serine 55 of vimentin by RAC-1 seems to interrupt 

a connection between mitochondria and vimentin leading to decreased MMP and 

increased mitochondrial motility (Matveeva et al., 2015). Mitochondria have been shown 

to be connected to microtubules via axon-targeted syntaphilin docking protein in axons 

(Kang et al., 2008) and studies indicate that microtubules mediate mitochondrial 

movements (Morris and Hollenbeck, 1995). Also, one isoform of plectin, a cytolinker 

protein, works as a linker between IFs and mitochondria in mouse fibroblasts (Winter et 

al., 2008). During apoptosis vimentin IFs have been seen to bind CL and it is hypothesized 

that vimentin might affect the localization of CL (Manganelli et al., 2015). K8/K18 binds 

to trichoplein keratin filament-binding protein (TCHP) (Nishizawa et al., 2005). TCHP is 

further connected to the mitochondrial outer membrane (Cerqua et al., 2010). 

 

In mouse β-cells the loss of K8 has been shown to lead to several alterations in 

mitochondria compared to wild type cells: mitochondria are smaller in size and more oval 

shaped. The mitochondrial network is more fragmented, mitochondrial transmembrane 

potential is lower, and mitochondria move more than normal. (Silvander et al., 2017). 

Loss of K8 in mouse hepatocytes caused similar effect: mitochondria were smaller and 

irregularly distributed (Tao et al., 2009). A more scattered mitochondria network has been 

shown to lead to decreased ATP production (Jeng et al., 2005). K6/K16 could also, 

control mitochondrial function, since loss of K16/K6 in skin keratinocytes have been 

shown to disturb mitochondrial respiration, MMP and cristae formation, as well as 

increased mitochondrial mobility (Steen et al., 2020). It has been shown that knockout of 

K8 from the mouse colon leads to decreased amount and activity of mitochondrial 3-

hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). which is the rate-limiting 

enzyme in ketogenesis, and fewer mitochondrial cristae (Helenius et al., 2015). Recent 

studies also showed that loss of K8 in colorectal adenocarcinoma cells leads to diminished 

mitochondrial respiration, lower ATP production rate and decreased levels of OXPHOS 
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complexes (Nyström et al., unpublished data). Previous studies indicate that keratins may 

have a role in colon energy metabolism but requires further study. 

1.4. Caveolae and caveolins 

Caveolins are structural proteins of the caveolae (Figure 6) (Lin et al., 2004), which are 

vesicular invaginations of the cell membrane in several cell types (Kim et al., 2006; 

Chaudhary et al., 2014). Both have a role in a high number of cell processes, for example 

in Ca2+ signaling, cholesterol homeostasis, nitric oxide (NO) signaling, transcytosis and 

endocytosis (Thomsen et al., 2001; Parton and Simons, 2007).  

 

 

 

 

 

 

 

 

 

 

 

1.4.1 Caveolae 

Caveolae are 50-100 nm invaginations of the cell membrane (Bauer et al., 2005) formed 

by caveolins, cavins and accessory proteins (Parton et al., 2018). Caveolae are flask-

shaped lipid structures (Bauer et al., 2005; Kim et al., 2006) containing a high number of 

glycosphingolipids and cholesterol (Thomsen et al., 2001). It is proposed that caveolae 

are assembled in the Golgi apparatus and from there sent to the cell membrane in exocytic 

carriers (Berg et.al, 2009) 

Caveolae are involved in many kinds of processes such as cell signaling, adhesion, lipid 

homeostasis, cell migration, transportation of cholesterol and endocytosis of several 

 

Figure 6. Caveolae and caveolins. Caveolae are invaginations 

of the cell membrane and caveolins are structural proteins of the 

caveolae. Caveolae functions in several important cell 

processes.  
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compounds (Timme et al., 2000; Bauer et al., 2005; Grande-García et al., 2007; Mohan 

et al.,2015). Elevated expression of caveolae have been associated with several diseases, 

including several cancer types (Cohen et al., 2004) e.g. in prostate cancer (Timme et al., 

2000), breast cancer (Bai et al., 2012) and colon cancer (Ha et al., 2012). Caveolae have 

been reported to be involved e.g. in endocytosis of cholera toxin in a certain cell types 

(Torgersen et al., 2001) and e.g. simian virus 40 uses caveolae for entry to the cells 

(Pelkmans et al., 2002). Lack of caveolae has been shown to damage NO signaling, a 

normal function of the cardiac system, reactiveness to insulin and cholesterol homeostasis 

(Bauer et al., 2005).  

TJs are important for barrier function. It has been shown that endocytosis of some TJ 

components is caveolae-mediated. This caveolae-mediated endocytosis coexists with 

actin depolymerization leading to an impaired TJ proteins disturbing the formation of 

barrier function (Shen and Turner, 2006). 

1.4.2 Caveolin-1 

Caveolins are crucial components of caveolae. There are three different caveolin proteins 

in mammals: caveolin-1 (Cav1), caveolin-2 (Cav2) and caveolin-3 (Cav3). (Galbiati et 

al., 2001) There are five isoforms of these three caveolins and one or more of these 

isoforms are found in almost all tissue types (Liu et al., 2002). For example, Cav1 is 

abundant in endothelial cells (Gerbod-Giannone et al., 2019), fibroblast, smooth muscle 

cells, adipocytes and it can also be found in immune cells (Harris et al., 2002). Cav1 and 

Cav2 are usually expressed together as heterooligomers (Scheiffele et al., 1998) 

Formation of caveolae requires Cav1 in non-muscle cells (Yu et al., 2017). Since proteins 

can localize themselves into caveolae and are directly connected to caveolins, it has been 

proposed that caveolae would organize cell membrane signaling cascades and Cav1, 

together with its interacting proteins, could further adjust the signaling networks (Bauer 

et al., 2005). 

Reduced levels of Cav1 mRNA and protein have been associated with human colon 

cancer (Bender et al., 2000). Cav1 appears to affect the development of cancer in two 

ways: as a tumor suppressing or as a tumor promoting factor, and whether it acts as a 

suppressor or promotor depends on cell type, cancer type and/or cancer phenotype (Ha 

and Chi, 2012). Cav1 expression is often increased in advanced colon tumors, which leads 

to changes in aerobic glycolysis. Tumor cells make more ATP and have higher glucose 

uptake, indicating that Cav1 may have a role in promoting tumor growth via higher 
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glucose uptake (Ha and Chi, 2012). The levels of Cav1 were decreased in the colon of 

mice with TNBS-induced colitis, suggesting that Cav1 could have a role in protection 

against inflammation in the colon. It was suggested that the role of Cav1 in anti-

inflammatory response may be one factor behind the observed protective role in 

inflammation. (Weiss et al., 2015). For example, Cav1 have been seen to affect 

macrophages via Toll-like receptor 4 (Wang et al., 2009). Cav1 has also been shown to 

work in protection from advancement of the atherosclerosis via affecting to low density 

lipoprotein (LDL) endocytosis (Gerbod-Giannone et al., 2019). Lastly, increased levels 

of endothelial Cav1 in mice has been shown to hinder barrier function and NO synthesis 

(Bauer et al., 2005). 

1.4.3 Caveolae/ caveolin-1 and intermediate filaments 

Caveolin has been detected to be transported between caveolae in the plasma membrane 

and the Golgi apparatus in a microtubule dependent pathway (Conrad et al., 1995). 

Previously Cav1 has also been linked to the actin cytoskeleton via actin-crosslinker 

protein filamin (Stahlhut and Deurs, 2000). There is also evidence that caveolins/caveolae 

are connected to IFs and Cav1 has been shown to connect to IFs via tyrosine-14 in Cav1 

(Santilman et al., 2007). It has been shown that Cav1 interacts with vimentin, indicating 

that vimentin IFs could have a role in regulating caveolae trafficking since in region with 

high amount of vimentin Cav1 vesicles move less and are less densely packed (Jiu, 2018). 

Caveolae have also been shown to be connected to keratin IFs in zebrafish notochord and 

it is suggested that IFs together with caveolae could work in maintaining the notochord 

as loss of Cav1 leads to an impaired structure of the notochord (Nixon et al., 2007). In 

Caco-2 cells lacking K8 decreased caveolar and mitochondrial Ca2+ levels have been 

reported (Nyström et al., unpublished data). Also, Cav3, which is essential for formation 

of caveolae in muscle cells, has been shown to be associated with desmin, a muscle-

specific IF. It is hypothesized that Cav3 could connect and organize desmin to a network 

of IFs at the sarcolemma and have a role in the specialization of muscle cells (Mermelstein 

et al., 2006). 

1.4.4 Caveolae/ caveolin-1 and mitochondria 

Previous studies show that normal mitochondrial function is associated with Cav1; Cav1 

null mouse embryonic fibroblast (MEF) cells exhibit altered mitochondrial function with 

higher MMP and glucose dependency. In addition to several other metabolic phenotypes 

seen in Cav1 null mouse, changes are also seen in mitochondria-dependent gene 
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expression. (Bosch et al., 2011; Asterholm et al., 2012). The loss of Cav1 in stromal cells 

has also been shown to lead to dysfunction of mitochondria (Pavlides et al., 2010). In 

stromal cells Cav1 deficiency increases NO synthesis. The increased amount of NO 

further leads to nitration of tyrosine at mitochondrial respiratory chain complexes causing 

mitochondrial dysfunction (Pavlides et al., 2010). Cav1 is also necessary for the function 

of some of enzymes needed for CL synthesis (Yu et al., 2017). Cav1 knockdown or 

knockout seems to cause decreased levels of CL which causes mitochondrial dysfunction 

via diminished activity of oxidative phosphorylation complex I and further leads to 

premature senescence in several different cell types via a p53-p21-dependent pathway, 

however the effect may be cell line and stressor dependent (Yu et al., 2017). 

Caveolae have an important role in Ca2+ signaling (Parton & Pozo, 2013), and normal 

Ca2+ homeostasis is important for mitochondrial function (De Stefani & Rizzutom, 2016). 

Ca2+ uptake via mitochondrial Ca2+ uniporter (MCU) regulates mitochondrial ATP 

generation and dynamics (O-Uchi et al., 2013). Mitochondrial Ca2+ handling also in part 

controls Ca2+ signaling and amount of Ca2+ in other parts of a cell (Duchen et al., 2008).  

Studies have also shown that caveolin can localize into mitochondria and affect ETC, 

fluidity of mitochondrial membranes and in a use of oxygen. Lack of Cav1 and Cav2 

leads to impaired ATP synthesis. Caveolins could play a role in a decreased MMP in 

adaptation to stress as well as in Ca2+ homeostasis of the mitochondria. (Fridolfsson et 

al., 2012) 
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2. Aims and hypothesis 

Several studied have shown that IFs and/or keratins affect mitochondria morphology and 

function (Nekrasova et al., 2011; Matveeva et al., 2015; Silvander et al., 2017; Winter et 

al., 2018). It has also been reported that K8–/– mouse colon epithelial cell mitochondria 

have reduced ketogenesis and fewer cristae (Helenius et al., 2015), and in that the loss of 

K8 in Caco-2 cells leads to diminished mitochondrial respiration and mitochondrial and 

caveolar Ca2+ signaling (unpublished data). Since both mitochondrial CL and MMP have 

a role in mitochondrial energy production, and K8–/– β-cells MMP is diminished, 

mitochondria mobility is increased and the mitochondrial network is fragmented 

(Silvander et al., 2017), it is hypothesized that the lack of K8 in Caco-2 cells cause 

changes in CL, MMP, the localization and mobility of mitochondria. 

Since Cav1 has a role in Ca2+ signaling, CL synthesis (Yu et al., 2017) and mitochondrial 

function (Asterholm et al., 2012), changes in Cav1 upon knockout of keratins could be 

one factor behind diminished mitochondrial and caveolar Ca2+ signaling and 

mitochondrial respiration in Caco-2 cells (Nyström et al., unpublished data). 

Lastly, keratins function in maintaining the intestinal barrier function (Zupancic et al., 

2014; Wang et al., 2007) and the lack of K8 in mice has been shown to disturb barrier 

function (Misiorek et al., 2016). In this study it is hypothesized that the loss of K8 in 

Caco-2 cells disturbs barrier formation. 

The major purposes of this study are to examine the role of K8 in mitochondrial function 

in Caco-2 cells, by determining mitochondrial CL and MMP levels and examining the 

distribution and movements of mitochondria as well as localization of Cav1. Also, the 

formation of the barrier function will be followed in Caco-2 cells with and without K8. 

Aims of this study is to  

1. Compare the appearance and localization of Cav1 between K8+/+ and K8‒/‒ Caco-2 cells 

2. Analyze if loss of keratins in Caco-2 cells influences MMP. 

3. Determine mitochondrial CL levels in absence of keratins in Caco-2 cells. 

4. Study mitochondrial movement, appearance and localization after knockout of keratins 

in Caco-2 cells. 

5. Analyze barrier function by measuring trans-epithelial/endothelial electrical resistance 

(TER) in Caco-2 cells with and without keratins.  
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3.Materials and methods  

3.1 Cell Culture  

3.1.1 CRISPR/Cas9 Caco-2 K8+/+ and K8–/– cells 

Caco-2 cells are a human epithelial cell line originally obtained from human colorectal 

adenocarcinoma (Lea, 2015). Caco-2 cells have been used to mimic the intestinal 

epithelial barrier and these cells can spontaneously form a monolayer of cells owning 

several features of common enterocyte cells (Lea, 2015). In CRISPR/Cas9 K8–/– Caco-2 

cells the KRT8 gene has been knocked out using clustered regularly interspaced short 

palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) genome edition 

technique, and a wild type control cell line was been generated from CRISPR/Cas9 -

treated cells which still had the KRT8 gene (Misiorek et al., 2016).  

3.1.2 Plating of the Caco-2 cells 

K8+/+ and K8–/– CRISPR Caco-2 cells were grown on 6-well cell culture plates (Cellstar®, 

Greiner Bio-One, Kremsmünster, Austria) in an 37 ºC incubator with 5 % CO2 supply 

(Thermo Electron Corporation (today Thermo Fisher Scientific), Waltham, 

Massachusetts, United States). The cells were grown in Dulbecco’s Modified Eagle 

Medium (DMEM, Sigma-Aldrich, St. Louis, Missouri, United States) containing 20 % 

Fetal Bovine Serum (FBS, Biowest, Nuaillé, France), with 100 μl/ml Streptomycin + 100 

μl/ml Penicillin antibiotics (Sigma-Aldrich, St. Louis, Missouri, United States) and 2 mM 

L-glutamine (Biowest, Nuaillé, France). 

 

K8+/+ and K8–/– CRISPR Caco-2 cells were subcultured every time the cells reached 80-

90 % confluency. K8+/+ and K8–/– CRISPR Caco-2 cells were grown at the same time and 

divided at the same time points to keep passage number and conditions as similar as 

possible for both cell lines. However, since K8+/+ Caco-2 cell growth was faster than for 

K8–/– cells, the cells were usually divided so that K8+/+ were divided with lower split ratio 

than K8–/– cells. 

 

CRISPR cells were divided around two or three times per week. All liquid substance used 

in cell culture were prewarmed (37 °C) before addition to live cells. To remove dead cells 

the cells were first washed with 1 ml phosphate buffer saline (PBS, Biowest, Nuaillé, 

France). After washing, the cells were detached from the well bottom by trypsinization 
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with 200 μl trypsin containing 0.25 % EDTA (Biowest, Nuaillé, France) at 37 ºC for 8-

10 minutes. Trypsin causes cleavage of cell surface proteins by catalyzing the hydrolysis 

of peptide bonds, leading to detachment of adherent cells from the bottom of the well. 

When the cells were detached from the bottom, 800 μl of fresh medium was added to the 

wells and the cells were subcultured. 

 

Caco-2 cells were grown on 10 cm dishes (Cellstar, Greiner Bio-One, Kremsmünster, 

Austria) in a 37 ºC incubator with 5 % CO2 supply. The cells were grown in DMEM 

containing 10 % FBS, with 100 μl/ml Streptomycin + 100 μl/ml Penicillin antibiotics and 

2 mM L-glutamine.  

 

Caco-2 cells were divided around two or three times per week. To remove dead cells the 

cells were first washed two times with 8 ml phosphate buffer saline. After washing, the 

cells were detached from the well bottom by trypsinization with 2 ml trypsin containing 

0.25% EDTA at 37 ºC for 8-10 minutes. When the cells were detached from the bottom 

8 ml of DMEM was added to the dish and the cell suspension was moved to a 15 ml 

falcon tubes. The cells were centrifuged at 1000 rpm for 4 minutes after which the 

supernatant was discarded, and the pellet was resuspended in 10 ml of DMEM. Caco-2 

cell were usually divided using a 1:4 split ratio onto a new 10 cm dish. 

3.2 Transfection 

Transfection is a method to introduce nuclei acids into a cell, and this can be achieved by 

using one of three different methods: chemical, biological or physical (Kim and 

Eberwine, 2010). In this thesis chemical transfection was applied by using lipofectamine 

2000 (L2000) to deliver plasmid DNA or small interfering RNA (siRNA) into cells. 

Plasmid DNA used were Cav1 untagged- (kind gift from the Daniel Abankwa lab) and 

Cav1-GFP- and mito-RFP -plasmids (kind gift from the Kid Törnquist lab). Also, K8/K18 

siRNA was introduced to the Caco-2 cells via L2000 based transfection. 

 

 3.2.1 siRNA transfection 

 

Specific genes can be silenced by transfection of small interfering RNA (siRNA) into 

cells. Inside the cell this double-stranded siRNA forms, together with several proteins, 

RNA-induced silencing complexes (RISCs) leading to an unwinding of the double-strand 

structure of siRNA. Then this single-stranded siRNA binds to its complementary 
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messenger RNA (mRNA), activating mRNA cleavage which leads to a destruction of 

mRNA, silencing the gene encoding that mRNA. (Filipowicz et al., 2005). 

 

L2000 based transfection of siRNAs was used to silence K8/K18 gene expression in 

Caco-2 cells. Mock- and scramble-transfected cells were used as negative controls. In 

scramble controls siRNA without any target on cells were used and in mock controls all 

other transfection reagents expect siRNA itself were added. (Strnad et al., 2016) 

 

The transfection procedure was conducted three times to maximize the effectiveness of 

the K8/K18 silencing. Caco-2 cells were plated on 24-well plate (Cellstar®, Greiner Bio-

One, Kremsmünster, Austria) according to the protocol in chapter 3.1.2. The cells were 

splitted so that the confluency would be around 20 %- 30 % the next day. On the next day 

the first transfection was conducted. L2000 (Invitrogen, Carlsbad, California, United 

States)-Opti-MEM (Gibco, Thermo Fisher scientific, Waltham, Massachusetts, United 

States) solution was prepared by mixing 1.5 μl L2000 with 25 μl 1x Opti-MEM for one 

24-well plate well and, K8/K18 siRNA and K8/K18 scramble siRNA mixtures were made 

for each well by mixing 30 pmol of 100 μM K8 scramble and 30 pmol 100 μM K18 

scramble siRNA to 25 μl of Opti-MEM or 30 pmol 100 μM K8 siRNA and 30 pmol 100 

μM K18 siRNA to 25 μl Opti-MEM per well. Mock mixture contains only 25 μl of Opti-

MEM per well. The L2000 and siRNA mixtures were then incubated 5 minutes in room 

temperature before mixing the siRNA-Opti-MEM mixture with the L2000-Opti-MEM 

mixture and the final mixtures were incubated for 20 minutes in room temperature. To 

remove dead cells and waste the cells were washed once with PBS and 0.5 ml of fresh 

media was added in each well. After incubation 50 μl of the siRNA- L2000, scramble 

siRNA- L2000 or mock mixtures were added per well, and the plate was gently swirled 

or tapped in order to mix. After 72 hours the transfected Caco-2 cells were subcultured 

onto a 12-well plate (Cellstar, Greiner Bio-One, Kremsmünster, Austria) and on the next 

day the second transfection was conducted in the same way as the first one, but with twice 

as much of all reagents. After 72 hours the cells were subcultured again onto 24-well 

plates containing12 mm coverslips (Fisher scientific, Hampton, New Hampshire, United 

States). On the next day the third siRNA transfection was done in the same way as the 

first one. In order to study caveolin-1, a number of mock, scramble siRNA- and siRNA-

transfected cells were transfected with caveolin-1 -plasmid 48 hours after the last siRNA 

transfection (see chapter 3.2.2 for DNA transfection). 
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3.2.2 DNA transfection 

K8+/+ and K8–/– CRISPR Caco-2 cells were seeded in 12-well plates containing 12 mm 

microscope coverslips, according to the protocol mentioned in chapter 3.1.2, so that the 

confluency would be around 30 %-40 % the next day. The next day CRISPR Caco-2 cells 

or 48 hours from K8/K18 siRNA, mock- K8/K18 scramble siRNA- and K8/K18 siRNA-

treated Caco2 cells (see chapter 3.2.1) were transfected with cav1-GFP or untagged Cav1 

plasmid since Caco-2 cells do not express Cav1. Alternatively, CRISPR cells were 

transfected with mito-RFP to detect mitochondrial appearance and localization.  

For transfection in 12-well plate L2000 -Opti-MEM solution was prepared by mixing 3.5 

μl L2000 with 50 μl 1x Opti-MEM for one well , plasmid-Opti-MEM mixtures were made 

for each plasmid by mixing 1 μg of plasmid DNA with 50 μl Opti-MEM per well. L2000 

and plasmid mixtures were then incubated 5 minutes in room temperature before mixing 

plasmid-Opti-MEM mixtures with L2000-Opti-MEM mixtures and incubated 20 minutes 

in room temperature. To remove dead cells and waste the cells were washed once with 

prewarmed PBS and 1 ml of fresh media was added in each well. After incubation, 100 

μl of the plasmid- L2000 mixtures were added per well, and the plate was gently swirled 

or tapped in order to mix. DNA transfection in 24-well plates was done similarly but, with 

half of the amount of every substance used.  

3.3 Immunostaining 

Immunostaining is a method for detecting a specific protein in a tissue or in cells with the 

help of antibodies which identify only that specific target protein. Primary antibodies, 

which detect the protein(s) under investigation are first introduced to cells or tissue. Next 

secondary antibodies, conjugated with fluorophores, are used to detect the bound primary 

antibodies. (Maity et al., 2013) 

For immunostaining of cells grown on coverslips in 12-well plates, the cells were washed 

3 times with PBS (Medicago, Uppsala, Sweden) and fixed with 1 % paraformaldehyde 

(PFA, Sigma-Aldrich St. Louis, Missouri, United States) in for 15 minutes at room 

temperature. The coverslips were then washed 3 times with PBS for 5 minutes and 

transferred to a moisture chamber. The samples were first washed three times with 

0.025% Triton-X (Sigma-Aldrich, St. Louis, Missouri, United States) in PBS for 5 

minutes. Triton-X is a non-ionic surfactant which is used to permeabilizes cell 

membranes. Next 0.2% Nonidet P-40 (NP-40; Applichem, Darmstadt, Germany) in PBS 

was added for 5 minutes. NP-40 breaks lipid membranes making the cell more permeable 
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for staining. After NP-40 treatment the coverslips were again washed three times with 

0.025% Triton-X for 5 minutes. Next, the samples were blocked with 2.5 % Bovine 

Serum Albumin (BSA, Sigma-Aldrich, St. Louis, Missouri, United States) for 20 minutes 

(buffer A) and then with 2.5 % BSA mixed with 1:50 normal donkey serum (NDS) and 

1:50 normal goat serum (NGS) (buffer C) for 10 minutes. BSA is a non-reactive protein 

and used to block non-specific binding of the antibodies. NDS and NGS are further used 

to block un-specific binding of secondary antibodies which are produced in goat or 

donkey. After blocking the samples were incubated with primary antibody or antibodies 

diluted in buffer C overnight at 4 ⁰C (table 2). 

On the next day the coverslips were washed three times 5 minutes with PBS before 

blocking for 10 minutes with buffer C. After blocking the samples were incubated with 

fluorescent secondary antibodies diluted in buffer C in the dark for 1 hour at room 

temperature (table 2). After incubation with the secondary antibody the samples were 

washed 5 min with PBS, followed by 5 min incubation with the nuclear stain DAPI 

(Invitrogen, Carlsbad California, United States) and/or DRAQ5 (Thermo Fisher 

Scientific, Waltham, Massachusetts, United States) diluted in PBS (table 2). If both DAPI 

and DRAQ5 were added to the same sample, DAPI was first added for 5 min, after which 

DRAQ5 was added for 5 min. The samples were washed with PBS one last time for 5 

min and the coverslips mounted on top of a drop of Prolong Gold antifade (Thermo Fisher, 

Waltham Massachusetts, United States) on a microscope slide (Fisher Scientific, 

Hampton, New Hampshire, United States). Prolong Gold attaches the coverslips on the 

microscope slides and protects the samples from bleaching. The samples were kept 24 

hours in dark at room temperature to let Prolong Gold to dry, before storage at 4 ⁰C in the 

dark, to protect the fluorescence antibodies from bleaching. 

 

CRISPR/Cas9 Caco-2 K8+/+ and K8–/– grown on 12 mm coverslips were washed once and 

incubated with 2.5 uM NAO to stain CL and 50 nM TMRE to detect mitochondria for 30 

minutes in 37 °C in 5 % CO2. After staining the samples were washed once with PBS and 

fixed with 1 % PFA for 15 minutes. Fixed samples were then washed 3 times with PBS 

and the coverslips were mounted using Prolong Gold as done previously. 
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3.3.1 Imaging of immunostained samples 

Microscopy samples were imaged with a 3i CSU-W1 spinning disk microscope (3i 

Intelligent Imaging Innovations, Denver, Colorado, USA) or Leica TCS SP5 confocal 

microscope (Leica, Wetzlar, Germany) using 63x or 100x objectives. 

3.4 Mitochondrial membrane potential measurement 

MMP causes a negative charge around -180mV that can be detected with a positively 

charged tetramethylrhodamine ethyl ester (TMRE) dye. TMRE emits red fluorescence 

and the fluorescence intensity levels correlate with the level of MMP in the cells. 

(Crowley et al., 2016) MMP can be measured using TMRE since it is a lipophilic cation 

which is concentrated in mitochondria in proportion to MMP. TMRE can be used to 

measure MMP also since it does not to a high extent bind to the mitochondria themselves. 

TMRE inhibits OXPHOS to some extent (Scaduto et al., 1999). 

 

Target Primary antibody or plasmid Concentration Secondary antibody or dye Concentration Excitation
Wavelength (nm)

Caveolin-1 

(untagged)

Plasmid

Caveolin-1 (Cell

Signaling Technology, 

United States)

1:400
Anti-rabbit  Alexa Fluor 546 

(Invitrogen, United States)
1:200 546

Caveolin-1-GFP-

plasmid
Cav1-GFP -plasmid 488

Mitochondria

TOM20 (Santa Cruz 

Biotehcnology, United 

States)

1:300

Anti-Rabbit Alexa Fluor  488 

(Invitrogen, United States)
1:200

488

Anti-Rabbit  Alexa Fluor 546 

(Invitrogen, United States)
546

Mitochondrial 

membrane 

potential

TMRE (Abcam, United Kingdom) 25-100 μM 549

Cardiolipin NAO (Sigma-Aldrich, United States) 25-100 μM 495

Mitochondria Mito-RFP -plasmid 555

Nucleus

DRAQ5 (Thermo fisher Scientific, 

United States)

1:700-

1:3000
647

DAPI (Invitrogen, United States) 1:10 000 358- 461

Cell wall
Phalloidin (Molecular Probes Inc, 

United States)
1:200 488 or 546

Keratin 8

K8 (Progen, Germany) 1:300

Anti-Mouse Alexa Fluor 488 

(Thermo fisher Scientific, United 

States)

1:200

647

Anti-Mouse Alexa Fluor 546 

(Thermo fisher Scientific, United 

States)

546

Troma I (DSHB, Iowa) 1:500 

Anti-Rat Alexa Fluor 647 (Thermo 

fisher Scientific, United States)
647

Anti-Rat Alexa Fluor 568 (Thermo 

fisher Scientific, United States)
568

Table 2. Used antibodies, plasmids and dyes. Plasmids, antibodies and dyes and 

their concentrations used in this study. 
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3.4.1 Live cell imaging with TMRE 

 

For live cell imaging of TMRE labelled cells, CRISPR K8+/+ and K8–/– Caco-2 cells was 

plated on glass bottom microwell dishes (MatTek Corporation, Ashland MA USA) 

according the protocol mentioned in the chapter 3.1.2. On the next day the cells were 

washed two times with 37 ⁰C prewarmed Fluorobrite medium (Gibco, Thermo Fisher 

scientific, Waltham, Massachusetts, United States) containing 20 % FBS, with 100 μl/ml 

Streptomycin + 100 μl/ml Penicillin antibiotics and 2 mM L-glutamine. Fluorobrite is a 

DMEM based media designed for live cell imaging with lower background fluorescence 

than standard DMEM. After testing different concentrations (25 nM-200 nM) of TMRE 

(Abcam, Cambridge, United Kingdom) (Appendix C figure 7), 25 nM of TMRE was 

diluted in Fluorobrite media was added to the cells and incubated 20 minutes in a 

incubator (37 ⁰C, 5 % CO2), since TMRE staining overall resulted in bright images and 

since TMRE can be slightly harmful to the cells (Scaduto et al., 1999) the lowest still 

working concentration was decided to be use. After incubation the TMRE solution was 

removed and changed to Fluorobrite media for imaging with a SP5 matrix confocal 

microscope (Leica, Wetzlar, Germany) with live cell imaging settings (37 ℃ and 5 % 

CO2). 

 

3.4.2 Plate reader assay for TMRE 

 

For plate reader TMRE measurements cells were plated in 96-well plates (Cellstar, 

Greiner Bio-One, Kremsmünster, Austria) following the basic protocol mentioned in 

chapter 3.1.2, except after trypsinization and addition of 800 µl DMEM in 6-well plate 

the cells were moved to a 15 ml falcon with 9 ml of DMEM. The cells were centrifuged 

at 1000 rpm for 4 minutes. The supernatant was discarded, and the pellet was resuspended 

into 3 ml of DMEM. The cell quantity was determine by pipeting 10 µl of the cell 

suspension into a Countess Cell Counting Chamber Slides (Invitrogen, Carlsbad, 

California, United States) and cells were counted using a Countess II Automated Cell 

Counter (Invitrogen, Carlsbad, California, United States). The cells were diluted with 

DMEM so that 60 000 cells per well could be pipetted into a 96-well plate. The cells were 

incubated overnight a 37 ⁰C incubator with 5 % CO2 supply.  

 

At first different cell amounts, TMRE concentrations and carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP; Abcam, Cambridge, United Kingdom) 
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concentrations were tested to optimize the protocol (Appendix A). At first a too low cell 

amount (5 000 -15 000) were tested (Appendix A figure 3) and also on actual assay 

around 15 000 cells per well was first used. However, since a high number of cells got 

lost after TMRE treatment and washing and only very few cells remained at the well. The 

loss of cells can be due to TMRE being lightly harmful to the cells and since Caco-2 cells 

prefer growing in clusters and as such the too few cells on the well may cause them to be 

more prone to detach from the plate during the TMRE procedure. On later assays 50 000-

65 000 cells per well was decided to use since there seemed to be more cells left in the 

wells after staining, while still not being too confluent, than with previously tested lower 

numbers of cells. The TMRE concentration from 150 nM to 1200 nM was tested, which 

all worked intensity being lowest at 150 nM and highest at 1200 nM as expected 

(Appendix A figure 1). However, it was decided to use 1000 nM TMRE for plate reader 

assay. FCCP works as a positive control in a TMRE assay since it depolarizes 

mitochondrial membrane potential by making the inner mitochondrial membrane 

permeable to protons, thus destroying the proton gradient of the inner mitochondrial 

membrane (Krhon et al., 1999; Kalbácová et al., 2003). FCCP concentrations from 10 

μM to 50 μM were tested with 1000 nM TMRE staining (Appendix A figure 2). FCCP 

impaired MMP somewhat with all concentration and 50 μM was selected to be used based 

on several test. 

 

On the next day the cells were washed two times with pre-warmed PBS. 50 µM of FCCP, 

diluted in Fluorobrite medium was added to control wells and incubated for 10 minutes 

in a 37 ⁰C incubator with 5 % CO2 supply. 1000nM of TMRE diluted in Fluorobrite 

medium was added to the cells and incubated 20 minutes at the incubator. After 

incubation the TMRE solution was removed and the cells were washed once with PBS. 

Fluorobrite medium was added to the plate before TMRE measurement using a Hidex 

Sense microplate reader (Turku, Finland). The following measurement settings were 

used: 544 nm excitation with 20 nm bandwith and 616 nm emission with 8.5 nm 

bandwith, 15 flashes and bottom read mode. 

 

Normalization of the results to the cell amount was tried, the cells were fixed with 1 % 

PFA 15 min, stained with DAPI and imaged with CellIQ (CM Technologies Oy, 

Tampere, Finland) but the washing steps after TMRE staining caused most of the cells to 

be washed away. Furthermore, live cells were stained with live cell nuclear dye Hoechst 

(Life Technologies, Carlsbad, California, United States) and imaged with an Eclipse Ti2-
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E microscope (Nikon, Minato, Tokyo, Japan) with automatic 96-well 6x6 tile and z-stack 

settings but again many of the cells were washed off. There were also a lot of dead cells 

and cells were located on several levels, so that focusing on the cells did not work and 

hence all cells could not be imaged, since in every 96-well plate image some of the wells 

ended up being wrongly constructed from the smaller 6x6 tile images (Appendix B figure 

7). Also, automatic imaging of 96-well with tile setting take several hours and in addition, 

the calculation of cell number from the images would also take a long time since the 

threshold should be set for every stack in Z-stack and the edges of wells should be 

excluded from every image. Finally, live cells were stained with PrestoBlue cell viability 

reagent (Invitrogen, Carlsbad, California, United States) which changes colour to red 

when in contact with the live cells. This colour change can be detected by absorbance- or 

fluorescence-based methods and used as indicator of cell viability and for cell 

quantification. In this study the PrestoBlue-stained cells were imaged with a Hidex 

microplate reader (Example of CL plate reader assay shown in appendix B figure 4), but 

when tested with different cell amounts, the results were not linear and thus the result of 

the PrestoBlue staining could not be trusted (Appendix B figure 5). 

 

Since the normalization to the cell amount did not work, normalization against cell 

confluency was tried using an Incucyte S3 High Content microscope (Sartorius, 

Göttingen, Germany). Phase contrast imaging with the Incucyte microscope does not 

require any staining and the cells can be imaged right after TMRE measurement with a 

microplate reader (example of CL plate reader assay shown in appendix B figure 6). With 

the Incucyte microscope images of every well of the 96-well plate were automatically 

taken by using a 4x objective to take an image of the whole well or with a 10x objective 

to take a maximum of five images of a single well. However, the size of K8–/– and K8+/+ 

CRISPR Caco-2 cells may differ and normalization to the confluency may not be the best 

method to use in this case.  

3.5 Mitochondrial tracking by live cell imaging 

Cells were grown on glass bottom microwell dishes, stained and washed similarly as were 

done in TMRE live cell imaging in chapter 3.4.1, expect mitochondrial were stained by 

incubation with 50 nM TMRE or 250 nM of Mitotracker deep red (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) for 30 minutes. Mitochondria were imaged 

using a Leica SP5 matrix confocal microscope using a 63x objective with live cell settings 
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(5% CO2 and 37 °C). Cells were imaged every 10 s for 2 min to track the movements of 

mitochondria. 

3.6 Cardiolipin measurement 

10‐N‐nonyl‐3,6‐bis(dimethylamino)acridine (10‐N‐nonyl acridine orange, (NAO) is a 

fluorescent live cell dye which binds to CL in the inner membrane of the mitochondria 

independently of the membrane potential (Gallet et al., 1995; Mileykovskaya et al., 2001). 

When NAO binds to CL it causes the dye to form a dimer leading to a shift in excitation 

and emission wavelengths, from 496 and 525 nm to 450 and 640 nm (Petit et al., 1992; 

Gallet et al., 1995), which can then be detected with fluorescent- or absorbance-based 

methods. Positively charged NAO binds also to other negatively charged phospholipids 

(phosphatidylinositol and phosphatidylserine) but to a lot lesser extent than to CL (Gallet 

et al., 1995; Petit et al.,1992). 

3.6.1 Live cell imaging with NAO 

 

For live cell imaging CRISPR K8+/+ and K8–/– Caco-2 cells were plated on glass bottom 

microwell dishes according to the protocol in chapter 3.1.2. On the next day, the cells 

were washed two times with prewarmed Fluorobrite media. Based on commonly used 

concentrations of NAO for live cell imaging (Jacobson et al., 2002; Gohil et al., 2005), 

concentrations of 25 nM or 50 nM (Appendix C figure 9) of NAO (Sigma Aldrich, St. 

Louis, Missouri, United States) diluted in Fluorobrite was tested by adding dye to the 

cells and incubated 20 minutes in 37 ⁰C. After incubation the NAO solution was removed 

and changed to a Fluorobrite and the cells were imaged using a Leica SP5 matrix confocal 

microscope with live cell imaging settings under 37℃ and 5% CO2 with excitation 

wavelength 495 nm and emission wavelength at 519 nm using 63x objective. Live cell 

imaging of NAO was not continued after testing with 2 concentrations due to extensive 

bleaching. 

 

3.6.2 Plate reader assay for NAO 

 

For plate reader measurement of NAO CRISPR cells were plated in 96-well plates as 

done in chapter 3.4.2. The next day, the cells were washed two times with PBS. 2.5 μM 

of NAO diluted in fluorobrite was added to the cells and incubated for 20 minutes in 37 

⁰C incubator with 5% CO2 supply. After incubation the NAO solution was removed, and 
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the cells were washed once with PBS. Fluorobrite media was added to the plate before 

NAO measurement with a Hidex Sense microplate reader. The following measurement 

settings were used: 485 nm excitation with 10 nm bandwidth and 535 nm emission with 

20 nm bandwith,15 flashes and bottom read mode. 

 

For NAO plate reader a similar test with cell amount were conducted as TMRE plate 

reader chapter 3.4.2, with first assays done with too low cell amount and later assays the 

same 60 000 cells, was used for NAO plate reader assay, since NAO and TMRE assay 

were conducted around same time. Different dye concentrations were tested to optimize 

the protocol. NAO concentrations between 0.5 μM- 5 μM were tested (Appendix A figure 

1). Since common concentration of NAO used for plate reader in literature is 2.5 μM 

(Widlansky et al., 2010), NAO in too high concentrations is toxic to cells impairing 

mitochondrial respiration (Maftah et al., 1990), and the test with 2.5 μM gave a good 

signal, it is used in the NAO plate reader assays in this study. 

 

Normalization of the plate reader results was done as in case of TMRE microplate reader 

as explained in the chapter 3.4.2. (Appendix B). In addition to normalization against cell 

amount or confluence, also normalization of plate reader results by protein assay was 

tested (Appendix B figure 3), following protein assay protocol in chapter 3.7. But since a 

lot of cells were lost during NAO staining and following washing steps, and the total 

protein amount might be changed upon the loss of keratins and then the amount of the 

proteins between the K8+/+ and K8–/– cells can be different, the protein assay is not a 

trustworthy method for normalization of plate reader results. 

 

3.7 Protein assay 

 

For protein assay analysis, lysates of CRISPR/Cas9 K8+/+ and K8-/- cells were first done. 

After washing cells with cold PBS, cold homogenization buffer containing 1x complete 

protease inhibitor cocktail (Roche, Switzerland) and 2% phenylmethylsulfonyl fluoride 

(PMSF) to inhibit protein degradation was added and the cells were scraped from the 

wells. After boiling the samples for 5 minutes in 95 °C, the samples were mechanized 

syringe shedding 8 times with 27G needle. Protein assay was done using Pierce™ BCA 

Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). The assay was conducted 

according manufactures microplate procedure protocol, with some modifications. The 

protein assay kit uses the bicinchoninic acid (BCA) assay method to quantify total protein 
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with colorimetric detection. Proteins in the samples cause the reduction of cupric ion 

(Cu2+) to cupric cation (Cu1+) in an alkaline medium and the kit uses this feature by 

detecting Cu1+ by BCA. Blank sample containing homogenization buffer only and actual 

samples were diluted 1:10 with distilled water. 25 µL of each BSA made protein standard 

(50 µg/ml, 100 µg/ml, 250 µg/ml, 500 µg/ml, 750 µg/ml and 1000 µg/ml), blank and 

samples were pipetted in duplicates into a 96-well microplate. 200 µL of working reagent 

containing 50 parts of buffer A and 1 part of buffer B were pipetted in the wells. The plate 

was tapped gently to mix and incubated at 37 ℃ for 30 minutes in the dark. After this the 

plate was further incubated in room temperature for 10 minutes in the dark before 

absorbance of 560 nm was measured with a spectrophotometer (Wallac Victor2TM, Perkin 

Elmer Waltham, Massachusetts, USA). Total protein was calculated in Excel as in the 

Pierce™ BCA Protein Assay Kit protocol. A standard curve was created from the average 

of blank-corrected 560 nm measurements for each BSA standard vs. its concentration. A 

standard curve was then used to determine the protein concentrations of the samples. 

 

3.8 Barrier function measurement 

 

A CellZscope+ device (Nanoanalytics, Münster Germany) was used to determine the 

impedance of the cell layers capable of forming barrier, and will give values for ohmic 

resistance (TER, transepithelial / -endothelial resistance) and capacitance (Ccl) of the cell 

layer. The TER values correlate with the permeability and integrity of cell layers. Ccl 

value measures confluency of the cell layer (Srinivasan et al., 2015) Cells are grown on 

semipermeable filter inserts. Two electrodes are used to get readings of electrical current; 

one electrode is placed into the apical compartment inside the inserts and the other is 

located on the basolateral side in the lower compartment, so that the cell layer is located 

between the two electrodes (Image 7).  

 

Caco-2, CRISPR/Cas9 Caco2 K8+/+ and K8–/– cells were counted as done in chapter 3.4.2 

and plated on 6.5 mm polystyrene Transwell Permeable Support inserts (COSTAR, 

Corning Incorporated, Kennebunk ME USA) 10 000 (experiment 1) or 30 000 

(experiment 2) cells was counted per insert. Reference (control) inserts contained no cells. 

The cells were incubated two days at 37 ⁰C, 5% CO2 incubator before starting the barrier 

function measurements with the Cellzscope+ device. The measurements took three to four 

weeks and 3/4 of the media was changed every two days and a complete media change 

was done once a week. 
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When the barrier was formed Caco-2 cells were transfected once with K8/K18 siRNA 

similar way as done in the chapter 3.2.1. Also, two types of controls without knockout of 

K8 were done; three inserts of the negative control scramble and three inserts of mock 

controls, also three inserts were left without transfection.  

 

For L2000 Opti-MEM solution was prepared by mixing 0.7 μl L2000 with 12.5 μl Opti-

MEM for one insert. K8/K18 siRNA and K8/K18 scramble siRNA mixtures were made 

for each by mixing 10 pmol/ insert of 100 μM K8 scramble and 100 μM K18 scramble 

siRNA to Opti-MEM or 10 pmol/insert 100 μM K8 siRNA 100 μM K18 siRNA Opti-

MEM. L2000, scramble and siRNA mixtures were then incubated 5 minutes in room 

temperature before mixing siRNA-Opti-MEM and scramble mixtures with L200+Opti-

MEM mixtures and incubated 20 minutes in room temperature. After incubation 25 μl of 

the siRNA, scramble or mock mixtures were pipetted to the inserts.  

 

In the second experiment only a scramble siRNA control was used as negative control for 

siRNA treatment. In the second experiment the transfection was done with higher siRNA 

concentration: 20 pmol of scrambled siRNA per insert and 20 pmol K8/K18 siRNA per 

insert since 10 pmol did not seem to be enough to knock out K8/K18 as was done 

previously. However, transfection still did not cause any difference in barrier function 

measurements. 

 

 

 

                 

insert

               

lower compartment

           

           

 

   

          
V

Figure 7. The CellZscope+ device and TER measurement. Two electrodes, 

measuring electrical resistance, are placed so that the cell layer grown on 

semipermeable insert is located between them. 
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3.9 Quantification and statistics 

3.9.1 Quantification of MMP from live cell imaging  

The corrected total cell fluorescence (CTCF), or in this case more correct term to use 

would be the corrected total mitochondrial fluorescence, was measured from TMRE live 

cell imaging microscope images. CTCF measurements were conducted by using Image J 

software (Reuden et al., 2017) by first drawing an area of interest (ROI) around 10 

mitochondria in one cell in the image (Figure 8) while two or three background ROIs 

without mitochondria were drawn. Image J then calculates the area mean fluorescence 

and integrated density for the ROIs. CTCF was then determined in Excel by calculating 

the average area of mitochondria multiplied with the mean fluorescence of background 

readings and the resulting value was then subtracted from the average of integrated 

density of all 10 mitochondria. The significance of result was determined by Student’s t-

test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Mitochondrial membrane potential measurement from live cell imaging. 

CTCF was calculated for MMP live cell imaging experiment. By using Image J software, 

ROI was drawn around 10 mitochondria per image and two to three background ROIs. 

Then area, mean fluorescence and integrated density (IntDen) were measured for every 

ROI by the software. After this the CTCF was calculated in Excel by calculating first 

average of mitochondria areas times mean fluorescence of background readings. The 

result was subtracted from the average of the IntDen of the 10 mitochondria. The image 

is zoomed for drawing ROI. Arrow + blue circle= ROI area around mitochondria. Green= 

TMRE. CTCF= Corrected total cell fluorescence. 

 

CTCF = Integrated Density - (Area of 

mitochondria x Mean fluorescence of 

background) 
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3.9.2 Quantification and statistics of plate reader experiments 

Plate reader results represents the average of at least 16 wells per genotype from which 

the average of 8 blank wells (only cells in Fluorobrite media) per genotype has been 

subtracted, to reduce any possible interference from the background readings. The plate 

reader assay was repeated at least 3 times and two-tailed Student T-test was used to 

measure statistical difference between the genotypes. T-test results were considered 

significant if p-values were *p<0.05, **p<0.01 and ***p<0.001. 

 

3.9.3. Mitochondrial tracking 

 

Mitochondria clusters movements were followed using manual tracking plugin Fiji 

software (Schindelin et al., 2012). 10-15 mitochondria cluster per image were tracked and 

in total 92-208 mitochondria cluster per genotype were tracked. Fiji then calculates the 

velocity of every mitochondria cluster at every time point. The average velocity of every 

mitochondrial cluster track was calculated in Excel and the significance of the results was 

determined by student T-test. T-test results were considered significant if P-values were 

*p<0.05, **p<0.01 and ***p<0.001 
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4. Results 

4.1 Caco-2 cells have more, larger caveolin-1 aggregates and less, smaller 

caveolin-1 dots in cells without keratins 

Previously done microarray indicated that cavin-1 and Cav1 mRNA levels were 

decreased in K8–/– mice colonic epithelial cells (unpublished data). Previous studies has 

also been shown that mitochondrial and caveolar Ca2+ signaling and mitochondrial 

respiration are diminished in K8–/– Caco-2 cells (Nyström et al., unpublished data) and 

since Cav1 has a role in Ca2+ signaling, CL synthesis (Yu et al., 2017) and mitochondrial 

function (Asterholm et al., 2012), changes in Cav1 upon knockout of K8 could be one 

factor behind these changes. 

The possible influence of keratins on the Cav1 distribution was studied by transfection of 

Cav1 into CRISPR/Cas9 K8+/+ and K8–/– Caco-2 cells followed by immunostaining and 

microscopy. Immunostaining revealed that there were more large aggregates of Cav1 and 

less smaller Cav1 dots in K8–/– compared to K8+/+ cells and this could be seen with both 

Cav1 -GFP (Figure 9A) and untagged Cav1 (Figure 9B) plasmid constructs. K8 staining 

confirmed that K8–/– cells lack keratin filaments, even though some K8 dots remained, 

while K8+/+ cells have an intact K8 filament network (not shown). 

Immunostaining of Caco-2 cells treated with K8/K18 siRNA and transfected with 

untagged Cav1 plasmid showed that there were cells lacking K8 completely, while in 

some cells the transfection was not effective, and they still had keratin filaments (Figure 

10). All mock-treated control Caco-2 cells had K8 filaments as expected (Figure 10). 

Also, K8/K18 siRNA-treated Caco-2 cells showed similar effect on Cav1 protein as 

CRISPR/Cas9 K8–/– cells, having more aggregation of larger Cav1 particles in areas 

lacking K8 filaments, than mock treated Caco-2 cells (Figure 10). 

Staining of F-actin with phalloidin to detect cell membranes for distinguishing individual 

cells for quantification, showed that in some cases the membranes of individual cells 

could clearly seen, but in other cases the staining of membranes was messy, independent 

of siRNA. Therefore F-acting staining could not be used to separate cells from each other 

in these cases for quantification (not shown). 

In summary the loss of K8 in Caco-2 cells lead to the aggregation of Cav1 compared to 

the cells with normal K8 network. 
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K8-/-

K8+/+

A)
Cav1 (GFP -plasmid) DNA + Cav1 (GFP -plasmid)

B)
DNA + Cav1 (untagged -plasmid)                          

K8+/+

K8-/-

Figure 9. CRISPR/Cas9 Caco-2 K8–/– cells have larger Cav1 

aggregates and less small Cav1 speckles. Cav1 localization was 

analysed in the CRISPR/Cas9 Caco2 K8+/+ and K8–/– cells by 

transfecting the cells with a) Cav1 GFP- (green colour) or b) untagged 

Cav1-plasmids and immunostained for nucleus (blue colour) and in 

the case of untagged Cav1 for Cav1 (red colour). K8–/– cells (white 

arrows) have larger Cav1 aggregates compared to K8+/+ cells (yellow 

arrows). Scale bar =25 μm. 
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4.2 Mitochondrial membrane potential is lower in the absence of K8 in 

Caco-2 cells 

Since in previous studies keratins have been shown to affect mitochondrial function and 

energy metabolism in e.g. colon epithelial and β-cells (Helenius et al., 2015; Silvander et 

al., 2017) and in Caco-2 cells (Nyström et al., unpublished), the effect of keratins on 

mitochondrial membrane potential (MMP) was measured in CRISPR/Cas9 Caco2 K8+/+ 

and K8–/– cells using TMRE.  

At first labelling CRISPR/Cas9 Caco-2 cells with TMRE and live cell imaging with 

confocal microscopy was conducted.Even though, in several images from live cell 

imaging it seemed that TMRE intensity indicating MMP levels would be decreased in 

CRISPR/Cas9 Caco-2 K8–/– cells compared to K8+/+ cells (Figure 11A), quantification of 

the images showed that K8+/+ cells (Figure 11B, black bar) compared to K8–/– cells (Figure 

11B white bar) have no difference in MMP levels, even though in K8–/– cells may be 

lightly but insignificantly decrease overall, taking in account all the images and tested 

 

Mock

K8/K18 

siRNA

Cav1 (untagged -plasmid) K8 + Cav1 (untagged –plasmid) DNA + K8 + Cav1 (untagged –plasmid)

Figure 10. In Caco-2 cells transfected K8/K18 siRNA to downregulated K8 leads to 

the aggregation of the Cav1 and decreased amount of small Cav1 speckles. To study 

Cav1 localization in Caco-2 cells, the cells were mock-transfected or transfected with 

K8/K18 siRNA, after which the cells were transfected with Cav1 plasmid and 

immunostained for Cav1 (green), nucleus (blue colour) and K8 (magenta). Mock treated 

Caco-2 cells have smaller Cav1 speckles (yellow arrow) compared to K8/K18 siRNA 

treated cells lacking K8 (white arrow). Scale bar = 25 μm. 
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concentrations of TMRE (Appendix C figure 8). However, since live cell imaging could 

not be done exactly at the same time for both genotypes and due to possible differences 

in bleaching of the dye between the genotypes the results of live cell imaging are not fully 

reliable. Also, TMRE staining with fixed samples imaged with confocal microscope were 

tested, but the staining did not seem to work (not shown). 
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Figure 11. According to live cell microscopy MMP had a trend of light decrease 

in CRISPR K8–/– Caco-2 cells. A) CRISPR/Cas9 K8+/+ and K8–/– cells were labelled 

with 25 nM TMRE to detect mitochondria (green colour) and live cell imaging with 

confocal microscope was conducted. Intensity of TMRE seemed to be decreased on 

some of the CRISPR/Cas9 K8–/– Caco-2 cells (white arrow) compared to K8+/+ cells 

(yellow arrow). B) Quantification of TMRE intensity from live cell images. There 

are no significant difference in MMP levels between CRISPR/Cas9 Caco-2 K8–/–

cells (black bar) compared to K8+/+ cells (white bar), even though MMP may have a 

trend to be lightly lower in K8–/–cells. However, bleaching of the dye make the result 

untrustworthy. Results are average of 25 images per genotype, with 10 mitochondria 

per image. Scale bar = 25 μm. Data is presented as mean plus/minus standard 

deviation. 
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Plate reader assay with TMRE showed that in the K8–/– cells MMP decreased compared 

to K8+/+ cells (Figure 12). Also, TMRE fluorescence intensity levels were lower in 

positive control samples treated with FCCP (Figure 12), as expected. Normalization of 

the plate reader results to the number of cells by live cell or fixed cell nuclear staining or 

to confluency by Incucyte S3 High Content microscope imaging (Appendix B) was 

attempted but was unsuccessful, since a lot of cells were lost after TMRE staining and/or 

the washing and fixation steps after it. Analyzed by eye most of the plate reader assays 

more of K8–/– cells seemed to be lost compare to K8+/+ cells during the plate reader assay 

(Appendix B figure 6 and 7), which makes plate reader assay results unreliable without 

normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. MMP is decreased in CRISPR/Cas9 K8–/– Caco-2 cells compared 

K8+/+ Caco-2 cells in plate reader assay. CRISPR/Cas9 K8+/+ (white bar) and K8–

/– (black bar) Caco-2
 
cells were stained with TMRE and a plate reader assay was 

conducted. 8 blank wells with cells only (no TMRE dye) per genotype have been 

subtracted from the results and all wells were normalized to one reference well 

intensity. Results are the average of 29 wells per genotype from one plate reader 

experiment. RFU = relative fluorescence units. dark grey bar = CRISPR/Cas9 Caco-

2 K8+/+ TMRE intensity with FCCP. Light grey bar = CRISPR/Cas9 Caco-2 K8–/– 

TMRE intensity with FCCP. P-value was determined with student-t test. 

***p<0.001. Data is presented as mean plus/minus standard deviation. 
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4.3 Lack of K8 in CRISPR/Cas9 Caco-2 cells lead to decreased levels of 

cardiolipin  

To further study mitochondrial function and the diminished respiration phenotype in 

absence of keratins in previous studies (Nyström et al., unpublished), the CL levels in 

CRISPR/Cas9 K8+/+ and K8 –/– Caco-2 cells were studied using the fluorescent CL-marker 

NAO in a plate reader setting. The fluorescence intensity of NAO, revealing the levels of 

CL, was significantly higher in CRISPR/Cas9 Caco2 K8+/+ cells compared to K8–/– cells 

(Figure 13). Normalization of plate reader results to the number of cells, protein amount 

or to confluency was attempted, but it was unsuccessful due to loss of cells in washing 

steps after NAO staining (Appendix B). Live cell imaging by confocal microscopy was 

also tested with NAO-stained CRISPR/Cas9 Caco2 cells (Appendix C figure 9), but due 

to extensive and quick bleaching of the fluorescence dye live cell imaging was not 

continued. Also, NAO staining with fixed samples imaged with confocal microscope was 

tested, but staining was unsuccessful (not shown). 
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Figure 13. Mitochondrial cardiolipin levels are decreased in K8–/– 

CRISPR/Cas9 Caco-2 cells compared to K8+/+ CRISPR/cas9 Caco-2 

cells. CRISPR/Cas9 Caco-2 K8+/+ (white bar) and K8–/– (black bar) cells were 

labelled with NAO to detect CL and a plate reader assay was conducted to 

detect the intensity levels of the NAO. The average of blank wells with cells 

only (no NAO dye) have been subtracted from the results and all wells are 

normalized to one reference well intensity. Results are the average of 16 wells 

per genotype from one plate reader experiment. n=16. P-value was 

determined with student t-test. ***p<0.001, data is presented as mean 

plus/minus standard deviation. RFU = relative fluorescence units. 
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4.4 Mitochondria are more dispersed in CRISPR K8–/– Caco-2 cells 

According to previous studies IFs may affect mitochondrial localization and distribution 

(Nekrasova et al., 2011; Silvander et al., 2017; Steen et al., 2020). To analyze if the same 

is true also in Caco-2 cells lacking K8, mitochondria distribution and localization were 

studied by transfection with a mitochondrial marker, mito-RFP, and/or immunostaining. 

Immunostaining of mitochondria with TOM20 showed that the mitochondrial network 

could be more fragmented in CRISPR/Cas9 K8–/– Caco-2 cells compared to K8+/+ cells 

(Figure 14), even if the cells in these settings have very small cytoplasmic volume and 

the mitochondrial patterns are hard to evaluate and quantify. The distribution of the 

mitochondrial network could be seen more clearly in mito-RFP transfected cells (Figure 

14B), but cells were highly heterogenous regarding mitochondrial appearance. However, 

according to the TOM20 staining the mitochondrial network seemed to be less organized 

in K8–/– cells compared to K8+/+ cells, where TOM20 staining made a clear pattern around 

the cells near the cell membrane following K8 staining. This pattern was less clear or 

missing from many of the K8–/– cells (Figure 14 A, white arrows). 

In case of K8/K18 siRNA treated or mock treated Caco-2 cells, a slightly similar but 

milder effect on the re-distribution of mitochondria was seen in Caco-2 cells which lack 

K8 as in CRISPR/Cas9 K8–/– cells (Figure 15). 

In conclusion, in Caco-2 cells lacking K8 filaments exhibit a more dispersed 

mitochondrial network 
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K8+/+ 

K8-/-

A)

Mitochondria (mito-RFP -plasmid) DNA + Mitochondria (mito-RFP -plasmid) 
B)

Mitochondria (TOM20) DNA + Mitochondria (TOM20) 

K8-/-

K8+/+ 

Figure 14. Loss of K8 in CRISPR/Cas9 Caco-2 leads to dispersed mitochondrial 

network. To study mitochondria localization as a function of K8, CRISPR/Cas9 Caco2 

K8–/– and K8+/+ cells were A) fixed and immunostained with TOM20 antibody to detect 

mitochondria (green colour) or B) transfected with mito-RFP (red colour) and fixed. 

Images are maximum z-projection of the cell monolayer. Blue = nuclei (DRAQ5). Scale 

bar = 25 μm. Arrows = example of the cell where mitochondria staining made a clear 

pattern around the cells near the cell membrane in K8+/+ cells, but not in K8-/- cells. 
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4.5 Mitochondrial mobility is increased upon the loss of K8 in Caco-2 cells 

In previous studies mitochondrial mobility have been reported to be increased upon the 

loss of keratins (Silvander et al., 2017; Steen et al., 2020). To examine the role of K8 in 

mitochondrial movements in Caco-2 cells, CRISPR/Cas9 K8+/+ and K8–/– Caco-2 cells 

were labelled with Mitotracker Deep Red or TMRE and imaged over time. Individual 

mitochondria clusters were tracked with the Fiji manual tracking plugin. Analysis of 

mitochondrial mobility showed that mitochondria moved significantly faster in 

CRISPR/Cas9 K8–/– Caco-2 cells compared to K8+/+ cells as seen with both dyes (Figure 

16). 

 

 

 

K8/K18 

siRNA

mock

Mitochondria (TOM20) DNA + Mitochondria (TOM20) + K8K8

Figure 15. In Caco-2 cells treated with K8/K18 siRNA to downregulated K8 

mitochondria are more dispersed. To study localization of mitochondria Caco-2 cells 

were mock-transfected or transfected with with K8/K18 siRNA and immunostained for 

mitochondria (green colour), K8 (magenta colour) and for DNA (blue colour). With 

TOM20 staining, cells in which K8 still remained (yellow arrows), mitochondria made 

more clear pattern around the cells near the cell membrane following K8 staining, even 

though similar pattern could still be seen in cells lacking K8 (white arrows) it was less 

clear and missing from some cells. Scale bar = 25 μm. 
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4.6 Intestinal barrier formation is disturbed in CRISPR K8 –/– Caco-2 cells 

Previously, in K8–/– mice intestinal barrier function has been shown to be disrupted (Wang 

et al., 2007; Misiorek et al., 2016) and several other studies indicate that keratins function 

in maintaining and/or formation of barriers (Liovic et al., 2009; Zupancic et al., 2014). 

CRISPR/Cas9 Caco-2 K8+/+ and K8–/– cell monolayers were followed with a Cellzscope+ 

device, to investigate if similar distribution of the barrier formation can be seen in Caco-

2 cells lacking keratins as has been seen in previous studies. 

For this, two pilot experiments were performed. In the first experiment done with lower 

cell amounts and older (higher passage) CRISPR/Cas9 Caco-2 K8–/– cultures, cells 

formed only a very mild increase in TER after around 250-450 hours of the experiment 

(Figure 17 A1) even though the cells reached confluency already at 130 hours (Figure 17 

 

K8+/+

Mitochondria (TMRE)

A)

K8-/-

C)

B)

Figure 16. Mitochondria movement analysis. Mitochondria were labelled with MitoTracker 

deep red or TMRE and tracked by confocal microscopy. A) Example of mitochondrial tracking 

with TMRE (red colour) in CRISPR/Cas9 K8+/+ and K8–/– Caco-2 cells. In zoomed images 

mitochondria cluster time lapse tracks marked in different colors. B) Velocity of mitochondria 

stained with TMRE. C) Velocity of mitochondria stained with Mitotracker Deep Red. Results 

are average of 208 mitochondria for Mitotracker deep red and 100 mitochondria for TMRE. 

Student t-test were used to determine p-value. *** p<0.001. Scale bar = 25 μm. Data is 

presented as mean plus/minus standard deviation. 
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B1). However, K8–/– cells lost this confluency after 400 hours. Importantly, CRISPR/Cas9 

Caco-2 K8+/+ TER values reached higher values earlier than K8–/– cells, TER being at a 

maximum value already at around 250 hours from the start of the experiment, but with 

very high variation between inserts (Figure 17 B1). K8+/+ cells reached confluency also 

earlier than K8–/– and remained confluent. In the second experiment, with a higher amount 

of younger (lower passage) cells, in the CRISPR/Cas9 Caco-2 K8–/– cells barrier was 

formed starting from 100 hours (Figure 17 A2 blue line), but the formation of the barrier 

was delayed compared to K8+/+ cells where the formation of the barrier started already at 

around 70 hours (Figure 17 A2, violet line), the reason behind delayed barrier formation 

in K8–/– is probably due to delay in reaching confluency compared to K8+/+ cells (Figure 

17 B2). However, in K8+/+ cells it took shorter time period to achieve higher TER values 

and it took longer time to TER values to decrease after cells start to loose confluency than 

in K8–/– cells. K8–/– cells took longer time to achieve lower TER values and also lost TER 

in shorter time period after losing confluency (Figure 17 B1 and B2) than K8+/+ cells. 

Barrier function experiment were conducted also for Caco-2 cells, which were transfected 

with K8/K18 siRNA after TER values had risen (barrier had formed) and cell layer 

reached confluency. However, siRNA transfection did not seem to have any effect on 

TER levels and barrier function in Caco-2 cells before and after K8/K18 siRNA 

transfection (not shown) resembled CRISPR/Cas9 K8+/+ Caco-2 cells. 

Barrier function experiments revealed that the lack of K8 in Caco-2 cells could disturb 

the formation of the barrier function. 
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B1)A1)

A2) B2)

Figure 17. Loss of K8 in CRISPR/cas9 Caco-2 disturbs barrier formation. CRISPR/Cas9 

Caco-2 K8+/+ and K8–/– cells were seeded on insert and A) barrier function (TER, transepithelial 

resistance) and B) confluency (conductance, Ccl) were measured by the Cellzscope+ device in 

two different experiments. Cell layer is confluent when Ccl value is less than 5. Cellzscope+ 

measures automatically long-term measurements of transepithelial /transendothelial resistance of 

cell layers under physiological conditions. Results are average of 4 K8+/+ cell inserts and 6 K8–/– 

cell inserts. Magenta = CRISPR/Cas9 Caco-2 K8+/+. Blue = CRISPR/Cas9 Caco-2 K8–/–.  
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5. Discussion 

5.1 Keratins have a role in mitochondrial function in Caco-2 cells 

Several studies have linked IFs to the mitochondrial morphology and function (Nekrasova 

et al., 2011; Matveeva et al., 2015; Silvander et al., 2017; Winter et al., 2018; Steen et al., 

2020). Furthermore, the loss of K8 in mouse colon leads to diminished energy 

metabolism, as K8–/– mice colonocytes have a lower rate of ketogenesis in mitochondria 

and decreased levels of rate-limiting ketogenesis enzyme HMGCS2. Also, mitochondria 

in K8-/- mouse colon had fewer and more diffuse cristae. (Helenius et al., 2015). The lack 

of K8 in Caco-2 cells has also been seen to lead decreased mitochondrial and caveolar 

Ca2+ signalling and decreased mitochondrial respiration (Nyström et al., unpublished 

data). In this study the in vitro Caco-2 cell model was used to further characterize and 

determine possible causes behind the diminished energy metabolism phenotype in K8–/– 

Caco-2 cell. 

In mouse β-cells the loss of K8 has been reported to lead to alterations in mitochondrial 

appearance and localization, and to decrease MMP (Silvander et al., 2017). Since, the 

MMP and the mitochondria-specific lipid CL, have crucial roles in energy production in 

mitochondria by affecting OXPHOS, changes in them could be behind the K8 knockout 

energy metabolism phenotype. First live cell imaging with confocal microscope was done 

to measure CL and MMP levels, but the results were untrustworthy, since K8–/– and K8+/+ 

Caco-2 cells could not be imaged exactly at the same time and due to high bleaching of 

the dyes the levels of bleaching might differ between the genotypes. 

According to this thesis, both MMP and CL levels could be decreased in CRISPR/Cas9 

Caco-2 K8–/– cells compared to K8+/+ cells, but since normalization to the number of cells 

or confluency of cells did not succeed, the decreased levels of MMP and CL seen can be 

due to different amounts of cells between the genotypes, rather than a true difference 

between the intensity levels of the dyes. The results of normalization tests showed that 

after TMRE or NAO staining some of the cells were washed away. However, plate reader 

assay shown in this study the number of cells seemed to be somewhat similar between 

the genotypes. In most cases more K8–/– cells seemed to detach than K8+/+ cells after 

staining and following washing (Appendix B figures B6 and B7), which makes the result 

of plate reader assay questionable without normalization, as the same number of cells 

were plated per genotype. Since keratins filaments work in protection of the cell against 

stress, the K8–/– cell might be more prone to harmful effect of NAO and TMRE dyes and 
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as such die and detach from the plate. Also, lack of K8 filaments may lead to diminished 

mechanical support and decrease in hemidesmosomes, which could further affect the cell 

viability and/or make them prone to detach from the plate. After several tests with 

different cell amounts and washing protocols, some of the plate reader assays were done 

in such a way that a more similar number of cells per genotype were left to the wells after 

plate reader assay. However, even if an equal amount of cells would remain after the 

assay, normalization to confluence could be problematic as cells may be of different sizes 

between the two genotypes and, in fact, by eye K8–/– cells appear to be slightly smaller in 

size than K8+/+ cells. Also, normalization to protein assay has similar kind problems since 

the total protein amount between genotypes may differ. To overcome the problem of 

losing cells after treatment, a reagent like Cell-Tak tissue adhesive could be used to adhere 

cells to the bottom of the plate harder and faster. Gluing cells to the bottom of wells could 

make normalization unnecessary as plating cells and doing the plate reader assay could 

be done at the same day and the cells would not have time to proliferate and in theory 

there should be the same amount of cells during the plate reader assay as when plated.  

In addition, staining CL with NAO may not be the most reliable way to study the levels 

of CL, since binding of NAO to CL in vivo can be unspecific (Gohil et al., 2005). NAO, 

in high concentrations, is also toxic to cells, leading to impaired mitochondrial respiration 

(Maftah et al., 1990). In the future CL levels in Caco-2 cells could be analysed by thin 

layer chromatography (Gohil et al., 2005) to confirm that CL levels are diminished in K8–

/– Caco-2 cells compared to K8 +/+ cells.  

If the decreased levels of CL and MMP seen without normalization were the true 

situation, and since both MMP and CL are crucial for normal function of mitochondria 

and for OXPHOS (Koopman et al. 2008; Yan and Kang, 2012; Jones, et al., 2017; Zorova 

et al., 2018) these changes could disturb mitochondrial function and ATP production, 

possibly leading to diminished energy metabolism. Such diminished energy metabolism 

phenotype has also been seen in K8–/– Caco-2 cells (Nyström et al., unpublished data). 

The levels of mitochondrial protein prohibitin are also seen to be diminished in Caco-2 

cells lacking K8 (Nyström et al., unpublished data). One way in which prohibitin affects 

mitochondrial function is by controlling CL development (Richter-Dennerlein et al., 

2014), and therefore the decreased CL levels may have been caused by decreased 

prohibitin levels. Changes in CL levels also affect mitochondrial appearance, since CL 

has a role in maintaining the integrity of mitochondrial cristae membranes (Ikon and 

Ryan, 2017). Lack of K8 in mice β-cells and colonocytes changed the appearance of 
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mitochondrial cristae (Misiorek et al., 2016; Silvander et al., 2017) and CL could be one 

factor causing this change. To confirm if lack of K8 influences the structure of 

mitochondria, transmission electron microscopy could be conducted in the future to study 

mitochondria appearance in detail in K8–/– and K8+/+ Caco-2 cells. MMP is generated via 

proton pumps during OXPHOS (Crowley et al., 2016) and as such faults in OXPHOS, 

which has previously been seen in K8‒/‒ Caco-2 cells with diminished mitochondrial 

respiration and decreased levels of the OXPHOS complexes (Nyström et al., unpublished 

data), may lead to disruptions in the generation of MMP. CL regulates the activity and/or 

synthesis of several of the OXPHOS complexes (Lange et al., 2001; Yu et al., 2017; 

Acehan et al, 2011; Malkamäki and Sharma, 2019). The lack of CL has been shown to 

diminish activity of the ADP/ATP carrier and CIV leading to reduced import of protons, 

which further disturbs MMP (Jiang et al., 2000), and as such the decreased CL levels 

could be one factor behind the lower levels of some of the OXPHOS complexes in K8–/– 

Caco-2 cells (Nyström et al., unpublished data). Reduced levels of OXPHOS complexes 

may also disturb generation of proton gradient possibly affecting to the formation of 

MMP.  

The distribution of mitochondria was studied in Caco-2 cells by immunostaining. The 

immunostaining was conducted in two ways for Caco-2 cells: with mitochondria specific 

staining with TOM20 antibody or by transfection of mito-RFP -plasmid. Mitochondrial 

movement in Caco-2 cells were followed by staining with TMRE or Mitotracker deep red 

and live cell imaged taking images every 10 second for 2 min. Mitochondrial motility 

experiments with both used dyes showed that mitochondria moved significantly faster in 

K8–/– Caco-2 cells compared to K8+/+ Caco-2 cells. Although, mitochondrial network was 

highly heterogeneous and no clear difference was seen between K8-/- Caco-2 cells 

compared to K8+/+ cells in TOM20 staining, in overall it seemed that the mitochondrial 

network could be more fragmented in the Caco-2 K8–/– cells compared to K8+/+ cells. The 

mitochondrial network seemed to be less organized in K8–/– cells compared to K8+/+ cells, 

where TOM20 staining made a clear pattern around the cells accumulating near to the 

cell membrane, which was missing from many of the K8–/– cells. Also, by the eye, in K8+/+ 

cells TOM20 staining seemed to follow keratin staining, which could indicate that 

keratins could be co-localizes with or bind to mitochondria. However, same kind 

mitochondrial organization, was seen also in some of the K8–/– cells, although with lesser 

amount than in K8+/+ cells. The RFP tagged plasmid transfected mitochondria were more 

clearly distributed in several of K8–/– Caco-2 cells compared to K8+/+ cells.  
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In previous studies in mice β-cells the loss of K8 leaded to fragmented mitochondrial 

network and increased mitochondrial mobility (Silvander et al., 2017). Also, loss of 

K16/K6 in skin keratinocytes disturb mitochondrial respiration and cristae formation, as 

well as increased mitochondrial mobility (Steen et al., 20 20). The rate of ATP production 

is lower when mitochondria are dispersed (Jeng et al., 2011) and as such a fragmented 

mitochondrial network leading to lower production of ATP could also partly explain the 

diminished mitochondrial respiration and ATP production seen in Caco-2 cells (Nyström 

et al., unpublished data). Also, elevated mitochondrial movements might affect energy 

metabolism since mitochondria accumulate to areas with high energy demands (Morris 

and Hollenbeck 1995). MMP drives also Ca2+ uptake into mitochondria and Ca2+ increase 

has been shown to lead decrease in mitochondrial movement and inhibition of 

mitochondrial movement increases Ca2+ uptake into mitochondria. (Yi et al., 2004). Ca2+ 

control of mitochondrial movement provides means to arrange ATP production and Ca2+ 

buffering of the mitochondria into areas where those are needed (Yi et al.,2004). As such 

keratins may affect to the Ca2+ homeostasis via Cav1 and MMP leading to the changes 

on mitochondrial movement or vice versa keratins may stabilize mitochondria further 

affecting Ca2+-signalling and further energy production. 

Apolar keratins and other IFs might affect mitochondria by anchoring them so that 

mitochondrial movements are decreased, and they are kept in place, while polar 

microtubules and actin filaments have been shown to function in mediating mitochondrial 

movements (Morris and Hollenbeck 1995). Changes in linker proteins connecting 

mitochondria to keratins upon the loss of K8, might be one reason behind the disturbed 

mitochondrial localization and movement in K8‒/‒ Caco-2 cells. For example, the levels 

of plectin, a cytolinker protein, which has been shown to connect IFs to mitochondria 

(Winter et al., 2008), were decreased in hepatocytes lacking K8 (Galarneau et al., 2007). 

Rac1 has been shown to regulate mitochondrial motility via PAK1 kinase and 

phosphorylation mutations of vimentin IFs have been proposed to affect PAK1 and as 

such lead to an increase in mitochondrial motility (Matveeva et al., 2015). Decrease on 

Mitofusin 2 (MFN2) has been shown to lead fragmentation of mitochondrial network and 

diminished levels of OXPHOS complexes with lower levels of MMP and ATP generation 

(Bach et al., 2003; Pich et al., 2005). K8/K18 have been reported to bind to trichoplein 

keratin filament-binding protein (TCHP) (Nishizawa et all., 2005), which is connected to 

the mitochondrial outer membrane (Cerqua et al., 2010), as such TCHP or some other 

protein linking mitochondria and keratins together may work in anchoring mitochondria 
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in place via keratins. Interestingly, MFN2 and TCHP are decreased in Caco-2 cells upon 

the loss of K8 (Nyström et al., unpublished data) and loss of these proteins, connecting 

keratins to mitochondria, might lead to a changes in mitochondrial function, movement 

and distribution in K8–/– Caco-2 cells seen in this study. Previously the loss of K6 in 

keratinocytes have been reported to lead increase in ROS levels. However, it was not 

known if increased ROS levels where a result of dysfunction of mitochondria or if already 

elevated ROS levels caused the reported alterations on mitochondria. (Steen et al., 2020) 

ROS levels were not studied in this thesis. In conclusion, to confirm the changes in 

mitochondrial distribution seen in this study, additional immunostaining with a good cell 

membrane marker, followed by quantification of mitochondrial distribution from a high 

number of images should be conducted. 

In summary, it seems that in Caco-2 cells lacking of K8 might exhibit disturbed 

mitochondrial function as seen by diminished levels of MMP and CL, distribution of the 

mitochondrial network and increased mitochondrial movement, all of which can 

contribute to the impaired respiration in mitochondria in K8‒/‒ Caco-2 cells (unpublished 

data). This suggest that K8 could modify mitochondrial mobility and distribution, 

probably via anchoring mitochondria on place, which further affect on mitochondrial 

respiration and Ca2+ signalling. 

5.2 The distribution of caveolin-1 is affected by keratins 

Cav1 is required for the formation of the caveolae and is important for several cell 

processes and in addition to many other functions, they have a role to play in normal 

mitochondrial function and energy metabolism (Asterholm et al., 2012). Caveolae in the 

cell membranes have been reported to be located close to mitochondria and as such these 

could be connected and caveolins could function in adaptation to stress by adjustin 

mitochondrial function and morphology (Fridolfsson et al., 2012). Interestingly in this 

study mitochondrial TOM20 staining indicated that in K8+/+ cells mitochondria would be 

packed close to the cell membrane, when in several K8-/- Caco-2 cells mitochondria did 

not exhibit this kind of clustering on cell membranes. Cav1 is needed for CL biosynthesis 

and Cav1 deficiency have been associated with higher MMP (Bosch et al., 2011), and via 

increased NO levels to disturbed function of OXPHOS complexes (Pavlides et al., 2010). 

Caveolae participate in the regulation of mitochondrial Ca2+ signalling which in turn 

affects the function of mitochondrial ATP production and dynamics (O-Uchi et al., 2013). 
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IFs have previously been linked to caveolae/caveolins (Nixon et al., 2007; Jiu, 2018). IFs 

have been shown to be connected to Cav1 via tyrosine-14 in Cav1 (Santilman et al., 2007) 

and Cav1 also interacts with vimentin (Jiu, 2018). In recent studies it was seen that loss 

of K8 in Caco-2 cells leaded to decreased levels of mitochondrial and caveolar Ca2+ 

signaling and decreased mitochondrial respiration in Caco-2 cells (Nystrrön et al., 

unpublished data). Since caveolae/Cav1 affects Ca2+signalling and Cav1 has a role in 

mitochondrial function, it was studied if the distribution of Cav1 in Caco-2 cells would 

be changed upon the loss of K8, by immunostaining.  

In this study it is shown that there are fewer small Cav1 speckles and more large Cav1 

aggregates in K8–/– Caco-2 cells compared to K8+/+ cells. Based on this K8 could affect 

the distribution of Cav1 and since Cav1 is crucial component of caveolae vesicles it could 

interrupt many important cell processes such as the previously seen changes in Ca2+ 

signalling and mitochondrial respiration in Caco-2 cells (Nyström et al., unpublished 

data). Since Cav1 is needed by some of the CL synthesis enzymes (Liu et al., 2017), the 

above-mentioned changes in Cav1 distribution could partly explain the decreased CL 

levels in K8‒/‒ Caco-2 cells. Diminished caveolar Ca2+ signalling seen in K8–/– Caco-2 

cells (Nyström et al., unpublished data) could be affected by the Cav1 localization. 

Further down-stream, a possible Cav1-mediated decrease in CL could have negative 

consequences for MMP and OXPHOS, as discussed above. It is, however, important to 

remember that Cav1 does not naturally occur in Caco-2 cells and in this study Cav1 had 

to be transfected into the cells. As such these results of Cav1 in Caco-2 cells do not reflect 

entirely natural situation, however the experiments of Cav1 in Caco-2 cells could be used 

as a model to study the function of Cav1 in the colon. However, to confirm that the 

distribution of Cav1 upon the loss of K8 is the true situation quantification and statistical 

tests should be conducted for a high number of images with proper cells membrane 

marker to separate individual cells. 

In summary K8 seems to affect the distribution of Cav1 protein in Caco-2 cells, which 

likely negatively affects several important cell processes including caveolar Ca2+-

signalling and mitochondrial function which all have been seen to be changed in K8–/– 

Caco-2 cells.  

5.3 Keratins affect the formation of the intestinal barrier  

Intestinal barrier function is the ability of the intestinal wall to selectively pass substances 

across and defects in this barrier has been associated with several disease conditions for 
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example IBD (Arnott et al., 2000). Keratins have a role in maintaining intestinal barrier 

(Liu et al., 2017; Wang et al., 2007) and it has previously been seen that in K8–/– mouse 

colon the intestinal barrier is disrupted (Misiorek et al., 2016). In this study it was 

investigated whether the intestinal barrier is also disrupted in K8–/– Caco-2 cells compared 

to K8+/+ Caco-2 cells. Intestinal barrier function measurement was conducted twice with 

CellZscope+ devise. 

In the first experiment using a low number of older cells (K8+/+ cells passage 29 and K8–

/– cells passage 27) per insert a proper barrier was not formed in K8–/– cells. In the second 

experiment using a high number of younger cells (K8+/+ cells passage 16 and K8–/– cells 

passage 14) per insert, formation of the barrier in K8–/– cells was delayed and lower 

compared to K8 wild type cells. However, to statistically confirm the results the barrier 

function experiment should be repeated with both cell settings.  

K8/K18 siRNA treatment were conducted to silence K8 from Caco-2 cells after the cells 

had reached confluency and formed barrier. However, there were no difference on the 

results after K8/K18 siRNA and Caco-2 cells resembled CRISPR/Cas9 K8+/+ cells before 

and after the siRNA treatment (not shown). Probably the transfection was not effective 

since siRNA transfection was done only once, when usually it is repeated three times to 

ensure effectiveness of transfection. Also, too confluent inserts might result in lower 

transfection rate and as such K8/K18 siRNA transfection may not result in complete 

knockout of K8 in this case or maybe knocking out K8 after formation of the barrier was 

not enough to disturb the barrier anymore. 

These results indicate that K8 could have a role in maintaining barrier function also in 

Caco-2 cells as previously seen in mice (Misiorek et al., 2016). Based on this study it 

would also seem that high passage K8–/– Caco-2 cells are not capable of forming a barrier 

(Figure 17 A1). In other hand low passage K8–/– Caco-2 cells did form a barrier but it took 

longer time to reach lower levels of TER in K8–/– cells and in these cells TER declined 

faster than in K8+/+ cells (Figure 17 A2) after the cells start to lose confluency (Figure 17 

B2). The TER value reached higher levels in younger cells in both genotypes (Figure 17 

A2) than older ones (Figure 17 A1). K8+/+ Caco-2 cells formed barrier in both 

experiments. Based on this it could be hypothesized that the passages number of the Caco-

2 cells could affect on how well the cells achieve barrier function without K8. It would 

seem that younger cells could form barrier despite the lack of K8 when older cells could 

not. Younger Caco-2 cells could also have stronger barrier than older ones. However, the 
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results may be affected by the fact that younger cells were plated in a higher number than 

older ones and the experiment was also done only once per cell passage number.  

K8 might maintain the intestinal barrier by affecting the normal function of TJs via 

junction proteins as seen following loss of K5 and K14 in keratinocytes which led to 

disturbed barrier function via abnormal function of TJs caused by the loss of junction 

proteins (Liovic et al.,2009). In addition, mutation of K18 has been shown to cause 

mislocalization of TJ proteins (Zupancic et al., 2014). TJs may be affected via signaling 

pathways where keratins have been proven to be involved. For example, K16 has been 

shown to affect the ERK1/2 pathway in psoriatic patients (Chen et al., 2019), while 

ERK1/2 controls TJ protein distribution (Kim and Breton, 2016). Protein kinase C (PKC) 

controls the development of TJs and is needed for the formation of polarity in epithelial 

cells (Lu et al., 2015), and in mice PKC-α was regulated by keratins via Rack1 (Kröger 

et al., 2013). The changes in Cav1 in this study could also affect the normal function of 

TJs since caveolae are involved in the endocytosis of some components involved TJ 

formation (Shen and Turner, 2006). However, Toivola et al., 2004, did not detected 

abnormalities in TJs in K8-/- mice, but several membrane proteins involved in ion 

transportation were mistargeted leading to elevated electrolyte transportation. In K8–/– 

mice interleukin-18 (IL-18) levels was increased and it was hypothesized that increased 

levels of IL-18 lead to high IL-22 levels through the restrained levels of IL-22 inhibitor 

(Misiorek et al., 2016). High levels of IL-22 further cause activation of STAT3-signaling 

cascade leading to the diminished barrier function phenotype seen in these mice. Finally, 

keratins are connected to hemidesmosomes and desmosomes between the cells, and 

distribution of these may also affect barrier of cell layers (Fortier et al., 2013; Lähdeniemi 

et al., 2017). 

The diminish barrier function in K8–/– Caco-2 cells seen in this study, further supports 

previous findings indicating that K8 is needed on for the formation and/or maintenance 

of the intestinal barrier (Liovic et al., 2009; Misiorek et al., 2016; Liu et al., 2017). Caco-

2 cell system could be used as an alternative to study the intestinal barrier as well as that 

alterations in keratins could partly have a role in diseases resulting from the distributed 

intestinal barrier. 
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6. Conclusions 

According to this study the lack of K8 in Caco-2 cells leads to 1) caveolin-1 aggregation, 

2) a disturbed mitochondrial network and increased mitochondrial mobility, 3) 

diminished levels of mitochondrial cardiolipin and mitochondrial membrane potential 

and 4) defects in the formation of barrier function (Figure 18). Changes in caveolin-1 may 

disturb biosynthesis of cardiolipin in mitochondria and the formation of barrier function 

via possible caveolin-1-mediated changes in endocytosis of tight junction components. 

Changes in mitochondria and caveolin-1 seen in this study could also be a reason behind 

the previously seen decrease in mitochondrial and caveolar of Ca2+ signalling in Caco-2 

cells lacking K8 (unpublished data). Normal levels and function of caveolin-1, cardiolipin 

and mitochondrial membrane potential are needed for normal energy production in 

mitochondria and changes in these parameters may be part of the reasons behind the 

previously seen diminished energy metabolism K8–/– Caco-2 cells. However, since the 

unsuccessful normalization or quantification for the results, the changes seen may not be 

actual true situation.  

In summary, this study shows that K8 may have a role in normal energy metabolism in 

Caco-2 cells via regulation of mitochondrial function. K8 functions also in the formation 

of barrier in the Caco-2 cell barrier model. It could also be concluded that Caco-2 cell 

system could be used as alternative/another model to study effects of the keratin knockout 

on different parameters in the colon, including barrier defects. Finally, further studies are 

needed to find out the exact molecular mechanisms for how keratins are able to regulate 

the above-mentioned processes. 
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Figure 18. Summary of the effects of K8 loss in Caco-2 cells. In K8–/– cells there are 

more larger caveolin-1 aggregates and less smaller caveolin-1 speckles. Loss of K8 also 

causes lower mitochondrial membrane potential and mitochondrial cardiolipin levels. 

The mitochondrial network is more fragmented and mitochondrial mobility is higher. 

Loss of K8 in Caco-2 cells also disturbs the barrier function formation. 
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Appendix A. Plate reader optimization 
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Appendix A figure 1. TMRE and NAO concentration test for mitochondrial membrane 

potential plate reader assay. TMRE concentrations between 150nM-1200 nM was tested in 

the MMP plate reader assays. A) Test of 150 nM-120 0nM TMRE B) Test of 1000 nM and 

1200 nM TMRE. A) and B) are done on different plates and different times so TMRE RFU 

values of test 1 and test 2 are not directly comparable C) Test of 0.5 μM- 5 μM NAO. D) Test 

of 2.5 μM-5μM NAO. Each concentration is the average of 3 or 6 wells per genotype in a 24-

well plate. White bar = CRISPR/Cas9 K8+/+ Caco-2 cells. Black bar = CRISPR/Cas9 K8–/– 

Caco-2 cells. RFU = relative fluorescence units. Data is presented as mean plus/minus standard 

deviation.  
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Appendix A figure 3. Cell amount test for a plate reader assay. The number of cells per well 

in a 96-well plate was calculated by the Countess device. Results are the average of 12 or 18 wells 

per genotype and cell number. The TMRE intensity levels between tested cell numbers do not 

have a major change, probably due to too little difference between cell numbers and too low 

number of cells plated. Cell number experiment were repeated several times for both TMRE and 

NAO dyes and with different number of cells (not shown). White bar = CRISPR/Cas9 K8+/+ Caco-

2 cells. Black bar = CRISPR/Cas9 K8–/– Caco-2 cells. RFU = relative fluorescence units. Data is 

presented as mean plus/minus standard deviation. 
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Appendix A figure 2. MMP plate reader assay: FCCP concentration test. Positive control 

FCCP concentration from 10 μM to 50 μM was tested with 96-well plate reader assay with 

1000 nM TMRE staining and without FCCP. FCCP without TMRE was used as blank for 

FCCP + TMRE wells and blank wells containing only cells without any dye for TMRE only 

wells. Each FCCP concentration is the average of 4 wells per genotype from which the average 

of 4 blank wells has subtracted. TMRE is the average of 8 wells per genotype subtracted of 8 

wells of blanks. White bar = CRISPR/Cas9 K8+/+ Caco-2 cells. Black bar = CRISPR/Cas9 K8–

/– Caco-2 cells. RFU = relative fluorescence units. Data is presented as mean plus/minus 

standard deviation. 
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Appendix B. Plate reader normalization  
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Appendix B figure 3. Plate reader normalization to protein content. 

Normalization of CL plate reader assay to protein assay was tested 

once. A) CL plate reader results without normalization. B) CL plate 

reader results with normalization to the total amount of protein. Results 

are the average of 24 well per genotype in 96-well plate from which the 

average of 8 blanks wells per genotype has been subtracted. White bar 

= CRISPR/Cas9 K8+/+ Caco-2 cells. Black bar = CRISPR/Cas9 K8–/– 

Caco-2 cells. RFU = relative fluorescence units. Data is presented as 

mean plus/minus standard deviation. 
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Appendix B figure 4. Normalization with PrestoBlue Cell Viability 

Reagent for plate reader assay. A) CL plate reader assay without 

normalization. B) CL plate reader assay normalized to cell number by 

using PrestoBlue. Results are the average of 16 wells per genotype on 

96-well plate from which 8 blanks wells per genotype has been 

subtracted. White bar = CRISPR/Cas9 K8+/+ Caco-2 cells. Black bar = 

CRISPR/Cas9 K8–/– Caco-2 cells. RFU = relative fluorescence units. 

Data is presented as mean plus/minus standard deviation. 
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Appendix B figure 5. PrestoBlue Cell Viability Reagent plate reader 

assay with different cell numbers. 5 000 to 30 000 cells per well were 

stained with PrestoBlue and measured with microplate reader. Results are 

the average of 5 wells per genotype and number of cells on 96-well plate 

from which one blank well per genotype and the number of cells has been 

subtracted. Grey line = CRISPR/Cas9 K8+/+ Caco-2 cells. Black line = 

CRISPR/Cas9 K8–/– Caco-2 cells. Data is presented as mean plus/minus 

standard deviation. 
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TMRE concentration test live cell imaging  
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Appendix B figure 6. Plate reader normalization to confluency with Incucyte 

microscope. Incucyte S3 High Content microscopy was used to test plate reader 

normalization to cell confluency. A) CL plate reader assay without normalization. B) CL 

plate reader assay normalized to confluency. With Incucyte software (Sartorious, 

IncuCyte® S3 Software (v2018B)) threshold can be set to select cells from the images 

and based on threshold the program gives the confluency of the wells. After TMRE (not 

shown) or NAO plate reader assay cells get loose and got washed away. C) and D) 

Example images taken with Incucyte 10x objective showing the lost of cells after plate 

reader assay C) CRISPR/cas9 Caco-2 K8+/+ cells D) CRISPR/cas9 Caco-2 K8–/–. 2.5 μM 

of NAO was used. Results are the average of 40 wells per genotype in 96-well plate from 

which the average of 8 blanks wells per genotype has been subtracted. White bar = 

CRISPR/Cas9 K8+/+ Caco-2 cells. Black bar = CRISPR/Cas9 K8–/– Caco-2 cells. RFU = 

relative fluorescence units. Data is presented as mean plus/minus standard deviation. 
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Appendix B figure 7. Plate reader assay normalization to a cell number with Hoechst staining and Eclipse 

Ti2-E microscopy example images. Hoechst is fluorescent stain for DNA for both fixed and live-cell imaging. 

After conducting plate reader analysis for TMRE or NAO, the plate was stained with Hoechst and imaged with 

Nikon eclipse microscope. A) CRISPR/Cas9 Caco-2 K8+/+ cells, B) CRISPR/Cas9 Caco-2 K8–/– cells. C) 

Example of image which is wrongly constructed from the smaller tile images. 

A) B) 

C 

C)

C 
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C. Live cell imaging optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C figure 8. Mitochondrial membrane potential live cell imaging 

TMRE concentration test. CRISPR/cas9 Caco2 K8+/+ and K8–/– cells were 

stained with TMRE and live cell imaging was done with confocal microscope. A) 

Quantification and example images with 100nM TMRE concentration, which was 

determined to result in too bright images B) Quantification and example images 

with TMRE concentration 50nM. Results are the average of 5 to 7 images per 

genotype with 10 mitochondrion per image from which the average of 3 blanks 

(areas without dye) has been subtracted. White bar = CRISPR/Cas9 K8+/+ Caco-2 

cells. Black bar = CRISPR/Cas9 K8–/– Caco-2 cells. RFU = relative fluorescence 

units. Data is presented as mean plus/minus standard deviation. Green color = 

mitochondria (TMRE). CTCF = corrected total cell fluorescence. Scale bar = 25 

μm. 
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Appendix C figure 9. Cardiolipin live cell imaging. In CRISPR/Cas9 K8+/+ 

and K8–/– Caco-2 cells cardiolipin was stained with 50 nM live cell dye NAO 

and imaged with confocal microscope. Green= cardiolipin (NAO). Scale bar 

= 25µm. 


