
Turku Centre for Computer Science

TUCS Dissertations
No 258, November 2020

Shohreh Hosseinzadeh

Security and Trust in Cloud
Computing and IoT through
Applying Obfuscation,
Diversification, and Trusted
Computing Technologies

Security and Trust in Cloud Computing and
IoT through Applying Obfuscation,

Diversification, and Trusted Computing
Technologies

Shohreh Hosseinzadeh

To be presented, with the permission of the Faculty of Science and
Engineering of the University of Turku, for public criticism in lecture hall

XXII of Agora on November 28th, 2020, at 12 noon.

University of Turku
Department of Future Technologies

20014 Turun Yliopisto Finland

2020

Supervisors

Professor Ville Leppänen
Department of Future Technologies
University of Turku
Finland

Associate Professor Seppo Virtanen
Department of Future Technologies
University of Turku
Finland

Reviewers

Professor Benoit Baudry
Division of Software and Computer System
KTH Royal Institute of Technology
Lindstedtsvägen 3, Stockholm
Sweden

Adjunct Professor Martin Gilje Jaatun
Department of Electrical
University of Stavanger
Kjell Arholms gate 41, 4036 Stavanger
Norway

Opponent

Professor Valtteri Niemi
Department of Computer Science
University of Helsinki
Pietari Kalmin katu 5, 00014 Helsinki
Finland

The originality of this thesis has been checked in accordance with
the University of Turku quality assurance system using the Turnitin
Originality Check service.

ISBN 978-952-12-3992-2
ISSN 1239-1883

Abstract

Cloud computing and Internet of Things (IoT) are very widely spread and
commonly used technologies nowadays. The advanced services offered by
cloud computing have made it a highly demanded technology.

Enterprises and businesses are more and more relying on the cloud to
deliver services to their customers. The prevalent use of cloud means that
more data is stored outside the organization’s premises, which raises con-
cerns about the security and privacy of the stored and processed data. This
highlights the significance of effective security practices to secure the cloud
infrastructure.

The number of IoT devices is growing rapidly and the technology is being
employed in a wide range of sectors including smart healthcare, industry
automation, and smart environments. These devices collect and exchange a
great deal of information, some of which may contain critical and personal
data of the users of the device. Hence, it is highly significant to protect the
collected and shared data over the network; notwithstanding, the studies
signify that attacks on these devices are increasing, while a high percentage
of IoT devices lack proper security measures to protect the devices, the data,
and the privacy of the users.

In this dissertation, we study the security of cloud computing and IoT
and propose software-based security approaches supported by the hardware-
based technologies to provide robust measures for enhancing the security of
these environments. To achieve this goal, we use obfuscation and diversifica-
tion as the potential software security techniques. Code obfuscation protects
the software from malicious reverse engineering and diversification mitigates
the risk of large-scale exploits. We study trusted computing and Trusted
Execution Environments (TEE) as the hardware-based security solutions.
Trusted Platform Module (TPM) provides security and trust through a
hardware root of trust, and assures the integrity of a platform. We also
study Intel SGX which is a TEE solution that guarantees the integrity and
confidentiality of the code and data loaded onto its protected container,
enclave.

More precisely, through obfuscation and diversification of the operating
systems and APIs of the IoT devices, we secure them at the application level,

i

and by obfuscation and diversification of the communication protocols, we
protect the communication of data between them at the network level. For
securing the cloud computing, we employ obfuscation and diversification
techniques for securing the cloud computing software at the client-side. For
an enhanced level of security, we employ hardware-based security solutions,
TPM and SGX. These solutions, in addition to security, ensure layered trust
in various layers from hardware to the application.

As the result of this PhD research, this dissertation addresses a number
of security risks targeting IoT and cloud computing through the delivered
publications and presents a brief outlook on the future research directions.

ii

Tiivistelmä

Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti
sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat
tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaa-
vat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa
pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsitte-
lyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia tal-
tioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä
korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infra-
struktuurin turvaamista.

Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknolo-
giana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä tervey-
denhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet kerää-
vät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden
käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on
erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa.
Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tie-
toturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus
näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai
niiden käyttäjien yksityisen tiedon suojaamiseksi.

Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin
tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja tur-
vautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymista-
vat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä
konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja
diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina.
Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takai-
sinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen
hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja
luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkai-
suina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuk-
sellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on
taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä
luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin

iii

ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön,
saarekkeen, tekniseen toteutukseen.

Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellus-
rajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -
laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokolla-
kerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla.
Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio- ja diversifioin-
titekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturval-
lisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja
SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat moni-
kerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen
asti.

Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vas-
tataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin
tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista.

iv

Acknowledgments

Undertaking this PhD has truly been a life-changing experience to me, and
marks a milestone on my personal and professional life. Reaching this mile-
stone would not have been possible without the guidance and support of
many people.

First and foremost, I would like to express my sincerest gratitude towards
my supervisor, Professor Ville Leppänen who gave me the opportunity to
conduct my research in his research group. I am grateful for all the sup-
ports, encouragements, and inspiration throughout the whole journey. The
freedom to choose topic of my interest, the smoothness and flexibility he
was offering to the group, made it a joyful place to work for me.

I greatly appreciate the support I received from Associate Professor
Seppo Virtanen in the final stage of my PhD with his advice and com-
ments that greatly improved my thesis. I would also like to thank Professor
Jouni Isoaho for his support and directing my thesis.

I wish to especially thank Professor Benoit Baudry and Adjunct Pro-
fessor Martin Gilje Jaatun who kindly reviewed my thesis, and provided
fruitful comments and insights. I am as well greatly grateful to Professor
Valtteri Niemi, for accepting to act as my opponent.

I would like to warmly express my appreciation towards Professor Asokan
for giving me the opportunity of a research visit at the Secure Systems Group
in Aalto University. This has been a great chance for my thesis and for me
to expand my knowledge, and my professional network. I also would like to
thank Dr. Andrew Paverd and Dr. Hans Liljestrand for the very fruitful
collaboration we had during this research visit. I also had the chance to
meet the amazing people in SSG group and in Aalto University.

I am also very thankful to Professor Pedro Inácio for the research visit
opportunity at their research group in Universidade da Beira Interior. This
was a great opportunity of collaboration with Professor Inácio and with
Bernardo Sequeiros and was a wonderful experience of living in the beautiful
city of Covilhã, Portugal.

I would like to thank Professor Mauro Conti, Rehana Yasmin and Reza
Memarian for the collaboration on our joint publications.

My colleagues in Software Development Lab, University of Turku, Sampsa

v

Rauti, Dr. Johannes Holvitie, Jari-Matti Mäkelä, Samuel Laurén, Jukka
Ruohonen, Lauri koivunen, and Aki Koivu, very many thanks to all of you
for the collaborations, team works, and for making the atmosphere a friendly
place to work. I would like to thank Associate Professor Sami Hyrynsalmi,
who passed and shared his experiences to me especially when I was in the
beginning of the way. His guidance always paved the path for me. Also, my
special thanks to Sampsa for reviewing my thesis and very helpful comments,
also for all the collaboration we had in the papers we co-authored.

I gratefully acknowledge the funding that I received towards my PhD
from Department of Future Technologies, MATTI program, Nokia Founda-
tion, and The Finnish Foundation for Technology Promotion.

I cannot forget to acknowledge my very dear friends who always cheered
me up, celebrated each accomplishment with me, and stood by me in the
hard days. Thanks to each and every one of you.

My very special thanks go to my beloved family in Iran for standing
the distance and for your unconditional love that has always been with me.
Thank you for selflessly encouraging me to explore new directions in life,
and giving me the opportunities to experiences the experiences that have
made me who I am. I also would like to thank my family-in-law here in
Finland for their heart-warming kindness that made Finland even a warmer
home for me.

And last but not least, my dearest husband, Matti, I feel very grateful
for your love and unwavering belief in me. Thanks for supporting me to get
through the tough days in the most positive way and always reminding me
that ”kaikki järjestyy”!

Helsinki, September 2020
Shohreh.

vi

List of original publications

The work discussed in this PhD dissertation is based on the original publi-
cations listed below:

Paper I

Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurèn, Jari-
Matti Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and
Ville Leppänen: Using Diversification and Obfuscation
Techniques for Software Security: A Systematic Literature
Review. In Journal of Information and Software Technology
(IST). Elsevier, 2018.

Paper II

Shohreh Hosseinzadeh, Samuel Laurén, Sampsa Rauti, Sami
Hyrynsalmi, Mauro Conti, Ville Leppänen, Obfuscation and
Diversification for Securing Cloud Computing. In: Victor
Chang, Muthu Ramachandran, Robert J. Walters, Gary
Wills (Eds.), Enterprise Security, Lecture Notes in Com-
puter Science 10131, 179–202. Springer, 2017.

Paper III

Shohreh Hosseinzadeh, Samuel Laurén, Ville Leppänen, Se-
curity in Container-based Virtualization through vTPM. In:
2016 IEEE/ACM 9th International Conference on Util-
ity and Cloud Computing (UCC 2016), Pages 214-219.
IEEE/ACM 2016.

Paper IV

Shohreh Hosseinzadeh, Sampsa Rauti, Sami Hyrynsalmi,
Ville Leppänen, Security in the Internet of Things through
Obfuscation and Diversification. In: International Confer-
ence on Computing, Communication and Security (ICCCS),
1–5. IEEE, 2015.

Paper V

Petteri Mäki, Sampsa Rauti, Shohreh Hosseinzadeh, Lauri
Koivunen, Ville Leppänen. Interface diversification in IoT
operating systems. In Proceedings of the 9th International
Conference on Utility and Cloud Computing, pp. 304-309.
ACM, 2016.

vii

Paper VI

Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen,
Andrew Paverd, Mitigating Branch-Shadowing Attacks on
Intel SGX using Control Flow Randomization. In Proceed-
ings of the 3rd Workshop on System Software for Trusted
Execution (SysTEX ’18), pages 42-47. ACM, 2018.

viii

List of publications not
included in this dissertation

In addition to the 6 original publications this PhD dissertation is composed
of, the author has also contributed to the following publications in the topic
area of the dissertation:

• Sampsa Rauti, Samuel Laurén, Shohreh Hosseinzadeh, Jari-Matti Mäke-
lä, Sami Hyrynsalmi, and Ville Leppänen (2015). Diversification of
System Calls in Linux Binaries. In: Yung M., Zhu L., Yang Y. (eds)
Trusted Systems. INTRUST 2014. Lecture Notes in Computer Sci-
ence, vol 9473. Springer, Cham.

• Shohreh Hosseinzadeh, Bernardo Sequeiros, Pedro R. M. Inácio, Ville
Leppänen, Recent trends in applying TPM to cloud computing. Secu-
rity and Privacy 3(1), 1–24, 2020.

• Samuel Laurén, Petteri Mäki, Sampsa Rauti, Shohreh Hosseinzadeh,
Sami Hyrynsalmi and Ville Leppänen, Symbol diversification of linux
binaries, World Congress on Internet Security (WorldCIS-2014), Lon-
don, 2014, pp. 74-79.

• Sampsa Rauti, Lauri Koivunen, Petteri Mäki, Shohreh Hosseinzadeh,
Samuel Laurén, Johannes Holvitie, and Ville Leppänen. Internal inter-
face diversification as a security measure in sensor networks. Journal
of Sensor and Actuator Networks, 7(1), 2018.

• Shohreh Hosseinzadeh, Sami Hyrynsalmi, Mauro Conti and Ville Leppä-
nen, Security and Privacy in Cloud Computing via Obfuscation and
Diversification: A Survey, 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), Vancou-
ver, BC, Canada, 2016, pp. 529-535.

• Shohreh Hosseinzadeh, Sami Hyrynsalmi, and Ville Leppänen. Chap-
ter 14 - Obfuscation and diversification for securing the Internet of

ix

Things (IoT). In Rajkumar Buyya and Amir Vahid Dastjerdi, editors,
Internet of Things, pages 259–274. Morgan Kaufmann, 2016.

• Aki Koivu, Lauri Koivunen, Shohreh Hosseinzadeh, Samuel Laurén,
Sami Hyrynsalmi, Sampsa Rauti, and Ville Leppänen. Software Secu-
rity Considerations for IoT, 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, 2016,
pp. 392-397.

• Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurèn, Jari-Matti Mäke-
lä, Johannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. A survey
on aims and environments of diversification and obfuscation in soft-
ware security. In Proceeding of the 17th International Conference on
Computer Systems and Technologies 2016, CompSysTech ’16, pages
113–120, New York, NY, USA, 2016.

• Sampsa Rauti, Samuel Lauren, Joni Uitto, Shohreh Hosseinzadeh,
Jukka Ruohonen, Sami Hyrynsalmi, Ville Leppänen (2016) A Sur-
vey on Internal Interfaces Used by Exploits and Implications on Inter-
face Diversification. In: Brumley B., Röning J. (eds) Secure IT Sys-
tems. NordSec 2016. Lecture Notes in Computer Science, vol 10014.
Springer, Cham.

• Rehana Yasmin, Mohammad Reza Memarian, Shohreh Hosseinzadeh,
Mauro Conti, Ville Leppänen (2018) Investigating the Possibility of
Data Leakage in Time of Live VM Migration. In: Dehghantanha A.,
Conti M., Dargahi T. (eds) Cyber Threat Intelligence. Advances in
Information Security, vol 70. Springer, Cham.

• Shohreh Hosseinzadeh, Seppo Virtanen, Natalia Dı́az-Rodŕıguez, and
Johan Lilius. 2016. A semantic security framework and context-aware
role-based access control ontology for smart spaces. In Proceedings of
the International Workshop on Semantic Big Data (SBD ’16), pages
8:1-8:6, ACM, New York, NY, USA, 2016. ACM.

• Marko Saarela, Shohreh Hosseinzadeh, Sami Hyrynsalmi, and Ville
Leppänen. Measuring software security from the design of software.
In Proceedings of the 18th International Conference on Computer Sys-
tems and Technologies, CompSysTech’17, pages 179–186, New York,
NY,USA, 2017. ACM.

x

Abbreviations

AIKs Attestation Identity Keys

API Application Programming Interface

BTB Branch Target Buffer

CoAP Constrained Application Protocol

EK Endorsement key

JSON JavaScript Object Notation

IoT Internet of Things

IPC Inter-Process Communication

JIT Just-in-Time (Compiler)

LBR Last Branch Record

MQTT Message Queuing Telemetry Transport

NIST National Institute of Standards and Technology

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

OWASP Open Web Application Security Project

PCR Platform Configuration Register

UDP User Datagram Protocol

RESTful Representational State Transfer

ROP Return-Oriented Programming

RQ Research Question

xi

SGX Software Guard Extensions

SLR Systematic Literature Review

TC Trusted Computing

TCG Trusted Computing Group

TCP Trusted Computing Platform

TCP/IP Transmission Control Protocol/Internet Protocol

TEE Trusted Execution Environment

TPM Trusted Platform Module

VM Virtual Machine

VMM Virtual Machine Monitor

WSN Wireless Sensor Network

XML eXtensible Markup Language

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks

xii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Cloud Computing . 5

2.1.1 Definition . 5

2.1.2 Deployment Models 6

2.1.3 Cloud Architecture and Service Models 7

2.1.4 Virtualization Models 8

2.1.5 Status of Security in Cloud Computing 9

2.2 Internet of Things . 10

2.2.1 Definition . 10

2.2.2 Operating System and Software on IoT Devices 10

2.2.3 Protocols Used for Connection of IoT Devices 12

2.2.4 Security Status of IoT 12

2.3 Obfuscation . 13

2.4 Diversification . 15

2.5 Trusted Computing . 18

2.6 Trusted Execution Environment 20

3 Contributions of the dissertation 23

3.1 Motivation and Objective of the Research 23

3.2 Research Questions . 25

3.3 Research Methodology and Research Approach 27

3.4 Research Process and Publications 29

3.5 Description of the Original Publications Included in the Dis-
sertation . 31

3.5.1 Publication I . 31

3.5.2 Publication II . 35

3.5.3 Publication III . 36

3.5.4 Publication IV . 38

3.5.5 Publication V . 39

3.5.6 Publication VI . 41

xiii

4 Conclusions 45
4.1 Contributions . 46
4.2 Challenges . 49
4.3 Future Directions . 50

5 Original Publications 61

xiv

Chapter 1

Introduction

The advancement of cloud computing technology has facilitated the busi-
nesses and enterprises with the possibility to deliver services to their cus-
tomers with lower cost, but higher performance, availability, and scalability.
The benefits offered by cloud have made it a highly demanded technology
these days. Nonetheless, using cloud services implies that more and more
data is stored and processed outside the organization’s perimeters, which in
fact, raises concerns about the security and privacy of this data. Ergo, this is
highly significant that the cloud service providers employ effective security
practices to secure their computing infrastructure, to ensure the integrity
and confidentiality of the stored/processed data and code, and to preserve
the privacy of its users. Some of the taken security measures consider the
cloud provider untrusted or malicious from which the users’ data need to
be protected. In contrast, some other security measures protect the cloud
infrastructure from the external intrusions and attacks.

IoT is another wide-spreading technology that is used these days in var-
ious public and private sectors for providing services ranging from wearable
health monitoring, to smart connected cars and smart grids. IoT encom-
passes a broad ranges of devices, sensors, actuators, and humans connected
to each other through the Internet and exchange data in order to make hu-
man lives more intelligent and automated. By the continuous growing trend
of this technology, more ”things” are connecting to each other every day,
collecting and sharing data. It is estimated that the number of connected
devices will reach to 75.44 billion by 2025 [6]. However, in spite of the preva-
lent use of IoT, building security in IoT devices has not been the priority in
development and distribution of the IoT devices. According to the report of
the review conducted by HP Security Research [7] on the most commonly
used IoT devices, 70% of the devices are vulnerable with alarming number
of vulnerabilities per device.

The high popularity and wide adaption of these two technologies have in-

1

creased the significance of security protection of them, as the leakage of data
shared and processed by such technologies could have severe consequences.
A cloud infrastructure (e.g., storage and computing units) may contain an
organization’s business critical data or the customers’ personal data includ-
ing social security numbers, credit card information, and addresses. Leakage
of such data harms the business and puts user’s security and privacy at risk.
A breach in an IoT device could open a door for an adversary to enter the
network and also could result in the breach of a huge number of similar
devices, due to their identical design. IoT devices collect and share a great
amount of data, the leakage of which could lead to the loss of user’s privacy,
security and even safety. Nonetheless, the latest news on the growing num-
ber of vulnerabilities, malware, and security attacks on computer systems
clearly indicate the current security measures are not sufficient, and there is
an urgent need for more robust and sophisticated security approaches.

This dissertation contributes to enhancing the security and trust level
in cloud computing and IoT through obfuscation and diversification soft-
ware security technologies, backed with hardware-based security solutions,
trusted computing and Trusted Execution Environment (TEE).

At the application level, we obfuscate and diversify the operating systems
and APIs of the IoT devices. Code obfuscation makes the application harder
to read and reverse engineer. Software diversification makes the software
instances unique which forces the attacker to design individual attack models
for each instance. In these ways, conducting a successful attack becomes
more challenging, inefficient, and costly from attacker’s point of view, and
the risk of a massive scale attacks is mitigated. At the network level, we
obfuscate and diversify the communication protocols used between the IoT
devices, in order to protect the data that is communicated over the network
between the IoT devices. In cloud computing we apply obfuscation and
diversification at the client-side application.

Nevertheless, we believe that software security measures might not be
sufficient in some cases. Therefore, additional hardware security measures
make a more robust system to alleviate the risk of both software and hard-
ware attacks. In this regard, in addition to the two discussed software se-
curity technologies, we also study hardware-based security solutions, TPM
as a trusted computing solution and Intel SGX as a TEE solution. Com-
bination of the software and hardware techniques makes a more complete
security approach.

Due to the fact that protecting the cloud software on client-side is not a
sufficient solution, we study the use of TPM in cloud computing to leverage
hardware-based roots of trust to improve computer security and provide pri-
vacy protection and trust. We employ the virtual TPM in a container-based
virtualization. Virtual TPM emulates the physical TPM that is integrated
on the hardware and presents its functionalities to containers.

2

We also study using Intel SGX that provides security, trust and isolation
for the critical applications and data by creating a secure integrity-protected
processing area that guarantees the confidentiality and integrity of the code
and data that is loaded in it. However, since SGX is prone to some side
channel-attacks, we employ obfuscation as a software security technique.
We apply control-flow obfuscation on the enclave programs of the SGX ar-
chitecture, and mitigate the branch-shadowing side-channel attack on SGX.

The dissertation is organized in five different chapters:

• Chapter 1 presents an introductory note on this PhD dissertation and
organization.

• Chapter 2 presents the preliminaries and the background on the concepts
discussed in this dissertation. This chapter first focuses on presenting the
background on the studied execution environments in this dissertation
(cloud computing, IoT) and general status of security in these environ-
ments. The chapter then continues with introducing the software and
hardware security techniques used in the dissertation (obfuscation, diver-
sification, trusted computing, and TEE) to enhance the security and trust
level in cloud computing and IoT.

• Chapter 3 describes in detail the contributions that this dissertation has
made in enhancing the security and trust for cloud computing and IoT,
regarding the background presented in Chapter 2. This chapter, starts
with introducing the objectives and motivation of this dissertation, the
research questions, the research methodology, and it continues by pre-
senting how the dissertation answers the research questions through the
original publications included in this dissertation.

• Chapter 4 presents the concluding remarks, contributions made by this
PhD dissertation, and the future research direction.

• Chapter 5 presents the original publications included in this PhD disser-
tation, Publication I - Publication VI.

3

4

Chapter 2

Preliminaries

This chapter presents background preliminaries of the terms, concepts and
technologies discussed in this dissertation, including cloud computing, IoT
and the general status of security in these environments. The chapter con-
tinues with presenting the software security solutions (obfuscation and diver-
sification), and the trust assurance solutions (trusted computing and TEE)
that are used to improve security and trust in the stated environments, in
the original publications and the subsequent chapters of the dissertation.

2.1 Cloud Computing

Cloud computing has become a popular technology through which organi-
zations and service providers are delivering services to their customers in a
cost-effective and convenient way. This section presents the background on
cloud computing: the definition, architecture, deployment models and the
discussion on the current security status of cloud computing.

2.1.1 Definition

Cloud computing is the delivery of computing services such as storage,
servers, databases, software, and networking over the Internet, on a pay-per-
use basis. The following is the definition provided by the National Institute
of Standards and Technology (NIST) for cloud computing [47]:

“Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.
This cloud model is composed of five essential characteristics,
three service models, and four deployment models.”

5

In the stated definition five essential characteristics are mentioned for
cloud computing. These characteristics are as follows [47]:

1. On-demand self-service: computing capabilities could be provisioned uni-
laterally by the consumer when required.

2. Broad network access: computing capabilities are widely available over
the network using thick and thin clients. Clients refer to the applications
that run on workstations or computers and rely on a server to carry out
operations. A thick client is a full-featured computer that often provides
rich functionality and does not require continuous communication with
the central server. In contrast, a thin client is designed small in size and
the main data processing occurs on the server.

3. Resource pooling : using a multi-tenant paradigm, the computing re-
sources are pooled to serve a multitude of consumers. In this paradigm,
there exists a location independence concept which means that service
consumer may not necessarily have knowledge or control over the physi-
cal location of the resources (such as processing, storage, and memory).

4. Rapid elasticity refers to scalable provisioning and the ability of providing
scalable services. Rapid elasticity provides users with additional space
and resources on the cloud upon their request.

5. Measured service: the cloud service provider monitors, controls, reports
and optimizes the offered resources in a transparent manner to both
provider and consumer of the services.

2.1.2 Deployment Models

Cloud computing is an evolving technology with new capabilities and ser-
vices that have remarkable benefits compared to traditional service provid-
ing approaches. The services are delivered with lower cost (in usage as it is
pay-for-use, in disaster recovery, in data storage solutions), greater ease, less
complexity, higher availability and scalability, and faster deployment. These
compelling benefits have motivated the enterprises to adopt cloud solutions
in their architectures and deliver their services over cloud. Depending on
the need of the enterprise and how large the organization is, four different
deployment models are available, including public, private, community, and
hybrid clouds [1, 45, 47]. In a public (or external) cloud, a third party vendor
is responsible for hosting, operating, and managing the cloud. A common
infrastructure is used to serve multiple customers, which means that the
customers are not required to acquire any software, hardware, and network
devices. This makes the public cloud a suitable model for the enterprises
that wish to invest less and manage the costs efficiently. The security in a

6

Hardware

Infrastructure

Platform

ApplicationSaaS

PaaS

IaaS

CPU, memory, disk, network

computation, storage

software framework, storage

business application, web services

End user

Figure 2.1: Cloud architecture and resource management at each layer

public cloud is managed by the third party, which leaves less control for the
organization and its users over the security. The contrary solution is pri-
vate (or internal) cloud, where the organization’s customers are in charge of
managing the cloud. The storage, computing, and network are dedicated to
the customer owning the cloud, and not shared with other customers. This
enables the customers to have a higher control on security management and
have more insight about logical and physical aspects of the cloud infrastruc-
ture. Community cloud refers to the type of clouds that are used exclusively
by a community of customers from enterprises with common requirements
and concerns (e.g., policies, security requirements, and compliance consid-
erations). The last model is hybrid cloud that is the composition of several
clouds (private, public, and community). According to the needs and budget
of the enterprise and how critical its resources are, a suitable deployment
model is chosen that can serve the enterprise’s needs the best way [45].

2.1.3 Cloud Architecture and Service Models

The cloud computing services are offered to the customers in three different
models [23, 47], and depending on the need of the consumer/enterprise, a
suitable delivery model is deployed and adapted: Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
Figure 2.1 illustrates the cloud architecture and the resource management
at each layer [23]. The IaaS model offers storage, network and fundamental
computing resources to the consumers, so that they could deploy and run
software such as operating systems and applications. The consumers do not

7

have control over the underlying infrastructure, however, they could manage
and control the storage, operating system and deployed applications, and
some of the networking components. The PaaS model offers an integrated
environment to the consumer for deploying, building, and testing applica-
tions using programming languages, tools and libraries supported by the
service provider. The consumer has no control over the underlying cloud
infrastructure (e.g., server, operating system, storage). In the SaaS model,
the main services offered by the service providers to the consumer are the ap-
plications that are hosted and executed on the cloud and are available to the
customers through the network, typically over the Internet. In this model,
the consumer has no control over the underlying infrastructure including
servers, operating system, network, and storage.

2.1.4 Virtualization Models

During the past decade various virtualization mechanisms have been devel-
oped, including hypervisor-based virtualization and container-based virtu-
alization. In hypervisor-based virtualization, a hypervisor (Virtual Machine
Monitor (VMM)) is running on top of the server hardware enabling mul-
tiple VMs to share virtualized hardware resources. This, in fact, means
that different operating systems (e.g., Linux, Windows) can run on top of
the hypervisor on the same physical platform. However, in container-based
virtualization (also referred to as operating-system-level virtualization), vir-
tualization happens at the operating system level rather than the hardware.
That is to say, only one operating system can run on top of the platform,
and the containers share the kernel of this operating system. In other words,
operating system virtualization allows running a multitude of execution en-
vironment instances on a single kernel. Figure 2.2 illustrates the architecture
of these two virtualization models. A container is considered as a lightweight
operating system that runs inside the host system, with the instructions that
are native to the core CPU. This, in effect, eliminates the need for just-in-
time compilation or instruction level emulation [25].

Containers and VMs are similar in the sense that they offer resource iso-
lation and allocation benefits and meanwhile, different in function. In the
container-based virtualization the operating system is virtualized, while in
the hypervisor-based virtualization the hardware is virtualized. There are
advantages and disadvantages associated with each of these virtualization
models. Due to the fact that containers are more lightweight in compari-
son to VMs, they have lower performance overhead, take less storage, and
they boot faster than the guest operating system. On the other hand, the
container-based virtualization has lower flexibility considering that the base
operating system is shared and the containers are hosted with the same
operating system that the hosting platform uses.

8

Figure 2.2: Hypervisor-based vs. container-based virtualization

2.1.5 Status of Security in Cloud Computing

The convenience and efficiency offered by cloud computing have encouraged
more users to turn towards this technology. Cloud service providers have
a strong incentive of keeping their software proprietary due to competitive
advantages, and as well are reluctant to report bugs and security incidents to
maintain the reputation of their business. In addition, in cloud computing
where the computing (storage and services) happens outside the organiza-
tion’s premises, the customers are neither aware of the location where their
data is stored/processed, nor have any knowledge of the way cloud infras-
tructure is being managed. The client organizations with more strict data
protection policies are unwilling to confide their data to service provider,
with the concern that their data might be accessed by an unauthorized
party (including cloud provider itself), and might be utilized in an unwanted
manner. Furthermore, due to the nature of virtual environment, in order
to support the cloud’s multi-tenancy attribute, some additional layers are
added to the architecture: the hypervisor that resides between the hardware
and the operating system, and the operating system which is running on the
VMs on top of the hypervisor. In addition to the risk of security attacks that
existed in the traditional computing systems, the added layers have intro-
duced new attacks and expanded the attack surface. These concerns on the
security, confidentiality and integrity of the data have become the primary
issue of trust from clients towards the cloud provider, which therefore has
slowed down the pace of cloud computing adoption into the businesses.

The role of security community is to provide strong security measures to
firstly secure cloud infrastructure in its all layers so to protect the data being
stored or processed on cloud provider side from external threats. Secondly,
they should provide and develop security measures to protect the customers’
data from cloud service provider, so to guarantee the confidentiality and
integrity of data even if the cloud provider is compromised or malicious.

9

2.2 Internet of Things

2.2.1 Definition

Decades after the advent of the Internet, the emerging era of ubiquitous
computing began and the continuous connectivity is no dream anymore.
One of the prominent elements of pervasive computing is Internet of Things
(IoT) or Internet of Everything. The term was used for the first time by
MIT Auto-ID Labs in 1999 [17]. IoT embeds computational capabilities into
the everyday used objects, and enable their connectivity to each other and
to the Internet from anywhere at any time. The term Internet of Things is
composed of two significant pillars of ”Internet” and ”Things”. The notion
”Things” encompasses any object that is able to connect to the Internet,
including sensors, smart devices, and any other element that is capable of
communicating with other entities. IoT is regarded as the third revolution in
information technology after Internet and mobile communication networks.
Today, IoT is used in multitude of public and private sectors in various
applications including healthcare, smart spaces, wearable data monitoring
systems, smart lighting, and farming.

2.2.2 Operating System and Software on IoT Devices

IoT comprises a wide variety of heterogeneous components with varied func-
tionalities and computing capabilities ranging from sensors with lightweight
8-bit micro-controllers, to powerful 32-bit processors (e.g., PCs and smart-
phones). On that account, the designed operating system and the software
should be adaptable by all ranges of objects participating in the network
including the low-powered ones. Moreover, in addition to supporting the
functionality of the ubiquitous devices, the software should also be compat-
ible with the limitation of these devices, in terms of memory, computational
power, and energy capacity. Baccelli et al. [14] discuss that the software de-
signed for IoT devices should be a) designed considering the heterogeneous
hardware constraints: the IoT software should operate with low complexity
and have fairly low memory requirement; b) programmable: the IoT soft-
ware should provide a standard application-program interface (API) and
support the standard programming languages (such as C, C++) for appli-
cation developers; and c) autonomous: for energy efficiency purposes, the
software should consider sleeping cycles for energy saving at the times that
the hardware is in idle mode. Moreover, due to the fact that IoT is de-
ployed in critical systems, it is essential that the operating system functions
reliably. These requirements motivated the developers to build operating
systems and software that are compatible with all variety of IoT devices
with diverse capabilities and capacities, that could both leverage the capa-
bilities of the more powerful devices and could also be run on the power-

10

restricted devices. Table 2.1 lists some of the operating systems designed for
such low-end embedded devices. The most widely used operating systems
for IoT devices are Contiki [26] and TinyOS [41]. Contiki [26] is an open-
source operating system, developed in C language to operate on low-power
memory-restricted devices (by requiring only a few kilobytes of memory).
Through supporting networking standards (e.g., CoAP, IPV4, and IPV6)
Contiki enables the low-power microcontrollers to connect to the Internet.
TinyOS [41] is as well an open-source operating system that is developed in
nesC [9] language (an extension of C). Similar to Contiki, TinyOS is mul-
tithreading, event-driven, and is designed according to a component-based
programming model with monolithic structure. TinyOS is specifically de-
signed for the sensor network devices with constraint resources (e.g., 512
bytes of RAM and 8Kb of memory).

Table 2.1: Operating systems for embedded devices

OS Overview Characteristic Lang. Open
source

Contiki designed for WSN and
memory-efficient embed-
ded systems network

Modular structure,
multi-tasking, multi-
threading, event-driven

C 3

TinyOS Intended for the low-
power wireless devices

Monolithic struc-
ture, multi-threading,
event-driven

NesC 3

RIOT
OS

Real-time Modular structure,
multi-threading

C,
C++

3

Mantis Designed for WSN. It
presents C API with
Linux and Windows de-
velopment environments.

Threads C 3

Nano-
RK

Equipped with a light-
weight resource kernel
and networking support
for WSN.

Threads C 5

LiteOS UNIX-like OS for WSN Threads and Events LiteC++ 3

Free
RTOS

Real-time OS designed
for embedded devices

Multi-threading C 3

Linux Various Linux distribu-
tions can run on IoT de-
vices, e.g. Raspbian and
Ubuntu Core

Monolithic structure,
event-driven

C,
C++

3

11

2.2.3 Protocols Used for Connection of IoT Devices

Considering TCP/IP as the de facto standard for the communication net-
works, some are on the opinion that it could also be used in IoT in the
future. However, at this point the low capacity of the IoT devices makes
the deployment of IPv6 for connecting such devices challenging. Therefore,
the Internet Engineering Task Force (IETF) has presented protocols that
are adaptable to this environment, with the assistance of which the normal
IP-based devices (e.g., PCs and smartphones) can connect to the low-end
devices. Since the IoT devices may use different protocols to communicate,
the protocols should be translated to a standard protocol using XML, JSON,
or RESTful APIs. The following ones are some of the most commonly used
protocols for connecting the IoT devices to each other through the Internet:

• User Datagram Protocol (UDP) [49] is the most commonly used pro-
tocol at the transport layer for the low power networks.

• Constrained Application Protocol (CoAP) [53] is an application-layer
protocol built on UDP and is compatible with resource constrained
nodes, and replaces HTTP as it has higher overheard for IoT.

• IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN)
[8] is a protocol that comes as an adaptation layer between the link and
network layers, and allows transmission of packets over IEEE 802.15.4-
based network. It presents packet fragmentation and header compres-
sion to decrease datagram size.

• Message Queuing Telemetry Transport (MQTT) [34] is a publish/-
subscribe messaging protocol for communication of the devices and
servers. It is a many-to-many protocol, i.e., the messages are trans-
ferred between clients via a central broker. The protocol is designed on
top of TCP/IP, thus the connection can be encrypted with SSL/TLS.

• Advanced Message Queuing Protocol (AMQP) [58] is an application-
layer protocol that reuses the underlying transport models (e.g., TCP/IP
and UDP) and connects servers together. AMQP offers flexible routing
and queuing system.

• Extensible Messaging and Presence Protocol (XMPP) [2] is protocol
based on XML that provides instant messaging and presence function-
ality services. XMPP is used to connect devices to servers.

2.2.4 Security Status of IoT

From the advent of IoT technology, the focus of the service providers prin-
cipally has been on operability and availability of the IoT services. Often,

12

security of the devices and privacy of their users were afterthoughts. This is
while IoT has gained more and more popularity and more sensors, actuators,
and devices are connecting to each other and to the Internet. The number
of connected devices is projected to reach 75.44 billion by 2025, which is
about 5 times increase in 10 years time (2015 - 2025) [6]. These objects/de-
vices/sensors collect a great deal of data and share them over the Internet.
Some of these data contains sensitive information about users such as per-
sonal, financial, and the physical location of the users. Leaking of such data
could not only result in violation of the users’ privacy, but could also endan-
ger their safety and security. HP Security Research conducted a review on
the most commonly used IoT devices, and the report shows that 70% of the
devices are vulnerable with very high rate of vulnerabilities per device [7].
These vulnerabilities include Heartbleed, denial of service, weak passwords,
and cross-site scripting. Considering the fact that IoT is established on the
Internet, it is prone to the traditional security risks for the Internet. In ad-
dition to those risks, the dynamic nature of the IoT environment, along with
the heterogeneity and large scale of devices, make the traditional security
issues more critical and also present new security challenges. OWASP [11]
has listed the following as the 10 top vulnerabilities that IoT devices suffer
from: easily guessable and brute-forced passwords, insecure network ser-
vices, insecure ecosystem interfaces, lack of secure update mechanism, using
outdated and insecure components/libraries on the device, lack of sufficient
privacy protection mechanism, insecure transmission and storage of data (no
encryption and access control mechanism), absence of device management,
insecure default setting, and absence of physical hardening measures.

Securing the IoT devices and protecting the collected and shared data is
exceedingly significant. However, special characteristics of IoT devices have
made securing of them a challenging task compared to the traditional com-
puting devices. These special characteristics include low capacity of devices
in terms of memory and computational power, heterogeneity of devices with
different capabilities, scalability of network, wireless connection of devices
to network (via Wi-Fi, ZigBee, Bluetooth), mobility of the devices in the
network, and the single-purpose design of the embedded IoT devices. There-
fore, it is essential that the security measure that is designed to protect the
security and privacy in IoT is lightweight, tolerable by the devices, and is
compatible with the limitations of the IoT devices.

2.3 Obfuscation

Code obfuscation is the process of scrambling and transforming the code
to an unintelligible form that is more complex, and harder to read and com-
prehend. The obfuscated code is syntactically different, but still functional

13

and semantically equivalent to the original code [20]. With the help of ob-
fuscation transformations, even if an adversary obtains the program’s source
code, it takes more time and energy to comprehend the code and reverse
engineer it. Obfuscation does not guarantee that the program will not be
tampered with or reversed engineered, but it advances the level of defense
by increasing the effort and cost for the attacker to learn the functionality
of the obfuscated program.

Figure 2.3a shows a simple piece of C code and Figure 2.3b shows the
obfuscated version of this code using a free online obfuscation tool [10]. The
obfuscated version of the code is not easy to read and understand. Certainly,
with given resources and time the attacker may be able to comprehend and
reverse engineer the code, albeit requiring higher time and energy.

#include <stdio.h>
int main(){int
o_29fb4af0a1adf7ee01a3b3dd06bbe963,o_c3fc214552f8031f1447db420dff1c96,o_eab5836874947171c8ad490372fe6348=
(0x0000000000000000 + 0x0000000000000200 + 0x0000000000000800
0x0000000000000A00),o_31b27256bfe8509585c3676eed39aaca=(0x0000000000000002 + 0x0000000000000201 +
0x0000000000000801 0x0000000000000A03),o_ae6b7175f17dcdedea722a581a2ca6b9;printf("\x45""n\164e\x72"" \164h\x65""
\156u\x6D""b\145r\x20""o\146
\x74""e\162m\x73"":\040");scanf("\x25""d",&o_c3fc214552f8031f1447db420dff1c96);printf("\x46""i\142o\x6E""a\143c\x69""
\123e\x72""i\145s\x3A"" ");for (o_29fb4af0a1adf7ee01a3b3dd06bbe963 = (0x0000000000000002 + 0x0000000000000201 +
0x0000000000000801 0x0000000000000A03);(o_29fb4af0a1adf7ee01a3b3dd06bbe963 <=
o_c3fc214552f8031f1447db420dff1c96) & !!(o_29fb4af0a1adf7ee01a3b3dd06bbe963 <=
o_c3fc214552f8031f1447db420dff1c96);++o_29fb4af0a1adf7ee01a3b3dd06bbe963){printf("\x25""d\054
",o_eab5836874947171c8ad490372fe6348);o_ae6b7175f17dcdedea722a581a2ca6b9 = o_eab5836874947171c8ad490372fe6348 +
o_31b27256bfe8509585c3676eed39aaca;o_eab5836874947171c8ad490372fe6348 =
o_31b27256bfe8509585c3676eed39aaca;o_31b27256bfe8509585c3676eed39aaca =
o_ae6b7175f17dcdedea722a581a2ca6b9;};return (0x0000000000000000 + 0x0000000000000200 + 0x0000000000000800
0x0000000000000A00);};

#include <stdio.h>
int main()
{
 int i, n, a = 0, b = 1, nextTerm;
 printf("Enter the number of terms: ");
 scanf("%d", &n);
 printf("Fibonacci Series: ");

 for (i = 1; i <= n; ++i)
 {
 printf("%d, ", a);
 nextTerm = a + b;
 a = b;
 b = nextTerm;
 }
 return 0;
}

Obfuscation

(a)

(b)

Figure 2.3: Excerpt from obfuscated piece of C code: a) original code, b)
obfuscated version of the same code

In the literature, there has been a large body of research on the various
obfuscation mechanisms [21], each of which has different target for applying
obfuscation transformation, and at various phases of the software develop-
ment life-cycle [33]. According to the taxonomy presented by Collberg et

14

al. [21] the target of obfuscation could be control flow, data, and program
layout. For achieving each of these obfuscation transformations, there exist
a wide range of mechanisms. Control flow obfuscation is one very common
way of concealing the program flow. To obfuscate the program’s control flow,
opaque predicates could be used [22]. An opaque predicate is a Boolean ex-
pression in a program code that is designed to be executed always the same
way. Although the outcome of this execution is always known to the ob-
fuscator in a priori, it still is evaluated at execution time to make the code
analysis harder and more cumbersome. Bogus (dead/gray/dummy code)
insertion [27, 59] is another common control flow obfuscation technique that
is used to confuse the code analyzing tools, by adding a piece of code that is
never executed. Data obfuscation attempts at obscuring data and concealing
data structure of a program. Some of the obfuscation mechanisms that fall
in the category of data obfuscation are class transformation [56], and array
transformation [24]. The third category is layout transformation which is a
type of obfuscation that targets the program’s layout structure, for instance
through renaming the identifiers [35], Instruction Set Randomization (ISR)
[57], and Address Space Layout Randomization (ASLR) [44].

Code obfuscation has been proposed and used by software developers for
various purposes [33], including protecting secrets and data in a program,
protecting protocols from spoofing, protecting program from tampering and
illegitimate modification, making code analysis difficult, protecting digital
watermarks and birthmarks in programs, and protecting mobile agents. Like
many other security measures, obfuscation has also been used by malware
developers to conceal the malware’s malicious code from being detected by
the scanners [64].

2.4 Diversification

Software diversification is changing the structure and internal interfaces
of a program in order to generate unique diversified versions of this program.
Unique instances of the software are distributed among the users. These in-
stances are all functionally the same, but differently diversified. This means
that diversification breaks the monoculture software distribution model and
introduces multiculturalism in software deployment process. The security
benefit of the multicultural software deployment model is impeding the risk
of large-scale attacks. Even supposing that the attacker manages to crack
one instance of the software and utilize some non-public internal interface,
on account of the fact that software instances are unique, the attacker cannot
access other instance. In other words, the attack model must be designed
individually for each particular software instance and the same attack model
does not work on all software instances. Therefore, diversification is a very

15

Figure 2.4: Software diversification

effective technique for securing largely distributed systems and also the sys-
tems in the current era of operating system and interface monoculture. Fig-
ure 2.4 shows the unique design and distribution of the diversified software
instances, and how diversification thwarts the risk of large-scale attack.

In order to access the resources of a system, interfaces are used. Di-
versification alters the internal interface(s) to secret ones. Diversifying the
internal interfaces of the software creates a unique secret that is propagated
only between the legal ”clients” of the interface (i.e., they are also diversified
to be compatible with inner layers), to maintain their communication be-
tween each other. The diversification secret is kept private from illegitimate
parties to prevent their access to the diversified resources.

Interface diversification introduces proactive protection against malware,
especially when it is applied throughout all the interface layers. Malware
(malicious software) is a piece of software that is designed to run its code on
a user’s computer to disrupt its operation or manipulate the system in the
way that the attacker desires [55]. To do this, malware needs to gain knowl-
edge on the system, its environment, and how to interact with it and access
its resources. Software diversification modifies the internal interfaces of the
software and makes it challenging for the malware to get such knowledge.
Consequently, the malware code becomes incompatible with the system’s
environment and when not able to interact with it, it becomes ineffective.
To achieve this, many different diversification techniques have been pro-
posed that each target various parts in software layer. Depending on the
need of the system, different diversification mechanisms could be employed.
Diversification mechanisms could be as simple as name changing or a more
complex technique such as system call diversification.

System calls are the programmatic ways for a program to request services

16

from the operating system kernel. System calls as part of overflow attacks
could be misused by a malware to access the operating system and carry
out its malicious intend. Diversification of the system calls could conceal
their interface and make them inaccessible by the malware. Symbol diver-
sification [39] diversifies the indirect library entry points to the system calls
by renaming the symbols in Linux binaries. This makes it difficult for the
malware to use these entry points and system’s resources, because it does
not know the diversification secret (the function that relates the original and
new symbol names). Liang et al. [42] propose a system call randomization
approach to counter code injection attacks. This type of attacks uses system
calls to inject code. By randomizing these system calls, the attacker who
does not know the randomization algorithm key, will inject a code that is not
randomized in the same way that the target process has been randomized,
so it is not valid for the de-randomized module. Thus, the injected code
fails to execute without correctly calling the system calls. Address Space
Layout Randomization (ASLR) [44] is another practical and effective diver-
sification technique that protects the operating system from buffer overflow
by randomizing the location of the executables in the memory [35]. This,
randomizes and reshuffles the address space locations of a process (the base
of the executable, heap, stack, and library position). Here, the memory
could be seen as an interface that after diversifying it, the attacks that rely
on the known layout structure are prevented.

Software diversification has many parallels with code obfuscation. Whilst
the main goal of these two software security approaches are different, many
of the techniques developed for software obfuscation can be parameterized
for software diversification purposes. This means that obfuscation could be
applied to generate diversified versions of the code, and obfuscation could be
applied to make diversified software less understandable and distinguished
from equivalent versions. These two techniques do not aim to eliminate
software vulnerabilities, but make it difficult for an attacker to exploit these
vulnerabilities and conduct a successful attack. In the literature, there exist
a wide range of studies on applying these two techniques for securing various
execution environments [32] such as cloud computing [37, 50], IoT [29, 30],
mobile and embedded systems. The studies show that the two techniques
have been successful in mitigating the risk of a wide range of attacks [32]
including buffer overflow, injection attacks, Return-Oriented Programming
(ROP) attacks, and JIT spraying attacks. Diversification and obfuscation
could be applied on different parts of software at different phases of develop-
ment process: design and implementation, compilation and linking, loading,
installation and update, and execution. The most common phase is compile
time (i.e., at the time the program is compiled and linked) [33].

It is worthwhile discussing here how obfuscation and diversification differ
from security through obscurity. Security through obscurity protects the

17

code/secret/asset by concealing it. This means that the asset is safe until it
is not discovered. When it is discovered, it is no longer safe, and the system
is vulnerable. This is while that obfuscation does not try to hide the program
but instead secures the program, even in the case that the source code or
the binary code of the program is revealed. This means that even if the
attacker gets access to the code, he/she cannot read/understand it, because
it is obfuscated in a way that the attacker does not know. For instance, in
source code obfuscation the code is not hidden but it is obfuscated in a way
that it is difficult to comprehend and reverse engineer.

Diversification removes the knowledge necessary to interact with the
environment and access the resources, i.e., the previously publicly known
interfaces towards the system resources are removed, and thus, the system
is hardened. For instance, in symbol diversification [39] the indirect library
entry points to the system calls are renamed. This means that the old names
are not hidden, but they do not exist anymore.

Therefore, security through obscurity could be valuable to add a valid
layer of security, but it cannot be a sufficient and strong security mechanisms
by itself and cannot substitute the security for secrecy.

2.5 Trusted Computing

Trusted computing (TC) is a technology that leverages a hardware-based
roots of trust to improve computer security through hardware enhancements
and alteration of the associated SW. TC creates a secure environment re-
ferred to as Trusted Computing Base (TCB) which provides privacy protec-
tion and trust. TCB assures the security of the system and guarantees that
it is behaving in the expected manner. Different hardware manufacturers
have promoted and developed specifications to protect computer resources
from the access of malicious entities. Trusted Platform Module (TPM) [13]
is a tamper resilient co-processor chip that is designed by Trusted Com-
puting Group consortium [12], to provide security solutions to its hosting
platform. These solutions include trusted boot, secure storage, integrity
measurement, remote attestation, and cryptographic functionalities. Today,
a large number of computing devices are equipped and shipped with TPM
and benefit from the security guarantees that it offers. TPM specification
version 1.2 was first published in 2011, and a newer version of it, TPM 2.0,
was released to the market with stronger cryptographic capabilities and al-
gorithm supports. TPM provides Root of Trust for Storage (TRS), Root
of Trust for Reporting (RTR), and Root of Trust for Measurement (RTM)
[62]. RTS offers a protected and secure repository to store the sensitive
data and cryptographic keys. It also contains a cryptographic engine to
securely conduct lightweight cryptographic operations. RTR offers a pro-

18

tected environment and interface that is responsible for managing identities
and signing the assertions. It cryptographically binds the information to a
specific device, in order to prove the integrity and non-repudiability of the
information. RTM provides the measurements on the platform’s trust sta-
tus. These services offered by TPM, make the identification, authentication,
integrity verification, and encryption of a device feasible.

Remote attestation which is the primary attribute provided by TC tech-
nology extends the trust from the lower levels, towards the upper levels and
applications. This step-by-step verification of trust is known as the chain of
trust, in which all the component are considered untrusted and are measured
before they are loaded or executed. A TCB measures the integrity of the
platform both at the boot time and at the run time. At the time of system
boot, it needs to be assured that the system is being booted correctly, and
it is running the appropriate operating system. This is achieved by creat-
ing a chain of trust starting from the Core Root of Trust for Measurement
(CRTM). CTRM is a trusted code in the BIOS boot block that measures
the integrity values of other components, and stays unaltered during the
whole platform’s lifetime. CRTM is an extension of normal BIOS that is
run to measure the integrity of other parts of the BIOS block. The BIOS
measures the hardware and the bootloader, and then it passes the control to
the bootloader. The bootloader measures the kernel image of the operating
system and passes the control to the operating system. Based on the taken
measurement values in each of the steps in the boot process, the appropri-
ate Platform Configuration Register (PCR) value is updated [63]. Storing
a new value to the PCR works by extending the existing value with a new
value. TPM PCRs are the protected memory locations for storing sensitive
information, such as integrity measurement values that attest the system’s
integrity. Besides the strong isolated storage that the TPM offers, it also
holds a set of keys that assist at the time of attestation, Endorsement key
(EK) and Attestation Identity Key (AIK). EK is an RSA key pair that is
used for cryptography operations such as digital signature operation. This
key is a pair of public and private key that is generated at time that TPM is
being manufactured. The private part of the key is tied to TPM and never
leaves it. EK is used for signing the information that is generated inside the
TPM, such as PCR values. AIKs are the keys that are used at the time of
remote attestation, to preserve the privacy of the platform’s identity. When
a platform (attester) receives remote attestation request from a verifier, it
sends out an integrity report that is composed of PCR values and their dig-
ital signature computed with an AIK. Due to the fact that the private part
of the AIK’s key pair never was released from TPM, a certified authority
can certify the authenticity of it. This is a guarantee for the integrity and
authenticity of the report [62].

In recent years, hardware virtualization technology has emerged rapidly

19

and has reduced the costs associated with the ownership of computer sys-
tems. This technology has especially been advantageous for systems that
share hardware platform among multitude of software workloads with the
aim of cost reduction and utilization improvement. Cloud computing is one
of these systems that have benefited from hardware/platform virtualiza-
tion. The added benefits have also introduced security concerns due to the
shared resources. The software workloads that are sharing the same hard-
ware should be kept separate from each other to protect their security and
maintain the software integrity. Virtual Machine Monitor (=hypervisor) is
a proper solution for isolating these workloads, and TC is a suitable technol-
ogy to provide hardware based root of trust, guaranteeing software integrity
and mitigating the software attacks. Hence, combination of these technolo-
gies is a well-fitting solution in this scenario. Virtualization of the TPM was
proposed [16] to make TPM functionalities available to all VMs running on
a platform, in a way that there is only one physical TPM per platform which
is virtualized. Each VM receives its own virtual TPM (vTPM) instance and
these vTPM instances act just as physical TPMs and offer the same func-
tionalities as the hardware TPM. Due to the fact that vTPM is software
based, it has more flexibility comparing with physical TPM.

2.6 Trusted Execution Environment

A Trusted Execution Environment (TEE) [51] is a secure integrity-protected
processing area inside the main processor with memory and storage capabil-
ities. It runs in an isolated environment in parallel to the operating system,
and guarantees the confidentiality and integrity of the code and data that is
loaded in the TEE. The trusted applications that run in TEE have access to
the processor and memory of the device. Hardware isolation secures these
applications from the other applications installed by the user that run in
the operating system. Cryptographic software isolation inside these trusted
environments protects different applications from each other. The primary
concepts of a TEE are security, trust, and isolation of critical data. TEE
enables device identification through root of trust which enables the stake-
holders to identify the authenticity of the device that they are interacting
with. Also, it cryptographically protects the data that is processed and the
applications that are executed in it.

Intel R© SGX [4, 5] is a hardware-based TEE solution developed to provide
isolated execution. SGX is a set of new instructions and modifications to the
memory access, added to the Intel R© architecture that enable an application
to instantiate a highly protected container called enclave. Enclave is referred
to the protected area in the address space of an application that guarantees
integrity and confidentiality, even in the presence of malware. This protected

20

memory area is accessible only by the software that resides in the enclave,
and access is prevented for the applications outside it, even for the privileged
software such as hypervisor, BIOS, or operating system [46]. The memory
area utilized by an enclave is encrypted in order to protect application’s
secrets from adversaries with access to the memory. Some instances of the
typical use cases of enclave are password managers, password input, and
cryptographic operations. Figure 2.5 shows the enclave secure container
within the application’s virtual address space [46].

OS

Enclave

App stack

App code

Entry table

Enclave code

Enclave heap

Enclave stack

Figure 2.5: Excerpt of an enclave within application’s virtual address space

In the recent years, Intel SGX has received considerable attention by
virtue of the fact that it could be a practical solution for various domains
including trustworthy public cloud. Confidentiality and integrity assurance
have always been a major concern and obstacle on cloud adoption. These
concerns could be alleviated through the use of Intel SGX.

Despite of the great advantages that Intel SGX has introduced, it has
recently shown to be prone to several side-channel attacks that attempt to
extract some information about the program running in an enclave. One
of these side-channel attacks is the branch shadowing attack [40] that aims
at learning the secret-dependent control flow of the code running inside an
enclave. To do this, the attack misuses the Branch Prediction Unit (BPU)
of the CPU to identify whether an instruction is executed/taken or not,
and also the target of the branch. BPU is a feature in modern processes to
improve performance through instructions pipelining before exact branching
decisions are known. In other words, based on the recent branch history,
BPU speculates whether or not a branch is taken, and also the targets
of indirect branches. Similar to branch-shadowing attack that uses BPU

21

and CPU’s speculative execution feature, Meltdown [43] and Spectre [36]
also misuse the critical vulnerabilities of modern CPUs to get hold of the
secrets that are stored in the memory of other running applications, such
as passwords stored in the browser or password manager, personal emails,
photos and business-critical documents stored on the victim’s machine.

Page fault (=control-based) side channel attacks [61] are critical side-
channel attacks that allow a malicious operating system to take control over
the SGX program’s execution and to extract large amounts of sensitive infor-
mation from the protected application. To conduct this type of attack, the
malicious operating system interrupts the execution of the enclave, unmaps
the target memory pages, and resumes the execution of the enclave. To
unmap the memory, the operating system induces page-fault traps through
restricting the access to particular data pages or code. At the time when a
data object on that particular data page is accessed or a function on that
particular code page is called, a page-fault is triggered and the operating
system is notified. By observing the pattern and sequence of accessed ad-
dresses of data and control transfers, the malicious operating system can
infer the sensitive data.

A cache-based side channel attack [19] extracts the secret of an enclave
program (e.g., RSA key) through monitoring the access patterns of the
caches that are shared between enclave and untrusted software. This moni-
toring could be done through Prime+Probe cache monitoring technique [48].
In this technique, the adversary fills up all the cache lines. Then the victim
accesses a cache line. The adversary detects whether or not the cache line
is used by the victim through checking if its cache entry has been evicted.

Intel has stated that these side-channel attacks are beyond the scope of
SGX and it is the responsibility of the developer to mitigate the risk of such
attacks [3]. In this regard, researchers and developers have developed several
defense mechanisms to mitigate these side-channel attacks, such as T-SGX
[54] and SGX-Shield [52] as mitigating solutions to the controlled-channel
attack, DR.SGX [18] to mitigate cache attacks on enclave, and mitigating
solutions to thwart the branch-shadowing attacks [31].

22

Chapter 3

Contributions of the
dissertation

This chapter is organized in five different sections and describes in detail
the contributions this dissertation makes in providing security and trust for
cloud computing and IoT. Section 3.1 presents objectives and motivations of
this dissertation (M1 - M5) to conduct further research and tackle the secu-
rity issues. Section 3.2 introduces research questions (RQ1 - RQ4) devised
in order to follow the motivations and achieve the objectives of dissertation.
Next, in Section 3.3 we present the research methodology chosen for this dis-
sertation, and in Sections 3.4 we explain the process of answering research
questions through the original publications included in this dissertation. Fi-
nally, Section 3.5, presents a detailed description of the contributions that
each individual publication has made to this dissertation.

3.1 Motivation and Objective of the Research

The following, M1 - M5, are the motivations of conducting this research dis-
sertation in the studied domain, security and trust in cloud computing and
IoT. M1 - M3 are the motivations on the choice of execution environment,
and M4 - M5 are the motivations for the choice of security approach:

• M1: Improving security in cloud computing

• M2: Improving trust in cloud computing

• M3: Improving security in IoT

• M4: Improving the security of software through obfuscation and diver-
sification techniques

• M5: Improving the level of security and trust through hardware-based
security solutions, TC and TEE

23

The advancements of cloud computing technology have facilitated the orga-
nizations and enterprises with lower cost and higher performance services
that are more scalable and available. Due to these advantages, there is a
high demand for cloud computing services and organizations rely on cloud
technologies more and more to deliver services to their customers. How-
ever, in comparison to in-house premises, in a cloud scenario the data is
stored outside the organization’s perimeters. This always raises the concern
about the security and privacy of the data and also trust towards the cloud
provider and cloud infrastructure. This motivated us to seek for solutions
that employ effective practices to secure the cloud computing infrastructure,
preserve the privacy of its users, and provides trust relationship between the
service provider and consumers. Such motivations are formulated as M1 and
M2 in this dissertation.

In addition to cloud computing, we study the security in Internet of
Things as another pervasive environment. IoT is being used in multitude
of public and private sectors, ranging from the public safety to health care.
This means that more and more devices are being connected to each other
and to the Internet, collect and share a great deal of data including personal
and business data. Security attacks on these devices could result in leaking of
this data, consequently harming the business, loss of millions of dollars, and
even endangering the safety and security of the consumers. The traditional
software and hardware security measures that are meant for computers are
not directly applicable to IoT devices and embedded systems, as they often
overwhelm the limited resource and processing capability that these devices
have. To these reasons, we were motivated to seek for a software security
solution to improve the security of IoT devices. This led us to the third
motivation of research in this dissertation (M3).

In order to secure a system, there exists a wide range of security mea-
sures to provide security in various levels, including hardware, software, and
network. This dissertation investigates the security mainly in software and
hardware level and it touches network level security very briefly (in Publica-
tion IV). To achieve this goal, we chose software security techniques, obfus-
cation and diversification, as we believe that application of these techniques
at operating system and API level generates unique diversified software in-
stances, and thus, lowers the risk of large-scale and targeted attacks. They
additionally lower the risk of malicious reverse engineering of the software,
make the attack more challenging, inefficient, and costly from an attacker’s
point of view, and have a potential to render the malware useless. This led
us to research motivation M4 to study these two techniques extensively in
enhancing the security of software in cloud computing and IoT. Nonetheless,
software security measures might not be sufficient in some cases, therefore,
additional hardware security measures make a more robust system to al-
leviate the risk of both software and hardware attacks. In this regard, in

24

addition to the two discussed software security technologies, we also use
hardware based security solutions, trusted computing, and TEEs to make a
more complete security approach, and increase the level of trust. This led
us to research motivation M5.

3.2 Research Questions

In order to address the motivation of the studies (Section 3.1), we formulated
the following research questions:

• RQ1: How can software diversification and code obfuscation improve
the security of software?

These two software security techniques have been extensively stud-
ied in the literature as promising techniques for protecting software
systems. Through answering this question, we aim at learning what
is known about the use of obfuscation and diversification in securing
the software, the state-of-the-art, the types of threats these techniques
could successfully mitigate, what exactly is obfuscated and diversified
in order to lower the risk of such threats, when and through what
methods they are applied, in what execution environments these tech-
niques are applicable or have been applied.

• RQ2: How can we enhance the level of security and trust in cloud
computing through obfuscation, diversification and trusted computing
and TEE technologies?

In the current scenario that many of the organizations and users are
relying on cloud services, the security of it is of paramount importance.
This security should be guaranteed at various levels. In addition to
the significance of security, we require a trust relationship between
the cloud service provider and its users. In this dissertation, we con-
template the cloud security from software security point of view, and
we consider the use of trusted computing and trusted execution envi-
ronments for providing trust and verifying the cloud’s accountability.
Through investigating this research question, we consider the possibil-
ity of applying obfuscation and diversification techniques to enhance
the security and utilize trusted computing technology and trusted exe-
cution environments to guarantee the trust relationship in virtual envi-
ronments and ensuring the integrity and confidentiality of the program
execution.

• RQ3: How can we enhance the level of security in IoT through obfus-
cation and diversification technologies?

25

With the pervasiveness of the usage of IoT and the high amount of data
collected by the IoT devices, it is very important that these devices are
secured and the network on which the data is transmitted is protected.
Through investigating this research question, we consider the possibil-
ity of applying obfuscation and diversification techniques to enhance
the security in IoT, at network and application layer. This approach
provides security at devices level, mitigates the risk of massive-scale
attacks, and lowers the risk of malware.

• RQ4: How can we combine the software security techniques, with hard-
ware backed solutions to introduce a robust security measure?

It is known that the rate of malware and software attacks are increas-
ing, thus there is a high demand for strong software protection mech-
anisms. However, the software security techniques have sometimes
been proved to be vulnerable and breakable. On the other hand, the
hardware security approaches lack the flexibility and simplicity in im-
plementation that the software-based approaches have. Thus, by an-
swering this research question, we aim at employing software security
techniques (obfuscation and diversification) together with hardware-
based security solutions (TC and TEE) to have more robust protection.

Figure 3.1 shows the relationship of research questions we formulated
in this dissertation in order to follow the research motivations explained in
Section 3.1.

M1

M2

M3

RQ1

RQ2

RQ3

RQ4

M4

M5
RQ1:	How	can	software	diversification	and	code	obfuscation	improve	the	security	of	software?
RQ2:	How	can	we	enhance	the	level	of	security	and	trust	in	cloud	computing	through	obfuscation,
diversification	and	trusted	computing	and	TEE	technologies?
RQ3:	How	can	we	enhance	the	level	of	security	in	IoT	through	obfuscation	and	diversification	technologies?
RQ4:	How	can	we	combine	the	software	security	techniques,	with	hardware	backed	solutions	to	introduce	a
robust	security	measure?

M1:	Improving	security	in	cloud	computing
M2:	Improving	trust	in	cloud	computing
M3:	Improving	security	in	IoT
M4:	Improving	the	security	of	software	through	obfuscation	and	diversification	techniques
M5:	Improving	the	level	of	security	and	trust	through	hardware-based	security	solutions,	TC	and	TEE

Figure 3.1: Relationship of the motivations of the research with the formu-
lated research questions in this dissertation.

26

3.3 Research Methodology and Research Approach

In order to answer the defined research questions in this dissertation (RQ1
- RQ4), different research methodologies and research approaches are em-
ployed. This section presents an overview of these methodologies and ap-
proaches, and explains the type of methodology and approach that has been
used in each of the original publications (Publication I - Publication VI).

Research methodology is a systematic way of solving a research prob-
lem. In a research methodology the various steps that should be adopted
by a researcher are applied. Meanwhile, research methods are referred to
all the techniques and methods that can be utilized in performing research
operations [38]. According to the classification of the research methods pre-
sented by Wohlin and Aurum [60], besides the survey method, there are
three main classes of research methods: 1) case study, 2) action research,
and 3) design science research.

A case study research aims at investigating a phenomenon by employing
multiple data collection methods and collecting information from various
sources. A case study research typically follows the phases of designing,
conducting the case study, analyzing the collected data, and developing a
conclusion [60].

An action research aims at solving a problem of an organization for
which the research is conducted. In this research, the researcher is part of
the organization during the process of investigation, developing and applying
the solution. The process of action research typically follows the phases of
diagnosis of the problem, planning, action taking, evaluating, and specifying
the learning [60].

A design science research aims at addressing a problem through building
and evaluating an artefact that is designed to meet the requirements of that
problem. This research is considered as a problem-solving process. This
means that for solving that specific problem, an innovative and effective
artefact is designed that should be evaluated by applying thorough evalua-
tion approaches. The outcome of this research is presented in the form of a
model, method, construct, or an instantiation [60].

Although there is an overlap in some stages of research approach used
in action research and design science research, the focus of the outcome is
different. Action research focuses on solving a problem in an organization
through organizational and social changes. While, design science research
focuses on bringing a solution as an IT artefact (such as a framework or a
model) that will become a knowledge base for researchers.

Table 3.1 presents the research methods used in each of the original
publications in this dissertation.

In Publication I, the survey research method is used, as the publication
extensively observes and studies the literature and the existing solutions.

27

Publications Research method

Publication I survey
Publication II survey & design science
Publication III design science
Publication IV design science
Publication V design science
Publication IV design science

Table 3.1: Research methods used in original publications included in this
dissertation.
Publication I: Using Diversification and Obfuscation Techniques for Software Security: A
Systematic Literature Review
Publication II: Obfuscation and Diversification for Securing Cloud Computing
Publication III: Security in Container based Virtualization through vTPM
Publication IV: Security in the Internet of Things through Obfuscation and Diversification
Publication V: Interface Diversification in IoT Operating Systems
Publication VI: Mitigating Branch Shadowing Attacks on Intel SGX using Control Flow
Randomization

The research approach to conduct this thorough observation is systematic
literature survey.

In Publication II, the survey and design science research method is used.
Survey research method is used to collect and analyze the data, and draw
a conclusion. More precisely, the literature is reviewed in order to identify
the existing obfuscation and diversification solutions in the context of cloud
security. Then, based on this conclusion, we propose an innovative method
for solving the identified problem. More precisely, based on the conducted
review and identified research gaps, a new software obfuscation method is
proposed to enhance the security on the client-side software in cloud com-
puting.

In Publication III, design science research method is chosen, as the pre-
vious solutions were observed (using vTPM for hypervisor-based virtual en-
vironments), and then a new model was designed and implemented to use
vTPM in container-based virtualization to enhance the security in such en-
vironments. In this design science research, we design an innovative artifact
in the form of a model and construct.

In Publication IV, the design science research method is used, since as
the result of studying the existing security problems in IoT environments, we
have proposed an innovative method to solve them, i.e., this paper proposes
a solution for securing operating system and APIs of IoT devices.

In Publication V, the engineering and design science as the research
approach is used. In this paper, based on the solution proposed in our
previous study (Publication IV), a new obfuscation solution is designed,
developed and measured to improve the security of software on IoT devices.

In Publication VI, the design science research method is used. In this

28

study, we first study an existing problem (a type of side channel attack
on SGX), and design a model and approach to solve this problem. This
model is innovative, and the effectiveness of it is evaluated. More precisely,
in this paper, a new control-flow obfuscation and randomization approach
is designed, developed and measured to protect the enclave program and
enhance its security.

3.4 Research Process and Publications

We started this PhD research by thoroughly studying the obfuscation and
diversification techniques which was published as a Systematic Literature
Review (SLR) (Publication I) [33]. As the result of this SLR study, we iden-
tified the research gaps which became directions for further research. One of
the findings of this SLR was the execution environments that could benefit
from the studied software security techniques, obfuscation and diversifica-
tion and have not been covered in the literature. Therefore, we looked into
the possibility of applying these techniques in IoT and cloud computing,
as these two environments are very commonly used execution environments
nowadays and there exist a vast number of security attacks on them.

Publication VI

Publication IIIPublication I

Publication V

Publication II

Publication IV

Internet of Things

Cloud Computing

secu
rity

trust

Publication I: Using Diversification and Obfuscation Techniques for Software Security: A Systematic
Literature Review
Publication II: Obfuscation and Diversification for Securing Cloud Computing
Publication III: Security in Containerbased Virtualization through vTPM
Publication IV: Security in the Internet of Things through Obfuscation and Diversification
Publication V: Interface Diversification in IoT Operating Systems
Publication VI: Mitigating BranchShadowing Attacks on Intel SGX using Control Flow Randomization

Figure 3.2: Relationship of the publications with each other in this disser-
tation.

Figure 3.2 shows the relation of the publications included in this dis-
sertation. After Publication I, the research was continued in two different
themes, cloud computing and Internet of Things. In the first theme we first

29

studied the enhancement of security in cloud through obfuscation and di-
versification software security techniques (Publication II), and then studied
the enhancement of trust in cloud through utilizing trusted computing tech-
nology as a hardware-based approach (Publication III). Then we continued
the same theme by combining these directions to provide security and trust
in cloud computing through the use of obfuscation and diversification and
TEE provided by Intel SGX.

The result of studies we gained in each of these publication helped us an-
swer the research questions set in this dissertation (RQ1 - RQ4). Figure 3.3
illustrates the relationship of the publications and the research questions.

RQ1 RQ2 RQ3 RQ4

Publication	I Publication	II Publication	III Publication	IV Publication	V Publication	VI

Publication	I:	Using	Diversification	and	Obfuscation	Techniques	for	Software	Security:	A	Systematic
Literature	Review
Publication	II:	Obfuscation	and	Diversification	for	Securing	Cloud	Computing
Publication	III:	Security	in	Container-based	Virtualization	through	vTPM
Publication	IV:	Security	in	the	Internet	of	Things	through	Obfuscation	and	Diversification
Publication	V:	Interface	Diversification	in	IoT	Operating	Systems
Publication	VI:	Mitigating	Branch-Shadowing	Attacks	on	Intel	SGX	using	Control	Flow	Randomization

RQ1:	How	can	software	diversification	and	code	obfuscation	improve	the	security	of	software?
RQ2:	How	can	we	enhance	the	level	of	security	and	trust	in	cloud	computing	through	obfuscation,
diversification	and	trusted	computing	and	TEE	technologies?
RQ3:	How	can	we	enhance	the	level	of	security	in	IoT	through	obfuscation	and	diversification	technologies?
RQ4:	How	can	we	combine	the	software	security	techniques,	with	hardware	backed	solutions	to	introduce	a
robust	security	measure?

Figure 3.3: Relationship of the research questions and the publications in-
cluded in this dissertation.

We answered RQ1 through a comprehensive systematic literature review
(Publication I). This review presented classifications of the various available
obfuscation and diversification techniques, the target language and envi-
ronment of obfuscation/diversification, the level of software development
life-cycle in which the techniques were applied, and the types of security
attacks that could be mitigated through the use of these techniques. The
research gaps in this area and the potential uncovered research directions
led us to our next publications.

For answering RQ2, we took two different directions: in the first one, we
studied application of obfuscation and diversification in cloud computing
as software-based security approaches, and in the second one, we studied
the use of trusted computing and TEE technologies in cloud computing as
hardware-based security approach. In the earlier direction, we surveyed how

30

obfuscation and diversification techniques have been previously used in cloud
computing, and then we proposed and applied these techniques on them on
the client-side web application (Publication II). In the latter direction, we
studied the use of TPM as a trusted hardware technology and proposed the
use of virtual TPM in container-based virtualization setting (Publication
III). Combination of these two directions is reflected in (Publication VI)
where we use both obfuscation as software-based security solution, backed
with hardware-based security guarantees from Intel SGX. There, we applied
control-flow obfuscation on the enclave programs of the Intel SGX architec-
ture to mitigate the branch-shadowing side-channel attacks.

We answered RQ3 by studying the vulnerable points of IoT environments
and proposed the application of obfuscation and diversification techniques
for improving the security on IoT in two various layers: at application layer,
by obfuscating/diversifying the operating systems and APIs of the IoT de-
vices, and at network layer, by obfuscating/diversifying the communication
protocols used among the devices (Publication IV, Publication V).

We answered RQ4 by combining the software-based and hardware-based
security techniques that we had studied in the previous publications. We
applied compile-time obfuscation and run-time randomization on the control
flow of the Intel SGX enclave program (Publication VI).

3.5 Description of the Original Publications In-
cluded in the Dissertation

The following is a description of the set of publications included in this
dissertation, to answer the formulated research questions. For each of the
publications (Publication I - VI), a summary is presented that highlights
the primary content of the publications, and also the contribution of author
in each publication is explained.

3.5.1 Publication I: ”Using Diversification and Obfuscation
Techniques for Software Security: A Systematic Liter-
ature Review”

Summary : This publication presents a systematic review of the state-of-
the-art of utilizing diversification and obfuscation techniques to improve the
security of software. In this survey 357 papers published in the domain
were collected, studied, analyzed and classified. As a result, we learned
that these two software security techniques have been used in the literature
for various aims and for mitigating a wide range of security attacks. We
identified four broad categories of aims that the studied literature could
belong to: a) making the act of reverse engineering of the program more

31

difficult, b) preventing the widely spreading of vulnerabilities, c) preventing
unauthorized alteration of the software, and d) data hiding. Figure 3.4
illustrates the types of attacks that are successfully mitigated through using
diversification and obfuscation techniques [32, 33].

Buffer overflow 29%

Code injection 18%

ROP 18%

JIT spraying 11%

Slicing 7%

Insider attacks 7%

Piracy 7%
Web application attacks 4%

Figure 3.4: Attacks that could be thwarted using diversification and obfus-
cation techniques [32, 33]

Furthermore, in the literature, these techniques are proposed to secure
various environments. Many of the studies claim that their approach could
be applied in any environment, which reflects the broad applicability of di-
versification and obfuscation in different software layers and different plat-
forms. Due to the fact that computer systems run native code on the low-
est level of abstraction level, a large group of publications reported native
code as the target environment for obfuscation and diversification. The
other execution environments that have been discussed in smaller group of
publications to benefit from these two techniques are server, cloud plat-
form, distributed/agent based devices, mobile devices, embedded devices
and desktops.

In the studied literature, obfuscation and diversification were applied
on a wide range of languages to protect the program and code. A more
descriptive view of the type of languages was achieved by further classifying
the research into four language categories of hardware oriented, high level,
scripting, and domain specific languages. Categories, the languages in each
category, and number of studies considering those languages are as follows:

• Systems programming (N=158): C (52), Assembly (29), C++ (21),
Cobol (1)

32

• Managed (N=81): Java (54), C# (3), Haskell (2), J# (1), Lisp (1),
OCaml (1), VB (1)

• Scripting (N=19): JavaScript (11), Python (3), Perl (2), PHP (1)

• Domain specific, DSL (N=7): SQL (5), HTML (1)

The systems programming (C/C++) and high level languages (Java &
JavaScript) represent the vast majority of the studies.

Transformation

Control flow Data Layout

Opaque predicates

Bogus insertion

Polymorphism

Branching function

Inlining methods

Self-modification mechanism

Instruction transformation

Instruction reordering

Instruction replacement

Instruction hiding

Adding fake instructions

Reordering of blocks

Jump table spoofing

Code transformation

Loop transformation

Class transformation Removing debugging or
formatting information

Identifier renaming
Class splitting

Class coalescing/merging

Class hierarchy flattening

Type hiding

Array transformation

Array splitting

Array folding

Array merging

Variable renaming

Address randomization

Instruction set
randomization

Memory-layout
randomization

Loop condition
transformation

Loop intersection

Loop unrolling

Variable transformation

Variable substitution

Variable encoding

Variable splitting

Code substitution

Encryption

Figure 3.5: Transformation mechanisms

In the studied literature, various transformation mechanisms are pro-
posed to make diversified program instances. Figure 3.5 illustrates these
obfuscation/diversification techniques as a tree, on which the first level
represents the target of the transformations and the lower levels are the
transformation techniques. This classification is based on the taxonomy
presented by Collberg et al. [21]. Control flow obfuscation obscures and
alters the flow of a program in order to make it challenging for an attacker
to successfully analyze and comprehend the code. To achieve this type of
obfuscation, various methods have been utilized such as the use of opaque

33

predicates, re-ordering of blocks, and transformation of the instructions,
code, and loops. Data obfuscation obscures data and conceals the data
structure of a program. Transformation of classes, arrays, and variables
are some examples of the approaches to achieve data obfuscation. Layout
obfuscation is a type of obfuscation techniques that targets the layout struc-
ture of the program, for instance through removing debugging formatting
information from the program, or identifier renaming which includes address
randomization, instruction-set, and memory-layout randomization.

167

10

15
4

55

92

2

0

5

32 2

2

1

0

800

0

0

0

1

0

00

0
0

0

0

0

Compilation & linking

Design
&

impl.

Execution Installation & update

Loading

Figure 3.6: Various stages in software life-cycle that obfuscation and diver-
sification techniques are applied on.

Each of the proposed obfuscation/diversification mechanisms is applied
at different stages and levels of software development/deployment process.
Figure 3.6, presents all the observed stages and their overlap in five different
categories, from design to application execution time in software develop-
ment life-cycle. Some of the studies applied obfuscation/diversification in a
single stage, while many others operated in one to three stages. Applying
obfuscation and diversification at compilation and linking time was the most
commonly used phase, followed by execution time. Numbers on each stage
in Figure 3.6 represent the number of studies that were applying/studying
obfuscation and diversification in that particular stage.

In addition to the constructive works that were proposing a new ob-
fuscation/diversification approach, there was a group of papers that were

34

empirically studying these two techniques, in the form of a survey, discus-
sion, evaluation, optimization, experiment, comparison, and presenting a
classification.

Author’s contribution: In this project, the author had the primary role in
leading the project, collecting and analysis of data, presenting classification
and writing the paper.

3.5.2 Publication II: ”Obfuscation and Diversification for Se-
curing Cloud Computing”

Summary: This project is the result of our contribution with our colleague
in Padova University, Italy. As the result of findings in Publication I, we
learned that obfuscation and diversification techniques could be applied in
various execution environments to boost the security. One of these environ-
ments is cloud computing. In Publication II, we first survey how obfuscation
and diversification has been previously used in cloud computing to improve
the security. We then propose an approach that uses these two techniques
to improve the security in cloud computing environment and preserve the
privacy of its users. The result of the survey (43 papers) showed that the pa-
pers in this area were employing obfuscation and diversification techniques
in nine different ways to protect the cloud and its users: 1) generating
noise obfuscation, 2) client-side data obfuscation as a middleware, 3) gen-
eral data obfuscation, 4) source code obfuscation, 5) location obfuscation,
6) file splitting and storing on separate clouds, 7) encryption as obfuscation,
8) diversification, and 9) cloud security by virtue of securing the browser.
This classification is depicted in Figure 3.7, with the number of papers in
each class.

Studying the existing works shed light on the research gaps. For in-
stance, in the majority of works in the studied set of publications, the cloud
service provider is considered as untrusted and may deduce the users’ data
maliciously and without their consent. Therefore, they were proposing ap-
proaches that use obfuscation and diversification techniques to protect the
user’s data ”from the cloud”, and to preserve their privacy. This implies
that there is room for protecting the cloud itself from the external or inter-
nal malicious parties with the help of these two techniques. This motivated
us to propose a source code level obfuscation for the web applications written
in JavaScript. This approach is proactive and transparent to significantly
mitigate the risk of data manipulation and tampering of applications. Ob-
fuscation alters the application that executes on the user’s web browser by
scrambling the HTML and JavaScript code. In this manner, it is more diffi-
cult for a malicious software to gain knowledge about the internal structure
of the web application, and therefore, becomes more difficult for the attacker
to compromise the application and harm it.

35

Figure 3.7: Classification of the studies that use obfuscation and diversifica-
tion techniques for protecting the security and privacy in cloud computing

Author’s contribution: In this project, the author had the primary role
in leading the project, data collection, analysis of data, presenting classifi-
cation, proposing the mitigating approach, and writing the paper.

3.5.3 Publication III: ”Security in Container-based Virtual-
ization through vTPM”

Summary : We studied integration of trusted computing technology in vir-
tual environments and learned that in all existing works, vTPM is proposed
and implemented for hypervisor-based virtualization model and no paper
considers this security solution for container-based virtualization. This is
while the use of containers is growing due to their benefits (e.g., being
lightweight and fast). This motivated us to consider the possibility of ap-
plying vTPM in container-based virtualization. In Publication III, we pro-
pose two architectural solutions that integrate the vTPM in container-based
virtualization model and extend the functionalities of TPM module to the
containers. In the first design, the TPM module resides below the container-
layer in the operating system kernel, and it is virtualized to make it available

36

TPM

Container Container Container

vTPM vTPMvTPM

Linux

Container

Manager

(a) TPM

Linux

Container Manager

vTPM

Manager

Container

Container

Adapter

Container

Adapter

(b)

Figure 3.8: a) vTPM implemented in a kernel module, b) vTPM located in
a dedicated container.

to multiple containers. In this design, a kernel module provides arbitrary
number of software based vTPMs. The virtual TPMs present character de-
vice type interfaces to the userspace, and present the same interface to the
software as the hardware-based TPM does. Also there is a strong association
between the containers and their corresponding vTPM instance. Figure 3.8a
depicts this design.

The second design is inspired by the work done by Berger et al. [16]
which employs vTPM in traditional hypervisor-based virtualization model,
and the vTPM manager is placed inside a separate Xen domain. Our design
is proposed for container-based virtualization, and virtual TPM manager is
placed in a separate container. vTPM management container has access to
the hardware TPM and exposes vTPM interface to other containers through
a communication channel which could be a local UNIX domain socket or an-
other Inter-Process Communication (IPC) mechanism. Figure 3.8b depicts
the second architectural design in Publication III.

Author’s contribution: In this project, the author had the primary role in
studying the use of trusted computing for securing virtual environments and
co-contributed in proposing, designing and implementing the architectures
for using the vTPM in container-based virtualization setting. The author
had the primary role in writing and the paper.

37

3.5.4 Publication IV: ”Security in the Internet of Things
through Obfuscation and Diversification”

Summary : This publication studies the vulnerabilities and the existing
weak points that challenge the security of IoT devices. The IoT devices
range from more potent 32-bit processors (e.g., smart phones) to the very
lightweight sensors controlled by 8-bit micro-controllers with limited com-
putational power and memory. Thus, the chosen software for these devices
should be applicable to a wide range of devices, including the lowest power
ones and capable of supporting the functionality of the object. Such a sce-
nario, due to the special characteristics of these devices, makes the security
measures fairly limited. IoT sensors and devices contain embedded chips
that function with the help of an operating system and APIs, which could
be prone to malware and software attacks, and hence need to be protected.
The first proposed idea in Publication IV is on applying obfuscation and
diversification techniques on the operating systems and APIs on the IoT de-
vices to protect them at the application layer. Obfuscation makes the IoT
software harder to reverse engineer and be accessed, whereas diversification
thwarts the massive-scale attacks. This means that if the attacker manages
to attack one device through designing an attack model, she cannot take
other devices under control with the same attack model, because they have
differently diversified and obfuscated software, although with the equivalent
functionality. This is a very significant outcome in the highly distributed
systems to lower the risk of massive scale attacks occurring.

The second proposed idea in Publication IV is applying these techniques
on some communication protocols to protect the devices at the access proto-
col level. In a communication network, an application level protocol defines
the interfaces and the shared protocols used by the communication parties.
Protocol identification is the act of identifying what protocol is used in the
communication session, and it can be done via static analysis methods and
comparing the protocol used in the communication with the common exist-
ing protocols. The information gained from this analysis could be used by
an intruder and could endanger the confidentiality and integrity of the com-
munication. Protocol obfuscation could protect them from being identified
and make them more difficult to be recognized by the traffic classification
machines. Obfuscation removes the identifiable properties from the proto-
col, e.g., packet size and byte sequence and make them look random [28].
We propose obfuscating the communication protocol among a small set of
nodes (e.g., within a home) in a way that the obfuscation method is kept
secret among them and only the nodes that know the secret are able to
communicate with each others. By changing/complicating the form of the
protocol and making it different from the default format, we aim at generat-
ing a huge number of unique diversified protocols from a reference protocol.

38

Besides the protocol obfuscation, we propose protocol diversification, which
considers the protocol as an operation of two state machines, so that (syn-
chronized) state changes are messages sent between parties. The original
implicit state machine of a protocol can be diversified by adding/splitting
new states and transitions.

Author’s contribution: In this project, the author had the primary role
in studying the security status of IoT devices, proposing the idea of using
obfuscation and diversification to secure these environments (at application
and network layer), and writing the paper.

3.5.5 Publication V: ”Interface diversification in IoT oper-
ating systems”

Summary : This publication follows the work done in Publication IV, and
applies diversification on the interfaces of IoT operating systems. More pre-
cisely, we apply diversification in post-compilation and linking phase of the
software life-cycle, by shuffling the order of the linked objects while preserv-
ing the semantics of the code. This approach successfully prevents malicious
exploits from producing adverse effects in the system. Besides shuffling, we
also apply the library symbol diversification method, and construct the re-
quired support for it, for example into the dynamic loading phase. Besides
studying and discussing memory layout shuffling, and symbol diversification
as a security measure for IoT operating systems, we provide practical im-
plementations for these schemes for the Thingsee and Raspbian operating
system and test these solutions to show the feasibility of diversification in
IoT environments.

We applied layout diversification on Thingsee operating system with a
flat address-space configuration. The main goal was to prevent Return-
Oriented Programming (ROP) attacks that depend on known entrypoint
addresses, from functioning. First, we wrote a vulnerable Thingsee oper-
ating system application program that writes user-supplied data to a stack
buffer without bounds-checking. We devised an exploit that overwrites a
return address on the stack and makes the program jump to a chosen func-
tion. After executing the function, the system apparently crashes and re-
boots. Thence, we rebuilt the Thingsee operating system using our modified
GNU ld linker with randomization of the order of functions and data in the
Thingsee operating system image. An identical exploit did not cause the
chosen function to be executed this time, but it nevertheless invoked un-
defined behavior and, in our case, made the operating system crash. Our
vulnerable program was simply created by modifying the “Hello World” ex-
ample in the Thingsee operating system in order to facilitate creating a new
Thingsee operating system application. Our vulnerable program takes an
input from a command-line argument as a hexadecimal string and writes it

39

evil()

...

... stack

0
8
0
1
3
f
c
c

33221110
77665544
bbaa9988
ffeeddcc
11111111
08013fcd

...

stm32_busfault

...

... stack

Memory space

08013fc6

33221110
77665544
bbaa9988
ffeeddcc
11111111
08013fcd

Return
address

Stack
buffer

Flash
memory

...

stm32_usagefa...08013fce

...

evil()
08024668

a) b)

SRAM

Figure 3.9: a) Normal operating system: execution jumps to beginning of
evil(), b) operating system with diversified layout: execution jumps to the
middle of an instruction.

to a stack buffer in a hex-decoded form without bounds-checking. We use
this method of input to simulate a malicious input that would be received
from a real application environment, such as a network server. Figure 3.9
illustrates how execution flows in a normal operating system and an oper-
ating system with diversified layout. In the diversified operating system the
execution jumps to an address that is no longer the address to the malicious
function, so the attacker cannot execute its code.

The second part of the work done in this publication is a diversification
scheme we implemented for Raspbian on a Raspberry Pi device. In order
to utilize critical resources of a device, typically applications use the well-
known libraries. Diversifying the symbol names in these libraries, makes

40

it impossible for the adversary to use the well-known symbol names of the
operating system libraries and attack the system. The diversification needs
to be propagated to the legitimate applications, so they could still access
the libraries. As a result, the diversified applications know some part of
the diversification secret (some set of the diversified symbol names) and are
compatible with the library binaries that include the important functions.
In addition to library functions, some IoT operating systems support system
calls for providing services to user programs. In such setting, the system call
diversification should be applied together with symbol diversification. For
performing this diversification, a symbol diversification tool was used that
we had previously designed and build for diversifying x86 64 Linux [39]. The
tool was modified to support 32-bit ELF files.

Author’s contribution: In this project, the author had the role of advising
in the choice of diversification method and the APIs to apply diversification
on, based on the thorough systematic literature review that was done pre-
viously on the topic (Publication I). The author also participated in writing
and presenting the paper.

3.5.6 Publication VI: ”Mitigating Branch-Shadowing Attacks
on Intel SGX using Control Flow Randomization”

Summary : This publication was the result of author’s research visit in Secure
System Lab in Aalto University, Finland. We studied the branch-shadowing
attack as one of the side-channel attacks on Intel SGX and proposed and
implemented a defensive solution to thwart this attack. We applied program
control flow obfuscation and run-time code randomization in Intel SGX en-
vironment, with the aim of protecting the enclave program’s control flow.

Branch-shadowing attack is one of the side channel-attacks on Intel SGX.
The main goal of this attack is to infer the control flow of the program
running inside an enclave. Figure 3.10 shows a simple example of a case of a
conditional branch that has been taken. The blue line in Figure 3.10 shows
that the branch is taken. The attacker gains the source code or binary of
the victim program through static/dynamic analysis and designs a shadow
of this code which is aligned with the victim’s code in terms of branches and
their target addresses. Then the malicious operating system that has control
over the execution of the enclave, interrupts the enclave execution and gives
the control to the shadow code. There, Last Branch Record (LBR) is enabled
which reports the prediction hits and misses. The shadow code then starts
executing. It gets to Block0’ and Branch Target Buffer (BTB) predicts that
the branch should be taken, and because the jumps in Block0 and Block0’
are aligned, what had happened inside enclave, affects the prediction of this
jump on the shadow code. So in the attack code the jump to Block2’ is taken
as well. Then the attacker reads LBR that reports the hits and misses of

41

Block0:
 cmp 0, a
 je Block2

Block1:

Block2:

Block3:

Block0':
 cmp 0, a
 je Block2'

Block1':

Block2':

Block3':

#enableLBR

#readLBR Correct
prediction

Branch Target Buffer(BTB)

aligned

Trusted environment Untrusted environment

interruptenclave

Figure 3.10: Branch shadowing attack

branch predictions, and learns that the prediction has been correct, meaning
that the conditional branch has been taken. In this way, the value of ”a”
is leaked. Since the control flow of the program is dependent on the value
of ”a”, this means that the control flow of the program running inside the
enclave is also leaked to the attacker.

To defend against this attack, we proposed and implemented a novel ap-
proach that is composed of two main components: an obfuscating compiler
and a run-time randomizer. The obfuscating compiler modifies the code by
converting all branching instructions to indirect branches. We use condi-
tional moves as replacements for conditional branch. Trampolines are also
created at this point. Trampolines are minimal code sections that include
intermediate jumps/bounces to the target locations. We assume that code
and trampolines are known by the attacker. Trampolines are randomized
inside the enclave at run-time by the randomizer to prevent the attacker
from reliably tracking their execution. Randomizing the layout of the tram-
poline, forces the attacker to shadow all possible locations. The finite size
of the BTB limits the number of guesses the attacker can perform, and
thus we can quantify and limit the success probability of a branch-showing
attack using the size of the trampoline as a tunable security parameter. Fig-
ure 3.11 illustrates the high level design of our system, and also depicts how
the obfuscating compiler modifies the code at compile time.

42

untrusted application

Enclave

Static Code

Randomizer

Static Code Trampoline

Trampoline
(randomized)

Obfuscating
compiler

Source
code

Before

If (a! = 0)
 /* Block 1*/
else
 /* Block 2*/
/* Block 3*/

After

lea Block1, r15
lea Block2, r14
cmp a, 0
cmov r14, r15
jmp r15

cmp a, 0
 je Block2
Block1
else
jmp Block3
Block2
Block3

Figure 3.11: Our proposed approach for mitigating branch shadowing attack.

Author’s contribution: In this project, the author had the primary role in
proposing the idea, co-contribution in design, implementation, benchmark-
ing the system, writing and presenting the paper.

43

44

Chapter 4

Conclusions

The advancement in cloud computing technology and the beneficial services
and resources that it offers to the consumers, have made it a very popular
technology in the past decade. The services offered by the cloud include
infrastructure for processing and storage of data, platform for software de-
velopment, and software to serve the application-level business needs. The
profound reliance of the enterprises and businesses on cloud makes it more
and more significant to employ robust security measures to protect the in-
frastructure from insider and outsider threats.

The other widely used technology is IoT, which is in use in various sectors
to provide services ranging from healthcare and wearable data monitoring
systems, to smart lighting, grids and farming. The high amount of data these
devices collect raises security and privacy concerns, as some of the collected
and shared data over the network might contain personal or critical data.
The instances of security incidents in the past years have shown that security
of IoT still needs more attention from developers and researchers.

The widespread use of cloud computing and IoT and the current security
status in these environments motivated us to focus this PhD research on im-
proving the level of security and trust in these execution environments. To
achieve this goal, we used two software security techniques, obfuscation and
diversification, and two hardware-based security solutions, trusted comput-
ing and TEE. By obfuscation and diversification of the operating systems
and APIs of the IoT devices, we secure them at the application level, and by
obfuscation and diversification of the communication protocols, we protect
the communication of data between them at the network level. For securing
cloud computing, we looked into the use of obfuscation and diversification
for securing the cloud computing software at the client-side. Moreover, we
studied the hardware based security techniques, TPM and SGX, for provid-
ing higher level of security and layered trust in various layers from hardware
to the application.

45

This PhD dissertation was organized in 4 different chapters. Chapter 1
presented the introductory remarks, and Chapter 2 presented fundamental
background on the concepts discussed in this dissertation. Chapter 3 pre-
sented in detail the research conducted in this dissertation. This chapter
(Chapter 4) presents an overview of contribution made by this dissertation,
limitations of the study and future directions for further research.

4.1 Contributions

The following revises the contribution made by this dissertation (C1 - C4)
to the security and trust in the context of cloud computing and IoT.

In the following, we explain each of the contributions in detail and discuss
how we answered the research questions and delivered the contributions
through the different original publications included in this dissertation:

• C1: Obfuscation and diversification for improving the security of soft-
ware: The two techniques have been extensively used in the literature
through various mechanisms to improve the security of software. Pub-
lication I contributes to C1 and answers the RQ1: How can software
diversification and code obfuscation improve the security of software?
by collecting and studying all the studies published in the domain.
Our contribution in this domain was to present classification of these
studies in respect to various perspectives, such as the obfuscation and
diversification mechanisms used, the stages of application in software
development life-cycle, target of application, languages, and the ex-
ecution environments. We highlighted the aims of use of these two
software security techniques and the security attacks successfully mit-
igated by them. Furthermore, we pinpointed the research gaps, limi-
tations, and proposed solutions and future research directions.

• C2: Improving security and trust in cloud computing: In order to
consolidate the security in cloud computing, we chose software secu-
rity solutions (obfuscation and diversification) backed with hardware
based solutions (TPM and TEE). In this respect, Publication II stud-
ied how obfuscation and diversification have previously been used to
enhance the security in cloud, and proposes a client-side software secu-
rity obfuscation and diversification technique. Publication III proposes
and implements the use of vTPM in container-based virtualization to
increase the level of security and trust in this virtual environment.
Publication VI also contributes to both security and trust in cloud
computing through the studying of Intel SGX as a technology to pro-
vide secure and trustworthy execution environment. More specifically,
in this line of research, Publication VI studies one of the side-channel

46

attacks on Intel-SGX and proposes and implements a practical solu-
tion to mitigate this attack. Publication II and Publication III an-
swer RQ2: How to enhance the level of security and trust in cloud
computing through obfuscation, diversification and trusted computing
technologies?, whereas Publication VI answers to RQ4: How can we
combine the software security techniques, with hardware backed solu-
tions to introduce a robust security measure?

• C3: Improving security in IoT: In order to consolidate the security
in IoT, we considered obfuscation and diversification as two poten-
tial techniques to secure IoT devices. Publication IV conduces to this
contribution by proposing the application of obfuscation and diversifi-
cation on the operating systems of the IoT devices and on the commu-
nication protocols used by these devices to protect them at network
and application level. Publication V contributes to C3 by applying
memory layout shuffling, and symbol diversification on the APIs of
operating systems on IoT devices. These approaches make the mal-
ware ineffective and unable to execute its code, and also prevent the
massive-scale attacks on the IoT devices.

• C4: Combining the software security techniques with hardware backed
solutions: As discussed before, the security solutions that are merely
software-based might not be always the best practices and the strongest
defense mechanisms. To this end, combining the software-based secu-
rity approached with hardware-based solutions reinforces the overall
security level of the system (RQ4). In this regard, Publication VI
contributes to C4 and answers RQ4 by utilizing obfuscation as the
software security technology and Intel SGX as the hardware-based
security solution. More precisely, in Publication VI we apply compile-
time obfuscation and and run-time code randomization on the enclave
program’s control flow.

We believe that the outcome of this thesis could have tremendous results
for future academic research in the field, as well as industry. Combining
the software and hardware techniques makes a more complete and robust
security approach for different execution environments including cloud and
IoT that we studied extensively in this thesis.

The application of the proposed approaches in this thesis mitigates large-
scale attacks. Due to the identical design of the IoT devices, the developers
and vendors of these devices could greatly benefit from the diversification
mechanisms proposed in this thesis to diversify the operating systems and
APIs to prevent breach of all devices, if one device was breached.

The proposed software security approaches in this thesis do not aim at
removing security holes, but by making it difficult (or at best impossible) to

47

access and use these security holes. Moreover, these approaches reduce the
reliance on the malware scanners, as they do not rely on detecting the mal-
ware, but they aim at preventing the malware from performing its malicious
activities and thus, making it effective. These results have very positive
impact in the software security business.

Also, since Intel has explicitly stated that the side channel attacks on
SGX is out of the scope of their support, our proposed solution to mitigate
the branch shadowing channel attacks on Intel SGX brings a significant
value to the research in the field and also for the consumers of the product.

Figure 4.1 illustrates the relationship of the motivations of the research,
research questions, and the contributions made in this dissertation through
the delivered publications. M1 - M5 are the motivations of research in the
domain, security and trust in cloud computing and IoT (discussed in detail
in Chapter 3), from which M1 - M3 are the motivations associated with the
choice of execution environment, and M4 - M5 are the motivations associated
with the choice of security approach. To follow the stated motivations we
formulated the research questions RQ1 - RQ4. The result of the conducted
research is published in six different publications that are included in this
dissertation, Publication I through Publication VI. The collection of these
publications provides the set of contributions C1 - C4.

C1:	Obfuscation	and	diversification	for
improving	the	security	of	software

C2:		Improving	security	and	trust	in
cloud	computing

C4:	Combining	the	software	security
techniques	with	hardware	backed	solutions

C3:	Improving	security	in	IoT

M1

M2

M3

RQ1

RQ2

RQ3

RQ4

M4

M5

Publication I

Publication I
Publication I

Publication IV, V

Publication VI

Publication I, II, III, VI

RQ1:	How	can	software	diversification	and	code	obfuscation	improve	the	security	of	software?
RQ2:	How	can	we	enhance	the	level	of	security	and	trust	in	cloud	computing	through	obfuscation,
diversification	and	trusted	computing	and	TEE	technologies?
RQ3:	How	can	we	enhance	the	level	of	security	in	IoT	through	obfuscation	and	diversification	technologies?
RQ4:	How	can	we	combine	the	software	security	techniques,	with	hardware	backed	solutions	to	introduce	a
robust	security	measure?

M1:	Improving	security	in	cloud	computing
M2:	Improving	trust	in	cloud	computing
M3:	Improving	security	in	IoT
M4:	Improving	the	security	of	software	through	obfuscation	and	diversification	techniques
M5:	Improving	the	level	of	security	and	trust	through	hardware-based	security	solutions,	TC	and	TEE

Figure 4.1: Relationship of the motivations, research questions, and the
contributions made through publications included in this dissertation.

48

4.2 Challenges

Interface diversification is a potential approach to generate unique versions
of software instances in a way that each machine has its own version which is
differently modified from other machines. This different modification makes
the diversified interfaces incompatible with the ones that are not diversified
or diversified differently. This feature, on one hand, has the benefit that it
makes a piece of malware incompatible and makes it unable to communicate
with the environment (e.g., call the system calls) and execute its code. On
the other hand, it raises the challenge about managing the diversification
secret (i.e., securing and propagation of it). The following are the challenges
(Ch1 - Ch6) we identified in this field of research for applying obfuscation
and diversification for cloud and IoT:

• Ch1- Propagation of the diversification secret : all the legitimate ap-
plications/interfaces that we would like to maintain their access to the
diversified machine need to be also diversified the same way and with
the same diversification secret so they could be compatible. These le-
gitimate applications need to know how and using what identifier they
could access the resources on the diversified machine. Propagating the
diversification secret is still a challenge that needs to be managed.

• Ch2- Securing the diversification secret : the information regarding the
diversified interfaces and how to interact with them needs to be kept
secret from illegitimate applications. This prevents a malware from
using them and access the system resources. In many cases such as
diversifying the system call or shared libraries, this secret is in the form
of a key or a hash value that could be utilized to transform the original
interfaces into diversified ones. The way and the place to securely store
this secret is another challenge for interface diversification.

• Ch3- Updating the diversified software: Patches and updates are very
essential to protect the software. Managing the update of the diversi-
fied software is still an open issue. In ideal case, each software could
have diversification built-in so that it could be configured with the
diversification secret. At this moment, this is not feasible and at the
time of each update, the software needs to be recompiled manually.

• Ch4- Interface diversification of the IoT devices: When studying the
application of diversification on the interfaces of IoT devices and sen-
sor networks, we learned that some of these devices have an operating
system (e.g., RIOT and TinyOS) that has limited number of diver-
sifiable interfaces. Meanwhile, some others (e.g., Linux and Android
Things) have several essential interfaces that could be diversified and

49

benefit from the protection this technique offers. In addition, some of
these operating system are not fully open-source and the source code
is not completely available. This, introduces challenge to propagation
of diversification secret throughout the whole system.

• Ch5- Associated overhead and cost : Using diversification and obfusca-
tion is always a race against time, in a way that the adversary poten-
tially could guess the diversification secret correctly or de-obfuscate
the code. Dynamically obfuscating/diversifying is an adequate de-
fense, but raises complexity and performance costs of the approach
and is difficult to implement.

• Ch6- Non-compliant TPMs: One unresolved issue is trusted comput-
ing technology us the lack of standardization through which the het-
erogeneous devices could interact with each other. This means that
TCG does not require certain set of implementation specifics to its
adopters. As a result, some of the available TPMs do not comply with
TPM specifications, and this will be the case for the foreseeable fu-
ture. This will bring along the limitation and challenge for the future
interoperability of different trusted platforms [15].

4.3 Future Directions

In this PhD dissertation various aspects of software and hardware security
were discussed and studied, as a result of which various publications were
published tackling the security and trust concepts in cloud computing and
IoT. While we argue that this dissertation work presents a valuable contri-
bution to the present day security of IoT and cloud computing, we consider
the following as the future research directions concerning the dissertation’s
studied topics:

vTPM diversification and obfuscation: regarding the work done in Pub-
lication III on virtualizing the TPM to protect virtual environments, we
consider applying obfuscation on the vTPM software to make it more diffi-
cult to break, and apply diversification in order to generate unique vTPM
instances. In such a scenario, each of the containers/VMs receives a uniquely
diversified version of the vTPM software. In the case that one container/VM
is compromised and the malware manages to access the vTPM and executes
its code, the same malware cannot work on other vTPM instances. Con-
tainers themselves could also benefit from diversification and obfuscation
approaches. Interfaces and APIs of containers could potentially be diversi-
fied so that each container would have a diverse execution environment.

Secure storage of the diversification secret : as discussed earlier (in Sec-
tion 4.2), the diversification secret needs to be propagated to the trusted

50

APIs and applications, and kept secret from the untrusted ones to prevent
their access to the system resources. Considering that TPM offers a secure
storage for storing cryptographic keys, it could also be a potential place to
hold the diversification secret.

PKI system for diversification: basic version of diversification is based
on secret key cryptography. One valuable line of research would be to find
whether there could be any feasible interpretation of diversification based
on public key cryptography. This means that the public key is used for
diversification and shared publicly, and the private key is used by execu-
tion engine(s) to de-diversify the diversified program, in order to be able to
execute it. In this scenario also, TPM could be used to hold the private key.

Mitigation of a wider range of side-channel attacks on Intel SGX : re-
garding the work done in Publication VI, we plan to continue this line of
research by integrating our approach with other defence mechanisms avail-
able such as T-SGX [54], SGX-Shield [52] in order to mitigate a wider range
of side-channel attacks.

51

52

Bibliography

[1] Cloud security alliance (CSA). https://cloudsecurityalliance.

org/. Verified 2019-02-12.

[2] Extensible Messaging and Presence Protocol (XMPP). http://tools.
ietf.org/html/rfc6121. Verified 2019-02-15.

[3] Intel R© SGX and Side-Channels. https://software.intel.com/

en-us/articles/intel-sgx-and-side-channels. Verified: 2019-10-
13.

[4] Intel R© Software Guard Extensions (Intel R© SGX). https://software.
intel.com/en-us/sgx. Verified: 2019-02-22.

[5] Intel R© Software Guard Extensions Programming Reference, Revision
2. https://software.intel.com/sites/default/files/managed/

48/88/329298-002.pdf. Verified: 2019-02-22.

[6] Internet of Things (IoT) connected devices installed base worldwide
from 2015 to 2025. https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/. Verified: 2020-09-
06.

[7] Internet of Things research study—HP report. https://www8.hp.com/
us/en/hp-news/press-release.html?id=1744676. Verified 2019-02-
15.

[8] IPv6 over Low power WPAN (6LowPAN). https://tools.ietf.org/
wg/6lowpan/. Verified Verified 2019-02-15.

[9] nesC: A Programming Language for Deeply Networked Systems. http:
//nescc.sourceforge.net/. Verified 2019-02-14.

[10] Online C obfuscator. https://picheta.me/obfuscator/. Verified:
2019-03-12.

53

https://cloudsecurityalliance.org/
https://cloudsecurityalliance.org/
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://tools.ietf.org/wg/6lowpan/
https://tools.ietf.org/wg/6lowpan/
http://nescc.sourceforge.net/
http://nescc.sourceforge.net/
https://picheta.me/obfuscator/

[11] Owasp Internet of Things project. {https://www.owasp.org/index.

php/OWASP_Internet_of_Things_Project#tab=OWASP_Internet_

of_Things_Top_10_for_2014}, note = Verified 2019-02-15.

[12] Trusted Computing Group (TCG). http://www.

trustedcomputinggroup.org/. Verified: 2019-02-21.

[13] Trusted Platform Module (TPM). http://

www.trustedcomputinggroup.org/work-groups/

trusted-platform-module. Verified: 2019-02-21.

[14] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch,
and Thomas Schmidt. OS for the IoT-goals, challenges, and solutions.
In Workshop Interdisciplinaire sur la Sécurité Globale (WISG2013),
page 7 pages, 2013.

[15] S. Balfe, E. Gallery, C. J. Mitchell, and K. G. Paterson. Challenges for
trusted computing. IEEE Security & Privacy, 6(6):60–66, 2008.

[16] Stefan Berger, Ramón Cáceres, Kenneth Goldman, Ronald Perez,
Reiner Sailer, and Leendert Doorn. vTPM: Virtualizing the trusted
platform module. In USENIX Security, pages 305–320, 2006.

[17] Indranil Bose and Raktim Pal. Auto-id: Managing anything, anywhere,
anytime in the supply chain. Commun. ACM, 48(8):100–106, August
2005.

[18] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi.
DR.SGX: hardening SGX enclaves against cache attacks with data lo-
cation randomization. CoRR, abs/1709.09917, 2017.

[19] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In 11th USENIX Workshop on Of-
fensive Technologies (WOOT 17), Vancouver, BC, 2017. USENIX As-
sociation.

[20] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software Protection.
Addison-Wesley Professional, 2009.

[21] Christian Collberg, Clark Thomborson, and Douglas Low. A taxon-
omy of obfuscating transformations. Technical report, Department of
Computer Science, The University of Auckland, New Zealand, 1997.

54

 {https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=OWASP_Internet_of_Things_Top_10_for_2014}
 {https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=OWASP_Internet_of_Things_Top_10_for_2014}
 {https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=OWASP_Internet_of_Things_Top_10_for_2014}
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module

[22] Christian Collberg, Clark Thomborson, and Douglas Low. Manufac-
turing cheap, resilient, and stealthy opaque constructs. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’98, pages 184–196, New York, NY, USA,
1998.

[23] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey
of mobile cloud computing: architecture, applications, and approaches.
Wireless communications and mobile computing, 13(18):1587–1611,
2013.

[24] Stephen Drape, Oege de Moor, and Ganesh Sittampalam. Transform-
ing the .net intermediate language using path logic programming. In
Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, PPDP ’02, pages
133–144, NY, USA, 2002. ACM.

[25] Rajdeep Dua, A. Reddy Raja, and Dharmesh Kakadia. Virtualiza-
tion vs Containerization to Support PaaS. In 2014 IEEE International
Conference on Cloud Engineering, pages 610–614, March 2014.

[26] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a
lightweight and flexible operating system for tiny networked sensors.
In Local Computer Networks, 2004. 29th Annual IEEE International
Conference on, pages 455–462, Nov 2004.

[27] Kazuhide Fukushima, Shinsaku Kiyomoto, and Toshiaki Tanaka. Ob-
fuscation mechanism in conjunction with tamper-proof module. In
Computational Science and Engineering. CSE ’09. International Con-
ference on, volume 2, pages 665–670, 2009.

[28] Erik Hjelmvik and Wolfgang John. Breaking and improving protocol
obfuscation. Chalmers University of Technology, Tech. Rep, 123751,
2010.

[29] Shohreh Hosseinzadeh, Sami Hyrynsalmi, Mauro Conti, and Ville
Leppänen. Security and privacy in cloud computing via obfuscation and
diversification: A survey. In 2015 IEEE 7th International Conference on
Cloud Computing Technology and Science (CloudCom)(CLOUDCOM),
volume 00, pages 529–535, Nov. 2016.

[30] Shohreh Hosseinzadeh, Samuel Laurén, Sampsa Rauti, Sami Hyryn-
salmi, Mauro Conti, and Ville Leppänen. Obfuscation and diversifica-
tion for securing cloud computing. In Victor Chang, Muthu Ramachan-
dran, Robert J. Walters, and Gary Wills, editors, Enterprise Security,
pages 179–202, Cham, 2017. Springer International Publishing.

55

[31] Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, and Andrew
Paverd. Mitigating branch-shadowing attacks on intel sgx using control
flow randomization. In Proceedings of the 3rd Workshop on System
Software for Trusted Execution, SysTEX ’18, pages 42–47, New York,
NY, USA, 2018. ACM.

[32] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti
Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. A
survey on aims and environments of diversification and obfuscation in
software security. In Proceedings of the 17th International Conference
on Computer Systems and Technologies 2016, CompSysTech ’16, pages
113–120, New York, NY, USA, 2016. ACM.

[33] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti
Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. Di-
versification and obfuscation techniques for software security: A sys-
tematic literature review. Information and Software Technology, 104:72
– 93, 2018.

[34] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. MQTT-S–
A publish/subscribe protocol for Wireless Sensor Networks. In Com-
munication Systems Software and Middleware and Workshops, 2008.
COMSWARE 2008. 3rd International Conference on, pages 791–798,
Jan 2008.

[35] Chongkyung Kil, Jinsuk Jim, C. Bookholt, J. Xu, and Peng Ning.
Address space layout permutation (ASLP): Towards fine-grained ran-
domization of commodity software. In Computer Security Applications
Conference. ACSAC ’06. 22nd Annual, pages 339–348, Dec 2006.

[36] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, abs/1801.01203, 2018.

[37] Aki Koivu, Lauri Koivunen, Shohreh Hosseinzadeh, Samuel Laurén,
Sami Hyrynsalmi, Sampsa Rauti, and Ville Leppänen. Software secu-
rity considerations for IoT. In 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData), pages 392–397,
Dec 2016.

[38] Chakravanti Rajagopalachari Kothari. Research methodology: Methods
and techniques. New Age International, 2004.

56

[39] S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh, S. Hyrynsalmi, and
V. Leppänen. Symbol diversification of linux binaries. In World
Congress on Internet Security (WorldCIS-2014), pages 74–79, Dec
2014.

[40] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. CoRR, abs/1611.06952, 2016.

[41] Phil Levis, Samuel Madden, J. Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric
Brewer, and David Culler. Tinyos: An operating system for sensor
networks. In W. Weber, J. M. Rabaey, and E. Aarts, editors, Ambient
Intelligence, pages 115–148. Springer Berlin Heidelberg, 2005.

[42] Zhaohui Liang, Bin Liang, and Lupin Li. A system call randomiza-
tion based method for countering code-injection attacks. In Interna-
tional Conference on Networks Security, Wireless Communications and
Trusted Computing, NSWCTC, pages 584–587, 2009.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. Meltdown. CoRR, abs/1801.01207, 2018.

[44] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. How
to make ASLR win the clone wars: Runtime re-randomization. In
NDSS, San Diego, CA, USA, 2016. 2016 Internet Society.

[45] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud secu-
rity and privacy: an enterprise perspective on risks and compliance. ”
O’Reilly Media, Inc.”, 2009.

[46] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. In-
novative instructions and software model for isolated execution. Intel
Corporation, 2013.

[47] Peter Mell and Tim Grance. The NIST definition of cloud computing.
page 7, 2011. National Institute of Standards and Technology Special
Publication 800-145.

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In David Pointcheval, editor, Topics
in Cryptology – CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

57

[49] Jon Postel. User Datagram Protocol (No. RFC 768). Technical report,
1980.

[50] Sampsa Rauti, Lauri Koivunen, Petteri Mäki, Shohreh Hosseinzadeh,
Samuel Laurén, Johannes Holvitie, and Ville Leppänen. Internal inter-
face diversification as a security measure in sensor networks. Journal
of Sensor and Actuator Networks, 7(1), 2018.

[51] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted execution environment: What it is, and what it is not. In 2015
IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 57–64, Aug 2015.

[52] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik
Shin, Dongsu Han, and Taesoo Kim. SGX-Shield: Enabling address
space layout randomization for sgx programs. In Network and Dis-
tributed System Security Symposium, 2017.

[53] Zach Shelby, Klaus Hartke, and Carsten Bormann. The constrained
application protocol (CoAP). 2014.

[54] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), 2017.

[55] Ed Skoudis and Lenny Zeltser. Malware: Fighting malicious code. Pren-
tice Hall Professional, Upper Saddle River, NJ 07458, 2004.

[56] Mikhail Sosonkin, Gleb Naumovich, and Nasir Memon. Obfuscation
of design intent in object-oriented applications. In Proceedings of the
3rd ACM Workshop on Digital Rights Management, DRM ’03, pages
142–153, New York, NY, USA, 2003. ACM.

[57] J.C. Spradlin. Security through opcode randomization, June 21 2012.
US Patent App. 12/972,433.

[58] Steve Vinoski. Advanced Message Queuing Protocol. Internet Com-
puting, IEEE, 10(6):87–89, Nov 2006.

[59] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Soft-
ware tamper resistance: Obstructing static analysis of programs. Tech-
nical report, University of Virginia, VA, USA, 2000.

[60] Claes Wohlin and Aybüke Aurum. Towards a decision-making struc-
ture for selecting a research design in empirical software engineering.
Empirical Software Engineering, 20(6):1427–1455, Dec 2015.

58

[61] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In 2015 IEEE
Symposium on Security and Privacy, pages 640–656, May 2015.

[62] Raghu Yeluri and Enrique Castro-Leon. Attestation: Proving trusta-
bility. In Building the Infrastructure for Cloud Security, pages 65–91.
Springer, 2014.

[63] Raghu Yeluri and Enrique Castro-Leon. Platform Boot Integrity: Foun-
dation for Trusted Compute Pools, pages 37–64. Apress, Berkeley, CA,
2014.

[64] I. You and K. Yim. Malware obfuscation techniques: A brief survey.
In 2010 International Conference on Broadband, Wireless Computing,
Communication and Applications, pages 297–300, Nov 2010.

59

60

Chapter 5

Original Publications

The following original publications are reprinted with the
permissions of the respective publishers.

61

62

Publication I

Diversification and Obfuscation Techniques

for Software Security: a Systematic Liter-

ature Review

Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti

Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, Ville Leppänen, In Jour-

nal of Information and Software Technology (IST), 104, 72 – 93, Else-

vier, 2018.

c© 2018 Elsevier. Reprinted, with permission.

63

64

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Diversification and obfuscation techniques for software security:
A systematic literature review

Shohreh Hosseinzadeh⁎,a, Sampsa Rautia, Samuel Lauréna, Jari-Matti Mäkeläa,
Johannes Holvitiea, Sami Hyrynsalmib, Ville Leppänena

a Department of Future Technologies, University of Turku, Vesilinnantie 5, Turku 20500, Finland
b Laboratory of Pervasive Computing, Tampere University of Technology, Pohjoisranta 11 A, Pori 28100, Finland

A R T I C L E I N F O

Keywords:
Diversification
Obfuscation
Software security
Systematic literature review

A B S T R A C T

Context: Diversification and obfuscation are promising techniques for securing software and protecting com-
puters from harmful malware. The goal of these techniques is not removing the security holes, but making it
difficult for the attacker to exploit security vulnerabilities and perform successful attacks.

Objective: There is an increasing body of research on the use of diversification and obfuscation techniques for
improving software security; however, the overall view is scattered and the terminology is unstructured.
Therefore, a coherent review gives a clear statement of state-of-the-art, normalizes the ongoing discussion and
provides baselines for future research.

Method: In this paper, systematic literature review is used as the method of the study to select the studies that
discuss diversification/obfuscation techniques for improving software security. We present the process of data
collection, analysis of data, and report the results.

Results: As the result of the systematic search, we collected 357 articles relevant to the topic of our interest,
published between the years 1993 and 2017. We studied the collected articles, analyzed the extracted data from
them, presented classification of the data, and enlightened the research gaps.

Conclusion: The two techniques have been extensively used for various security purposes and impeding
various types of security attacks. There exist many different techniques to obfuscate/diversify programs, each of
which targets different parts of the programs and is applied at different phases of software development life-
cycle. Moreover, we pinpoint the research gaps in this field, for instance that there are still various execution
environments that could benefit from these two techniques, including cloud computing, Internet of Things (IoT),
and trusted computing. We also present some potential ideas on applying the techniques on the discussed en-
vironments.

1. Introduction

In most organizations, information is a key asset that comes in the
form of, for example, financial information, client data, and product
design data. Intentional or accidental leakage of any of this information
exposes both the business and the customers. Therefore, it is highly
significant for any business to have security strategies for protecting the
information and services and ensuring the confidentiality, integrity,
and availability of the information.

Computer security assures that the system functions under the ex-
pected circumstances, and prevents undesired behavior. Many security
breaches begin with identifying and exploiting the vulnerabilities in the

system. Vulnerabilities are the defects that occur in the process of de-
sign and implementation of the software. Defects in design are known
as flaws, and the defects in implementation are known as bugs. To
ensure the security of software, we need to prevent or mitigate the risk
of software vulnerabilities. In other words, we should either eliminate
these bugs and flaws, or make it harder to exploit them.

In this paper, we focus on making exploitation of vulnerabilities harder,
and reducing the possible damage of the attack. To this end, we center
our research around two software security techniques, diversification
and obfuscation.

Code obfuscation is the process of scrambling the code and making it
unintelligible (but still functional), in order to make reverse

https://doi.org/10.1016/j.infsof.2018.07.007
Received 12 May 2017; Received in revised form 2 July 2018; Accepted 7 July 2018

⁎ Corresponding author.
E-mail addresses: shohos@utu.fi (S. Hosseinzadeh), sjprau@utu.fi (S. Rauti), smrlau@utu.fi (S. Laurén), jmjmak@utu.fi (J.-M. Mäkelä), jjholv@utu.fi (J. Holvitie),

sami.hyrynsalmi@tut.fi (S. Hyrynsalmi), ville.leppanen@utu.fi (V. Leppänen).

Information and Software Technology 104 (2018) 72–93

Available online 10 July 2018
0950-5849/ © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

engineering more difficult [1]. The transformed code is functionally
and semantically equivalent to the original code, but is more compli-
cated and harder to comprehend [33]. With the help of code obfusca-
tion, even if adversaries get access to source code, analysis of the code
and finding the vulnerabilities will no longer be a simple task. This
requires more time and energy and makes the reverse engineering of
the code harder and more costly. Obfuscation does not guarantee that
the program is not tampered/reverse engineered, but adds an addi-
tional level of defence by increasing the effort and cost for an attacker
to learn the underlying functionality of the protected program. Various
obfuscation techniques exist that obfuscate different parts of the code at
different phases of software development process. For instance, using
opaque predicates [75] is a common way of obfuscating the control
flow of a program, at source code [109] or binary code level [247], at
implementation [109] or compile-time [17].

Software diversification refers to changing the internal interfaces and
structure of the software to generate unique diversified versions of it.
The users receive unique instances of the software that all function the
same, although differently diversified. In other words, diversification
breaks the ”monoculturalism” and introduces ”multiculturalism” in the
software deployment process.

Malware (malicious software) is any software that intends to run its
code on user’s computer to disrupt the computer’s operation or ma-
nipulate the system towards the attacker’s desire [2]. To do this, it
needs knowledge on how to interact with environment and access the
resources. Software diversification alters the internal interfaces of the
software and makes it challenging for malware to gain this knowledge.
Thus, malware becomes incompatible with the environment and
eventually becomes unable to take effective actions to harm the system.
It should however be noted that, in order to maintain the access of
legitimate applications to resources, we need to propagate the changes
to trusted applications, i.e., they will be diversified as well to be com-
patible with inner layers.

Diversification does not attempt to eliminate the vulnerabilities of a
software, but tries to avoid or at least make it toilsome for malware to
exploit them and perform a successful attack. In a worst-case scenario,
even if the malware succeeds in running its malicious code and attack a
computer, this attack can only work on that particular computer. The
designed attack model does not work on other computers, since their
software are diversified differently with different diversification secrets.
To take a large number of computers under control, different attack
models should be designed specifically for each software instance,
which makes it an expensive and arduous task for the attacker. On that
account, diversification is considered as an outstanding approach for
securing largely-distributed systems, and mitigating the risk of massive-
scale attacks.

It is worthwhile mentioning that the terms obfuscation and di-
versification, sometimes, have been used interchangeably in the lit-
erature. In this paper, we make a clear distinction between these two
concepts.

1.1. Method of the study

The method of study we chose in this research is Systematic
Literature Review (SLR). A SLR is a means of research that identifies,
evaluates and interprets all high quality studies related to a particular
research question, or an area of interest [3]. This method of study was
originally used in medical sciences [4], but later gained interest in other
fields as well. A systematic review can improve a traditional review [4],
in a way that the set of studies is not restricted to better-known and
frequently-cited publications, and not biased towards the research
area/interest of the researcher, as all studies in the field are captured. A
systematic review, by classifying and mapping the scattered research
studies, identifies research gaps and produce baselines for future re-
search.

We conducted a SLR on studies that deal with the two techniques,

obfuscation and diversification, with the aim of securing the code and
software. There have been previously some other reviews [5,6,248].
However, they (a) cover a more limited number of studies (14, 69, and
10 papers respectively), (b) consider these two mechanisms from other
perspectives than security, (c) focus on one of these two mechanisms, or
d) discuss only one particular technique.

The surveys studying the obfuscation related studies include a re-
view on control-flow obfuscation techniques [6], and a review on code
obfuscation approaches [5]. These research works cover less than 15
studies and are published, respectively, in 2005 and 2006, which im-
plies that the studies published after that are missing. Larsen
et al. [248] authored a survey that reviews the state-of-the-art in au-
tomated software diversity with the aim of security and privacy. An-
other recent literature review on software diversification, surveyed by
Baudry et al. [284], investigates diversification from five various per-
spectives aimed at different goals, including fault tolerance, security,
testing, and reusability.

The main factors that differentiate our survey from the existing
ones, are: (1) the systematic process for collecting the data, (2) a
thorough list of covered studies on both obfuscation and diversification,
(3) the focused scope of the study (security), and (4) classification and
analysis of the collected studies.

1.2. Structure of the study

The remainder of this paper is structured as follows: Section 2 dis-
cusses the aim of our study, and specifies the research questions we
have formulated and addressed in this research. Section 3 reports the
process of search and selection of the relevant studies, and also the data
extraction from these papers. Section 4 presents the results of the data
collection and analysis of the results. In Section 5, we present the dis-
cussion. Limitations of the study, concluding remarks, and the future
work come in Section 6.

2. Aims and research questions

We undertook a SLR of the papers reporting the use of obfuscation
and diversification techniques in software security domain. Before
starting the search, we determined the research questions, and formed
the search strings. Our SLR addresses the following research questions:

• RQ1: What is the aim of obfuscation/diversification being used?

• RQ2: What is the status of this field of study? (E.g., outputs per
annum, types of studies reported, collaboration of academia and
industry)

• RQ3 In what environments the techniques are used/studied in order
to boost the security (i.e., the programming language and execution
environment the techniques are used for).

• RQ4: What mechanisms have been proposed/studied? (i.e., the ob-
fuscation/diversification method used, (b) target of transformation,
(c) level and stage, (d) cost and effectiveness of the approach.

3. Search and selection process

In order to carry out the research review systematically, we need to
follow a protocol that defines the search strings and strategy, inclusion
and exclusion criteria, and methods to extract data and synthesis the
results. In this regard, we based our SLR on the research protocol
suggested by Kitchenham et al. [7], and conducted our SLR in seven
different phases. These phases are as follow: search and selection pro-
cess (Phase I), inclusion and exclusion (Phase II to IV), snowballing
(Phase V), data extraction (Phase VI), data analysis (VII). Fig. 1 illus-
trates the different phases in this process. The numbers on the arrows
indicate the number of search results and included papers after each
phase. In what follows, the details of the protocol developed for our SLR
are presented.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

73

3.1. Search

3.1.1. Initial search
Before starting the search process, we conducted an initial search to

assure that there are sufficient numbers of articles available in the
target field to study. In this stage, we found 48 articles discussing the
improvement of software security using diversification/obfuscation
techniques, which confirmed that this could be an appropriate topic to
conduct a SLR on.

3.1.2. Manual search
For the manual search, Phase I, we selected a set of proper search

strings, with which we assumed we would find the majority of the re-
lated articles. We also selected six of the largest digital databases, in-
cluding IEEEXplore Digital Library, ACM Digital Library, Wiley online
library, ScienceDirect, dblp, and SpringerLink. We limited our search to
titles, abstracts and keywords of the articles to avoid false positive re-
sults of the full-text search. In some cases, search query was adapted
according to requirements of the search engine. The following search
command was used to retrieve studies from the databases:

(software OR code OR program) AND (diversification OR
obfuscation

OR obfuscate OR obfuscator)
We undertook the manual search separately in the databases and

combined the results in a large spreadsheet. After removing the dupli-
cates, 6040 articles proceeded to Phase II for inclusion and exclusion
(Section 3.2).

3.1.3. Automatic (citation-based) search
To complete the manual search, we performed an automatic search

(backward snowballing), in Phase V. Backward snowballing is done by
analyzing the reference lists of selected papers to find any missing re-
lated paper [7]. Therein, 268 papers were collected, for which we re-
peated the inclusion/exclusion process (Phase II to IV).

3.2. Selection of the studies

After collecting the papers in Phase I, we should include relevant
and drop irrelevant papers. For that, we defined some inclusion/ex-
clusion criteria, based on which we make decision (in Phase II-IV)
whether to include/drop a paper. The followings are the inclusion cri-
teria in our study:

• papers that are written in the English language;

• peer-reviewed papers (however, we did not exclude technical re-
ports and books, since there exists some widely cited high quality
technical reports in this domain, e.g., [13]);

• papers in the context of software production/development;

• papers related to software security;

• papers related to obfuscation/diversification; and

• obfuscation/diversification in the paper is used/discussed with the
aim of improving/enhancing the security in software/code/pro-
gram.

Considering that obfuscation and diversification techniques have
been used in different domains for various purposes, we decided to
narrow down our results. To this end, we focused our search on studies
that are using obfuscation/diversification with the aim of software se-
curity and leave out the papers that were falling in our exclusion cri-
teria:

• studying the possibility/impossibility of obfuscation;

• studying the use of obfuscation/diversification by malware, to hide
their malicious code from scanners and malware analyzers;

• studying the techniques at a level other than software (e.g., hard-
ware/network);

• proposing an approach that needs hardware assistance;

• studying obfuscation/diversification from cryptographic point of
view;

• using the approaches to protect software watermark, birthmark and
intellectual property rights; and

• unavailable studies, that we were not able to access in anyway.

Considering the defined criteria, we followed this process to select
the relevant studies:

1. In Phase II, we screened the papers based on their titles. Each paper
title was checked by four authors to determine whether it is relevant
to our study or not, according to the defined inclusion/exclusion
criteria.

2. In Phase III, two of the authors screened the papers based on their
abstracts, and included the papers that were compatible with the
inclusion criteria and dropped the papers that were not.

3. In Phase IV, the same process was repeated as Phase III, but based on
the full text of the papers this time. There were several cases in
which the full texts were not available in online databases. We tried

Fig. 1. The systematic search and selection process. On the left are the online databases and on the right are various inclusion and exclusion phases in the study. The
number of articles left after each phase are shown on arrows.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

74

to contact the author(s) or find the text from other sources. If we
were not successful finding the text in any way, we dropped the
paper.

3.3. Data extraction

Each of the 357 selected papers was read through by two reviewers.
The first reviewer extracted the data from the papers using a data ex-
traction form, and the second reviewer checked the correctness of the
extracted data. In case of any disagreement, the paper was discussed in
a meeting with other authors, till reaching an agreement.

We divided the papers into two main categories, Constructive and
Empirical, and defined different sets of questions to extract data form
them. The papers that propose a new (implementable) obfuscation/
diversification method, or apply/implement a technique fall into the
category of constructive papers. The papers that evaluate/assess/ex-
periment/discuss/review some (existing) obfuscation/diversification
techniques fall into the category of empirical papers. There also exist
papers that could be considered as both constructive and empirical.
This class includes the papers that carry out an empirical study and at
the same time conduct a constructive work.

For the category of constructive papers we extracted the following
data, and presented the classification of the captured data in
Section 4.1:

Aim: For what purpose is obfuscation/diversification used and what
types of software security problems is solved (e.g., what type of attack is
mitigated)?

Level: At what level is obfuscation/diversification applied (e.g.,
source code, binary level)?

Stage: At what stage of software production is obfuscation/diversi-
fication applied (e.g., compile-time, run-time)?

Target: What is the subject of obfuscation/diversification transfor-
mation (e.g., control flow)?

Mechanism: What type of obfuscation/diversification method is
used/proposed?

Language: What language is the paper targeting?
Execution environment: What environment is the obfuscation/di-

versification techniques proposed for?
Overhead: What kind of overhead does the proposed obfuscation/

diversification technique introduce?
Resiliency: How has the resiliency of the proposed approach been

tested, and what results have been achieved?
For the category of empirical papers, we extracted the following data,

and presented the classification of the captured data in Section 4.2:
Relevance: How is the paper related to obfuscation/diversification?
Outcome: What are the outcomes/findings/results of the study?

4. Results

As mentioned before, based on the method of the study used, we
divided the selected studies into three main categories of (a) con-
structive, (b) empirical, and (c) constructive and empirical. Fig. 2 shows
the distribution and the number of papers in each category. As is seen,
the highest interest has been on constructive methods and obfuscation
studies.

4.1. Constructive studies

By analyzing the data we captured from the data extraction phase,
we answered the research questions defined in the beginning of our
study.

4.1.1. RQ1: Status of the field of study
After the search and selection step, we extracted data from the 357

included studies. The studies come in six different types, including
conference paper, journal article, workshop papers, book section,

technical report, and doctoral theses. Also, there were 2 studies in other
formats that did not fit into these categories. Table 1 shows different
types of studies and the number of studies found in each type. The
numbers indicate that the majority of the studies were published in
conferences.

We analyzed the author affiliations for the included papers to as-
sociate the papers to their originating organizations and countries.

Fig. 3 captures the ten most associated countries for the considered
set of studies. United States has by far the largest (c. 39, 5%) share,
followed by China (c. 10,1%). However, as a continent, UK and Europe
lead the statistics (c. 40,1%), with research divided mainly among
Germany, Belgium, and Italy. The list also includes Japan and India –
Asia as a whole contributed to one third (c. 32,2%) of the papers in the
study. The research is relatively concentrated to a selected number of
regions as the five and ten most affiliated countries count for circa
60,8% and 80,1% of all the affiliations.

Fig. 4 captures the ten most associated organizations for the con-
sidered set of studies. From this, we note that Microsoft Corporation
(inclusive of Microsoft Research) is the only non-academic organization
to be prolific in this area. Further, the ten most prolific organizations
correspond to almost a third (c. 29, 1%) of the total affiliations for these
studies. This is a notable portion from the affiliations, and arguably,
indicates that majority of the research is concentrated to a rather small
set of organizations. In Belgium, Finland, and New Zealand, the ma-
jority of research can be traced to a single organization.

It was of our interest to know the annual growth and decrease rates
of the publications in this field of study. This can indicate the changes in
interests and the significance of the field of study. An upward trend can
be a sign of increasing interest to the field; while, a downward trend
could state that the field is reaching a dead end. Fig. 5 illustrates the
distribution of the selected studies in the SLR, between the years of
1993 to 2017. There is a relative fluctuation in the whole period, with
an overall upward trend in the number of published studies, except for
the slight decline in 2017. This implies that while the field has been
fairly unpopular research subject, it has recently drawn fair attention
among researchers. Between obfuscation and diversification, the former
has almost always been a more popular technique – significantly so
between 2000–2010, while diversification has grained in popularity
since then.

We also examined the articles’ publication forum types as a function
of their publication years and the distribution is captured in Fig. 6. We
note that through the queried year span, the dominant publication
forum type is conference. However, the type selection gets more varied
as we approach the present day, and as a publication forum, the journal
type is almost on par with the conference in the year 2014. The ob-
served increase in variety could be taken as evidence for the domain
getting more mature: existence of more established research in the
domain shows as increase in the number of journal articles and book
chapters while the discovery of new sub-domains shows as an in-
creasing number of workshop publications.

Fig. 7 displays, for the considered set of studies, the associated or-
ganizations’ sector as a function of the publication year. Observations
made here relate closely to the ones made for Fig. 4: while some pub-
lications are affiliated solely to industrial organizations (c. 2, 6% pub-
lications in the year 2015 and c. 5, 6% in total for the considered time-
span) or to both industrial and academic bodies (c. 13, 2% in the year
2015 and c. 12, 6% in total), majority of the considered studies are
made in an academic vacuum. While the distribution is understandable
for theoretical research, it raises concerns regarding the applicability
and correspondence of the research in this domain.

4.1.2. RQ2: Aim
In the reviewed literature, we identified a set of aims for which

obfuscation and diversification were used for securing code and soft-
ware and defeating known attacks, and hopefully unknown future at-
tacks [238]. In Table 2, we summarize the generic aims that the related

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

75

studies were following.
In the process of reviewing the selected studies, we identified four

broad categories that could encompass most of the presented literature.
We acknowledge that these categories are not completely orthogonal,
that is, there is some overlap between the different categories and a
single piece of research could reasonably be classified as belonging to
multiple categories. Still, being aware of the common aims or use cases
associated with obfuscation and diversification research can be a va-
luable resource. With this classification, we try to answer the question
what real-world problems are being solved by the use of diversification
and obfuscation methods.

a) Making reverse engineering of the program logic more difficult: The most
commonly stated aim of this research area was simply to make
malicious reverse engineering of programs harder
[113,165,171,277], i.e., making the act of debugging and dis-
assembling of the software more complex to get the original source
code [71,91,123,198,247]. By reducing the readability and under-
standability [47,110] of the software through these techniques, it

becomes more resistant to unauthorized modification, i.e., becomes
more tamper-proof [25]. Making understanding programs harder
might be a desirable aim in order to protect proprietary algorithms
or other intellectual property. Assembly code obfuscation [211],
increasing complexity of dynamic analysis [240], preventing con-
trol-flow analysis [75], and introducing parallelism in order to ob-
fuscate control-flows [239] are examples of research aiming to make
programs harder to understand. Furthermore, obfuscation is an ef-
fective approach to counter both static [60,226,268] and dynamic
analysis [122,126,240].

b) Prevent widespread vulnerabilities: Obfuscation and diversification
techniques were also employed for their potential security benefits
in preventing widespread vulnerabilities [81,262,268]. Exploits
often depend on minute details about program internals. Introdu-
cing diversity into deployed applications can make it more chal-
lenging to construct exploits that reliably work against multiple
targets. Diversification works by introducing variability in the
software. Increased diversity makes the number of assumptions an
adversary can make about the system smaller. Aside from diversi-
fication, obfuscation can also serve as a method of making software
more secure. By making it more challenging for an attacker to un-
derstand the piece of software, obfuscation helps to increase the
costs associated with exploit development. Examples of research
specifically targeting security include randomization measures to
defeat Return-Oriented Programming (ROP) attacks [216], rando-
mized instruction set emulation [66], metamorphic code generation
[230], and diversifying system call interface to defeat code injection
attacks [159,233,282].

c) Preventing unauthorized modification of software: Research on tamper-
resistance tries to find ways for making it more challenging for an
adversary to produce derived version of programs [26,107,127].

Fig. 2. Distribution of the studies.

Table 1
Types of studies.

Type Diversification Obfuscation Both Total

Conference paper 68 134 7 209
Journal article 29 51 2 82
Workshop paper 12 17 1 30
Book section 10 8 2 20
Technical report 3 8 0 11
Doctoral Thesis 0 3 0 3
Other 1 1 0 2

122 223 12 357

Fig. 3. Prolific countries: ten most associated countries
in the considered studies (total number of country level
affiliations =N 420).

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

76

This might be desirable in order to preserve the intended operation
of a program in an uncontrolled environment. For example, appli-
cations employing some form of digital rights management or
computer games trying to prevent players from cheating might
employ such techniques in order to make it harder to circumvent the
protection mechanisms [30,259]. Techniques aiming for tamper-
resistance often utilize methods for making understanding the pro-
gram more difficult but they can also include methods for verifying
program authenticity. Tamper-resistance was explicitly mentioned
as one of the aims in the context of obfuscating Java bytecode [30],
run-time randomization in order to slow down the adversary’s lo-
cate-alter-test cycle [103] and obfuscation of sequential program
control-flow [24]. Control flow obfuscation conceals the real control
flows of the program and generates a fake control flow [145,175].
This makes it difficult for an analyzer to comprehend the logic of the
program [245], also prevents spying and manipulating the control
flow [75].

d) Hiding data: Aside from making programs more complex to analyze,
obfuscation was also utilized for hiding static non-executable data
within programs [99,231,281]. Hiding cryptographic keys and
protecting intellectual property are few examples of scenarios were
such measures are considered. Such techniques have been used to
hide static integers [138,191] and obfuscate arrays by splitting them
[97].

The results signify that the two techniques are used to mitigate the
risk of a wide range of attacks, and in best case scenario hamper them.
Table 3 presents the top attacks that were impeded with the help of
obfuscation and diversification, such as code injection attacks
[55,105,108,197], ROP attacks [195,215,260,263], buffer over-flow
attacks [35,57,268], and Just-in-Time (JIT) spraying attacks
[186,208,263]. From Table 3 we can deduce that not all the studies
(209 papers) were explicitly discussing particular attacks that they aim
to impede.

4.1.3. RQ3: Environment
For classifying the environments, two subcategories were chosen: a)

language of the program being obfuscated/diversified and b) execution
environment.

a) Language: The reviewed literature used a diverse set of over 20
different programming languages. Circa 36,8% of the languages
were the topic of only one research and two thirds (63,1%) were
mentioned at most thrice. Most research discussed one (c. 63,4%) or
two (c. 10,6%) specific languages, with two systems programming
(C/C++) or high level languages (Java & JavaScript) representing
the vast majority of such pairs. A quarter (25,0%) of the research did
not specify a single language or generalized the presented work for a
class of languages. Only a minority of research
[135,158,163,167,191,232,340] mentioned multiple languages or
language classes.

A more descriptive view of the kinds of the languages was achieved
by further classifying the research into four language categories re-
presenting hardware oriented, high level, scripting, and domain specific
languages. The distribution of languages into these languages is as
follows:

• Systems programming (N=158): C (52), Assembly (29), C++ (21),
Cobol (1)

• Managed (N=81): Java (54), C# (3), Haskell (2), J# (1), Lisp (1),
OCaml (1), VB (1)

• Scripting (N=19): JavaScript (11), Python (3), Perl (2), PHP (1)

• Domain specific, DSL (N=7): SQL (5), HTML (1)

The systems programming languages are compiled to native hard-
ware without a run-time virtual machine and provide direct access to
memory. Due to this low level direct hardware access, these languages
benefit from obfuscation and diversification to protect this access. Some

Fig. 4. Prolific organizations: ten most associated or-
ganizations for the considered set of studies (total
number of organization level affiliations =N 544).

Fig. 5. Number of papers published yearly on the topic of security and privacy through obfuscation/diversification.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

77

examples of the applications of these languages in the research include
operating systems and drivers, low-level libraries, server software, high
performance computing, and embedded software. The managed lan-
guages typically require a virtual machine to provide a safer pro-
gramming model for application programming. The most common
problem for these languages is that the code is relatively easy to reverse
engineer. The Java virtual machine is the most common platform in the
selected research studies, but others, such as the Microsoft’s Common
Language Runtime (CLR), were also covered. A typical application of
this class is mobile code, that is, code expected to run in an unknown
environment. Finally, the scripting languages introduce new levels of
insecurity since manipulating their code is even simpler. The DSLs have
other issues, for example injection attacks or the need to protect in-
tellectual property.

The following three figures present the language trends in the re-
viewed papers. First, Fig. 8 shows the popularity of various language
categories based on our classification. The majority of the research has
focused on systems programming, managed languages come as the
second most popular category. Script languages are a bit more re-
searched than DSLs.

Fig. 9 shows the overall distribution of language popularity in se-
lected studies. A raw binary code (of native or virtual machine bytecode
instructions) is the most popular ”language” in this field of research.
This is natural as most software is compiled to binary form for dis-
tribution. It represent the lowest level language and often requires
disassembly to reconstruct the program structure for analysis. We dis-
tinguish assembly language as a separate form with its structured form
intact for further analysis. Assembly is commonly used when obfusca-
tion/diversification is used as a language agnostic compiler pass. The C
and Java languages are other popular choices, followed by C++ and
JavaScript.

Fig. 10 shows the trend over time for the five most used languages.
The other languages are presented as the sixth group, as a reference.

Like in the other figures, the research seems to be a bit more active in
the 2000s and even more active in 2010s. Each of the top five languages
appears to be almost equally represented each year.

b) Execution Environment: The environments in the reviewed literature
can be classified in various ways as there are many interesting areas
of focus. We have focused on two approaches in our review. First,
the target environment of deployment (Table 4) plays a significant
role when analyzing the applicability of a security mechanism. The
majority of reviewed approaches are general enough to work in a
multitude of environments. The most significant group of special
environments were distributed and agent based systems with mobile
code. As the code executes in a possibly remote, uncontrolled
system, the need for protection is obvious - especially since the
mobile agents often rely on bytecode that is relatively easy to re-
verse engineer. Virtualization and cloud computing can introduce
similar kinds of problems if the host is owned by a third party, but
virtualization is also used as a protection mechanism. Web services
and servers offer an attack surface via the service layers, and mobile
and desktop users are threatened by unreliable software. We dis-
tinguish between generic servers and cloud by denoting XaaS plat-
forms for hosting third party services as the cloud. Embedded en-
vironment might use obfuscation or diversification for example to
avoid the computational cost of encryption. Furthermore, most
mobile devices are embedded platforms, but not all embedded
platforms are mobile.

The second way to classify the reviewed literature is by the run-time
environment (Table 4). This classification focuses on the abstraction
level on the deployed software stack, with native code on the bottom
and the virtual machine managed code on top, if both run-times are
being used. Over a half of the research targets a native code environ-
ment. The more specific mechanisms are further discussed in the level

Fig. 6. Publication forum types for the considered set of studies as a function of the publication year.

Fig. 7. Associated organizations’ sector for the considered set of studies as a function of the publication year.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

78

(Section 4.1.4b) and stage (Section 4.1.4c) sections. Around fifth of the
research focuses on managed environments such as Java virtual ma-
chines. Few papers target both environments, e.g., in the case of JIT
compilers. Almost a third of the research claims to operate in all kinds
of environments as a general purpose security mechanism.

4.1.4. RQ4: Mechanism
a) Method: In order to make diversified program instances, various

transformation mechanisms are proposed in the literature. Each of these
mechanisms are applied at different stages and levels of software de-
velopment life-cycle (discussed in Section 4.1.4.b and Section 4.1.4.c).
In this section, we classify the transformation techniques, based on the

target of transformation. In other words, ”what” is transformed and
”how” the transformation is applied. Fig. 11 illustrates these techniques
as a tree. On first level of the tree come the targets of transformations
and on the lower levels the transformation techniques to obfuscate
these targets. We base our classification on the taxonomy presented by
Collberg et al. [13], which introduces control obfuscation, data obfus-
cation, layout obfuscation, and preventive obfuscation as different trans-
formation targets. In the following we discuss each category.

• Control flow obfuscation aims at altering/obscuring the flow of a
program to make it difficult for an attacker to successfully analyze
and understand the code [1]. There exists a large body of research
on control flow obfuscation techniques [259,261,266,334]. The
most common technique to disturb the control flow is bogus inser-
tion [11,12,22,31,63,73,104,268,362]. This technique works as in-
serting gray/dead/dummy code [351] that is never executed, fakes
the control transfer [100], and/or introduces confusion for the
analyzing tools [16,24,45,51,98,109,129,145,179,187] to attain the
actual flow. Adding dummy blocks [122,160,169], dead statements
[170], redundant operands [113], dummy instructions to camou-
flage the original instructions [38,242], new segments [247],
dummy classes [84], dummy sequence using dead registers [47],
and junk byte insertion to instruction stream [34,169], all fall into
this class of transformation. Inserting additional NOP instructions
[215,226,283] is another type of bogus insertion. NOPs are in-
structions that perform no operations but make it harder to predict
where the pieces of code are placed in memory.
Another widely used technique for disturbing the program’s control
flow is using opaque predicates [16,34,73,75,115,126,145,169,
179,188,209,291,313,355]. These expressions are known to the
obfuscator in advance, but not to the deobfuscator/attacker. A
simple example of opaque expression is a Boolean expression that is

Table 2
Aims followed by using obfuscation and diversification techniques.

Aim Via diversification (no. of papers) Via obfuscation (no. of papers)

Making reverse engineering difficult 7 78
Generating diverse and unique versions of SW 34 3
Making the program hard to comprehend/read 1 31
Concealing a fragment of code and hiding some data inside the code 2 24
Preventing tampering of program code and illegal modification of software 4 22
Hiding the control flow of the program 1 24
Making static analysis difficult 1 20
Making dynamic analysis difficult 2 12
Mitigating the risk of malware 12 7
Protecting mobile agents against malicious host 0 6
Preventing large-scale attacks 10 2
Detecting anomalies/intrusions 4 0
No suitable aim discussed 50

Table 3
Attacks mitigated by obfuscation and diversification techniques.

Attack mitigated via diversification (no.
of papers)

via obfuscation (no.
of papers)

ROP attacks 24 1
Code injection attacks 15 2
Buffer overflow attack 6 2
JIT spraying attacks 2 2
Side channel attack 3 4
Attacks to web applications, e.g.,

cross-site scripting (XSS),
SQL injection

4 1

Code reuse attacks 12 2
Browser-based attacks 2 3
Insider attacks 1 2
Protecting the software against

piracy
0 6

Slicing attacks (a form of reverse
engineering)

0 2

No attack mentioned 209

Fig. 8. Popularity of languages in the selected publications over time, grouped in language categories.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

79

always evaluated as ”true” or as ”false”, yet needs to be evaluated at
execution time. This hardens the task of analyzing the control flow
and enhances the cost of comprehending the program [16,75].
Transformation can be applied to loops [268] by loop unrolling
[166,201,272], loop intersection [73,182], extending [16,104,113]
and eliminating [109], and changing the loop conditions [330].
Transformation can also be applied at instruction level to camou-
flage the original flow of the application [271] through instruction
reordering [103,114,166,245,268], instruction hiding [226], and
instruction replacement with dummy/fake instructions
[38,76,175,291,346], or instructions that raise a trap
[47,103,186,247]. Self modification mechanisms
[38,62,165,182,202] alter/replace instructions at run-time which
could be used to introduce an additional layer of complexity while
obfuscating the code [161].
Modifying the control of a program not only makes it difficult to
analyze the actual program’s flow, but also results in diverse bin-
aries/executable. This can be achieved through reordering the in-
structions [103,114,166,245,268] and blocks [27,103,135,202,
239,346], while the semantics and dependency relations are pre-
served. Code transformation [52,63,162,202,211,214,230] is an-
other way of producing dissimilar binaries. As an example, by ran-
domizing the software in a sensor network, the nodes receive
diversified versions of the software [149].
Other forms of control flow obfuscation are polymorphism [44,84],
branching functions [34,47,123,157,179,209,240], and trans-
forming/faking/spoofing jump tables [34,242]. Inlining method
[41,103] replaces the function call with the function body, so the
function is eliminated and the primary structures are not disclosed.
Cloning method [229,231] creates different versions of the function
and tries to conceal the information about the function calls.

• Data obfuscation aims at obscuring data and concealing data struc-
ture of a program [207]. In the surveyed studies, various approaches

have been used to this aim [259,279,288]. First is array obfuscation
[29] that targets the structure (and the nature) of an array, trying to
make it confusing to the reader. This can be done through splitting
an array into smaller sub-arrays [97,112,130,171], or merging
multiple arrays and making one larger array [130,171]. Other ways
of array obfuscation are array folding [85,112,130,171], that in-
creases the dimensions of an array, and conversely, array flattening
[48,85,112,130,171], that decreases the dimensions of an array.
Second is variable transformation to obscure/obfuscates variables
[29,41,67,110,116,238,256]. Variables can be encoded [104], sub-
stituted with a piece of code [11], split into multiple variables
[94,104,113], and vice versa, multiple variables can be merged to-
gether. Third is a more complex obfuscation technique, class trans-
formation, which confuses the reader to comprehend the structure
of a class [72]. This transformation includes class splitting into
smaller sub-classes [36,41,128,177], merging/coalescing multiple

Fig. 9. List of languages in selected research, ordered by their popularity over time.

Fig. 10. Popularity of top five most used languages in the selected publications over time, the other languages are merged to the sixth group.

Table 4
Environments for the proposed obfuscation and diversification mechanisms.

Target environment context Diversification Obfuscation Both

Cloud 5 3 2
Desktop 1 3 0
Distributed/agent based 18 9 2
Embedded 6 2 3
Mobile 13 5 1
Server/mainframe 4 12 0
Virtualization 7 7 1
Web 10 8 0
Runtime environment
Any 54 21 6
Managed code 46 8 1
Native code 72 68 2
Both native & managed 4 1 0

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

80

classes together [36,41,148,177,223], class hierarchy flattening
[84,128,223] which removes type hierarchy from programs, and
type hiding [36,72,177]. There exist other classes of techniques to
obfuscate the data structure of the program, such as code substitu-
tion [145], and encryption [53,67,86,110,128,147,213,235].

• Layout obfuscation is a class of obfuscation techniques that targets
the program’s layout structure [13,336] through renaming the
identifiers [45,51,98,101,110,117,125,163,187,212,213,233,320]
and removing the comments, information about debugging, and
source code formatting [113,170,201,223]. By reducing the amount
of information for the human reader, the reverse engineering be-
comes harder. Layout transformations are considered as one-way
approaches, as when the information is gone there is no way to
recover the original formatting. Instruction Set Randomization (ISR)
[55,66,105,140,154,158,167,186,192], Address Randomization
[35,39,46,57,105,106,192,193,215,283], and Layout Randomiza-
tion [41,52,88,113,146,149,160,178,193], Address Space Layout
Randomization (ASLR) [263,265,308,337] can also be seen as
identifier renaming techniques.

b) Level: We identified several phases in the software development,
deployment, and execution as levels of obfuscation. In the reviewed
research (Table 5), most techniques apply to development time (n =
282), runtime (n = 95), or both (n= 58). The development time
techniques mostly apply to human readable source code (high level

language & assembly), but obfuscation and diversification tools ma-
nipulating the generated binary formats (bytecode, native code, inter-
mediate representation) are equally common. The application program
itself provides the main platform for applying various mechanisms. At
runtime, the techniques either target the source code (scripting lan-
guages), intermediate formats (e.g. JIT compilation), or the execution
environments. Modified runtime systems are process level techniques
for both managed (e.g. CLR & Java virtual machine) and native code,

Fig. 11. Transformation mechanisms.

Table 5
Level of obfuscation and diversification at development time / runtime.

Level Development Runtime

Application design 11 –
Assembly source code 12 –
Bytecode 40 –
Executable 76 –
High level language source code 104 7
Intermediate representation format 39 5
Managed code – 3
Native code – 43
Hardware – 3
Operating system – 18
Virtualization – 16
Total no. of papers (impl & runtime effects) 58

Total no. of papers 282 95

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

81

but operating systems, operating system / machine virtualization, and
hardware level modifications are also presented.

In terms of obfuscation and diversification techniques, operating
with source code that is not yet compiled is relatively effortless. Many of
the reviewed techniques work purely on the lexical and syntactic levels
and the parsing technology is mature, ranging from simple pre-pro-
cessors to frameworks with compiler-like abilities. It is also possible to
manipulate many high-level structures (classes, data structures) that are
not available in machine code form [36]. In interpreted languages (e.g.
JavaScript), the source code obfuscation is the only option [110], which
also explains why some of the source code obfuscations are deferred to
run-time. Collberg et al. have extensively described techniques avail-
able for source code obfuscation in [13,16]. Some of the mechanisms
extend the range of obfuscations to semantically richer forms, the in-
termediate formats available during the compilation. Abstract syntax
trees [133,207] are used by syntax oriented techniques while se-
mantically richer intermediate formats provide access to e.g. control
flow analysis. These mechanisms are provided for instance as compiler
plugins.

The motive to obfuscate the source code is usually preventing the
adversary from easily understanding and altering the code even if he or
she has managed to reverse engineer it. Source code obfuscation might
not ultimately prevent a dedicated attacker from understanding soft-
ware, but it will significantly raise the bar of complexity and decrease
the probability of a successful attack [49]. Source code obfuscation is
often used for intellectual property protection [104,113]. Worth noting
is that source code obfuscation is usually also reflected to the bytecode
or binary code after compilation.

In managed environments, bytecode techniques have received lots of
attention. For example, in Java, it is not that hard to reverse the com-
piled bytecode back to source code. This reverse-engineering can be
performed via automatic tools [50,51]. Naturally, this poses problems
for the confidentiality of source code and has elicited lots of research on
bytecode obfuscation. Several approaches such as [30,45,177,182,223]
have been proposed to prevent adversaries from understanding, re-
verse-engineering or cracking the bytecode. One major advantage of
bytecode obfuscation (along with other binary code obfuscation tech-
niques discussed next) is that source code is not needed in the process.
This is quite often the case with closed source, third party software.

Reverse engineering and the manipulation of security measures are
also issues with native code executables, but the native instruction sets
are inherently harder to analyze due to more complex instruction sets
and the lower level of abstraction. A large set of obfuscation and di-
versification techniques are applied to symbolic assembly code (with
relocation information etc. intact) or disassembled final binaries
[259,276]. This is often done in order to make reverse engineering
considerably harder [171,247] or to prevent disassembling the program

from binaries [175,240]. Low level obfuscation usually involves using
control flow obfuscation transformations changing the sequence of in-
structions [123,245]. In general, increasing the entropy of the low level
code also makes it harder for a piece of malware to modify the code or
inject its own malicious payload [11,233]. One technique related with
low level obfuscation is ISR [42,66]. An execution environment unique
to the running process is created so that the attacker does not know the
”language” used and therefore, cannot ”talk” to the machine. A new
instruction set is created for each process executing within a system.

c) Stage: Although modern software development is iterative, we ob-
serve the software life cycle as a linear sequence of stages: (a) de-
velopment, (b) distribution and deployment, and (c) execution. This
model captures the fact that each stage is characterized by a dif-
ferent set of obfuscation and diversification techniques and tools.
The development stage is further split into design, implementation,
compilation and linking phases. When analyzing the types of tools
used to manipulate the application’s code, the compilation can be
further refined into pre- (e.g. source to source transformations and
code generators) and post-compilation (e.g. link-time code trans-
formation) phases. The software deployment includes installation
and updates [248]. Application loading occurs in conjunction with
execution and thus is included in this stage. The surveyed studies
discussed and applied obfuscation and diversification techniques
during all these stages.

The Venn diagram in Fig. 12a illustrates all the observed stages and
their overlap in five main groups, from design to application execution.
These groups reflect the different stakeholders and roles in the soft-
ware’s life cycle. We identified 16 different types of use of stages, with
201, 60, and 9 studies operating on one to three stages, respectively.
None of the studies suggested taking part in four or more groups of
stages. A majority of research involves compilation and linking. Ex-
ecution time techniques form another large group. A small number of
research is associated with either of these approaches and some other
stage (n = 29) or is applied outside these stages (n = 22).

In Fig. 12a, the first group contains design and implementation
phases. Mechanisms applied at this stage are involved in software de-
velopment effort. Data obfuscation [118,137,162], control flow obfus-
cation [109,169] and, in general, source code obfuscation
[63,99,118,188,225] are the most common approaches that target the
code at implementation level.

The mechanisms in the next group, compilation and linking, can be
applied to the deliverables of iterations for in-house software or to pre-
made software, available either as source code, in intermediate forms,
or as executable binaries that can be analyzed or reverse-engineered.
This group is further dissected in Fig. 12b as the majority of reviewed

Fig. 12. a) Various stages in SW life-cycle that obfuscation/diversification are applied on, b) Dissection of various compile-time stages in conjunction with all post-
distribution phases.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

82

literature forms a cluster in this stage. The third stage, installation and
update, includes the task of local deployment of software and updates.
The next stage, loading, covers the process of loading the executable to
memory (e.g. from a network stream or disk) and dynamic linking.
Finally, execution stage includes all sorts of mechanisms that activate
during application’s execution. Code obfuscation and software diversi-
fication can also be applied at execution time. Dynamic software muta-
tion [79] is a repeated transformation of the program during its ex-
ecution. It makes a region of memory occupied by various code
sequences during execution. Identifier renaming [163], ASLR [57,265],
camouflaging the instructions by overwriting them with fake instruc-
tions [76], and randomizing the location of critical data elements in
memory [140] are other examples of execution-time diversification.

Fig. 12b focuses on the mechanisms applied on various stages of the
compilation (pre-, post-, and during compilation). In the figure, all the
remaining stages after the compilation techniques have been combined
as a single post-distribution stage. The reviewed research is distributed
quite evenly between the different compilation stages. Second large
class of mechanisms is to use compilation or post-compilation in con-
junction with the execution time techniques.

Diversification at the compile-time makes the process fairly auto-
matic by eliminating the need to change the program’s source code
[248]. M. Franz [150] has proposed a practical approach for generating
diverse software at compiler-level. This approach is based on an app-
store that contains a multi-compiler, which works as a diversifying
engine that generates unique binaries with identical functionality. In
[207] they have developed a compiler plugin to generate diverse op-
erating system kernels, through memory layout randomization. As we
mentioned before, in the literature, there are several works that study
the pre-compile time and post-compile diversification. Control flow
transformation in the source code [43] is an example for the former,
and class transformation in Java bytecode [177] an example for the
latter.

d) Cost: Despite of the security obfuscation and diversification bring,
they introduce cost and overhead to the system, like any other se-
curity measure. In fact, the higher level of obfuscation/diversifica-
tion, the more penalty is forced to the system. Therefore, based on
the need of the system, it is decided how much the program needs to
be obfuscated/diversified. In the studied works overhead mainly
was reported as a) increase in the program size [50,84] (e.g.,
number of instructions [34], memory size, code size [240,256,264],
binary patch size [140], byte code size), b) increase in program
performance [261,263,266,285,290] (e.g., compile time [175],
process time, execution time [260,268], CPU overhead [119],
higher memory usage [119,273], and c) latency and throughput
[210] (in load time or run time). It is worth mentioning that among
the diversification mechanisms, some introduce more cost and some
less. For instance, changing variable names, function names, and
system call numbers often introduces no additional costs.

e) Effectiveness: In the studied works, the effectiveness of the proposed
approaches were mainly measured through the following metrics:

• Potency determines to what degree a human reader is confused, as
a result of the applied security measure [13]. Measuring the po-
tency can be done by comparing the obfuscated/diversified ver-
sion of the software with the original version and presenting the
similarity rate [257,290]. In [131] clone detection is used to
analyze the similarity of the obfuscated code with the original
one, and the code dissimilarity is the metric for representing the
potency of the approach. Another way to measure the potency of
an obfuscation mechanism is to evaluate how much harder it has
become for a human reader to comprehend the obfuscated code,
comparing to the original code. For instance, the obfuscation
mechanism in [27] has been tested empirically with a group of

students, programmers and crackers and illustrated that only a
few crackers were able to deobfuscate the obfuscated code. In
[272] the effectiveness of the proposed approach is measured by
static and dynamic analysis of the obfuscated code.

• Resiliency determines how well the obfuscated/diversified pro-
gram resists automatic decompilers/disassemblers/deobfuscators
[13]. Analyzing the reverse engineering effort demonstrates how
the proposed technique is effective against disassembly tools (e.g.,
through presenting confusion factor, and disassembly errors). For
instance, in [211,240] the strength of the obfuscation mechanism
has been evaluated against IDA PRO automated deobfuscators [8],
and demonstrate that obfuscated code increases the effort for an
attacker, by making it harder to reconstruct the original code.
Similarly, Linn et al. [34] have used three state-of-the-art dis-
assembly tools, and demonstrated the effectiveness of their ap-
proach through confusion factors, disassembly errors, and in-
correctly disassembled code, that they gained by disassembling
the obfuscated code.

• Attack Resistance determines how much harder it has become to
break the obfuscated code. It can be done by running the obfus-
cated/diversified software against different attacks and analyzing
the outcome [260,263,268,285]. As an example, the obfuscated
kernel in [207] is tested against four kernel rootkits, and it is
shown that they all were disabled. RandSys prototype [105] im-
plemented for Linux and Windows has been tested against two
zero-day exploits (code-spraying attacks), and 60 existing code
injection attacks. It was shown that the approach is successful in
thwarting them. In [268] they run the program against various
types of attacks (e.g., code injection, memory corruption, code
reuse, tampering and reverse engineering attacks) and measure
the resistance.

4.2. Empirical studies

As mentioned before, in the set of studies collected, 68 of them were
studying the obfuscation/diversification techniques empirically. These
empirical studies come in the form of discussion, experiment, evalua-
tion, comparison, optimization, survey, and presenting a classification.
The following categories illustrate how these studies were related to
obfuscation and diversification:

• survey of related works on obfuscation and diversification as soft-
ware protection techniques [5,6,37,64,180,248,284]; Baudry and
Monperrus [284] survey the related works on design and data di-
versity which consider fault tolerance and cybersecurity. They also
study randomization at various system levels.

• overview/classification of existing obfuscation/diversification
techniques [59,78,132,324];

• studying the obfuscating transformations that are (more) resilient to
slicing attacks [92,96,329];

• comparing different obfuscation mechanisms [87,95,190];

• discussion on a particular obfuscation mechanism [19,78,132]; In
[132], obfuscation is being discussed as a way to make under-
standing the software more difficult. In [19], identifier renaming is
discussed as an obfuscation mechanism to protect Java applications.
By making the classes harder to decode, the act of unauthorized
decompilation becomes difficult. In [78], the authors overview the
existing obfuscators and obfuscation mechanisms, and also illustrate
the possibility of achieving binary code obfuscation through source
code transformation.

• studying/evaluating the effectiveness of an obfuscation/diversifi-
cation approach (e.g., identifier renaming and opaque predicates)
against human attackers [54,64,74,93,176,183,246,266,269,278,
289,295]; In [68] the authors qualitatively measure the capabilities

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

83

and performance of two commercial obfuscators for three different
sorting algorithms. In [93], the effectiveness of decompilers and
obfuscators are quantified through a set of metrics. It is done by
comparing the original Java source code with the decompiled and
obfuscated code respectively. The metrics will then measure whe-
ther the decompiler produces valid source code, and whether the
obfuscator produces garbled code. [176] measures the effects of
different obfuscation techniques on Java code in terms of com-
plexity. In [278] several different metrics are suggested for mea-
suring the incomprehensibility of the obfuscated code.

• optimizing and reducing the overhead of software diversity
[83,202,237,255];

• experimenting and evaluating the potency of an obfuscation tech-
nique; The strength and incomprehensibility of the obfuscated
programs can be evaluated by measuring the performance of human
analyzers in analyzing the obfuscated code (to what degree a human
reader is confused) [111,121,145,228,234,354].

• studying the effectiveness of software diversity
[32,65,136,237,274,287,292,360]; For instance, to evaluate the
effect of diversity, several different computer attacks are tested
against the diversified programs [32]. In [274], automatic software
diversity is discussed as a means for securing the software. The
authors investigate the types of exploitation it can mitigate, the
different levels of software life-cycle the diversification can be ap-
plied at, and the possible targets of diversification.

5. Discussion

The idea of protecting software through generated diversity and
obfuscated code originated in early1990′s and gained more attention in
the past decade. The rationale behind these techniques is to increase the
cost and effort for a successful attack. This study, by surveying the
literature about the use of these two techniques for securing software,
elucidates several points.

First, these methods have been used in various ways with different
aims, such as protecting software from malicious reverse engineering
and tampering, hiding some data and protecting watermark informa-
tion, preventing the wide spread of vulnerabilities and infections, mi-
tigating the risk of massive-scale attacks, and impeding targeted at-
tacks. In a previous study, we have studied the aims and environments
that these two techniques have been applied to [324].

Second, the field has grown in many directions, and new areas have
emerged. Moving Target Defence (MTD) [172] is an example of newly
born defence mechanisms. MTD randomizes the system components,
and presents a continuously changing attack surface, which shortens
the time frame available for attacker.

Third, studying all the related works sheds light on the research
gaps, and the potential research directions. We discuss these research
gaps in Section 5.2.

Fourth, There are also some challenges associated with practical
diversification and obfuscation that require further study. In Section 5.1
we discuss some of these challenges.

5.1. Challenges

One of the challenge of applying diversification is the fact that it has
to be propagated to every parts of the system that makes use of the
diversified interface. For example, diversified system call numbers in
the operating system kernel have to be propagated to libraries that
employ system calls. It is not straightforward to automatically find all
the dependencies.

Software updates are also a challenge for diversified systems, be-
cause each update has to be individually diversified to be compatible

with the uniquely diversified interfaces it uses. Then again, each patch
is also an opportunity to re-diversify some parts of the system.

Using diversification and obfuscation is always a race against time
in the sense that the adversary will ultimately be able to guess the
correct diversification key or deobfuscate the code. Dynamically
changing obfuscation/diversification is a good defence, but raises
complexity and performance costs of the approach.

5.2. Research gaps

As mentioned before, the main goal of conducting a systematic lit-
erature review is to collect and analyze the studies related to a field of
research, in order to pinpoint the research gaps in that field.

One of the gaps we have found in this field of study is the lack of a
standard metric in this field for reporting the overhead and also the
effectiveness of the proposed approaches. The terms, potency and re-
siliency, introduced by Collberg et al. [16] discuss how much more
complex the code has become in the presence of the obfuscation
method; however, we believe that a standard metric to present a nu-
meric degree is missing. Moreover, as also discussed in [276], the
majority of the existing research are constructive papers and there is
need for more empirical research, such as measuring the efficiency of
diversification and presenting results on performance and space re-
quirements of the obfuscation techniques. However, these concerns
have not fully addressed by the research community.

Another research gap that we noted was that there are still many
environments obfuscation and diversification have not been applied to
yet, even though this would potentially be beneficial. In this section, we
discuss these environments and present some ideas on how to utilize the
two techniques as a complementary measure to the security measures
these environments already have.

One of these execution environments is cloud computing and virtual
environments, in general. Lately, virtual technologies have become very
dominant as many enterprises and service providers are shifting to-
wards the cloud and to deliver their services through it. Thus, we be-
lieve that due to the significance of these environments, there are needs
for proactive approaches for securing their software. Obfuscation and
diversification could become helpful in this manner. Our recent survey
on the use of these techniques for securing cloud computing environ-
ment [293] clearly shows that there have been very limited number of
studies on this domain and there is still room for more studies in this
area. Also, the related works do not address the propagation issues,
especially regarding propagation to higher level interfaces/APIs. One
possible solution that we propose here is to diversify the internal in-
terfaces of cloud and virtualization systems, for instance, diversifying
the machine language of the virtual machines.

Therewith, container-based virtualization is drawing more attention
recently, because of the advantages that it has compared to traditional
hypervisor-based virtualization (such as higher efficiency in CPU,
memory, and storage). We believe that this environment can also
benefit from diversification techniques. However, most notably there is
hardly any research related to diversification of hypervisors or con-
tainers. One potential idea is to diversify interfaces and APIs of con-
tainers, so each container would have a diverse execution environment.

IoT network is another type of environment that is becoming pre-
valent more and more these days. Protecting these networks is also
crucial not only at network level but also at (device) application level.
In the reviewed literature, obfuscation and diversification have been
used very little as a security measure for this purpose. Therefore, this is
another research direction to consider. We have proposed applying
these two techniques on the operating systems of the IoT devices and
also on the communication protocols used among them [275,322].
Then, in another study we applied diversification on Thingsee and

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

84

Raspbian operating systems [305] (the limitations of this study is dis-
cussed in Section 5.3).

These ideas could be also extended to fog computing as well.
Looking at the architecture of fog computing, nodes (i.e., sensors, de-
vices and data collectors) come at the edge of the network. Applying
diversification at the nodes stops the malicious activity right at the edge
before it goes up to the fog.

As mentioned earlier, diversification techniques could be applied as
a complementary security approach, to the measures environments al-
ready have. We are studying applying diversification in trusted en-
vironments. More specifically, we consider diversifying the containers
and storing the diversification secret inside TPM. Another idea is di-
versifying enclaves in a trusted execution environment such as Intel
SGX.

Applying obfuscation to mobile platforms is also a topic that has
received some attention recently but still requires more research. For
example, Android applications, distributed in Dalvik bytecode form, are
vulnerable to reverse engineering. There has been some positive de-
velopment in this front, such as the ProGuard obfuscation tool being
packed along with Google’s Android Studio development environment
and some recent publication on obfuscation in the context of mobile
applications [35]. Most current studies on obfuscation in mobile en-
vironments, however, only highlight obfuscation techniques Android
malware uses to evade detection. Therefore, with applications run on
mobile platforms getting more prevalent, new obfuscation and di-
versification techniques to increase software security and research on
their resilience are still needed.

To sum up, by systematically studying the two software security
techniques, obfuscation and diversification, and finding the research
gaps and research opportunities, we believe that both research com-
munity and industry should study and apply these techniques. There
has already been some development in this direction. As we saw in
Section 4.1.1, research on these techniques has drawn fair attention in
software security community. This trend is also shown by several patent
applications filed during the last ten years. For example, there are pa-
tents on ISR [9] and interface diversification [10]. There have also been
some initiatives by Microsoft research center [119]. Still, we would like
to encourage the practical application of these techniques even more –
especially by industry.

5.3. Limitations of the study

As discussed earlier, a systematic literature review has a number of
advantages compared to the traditional literature reviews, such as
transparency, larger breadth of included studies, and reduction of re-
search bias [4]. Nevertheless, this method has several different practical
challenges and limitations as well, that we experienced in this work that
made it difficult to put it into practice. First, it was very time-con-
suming and arduous work, due to the high number of included studies,
in all the process of search, selection, data extraction, and also synthesis
of the data and classification of them. Second, we selected the set of
search strings manually. Thus, there is a concern that not all the ma-
terials in the field are captured. Third, the inclusion or exclusion of the
studies might be biased based on the researcher’s knowledge. Moreover,
because of high number of authors, sometimes, each author had slightly
different interpretations of the research questions. To solve the incon-
sistency in the screening process, we solved the disagreement cases in
the meetings with the presence of all authors. Fourth, in some cases the
search flow was dictated by limitations of some of the databases. As an
example, in SpringerLink digital library we had to make the search in
the full-text of the studies, which resulted in a huge number false po-
sitives. For other databases, we had limited the search to the title,

abstract, and keywords of the studies.
In addition, like any other security measure, despite of the security

benefits that the two studied techniques have, they also have some
limitations such as increase in the size of the obfuscated code, and
consequently increase in the execution time. In diversification method
propagation of the diversification throughout the whole system from
the lower levels to the upper most layers, is still a challenge and needs
improvement.

Moreover, not all the diversification techniques are well suited for
the tiny resource constrained devices. In other words, the diversifica-
tion method should be chosen with consideration. For example, em-
bedded systems may not always have Memory Management Units
(MMU), which makes applying ASLR less worthwhile. We can perform
device-specific diversification with the layout, but the embedded
system requires certain offsets to be static, which means since there is
no MMU we cannot hide these offsets with ASLR, which could mean all
the diversification was for nothing since the exploiting code can pos-
sibly crawl through the known offsets to the offsets it needs to function.
Diversification can expand the size of the system, which means the
space constraints of such tiny systems come at us faster. In our previous
experiments, for example, applying layout shuffling and symbol di-
versification required some extra space [239]. In Thingsee OS the size
of binaries expanded, but not exceedingly.

6. Conclusion and future work

Obfuscation and diversification are promising software security
techniques that protect computers from harmful malware. The idea of
these two techniques is not to remove the security vulnerabilities, but to
make it challenging for the attacker to exploit them and perform a
successful attack.

In this study we reviewed the studies that were applying/studying
obfuscation and diversification for improving software security. For this
purpose, we systematically collected and reviewed the related studies in
this field, i.e., 357 articles (See Appendix A), published between 1993
and 2017. We reported the result of study in form of analysis and
classification of the captured data, and also we managed to answer the
formulated research questions. We found out that these two techniques
have been utilized for various aims and mitigation of various types of
attacks, they can be applied at different parts of the system and at
different phases of software development life-cycle. Moreover, in the
literature, there exists many different techniques to obfuscate/diversify
the program that each present different levels of protection, but also
overhead, which depending on the need of the program could be
chosen.

Moreover, by studying the existing works we pinpointed the re-
search gaps. We concluded that the major part of the existing research
works were focusing on obfuscation, and there is still room for studies
on software diversification. We discussed that there exist many dif-
ferent environments that could still benefit from these techniques and
need more focus of research, such as virtual environments, IoT, fog
computing, and trusted computing. For the discussed environments, we
also presented some potential ideas.

As future works, we will apply diversification on the interfaces of
containers, also diversify the codes inside enclaves in trusted execution
environments.

Acknowledgment

The authors gratefully acknowledge Tekes – the Finnish Funding
Agency for Innovation [grant number 3772/31/2014], DIMECC Oy,
and the Cyber Trust research program for their support.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

85

Appendix A. Selected studies

The following is the list of 357 studies reviewed in this SLR, sorted based on the publication year:

1993 [11]
1996 [12]
1997 [13] [14]
1998 [15] [16] [17]
1999 [18] [19]
2000 [20] [21] [22] [23]
2001 [24] [25]
2002 [26] [27] [28] [29] [30]

[31] [32] [33]
2003 [34] [35] [36] [37] [38]

[39] [40] [41] [42] [43]
[44] [45] [46] [47] [48]

2004 [49] [50] [51] [52] [53]
[54] [55] [56] [57] [58]
[59] [60] [61]

2005 [62] [63] [64] [65] [66]
[67] [68] [69] [70]

2006 [71] [72] [73] [74] [75]
[76] [77] [78] [79] [80]
[81] [82] [83] [84] [85]
[86] [87] [88] [89] [90]

2007 [91] [92] [93] [94] [95]
[96] [97] [98] [99] [100]
[101] [102] [103] [104] [105]
[106] [107] [108]

2008 [109] [110] [111] [112] [113]
[114] [115] [116] [117] [118]
[119] [120]

2009 [121] [122] [123] [124] [125]
[126] [127] [128] [129] [130]
[131] [132] [133] [134] [135]
[136] [137] [138] [139] [140]
[141] [142] [143] [144]

2010 [145] [146] [147] [148] [149]
[150] [151] [152] [153] [154]
[155] [156] [157] [158]

2011 [159] [160] [161] [162] [163]
[164] [165] [166] [167] [168]
[169] [170] [171] [172] [173]
[174]

2012 [175] [176] [177] [178] [179]
[180] [181] [182] [183] [184]
[185] [186] [187] [188] [189]
[190] [191] [192] [193] [194]
[195] [196] [197] [198] [199]
[200]

2013 [201] [202] [203] [204] [205]
[206] [207] [208] [209] [210]
[211] [212] [213] [214] [215]
[216] [217] [218] [219] [220]
[221] [222]

2014 [223] [224] [225] [226] [227]
[228] [229] [230] [231] [232]
[233] [234] [235] [236] [237]
[238] [239] [240] [241] [242]
[243] [244] [245] [246] [247]
[248] [249] [250] [251] [252]
[253] [254]

2015 [255] [256] [257] [258] [259]
[260] [261] [262] [263] [264]
[265] [266] [267] [268] [269]
[270] [271] [272] [273] [274]

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

86

[275] [276] [277] [278] [279]
[280] [281] [282] [283] [284]
[285] [286] [287] [288] [289]
[290] [291] [292] [293]

2016 [294] [295] [296] [297] [298]
[299] [300] [301] [302] [303]
[304] [305] [306] [307] [308]
[309] [310] [311] [312] [313]
[314] [315] [316] [317] [318]
[319] [320] [321] [322] [323]
[324] [325] [326] [327] [328]
[329] [330] [331] [332] [333]
[334] [335] [336] [337] [338]
[339] [340] [341] [342] [343]

2017 [344] [345] [346] [347] [348]
[349] [350] [351] [352] [353]
[354] [355] [356] [357] [358]
[359] [360] [361] [362] [363]
[364] [365] [366] [367]

References

[1] C. Collberg, J. Nagra, Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, Addison-Wesley Professional, 2009.

[2] E. Skoudis, L. Zeltser, Malware: Fighting Malicious Code, Prentice Hall
Professional, Upper Saddle River, NJ 07458, 2004.

[3] B. Kitchenham, Procedures for performing systematic reviews, Technical Report
TR/SE-0401, Department of Computer Science, Keele University, UK, 2004.

[4] R. Mallett, J. Hagen-Zanker, R. Slater, M. Duvendack, The benefits and challenges
of using systematic reviews in international development research, J. Dev.
Effectiveness 4 (3) (2012) 445–455.

[5] A. Balakrishnan, C. Schulze, Code obfuscation literature survey, Technical Report,
University of Wisconsin, Madison, 2005.

[6] A. Majumdar, C. Thomborson, S. Drape, A survey of control-flow obfuscations, in:
A. Bagchi, V. Atluri (Eds.), Information Systems Security, Lecture Notes in
Computer Science, 4332 Springer Berlin Heidelberg, 2006, pp. 353–356.

[7] B. Kitchenham, P. Brereton, A systematic review of systematic review process
research in software engineering, Inf. Softw. Technol. 55 (12) (2013) 2049–2075.

[8] IDA-PRO, (https://www.hex-rays.com/products/ida/). Accessed: 2018-07-01.
[9] J. Spradlin, Security through opcode randomization, 2012, US Patent App. 12/

972,433.
[10] A. Main, M. Achim, S. Chow, H. Johnson, Y. Gu, Computer system protection by

communication diversity, 2003, CA Patent App. CA 2,363,795.
[11] F.B. Cohen, Operating system protection through program evolution, Comput.

Secur. 12 (6) (1993) 565–584.
[12] C. Pu, A. Black, C. Cowan, J. Walpole, C. Consel, A specialization toolkit to in-

crease the diversity of operating systems, ICMAS Workshop Immunity-Based
Systems, (1996).

[13] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transformations,
Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand, 1997.

[14] S. Forrest, A. Somayaji, D. Ackley, Building diverse computer systems, Operating
Systems, The Sixth Workshop on Hot Topics, (1997), pp. 67–72.

[15] C. Collberg, C. Thomborson, D. Low, Breaking abstractions and unstructuring data
structures, Computer Languages Proceedings. International Conference on,
(1998), pp. 28–38.

[16] C. Collberg, C. Thomborson, D. Low, Manufacturing cheap, resilient, and stealthy
opaque constructs, in: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, ACM, NY, USA, 1998, pp.
184–196.

[17] F. Hohl, Time limited blackbox security: protecting mobile agents from malicious
hosts, in: G. Vigna (Ed.), Mobile Agents and Security, Lecture Notes in Computer
Science, 1419 Springer Berlin Heidelberg, 1998, pp. 92–113.

[18] R.C. Linger, Systematic generation of stochastic diversity as an intrusion barrier in
survivable systems software, Systems Sciences, HICSS-32. Proceedings of the 32nd
Annual Hawaii International Conference on, IEEE, 1999, pp. 1–7.

[19] J. Hunt, Byte Code Protection, Java for Practitioners Practitioner Series, Springer
London, 1999, pp. 427–429.

[20] V. Tam, R.K. Gupta, Using class decompilers to facilitate the security of Java ap-
plications!, Proceedings of the First International Conference on Web Information
Systems Engineering. 1 (2000), pp. 153–158.

[21] C.C. Michael, A. Bartle, J. Viega, A. Hulot, N. Jarymowycz, J.R. Mills, B. Sohr,
B. Arkin, Two systems for automatic software diversification, Proceedings of the
DARPA Information Survivability Conference and Exposition, 2 IEEE Computer
Society, 2000, p. 1220.

[22] C. Wang, J. Hill, J. Knight, J. Davidson, Software tamper resistance: obstructing
static analysis of programs, Technical Report, University of Virginia, VA, USA,

2000.
[23] H. Goto, M. Mambo, K. Matsumura, H. Shizuya, Proceedings of the Information

Security: Third International Workshop, ISW 2000 Wollongong, Australia,
Proceedings, Springer Berlin Heidelberg, pp. 82–96.

[24] S. Chow, Y. Gu, H. Johnson, V. Zakharov, An approach to the obfuscation of
control-flow of sequential computer programs, in: G. Davida, Y. Frankel (Eds.),
Information Security, Lecture Notes in Computer Science, 2200 Springer Berlin
Heidelberg, 2001, pp. 144–155.

[25] H. Goto, M. Mambo, H. Shizuya, Y. Watanabe, Evaluation of tamper-resistant
software deviating from structured programming rules, in: V. Varadharajan, Y. Mu
(Eds.), Information Security and Privacy, Lecture Notes in Computer Science, 2119
Springer Berlin Heidelberg, 2001, pp. 145–158.

[26] P. Shah, Code obfuscation for prevention of malicious reverse engineering attacks,
2002, A term paper for course ECE 578, Computer and Network Security, 12
pages.

[27] G. Wroblewski, General method of program code obfuscation, Ph.D. thesis,
Wroclaw University, Poland, 2002.

[28] M. Chew, D. Song, Mitigating buffer overflows by operating system randomiza-
tion, Technical Report CMU-CS-02-197, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 2002.

[29] S. Drape, O. de Moor, G. Sittampalam, Transforming the .net intermediate lan-
guage using path logic programming, in: Proceedings of the 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming,
PPDP ’02, ACM, NY, USA, 2002, pp. 133–144.

[30] L. Badger, D. Kilpatrick, B. Matt, A. Reisse, T. Van Vleck, Self-protecting mobile
agents obfuscation techniques evaluation report, Technical Report 01–036, NAI
Labs, 2002.

[31] T. Ogiso, Y. Sakabe, M. Soshi, A. Miyaji, Software tamper resistance based on the
difficulty of interprocedural analysis, Proceedings of the Interprocedural Analysis,
3rd International Workshop on Information Security Applications (WISA), (2002),
pp. 437–452.

[32] C. Bain, D. Faatz, A. Fayad, D. Williams, Diversity as a defense strategy in in-
formation systems, in: M. Gertz, E. Guldentops, L. Strous (Eds.), Integrity, Internal
Control and Security in Information Systems, IFIP – The International Federation
for Information Processing, 83 Springer US, 2002, pp. 77–93.

[33] C.S. Collberg, C. Thomborson, Watermarking, tamper-proofing, and obfuscation -
tools for software protection, IEEE Trans. Softw. Eng. 28 (8) (2002) 735–746.

[34] C. Linn, S. Debray, Obfuscation of executable code to improve resistance to static
disassembly, Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03, NY, USA, 2003, pp. 290–299.

[35] D.C. DuVarney, V.N. Venkatakrishnan, S. Bhatkar, Self: a transparent security
extension for elf binaries, Proceedings of the Workshop on New Security
Paradigms, NSPW ’03, ACM, USA, 2003, pp. 29–38.

[36] M. Sosonkin, G. Naumovich, N. Memon, Obfuscation of design intent in object-
oriented applications, in: Proceedings of the 3rd ACM Workshop on Digital Rights
Management, DRM ’03, ACM, NY, USA, 2003, pp. 142–153.

[37] P. van Oorschot, Revisiting software protection, in: C. Boyd, W. Mao (Eds.),
Information Security, Lecture Notes in Computer Science, 2851 Springer Berlin
Heidelberg, 2003, pp. 1–13.

[38] Y. Kanzaki, A. Monden, M. Nakamura, K.-i. Matsumoto, Exploiting self-modifica-
tion mechanism for program protection, Proceedings of the 27th Annual
International Computer Software and Applications Conference, COMPSAC.
Proceedings. (2003), pp. 170–179.

[39] E. Bhatkar, D.C. Duvarney, R. Sekar, Address obfuscation: an efficient approach to
combat a broad range of memory error exploits, Proceedings of the 12th USENIX
Security Symposium, (2003), pp. 105–120.

[40] L. D’Anna, B. Matt, A. Reisse, T.V. Vleck, S. Schwab, P. Leblanc, Self-protecting
mobile agents obfuscation report, Technical Report 03–015, Network Associates

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

87

Laboratories, 2003.
[41] C. Collberg, G. Myles, A. Huntwork, Sandmark–a tool for software protection re-

search, IEEE Secur. Priv. 1 (4) (2003) 40–49.
[42] G.S. Kc, A.D. Keromytis, V. Prevelakis, Countering code-injection attacks with

instruction-set randomization, Proceedings of the 10th ACM Conference on
Computer and Communications Security, CCS ’03, NY, USA, 2003, pp. 272–280.

[43] T. Ogiso, Y. Sakabe, M. Soshi, A. Miyaji, Software obfuscation on a theoretical
basis and its implementation, IEICE Trans. Fundam. Electr., Commun. Comput.
Sci. 86 (1) (2003) 176–186.

[44] Y. Sakabe, M. Soshi, A. Miyaji, Java obfuscation with a theoretical basis for
building secure mobile agents, in: A. Lioy, D. Mazzocchi (Eds.), Communications
and Multimedia Security. Advanced Techniques for Network and Data Protection,
Lecture Notes in Computer Science, 2828 Springer Berlin Heidelberg, 2003, pp.
89–103.

[45] D. Rusu, Protection methods of Java bytecode, Proceedings of the Networking in
Education and Research International Conference, (2003), pp. 214–220.

[46] J. Xu, Z. Kalbarczyk, R. Iyer, Transparent runtime randomization for security,
Proceedings of the 22nd International Symposium on Reliable Distributed
Systems. Proceedings. (2003), pp. 260–269.

[47] A. Monden, A. Monsifrot, C. Thomborson, Obfuscated instructions for software
protection, Technical Report NAIST-IS-TR2003013, Graduate School of
Information Science, Nara Institute of Science and Technology, Japan, 2003.

[48] C. Dahn, S. Mancoridis, Using program transformation to secure C programs
against buffer overflows, Proceedings of the 10th Working Conference on Reverse
Engineering, WCRE. IEEE, 2003, pp. 323–332.

[49] S. Ring, E. Cole, Taking a lesson from stealthy rootkits, IEEE Secur. Priv. 2 (4)
(2004) 38–45.

[50] H. Saputra, G. Chen, R. Brooks, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, Code
protection for resource-constrained embedded devices, SIGPLAN Notices 39 (7)
(2004) 240–248.

[51] J.T. Chan, W. Yang, Advanced obfuscation techniques for java bytecode, J. Syst.
Softw. 71 (1–2) (2004) 1–10.

[52] L. Ertaul, S. Venkatesh, JHide–a tool kit for code obfuscation, Proceedings of the
8th IASTED International Conference on Software Engineering and Applications,
(2004), pp. 133–138.

[53] W. Thompson, A. Yasinsac, J.T. McDonald, Semantic encryption transformation
scheme, Proceedings of the International Workshop on Security in Parallel and
Distributed Systems, PDCS, (2004), pp. 516–521.

[54] D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Franz, T.J. Palmer, Data ob-
fuscation: anonymity and desensitization of usable data sets, IEEE Secur. Priv. 2
(6) (2004) 34–41.

[55] S. Boyd, A. Keromytis, Sqlrand: preventing Sql injection attacks, in: M. Jakobsson,
M. Yung, J. Zhou (Eds.), Applied Cryptography and Network Security, Lecture
Notes in Computer Science, 3089 Springer Berlin Heidelberg, 2004, pp. 292–302.

[56] S. Drape, Obfuscation of abstract data types, Ph.D. thesis, University of Oxford,
UK, 2004.

[57] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh, On the effec-
tiveness of address-space randomization, Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS ’04, NY, USA, 2004, pp.
298–307.

[58] K. Heffner, C. Collberg, The obfuscation executive, in: K. Zhang, Y. Zheng (Eds.),
Information Security, Lecture Notes in Computer Science, 3225 Springer Berlin
Heidelberg, 2004, pp. 428–440.

[59] D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Franz, T.J. Palmer, Data ob-
fuscation: anonymity and desensitization of usable data sets, IEEE Secur. Priv. 2
(6) (2004) 34–41.

[60] A. Monden, A. Monsifrot, C. Thomborson, A framework for obfuscated inter-
pretation, in: Proceedings of the 2nd Workshop on Australasian Information
Security, Data Mining and Web Intelligence, and Software Internationalisation -
Volume 32, ACSW Frontiers ’04, Australian Computer Society, Inc., Darlinghurst,
Australia, 2004, pp. 7–16.

[61] B. Anckaert, B. De Sutter, K. De Bosschere, Software piracy prevention through
diversity, in: Proceedings of the 4th ACM Workshop on Digital Rights
Management, DRM ’04, ACM, NY, USA, 2004, pp. 63–71.

[62] J. Ge, S. Chaudhuri, A. Tyagi, Control flow based obfuscation, in: Proceedings of
the 5th ACM Workshop on Digital Rights Management, DRM ’05, ACM, NY, USA,
2005, pp. 83–92.

[63] L. Ertaul, S. Venkatesh, Novel obfuscation algorithms for software security,
Proceedings of the International Conference on Software Engineering Research
and Practice, SERP’05, (2005), pp. 209–215.

[64] C. Zhu, Z. Yin, A. Zhang, Mobile Code Security on Destination Platform, in: X. Lu,
W. Zhao (Eds.), Networking and Mobile Computing, Lecture Notes in Computer
Science, 3619 Springer Berlin Heidelberg, 2005, pp. 1263–1270.

[65] P.-Y. Chen, G. Kataria, R. Krishnan, Software diversity for information security.
Proceedings of the Workshop on the Economics of Information Security (WEIS),
Harvard University, Cambridge, MA, 2005, p. 20 pages.

[66] E.G. Barrantes, D.H. Ackley, S. Forrest, D. Stefanović, Randomized instruction set
emulation, ACM Trans. Inf. Syst. Secur. 8 (1) (2005) 3–40.

[67] A. Majumdar, C. Thomborson, Securing mobile agents control flow using opaque
predicates, in: R. Khosla, R. Howlett, L. Jain (Eds.), Knowledge-based intelligent
information and engineering systems, Lecture Notes in Computer Science, 3683
Springer Berlin Heidelberg, 2005, pp. 1065–1071.

[68] J. Macbride, C. Mascioli, S. Marks, Y. Tang, L.M. Head, P. Ramach, A comparative
study of Java obfuscators, Proceedings of the IASTED International Conference on
Software Engineering and Applications (SEA), (2005), pp. 14–16.

[69] S. Bhatkar, R. Sekar, D.C. DuVarney, Efficient techniques for comprehensive

protection from memory error exploits, Proceedings of the 14th Conference on
USENIX Security Symposium - Vol. 14, SSYM’05, USENIX Association, Berkeley,
CA, USA, 2005, p. 17.

[70] A.D. Keromytis, V. Prevelakis, A survey of randomization techniques against
common mode attacks, Technical Report, Department of Computer Science, Drexel
University, Philadelphia, Pennsylvania, USA, 2005.

[71] J.M. Memon, S. ul Arfeen, A. Mughal, F. Memon, Preventing reverse engineering
threat in Java using byte code obfuscation techniques, Proceedings of the
International Conference on Emerging Technologies. ICET ’06. (2006), pp.
689–694.

[72] S. Drape, An obfuscation for binary trees, Proceedings of the TENCON. IEEE
Region 10 Conference, IEEE, 2006, pp. 1–4.

[73] T. Hou, H. Chen, M. Tsai, Three control flow obfuscation methods for java soft-
ware, IEEE Proc. Softw. 153 (6) (2006) 80–86.

[74] A. Majumdar, A. Monsifrot, C. Thomborson, On evaluating obfuscatory strength of
alias-based transforms using static analysis, Proceedings of the International
Conference on Advanced Computing and Communications, ADCOM. (2006), pp.
605–610.

[75] A. Majumdar, C. Thomborson, Manufacturing opaque predicates in distributed
systems for code obfuscation, in: Proceedings of the 29th Australasian Computer
Science Conference - Volume 48, ACSC ’06, Australian Computer Society, Inc.,
Darlinghurst, Australia, 2006, pp. 187–196.

[76] Y. Kanzaki, A. Monden, M. Nakamura, K. Matsumoto, A software protection
method based on instruction camouflage, Electr. Commun. Japan (Part III:
Fundam. Electr. Sci.) 89 (1) (2006) 47–59.

[77] H. Yamauchi, Y. Kanzaki, A. Monden, M. Nakamura, K. Matsumoto, Software
obfuscation from crackers’ viewpoint. Proceedings of the ACST, (2006), pp.
286–291.

[78] M. Madou, B. Anckaert, B. De Bus, K. De Bosschere, J. Cappaert, B. Preneel, On the
effectiveness of source code transformations for binary obfuscation, Proceedings of
the International Conference on Software Engineering Research and Practice,
SERP’06, CSREA Press, 2006, pp. 527–533.

[79] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, K. De Bosschere,
Software protection through dynamic code mutation, in: J. Song, T. Kwon,
M. Yung (Eds.), Information Security Applications, Lecture Notes in Computer
Science, 3786 Springer Berlin Heidelberg, 2006, pp. 194–206.

[80] B. Anckaert, M. Jakubowski, R. Venkatesan, Proteus: Virtualization for diversified
tamper-resistance, Proceedings of the ACM Workshop on Digital Rights
Management, DRM ’06, NY, USA, 2006, pp. 47–58.

[81] B. Cox, D. E., A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, J. Hiser, N-variant systems: a secretless framework for security through
diversity. Usenix Security, 6 (2006), pp. 105–120.

[82] E. Totel, F. Majorczyk, L. Mé, Cots diversity based intrusion detection and appli-
cation to web servers, in: A. Valdes, D. Zamboni (Eds.), Recent Advances in
Intrusion Detection, Lecture Notes in Computer Science, 3858 Springer Berlin
Heidelberg, 2006, pp. 43–62.

[83] R. Pucella, F.B. Schneider, Independence from obfuscation: a semantic framework
for diversity, Proceedings of the 19th IEEE Computer Security Foundations
Workshop, (2006), pp. 12 pages,–241.

[84] Y. Sakabe, M. Soshi, A. Miyaji, Java obfuscation approaches to construct tamper-
resistant object-oriented programs, Inf. Media Technol. 1 (1) (2006) 134–146.

[85] W. Zhu, C. Thomborson, F.-Y. Wang, Obfuscate arrays by homomorphic functions,
Proceedings of the IEEE International Conference on Granular Computing, (2006),
pp. 770–773.

[86] K. Fukushima, S. Kiyomoto, T. Tanaka, An obfuscation scheme using affine
transformation and its implementation, Inf. Media Technol. 1 (2) (2006)
1094–1108.

[87] M. Karnick, J. MacBride, S. McGinnis, Y. Tang, R. Ramachandran, A qualitative
analysis of Java obfuscation, Proceedings of 10th IASTED International
Conference on Software Engineering and Applications, TX, USA, 2006, pp.
166–171.

[88] C. Kil, J. Jim, C. Bookholt, J. Xu, P. Ning, Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software, Proceedings
of the 22nd Annual Computer Security Applications Conference. ACSAC ’06.
(2006), pp. 339–348.

[89] J. Witkowska, Biometrics, Computer Security Systems and Artificial Intelligence
Applications, Springer US, Boston, MA, pp. 175–182.

[90] M. Madou, Application security through program obfuscation, Ph.D. thesis, Ghent
University, Belgium, 2006.

[91] B.D. Birrer, R.A. Raines, R.O. Baldwin, B.E. Mullins, R.W. Bennington, Program
fragmentation as a metamorphic software protection, Proceedings of the Third
International Symposium on Information Assurance and Security, IAS. (2007), pp.
369–374.

[92] S. Drape, A. Majumdar, C. Thomborson, Slicing aided design of obfuscating
transforms, Proceedings of the 6th IEEE/ACIS International Conference on
Computer and Information Science, ICIS. (2007), pp. 1019–1024.

[93] N. Naeem, M. Batchelder, L. Hendren, Metrics for measuring the effectiveness of
decompilers and obfuscators, Proceedings of the 15th IEEE International
Conference on Program Comprehension. ICPC ’07. (2007), pp. 253–258.

[94] J. Wu, X. Guo, C. Tian, H. Yin, G. Chang, The study for protecting mobile agents
based on time checking technology, Proceedings of the IEEE International
Conference Robotics and Biomimetics. (2007), pp. 2013–2017.

[95] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere, B. Preneel,
Program obfuscation: a quantitative approach, Proceedings of the 2007 ACM
Workshop on Quality of Protection, QoP ’07, ACM, NY, USA, 2007, pp. 15–20.

[96] A. Majumdar, S.J. Drape, C.D. Thomborson, Slicing obfuscations: design,

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

88

correctness, and evaluation, Proceedings of ACM Workshop on Digital Rights
Management, DRM ’07, ACM, NY, USA, 2007, pp. 70–81.

[97] S. Drape, Generalising the array split obfuscation, Inf. Sci. (Ny) 177 (1) (2007)
202–219.

[98] Y. Kinoshita, K. Kashiwagi, Y. Higami, S.-Y. Kobayashi, Development of concealing
the purpose of processing for programs in a distributed computing environment,
in: J. Pejaś, K. Saeed (Eds.), Advances in Information Processing and Protection,
Springer US, 2007, pp. 263–269.

[99] W.F. Zhu, Concepts and techniques in software watermarking and obfuscation,
Ph.D. thesis, The University of Auckland, New Zealand, 2007.

[100] I.V. Popov, S.K. Debray, G.R. Andrews, Binary obfuscation using signals,
Proceedings of the 16th USENIX Security Symposium on USENIX Security
Symposium, SS’07, Berkeley, CA, USA, 2007, pp. 19:1–19:16.

[101] M. Batchelder, L. Hendren, Obfuscating Java: the most pain for the least gain, in:
S. Krishnamurthi, M. Odersky (Eds.), Compiler Construction, Lecture Notes in
Computer Science, 4420 Springer Berlin Heidelberg, 2007, pp. 96–110.

[102] S. Praveen, P.S. Lal, Array data transformation for source code obfuscation,
Proceedings of the World Academy of Science, Engineering and Technology
(PWASET) Volume, 21 (2007).

[103] B. Anckaert, M. Jakubowski, R. Venkatesan, K. De Bosschere, Run-time rando-
mization to mitigate tampering, in: A. Miyaji, H. Kikuchi, K. Rannenberg (Eds.),
Advances in Information and Computer Security, Lecture Notes in Computer
Science, 4752 Springer Berlin Heidelberg, 2007, pp. 153–168.

[104] S. Drape, A. Majumdar, Design and evaluation of slicing obfuscation, Technical
Report, Department of Computer Science, The University of Auckland, New
Zealand, 2007.

[105] X. Jiang, H.J. Wang, D. Xu, Y. Wang, RandSys: thwarting code injection attacks
with system service interface randomization, Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems, SRDS. (2007), pp.
209–218.

[106] D. Bruschi, L. Cavallaro, A. Lanzi, Diversified process replicæ for defeating
memory error exploits, Proceedings of the IEEE International Performance,
Computing, and Communications Conference. IPCCC 2007. (2007), pp. 434–441.

[107] N. Kisserli, J. Cappaert, B. Preneel, Software security through targeted diversifi-
cation, Software Security Assessments–CoBaSSA, (2007). p. 10 pages.

[108] J.C. Knight, J.W. Davidson, D. Evans, A. Nguyen-Tuong, C. Wang, Genesis: a
framework for achieving software component diversity, Technical Report,
University of Virginia, Charlottesville VA, USA, 2007.

[109] X. Zhang, F. He, W. Zuo, An inter-classes obfuscation method for Java program,
Proceedings of the International Conference on Information Security and
Assurance, 2008. ISA 2008. IEEE, 2008, pp. 360–365.

[110] J. Qin, Z. Bai, Y. Bai, Polymorphic algorithm of JavaScript code protection,
Proceedings of the International Symposium on Computer Science and
Computational Technology, ISCSCT ’08. 1 (2008), pp. 451–454.

[111] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella,
Towards experimental evaluation of code obfuscation techniques, in: Proceedings
of the 4th ACMWorkshop on Quality of Protection, QoP ’08, ACM, NY, USA, 2008,
pp. 39–46.

[112] P. Sivadasan, P.S. Lal, Array based Java source code obfuscation using classes with
restructured arrays, arXiv:0807.4309 (2008).

[113] S. Cho, H. Chang, Y. Cho, Implementation of an obfuscation tool for C/C++
source code protection on the XScale architecture, in: U. Brinkschulte, T. Givargis,
S. Russo (Eds.), Software Technologies for Embedded and Ubiquitous Systems,
Springer Berlin Heidelberg, 2008, pp. 406–416.

[114] M. Jacob, M. Jakubowski, P. Naldurg, C. Saw, R. Venkatesan, The Superdiversifier:
peephole individualization for software protection, in: K. Matsuura, E. Fujisaki
(Eds.), Advances in Information and Computer Security, Lecture Notes in
Computer Science, 5312 Springer Berlin Heidelberg, 2008, pp. 100–120.

[115] D. Dolz, G. Parra, Using exception handling to build opaque predicates in inter-
mediate code obfuscation techniques, J. Comput. Sci. Technol. 8 (2008).

[116] S. Bhatkar, R. Sekar, Data space randomization, in: D. Zamboni (Ed.), Detection of
Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer
Science, 5137 Springer Berlin Heidelberg, 2008, pp. 1–22.

[117] H. Tamada, M. Nakamura, A. Monden, K. Matsumoto, Introducing dynamic name
resolution mechanism for obfuscating system-defined names in programs,
Proceedings of the International Conference on Software Engineering (IASTED
SE), Innsbruck, Austria, 2008, pp. 125–130.

[118] A. Nguyen-Tuong, D. Evans, J. Knight, B. Cox, J. Davidson, Security through re-
dundant data diversity, Proceedings of the IEEE International Conference
Dependable Systems and Networks With FTCS and DCC. (2008), pp. 187–196.

[119] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, M. Castro, Data randomization,
Technical Report, Microsoft Research, 2008.

[120] C. Liem, Y.X. Gu, H. Johnson, A compiler-based infrastructure for software-pro-
tection, Proceedings of the Third ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS ’08, ACM, NY, USA, 2008, pp. 33–44.

[121] H. Tamada, K. Fukuda, T. Yoshioka, Program incomprehensibility evaluation for
obfuscation methods with queue-based mental simulation model, Proceedings of
the 13th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel Distributed Computing (SNPD), (2012), pp.
498–503.

[122] K. Fukushima, S. Kiyomoto, T. Tanaka, Obfuscation mechanism in conjunction
with tamper-proof module, Proceedings of the International Conference on
Computational Science and Engineering. CSE ’09. 2 (2009), pp. 665–670.

[123] S. Xiao, J. Park, Y. Ye, Tamper resistance for software defined radio software,
Proceedings of the 33rd Annual IEEE International Computer Software and
Applications Conference. COMPSAC ’09. 1 (2009), pp. 383–391.

[124] H.-Y. Tsai, Y.-L. Huang, D. Wagner, A graph approach to quantitative analysis of
control-flow obfuscating transformations, IEEE Trans. Inf. Forensics Secur. 4 (2)
(2009) 257–267.

[125] Z. Tang, X. Chen, D. Fang, F. Chen, Research on Java software protection with the
obfuscation in identifier renaming, Proceedings of the Fourth International
Conference on Innovative Computing, Information and Control (ICICIC), (2009),
pp. 1067–1071.

[126] D. Yi, A new obfuscation scheme in constructing fuzzy predicates, Proceedings of
the WRI World Congress on Software Engineering. WCSE ’09. 4 (2009), pp.
379–382.

[127] H. JingDe, S. Gang, Substitution encryption algorithm study for embedded mobile
code protection, Proceedings of the International Conference on Communication
Software and Networks, ICCSN ’09. (2009), pp. 645–649.

[128] W. Jiehong, G. Fuxiang, Study of MA protection based extending inheritance
hierarchy trees and time check, Proceedings of the 4th International Conference
on Computer Science Education, ICCSE ’09. (2009), pp. 380–384.

[129] O. Shevtsova, D. Buintsev, Methods and software for the program obfuscation,
Proceedings of the International Siberian Conference on Control and
Communications, SIBCON 2009. (2009), pp. 113–115.

[130] P. Sivadasan, P. SojanLal, N. Sivadasan, JDATATRANS for array obfuscation in
Java source codes to defeat reverse engineering from decompiled codes,
Proceedings of the 2Nd Bangalore Annual Compute Conference, COMPUTE ’09,
ACM, NY, USA, 2009, pp. 13:1–13:4.

[131] M. Ceccato, P. Tonella, M.D. Preda, A. Majumdar, Remote software protection by
orthogonal client replacement, Proceedings of the ACM Symposium on Applied
Computing, SAC ’09, NY, USA, 2009, pp. 448–455.

[132] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography &
Watermarking, 3, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009.

[133] Z. Lin, R. Riley, D. Xu, Polymorphing software by randomizing data structure
layout, in: U. Flegel, D. Bruschi (Eds.), Detection of Intrusions and Malware, and
Vulnerability Assessment, Lecture Notes in Computer Science, 5587 Springer
Berlin Heidelberg, 2009, pp. 107–126.

[134] B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, K. De Bosschere, Instruction set
limitation in support of software diversity, in: P. Lee, J. Cheon (Eds.), Information
Security and Cryptology ICISC 2008, Lecture Notes in Computer Science, 5461
Springer Berlin Heidelberg, 2009, pp. 152–165.

[135] M. Jakubowski, C. Saw, R. Venkatesan, Tamper-tolerant software: modeling and
implementation, in: T. Takagi, M. Mambo (Eds.), Advances in Information and
Computer Security, Lecture Notes in Computer Science, 5824 Springer Berlin
Heidelberg, 2009, pp. 125–139.

[136] J. Han, D. Gao, R.H. Deng, On the effectiveness of software diversity: a systematic
study on real-world vulnerabilities, in: U. Flegel, D. Bruschi (Eds.), Detection of
Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer
Science, 5587 Springer Berlin Heidelberg, 2009, pp. 127–146.

[137] S. Drape, I. Voiculescu, The use of matrices in obfuscation, Technical Report,
Oxford University Computing Laboratory, Oxford, UK, 2009.

[138] P. Sivadasan, P.S. Lal, JConstHide: A Framework for Java Source Code Constant
Hiding, CoRR (2009). arXiv:0904.3458

[139] B. Anckaert, M. Jakubowski, R. Venkatesan, C.W. Saw, Runtime protection via
dataflow flattening, Proceedings of the 3rd International Conference on Emerging
Security Information, Systems and Technologies. SECURWARE ’09. (2009), pp.
242–248.

[140] D. Williams, W. Hu, J. Davidson, J. Hiser, J. Knight, A. Nguyen-Tuong, Security
through diversity: leveraging virtual machine technology, IEEE Secur. Priv. 7 (1)
(2009) 26–33.

[141] H. Xu, S.J. Chapin, Address-space layout randomization using code islands, J.
Comput. Secur. 17 (3) (2009) 331–362.

[142] M.H. Jakubowski, C.W. Saw, R. Venkatesan, Iterated transformations and quan-
titative metrics for software protection, Proceedings of the International
Conference on Security and Cryptography (SECRYPT), (2009), pp. 359–368.

[143] T. László, Á. Kiss, Obfuscating C++ programs via control flow flattening, Annales
Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio
Computatorica 30 (2009) 3–19.

[144] B. Coppens, I. Verbauwhede, K.D. Bosschere, B.D. Sutter, Practical mitigations for
timing-based side-channel attacks on modern x86 processors, Proceedings of the
30th IEEE Symposium on Security and Privacy, (2009), pp. 45–60.

[145] S.M. Darwish, S.K. Guirguis, M.S. Zalat, Stealthy code obfuscation technique for
software security, Proceedings of the International Conference on Computer
Engineering and Systems (ICCES), IEEE, 2010, pp. 93–99.

[146] T. Long, L. Liu, Y. Yu, Z. Wan, Assure high quality code using refactoring and
obfuscation techniques, Proceedings of the Fifth International Conference on
Frontier of Computer Science and Technology (FCST), (2010), pp. 246–252.

[147] Z. Vrba, P. Halvorsen, C. Griwodz, Program obfuscation by strong cryptography,
Proceedings of the International Conference on Availability, Reliability, and
Security, ARES ’10, (2010), pp. 242–247.

[148] X. Guangli, C. Zheng, The code obfuscation technology based on class combina-
tion, Proceedings of the Ninth International Symposium on Distributed Computing
and Applications to Business Engineering and Science (DCABES), IEEE, 2010, pp.
479–483.

[149] Q. Gu, Efficient code diversification for network reprogramming in sensor net-
works, in: Proceedings of the Third ACM Conference on Wireless Network
Security, WiSec ’10, ACM, NY, USA, 2010, pp. 145–150.

[150] M. Franz, E Unibus Pluram: massive-scale software diversity as a defense me-
chanism, in: Proceedings of the Workshop on New Security Paradigms, NSPW ’10,
ACM, NY, USA, 2010, pp. 7–16.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

89

[151] S.S. Yau, H.G. An, Protection of users’ data confidentiality in cloud computing, in:
Proceedings of the Second Asia-Pacific Symposium on Internetware, Internetware
’10, ACM, NY, USA, 2010, pp. 11:1–11:6.

[152] B. Lee, Y. Kim, J. Kim, binob+: a framework for potent and stealthy binary ob-
fuscation, in: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’10, NY, USA, (2010), pp. 271–281.

[153] T. Roeder, F.B. Schneider, Proactive obfuscation, ACM Trans. Comput. Syst. 28 (2)
(2010) 4:1–4:54.

[154] G. Portokalidis, A.D. Keromytis, Fast and practical instruction-set randomization
for commodity systems, in: Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, ACM, NY, USA, 2010, pp. 41–48.

[155] X. Zhang, F. He, W. Zuo, Theory and practice of program obfuscation, in: M. Crisan
(Ed.), Convergence and Hybrid Information Technologies, INTECH: Croatia, 2010,
pp. 277–302.

[156] Y.Y. Wei, K. Ohzeki, Obfuscation methods with controlled calculation amounts
and table function, Proceedings of the International Multiconference on Computer
Science and Information Technology (IMCSIT), (2010), pp. 775–780.

[157] J. Cappaert, B. Preneel, A general model for hiding control flow, in: Proceedings of
the Tenth Annual ACM Workshop on Digital Rights Management, DRM ’10, ACM,
NY, USA, 2010, pp. 35–42.

[158] S.W. Boyd, G.S. Kc, M.E. Locasto, A.D. Keromytis, V. Prevelakis, On the general
applicability of instruction-set randomization, IEEE Trans. Dependable Secure
Comput. 7 (3) (2010) 255–270.

[159] F. Baiardi, D. Sgandurra, An obfuscation-based approach against injection attacks,
Proceedings of the Sixth International Conference on Availability, Reliability and
Security (ARES), (2011), pp. 51–58.

[160] P. Falcarin, S. Carlo, A. Cabutto, N. Garazzino, D. Barberis, Exploiting code mo-
bility for dynamic binary obfuscation, Proceedings of the World Congress on
Internet Security (WorldCIS), (2011), pp. 114–120.

[161] N. Mavrogiannopoulos, N. Kisserli, B. Preneel, A taxonomy of self-modifying code
for obfuscation, Comput. Secur. 30 (8) (2011) 679–691.

[162] M. Heiderich, N. Eduardo Alberto Vela, G. Heyes, D. Lindsay, Web Application
Obfuscation, Elsevier, Boston, USA, 2011.

[163] M. Christodorescu, M. Fredrikson, S. Jha, J. Giffin, End-to-end software diversi-
fication of internet services, in: S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang,
X.S. Wang (Eds.), Moving Target Defense, Advances in Information Security, 54
Springer NY, 2011, pp. 117–130.

[164] R. Chakraborty, S. Narasimhan, S. Bhunia, Embedded software security through
key-based control flow obfuscation, in: M. Joye, D. Mukhopadhyay, M. Tunstall
(Eds.), Security Aspects in Information Technology, Lecture Notes in Computer
Science, 7011 Springer Berlin Heidelberg, 2011, pp. 30–44.

[165] L. Shan, S. Emmanuel, Mobile agent protection with self-modifying code, J. Signal
Process. Syst. 65 (1) (2011) 105–116.

[166] A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy, M. Tunstall, Can code
polymorphism limit information leakage? in: C. Ardagna, J. Zhou (Eds.),
Information Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication, Lecture Notes in Computer Science, 6633 Springer
Berlin Heidelberg, 2011, pp. 1–21.

[167] G. Portokalidis, A. Keromytis, Global ISR: toward a comprehensive defense against
unauthorized code execution, in: S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang,
X.S. Wang (Eds.), Moving Target Defense, Advances in Information Security, 54
Springer NY, 2011, pp. 49–76.

[168] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, M. Franz, Compiler-generated software diversity, in:
S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target
Defense, Advances in Information Security, 54 Springer NY, 2011, pp. 77–98.

[169] M. Ceccato, P. Tonella, Codebender: remote software protection using orthogonal
replacement, IEEE Softw. 28 (2) (2011) 28–34.

[170] S. Armoogum, A. Caully, Obfuscation techniques for mobile agent code con-
fidentiality, J. Inf. Syst. Manag. 1 (1) (2011) 83–94.

[171] P. Sivadasan, P.S. Lal, Suggesting potency measures for obfuscated arrays and
usage of source code obfuscators for intellectual property protection of Java
products, Proceedings of the International Conference on Information and
Network Technology (ICINT), (2011).

[172] Y. Huang, A.K. Ghosh, Introducing diversity and uncertainty to create moving
attack surfaces for web services, in: S. Jajodia, K.A. Ghosh, V. Swarup, C. Wang,
S.X. Wang (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats, Springer NY, NY, 2011, pp. 131–151.

[173] D. Evans, A. Nguyen-Tuong, J. Knight, Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, Springer NY, NY, pp. 29–48.

[174] J.C. Knight, Dependable and Historic Computing: Essays dedicated To Brian
Randell on the Occasion of his 75th Birthday, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 298–312.

[175] X. Yao, J. Pang, Y. Zhang, Y. Yu, J. Lu, A method and implementation of control
flow obfuscation using SEH, Proceedings of the 4th International Conference on
Multimedia Information Networking and Security (MINES), (2012), pp. 336–339.

[176] A. Capiluppi, P. Falcarin, C. Boldyreff, Code defactoring: evaluating the effec-
tiveness of Java obfuscations, Proceedings of the 19th Working Conference on
Reverse Engineering (WCRE), (2012), pp. 71–80.

[177] Y. Le, H. Huo-Jiao, Research on Java bytecode parse and obfuscate tool,
Proceedings of the International Conference on Computer Science Service System
(CSSS), (2012), pp. 50–53.

[178] B. Rodes, Stack layout transformation: towards diversity for securing binary pro-
grams, Proceedings of the 34th International Conference on Software Engineering
(ICSE), (2012), pp. 1543–1546.

[179] Z. Wang, C. Jia, M. Liu, X. Yu, Branch obfuscation using code mobility and signal,

Proceedings of the IEEE 36th Annual Computer Software and Applications
Conference Workshops (COMPSACW), (2012), pp. 553–558.

[180] M. Hataba, A. El-Mahdy, Cloud protection by obfuscation: techniques and metrics,
Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), (2012), pp. 369–372.

[181] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella,
The effectiveness of source code obfuscation: an experimental assessment,
Proceedings of the IEEE 17th International Conference on Program
Comprehension, ICPC ’09. (2009), pp. 178–187.

[182] A. Zambon, Aucsmith-like obfuscation of Java bytecode, Proceedings of the IEEE
12th International Working Conference on Source Code Analysis and
Manipulation (SCAM), (2012), pp. 114–119.

[183] S. Qing, W. Zhi-yue, W. Wei-min, L. Jing-liang, H. Zhi-wei, Technique of source
code obfuscation based on data flow and control flow transformations,
Proceedings of the 7th International Conference on Computer Science Education
(ICCSE), (2012), pp. 1093–1097.

[184] D. Clarke, P. Ezhilchelvan, Fortress: adding intrusion-resilience to primary-backup
server systems, Proceedings of the IEEE 31st Symposium on Reliable Distributed
Systems (SRDS), (2012), pp. 121–130.

[185] M. Palanques, R. Dipietro, C.d. Ojo, M. Malet, M. Marino, T. Felguera, Secure
cloud browser: model and architecture to support secure web navigation, in:
Proceedings of the IEEE 31st Symposium on Reliable Distributed Systems, SRDS
’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 402–403.

[186] R. Wu, P. Chen, B. Mao, L. Xie, RIM: a method to defend from JIT spraying attack,
Proceedings of the Seventh International Conference on Availability, Reliability
and Security (ARES), (2012), pp. 143–148.

[187] Y. Park, S.J. Stolfo, Software decoys for insider threat, in: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’12, ACM, NY, USA, 2012, pp. 93–94.

[188] R. Giacobazzi, N.D. Jones, I. Mastroeni, Obfuscation by partial evaluation of dis-
torted interpreters, Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM ’12, NY, USA, 2012, pp. 63–72.

[189] C. LeDoux, M. Sharkey, B. Primeaux, C. Miles, Instruction embedding for improved
obfuscation, Proceedings of the 50th Annual Southeast Regional Conference,
ACM-SE ’12, ACM, NY, USA, 2012, pp. 130–135.

[190] Y.-L. Huang, H.-Y. Tsai, A framework for quantitative evaluation of parallel con-
trol-flow obfuscation, Comput. Secur. 31 (8) (2012) 886–896.

[191] P. Sivadasan, P.S. Lal, Securing SQLJ source codes from business logic disclosure
by data hiding obfuscation, CoRR (2012). arXiv:1205.4813

[192] R. Wartell, V. Mohan, K.W. Hamlen, Z. Lin, Binary stirring: Self-randomizing in-
struction addresses of legacy x86 binary code, Proceedings of the ACM Conference
on Computer and Communications Security, CCS ’12, NY, USA, 2012, pp.
157–168.

[193] M. Abadi, G.D. Plotkin, On protection by layout randomization, ACM Trans. Inf.
Syst. Secur. 15 (2) (2012).

[194] C. Giuffrida, A. Kuijsten, A.S. Tanenbaum, Enhanced operating system security
through efficient and fine-grained address space randomization, Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12), USENIX, Bellevue,
WA, 2012, pp. 475–490.

[195] V. Pappas, M. Polychronakis, A. Keromytis, Smashing the gadgets: Hindering re-
turn-oriented programming using in-place code randomization, Proceedings of the
IEEE Symposium on Security and Privacy (SP), (2012), pp. 601–615.

[196] L. Ďurfina, D. Kolář, C source code obfuscator, Kybernetika 48 (3) (2012)
494–501.

[197] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, J.W. Davidson, Ilr: where’d my gadgets
go?, Proceedings of the IEEE Symposium on Security and Privacy (SP), (2012), pp.
571–585.

[198] R. Costa, L. Pirmez, D. Boccardo, L.F. Rust, R. Machado, TinyObf: code obfuscation
framework for wireless sensor networks, Proceedings of the International
Conference on Wireless Networks (ICWN), The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012, pp. 68–74.

[199] S. Rauti, V. Leppänen, Browser extension-based man-in-the-browser attacks
against Ajax applications with countermeasures, Proceedings of the 13th
International Conference on Computer Systems and Technologies, CompSysTech
’12, ACM, NY, USA, 2012, pp. 251–258.

[200] C. Collberg, S. Martin, J. Myers, J. Nagra, Distributed application tamper detection
via continuous software updates, Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, ACM, NY, USA, 2012, pp. 319–328.

[201] B. Bertholon, S. Varrette, S. Martinez, ShadObf: a C-source obfuscator based on
multi-objective optimisation algorithms, Proceedings of the IEEE 27th
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), (2013), pp. 435–444.

[202] V. Balachandran, S. Emmanuel, Potent and stealthy control flow obfuscation by
stack based self-modifying code, IEEE Trans. Inf. Forensics Secur. 8 (4) (2013)
669–681.

[203] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, M. Franz, Profile-guided auto-
mated software diversity, Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), (2013), pp. 1–11.

[204] B. Coppens, B. De Sutter, K. De Bosschere, Protecting your software updates, IEEE
Secur. Priv. 11 (2) (2013) 47–54.

[205] D. Dunaev, L. Lengyel, Aspects of intermediate level obfuscation, Proceedings of
the 3rd Eastern European Regional Conference on the Engineering of Computer
Based Systems (ECBS-EERC), (2013), pp. 138–142.

[206] A. Gupta, M. Kirkpatrick, E. Bertino, A secure architecture design based on ap-
plication isolation, code minimization and randomization, Proceedings of the IEEE

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

90

Conference on Communications and Network Security (CNS), (2013), pp.
423–429.

[207] D. Stanley, D. Xu, E. Spafford, Improved kernel security through memory layout
randomization, Proceedings of the IEEE 32nd International Performance
Computing and Communications Conference (IPCCC), (2013), pp. 1–10.

[208] P. Chen, R. Wu, B. Mao, JITSafe: a framework against just-in-time spraying at-
tacks, IET Inf. Secur. 7 (9) (2013) 283–292.

[209] B. Coppens, B. De Sutter, J. Maebe, Feedback-driven binary code diversification,
ACM Trans. Archit. Code Optim. 9 (4) (2013) 24:1–24:26.

[210] D.d.A.H. Marco, I. Ripoll, J.C. Ruiz, Security through emulation-based processor
diversification, in: B. Akhgar, H.R. Arabnia (Eds.), Proceedings of the Emerging
Trends in ICT Security, 1st edition, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2013.

[211] V. Balachandran, S. Emmanuel, Software protection with obfuscation and en-
cryption, in: R. Deng, T. Feng (Eds.), Proceedings of the Information Security
Practice and Experience, Lecture Notes in Computer Science, 7863 Springer Berlin
Heidelberg, 2013, pp. 309–320.

[212] V. Samawi, A. Sulaiman, Software protection via hiding function using software
obfuscation. Int. Arab J. Inf. Technol. 10 (6) (2013) 587–594.

[213] A. Kovacheva, Efficient code obfuscation for android, in: B. Papasratorn,
N. Charoenkitkarn, V. Vanijja, V. Chongsuphajaisiddhi (Eds.), Advances in
Information Technology, Communications in Computer and Information Science,
409 Springer International Publishing, 2013, pp. 104–119.

[214] V. Pappas, M. Polychronakis, A. Keromytis, Practical software diversification using
in-place code randomization, in: S. Jajodia, A.K. Ghosh, V. Subrahmanian,
V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target Defense II, Advances in
Information Security, 100 Springer NY, 2013, pp. 175–202.

[215] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, M. Franz, Diversifying
the software stack using randomized NOP insertion, in: S. Jajodia, A.K. Ghosh,
V. Subrahmanian, V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target Defense
II, Advances in Information Security, 100 Springer NY, 2013, pp. 151–173.

[216] A. Gupta, S. Kerr, M. Kirkpatrick, E. Bertino, Marlin: a fine grained randomization
approach to defend against rop attacks, in: J. Lopez, X. Huang, R. Sandhu (Eds.),
Network and System Security, Lecture Notes in Computer Science, 7873 Springer
Berlin Heidelberg, 2013, pp. 293–306.

[217] M. Stewart, Algorithmic diversity for software security, CoRR (2013). arXiv:1312.
3891

[218] S. Crane, P. Larsen, S. Brunthaler, M. Franz, Booby trapping software, in:
Proceedings of the 2013 Workshop on New Security Paradigms Workshop, NSPW
’13, ACM, NY, USA, 2013, pp. 95–106.

[219] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, W. Zou,
Practical control flow integrity and randomization for binary executables,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2013), pp.
559–573.

[220] M. Kanter, S. Taylor, Diversity in cloud systems through runtime and compile-time
relocation, Proceedings of the IEEE International Conference on Technologies for
Homeland Security (HST), (2013), pp. 396–402.

[221] L.V. Davi, A. Dmitrienko, S. Nürnberger, A.-R. Sadeghi, Gadge me if you can:
Secure and efficient ad-hoc instruction-level randomization for x86 and arm,
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, ACM, NY, USA, 2013, pp. 299–310.

[222] A. Homescu, S. Brunthaler, P. Larsen, M. Franz, Librando: transparent code ran-
domization for just-in-time compilers, Proceedings of the ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13, ACM, NY, USA, 2013, pp.
993–1004.

[223] C. Foket, B.D. Sutter, K.D. Bosschere, Pushing java type obfuscation to the limit,
IEEE Trans. Dependable Secure Comput. 11 (6) (2014) 553–567.

[224] P. Larsen, S. Brunthaler, M. Franz, Security through diversity: are we there yet?,
IEEE Secur. Priv. 12 (2) (2014) 28–35.

[225] S. Blazy, S. Riaud, Measuring the robustness of source program obfuscation:
Studying the impact of compiler optimizations on the obfuscation of C programs,
Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY ’14, ACM, NY, USA, 2014, pp. 123–126.

[226] K. Lu, S. Xiong, D. Gao, Ropsteg: program steganography with return oriented
programming, Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, CODASPY ’14, ACM, NY, USA, 2014, pp. 265–272.

[227] H.-T. Liaw, S.-C. Wei, Obfuscation for object-oriented programs: dismantling in-
stance methods, Softw.: Pract. Exp. 44 (9) (2014) 1077–1104.

[228] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella, A family
of experiments to assess the effectiveness and efficiency of source code obfuscation
techniques, Empir. Softw. Eng. 19 (4) (2014) 1040–1074.

[229] A. Kulkarni, R. Metta, A code obfuscation framework using code clones, in:
Proceedings of the 22nd International Conference on Program Comprehension,
ICPC, ACM, NY, USA, 2014, pp. 295–299.

[230] T. Tamboli, T.H. Austin, M. Stamp, Metamorphic code generation from llvm by-
tecode, J. Comput. Virology Hacking Tech. 10 (3) (2014) 177–187.

[231] A. Kulkarni, R. Metta, A new code obfuscation scheme for software protection,
Proceedings of the IEEE 8th International Symposium on Service Oriented System
Engineering (SOSE), (2014), pp. 409–414.

[232] S. Han, M. Ryu, J. Cha, B.U. Choi, Hotdol: Html obfuscation with text distribution
to overlapping layers, Proceedings of the IEEE International Conference on
Computer and Information Technology (CIT), (2014), pp. 399–404.

[233] S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen, Symbol
diversification of linux binaries, Proceedings of the World Congress on Internet
Security (WorldCIS), IEEE, 2014, pp. 74–79.

[234] Y. Zhuang, M. Protsenko, T. Muller, F. Freiling, An(other) exercise in measuring

the strength of source code obfuscation, Proceedings of the 25th International
Workshop on Database and Expert Systems Applications (DEXA), (2014), pp.
313–317.

[235] L. Arockiam, S. Monikandan, Efficient cloud storage confidentiality to ensure data
security, Proceedings of the International Conference on Computer
Communication and Informatics (ICCCI), (2014), pp. 1–5.

[236] C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, J. Hughes, Autonomic resilient cloud
management (ARCM) design and evaluation, Proceedings of the International
Conference Cloud and Autonomic Computing (ICCAC), (2014), pp. 44–49.

[237] M. Murphy, P. Larsen, S. Brunthaler, M. Franz, Software profiling options and their
effects on security based diversification, in: Proceedings of the First ACM
Workshop on Moving Target Defense, MTD ’14, ACM, NY, USA, 2014, pp. 87–96.

[238] J. Seibert, H. Okhravi, E. Söderström, Information leaks without memory dis-
closures: Remote side channel attacks on diversified code, Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, ACM,
NY, USA, 2014, pp. 54–65.

[239] R. Omar, A. El-Mahdy, E. Rohou, Arbitrary control-flow embedding into multiple
threads for obfuscation: a preliminary complexity and performance analysis, in:
Proceedings of the 2Nd International Workshop on Security in Cloud Computing,
SCC ’14, ACM, NY, USA, 2014, pp. 51–58.

[240] S. Schrittwieser, S. Katzenbeisser, Code Obfuscation Against Static and Dynamic
Reverse Engineering, Springer, Berlin, Heidelberg, pp. 270–284.

[241] X. Xie, F. Liu, B. Lu, A data obfuscation based on state transition graph of mealy
automata, in: D.-S. Huang, V. Bevilacqua, P. Premaratne (Eds.), Intelligent
Computing Theory, Lecture Notes in Computer Science, 8588 Springer
International Publishing, 2014, pp. 520–531.

[242] H. Fang, Y. Wu, S. Wang, Y. Huang, Multi-stage binary code obfuscation using
improved virtual machine, in: X. Lai, J. Zhou, H. Li (Eds.), Information Security,
Lecture Notes in Computer Science, 7001 Springer Berlin Heidelberg, 2011, pp.
168–181.

[243] H. Okhravi, J. Riordan, K. Carter, Quantitative evaluation of dynamic platform
techniques as a defensive mechanism, in: A. Stavrou, H. Bos, G. Portokalidis (Eds.),
Research in Attacks, Intrusions and Defenses, Lecture Notes in Computer Science,
8688 Springer International Publishing, 2014, pp. 405–425.

[244] C. Huang, S. Zhu, R. Erbacher, Toward software diversity in heterogeneous net-
worked systems, in: V. Atluri, G. Pernul (Eds.), Data and Applications Security and
Privacy XXVIII, Lecture Notes in Computer Science, 8566 Springer Berlin
Heidelberg, 2014, pp. 114–129.

[245] V. Balachandran, N.W. Keong, S. Emmanuel, Function level control flow obfus-
cation for software security, Proceedings of the 8th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), (2014), pp. 133–140.

[246] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, J. Clause, How does code obfus-
cation impact energy usage? Proceedings of the IEEE International Conference
Software Maintenance and Evolution (ICSME), (2014), pp. 131–140.

[247] V. Balachandran, S. Emmanuel, N.W. Keong, Obfuscation by code fragmentation
to evade reverse engineering, Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (SMC), (2014), pp. 463–469.

[248] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, SoK: automated software diversity,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2014), pp.
276–291.

[249] M. Backes, S. Nürnberger, Oxymoron: making fine-grained memory randomization
practical by allowing code sharing, Proceedings of the 23rd USENIX Security
Symposium (USENIX Security 14), San Diego, CA, 2014, pp. 433–447.

[250] B. Baudry, S. Allier, M. Monperrus, Tailored source code transformations to syn-
thesize computationally diverse program variants, in: Proceedings of the
International Symposium on Software Testing and Analysis, (ISSTA), ACM, NY,
USA, 2014, pp. 149–159.

[251] H. Okhravi, T. Hobson, D. Bigelow, W. Streilein, Finding focus in the blur of
moving-target techniques, IEEE Secur. Priv. 12 (2) (2014) 16–26.

[252] S. Rauti, J. Holvitie, V. Leppänen, Towards a diversification framework for op-
erating system protection, in: Proceedings of the 15th International Conference on
Computer Systems and Technologies, CompSysTech ’14, ACM, NY, USA, 2014, pp.
286–293.

[253] S. Rauti, V. Leppänen, A proxy-like obfuscator for web application protection, Int.
J. Inf. Technol. Secur. 6 (1) (2014) 39–52.

[254] S. Rauti, S. Laurén, S. Hosseinzadeh, J.-M. Mäkelä, S. Hyrynsalmi, V. Leppänen,
Proceedings of the Trusted Systems: 6th International Conference, INTRUST,
Beijing, China, Springer International Publishing, Cham, pp. 15–35.

[255] M. Ceccato, A. Capiluppi, P. Falcarin, C. Boldyreff, A large study on the effect of
code obfuscation on the quality of java code, Empir. Softw. Eng. 20 (6) (2015)
1486–1524.

[256] A.R. Nurmukhametov, S.F. Kurmangaleev, V.V. Kaushan, S.S. Gaissaryan,
Application of compiler transformations against software vulnerabilities ex-
ploitation, Progr. Comput. Softw. 41 (4) (2015) 231–236.

[257] P. Laperdrix, W. Rudametkin, B. Baudry, Mitigating browser fingerprint tracking:
multi-level reconfiguration and diversification, Proceedings of the IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), (2015), pp. 98–108.

[258] K.J. Hole, Toward anti-fragility: a malware-halting technique, IEEE Secur. Priv. 13
(4) (2015) 40–46.

[259] S. Ghosh, J. Hiser, J. Davidson, Matryoshka: Strengthening software protection via
nested virtual machines, Proceedings of the IEEE/ACM 1st International Workshop
on Software Protection (SPRO), (2015), pp. 10–16.

[260] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler,
M. Franz, Readactor: practical code randomization resilient to memory disclosure,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2015), pp.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

91

763–780.
[261] Y. Wang, J. Wei, Toward protecting control flow confidentiality in cloud-based

computation, Comput. Secur. 52 (2015) 106–127.
[262] K. Hole, Diversity reduces the impact of malware, IEEE Secur. Priv. 13 (3) (2015)

48–54.
[263] L. Davi, C. Liebchen, A.-R. Sadeghi, K.Z. Snow, F. Monrose, Isomeron: code ran-

domization resilient to (just-in-time) return-oriented programming., 2015.
[264] V. Mohan, P. Larsen, S. Brunthaler, K.W. Hamlen, M. Franz, Opaque control-flow

integrity, Proceedings of the NDSS, 26 (2015), pp. 27–30.
[265] A. Höller, T. Rauter, J. Iber, C. Kreiner, Proceedings of the 7th International

Workshop Software Engineering for Resilient Systems: SERENE, Proceedings,
Paris, FranceSpringer International Publishing, Cham, pp. 16–30.

[266] M. Protsenko, T. Müller, Trust, Privacy and Security in Digital Business: Trustbus,
Valencia, Spain, Springer International Publishing, Cham, pp. 99–110.

[267] F. Nasim, B. Aslam, W. Ahmed, T. Naeem, Proceedings of the First International
Conference Codes, Cryptology, and Information Security: C2SI Morocco,
Proceedings - In honor of T. Berger, Springer International Publishing, Cham, pp.
297–313.

[268] R. Fedler, S. Banescu, A. Pretschner, Proceedings of the 34th International
Conference Computer Safety, Reliability, and Security: SAFECOMP, delft, The
Netherlands, Proceedings, Springer International Publishing, Cham, pp. 362–371.

[269] H.P. Joshi, A. Dhanasekaran, R. Dutta, Impact of software obfuscation on sus-
ceptibility to return-oriented programming attacks, Proceedings of the 36th IEEE
Sarnoff Symposium, (2015), pp. 161–166.

[270] S. Allier, O. Barais, B. Baudry, J. Bourcier, E. Daubert, F. Fleurey, M. Monperrus,
H. Song, M. Tricoire, Multitier diversification in web-based software applications,
IEEE Softw. 32 (1) (2015) 83–90.

[271] P. Junod, J. Rinaldini, J. Wehrli, J. Michielin, Obfuscator-LLVM: software pro-
tection for the masses, Proceedings of the 1st International Workshop on Software
Protection, SPRO ’15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 3–9.

[272] M. Hataba, R. Elkhouly, A. El-Mahdy, Diversified remote code execution using
dynamic obfuscation of conditional branches, Proceedings of the International
Conference on Distributed Computing Systems Workshops (ICDCSW), (2015), pp.
120–127.

[273] B.F. Demissie, M. Ceccato, R. Tiella, Assessment of data obfuscation with residue
number coding, in: Proceedings of the 1st International Workshop on Software
Protection, SPRO ’15, IEEE, NJ, USA, 2015, pp. 38–44.

[274] P. Larsen, S. Brunthaler, M. Franz, Automatic software diversity, IEEE Secur. Priv.
13 (2) (2015) 30–37.

[275] S. Hosseinzadeh, S. Rauti, S. Hyrynsalmi, V. Leppänen, Security in the Internet of
Things through obfuscation and diversification, Proceedings of the International
Conference on Computing, Communication and Security (ICCCS), (2015), pp. 1–5.

[276] A. Homescu, T. Jackson, S. Crane, S. Brunthaler, P. Larsen, M. Franz, Large-scale
automated software diversity–program evolution redux, IEEE Trans. Dependable
Secure Comput. 14 (2) (2015) 158–171.

[277] S. Blazy, S. Riaud, T. Sirvent, Data tainting and obfuscation: improving plausibility
of incorrect taint, Proceedings of the IEEE 15th International Working Conference
Source Code Analysis and Manipulation (SCAM), (2015), pp. 111–120.

[278] E. Avidan, D.G. Feitelson, From obfuscation to comprehension, in: Proceedings of
the 2015 IEEE 23rd International Conference on Program Comprehension, ICPC
’15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 178–181.

[279] B. Abrath, B. Coppens, S. Volckaert, B.D. Sutter, Obfuscating windows DLLs,
Proceedings of the IEEE/ACM 1st International Workshop on Software Protection
(SPRO), (2015), pp. 24–30.

[280] M. Protsenko, S. Kreuter, T. Müller, Dynamic self-protection and tamperproofing
for android apps using native code, Proceedings of the 10th International
Conference Availability, Reliability and Security (ARES), (2015), pp. 129–138.

[281] Y. Kanzaki, C. Thomborson, A. Monden, C. Collberg, Pinpointing and hiding sur-
prising fragments in an obfuscated program, in: Proceedings of the 5th Program
Protection and Reverse Engineering Workshop, PPREW-5, ACM, NY, USA, 2015,
pp. 8:1–8:9.

[282] S. Laurén, S. Rauti, V. Leppänen, Diversification of system calls in linux kernel, in:
Proceedings of the 16th International Conference on Computer Systems and
Technologies, CompSysTech ’15, ACM, NY, USA, 2015, pp. 284–291.

[283] A. Jangda, M. Mishra, B. De Sutter, Adaptive just-in-time code diversification, in:
Proceedings of the Second ACM Workshop on Moving Target Defense, MTD ’15,
ACM, NY, USA, 2015, pp. 49–53.

[284] B. Baudry, M. Monperrus, The multiple facets of software diversity: recent de-
velopments in year 2000 and beyond, ACM Comput. Surv. 48 (1) (2015)
16:1–16:26.

[285] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, M. Franz, Thwarting cache side-
channel attacks through dynamic software diversity, Proceedings of the NDSS,
(2015), pp. 8–11.

[286] B. Baudry, S. Allier, M. Rodriguez-Cancio, M. Monperrus, Automatic software
diversity in the light of test suites, CoRR (2015). arXiv:1509.00144

[287] B. Tello, M. Winterrose, G. Baah, M. Zhivich, Simulation based evaluation of a
code diversification strategy, Proceedings of the 5th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH), (2015), pp. 36–43.

[288] C.K. Behera, D.L. Bhaskari, Different obfuscation techniques for code protection,
Procedia Comput. Sci. 70 (2015) 757–763.

[289] S. Banescu, M. Ochoa, A. Pretschner, A framework for measuring software ob-
fuscation resilience against automated attacks, Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection (SPRO), (2015), pp. 45–51.

[290] M. Hataba, A. El-Mahdy, E. Rohou, OJIT: a novel obfuscation approach using
standard just-in-time compiler transformations, Proceedings of the International

Workshop on Dynamic Compilation Everywhere, Netherlands, 2015.
[291] S. Banescu, A. Pretschner, D. Battré, S. Cazzulani, R. Shield, G. Thompson,

Software-based protection against changeware, in: Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY ’15, ACM,
NY, USA, 2015, pp. 231–242.

[292] B. Baudry, S. Allier, M. Rodriguez-Cancio, M. Monperrus, DSpot: test amplification
for automatic assessment of computational diversity, CoRR (2015). arXiv:1503.
05807

[293] S. Hosseinzadeh, S. Hyrynsalmi, M. Conti, V. Leppänen, Security and privacy in
cloud computing via obfuscation and diversification: a survey, Proceedings of the
IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2015, pp. 529–535.

[294] Y. Wu, V. Suhendra, H. Saputra, Z. Zhao, Obfuscating software puzzle for denial-
of-service attack mitigation, Proceedings of the IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), IEEE, 2016, pp. 115–122.

[295] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella, R. Tiella,
Assessment of source code obfuscation techniques, Proceedings of the IEEE 16th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), IEEE, 2016, pp. 11–20.

[296] Z. Yujia, P. Jianmin, A new compile-time obfuscation scheme for software pro-
tection, Proceedings of the International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), IEEE, 2016, pp. 1–5.

[297] K. Mahmood, D.M. Shila, Moving target defense for internet of things using con-
text aware code partitioning and code diversification, Proceedings of the IEEE 3rd
World Forum on Internet of Things (WF-IoT), IEEE, 2016, pp. 329–330.

[298] M. Styugin, V. Zolotarev, A. Prokhorov, R. Gorbil, New approach to software code
diversification in interpreted languages based on the moving target technology,
Proceedings of the IEEE 10th International Conference on Application of
Information and Communication Technologies (AICT), IEEE, 2016, pp. 1–5.

[299] J. Gionta, W. Enck, P. Larsen, Preventing kernel code-reuse attacks through dis-
closure resistant code diversification, Proceedings of the IEEE Conference on
Communications and Network Security (CNS), IEEE, 2016, pp. 189–197.

[300] H. Liu, Towards better program obfuscation: optimization via language models,
Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE ’16, ACM, New York, NY, USA, 2016, pp. 680–682.

[301] X. Xie, B. Lu, D. Gong, X. Luo, F. Liu, Random table and hash coding-based binary
code obfuscation against stack trace analysis, IET Inf. Secur. 10 (1) (2016) 18–27.

[302] S.A. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor, T. Parekhji, A study review on
code obfuscation, Proceedings of the World Conference on Futuristic Trends in
Research and Innovation for Social Welfare (Startup Conclave), IEEE, 2016,
pp. 1–6.

[303] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, T. Xing, G. Ye, J. Zhang, Z. Wang,
Exploiting dynamic scheduling for VM-based code obfuscation, Proceedings of the
IEEE Trustcom/BigDataSE/ISPA, IEEE, 2016, pp. 489–496.

[304] H. Borck, M. Boddy, I.J.D. Silva, S. Harp, K. Hoyme, S. Johnston, A. Schwerdfeger,
M. Southern, Frankencode: creating diverse programs using code clones,
Proceedings of the IEEE 23rd International Conference on Software Analysis,
Evolution, Reengineering (SANER), 1 IEEE, 2016, pp. 604–608.

[305] P. Mäki, S. Rauti, S. Hosseinzadeh, L. Koivunen, V. Leppänen, Interface diversi-
fication in IoT operating systems, Proceedings of the IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC), ACM, 2016, pp. 304–309.

[306] P. Wang, S. Wang, J. Ming, Y. Jiang, D. Wu, Translingual obfuscation, Proceedings
of the IEEE European Symposium on Security and Privacy (EuroS P), IEEE, 2016,
pp. 128–144.

[307] Y. Peng, J. Liang, Q. Li, A control flow obfuscation method for android applica-
tions, Proceedings of the 4th International Conference on Cloud Computing and
Intelligence Systems (CCIS), IEEE, 2016, pp. 94–98.

[308] L. Koivunen, S. Rauti, V. Leppänen, Applying internal interface diversification to
IoT operating systems, Proceedings of the International Conference on Software
Security and Assurance (ICSSA), IEEE, 2016, pp. 1–5.

[309] T.Y. Chen, F.C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, Z.Q. Zhou, Metamorphic
testing for cybersecurity, Comput. (Long Beach Calif) 49 (6) (2016) 48–55.

[310] W. Liu, W. Li, Unifying the method descriptor in Java obfuscation, Proceedings of
the 2nd IEEE International Conference on Computer and Communications (ICCC),
IEEE, 2016, pp. 1397–1401.

[311] R. Mohsen, A.M. Pinto, Evaluating obfuscation security: a quantitative approach,
in: J. Garcia-Alfaro, E. Kranakis, G. Bonfante (Eds.), Foundations and Practice of
Security, Springer International Publishing, Cham, 2016, pp. 174–192.

[312] M. Ceccato, P. Falcarin, A. Cabutto, Y.W. Frezghi, C.-A. Staicu, Search based
clustering for protecting software with diversified updates, in: F. Sarro, K. Deb
(Eds.), Search Based Software Engineering, Springer International Publishing,
Cham, 2016, pp. 159–175.

[313] D. Xu, J. Ming, D. Wu, Generalized dynamic opaque predicates: A new control
flow obfuscation method, in: M. Bishop, A.C.A. Nascimento (Eds.), Information
Security, Springer International Publishing, Cham, 2016, pp. 323–342.

[314] J. Aycock, Obfuscation and Optimization, Springer International Publishing,
Cham, pp. 173–203.

[315] G.-l. Cai, B.-s. Wang, W. Hu, T.-z. Wang, Moving target defense: state of the art and
characteristics, Front. Inf. Technol. Electr. Eng. 17 (11) (2016) 1122–1153.

[316] A. Pawlowski, M. Contag, T. Holz, Probfuscation: an obfuscation approach using
probabilistic control flows, in: J. Caballero, U. Zurutuza, R.J. Rodríguez (Eds.),
Detection of Intrusions and Malware, and Vulnerability Assessment, Springer
International Publishing, Cham, 2016, pp. 165–185.

[317] S. Rauti, S. Laurén, J. Uitto, S. Hosseinzadeh, J. Ruohonen, S. Hyrynsalmi,

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

92

V. Leppänen, A survey on internal interfaces used by exploits and implications on
interface diversification, in: B.B. Brumley, J. Röning (Eds.), Secure IT Systems,
Springer International Publishing, Cham, 2016, pp. 152–168.

[318] S. Pastrana, J. Tapiador, G. Suarez-Tangil, P. Peris-López, Avrand: a software-
based defense against code reuse attacks for AVR embedded devices, in:
J. Caballero, U. Zurutuza, R.J. Rodríguez (Eds.), Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer International Publishing, Cham,
2016, pp. 58–77.

[319] R. De Keulenaer, J. Maebe, K. De Bosschere, B. De Sutter, Link-time smart card
code hardening, Int. J. Inf. Secur. 15 (2) (2016) 111–130.

[320] Y. Piao, J. Jung, J.H. Yi, Server-based code obfuscation scheme for apk tamper
detection, Secur. Commun. Netw. 9 (6) (2016) 457–467.

[321] V. Balachandran, Sufatrio, D.J. Tan, V.L. Thing, Control flow obfuscation for an-
droid applications, Comput. Secur. 61 (2016) 72–93.

[322] S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen, Chapter 14 - obfuscation and di-
versification for securing the internet of things (IoT), in: R. Buyya, A.V. Dastjerdi
(Eds.), Internet of Things, Morgan Kaufmann, 2016, pp. 259–274.

[323] S. Banescu, C. Lucaci, B. Krämer, A. Pretschner, VOT4CS: A virtualization obfus-
cation tool for C♯, Proceedings of the ACM Workshop on Software PROtection,
SPRO ’16, ACM, NY, USA, 2016, pp. 39–49.

[324] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie, S. Hyrynsalmi,
V. Leppänen, A survey on aims and environments of diversification and obfusca-
tion in software security, in: B. Rachev, A. Smrikarov (Eds.), Proceedings of the
17th International Conference on Computer Systems and Technologies
CompSysTech’16, ACM, 2016, pp. 113–120.

[325] R. Manikyam, J.T. McDonald, W.R. Mahoney, T.R. Andel, S.H. Russ, Comparing
the effectiveness of commercial obfuscators against mate attacks, in: Proceedings
of the 6th Workshop on Software Security, Protection, and Reverse Engineering,
SSPREW ’16, ACM, NY, USA, 2016, pp. 8:1–8:11.

[326] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, E. Weippl, Protecting
software through obfuscation: can it keep pace with progress in code analysis?,
ACM Comput. Surv. 49 (1) (2016) 4:1–4:37.

[327] J. Coffman, D.M. Kelly, C.C. Wellons, A.S. Gearhart, Rop gadget prevalence and sur-
vival under compiler-based binary diversification schemes, in: Proceedings of the ACM
Workshop on Software PROtection, SPRO ’16, ACM, NY, USA, 2016, pp. 15–26.

[328] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. De Sutter, Tightly-coupled self-
debugging software protection, in: Proceedings of the 6th Workshop on Software
Security, Protection, and Reverse Engineering, SSPREW ’16, ACM, NY, USA, 2016, pp.
7:1–7:10.

[329] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, A. Pretschner, Code obfuscation
against symbolic execution attacks, in: Proceedings of the 32Nd Annual
Conference on Computer Security Applications, ACSAC ’16, ACM, NY, USA, 2016,
pp. 189–200.

[330] J. Petke, Genetic improvement for code obfuscation, Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’16 Companion,
ACM, NY, USA, 2016, pp. 1135–1136.

[331] M. Wu, Y. Zhang, X. Mi, Binary protection using dynamic fine-grained code hiding
and obfuscation, in: Proceedings of the 4th International Conference on
Information and Network Security, ICINS ’16, ACM, NY, USA, 2016, pp. 1–8.

[332] H. Xu, Y. Zhou, M. Lyu, N-version obfuscation, in: Proceedings of the 2Nd ACM
International Workshop on Cyber-Physical System Security, CPSS ’16, ACM, NY,
USA, 2016, pp. 22–33.

[333] S. Laurén, S. Rauti, V. Leppänen, An interface diversified honeypot for malware
analysis, in: Proceedings of the 10th European Conference on Software
Architecture Workshops, ECSAW ’16, ACM, NY, USA, 2016, pp. 29:1–29:6.

[334] S. Blazy, A. Trieu, Formal verification of control-flow graph flattening, in:
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP, ACM, NY, USA, 2016, pp. 176–187.

[335] H. Koo, M. Polychronakis, Juggling the gadgets: Binary-level code randomization
using instruction displacement, in: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’16, ACM, NY,
USA, 2016, pp. 23–34.

[336] K. Braden, L. Davi, C. Liebchen, A.R. Sadeghi, S. Crane, M. Franz, P. Larsen,
Leakage-resilient layout randomization for mobile devices. Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016 Internet
Society, San Diego, CA, USA, 2016.

[337] K. Lu, W. Lee, S. Nürnberger, M. Backes, How to make ASLR win the clone wars:
Runtime re-randomization. Proceedings of the NDSS, 2016 Internet Society, San
Diego, CA, USA, 2016.

[338] G. Maisuradze, M. Backes, C. Rossow, What cannot be read, cannot be leveraged?
revisiting assumptions of JIT-ROP defenses, Proceedings of the 25th USENIX
Security Symposium, USENIX, Austin, TX, 2016, pp. 139–156.

[339] Y. Chen, Z. Wang, D. Whalley, L. Lu, Remix: on-demand live randomization, in:
Proceedings of 6th ACM Conference on Data and Application Security and Privacy,
CODASPY ’16, ACM, NY, USA, 2016, pp. 50–61.

[340] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen, C. Liebchen,
M. Perry, A.-R. Sadeghi, Selfrando: securing the tor browser against de-anon-
ymization exploits, Proc. Priv. Enhancing Technol. 2016 (4) (2016) 454–469.

[341] S. Crane, A. Homescu, P. Larsen, Code randomization: haven’t we solved this
problem yet?, Proceedings of the IEEE Cybersecurity Development (SecDev), IEEE,
2016, pp. 124–129.

[342] D. Williams-King, G. Gobieski, K. Williams-King, J.P. Blake, X. Yuan, P. Colp, M.
Zheng, V.P. Kemerlis, J. Yang, W. Aiello, Shuffler: fast and deployable continuous
code re-randomization. Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16), (2016), pp. 367–382.

[343] J. Uitto, S. Rauti, V. Leppänen, Practical implications and requirements of

diversifying interpreted languages, in: Proceedings of the 11th Annual Cyber and
Information Security Research Conference, CISRC ’16, ACM, NY, USA, 2016, pp.
14:1–14:4.

[344] N. Veeranna, B.C. Schafer, Efficient behavioral intellectual properties source code
obfuscation for high-level synthesis, Proceedings of the 18th IEEE Latin American
Test Symposium (LATS), IEEE, 2017, pp. 1–6.

[345] P. Kanani, K. Srivastava, J. Gandhi, D. Parekh, M. Gala, Obfuscation: maze of code,
Proceedings of the 2nd International Conference on Communication Systems,
Computing and IT Applications (CSCITA), IEEE, 2017, pp. 11–16.

[346] S. Wang, P. Wang, D. Wu, Composite software diversification, Proceedings of the
IEEE International Conference on Software Maintenance and Evolution (ICSME),
IEEE, 2017, pp. 284–294.

[347] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, J. Sun, Stochastic optimization of program
obfuscation, Proceedings of the IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE Press, Piscataway, NJ, USA, 2017, pp. 221–231.

[348] T. Cho, H. Kim, J.H. Yi, Security assessment of code obfuscation based on dynamic
monitoring in android things, IEEE Access 5 (2017) 6361–6371.

[349] M. Togan, A. Feraru, A. Popescu, Virtual machine for encrypted code execution,
Proceedings of the 9th International Conference on Electronics, Computers and
Artificial Intelligence (ECAI), IEEE, 2017, pp. 1–6.

[350] R. Tiella, M. Ceccato, Automatic generation of opaque constants based on the k-
clique problem for resilient data obfuscation, Proceedings of the IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2017, pp. 182–192.

[351] Y. Peng, G. Su, B. Tian, M. Sun, Q. Li, Control flow obfuscation based protection
method for android applications, China Commun. 14 (11) (2017) 247–259.

[352] Z. Li, X.Y. Jing, X. Zhu, H. Zhang, B. Xu, S. Ying, On the multiple sources and
privacy preservation issues for heterogeneous defect prediction, IEEE Trans.
Softw. Eng. PP (99) (2017) 1–21.

[353] X. Chen, H. Bos, C. Giuffrida, Codearmor: virtualizing the code space to counter
disclosure attacks, Proceedings of the 2017 IEEE European Symposium on Security
and Privacy (EuroS P), IEEE, 2017, pp. 514–529.

[354] D. Canavese, L. Regano, C. Basile, A. Viticchié, Estimating software obfuscation po-
tency with artificial neural networks, in: G. Livraga, C. Mitchell (Eds.), Security and
Trust Management, Springer International Publishing, Cham, 2017, pp. 193–202.

[355] B. Zhao, Z. Tang, Z. Li, L. Song, X. Gong, D. Fang, F. Liu, Z. Wang, Dexpro: a
bytecode level code protection system for android applications, in: S. Wen, W. Wu,
A. Castiglione (Eds.), Cyberspace Safety and Security, Springer International
Publishing, Cham, 2017, pp. 367–382.

[356] S. Hosseinzadeh, S. Laurén, S. Rauti, S. Hyrynsalmi, M. Conti, V. Leppänen,
Obfuscation and diversification for securing cloud computing, in: V. Chang,
M. Ramachandran, R.J. Walters, G. Wills (Eds.), Enterprise Security, Springer
International Publishing, Cham, 2017, pp. 179–202.

[357] X. Tang, Y. Liang, X. Ma, Y. Lin, D. Gao, On the effectiveness of code-reuse-based
android application obfuscation, in: S. Hong, J.H. Park (Eds.), Information
Security and Cryptology – ICISC 2016, Springer International Publishing, Cham,
2017, pp. 333–349.

[358] R. Géraud, M. Koscina, P. Lenczner, D. Naccache, D. Saulpic, Generating func-
tionally equivalent programs having non-isomorphic control-flow graphs, in:
H. Lipmaa, A. Mitrokotsa, R. Matulevičius (Eds.), Secure IT Systems, Springer
International Publishing, Cham, 2017, pp. 265–279.

[359] M. Morton, H. Koo, F. Li, K.Z. Snow, M. Polychronakis, F. Monrose, Defeating
zombie gadgets by re-randomizing code upon disclosure, in: E. Bodden, M. Payer,
E. Athanasopoulos (Eds.), Engineering Secure Software and Systems, Springer
International Publishing, Cham, 2017, pp. 143–160.

[360] W. Holder, J.T. McDonald, T.R. Andel, Evaluating optimal phase ordering in ob-
fuscation executives, in: Proceedings of the 7th Software Security, Protection, and
Reverse Engineering / Software Security and Protection Workshop, SSPREW-7,
ACM, NY, USA, 2017, pp. 6:1–6:12.

[361] B. Johansson, P. Lantz, M. Liljenstam, Lightweight dispatcher constructions for
control flow flattening, in: Proceedings of the 7th Software Security, Protection,
and Reverse Engineering / Software Security and Protection Workshop, SSPREW-
7, ACM, NY, USA, 2017, pp. 2:1–2:12.

[362] K. Lim, J. Jeong, S.-j. Cho, J. Choi, M. Park, S. Han, S. Jhang, An anti-reverse
engineering technique using native code and obfuscator-llvm for android appli-
cations, in: Proceedings of the International Conference on Research in Adaptive
and Convergent Systems, RACS ’17, ACM, NY, USA, 2017, pp. 217–221.

[363] R.N. Ismanto, M. Salman, Improving security level through obfuscation technique
for source code protection using AES algorithm, in: Proceedings of 7th
International Conference on Communication and Network Security, ICCNS 2017,
ACM, NY, USA, 2017, pp. 18–22.

[364] M. Zhang, M. Polychronakis, R. Sekar, Protecting COTS binaries from disclosure-
guided code reuse attacks, in: Proceedings of the 33rd Annual Computer Security
Applications Conference, ACSAC, ACM, NY, USA, 2017, pp. 128–140.

[365] M. Pomonis, T. Petsios, A.D. Keromytis, M. Polychronakis, V.P. Kemerlis, kR⌃X:
Comprehensive kernel protection against just-in-time code reuse, in: Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys ’17, ACM, NY,
USA, 2017, pp. 420–436.

[366] S. Halevi, T. Halevi, V. Shoup, N. Stephens-Davidowitz, Implementing BP-obfus-
cation using graph-induced encoding, in: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, ACM, NY, USA,
2017, pp. 783–798.

[367] T. Groß, T. Müller, Protecting JavaScript apps from code analysis, in: Proceedings
of the 4th Workshop on Security in Highly Connected IT Systems, SHCIS ’17, ACM,
NY, USA, 2017, pp. 1–6.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

93

Publication II

Obfuscation and Diversification for Secur-

ing Cloud Computing

Shohreh Hosseinzadeh, Samuel Laurén, Sampsa Rauti, Sami Hyryn-

salmi, Mauro Conti, Ville Leppänen. In: Victor Chang, Muthu Ra-

machandran, Robert J. Walters, Gary Wills (Eds.), Enterprise Secu-

rity, Lecture Notes in Computer Science 10131, 179–202. Springer,

2017.

c© 2017 Springer. Reprinted, with permission.

87

88

Obfuscation and Diversification for Securing
Cloud Computing

Shohreh Hosseinzadeh1(&), Samuel Laurén1, Sampsa Rauti1,
Sami Hyrynsalmi1, Mauro Conti2, and Ville Leppänen1

1 Department of Future Technologies, University of Turku, Agora 4th Floor,
Vesilinnantie 5, 20500 Turku, Finland

{shohos,smrlau,sjprau,sthyry,ville.leppanen}@utu.fi
2 Department of Mathematics, University of Padua, Padua, Italy

conti@math.unipd.it

Abstract. The evolution of cloud computing and advancement of its services
has motivated the organizations and enterprises to move towards the cloud, in
order to provide their services to their customers, with greater ease and higher
efficiency. Utilizing the cloud-based services, on one hand has brought along
numerous compelling benefits and, on the other hand, has raised concerns
regarding the security and privacy of the data on the cloud, which is still an
ongoing challenge. In this regard, there has been a large body of research on
improving the security and privacy in cloud computing. In this chapter, we first
study the status of security and privacy in cloud computing. Then among all the
existing security techniques, we narrow our focus on obfuscation and diversi-
fication techniques. We present the state-of-the-art review in this field of study,
how these two techniques have been used in cloud computing to improve
security. Finally, we propose an approach that uses these two techniques with
the aim of improving the security in cloud computing environment and preserve
the privacy of its users.

Keywords: Cloud computing � Enterprise security � Security � Privacy �
Obfuscation � Diversification

1 Introduction

The recent changes in the business world have made the organizations and enterprises
more interested in using cloud to share their services and resources remotely to their
users. For this purpose, cloud computing offers three different models (Mell and Grance
2011): Software as a service (SaaS), Platform as a service (PaaS), and Infrastructure as
a service (IaaS). In IaaS model the services that are offered by the service provider
include computing resources, storage, and virtual machines. The PaaS model presents
computing platforms to the business and its end users. In SaaS, the main services
offered by the service providers are the applications that are hosted and executed on the
cloud and are available to the customers through the network, typically over the
Internet. Depending on the need of the enterprise, a suitable delivery model is
deployed.

© Springer International Publishing AG 2017
V. Chang et al. (Eds.): Enterprise Security, LNCS 10131, pp. 179–202, 2017.
DOI: 10.1007/978-3-319-54380-2_8

The advancements in the cloud computing have facilitated the business, organi-
zations, and enterprises with services providing lower cost and higher performance,
scalability, and availability. Due to these advantages, cloud computing has become a
highly demanded technology and organizations are relying on cloud services more and
more. However, by using the cloud, more data is stored outside the organization’s
perimeters, which raises concerns about the security and privacy of the data. Therefore,
it is significant for the cloud service providers to employ effective practices to secure
the cloud computing infrastructure and preserve the privacy of its users. In the context
of the cloud computing security, there exist many different measures that protect the
cloud infrastructure. Some of these measures consider the cloud as an untrusted or
malicious infrastructure that the user’s data should be protected from (e.g., the cloud
uses the data without the user’s consent). While some other measures protect the
infrastructure from the external intrusions.

Obfuscation and diversification are two propitious software security techniques that
have been employed in various domains, mainly to impede malware (i.e., malicious
software) (Skoudis 2004). These techniques have also been used to provide security in
cloud computing as well. In a previous work1, we have systematically surveyed the
studies that use obfuscation and diversification techniques with the aim of improving
the security in cloud computing environment (see the details of this study in Sect. 3.1).
By analyzing the collected data, we managed to identify the areas that have gained
more attention by the previous research, and also the areas that have remained intact
and potential for further research. The results of the survey motivated us to propose a
diversification approach, aiming at improving the security in cloud computing. We
demonstrate this approach by applying obfuscation on client-side JavaScript compo-
nents of an application. As such, we make it complicated for a piece of malware to gain
knowledge about the internal structure of the application and perform its malicious
attack. Moreover, we distribute unique versions of the application to the computers,
which in the end mitigates the risk of massive-scale attacks (more detail in Sect. 4).

This book chapter is structured as follows: Sect. 2 discusses the security and pri-
vacy in domain of cloud computing, available security threats, and different aspects of
security, concerning the cloud computing technology. In Sect. 3 we introduce the terms
and techniques that are used in the proposed approach, and we present the state of this
field of study, i.e., how these techniques have previously been used to boost the
security of cloud computing. In Sect. 4, we present our proposed approach in detail.
Conclusions come in Sect. 5.

2 Security and Privacy in Cloud Computing

Cloud computing is an evolving technology with new capabilities and services that
have remarkable benefits when compared to more traditional service providing
approaches. The services are delivered with lower cost (in usage as it is pay-for-use, in

1 This book chapter is a re-written extended version of our previous study (Hosseinzadeh et al. 2015).

180 S. Hosseinzadeh et al.

disaster recovery, in data storage solutions), greater ease, less complexity, higher
availability and scalability, and also faster deployment. These compelling benefits have
motivated the enterprises to adopt cloud solutions in their architectures and deliver their
services over cloud. Depending on the need of the enterprise and how large the
organization is, different deployment models are available, including public clouds,
private clouds, community cloud, and hybrid clouds (Mell and Grance 2011; Mather
et al. 2009). Again, depending on the need of the enterprise, cloud providers offer
three different delivery models, i.e., SaaS, IaaS, and PaaS. In the following we dis-
cuss various deployment models, and various business models in cloud computing
(CSA 2016).

In a public cloud (or external cloud), a third party vendor is responsible for hosting,
operating, and managing the cloud. A common infrastructure is used to serve multiple
customers, which means that the customers are not required to acquire for any software,
hardware, and network devices. This makes the public cloud a suitable model for the
enterprises that wish to invest less and manage the costs efficiently. The security in a
public cloud is managed by the third party, which leaves less control for the organi-
zation and its users over the security (Rhoton et al. 2013). A kind of opposite solution
to that is private cloud (or internal cloud), where the organization’s customers are in
charge of managing the cloud. The storage, computing, and network are dedicated to
the organization owning the cloud, and not shared with other organizations. This
enables the customers to have a higher control on security management and have more
insight about logical and physical aspects of the cloud infrastructure. Community cloud
refers to the type of clouds that are used exclusively by a community of customers from
enterprises with common requirements and concerns (e.g., policies, security require-
ments, and compliance considerations). The last model is hybrid cloud that is the
composition of several clouds (private, public, and community). According to the
needs and budget of the enterprise and how critical its resources are, a suitable
deployment model is chosen that can serve the enterprise’s needs the best. For instance,
an enterprise pays more for private cloud and has better security control over its shared
resources, while it spends less on a public cloud for which it has less security control
(CSA 2016; Mather et al. 2009).

As mentioned before, cloud service providers use three different business models to
deliver their services to the end users: IaaS, PaaS, and SaaS. IaaS is the foundation of
the cloud, PaaS comes on top of that, and SaaS is built upon PaaS. Each of these
delivery models has different security issues, and is prone to different types of security
threats, and therefore, it requires different levels of security.

The IaaS service model offers capabilities such as storage, processing, networks,
and computing resources to the consumers. The end user does not manage the
underlying infrastructure of the cloud, but has control over applications, operating
system and storage. IaaS has made it a lot easier for the enterprises to deliver their
services, in a way that they no longer worry about provisioning and managing the
infrastructure and dealing with the underlying complexities. In addition to that, it has
made it cheaper for businesses, in a way that instead of paying for the data centers and
hosting companies, they only need to spend for the resources they consume to IaaS
providers (Mell and Grance 2011; Mather et al. 2009).

Obfuscation and Diversification for Securing Cloud Computing 181

The PaaS model is built upon IaaS and offers a development environment to the
developers to develop their applications, without worrying about the underlying
infrastructure. The offered services consist of a complete set of software development
kit, ranging from design to testing and maintenance. The consumers of this model do
not have control on the beneath services (e.g. the operating system, server, network,
and the storage), but they can manage the application-hosting environment (Mell and
Grance 2011; Mather et al. 2009). The dark side of these advantages is that the PaaS
infrastructure can also be used by a hacker to malicious purposes (e.g., running the
malware codes and commands).

In the SaaS model, the service providers host the applications remotely and make
them available to the users, when requested, over the Internet. SaaS is an advantageous
model for the IT enterprises and their customers, as it is more cost-effective and has
better operational efficiency. However, there are still concerns about the security of the
data store and software, which the vendors are required to address them (Mell and
Grance 2011; Mather et al. 2009).

In addition to these three main service delivery models, the cloud offers other
models and the infrastructure is utilized these days for many other purposes, such as
Security-as-a-Service (SECaaS). Using this service model, many security vendors
deliver their security solutions using cloud services. That is to say, the security man-
agement services are outsourced to an external service provider, and delivered to the
users over the Internet. SECaaS applications can be in the form of anti-virus, anti-spam,
and malware detection programs. The programs operate on the cloud, instead of
client-side installed software, and with no need for on-premises hardware (Varad-
harajan and Tupakula 2014).

Employing cloud services by an enterprise is a two-edged sword, meaning that it has
both positive and negative impacts. On one hand, by outsourcing and shifting some
responsibilities from the enterprise to the cloud, fewer unwanted incidents are expected
to occur. This is due to the fact that the cloud providers have a more advanced and
experienced position in offering more secure services that are supported by their spe-
cialized staff, and also there are incident management plans for the case of break outs.
However, this transferring of the responsibilities, on the other hand, decreases the
control of the enterprise over the critical services. In addition to that, storing the data
outside the organization’s firewalls raises concerns about potential vulnerabilities and
possible leaks. For instance, if the information fall into wrong hands (e.g., exposed to
hackers or competitors), it results in loss of customer’s confidence, damage to the
organization’s reputation, and even legal and financial penalties for the organization. On
this basis, enterprises that are planning to adopt cloud services put together the positive
and negative impacts, weigh them up, and do risk assessment (Rhoton et al. 2013).

In spite of the benefits of adopting cloud-based services in the enterprises, there
exist still some barriers. Among all, security and privacy are the most significant
barriers. The fundamental challenges related to the cloud security are the security of the
data storage, security in data transmission, application security, and security of the third
party resources (Subashini and Kavitha 2011). Among all the security risks associated
with the cloud, the followings are the top severe security threats reported by the Cloud
Security Alliance (CSA) (Top Threats Working Group 2013):

182 S. Hosseinzadeh et al.

• Data breach: As a result of a malicious intrusion the (sensitive) data may be dis-
closed to unwanted parties, including the attacker and competitors.

• Data loss: The data stored on the cloud could be lost due to an attack,
unintentional/accidental deletion of the data by the service provider, and physical
corruption of the system infrastructure.

• Hijacking of the accounts and traffic: Attackers by getting access to the users’
credentials, through phishing and exploiting the software vulnerabilities can read or
alter the users’ activities. This consequently puts the confidentiality, integrity, and
availability of the system at risk.

• Insecure Application Program Interfaces (API): Clients use the SW interfaces to
interact with the cloud. These APIs should be sufficiently secure to protect both the
consumer and the service provider.

• Denial of service: An intruder by sending illegitimate requests to the service pro-
vider attempts to occupy the resources, so to disable/slow down the cloud to process
the legitimate requests.

• Malicious insider: The adversary is not always an outsider, but can be a person
inside the cloud system who has an authorized access to the data and intentionally
misuses such authorization.

• Abuse of the cloud service: The cloud computing serves the organizations with
extensive computational power; however, this power could be misused by a
malicious user to perform his belligerent action.

• Insufficient due diligence: Before the organizations move their services to the cloud,
it is significant to have a proper understanding of the capabilities and adaptabilities
of their resources with the cloud technologies.

• Shared technology issues: Sharing platforms, infrastructures, and applications has
made the delivery of the cloud services feasible; however, such sharing has the
drawback that vulnerability in a single piece of shared component can be propa-
gated potentially to the entire cloud.

In securing the cloud computing environment various aspects should be taken into
account. The International Information Systems Security Certification Consortium
(ISC)2 (ISC 2016) has presented taxonomy of the security domains concerning the
cloud computing, which covers the following aspects: physical security, access control,
telecommunications and network security, cryptography, application security, opera-
tion security, information security and risk management practices, and business con-
tinuity and disaster recovery planning.

Many different approaches have been proposed in the literature for overcoming
these security problems, for instance multi-layered security and large scale penetration
testing (Chang 2015; Chang et al. 2016; Chang and Ramachandran 2016).

Security and privacy come hand in hand, in other words, a more secure system
better protects the privacy of its users. Therefore, while integrating cloud in organi-
zation’s architecture, it is highly significant for the enterprise to assure that a cloud
service provider is considering all the security aspects, and adequately addressing the
privacy regulations.

Obfuscation and Diversification for Securing Cloud Computing 183

Considering the fact that the proposed approach in this study is aimed at securing
the application, and protecting SaaS and PaaS models, in the following section we
study the state of cloud application security.

2.1 Application Security in Cloud Computing

Talking about the IaaS model, it is more straightforward to provide protection by
hardening the platform through allowing the traffic from trusted IP addresses, running
anti-virus programs, applying security patches, and so on. However, when it comes to
PaaS and SaaS models, this may not be the case; since in these models, ensuring the
security of the platform is the service provider’s responsibility (Rhoton et al. 2013).
Moreover, in SaaS, there is less transparency and visibility about how the data is stored
and secured. This makes it more difficult for the enterprises to trust the service
provider.

Application security covers the measures and practices taken throughout the soft-
ware development life-cycle to reduce the vulnerabilities and flaws. Because of the fact
that the cloud-base applications are connected directly to the Internet, cloud offers less
physical security compared to traditional data centers and service providers. Also
because of the co-mingled data and multi-tenancy behavior of the cloud, the cloud’s
applications are prone to additional attack vectors.

Recent security incidents clearly show that the exploits by taking advantage of the
software flaws and vulnerabilities, make the web applications the leading targets for
attacks. Web applications are the simplest and the most profitable targets, from the
attackers’ perspective. Especially, in the case of cloud computing that the applications
are accessed through the user’s browser, website security is the sole means to impede
the attacks. Moreover, the security breaches through exploiting the applications and
web services have shown to be pretty severe and have led to big losses. Stuxnet (Chen
and Abu-Nimeh 2011) is one example of infecting the software with the aim of
affecting critical physical infrastructures and industrial control systems. The other
example is using SQL injection to steal the debit/credit card numbers, which in
the end resulted in 1 million withdrawals from the ATM machines worldwide
(CSA 2016).

In spite of the significance of the application security, it has been considered as an
afterthought in many enterprises. In other words, application security has seldom been
the top priority and the main focus for neither the security practitioners and nor the
enterprises and less security budget has been allocated on it (CSA 2016).

On this basis, more consideration is required both from the business side by shifting
more budget to application security and also from the security team to concentrate more
on securing the web applications, the most exposed component of the business.

As in other domains, application security in cloud computing is a crucial compo-
nent in operational IT strategy. Regardless of where an application is residing, the
enterprise is responsible for ensuring the effectiveness of the security practices to

184 S. Hosseinzadeh et al.

protect the application. Also, as we discussed earlier, the nature of cloud computing
environment introduces additional risks compared to on-premise applications and web
services.

3 Obfuscation and Diversification for Securing Cloud
Computing

Code obfuscation refers to the deliberate act of scrambling the program’s code and
transforming it in a way that it becomes harder to read (Collberg et al. 1997). This new
version of the code is functionally similar to the original code, while syntactically
different. This means that even though the obfuscated code has different implemen-
tation, given the same input, it produces the same output. The main purpose of code
obfuscation is to make the understanding of code and its functionality more compli-
cated and to prevent the act of malicious reverse engineering.

Figure 1 is an example of obfuscated code that clearly shows how much harder it
can become to read and comprehend the code after it is obfuscated. With no doubt,
within a given time an attacker may succeed in reverse engineering the obfuscated code
and breaking it: however, it is harder and costlier now, compared to the original code.

In the literature, many different obfuscation mechanisms have been proposed
(Popov et al. 2007; Linn and Debray 2003). Each of these mechanisms targets various
parts of the code to apply the obfuscation transformation. Among all, the techniques
that attempt to obfuscate the control of the program are the most commonly used
(Nagra and Collberg 2009). These techniques alter the control flow of the program, or
generate a fake one, so it would be more challenging for a malicious analyzer to
understand the code. To this end, bogus insertion (Drape and Majumdar 2007), and
opaque predicates (Collberg et al. 1998) are effective control flow obfuscation
techniques.

Fig. 1. a) a piece of JavaScript code, and b) an obfuscated version of the same code

Obfuscation and Diversification for Securing Cloud Computing 185

Software diversification aims at generating unique instances of software in a way
that they appear with different syntax but equivalent functionality (Cohen 1993).
Diversification breaks the idea of developing and distributing the software in a
monoculture manner, and introduces multiculturalism to software design. In the other
words, the identical designs of the software instances make them have similar vul-
nerabilities and are prone to similar types of security threats. This offers the opportunity
to an attacker to design an attack model to exploit those vulnerabilities and easily
compromise a wide number of execution platforms (e.g., computers). The risk of this
kind of massive-scale attacks can be mitigated through diversifying the software ver-
sions, so that the same attack model will not be effectual on all instances. The way a
program is diversified is kept secret and pieces of malware that do not know the secret
cannot interact with the environment and eventually become ineffective. However, the
created secret has to be propagated to the trusted applications, so it will still be feasible
for them to access the resources. In the worst case scenario, even if the attacker gains
the secret of diversification of one instance, that secret is specified to that computer and
a costly analysis is required to find out other secrets to attack other computers. There
have been survey studies surveying software diversity (Larsen et al. 2014; Baudry and
Monperrus 2015).

A particular version of diversification is interface diversification which is applied to
internal interfaces of software (APIs or instruction sets of languages). For example, the
system call interface (for accessing all kinds of resources of a system) is one typical
internal interface which can be changed without sharing the details of new internal
interface to external parties (e.g. malware) (Rauti et al. 2014). Of course, the details on
diversified internal interface need to be propagated to all legal applications so that those
programs can still use the system’s resources (Lauren et al. 2014).

Figure 2 illustrates distribution of diversified versions of program P among the
users. Each of the programs P1, P2, and P3 are unique in structure and diversified
differently. Thus, one single attack model does not work for multiple systems, and

Fig. 2. Diversification generates unique versions of software. Therefore, even if one copy of
software is breached, other copies are safe.

186 S. Hosseinzadeh et al.

attack models need to be designed to be system-specific. When program P3 is attacked,
other versions are still safe.

Program bugs left at the development time are inevitable and cause software
vulnerabilities. Some of these vulnerabilities are not known, while releasing the soft-
ware. Later on, a malicious person can gain knowledge about the system and its
vulnerabilities, and write a piece of malware to exploit those vulnerabilities performing
a successful attack. Especially, the interface diversification techniques can be helpful
in preventing such zero day type of attacks, since the malicious person no longer
automatically know the necessary (for malware) internal interfaces for accessing
resources.

In general, diversification and obfuscation techniques do not attempt to remove
these vulnerabilities, but attempt to prevent (or make it hard, at least) the attacker/
malware to taking advantage of them to run its malicious code. Obfuscating and
diversifying the internal interfaces of the system makes it challenging for malware to
attain the required knowledge about the system, how to call the systems interfaces, in
order to execute its malicious code.

3.1 Related Work on Security of Cloud Through Obfuscation
and Diversification

As mentioned before, diversification and obfuscation techniques have been used
in different domains to provide security, including cloud computing. In a previous
study (Hosseinzadeh et al. 2015), we systematically studies in what ways these two
techniques have been used in cloud computing environment with the aim of improving
the security. As the result of the search, we collected 43 studies that were discussing
diversification and obfuscation as the techniques for improving the security in the
cloud and protect the privacy of its users, and we classified them based on how the
techniques are used to this aim. After extracting data from those studies, we identified
that the obfuscation and diversification techniques are used in nine different ways to
boost the security and privacy of the cloud, including: (1) generating noise obfuscation,
(2) client-side data obfuscation as a middleware, (3) general data obfuscation,
(4) source code obfuscation, (5) location obfuscation, (6) file splitting and storing on
separate clouds, (7) encryption as obfuscation, (8) diversification, and (9) cloud
security by virtue of securing the browser. Figure 3 illustrates these categories with the
number of studies in each group.

Many of the cloud service providers are complying with the policies and regula-
tions in order to protect the privacy of their customers. However, there exist a wide
number of service providers that may record the collected data from the customers,
deduce and misuse the private information without user’s consent. Hence, there is a
need for practices to be taken at client side (without service provider’s interference) to
protect the privacy. Obfuscation and diversification techniques were employed to
protect the data “from the cloud”. In majority of studied works, the cloud service
provider was considered as untrusted/malicious.

Obfuscation and Diversification for Securing Cloud Computing 187

In the following, we explain the nine different ways that obfuscation/diversification
have been used in the literature for protecting the cloud from security threats, and also
protecting the user’s privacy from the malicious cloud.

• Generating noise obfuscation: This approach resides on the client side and tries
confuses the malicious cloud by injecting irrelevant requests that are similar to
legitimate requests of the user (called noise) into the user’s service requests, i.e.,
the requests sent from the customer to the cloud. In this way, the occurrence
probability of the legitimate requests and the noise requests become the same, so it
becomes difficult for the cloud to distinguish the real request. Noise generation
strategy, conceals real requests coming from the users, and therefore, lessens the
probability of request being revealed. As the result, the privacy of the customer is
protected.

• Client-side data obfuscation as a middleware: This method protects the data from
the untrusted service provider while the data is stored or processed on the cloud.
A privacy managing middleware on the client side obfuscates the (sensitive) data
using a secret key which is chosen and kept by the user. The obfuscated data is sent
to the cloud and is processed on the cloud without being de-obfuscated. This is
because the key is kept secret to the user and the cloud does not have the key to
de-obfuscate the data. The result of the process is sent to the user and is
de-obfuscated on the client side, so the user sees the plain data.

Fig. 3. The related studies on security and privacy in cloud computing through obfuscation and
diversification techniques.

188 S. Hosseinzadeh et al.

• General data obfuscation: In this class obfuscation, some transformations that are
made into the user’s data, which make them harder to read/understood. This method
can be used to protect the user’s identity information, the data stored on the data-
base of the cloud, and the user’s behavioral pattern. Data obfuscation makes the
user’s confidential harder to be exposed, and therefore, protects the user’s data
privacy.

• Source code obfuscation: As explained before, source code obfuscation is a tech-
nique for protecting the software from reverse engineering. This method can also be
used for securing the cloud’s software from attacks and risk of malware.

• Location obfuscation: As we know, there exist services that rely on the physical
information of the user to provide the services. This includes privacy concerns on
revealing the precise location of the user (e.g., concerns about locating and tracking
down the user). To this end, obfuscating the location information is a technique to
make the exact location imprecise through generalizing, or slightly altering the
precise location to avoid the actual position being exposed and consequently,
preserve the location privacy.

• File splitting and storing on separate clouds: The idea in this obfuscation strategy
is to divide the data/files into different sectors and store them on different clouds.
This approach ensures not only the security, but also the availability of the data.
If one cloud is attacked, only one part will be leaked, and the other parts are
safe.

• Encryption as obfuscation: Obfuscation could be attained through cryptographic
techniques. For instance, homomorphic encryption and one-way hash function are
examples of this obfuscation strategy. Obfuscating the data reduces the risk of data
leakage and even if the data is leaked, it is quite useless, as it is scrambled.
Therefore, it is a beneficial technique in preserving the confidentiality of the data on
the cloud.

• Diversification: As discussed before, different components could be the target for
diversification depending on the security need of the system. In cloud computing
paradigm, it is proposed to continuously diversify the execution environment, so to
shorten the time for the attacker to learn the execution environment and the vul-
nerabilities of it. The execution environment changes to a new environment, before
the attacker gets the chance to obtain sufficient knowledge about it.

• Cloud security through securing the browser: In this idea a plug-in is embedded in
the user’s web browser, which has the capability of data obfuscation and hybrid
authentication. Therein, the security and the privacy of the data are addressed in the
web browser.

Table 1 lists all the papers that are discussing diversification and obfuscation as the
promising security techniques in cloud computing environment. Based on how the
studies use diversification/obfuscation is in cloud computing, they fall into nine dif-
ferent categories.

Obfuscation and Diversification for Securing Cloud Computing 189

Table 1. List of the studies

No. Description of method

Category 1: Generating noise obfuscation
1 (Zhang et al. 2013): Injecting noise requests in user’s request makes it difficult for the

cloud to distinguish the legitimate request. The paper considers noise obfuscation as a
way for privacy-leakage-tolerance

2 (Yang et al. 2013): This paper proposes noise generation approach as a way to obfuscate
the data while the characteristic of the data is not changed. The main goal is to protect the
privacy in the domain of data statics and data mining

3 (Zhang et al. 2012b): In this paper, Time-series Pattern Strategy Noise Generation
(TPNGS) is used to create a pattern based on the previous requests that the user has made,
and with the help of this pattern predict the occurrence probability of the future requests.
This approach makes the real requests of the user vague, and protects the privacy of the
client from a malicious cloud

4 (Zhang et al. 2015): In this work, noise obfuscation approach considers occurrence
probability fluctuation as a way to disguise the customer’s data

5 (Zhang et al. 2012c): Noise injection is discussed in this paper as a method to confuse the
malicious cloud provider, with the aim of privacy protection

6 (Zhang et al. 2012a): Injecting noise (= irrelevant requests) into the user’s request makes
the occurrence possibility of the real and the noise requests the same, and thus make them
indistinguishable

7 (Lamanna et al. 2012): This paper considers homomorphic encryption, oblivious transfer,
and query obfuscation in the proxy as the techniques to protect the information from an
untrusted cloud. Query obfuscation aims at generating random noisy/fake queries and
confusing for the cloud

8 (Zhang et al. 2012d): Noise obfuscation disguises the occurrence probability of the user’s
requests. In this way, the user’s personal information is kept safe, and therefore, the
privacy is conserved

9 (Liu et al. 2012): In this paper, generating noise in user’s requests is discussed as a way to
protect the privacy

Category 2: Client-side data obfuscation as a middleware
10 (Arockiam and Monikandan 2014): Before sending the data to the cloud, encryption and

obfuscation techniques are used to ensure the confidentiality of the data. Obfuscation is
used for the numerical data types, while encryption is applied on alphabetical type of data

11 (Tian et al. 2011): This paper suggests that the user’s information be encrypted before
being sent to the cloud. This encrypted data is decrypted only on the client side

12 (Yau and An 2010): The proposed approach protects the customer’s data from malicious
cloud through data obfuscation, information hiding, and separating the software and the
infrastructure of the service provider

13 (Mowbray et al. 2012): This paper introduces a privacy manager that protects the user’s
private information by obfuscating them before delivering to the cloud. The key used for
this purpose is selected by the privacy manager. The same key is used to de-obfuscate the
processed data received from the cloud. They use the term obfuscation rather than
encryption, since the data is partially obfuscated and some parts remain intact

14 (Pearson et al. 2009): This work presents a mathematical formulation for obfuscation, and
also a privacy manager founded on obfuscation and de-obfuscation approaches

(continued)

190 S. Hosseinzadeh et al.

Table 1. (continued)

No. Description of method

15 (Mowbray and Pearson 2009): This paper proposes a privacy managing technique based
on obfuscation and de-obfuscation approaches, to control the data transferred to the
cloud. User’s information is obfuscated using the key selected by user, and then sent to
the cloud. This key is kept secret by the user, so the cloud is never able to de-obfuscate
the data

16 (Govinda and Sathiyamoorthy 2012): In this approach customer’s confidential data is
obfuscated before being sent to the cloud service provider. The result of the processed
data is sent back to the customer. There, the data is de-obfuscated on the client side using
the user’s secret key

17 (Patibandla et al. 2012): In this work, a privacy manager software is presented that
obfuscates the user’s sensitive data, prior to send to the cloud, based on the user’s
preferences

Category 3: General data obfuscation
18 (Reiss et al. 2012): This paper proposes a systematic obfuscation approach that aims at

protecting personal data. The obfuscation techniques used are: (a) transforming: changing
the information into another format, (b) sub-setting: selecting a particular fraction of data,
(c) culling: deleting a particular fraction of data, and (d) aggregation

19 (Kuzu et al. 2014): Data obfuscation is an advantageous solution to protect the data that is
stored in the cloud’s database. Besides, the access patterns could be obfuscated and
protected as well

20 (Vleju 2012): The confidential information of the user can be protected through
obfuscation. For instance, obfuscating the identification information conceals the user’s
real identity. After obfuscation is applied, the data can be deciphered only by the user

21 (Li et al. 2011): To protect the data privacy in SaaS, data obfuscation is proposed as a
beneficial technique

22 (Qin et al. 2014): This paper proposes an algorithm based on obfuscation techniques to
protect the confidential information that exist in CNF (Conjunctive Normal Form) format

23 (Tapiador et al. 2012): Typically, a user’s decisions and behavior follow a similar pattern.
Analyzing this pattern helps in foreseeing the future behavior which raises privacy
concerns. Obfuscating the user’s behavioral pattern, make this information inaccessible,
or at least makes it harder to access

24 (Kansal et al. 2015): This paper proposes image obfuscation as a technique to hide and
obfuscate an image (for instance by hiding the position of the pixels or the colors). For
this purpose, the paper integrates the compression and secret sharing to produce multiple
numbers of shadow images

Category 4: Source code obfuscation
25 (Bertholon et al. 2013a): JavaScript is the language that is widely used in today’s web

services. To protect the JavaScript code, obfuscation is proposed to make it harder to
reverse engineer

26 (Bertholon et al. 2013b): The paper presents a framework that transforms/obfuscates the
source code of the C program into a jumbled form

27 (Hataba and El-Mahdy 2012): This paper is a survey of existing obfuscation techniques
that aim at making the reverse engineering harder

(continued)

Obfuscation and Diversification for Securing Cloud Computing 191

Table 1. (continued)

No. Description of method

28 (Bertholon et al. 2014): JSHADOF framework is designed to obfuscate the JavaScript
code. The target of the transformation is the source code in cloud computing web services

29 (Omar et al. 2014): This paper uses control-flow obfuscation and junk code insertion to
present a threat-based obfuscation technique

Category 5: Location obfuscation
30 (Karuppanan et al. 2012): This paper states that the user’s private information needs to be

protected from being disclosed. Location obfuscation is proposed to conceal the user’s
location

31 (Skvortsov et al. 2012): The paper states that the Location Services (LS) present services
based on the location information of the user, which brings along privacy concerns.
Location obfuscation solves this problem by making this information appear imprecise

32 (Agir et al. 2014): This paper considers location obfuscation as a way to confuse the
server about the location of the user

Category 6: File splitting and storing on separate clouds
33 (Celesti et al. 2014): In this work, data obfuscation is done through dividing the files and

storing them on multiple clouds. In this way, each cloud has partial view to the file
34 (Ryan and Falvey 2012): In order to obfuscate the data, this work proposes splitting the

data and storing them on geographically separated data stores
35 (Villari et al. 2013): To keep the data confidential, it is proposed to spread the data over

various clouds
Category 7: Encryption as obfuscation
36 (Padilha and Pedone 2015): The most common way to achieve obfuscation is to employ

cryptographic approaches. Secret sharing is one practical example, in this regard
37 (Gao-xiang et al. 2013): This paper proposes achieving the obfuscation through

homomorphic encryption
38 (Furukawa et al. 2013): This paper studies point function obfuscation which relies on one

way hash functions
Category 8: Diversification
39 (Tunc et al. 2014): Moving target defenses aim at continuously altering the execution

environment of the system and its configurations, in order to make it challenging and
costly for the intruder to learn about the environment and discover its vulnerabilities. This
paper proposes diversification of the cloud’s execution environment

40 (Yang et al. 2014): This paper proposes to continuously change the execution
environment and also the platforms used to execute them. Hence, till the time that the
attacker learns the execution environment, it has changed. Moreover, hardware
redundancy is introduced as a way to increase the tolerance to the attacks

41 (Guo and Bhattacharya 2014): Design diversity is proposed in this paper for the cloud
infrastructure. The target of the diversification is the configuration of virtual replicas. This
increases the resiliency of the service, in case of possible attacks

Category 9: Cloud security through securing the browser
42 (Prasadreddy et al. 2011): This paper proposes a plug-in for the user’s web browser that

offers double authentication and hybrid obfuscation for the data, and protects the security
and privacy of the cloud in this way

43 (Palanques et al. 2012): In this work, obfuscation is used to extend the session’s lifetime

192 S. Hosseinzadeh et al.

4 Enhancing the Security of Cloud Computing Using
Obfuscation and Diversification

4.1 Motivation Behind Our Idea

As discussed in Sect. 2.1 about the importance of application security in cloud com-
puting environment and the big losses that might happen as the consequence of
insecure applications, we were motivated to propose an approach to improve the
cloud’s security through securing the applications. Considering the fact that obfusca-
tion and diversification techniques have shown success in impeding the malware in
various domains to lessen the risk of harmful damage, we were motivated to use this
techniques in our approach. To this aim, first we investigated “how these two tech-
niques are used in cloud computing with the goal of boosting security” (Hosseinzadeh
et al. 2015). We systematically reviewed all the studies that were trying to answer this
research question. By answering this question, we were aiming at identifying the
research gaps which lead us in our future research. After collecting and analyzing the
data, we concluded that: there is a growing interest in this field of study, as the number
of publications was increasing year by year. Obfuscation and diversification techniques
have been used in the literature in different ways, that we presented a classification of
this studies based on the way they use these techniques. The classification is presented
in Sect. 3.1. Furthermore, as the result of this survey, we realized that the majority of
the studied works have proposed approaches using obfuscation techniques, and few
were focusing on diversification techniques. This implies that there is a room for more
research on the use of diversification as a beneficial technique to bring security to cloud
computing.

The previous survey shed more light on the areas that are still potential targets for
further research, which motivated us to propose an efficient approach with the help of
diversification and obfuscation techniques to secure the cloud’s applications. We dis-
cuss the details of the proposed approach in Sects. 4.3.

4.2 Threat Model

To make using and deploying SaaS applications easy, these applications are usually
available in web environment. A significant proportion of the code of these applications
is usually run on the client side, which makes them vulnerable to client-side attacks.
Also, the client-side interfaces are often a natural weak point that an adversary can
utilize to launch an attack. In what follows, we will concentrate on this threat.

In a man-in-the-browser attack (MitB), the adversary has successfully compromised
the client’s endpoint application, usually the browser, by getting malware into user’s
system. The malware can then modify how the browser represents certain web sites and
how the user can interact with them. Because the malware is operating inside user’s
browser, it is able to perform actions using user’s authentication credentials by
exploiting active log-in sessions (Gühring 2006; Laperdrix et al. 2015).

To be more specific, the malicious program infects the computer’s software. The
malware – often implemented as a browser extension – then waits for the user to submit

Obfuscation and Diversification for Securing Cloud Computing 193

some interesting data. As the data is input in the application, the malware intercepts this
delivery and extracts all the data using the interfaces provided by the browser (usually
by accessing the DOM interface using JavaScript) and stores the values. The malware
then modifies the values using browser’s interface. The malware then tells the browser
to continue submitting the data to the server (or just store it locally in the web appli-
cation) and the browser goes on without knowing the data has been tampered with. The
modified values are now stored by the server (or locally), but neither the user nor the
server knows that they are not the original values.

In the case the server generates a receipt of the performed transaction or otherwise
shows the previously sent values to the user, the malware again transforms them to the
original ones. The user thinks everything is fine, because it appears that the original
transaction was received and stored intact. In reality, however, the stored values have
been fabricated by the malicious adversary.

It is important to note that attacks of this kind have been seen in the wild
(Binsalleeh et al. 2010) and there is no completely satisfactory solution to prevent
them. Therefore, mitigating these attacks has become an important goal in the field of
information security.

4.3 Our Proposed Approach

For this work, we decided to evaluate integrating source code level obfuscation into an
existing web application written in JavaScript. Our solution is a proactive and trans-
parent method that protects applications from data manipulation. Although it does not
guarantee to completely prevent all tampering, it significantly mitigates the attack
scenario we described.

An important key observation in our solution is the fact that a malicious program in
the user’s browser needs knowledge about the web application’s internal structure in
order to modify the data provided by the user. We therefore, change the application that
is being executed on the user’s web browser in a way that will make it very difficult for
a harmful program to compromise it.

After we have applied unique obfuscation to the program, the code is unique on each
user’s computer. Generic and automatic large-scale malware attacks become infeasible,
since the adversary needs to know what to change in the target application’s code.

Given enough time, however, the attacker may be able to break the obfuscation.
Taking this possibility into account, we could make attacking the web application even
harder by continuously re-obfuscating it during its execution. As the internal structure
of the web application is dynamically changed like this, a malicious program has only a
short time to analyze it in order to modify the data.

In web environment, certain obfuscation methods can also be used to obfuscate the
HTML code on the web page that is the target of protection. This makes it even harder for
a piece of malware to attach itself to the web application (for example, by using known
attribute names of HTML elements). In is also worth noting that in our scheme, we
scramble HTML and JavaScript code but not to the actual data that is transmitted over the
network. The usual cryptographic protocols like Transport Layer Security (TLS) (Dierks
2008), are still applied to this data on most web pages handling private data.

194 S. Hosseinzadeh et al.

It is worth noting that when the obfuscation has been performed, the user of a web
application will not notice any changes in the functionality of the application.
Obfuscation is transparent to the user. We also want our solution to be transparent for
the web application developer. The obfuscation is performed automatically after the
code is written so the developer does not have to worry about it.

Data modification attacks are often highly dependent on the known structure of a
web application. For example, the adversary might try to edit some function in the
JavaScript code based on its known name. Our approach should therefore effectively
mitigate these kinds of attacks by obscuring the structure of executable code.

4.4 Choice of Application

For the choice of application, we had the following criteria that the selected application
had to fulfill:

1. Availability of production-ready obfuscation tooling and libraries. It can be argued,
that source code level obfuscation tooling is still in its infancy and, at least in our
experience gathered from this exercise, such tools are simply non-existent for many
languages and environments. However, for some languages and environments – like
JavaScript run in the user’s browser – several obfuscation tools and libraries exist
today.

2. The application had to be implemented using technologies that are common in
today’s web development environment. Using commonplace technologies was
especially important because we wanted the experiences to be applicable to
real-world web application deployment scenarios. In short, we wanted our choice of
application be representative of a generic web application.

In the end, we decided to obfuscate Laverna (lav 2016), a simple note taking
application that relies entirely for client side scripting for its functionality. Since
Laverna contains essentially no server-side components, the main security risk it faces
comes from man-in-the-browser attacks.

4.5 Implementation

Ideally, we would like the obfuscation to be seamlessly integrated into project’s
development work-flow. It is common for modern web-applications already contain a
complex build process: resource compression, source code transpiling and request
count optimization are just few of the steps that a typical application might employ.
Orchestrating all these interdependent operations is a challenging task that has given a
rise for a cornucopia of different build automation tools targeting the web platforms.

Laverna is not an exception on this front. The project makes heavy use of (gul
2016a), Browserify (bro 2016), and npm (npm 2016) to automate its build process and
manage the complex web of dependencies required for building the application. As a
part of the standard build process, Gulp transpiles stylesheets written in Less (les 2016)

Obfuscation and Diversification for Securing Cloud Computing 195

into css, compresses the html, produces caching manifest and runs various code quality
checkers on the project.

We wanted the obfuscation to be as transparent to the software developer as pos-
sible. To this end, we decided to integrate the source code obfuscation as an additional
step in Gulp’s project build specification. Using common tools for the deployment
process served our overall goal: evaluating the real-world challenges related to
deploying obfuscation.

The concrete obfuscation implementation is composed of three third-party com-
ponents: gulp-js-obfuscator (gul 2016b), js-obfuscator (jso 2016), and the service
provided by javascriptobfuscator.com (jav 2016). The last of which, provides the actual
source code transformations in a software-as-a-service like manner. js-obfuscate
implements a programmatic api around the the service and gulp-js-obfuscate provides
integration with Gulp’s build pipeline architecture.

The results of the diversification experiment we performed on Laverna applications
with our tool indicate that the program would indeed be much more difficult to
understand and tamper with after diversification has been applied. For example, even
with the relatively simple obfuscation transformations our tool used, the median of
Halstead difficulty (the difficulty of understanding a given program) was 54.1% larger
for the functions of the diversified version of the program than for the original code.
Naturally, even better results would be achieved with a framework that would use a
larger set of even more resilient obfuscation transformations.

4.6 Limitations of the Approach

Tooling for analyzing errors in program code is obviously important from a software
development standpoint and when it comes to web development, most popular
browsers come with built-in debugging capabilities. Setting break-points,
single-stepping through the program code, and inspecting objects are common
requirements. Unfortunately, application of source code level obfuscation makes uti-
lizing available tooling challenging, to say the least. The problem arises because the
developer interacts with the original, unobfuscated source code, but the browser only
has access to the obfuscated version of the code. This is not a problem that only affects
obfuscation related tooling, source-to-source transpilers have long faced similar
problems. However, it could be argued that the problem is magnified for by the very
nature of obfuscation, desire to make programs harder to understand.

Source maps is a technique created to solve the aforementioned problem of
debugging (sou 2016). Source maps provide the browser with auxiliary debugging
information about the obfuscated scripts, allowing it to map the executed statements to
statements in the original source. Unfortunately, our current setup did not provide
support for source maps. This problem can be somewhat remedied by applying
obfuscation only to release builds of the software. While this approach works, with the
added benefit of making the build process faster, it does not allow analyzing problems
that might arise due to the application of obfuscation. It also limits software devel-
oper’s ability to analyze possible error reports from end users.

196 S. Hosseinzadeh et al.

When obfuscating any application, preserving good performance is also an
important goal and a challenge. Because of the requirement for transparency, large
performance losses clearly noticed by the user are not acceptable. As a response to
increasing use of JavaScript frameworks and ongoing competition between web
browser manufacturers, performances of the JavaScript engines have gone up in recent
years. Acceptable performance and good transparency to the user are usually feasible
goals even when using several obfuscation techniques in combination and the obfus-
cation is dynamically changed.

Employing obfuscation also often increases bandwidth consumption as the exe-
cutable code grows longer. Dynamically updating the code during execution – a feature
not implemented in our current proof-of-concept implementation – would also sig-
nificantly increase the network traffic. All obfuscation techniques do not increase the
size of code that much, though. For example, simply renaming functions does not
really affect the bandwidth consumption.

The SaaS-based obfuscation backend provided by javascriptobfuscator.com sup-
ports a number of obfuscating transformations. The basic settings employ standard
techniques such as variable renaming and string encoding, but more complicated
transformation options are also available. Still, we felt that the service-oriented solution
limited the amount of control over how the code was to be modified. Figure 4 gives an
idea of what the end result of the obfuscation looks like.

5 Conclusion

Cloud computing is becoming an essential part of today’s Information Technology.
Almost all enterprises and businesses, in all sizes, have deployed (or are planning to
deploy) cloud solutions for delivering their services to customers. Cloud adoption is
accelerating because of the advantages that cloud computing has brought along, such as
higher flexibility and capability of the infrastructures, lower costs of operation and

Fig. 4. Excerpt from obfuscated piece of JavaScript code.

Obfuscation and Diversification for Securing Cloud Computing 197

maintenance, wider accessibility, and improved mobility and collaboration (Mather
et al. 2009).

Despite of all these benefits, there are still barriers in turning into cloud. Among all,
security of the data is the primary concern that holds back the projects from moving to
the cloud. The cloud’s security threats can be classified in different ways. Cloud
Security Alliance (CSA) presented a list of top threats targeting the cloud computing
environment (CSA 2016; Top Threats Working Group 2013).

In Sect. 2, we went through the security concerns of the cloud and also security
aspects that need to be taken into account in cloud computing environment. We dis-
cussed that there are three main delivery models for delivering the cloud services (IaaS,
PaaS, and SaaS) that each require different levels of security (Rhoton et al. 2013).

In Sect. 3, first we presented the terms and techniques used in our proposed security
approach. Obfuscation and diversification are techniques that have been used to secure
the software, mainly with the aim of impeding malware. These techniques have been
utilized in various domains as well as in cloud computing. In a previous study we
conducted a thorough survey to investigate in what way these two techniques have
been previously used to enhance the security of cloud computing and protect the
privacy of its users (Hosseinzadeh et al. 2015). As the result of this study, we managed
to identify research gaps that motivated us to demonstrate an approach, which fills the
gaps to some extent and improves the security in cloud efficiently.

In Sect. 4 we demonstrated an obfuscation (partly including diversification)
approach for mainly securing the SaaS model in cloud computing. In this approach we
obfuscated the client-side JavaScript components of an application, we did this to
demonstrate the feasibility of applying obfuscation in the real-world. We built our
solution using existing tools and services to evaluate the experience of integrating
obfuscation into an existing application. Implementing the obfuscation only required a
relatively small amount of work, mostly because of the use of ready-made libraries.
However, the amount of work required is likely to be highly dependant on the com-
plexity of one’s target application and the thoroughness of applied obfuscation.

References

Browserify (2016). http://browserify.org. Accessed 08 Apr 2016
Cloud Security Alliance (CSA) (2016). https://cloudsecurityalliance.org/. Accessed 08 Apr 2016
Free JavaScript obfuscator Protect JavaScript code from stealing and shrink size (2016). https://

javascriptobfuscator.com. Accessed 08 Apr 2016
Getting started–Less.js (2016). http://lesscss.org. Accessed 08 Apr 2016
Gulp-js-obfuscator (2016a). https://www.npmjs.com/package/gulp-js-obfuscator. Accessed 08

Apr 2016
Gulp.js The streaming build system (2016b). http://gulpjs.com. Accessed 08 Apr 2016
js-obfuscator (2016). https://www.npmjs.com/package/js-obfuscator. Accessed 08 Apr 2016
Laverna Keep your notes private (2016). https://laverna.cc. Accessed 08 Apr 2016
NMP (2016). https://www.npmjs.com. Accessed 08 Apr 2016
Source Map Revision 3 Proposal (2016). https://docs.google.com/document/d/1U1RGAehQw

RypUTovF1KRlpiOFze0b-2gc6fAH0KY0k. Accessed 08 Apr 2016

198 S. Hosseinzadeh et al.

The International Information Systems Security Certification Consortium (ISC)2 (2016). https://
www.isc2.org/. Accessed 08 Apr 2016

Agir, B., Papaioannou, T., Narendula, R., Aberer, K., Hubaux, J.-P.: User-side adaptive
protection of location privacy in participatory sensing. GeoInformatica 18(1), 165–191 (2014)

Arockiam, L., Monikandan, S.: Efficient cloud storage confidentiality to ensure data security. In:
2014 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5
(2014)

Baudry, B., Monperrus, M.: The multiple facets of software diversity: recent developments in
year 2000 and beyond. ACM Comput. Surv, 48(1), 16:1–16:26 (2015)

Bertholon, B., Varrette, S., Bouvry, P.: JShadObf: a JavaScript obfuscator based on
multi-objective optimization algorithms. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS
2013. LNCS, vol. 7873, pp. 336–349. Springer, Heidelberg (2013). doi:10.1007/978-3-642-
38631-2_25

Bertholon, B., Varrette, S., Bouvry, P.: Comparison of multi-objective optimization algorithms
for the Jshadobf JavaScript obfuscator. In: 2014 IEEE International, Parallel Distributed
Processing Symposium Workshops (IPDPSW), pp. 489–496 (2014)

Bertholon, B., Varrette, S., Martinez, S.: Shadobf: A c-source obfuscator based on
multi-objective optimization algorithms. In: 2013 IEEE 27th International Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pp. 435–444 (2013b)

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., Wang, L.: On
the analysis of the zeus botnet crimeware toolkit. In: Proceedings of the 8th Annual
International Conference on Privacy, Security and Trust (PST), pp. 31–38. IEEE (2010)

Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfuscation, and
encryption to multi-cloud storage systems. J. Netw. Comput. Appl. (2014)

Chang, V.: Towards a big data system disaster recovery in a private cloud. Ad Hoc Netw. 35,
65–82 (2015). Special Issue on Big Data Inspired Data Sensing, Processing and Networking
Technologies

Chang, V., Kuo, Y.-H., Ramachandran, M.: Cloud computing adoption framework: a security
framework for business clouds. Future Gener. Comput. Syst. 57, 24–41 (2016)

Chang, V., Ramachandran, M.: Towards achieving data securCloud computing adoption
framework: a security framework for business cloudsity with the cloud computing adoption
framework. IEEE Trans. Serv. Comput. 9(1), 138–151 (2016)

Chen, T.M., Abu-Nimeh, S.: Lessons from stuxnet. Computer 44(4), 91–93 (2011)
Cohen, F.B.: Operating system protection through program evolution. Comput. Secur. 12(6),

565–584 (1993)
Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Technical

report, Department of Computer Science, The University of Auckland, New Zealand (1997)
Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and stealthy opaque

constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 1998, pp. 184–196. ACM, New York (1998)

Dierks, T.: The Transport Layer Security (TLS) protocol version 1.2 (2008)
Drape, S., Majumdar, A.: Design and evaluation of slicing obfuscation. Technical report,

Department of Computer Science, The University of Auckland, New Zealand (2007)
Furukawa, R., Takenouchi, T., Mori, T.: Behavioral tendency obfuscation framework for

personalization services. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.)
DEXA 2013. LNCS, vol. 8056, pp. 289–303. Springer, Heidelberg (2013). doi:10.1007/978-
3-642-40173-2_24

Gao-xiang, G., Zheng, Y., Xiao, F.: The homomorphic encryption scheme of security
obfuscation. In: Tan, T., Ruan, Q., Chen, X., Ma, H., Wang, L. (eds.) IGTA 2013. CCIS,
vol. 363, pp. 127–135. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37149-3_16

Obfuscation and Diversification for Securing Cloud Computing 199

Govinda, K., Sathiyamoorthy, E.: Agent based security for cloud computing using obfuscation.
Procedia Eng. 38, 125–129 (2012)

Gühring, P.: Concepts against Man-in-the-Browser Attacks (2006). www.cacert.at/svn/sourcerer/
CAcert/SecureClient.pdf

Guo, M., Bhattacharya, P.: Diverse virtual replicas for improving intrusion tolerance in cloud. In:
Proceedings of the 9th Annual Cyber and Information Security Research Conference, CISR
2014, pp. 41–44. ACM, New York (2014)

Hataba, M., El-Mahdy, A.: Cloud protection by obfuscation: techniques and metrics. In: 2012
Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pp. 369–372 (2012)

Hosseinzadeh, S., Hyrynsalmi, S., Conti, M., Leppänen, V.: Security and privacy in cloud
computing via obfuscation and diversification: a survey. In: 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 529–535 (2015)

Kansal, K., Mohanty, M., Atrey, Pradeep, K.: Scaling and cropping of wavelet-based compressed
images in hidden domain. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.)
MMM 2015. LNCS, vol. 8935, pp. 430–441. Springer, Heidelberg (2015). doi:10.1007/978-
3-319-14445-0_37

Karuppanan, K., AparnaMeenaa, K., Radhika, K., Suchitra, R.: Privacy adaptation for secured
associations in a social cloud. In: 2012 International Conference on Advances in Computing
and Communications (ICACC), pp. 194–198 (2012)

Kuzu, M., Islam, M. S., Kantarcioglu, M.: Efficient privacy-aware search over encrypted
databases. In: Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY 2014, pp. 249–256. ACM, New York (2014)

Lamanna, D.D., Lodi, G., Baldoni, R.: How not to be seen in the cloud: a progressive privacy
solution for desktop-as-a-service. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S.,
Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012.
LNCS, vol. 7566, pp. 492–510. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33615-
7_4

Laperdrix, P., Rudametkin, W., Baudry, B.: Mitigating browser fingerprint tracking: multi-level
reconfiguration and diversification. In: 2015 IEEE/ACM 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 98–108
(2015)

Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diversity. In: 2014
IEEE Symposium on Security and Privacy (SP), pp. 276–291 (2014)

Laurén, S., Mäki, P., Rauti, S., Hosseinzadeh, S., Hyrynsalmi, S., Leppänen, V.: Symbol
diversification of Linux binaries. In: Proceedings of World Congress on Internet Security
(WorldCIS-2014) (2014)

Li, L., Li, Q., Shi, Y., Zhang, K.: A new privacy-preserving scheme DOSPA for SaaS. In:
Gong, Z., Luo, X., Chen, J., Lei, J., Wang, F. (eds.) Web Information Systems and Mining.
LNCS, vol. 6987, pp. 328–335. Springer, Berlin Heidelberg (2011)

Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disassembly.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security,
CCS 2003, pp. 290–299. ACM, New York (2003)

Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen, J., Yang, Y.: Cloud workow system
quality of service. In: The Design of Cloud Workow Systems, Springer Briefs in Computer
Science, pp. 27–50. Springer, New York (2012)

Mather, T., Kumaraswamy, S., Latif, S.: Cloud Security and Privacy: An Enterprise Perspective
on Risks and Compliance Theory in Practice. O’Reilly Media Inc., Sebastopol (2009)

Mell, P., Grance, T.: The NIST definition of cloud computing. Computer Security Division,
Information Technology Laboratory, National Institute of Standards and Technology (2011)

200 S. Hosseinzadeh et al.

Mowbray, M., Pearson, S.: A client-based privacy manager for cloud computing. In: Proceedings
of the Fourth International ICST Conference on Communication System software and
middleware, COMSWARE 2009, pp. 5:1–5:8. ACM, New York (2009)

Mowbray, M., Pearson, S., Shen, Y.: Enhancing privacy in cloud computing via policy-based
obfuscation. J. Supercomput. 61(2), 267–291 (2012)

Nagra, J., Collberg, C.: Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing
for Software Protection. Pearson Education, Upper Saddle River (2009)

Omar, R., El-Mahdy, A., Rohou, E.: Arbitrary control-ow embedding into multiple threads for
obfuscation: a preliminary complexity and performance analysis. In: Proceedings of the 2nd
International Workshop on Security in Cloud Computing, SCC 2014, pp. 51–58. ACM,
New York (2014)

Padilha, R., Pedone, F.: Confidentiality in the cloud. Secur. Privacy IEEE 13(1), 57–60 (2015)
Palanques, M., DiPietro, R., del Ojo, C., Malet, M., Marino, M., Felguera, T.: Secure cloud

browser: model and architecture to support secure web navigation. In: 2012 IEEE 31st
Symposium on Reliable Distributed Systems (SRDS), pp. 402–403 (2012)

Patibandla, R.,S.,M.,Lakshmi, Kurra, S.S., Mundukur, N.B.: A study on scalability of services
and privacy issues in cloud computing. In: Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT
2012. LNCS, vol. 7154, pp. 212–230. Springer, Heidelberg (2012). doi:10.1007/978-3-642-
28073-3_19

Pearson, S., Shen, Y., Mowbray, M.: A privacy manager for cloud computing. In: Jaatun, M.G.,
Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 90–106. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10665-1_9

Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In: USENIX
Security (2007)

Prasadreddy, P., Rao, T., Venkat, S.: A threat free architecture for privacy assurance in cloud
computing. In: 2011 IEEE World Congress on Services (SERVICES), pp. 564–568 (2011)

Qin, Y., Shen, S., Kong, J., Dai, H.: Cloud-oriented SAT solver based on obfuscating CNF
formula. In: Han, W., Huang, Z., Hu, C., Zhang, H., Guo, L. (eds.) APWeb 2014. LNCS, vol.
8710, pp. 188–199. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11119-3_18

Rauti, S., Laurén, S., Hosseinzadeh, S., Mäkelä, J.-M., Hyrynsalmi, S., Leppänen, V.:
Diversification of system calls in Linux binaries. In: Proceedings of the 6th International
Conference on Trustworthy Systems (In Trust 2014) (2014)

Reiss, C., Wilkes, J., Hellerstein, J.: Obfuscatory obscanturism: making workload traces of
commercially-sensitive systems safe to release. In: 2012 IEEE Network Operations and
Management Symposium (NOMS), pp. 1279–1286 (2012)

Rhoton, J., de Clercq, J., Graves, D.: Cloud Computing Protected: Security Assessment
Handbook. Recursive Limited, London (2013)

Ryan, P., Falvey, S.: Trust in the clouds. Comput. Law Secur. Rev. 28(5), 513–521 (2012)
Skoudis, E.: Malware: Fighting Malicious Code. Prentice Hall Professional, Upper Saddle River

(2004)
Skvortsov, P., Dürr, F., Rothermel, K.: Map-aware position sharing for location privacy in

non-trusted systems. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.)
Pervasive 2012. LNCS, vol. 7319, pp. 388–405. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31205-2_24

Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud
computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

Tapiador, J., Hernandez-Castro, J., Peris-Lopez, P.: Online randomization strategies to obfuscate
user behavioral patterns. J. Netw. Syst. Manag. 20(4), 561–578 (2012)

Obfuscation and Diversification for Securing Cloud Computing 201

Tian, Y., Song, B., Huh, E.-N.: Towards the development of personal cloud computing for
mobile thin-clients. In: International Conference Information Science and Applications
(ICISA), pp. 1–5 (2011)

Top Threats Working Group: The notorious nine: cloud computing top threats in 2013. Cloud
Security Alliance (2013)

Tunc, C., Fargo, F., Al-Nashif, Y., Hariri, S., Hughes, J.: Autonomic resilient cloud management
(ARCM) design and evaluation. In: 2014 International Conference on Cloud and Autonomic
Computing (ICCAC), pp. 44–49 (2014)

Varadharajan, V., Tupakula, U.: Security as a service model for cloud environment. IEEE Trans.
Netw. Serv. Manag. 11(1), 60–75 (2014)

Villari, M., Celesti, A., Tusa, F., Puliafito, A.: Data reliability in multi-provider cloud storage
service with RRNS. In: Canal, C., Villari, M. (eds.) Advances in Service-Oriented and Cloud
Computing. Communications in Computer and Information Science, vol. 393, pp. 83–93.
Springer, Heidelberg (2013)

Vleju, M.B.: A client-centric ASM-based approach to identity management in cloud computing.
In: Castano, S., Vassiliadis, P., Lakshmanan, Laks, V., Lee, M.L. (eds.) ER 2012. LNCS, vol.
7518, pp. 34–43. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33999-8_5

Yang, P., Gui, X., Tian, F., Yao, J., Lin, J.: A privacy-preserving data obfuscation scheme used
in data statistics and data mining. In: High Performance Computing and Communications
2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC-EUC),
pp. 881–887 (2013)

Yang, Q., Cheng, C., Che, X.: A cost-aware method of privacy protection for multiple cloud
service requests. In: 2014 IEEE 17th International Conference on Computational Science and
Engineering (CSE), pp. 583–590 (2014)

Yau, S.S., An, H.G.: Protection of users’ data confidentiality in cloud computing. In: Proceedings
of the Second Asia-Pacific Symposium on Internetware, Internetware 2010, pp. 11:1–11:6.
ACM, New York (2010)

Zhang, G., Liu, X., Yang, Y.: Time-series pattern based effective noise generation for privacy
protection on cloud. IEEE Trans. Comput. 64(5), 1456–1469 (2015)

Zhang, G., Yang, Y., Chen, J.: A historical probability based noise generation strategy for
privacy protection in cloud computing. J. Comput. Syst. Sci. 78(5), 1374–1381 (2012a).
{JCSS} Special Issue: Cloud Computing 2011

Zhang, G., Yang, Y., Chen, J.: A privacy-leakage-tolerance based noise enhancing strategy for
privacy protection in cloud computing. In: 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pp. 1–8 (2013)

Zhang, G., Yang, Y., Liu, X., Chen, J.: A time-series pattern based noise generation strategy for
privacy protection in cloud computing. In: 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 458–465 (2012b)

Zhang, G., Yang, Y., Yuan, D., Chen, J.: A trust-based noise injection strategy for privacy
protection in cloud. Softw.: Pract. Exp., 42(4), 431–445 (2012c)

Zhang, G., Zhang, X., Yang, Y., Liu, C., Chen, J.: An association probability based noise
generation strategy for privacy protection in cloud computing. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 639–647. Springer,
Heidelberg (2012b). doi:10.1007/978-3-642-34321-6_50

202 S. Hosseinzadeh et al.

Publication III

Security in Container-based Virtualization

through vTPM

Shohreh Hosseinzadeh, Samuel Laurén, Ville Leppänen. In: 2016

IEEE/ACM 9th International Conference on Utility and Cloud Com-

puting (UCC 2016), Pages 214-219. IEEE/ACM 2016.

c© 2016 ACM. Reprinted, with permission.

113

114

Security in Container-based Virtualization through vTPM

Shohreh Hosseinzadeh, Samuel Laurén, and Ville Leppänen
Department of Information Technology

University of Turku, Finland
{shohos, samuel.lauren, ville.leppanen}@utu.fi

ABSTRACT
Cloud computing is a wide-spread technology that enables
the enterprises to provide services to their customers with a
lower cost, higher performance, better availability and scal-
ability. However, privacy and security in cloud computing
has always been a major challenge to service providers and
a concern to its users. Trusted computing has led its way in
securing the cloud computing and virtualized environment,
during the past decades.
In this paper, first we study virtualized trusted platform

modules and integration of vTPM in hypervisor-based vir-
tualization. Then we propose two architectural solutions
for integrating the vTPM in container-based virtualization
model.

CCS Concepts
•Security and privacy → Systems security; Trusted
computing; Virtualization and security;

Keywords
cloud computing, security, trusted computing, trusted plat-
form module, TPM, vTPM

1. INTRODUCTION
With the advancement in cloud computing technologies,

more and more enterprises and service providers are shifting
towards this technology and delivering their services over
clouds. This is while security has always been a challenge
in cloud computing technology. Due to the nature of cloud
computing, the data is stored outside the perimeters of the
organizations, which brings along concerns about the data
security and the privacy. There is a large body of research
on securing the cloud computing through various techniques
[11], [21]. Cloud service providers are always attempting to
protect the cloud from insider and outsider attacks through
security measures such as controlling the access to software
and hardware facilities. Nonetheless, due to the fact that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WISARC ’16 Shanghai, China
c© 2016 ACM. ISBN 978-1-4503-4616-0. . . $15.00

DOI: 10.475/123 4

there is still some level of access from the administrative
level to user’s Virtual Machine (VM), there is still a need for
protecting the integrity and confidentiality of computation
in the cloud [20].
Trusted Computing technology, developed by Trusted Com-

puting Group (TCG) [3], is a technology to ensure that the
computers behave in expected ways. This technology pro-
vides a hardware based security solution through Trusted
Platform Module (TPM) [4]. Typically, it contains a physi-
cal chip embedded on the motherboard of a platform and is
controlled via a software.
Trusted computing is a mechanism to establish a secure

environment and provide privacy and trust. The trusted
computing mechanism can as well be extended to cloud com-
puting environment by integrating the trusted platform into
cloud architecture. The trusted platform is integrated into
the cloud through TPM and provides the cloud with secure
functionalities such as secure authentication, access control,
communication security, and data protection [22]. For in-
stance, integrating the trusted computing to IaaS is a way
to certify the confidential execution of the VMs running on
the platform [20].
In this paper, we first discuss two different virtualization

technologies and present a comparison between these two
models in terms of security and efficiency. Then we study
how trusted computing technology is extended to cloud com-
puting and virtual environments with the aim of improving
the security. We propose solutions for integrating TPM to
container-based virtualization model for improving security
and also supporting secure live migration of the virtual ma-
chines. To the best of our knowledge, we are not aware
of any previous virtual TPM constructs for container-based
virtualization.
The remainder of this paper is structured as follows. Sec-

tion ?? presents an introductory background on the terms
and concepts related to this research work. Section 2 overviews
the related works in this domain. In Section 3 we present our
virtual TPM solutions for the container setting. Conclusions
and future work proposals come in Section 4. a) Trusted
Platform Module (TPM) is a micro-controller used in
computing devices (e.g., PCs, servers, mobile phones, ap-
pliances) to provide hardware root of trust, for instance for
identification of the user and device, data protection, net-
work access [2]. TPM mainly presents cryptography func-
tionalities, such as encryption, decryption, and signing cryp-
tographic keys, and also stores the cryptographic keys. The
artifacts (i.e., passwords, encryption keys, certificates) used
for authentication of the device are stored on the TPM chip.

2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing

 214

TPM is as well used for ensuring the trustworthiness of the
platform. To this end, it stores platform measurements that
ensure the safety of the computation. These measurements
contain authentication (to assure that the platform is what
it asserts to be), and attestation of the platform (to assure
that the platform has not been corrupted/breached and is
trustworthy).
b) Virtual Trusted Platform Module (vTPM): In

the recent years hardware platform virtualization has been
an advantageous approach in cutting the operation expenses
by sharing the platform amongst several software workloads
(e.g., web hosting centers). However, sharing the same plat-
form brings security issues along which require regulations
for separation of the workloads, the resources, and also en-
suring software integrity. Virtual Machine Monitors (=hy-
pervisors) are good solutions for the isolating of these work-
loads, and hardware based root of trust through TPM guar-
antees the integrity of software and mitigating the software
attacks. Therefore, the combination of these two technolo-
gies is a well-fitting security solution in this scenario [7]. In
order to make the TPM available to multiple operating sys-
tems concurrently, the idea of virtualized platform is used.
TPM is emulated to each of the guest operating systems, in
a way that they can interact with TPM and access its func-
tionalities, as with a TPM on a physical system [5]. Each
guest virtual machine accesses the unique emulated TPM,
as it appears that there is a separate TPM for each platform
and from the virtual machines’ viewpoints they have their
own TPM. Moreover, vTPM should provide all the function-
alities that the physical TPM presents to the system. For
instance, modern hypervisors enable the operating systems
to migrate between the physical hosts. Thus, it is expected
that the virtual TPMs support this feature as well [7].
c) Hypervisor-based virtualization vs container-

based virtualization: During the past decades various
virtualization mechanisms have been developed including
hypervisor-based virtualization and container-based virtu-
alization. In hypervisor-based virtualization a hypervisor
(Virtual Machine Monitor (VMM)) is running on top of
the server hardware enabling multiple virtual machines to
share virtualized hardware resources. This means that dif-
ferent operating systems (e.g., Windows, Linux) can run on
a physical platform. While, in operating-system-level virtu-
alization (also referred to as container-based virtualization)
rather than hardware, the virtualization happens at the op-
erating system level. In other words, containers share the
same operating system kernel. Thus, OS virtualization al-
lows running multitude execution environment instances on
a single kernel [1]. Figure 1 depicts the architecture of these
two virtualization models.
Each of these technologies have their own strengths and

weaknesses. OS-level virtualization has less performance
overhead. As containers are more lightweight than the vir-
tual machines and therefore, it is faster to boot a container
comparing to a guest OS. On the other hand, OS-level vir-
tualization has less flexibility in a way that it only hosts the
same OS as the the host is using [19].
d) Virtual machine migration: Migration of virtual

machines is the act of moving a virtual machine from one
physical host to another. This ability is helpful in several
different ways. For instance, a) for load balancing, i.e., to
move the VM to a less loaded host, b) at the time of main-
tenance and upgrades when a server needs to be shut down

Figure 1: Hypervisor-based virtualization vs
container-based

the VM could be transferred to another server, and c) in
disaster recovery, when a host has failed the VM could be
restarted from another host. Virtual machine migration can
be done in offline or live modes. Offline migration is quite
straightforward, i.e., the VM is turned off and then the mi-
gration process occurs from the source to the destination
host. Provided that, live migration lets the VMs to migrate
from a physical host to another while the VM is in use. I.e.,
no significant interruption happens to the availability of the
VM and applications for thier users [15]. In spite of the
advantages that the live migration presents to virtualization
technology, its security still needs consideration. E.g., Ober-
heide [17] has discussed three different classes of security
threats targeting the process of VM live migration. Con-
cerning container-based virtualization, we note that there is
very little literature on migration in that setting presently.
On the other hand, hypervisor-based vTPM solutions focus
on supporting migration, and we will also consider that in
our solutions.

2. RELATED WORK
Berger et al. [7] have presented software implementation

of virtualized TPM to make TPMs available for multiple
virtual machines running on top of a hypervisor. Their de-
sign is shown in Figure 2. The cryptographic functions and
secure storage services supported by TPM will be available
to the applications and operating systems running on top of
virtual machines. The TPM specification is implemented in
software and the vTPM is placed into a dedicated VM. The
vTPM provides support for migration of vTPM instances,
suspension, and resume operations. However, a drawback of
this approach (i.e., implementing the TPM in software) is
that it cannot be capable of supporting the security needs
and protection levels as well as the hardware does [25]. To
overcome this limitation, Stumpf and Eckert [25] have pro-
posed multi-context TPM approach that is completely hard-
ware based and enables the VMs to benefit fully from TPM’s
functionalities. In this approach, virtual machine monitor
uses a second privilege level to issue scheduling and man-
agement commands. Information about the state of a TPM
is stored in TPM Control Structure (TPMCS), which en-
sures that the state of one VM’s TPM does not corrupt the
state of another VM’s TPM. They also propose a migration
protocol that supports secure migration of TPM contexts to
a new TPM.
England and Loeser [9] consider two different studies [7,

12] that provide trusted computing in virtual environments,
then they propose a para-virtualized TPM approach that

215

TPM

vTPM
Manager

VM

VM

Client
Driver

VM

Client
Driver

vTPMvTPM

Hypervisor

Figure 2: vTPM design proposed by Berger et al.
[7]

shares the TPM (v1.2) among several operating systems.
This approach is close to the both presented ideas in the
two previous works. It multiplexes the TPM hardware and
takes advantage of the TPM hardware key protection. Then
it uses software components for safe device sharing.
Shi et al. [23] noted the difficulties associated with se-

curing software based vTPMs and proposed an improved
design where vTPM secrets are protected using symmetric
encryption. Their solution implements vTPMs for qemu
based virtual machines by utilizing kernel and user space
components. Wan et al. [26] analyzed existing vTPM solu-
tions in order to better understand the security properties
of different implementation approaches.
As discussed earlier, migration of the virtual machine is

an advantageous feature supported in today’s virtual envi-
ronments. When migrating a VM, the related vTPM should
be considered to move as well. Therefore, in the literature,
there have been works done on secure migration of VM-
vTPM. Hong et al. [14] have studied various VM-vTPM live
migration protocols and analyzed them in terms of perfor-
mance and security. Following that, they proposed a trusted
live migration protocol based on pre-copy. This protocol
includes three different phases: authentication and remote
attestation of the source and destination platforms, and se-
cure data transfer. The implementation is based on Xen [6].
Another vTPM-VM live migration protocol is proposed by
Fan et al. [10] which consists of two different phases, in-
tegrity verification and data transfer. In the earlier phase,
the source and destination platforms mutually authenticate
themselves, negotiate a session key, and construct a secure
channel. In the later phase, the memory content and all
VM’s external states are transferred. The security of this
protocol is analyzed by studying how resistant it is against
various types of attacks. For instance, the attacks may oc-
cur a) between the virtual machines, b) on communication
between the host operating system and the virtual machine,
and c) on data transmission channel. Danev et al. [8] con-
sider the secure migration of vTPM-VM in private cloud
environments. They study the security requirements of a

secure migration, and propose a vTPM key structure and
also a vTPM base VM migration protocol. By implement-
ing the proposed scheme on Xen hypervisor, they claim that
the protocol guarantees stronger security for private virtu-
alized environments. Similarly, Liang et al. [16] propose a
VM-vTPM migration protocol for private clouds, to guaran-
tee the confidentiality, integrity, and authentication of the
source and destination hosts. The protocol consists of three
phases, first the source and destination platforms mutually
authenticate themselves to each other. Second, the vTPM
is migrated, and in third, the VM is migrated.

3. PROPOSED APPROACHES
Virtualization and trusted computing are both promis-

ing technologies. Combination of these two offers a well-
favoured secure solutions for the many domains including
cloud computing. Virtualization is a beneficial factor in im-
plementing a trusted platform. Integrating a TPM can sup-
port the security in virtual environments. The main advan-
tage that it presents is the process isolation, which prevents
a software process conflicting with another. For instance,
it offers secure key storage of the secrets on the platform,
identification of the VMs to their guest operating systems,
and remote attestations for the hypervisors [18].
As discussed earlier, there are two types of virtualization,

hypervisor-based and container-based. Container-based vir-
tualization (also known as OS-level virtualization) has the
advantage of being faster and consuming less storage, while
on the other hand has the limitation that the user cannot
use several different types of operating systems. As the
container-based model becomes more popular, security and
management of the containers and also the hosting platform
become important issues.
We studied the integration of the trusted computing tech-

nology into the virtual environments in Section 2 and real-
ized that in all the studied research works, vTPM is pro-
posed and implemented for hypervisor-based virtualization
model, and none is considering solution for container-based
virtualization. This motivated us to consider integrating
vTPM in container-based virtual environments. To achieve
this goal, we propose two different architectures that can
integrate TPM hardware module in container-based virtu-
alization model and virtualize it to be used by multiple con-
tainers.
1) vTPM in the operating system kernel: In this

proposed architecture, the TPM module is placed below the
container-layer into the OS kernel. In order to make the
TPM available to several containers, it needs to be virtu-
alized. In our design, a kernel module is used to provide
arbitrary number of software based vTPMs. Like hardware
based TPMs, the software TPM presents a character de-
vice type interface to the userspace. These vTPMs can be
exposed to containers through the usual mechanisms. The
vTPMs are linked with the physical TPM. Figure 3 illus-
trates this architecture.
In order to evaluate a vTPM architecture we refer to the

four requirements proposed by Berger et al. [7]:

R1 vTPMs must offer the same interface to the software as
hardware based TPM does, that is, the use of vTPM
must be transparent to software.

R2 There must exist a strong association between the vTPM
and the virtual machine.

216

TPM

Container Container Container

vTPM vTPMvTPM

Linux

Container
Manager

Figure 3: vTPM implemented in a kernel module

R3 There must exist a strong association between the vTPM
and the trusted computing base.

R4 vTPMmust be distinguishable from the physical TPMs.
This is important because of the potentially different
security guarantees associated with the different TPM
types.

As per Requirement R1, the interface provided by our pro-
posed vTPM is equivalent to the one provided by a physical
TPM. From a software point of view, the character devices
are identical.
However, as Berger et al. [7] have noted, implementing

the low-level cryptographic operations is not necessarily the
challenging part of TPM virtualization. The challenge is
providing comparable security guarantees to hardware based
trusted platform modules.
Assuming the container system providing the container

isolation fulfills the requirements introduced by Reshetova
et al. [19], we can consider the security properties provided
by our in-kernel implementation from the viewpoint of a
container. If containers cannot modify the host kernel (e.g.
by loading new modules or by exploiting vulnerability in
the kernel), they can reliably attest their own state by using
hash extend feature of the vTPM. This however, assumes
that the host operating system running below the containers
is trusted. In the ideal case, we would like the container to
be able to verify, not only its own state, but the state of the
OS running the container. The trust should be rooted on
hardware as R4 mandates.
This challenge of allowing the virtualized (or in our case,

containerized) VM to verify the platform it is running on is
also touched by the solution presented by Berger et al. [7].
Their solution for this is two-fold. In their implementation,
the system exposes some of its platform configuration regis-
ters to the virtual machine, this allows the virtual machine
to have a view of the state of the underlying platform. How-
ever, it is worth to note that this solution is problematic for
migration since information sealed with the PCR values be-

longing to a different physical machine cannot be unsealed
after migration.
Simply, having access to the supposed state of the under-

lying hardware is not enough. The vTPM itself has to be
trusted. On a physical TPM, this is done by having a plat-
form provider sign an endorsement key (ek) stating that the
TPM is trustworthy. Berger et al. [7] extend this by hav-
ing each TPM have its own endorsement key. They propose
multiple different protocols for signing the endorsement keys
of vTPMs with the help of the hardware based TPM. Each
of the schemes has different security trade-offs associated
with it.
However, the details of the scheme used to anchor the

trust to a physical TPM are not the main focus of our pro-
posal. We believe that multiple solutions could exists for
these problems and many of the schemes presented in the
literature targeting hardware hypervisors could also be ap-
plied in a container setting.
However, like the proposal presented in [7], many of the

existing schemes for vTPM assume the hypervisor is respon-
sible for managing all hardware access of the VMs and able
to prevent unauthorized access to the software based vTPM.
When borrowing ideas originally targeted to be used in full
or even para-virtualized systems to containers, one has to
consider the security implications that arise as the hypervi-
sor is removed from the setting.
There have been multiple analyses of container security

and much have been written about their security properties
in contrast to a more traditional hypervisor-based approach
[13, 19]. Many of the challenges come down to the multi-
tude of interfaces exposed by container-based solutions and
the general newness of the code maintaining the isolation of
containers.
By putting the software based TPM inside the kernel, we

can better protect it from unauthorized access by other pro-
cesses and containers, than we could in a user-space based
solution. However, this level of protection is arguably still
less than the one provided by a full hypervisor.
In regards to the Requirement R2, a container manager

would most likely be responsible for asking the kernel to
create a new vTPM and assigning the device to a container.
This could be done at the time the container is created.
2) vTPM placed in a separate container: Figure 4

illustrates this architecture. This solution is in some ways,
even more similar to the design originally proposed by Berger
et al. [7]. Where in their design, the virtual TPM manager
is placed inside a separate Xen domain, here we have placed
the software TPMs inside just another container. This spe-
cial vTPM management container can have access to the
hardware based TPM and expose vTPM interface to the
other containers through a communication channel. In prac-
tice, this channel can be local UNIX domain socket or an-
other IPC mechanism.
The advantage of moving the implementation from kernel

to the userspace comes from the arguably easier implemen-
tation process. Instead of kernel module, a daemon will
process the requests from the other containers.
Depending on the exact nature of the IPC mechanism cho-

sen for the TPM command transfer. The container using
the service could need an additional piece of software that
presents the IPC interface as a standard character device.
In some ways, this way of implementing software TPMs
is similar to the TPM simulator project by Strasser and

217

Sevnic et al. [24]. In their design they have a dedicated
daemon providing the TPM functionality and an additional
component exposing the daemon through the low-level de-
vice interface.
What differentiates our scenario from a mere simulator is

the need for the daemon to be associated with the under-
lying trusted computing base. The simulator only provides
the functionality but does not begin to offer the security
guarantees associated with trusted platform modules.
However, moving vTPM implementation from the ker-

nel to the user space – even if the daemon is running in
a separate container – has still potential security implica-
tions. Trusted platform modules, regardless of their sub-
strate, have to be able to protect their secrets. One of the
key benefits of a hardware based TPM is that they are sep-
arate physical entities that can arguably protect keys from
software based attacks in a more effective manner than pure
software based solutions. Processes have many ways of in-
specting and modifying each other’s memory and controlling
execution. Compared to this, placing the software TPM to
kernel provides some protection, since the kernel can better
limit this kind of access it exposes to the user space.
Container systems should isolate processes belonging to

different containers [19]. In practice, this functionality is
provided currently in Linux based container solutions through
the use of resource namespaces. pid namespaces allow dif-
ferent containers to have entirely different view of processes
running on the system. Along with other namespaces, they
provide the fundamental building blocks of containers. If the
system is working as it is supposed to, no process belonging
to a different container can access software TPM’s state in
another container. In practice, there have been cases where
this has not been the case, and container escapes are cer-
tainly not unheard of. Also, if an attacker manages to move
from a container to the host, the attacker is likely able to
gain access into other containers.
3) TPM with a native support for virtualization:

In this paper, we have not explored the option of having a
dedicated hardware TPM with a native support for virtu-
alization, and we list the proposal here only for the sake of
completness. There is existing research aiming to introduce
direct support for virtualization at the hardware level [7].
If such device were to be implemented, we believe it would
be likely to be usable in the context of containers, even if
the original reasoning was framed to be used with the more
traditional hypervisor-based systems.

4. CONCLUSION AND FUTURE WORK
In this work, we have provided an overview of the research

concerning virtualized trusted platform modules. We have
considered the challenges of applying existing approaches,
originally designed to be used in a hypervisor-based setting,
to a container-based system. Additionally we have provided
two different architectural solutions for providing vTPM ser-
vices for containers.
Future work is still needed to further specify the exact

mechanisms for trust extensions from hardware based TPM
to our proposed vTPM design. However, we believe that
many of the existing approaches could be modified to work
in a container-based environment. We are yet to implement
the proposed architecture and doing so will be a chance for
future research.

TPM

Linux

Container Manager

vTPM
Manager

Container

Container

Adapter

Container

Adapter

Figure 4: vTPM located in a dedicated container.

Acknowledgment
The authors gratefully acknowledge Tekes âĂŞ the Finnish
Funding Agency for Innovation, DIMECC Oy, and the Cy-
ber Trust research program for their support.

5. REFERENCES
[1] Cisco Application-Centric Infrastructure (ACI) and

Linux Containers. http://www.cisco.com/c/en/us/
solutions/collateral/data-center-virtualization/
application-centric-infrastructure/
white-paper-c11-732697.html. Accessed: 2016-08-05.

[2] TCG Specification Architecture Overview
Specification Revision 1.4, 2007.
http://www.trustedcomputinggroup.org/
tcg-architecture-overview-version-1-4/. Accessed:
2016-08-08.

[3] Trusted Computing Group (TCG).
http://www.trustedcomputinggroup.org/. Accessed:
2016-08-08.

[4] Trusted Platform Module (TPM).
http://www.trustedcomputinggroup.org/work-groups/
trusted-platform-module. Accessed: 2016-08-03.

[5] Virtual Trusted Platform Module- IBM Reseach.
http://researcher.watson.ibm.com/researcher/view
group.php?id=2850. Accessed: 2016-08-08.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164–177, Oct. 2003.

[7] S. Berger, R. CÃ ↪aceres, K. Goldman, R. Perez,
R. Sailer, and L. Doorn. vTPM: Virtualizing the

218

trusted platform module. In In USENIX Security,
pages 305–320, 2006.

[8] B. Danev, R. J. Masti, G. O. Karame, and S. Capkun.
Enabling secure VM-vTPM migration in private
clouds. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, pages
187–196, New York, NY, USA, 2011. ACM.

[9] P. England and J. Loeser. Para-Virtualized TPM
Sharing, pages 119–132. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[10] P. Fan, B. Zhao, Y. Shi, Z. Chen, and M. Ni. An
improved vTPM-VM live migration protocol. Wuhan
University Journal of Natural Sciences, 20(6):512–520,
2015.

[11] D. Fernandes, L. Soares, J. Gomes, M. Freire, and
P. Inácio. Security issues in cloud environments: a
survey. International Journal of Information Security,
13(2):113–170, 2014.

[12] K. Goldman and S. Berger. TPM main part 3 IBM
commands, 2005.

[13] A. Grattafiori. Understanding and hardening Linux
containers. Whitepaper, NCC Group, apr 2016.

[14] Z. Hong, W. Juan, and Z. HuanGuo. A trusted
VM-vTPM live migration protocol in clouds. In 1st
International Workshop on Cloud Computing and
Information Security. Atlantis Press, 2013.

[15] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live
virtual machine migration with adaptive, memory
compression. In 2009 IEEE International Conference
on Cluster Computing and Workshops, pages 1–10,
Aug 2009.

[16] X. Liang, R. Jiang, and H. Kong. Secure and reliable
VM-vTPM migration in private cloud. In
Instrumentation and Measurement, Sensor Network
and Automation (IMSNA), 2013 2nd International
Symposium on, pages 510–514, Dec 2013.

[17] J. Oberheide, E. Cooke, and F. Jahanian. Empirical
exploitation of live virtual machine migration. In Proc.
of BlackHat DC convention, 2008.

[18] G. Proudler, L. Chen, and C. Dalton. Trusted
Computing Platforms: TPM2.0 in Context. Springer,
Bristol, United Kingdom, 2014.

[19] E. Reshetova, J. Karhunen, T. Nyman, and
N. Asokan. Security of OS-level virtualization
technologies. In Secure IT Systems:19th Nordic
Conference, NordSec 2014, Tromsø, Norway, October
15-17, 2014, Proceedings, pages 77–93. Springer, 2014.

[20] N. Santos, K. P. Gummadi, and R. Rodrigues.
Towards trusted cloud computing. In HOTCLOUD.
USENIX, 2009.

[21] A. L. Shaw, B. Bordbar, J. Saxon, K. Harrison, and
C. I. Dalton. Forensic virtual machines: Dynamic
defence in the cloud via introspection. In Cloud
Engineering (IC2E), 2014 IEEE International
Conference on, pages 303–310, March 2014.

[22] Z. Shen and Q. Tong. The security of cloud computing
system enabled by trusted computing technology. In
Signal Processing Systems (ICSPS), 2010 2nd
International Conference on, volume 2, pages
V2–11–V2–15, July 2010.

[23] Y. Shi, B. Zhao, Z. Yu, and H. Zhang. A

security-improved scheme for virtual TPM based on
KVM. Wuhan University Journal of Natural Sciences,
20(6):505–511, 2015.

[24] M. Strasser and P. Sevnic. A software-based TPM
emulator for Linux. Semesterarbeit, ETH Zurich, 2004.

[25] F. Stumpf and C. Eckert. Enhancing trusted platform
modules with hardware-based virtualization
techniques. In 2008 Second International Conference
on Emerging Security Information, Systems and
Technologies, pages 1–9, Aug 2008.

[26] X. Wan, Z. Xiao, and Y. Ren. Building trust into
cloud computing using virtualization of TPM. In
Fourth International Conference on Multimedia
Information Networking and Security, pages 59–63,
Nov 2012.

219

Publication IV

Security in the Internet of Things through

Obfuscation and Diversification

Shohreh Hosseinzadeh, Sampsa Rauti, Sami Hyrynsalmi, Ville Leppänen.

In: International Conference on Computing, Communication and Se-

curity (ICCCS), 1–5. IEEE, 2015.

c© 2015 IEEE. Reprinted, with permission.

121

122

Security in the Internet of Things through
Obfuscation and Diversification

Shohreh Hosseinzadeh, Sampsa Rauti, Sami Hyrynsalmi and Ville Leppänen

Department of Information Technology
University of Turku, Finland

Emails: {shohos, sjprau, sthyry, ville.leppanen} @utu.fi

Abstract—Internet of Things (IoT) is composed of hetero-
geneous embedded and wearable sensors and devices that
collect and share information over the Internet. This may
contain private information of the users. Thus, securing the
information and preserving the privacy of the users are of
paramount importance.

In this paper we look into the possibility of a p p l y i n g the
two techniques, obfuscation and diversification, in IoT.
Diversification and obfuscation techniques are two outstand-
ing security techniques used for proactively protecting the
software and code. We propose obfuscating and diversifying
the operating systems and APIs on the IoT devices, and also
some communication protocols enabling the external use of
IoT devices. We believe that the proposed ideas mitigate the
risk of unknown zero-day attacks, large-scale attacks, and also
the targeted attacks.

Keywords—Internet of Things, IoT, security, privacy, obfus-
cation, diversification

I. INTRODUCTION

Internet of Things (IoT) or Internet of Everything, was
introduced by MIT Auto-ID Labs in 1999 [1], is a network
of physical devices (objects) connecting to each other (wire-
less) for sending/receiving data. The tiny chips embedded
in the devices enable them to communicate without the
human interaction. This aims to make the human lives more
intelligent, automated and thus more comfortable. IoT is
known as the third revolution in information technology
after the Internet and mobile communication networks, and
today it is being used in multitude public and private
sectors, ranging from the public safety to health care. By
the continuous growing trend, more and more”things” are
getting connected to each other every day, collecting and
transmitting personal and business information back and
forth. Cisco IBSG [2] reports that the number of connected
devices in 2015 is 25 billion, and this number is expected
to grow to 50 billion by 2020. However, the security in IoT
is still a major challenge. According to [3], 70 percent of
the IoT devices are vulnerable to exploits that c o u l d be a
doorway for attackers to the network. On this basis,
researchers and developers are continually seeking effective
techniques that boost the security in this environment, which
is compatible with the limitations of the participating nodes
in IoT. To the best of our knowledge, none of the existing
research works in the field of IoT security have lo o ked
into the obfuscation and diversification techniques as the
potential techniques for mitigating the risk of malware.

In this paper, we propose a novel idea that addresses
possible security threats in IoT. We base our idea on two
promising techniques, obfuscation and diversification, that
have been proved to be successful in impeding the malware
in various domains [4]. In this work-in-progress paper, we
propose using these two techniques to protect the operating
systems and APIs of the devices participating in IoT, and
also to introduce an additional level of security at the
network level, by diversifying some protocols used in the
communication. This study is a research proposal, in which
we present our novel ideas. In the future works, we consider
implementing these ideas, and demonstrate the effectiveness
of the proposed approaches.

The remainder of the paper is structured as follows: in
Section 2 we present a background on the characteristics of
IoT, the software and the protocols used in these domains.
Section 3 discusses our proposed idea in detail, and Section
4 concludes the paper.

II. CHARACTERISTICS OF THE I O T

Operating systems and software in IoT

IoT comprises a wide variety of heterogeneous sensors
and devices, of which some are powered by more potent 32-
bit processors (e.g., smart phones) and some are controlled
by lightweight 8-bit micro-controllers [5]. Therefore, the
chosen software should be applicable to a range of devices,
including the lowest power ones. On one hand, it should be
capable of supporting the functionality of the object; and
on the other hand, should be in line with the limitations of
these devices in memory, computational power, and energy
capacity. The software in IoT should have the following
characteristics [6]:

• Heterogeneous hardware constraints: the IoT soft-
ware should have limited CPU and memory re-
quirements, so that it could support the constrained
hardware platforms.

• Autonomy: It should be energy efficient, reliable,
and adaptive to the network s t a c k .

• Programmability: It should provide a standard Ap-
plication Program Interface (API) for software de-
velopment and support the standard programming
languages.

These factors have leaded the developers to think of the
operating systems that are adaptive to the diverse low-power
objects in IoT. Among all, Contiki [7] and TinyOS [8] are

978-1-4673-9354-6/15/$31.00 ©2015 IEEE

Figure 1. IoT network stack, and some examples of the corresponding
protocols used in each layer [6].

the most dominant operating systems used on IoT devices.
Contiki [7] is an open-source Operating System (OS) devel-
oped in C with a modular structure. It connects low-power
micro-controllers to the Internet, and supports a wide range
of networking standards, including IPV4, IPV6, CoAP. This
lightweight OS is considered reasonably memory efficient
by using only few kilobytes of memory1. Contiki is de-
signed based on the event-driven multi-threading kernel.
Moreover, Contiki has a dynamic nature, i.e., it allows the
dynamic loading and unloading of applications at run-time.
TinyOS [8] is an open source, application specific OS de-
signed and widely used by low-power devices in WSN, and
ubiquitous environments. It is implemented using the
component-based programming model and supports the
event-driven concurrency. TinyOS is multi-threading and has
monolithic structure.

Access protocols in Io T

IoT encompasses a huge number of devices and appli-
cations connected to each other. Basically, there are three
different types of connections in IoT [9]: a) Device to Device
(D2D) is the connection between the devices, b) Device to
Server (D2S) is the connection for sending collected data
from the devices to the servers, and c) Server to Server
(S2S) is the connection between the servers to share the
collected data. For making the connections feasible there
exist protocols that are designed based on the requirements
and characteristics of the participants in IoT. As an exam-
ple, Constrained Application Protocol (CoAP) [10] is an
application layer protocol which is designed to be used in
resource-constrained devices and WSN nodes. This protocol
is simply translated to HTTP which simplifies the integration
with the web. Figure 1 illustrates the current network stack
used in IoT, and some of the communication protocols that
are used in each layer .

1. Contiki: The Open Source OS for the Internet of Things:
http://www.contiki-os.org

Security of IoT

IoT is still not a mature technology and accordingly, the
security measures considered for it are still in early stages.
Due to the fact that IoT is based on the Internet, it is
subject to traditional security challenges threatening the
Internet; and in addition to those traditional challenges, the
key characteristics of IoT add new security threats on top
of them.

These characteristics are [11], [12]: Diversity: The par-
ticipating devices in IoT range from low power/cost to high
performance devices. Hence, the security measure designed
needs to be compatible with wide range of devices. Scale:
The number of sensors and devices in IoT is tremendously
growing, which makes it harder to control the devices and
the collected information. Wireless connection: devices are
connecting to the Internet wireless through different links
(Bluetooth, 802.11, ZigBee). The links should be protected
so that the communicated information does not leak. Em-
bedded use: most of the IoT devices are designed for single
purpose with different communication patterns. Mobility:
The devices in IoT are mobile and connected to the Internet
through various providers.

These properties make IoT more prone to the security
threats compared to the Internet and traditional sensor net-
works. Security threats known in IoT could be due to insuf-
ficient security software or firmware, insufficient security in
the Web interface, insecurity in cloud interface, insecurity
in mobile interface, insecurity at authentication or autho-
rization point, lack of proper security measures in network
services, lack of encryption, poor security configuration,
poor physical security, and privacy issues [12]. To overcome
these security challenges, different tactics are suggested to
be taken into account for implementation, including secure
firewall and intrusion prevention system, secure identity
management and access control program, multi-factor au-
thentication, emergency response program, and IoT security
standardizations [13]. However, we believe that they do not
sufficiently secure the IoT and more concrete security
measures are required. This motivated us to propose a novel
idea to boost the security in IoT.

III. ENHANCING THE SECURITY OF IOT USING

OBFUS- CATION AND DIVERSIFICATION
TECHNIQUES

Background on obfuscation and diversification

By using the obfuscation and diversification techniques

we do not aim at removing the security vulnerabilities, but
making it challenging and costly for the intruder to take
advantage of them.

Obfuscation refers to making the code more compli-
cated and harder to understand. As a result, the attacker
needs to spend more time and energy to comprehend the
code [14]. Figure 2 illustrates how obfuscation affects the
code: a) is a piece of JavaScript code, and b) is obfuscated
version of the same code. As the figure shows, the code is

scrambled/obfuscated in a way that it is harder to understand
the purpose of the code.

Figure 2. a) Original version of a piece of JavaScript code, and b)
obfuscated version of the same code

Diversification makes the program instances unique, so

that the attacker is no longer able to exploit a vast number
of devices via a single attack model. The attacker needs
to design various versions of attack models intended for
various program instances. This makes the attack costly and
difficult. Figure 3 illustrates the program diversification, in
which different replicas of program P are generated and
distributed to the users. All these programs function the
same, but have different internal structures. Therefore, even
if the attacker succeeds in attacking one version of the
program (P3), the other versions are safe.

Figure 3. Diversification generates unique instances of the software. A
single attack model works only for one instance.

The idea in diversification is to change all kinds of

internal interfaces appearing inside IoT systems, or between
IoT device and its backend (cloud) system. As diversification
can be done with respect to known reference interfaces,
software developers of IoT systems need not to be aware
of diversification details. In practice, the purpose of diversi-
fying an interface is to create a machine/system-wise unique
secret that is shared only between the legal ”clients” of
the interface. However, a diversified implementation is not
the same as an encrypted implementation – a s the idea
is that a diversified implementation is still executable as
such. Moreover, the idea behind the diversification
techniques is not to remove the vulnerabilities and the
security holes in software, but to prevent the attackers to
take advantage of them, since even if an attacker would

be able to use a security hole to inject malware (code)
into the system, the malware would not work as it would
need to access resources using the diversified (secret)
interfaces instead of the prevailing setting where
accessing only requires knowledge on reference interfaces.
Therefore, diversification is considered very useful for
securing the systems in the current era of OS
monoculture and in the settings where it is hard to patch
security problems of OS or system later on.

There exist different diversification techniques that use
Various transformation mechanisms at different levels of
software life cycle [16]. The idea of program diversification
for effectively protecting the operating systems has been
pioneered by Cohen [17]. In our previous works we have
applied the diversification and obfuscation to different OSs,
e.g., Linux to secure it against malware. As malware is
meant to run on the user’s computer to manipulate the
system or perform what an attacker desires [18], in order
to thwart some malware to access resources via the system
calls, we have to introduce a way to block the system calls
made directly and indirectly from an untrusted application.
For this purpose, we can diversify the system call numbers,
and the library functions that make system calls [19], [20].
In [21] we diversified also the indirect entry points to the
system calls and propagated the new information on entry
points to all legal applications, so that the malware will not
have the information to access the resources. On that
account, we designed a concrete diversification tool which
diversifies the symbols in the Linux ELF binaries and makes
them unique.

The proposed a p p r o a c h

As mentioned, security threats in IoT could potentially
be on the application layer (the software on the IoT devices)
or on the network layer. On this basis, we propose two novel
techniques to provide security in these two layers. We
propose: 1) obfuscating/diversifying the OSs and APIs used
in the IoT devices, and 2) obfuscating/diversifying some of
the access protocols among them.

The sensors and devices in the IoT contain embedded
chips which function with the help of an OS and APIs. This
OS and the APIs are prone to malware. Our first proposed
idea aims at protecting the IoT devices by applying diversi-
fication and obfuscation techniques to the OSs and APIs and
securing them against the malware. As discussed earlier, in
our previous works [19], [20], [21], we demonstrated that
by obfuscating the OS and diversifying the APIs we can
successfully make it harder for the malware to interact with
the interfaces and access the resources.

We believe the same approaches can be applied on the
OSs and APIs of the IoT devices to protect them from
the malware. By making the OS and the APIs unique
through diversification, we manage to thwart the massive-
scale attacks, i.e., the attacker by designing a single attack
model cannot take a large number of devices under control.
Additionally, we mitigate the risk of zero-day attacks.
Secondly, we propose applying diversification at the access
protocol level. In a communication network, an application
level protocol specifies the interfaces and the shared
protocols used by the communication parties. Protocol
identification is the act of identifying what protocol is used
in the communication session [22]. Protocol identification
can be done via static analysis methods and comparing the

a)
function setText(data) {
 document.getElementById("myDiv").innerHTML
= data;
}

b)
function ghds3x(n) {
 h = "\x69\u006En\u0065r\x48T\u004DL";
 a="s c v o v d h e , n i";x=a.split("
");b="gztxleWentBsyf";
r=b.replace("z",x[7]).replace("x","E").replace("s
","").replace("f","I")
 ["repl" + "ace"]("W","m")+"d";
c="my"+String.fromCharCode(68)+x[10]+"v";
s=x[5]+x[3]+x[1]+"um"+x[7]+x[9]+"t";d=this[s][r](
c);if(+!![])
 { d[h]=n; } else { d[h]=c; }
}

protocol used in the communication with the common existing
protocols. The information gained from this analysis could be
used by an intruder which endangers the integrity and
confidentiality of the communication. In order to protect the
protocol from identification, it could be obfuscated so that it
is more difficult to be recognized by the traffic classification
machines. Protocol obfuscation attempts to remove the
properties that make the protocol identifiable, e.g., packet size
and byte sequence (make them look random). The most
common way for protocol obfuscation is using cryptography.
Depending on the need of the network, different levels of
encryption could be applied [22].

We propose obfuscating the communication protocol
among a small set of nodes (e.g., within a home) in a
way that the obfuscation method is kept secret among them
and only the nodes which know the secret are able to
communicate with each others. By changing/complicating
the form of the protocol and making it different from the
default format, we aim at generating a huge number of
unique diversified protocols from a reference protocol.
Applying diversification to the application is feasible, al-
though it has two main challenges: 1) the recognition of
transition (message sending/receiving) from programs, 2)
complication and slowdown of the program. Besides the
protocol obfuscation, we propose protocol diversification,
which considers the protocol as an operation of two state
machines, so that (synchronized) state changes are messages
sent between parties. The original implicit state machine of a
protocol can be diversified by adding/splitting new states and
transitions.

Motivation

For securing IoT and the participants of these envi-
ronments, we propose using diversification and obfuscation
mechanisms. We believe that these two techniques are effec-
tive for this purpose, by mitigating the risk of unknown zero-
day attacks and also preventing the large-scale and targeted
attacks. The motivation behind our idea is as follows:

• Additional Security: There have been various secu-

rity mechanisms designed and applied on IoT at the
network level. We believe that presenting security at
the device level is an orthogonal proactive measure for
security. In this way, the malware is stopped at one
node and not propagated to the whole network.

• Energy-efficiency: The participating nodes (devices) in
IoT are extremely constraint in resources, i.e., they are
limited in terms of memory, energy capacity, and
computational power. Therefore, the security
mechanism designed for them should be rather
lightweight. For instance, the anti-virus programs often
cannot be used in IoT devices (because of their huge
effect on the performance and energy consumption).
We believe that API diversification will not slow down
the execution at all: however, obfuscation and protocol
diversification affect the efficiency to some extent.

• No complexity for the manufacturer: The devices
in IoT are controlled by the tiny chips embedded in
them which may not tolerate a complex design. Con-
sidering this fact, our security mechanism does not add
any complexity overhead for the manufacturer.

• Alleviate the risk of malware: The devices in IoT
contain tiny chips with a lightweight OS on them. The

OS handles the operation of the device by ex-
ecuting the code. Code execution presents a surface
for attacks for unwanted software or malware. This
malicious behavior could range from unauthorized
accessing/reading of the data to altering it towards
the attacker’s intent. Thus, we believe the OS can
be protected using obfuscation and diversification
mechanisms, in order to make the malware ineffec-
tive. In order to make our approach applicable with
the limited capabilities of the devices (in computa-
tional power) we limit the level of obfuscation and
stick to the less complicated diversification methods,
e.g., identifier renaming.

• Alleviate the risk of massive-scale attacks: Currently,
there are billions of devices manufactured and dis-
tributed in a”monoculture” manner, i.e., they are
designed and produced identical which makes them
have the same layout and consequently, the same
security vulnerabilities. By designing one single at-
tack model, an attacker can simply invade a wide
range of devices. We believe that diversification, by
introducing”multiculturalism”, in software produc-
tion is a proper proactive security mechanism for the
widely distributed environments including IoT. The
idea of multiculturalism in the software production
alleviates the risk of massive-scale attacks.

• Amend the update limitation in embedded devices:
One of the drawbacks of the embedded devices is
that they usually cannot be updated, i.e., in case a
security hole is found they cannot update themselves
to receive the security patch. Hence, we need to
think of a solution that does not try to remove the
security holes and vulnerabilities of the software, but
to make it difficult for the attacker to exploit them.
Diversification and obfuscation techniques are
helpful to be prepared for the unknown attacks;
because the general idea behind these techniques is
not to remove the security holes but to avoid the
attacker from taking advantage of them.

 Limitations

Despite of the great benefits our proposed approach
brings along, there might be some limitations for it,
including cost and adaptability of the network.
Obfuscation on one hand protects the software and
applications from the malicious reverse engineering by
making them hard to read; and on the other hand, it
introduces costs in terms of execution overhead, memory
consumption, and code size increase. Additionally, when
obfuscation is applied on the protocol, it should be assured
that the both parties in the communication session support
the obfuscated protocol.

V. CONCLUSION AND FUTURE WORKS
In this paper we pointed out that due to the special char-

acteristics of IoT, the security is more challenging compared
to the traditional networks. Therefore, it requires security
measures that are in line with the capacity of IoT devices.

Diversification and obfuscation techniques are the two
promising security techniques that have been presented pre-
viously, and practitioners can already start to adapt these
techniques into use to protect their IoT networks. In this

work-in-progress we proposed two approaches using the two
techniques, obfuscation and diversification as well as request
further work in this topic.

First, we propose applying the techniques on the operat-
ing systems and APIs of the IoT devices to make it harder
to breach through the devices. This is a traditional way of
utilizing the techniques and it is expected that this has a
significant impact on improving the security of the devices.

Second, we propose applying these techniques on related
application layer protocols. The idea is to increase the
workload of a malicious attacker by using these techniques
together with other techniques such as cryptography to secure
the communication between the devices and servers.

Third, to the best of our knowledge, there are no
thorough study of attack vectors of IoT networks. Further
inquiries should focus on defining different attack vectors in
order to prove security analyses tools to start working with
countermeasures.

Finally, to extend this work-in-progress, our future work
is towards diversifying an IoT operating system of a device, and
obfuscating and diversifying an application level (internal)
access protocol used between the IoT devices and its cloud
based back-end system. For the device/application we have
planned to use a health care sector IoT device based on
Contiki as it is the most common operating system. The target
of protocol obfuscation and diversification is the CoAP used in
the same device.

ACKNOWLEDGEMENT
The authors gratefully acknowledge Tekes, the Finnish

Funding Agency for Innovation, DIGILE Oy and Cyber
Trust research program for their support.

REFERENCES
[1] I. Bose and R. Pal, “Auto-id: Managing anything, anywhere, anytime in

the supply chain,” Commun. ACM, 48(8), pp. 100–106, Aug. 2005.
[2] “The internet of things- how the next evolution of the internet is
changing everything,” verified 2015-07-08. [Online]. Available:
https://www.cisco.com/web/about/ac79/docs/innov/IoTIBSG 0411FINAL.pdf
[3] “Internet of things research study - hp report,” verified 2015-07-08.

[Online]. Available: http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-
4759ENW.pdf

[4] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SOK: Auto- mated
software diversity,” in Security and Privacy (SP), May 2014, pp. 276–
291.

[5] K. T. Nguyen, M. Laurent, and N. Oualha, “Survey on secure com-
munication protocols for the Internet of Things,” Ad Hoc Networks,
vol. 32, pp. 17 – 31, 2015.

[6] E. Baccelli, O. Hahm, M. Gü nes, M. Wählisch, and T. C. Schmidt,
“Operating systems for the IoT–goals, challenges, and solutions,” in
WISG2013, January 2013.

[7] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference
on, Nov 2004, pp. 455–462.

[8] P. Levis S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A.
Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos: An
operating system for sensor networks,” in Ambient Intelligence.
Springer Berlin Heidelberg, 2005, pp. 115–148.

[9] M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirt-
sis, “Toward proximity-aware internetworking,” Wireless Communi-
cations, IEEE, vol. 17, no. 6, pp. 26–33, December 2010.

[10] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” in Internet Engineering Task Force (IETF), 2014.

[11] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad, “Pro-

posed security model and threat taxonomy for the Internet of Things
(IoT),” in Recent Trends in Network Security and Applications, ser.
Communications in Computer and Information Science. Springer
Berlin Heidelberg, 2010, vol. 89, pp. 420–429.

[12] R. Roman, J. Zhou, and J. Lopez, “On the features and
challenges of security and privacy in distributed Internet of Things,”
Computer Networks, vol. 57, no. 10, pp. 2266 – 2279, 2013.

[13] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
Networks, vol. 76, no. 0, pp. 146 – 164, 2015.

[14] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of ob-
fuscating transformations,” Department of Computer Science, The
University of Auckland, New Zealand, Tech. Rep., 1997.

[15] “The International Obfuscated C Code Contest:
http://www.ioccc.org/years.html,” verified 2015-07-16.

[16] P. Larsen, S. Brunthaler, and M. Franz, “Automatic software diver-
sity,” Security Privacy, IEEE, vol. 13, no. 2, pp. 30–37, Mar 2015.

[17] F. B. Cohen, “Operating System Protection through Program Evolu-
tion,” Comput. Secur., vol. 12, no. 6, pp. 565–584, Oct. 1993.

[18] E . Skoudis, Malware: Fighting m a l i c i o u s code. Prentice
Hall Professional, 2004.

[19] S. Rauti, J. Holvitie, and V. Leppänen, “Towards a
diversification framework for operating system protection,”
ser. CompSysTech ’14. New York, NY, USA: ACM, 2014, pp.
286–293.

[20] S. Rauti, S. Laur´en, S. Hosseinzadeh, J.-M. M¨akel¨a, S. Hyrynsalmi,
and V. Leppänen, “Diversification of system calls in linux binaries,”
in InTrust2014. LNCS, to appear September 2015, p. 15 pages.

[21] S. Laur´en, P. M¨aki, S. Rauti, S. Hosseinzadeh, S. Hyrynsalmi, and
V. Leppänen, “Symbol diversification of linux binaries,” in
WorldCIS-2014. Infonomics Society, 2014, pp. 74–79.

[22] E. Hjelmvik and W. John, “Breaking and improving protocol
obfuscation,” Chalmers University of Technology, Tech. Rep, vol.
123751, 2010.

128

Publication V

Interface diversification in IoT operating

systems

Petteri Mäki, Sampsa Rauti, Shohreh Hosseinzadeh, Lauri Koivunen,

Ville Leppänen. In Proceedings of the 9th International Conference on

Utility and Cloud Computing, pp. 304-309. ACM, 2016.

c© 2016 ACM. Reprinted, with permission.

129

130

Interface Diversification in IoT Operating Systems

Petteri Mäki
Department of IT

University of Turku, Finland
mapema@utu.fi

Sampsa Rauti
Department of IT

University of Turku, Finland
sjprau@utu.fi

Shohreh Hosseinzadeh
Department of IT

University of Turku, Finland
shohos@utu.fi

Lauri Koivunen
Department of IT

University of Turku, Finland
lauri@koivunen.work

Ville Leppänen
Department of IT

University of Turku, Finland
ville.leppanen@utu.fi

ABSTRACT
With the advancement of Internet in Things (IoT) more
and more “things” are connected to each other through the
Internet. Due to the fact that the collected information
may contain personal information of the users, it is very
important to ensure the security of the devices in IoT.

Diversification is a promising technique that protects the
software and devices from harmful attacks and malware by
making interfaces unique in each separate system. In this pa-
per we apply diversification on the interfaces of IoT operat-
ing systems. To this aim, we introduce the diversification in
post-compilation and linking phase of the software life-cycle,
by shuffling the order of the linked objects while preserving
the semantics of the code. This approach successfully pre-
vents malicious exploits from producing adverse effects in
the system. Besides shuffling, we also apply library symbol
diversification method, and construct needed support for it
e.g. into the dynamic loading phase.

Besides studying and discussing memory layout shuffling
and symbol diversification as a security measures for IoT
operating systems, we provide practical implementations for
these schemes for Thingsee OS and Raspbian operating sys-
tems and test these solutions to show the feasibility of di-
versification in IoT environments.

CCS Concepts
•Security and privacy → Software security engineering;

Keywords
software security, diversification, IoT

1. INTRODUCTION
Internet of Things (IoT) is a network consisting of physical

devices that are connected to each other. These devices
communicate with each other by sending and receiving data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UCC 2016 Shanghai, China
c© 2016 ACM. ISBN 978-1-4503-4616-0. . . $15.00

http://dx.doi.org/10.1145/2996890.3007877

The goal is to make the human lives more comfortable and
automated. IoT is already being used in several public and
private sectors, and application areas range from health care
to industrial applications.

The number of connected devices is growing every day, as
more and more devices get connected to Internet. Gartner
estimates that there are over 6 billion connected ”things”
right now and the number will grow to 20 billion by 2020
[11].

However, security is still a huge problem in IoT operating
systems. According to [4], 70 percent of IoT devices cur-
rently have vulnerabilities that may allow the attackers to
infiltrate the systems. Therefore, novel effective techniques
improving the security of IoT environment are needed. At
the same time, the solutions have to be compatible with the
limitations of the devices connected to IoT. In this work, we
look into two different diversification techniques as a poten-
tial way to mitigate the risk of certain malicious attacks.

The contributions of this paper are as follows. We study
and propose applying linker shuffling and ELF symbol diver-
sification in IoT operating systems. We also provide prac-
tical implementations for these schemes for Thingsee OS
which is based on NuttX [3, 1] and Raspbian [2] and test
these solutions to prove the feasibility of diversification in
IoT environment.

The remainder of the paper is organized as follows. In
Section 2 we present an introduction to the terms and tech-
niques related to this research. Section 3 shortly reviews
the related works. In Section 4 we present our implementa-
tions of memory layout shuffling and symbol diversification
for IoT operating systems in detail and demonstrate their
feasibility. In Section 5 we discuss the limitations of the
study. Conclusions and future work suggestions are given in
Section 6.

2. BACKGROUND
Obfuscation [9] is the process of scrambling the program

code while preserving its functionality and semantics. Through
obfuscation the program becomes harder to read and under-
stand, and therefore reverse engineering and compromising
the software becomes more challenging.

Diversification [8], on the other hand, refers to altering
the structure and internal interfaces of software, with the
aim of generating unique instances of the software. Diversi-
fied but functionally equivalent versions of the software are
distributed to users. Diversification is a technique to break

2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing

304

monoculture nature of software deployment and introduces
multiculturalism. If a piece of malware succeeds in getting
knowledge about one of these instances and run its malicious
code, this exploit works only on that machine and should
not be workable on other machines. This is because the in-
terfaces are diversified differently on each separate system.
Diversification can be achieved by using obfuscation tech-
niques (such as renaming functions).

As a practical example of diversification, attacks making
use of memory’s known layout structure can be prevented by
uniquely diversifying the memory layout [16]. This method
is known as Address Space Layout Randomization (ASLR).
It is used to thwart the buffer overflow attacks enabling arbi-
trary code execution. In ASLR, the address space locations
of a process are randomly reshuffled. This usually covers
the base of the executable and the stack, heap and library
positions [6]. The attacker cannot jump to a particular lo-
cation in the reordered memory. Here, memory can be seen
as an interface that has been diversified so that the attacker
cannot use it anymore. In this paper, we present a link-time
implementation of this shuffling scheme for Thingsee OS (on
a Thingsee One device). We modified the GNU linker to in-
troduce diversity into the resulting program after compila-
tion and linking by shuffling the order of sections (functions
and data objects) in the linked binary without changing the
program semantics.

A linker is a program used in the build process of soft-
ware that combines object files into a finished executable
file or shared library, resolving dependencies between the
object files and updating necessary positions of the object
code with the correct relocation information. It therefore
makes sense to apply diversification at this phase of soft-
ware development/deployment.

Another example of diversification and a scheme we imple-
mented for Raspbian (on a Raspberry Pi device) is symbol
diversification. To use the critical resources of a device, ap-
plications often use well-known libraries. If we diversify the
symbol names in these libraries, the adversary can no longer
use the well-known operating system libraries to attack the
system. This diversification is propagated accordingly to
the trusted programs. As a result of this, the diversified
applications know the diversification secret (the diversified
symbol names) and are compatible with the library binaries
containing important functions. Besides library functions,
some IoT operating systems also support system calls to
provide services for user programs – in such settings, system
call diversification should be applied together with symbol
diversification.

As a security measure, diversification is orthogonal, mean-
ing it can be used with combination with other security mea-
sures like encryption and therefore brings additional security
to a system. Diversification is also transparent in the sense
it does not affect the user experience or cause additional
work for the programmer.

3. RELATED WORK
There has been a large body of research on using diversifi-

cation for securing software through many different diversi-
fication methods with the aim of mitigating several different
security attacks [17]. In a previous study, we presented a
survey on various kind of diversification methods available
[14].

System call diversification [22, 18] is a diversification tech-

nique for protecting the operating systems from harmful
malware. Laurén et al. [18] have proposed changing the
system call numbers in the kernel and also the applications
that invoke those system calls. Therefore, a malware that
does not have the knowledge about new system call inter-
faces cannot interact with the environment and becomes in-
effective. Another work done by Rauti et al. [22] proposes
diversifying the system calls in ELF binaries.

Symbol diversification is another technique that diversi-
fies the symbol names that are used with dynamic linking
of shared libraries. A shared library implements some func-
tionality and provides that for use in executables and other
shared libraries by associating the functionality with symbol
names that can be used elsewhere to find the functionality.
Symbol diversification has already been experimented with
under x86 64 Linux. [19]

As discussed earlier, in the literature there exist many dif-
ferent diversification techniques that each apply diversifica-
tion at various stages of software development life-cycle, for
instance design, implementation, compilation, post-compilation
(e.g. linking), distribution, and execution. Among all, compile-
time and link-time are most preferred stages for applying
diversification. Compile-time diversification is a fairly au-
tomatic process where the compiler creates unique binaries
each time [10]. Class transformation for Java byte-code di-
versification [20] is an example for post-compile time diver-
sification. In [7] diversification happens after compilation,
during linking and before execution. In this work, the loca-
tion of program code and data is obfuscated and randomized
in a way that makes it more difficult for a malicious program
to find the addresses for program segments, and modify the
program.

Hosseinzadeh et al. [12, 13] have proposed using diversi-
fication for IoT networks as a means to boost the security
of the network and also the participating devices in this
network. In these works, the authors propose diversifying
the operating system interfaces of the IoT devices (security
at application layer). The rationale behind this idea is to
thwart large-scale attacks. Second they propose diversifying
some of the communication protocols and providing security
at the network level.

4. DIVERSIFYING THE MEMORY LAYOUT
AND SYMBOLS IN IOT OPERATING SYS-
TEMS

We constructed a modified linker for diversifying the mem-
ory layout of Thingsee OS and demonstrated how this can
prevent an exploit attempt from working on Thingsee one
device (Section 4.2). Additionally, we applied and tested
symbol diversification in Raspbian ELF files (Section 4.3).

We apply the proposed diversification methods in practice
into an existing device and measure the effectiveness of this
approach by first testing them against a working exploit and
gauging the feasibility and effectiveness of the methods when
thwarting malicious attacks.

4.1 Introducing layout shuffling to GNU linker
Our modified version of GNU ld linker was created with

very few modifications to the original source code. To obtain
the desired functionality, three files have to be changed, with
about 100 added and one or two deleted or modified source
code lines. GNU ld already contains functionality to sort

305

sections whose names match a wildcard expression defined
in a linker script by name or alignment. We introduced an
additional way of sorting that sorts the wildcard-matching
sections by salted md5 hashes of their names. There should
be no need to use the same salt more than once, since the
memory layout itself is rarely an interface that is needed by
legal code, other than the linked program itself which has the
appropriate addresses provided by the linker. Our scheme
might not be the optimal way of diversification, but it has
worked well in our experiments. To increase diversity in the
linked software, the source code should be compiled to object
files in a way that every data object and function gets its own
section. With gcc, this means passing -ffunction-sections
and -fdata-sections as parameters for the compiler.

4.2 Layout shuffling of Thingsee OS on Thingsee
One

Many resource-constrained and often time-critical IoT de-
vices and operating systems do not support many ordinary
security measures, such as virtual memory and no-execute
bits, that are commonly found in modern desktop and server
computing platforms [21]. This is also the case with the
default “flat” NuttX-based Thingsee OS build. If there is
no memory protection, specialized system call traps, or dy-
namic shared libraries, the prospects for different diversifi-
cation schemes are somewhat more limited.

We decided to apply layout diversification to Thingsee
OS with a flat address space configuration. The aim was
to prevent return-oriented programming (ROP) attacks [23]
depending on certain data residing at known addresses from
functioning. First, we wrote a vulnerable Thingsee OS ap-
plication program that writes user-supplied data to a stack
buffer without bounds-checking. We devised an exploit that
overwrites a return address on the stack and makes the pro-
gram jump to a chosen function. After executing the func-
tion, the system apparently crashes and reboots, preventing
the execution of malicious code. Later, we rebuilt Thingsee
OS using our modified ld with randomization of the order of
functions and data in the Thingsee OS image. An identical
exploit did not make the chosen function to be executed this
time, but it nevertheless invoked undefined behavior and, in
our case, made the OS crash again.

Our vulnerable program was simply created by modifying
the “Hello World” example in Thingsee OS in order to facil-
itate creating a new Thingsee OS application. Our vulnera-
ble program takes an input from a command-line argument
as a hexadecimal string and writes it to a stack buffer in
a hex-decoded form without bounds-checking. We use this
method of input to simulate a malicious input that would be
in a real application environment, such as a network server.

We compiled Thingsee OS on Lubuntu 16.04 x86 64 using
arm-none-eabi-gcc version 4.9.3 and our modified versions of
binutils-gdb (git commit 6e2565079204ae2d2c0a5fa15fcd2
33e9c614f0b), and thingsee-sdk (git commit b65cfa8ec466
d498e24959b90568b076c942aa6d).

We built the undiversified version of Thingsee OS as fol-
lows:

cd thingsee−sdk/nuttx/tools/; ./configure.sh haltian−
tsone/nsh

Enable the "Hello, World!" example
cd ..; make menuconfig
make
arm−none−eabi−objdump −d nuttx | less
Find ’hello_main’ (0x08014174)

and the address of ’evil’ (0x08013fcc).
May be different, depending on versions and

configuration
Set the device to flash mode and upload the OS:
sudo dfu−util −d 0483:df11 −a0 −D nuttx.dfu −s :leave
socat − /dev/ttyACM0,rawer

The following listing shows the Thingsee OS command line
shell. First, we examined the stack to find where the return
address resides. We then devised and ran the exploit. The
ARM processor needs the return address be incremented by
one when using Thumb code. [5] Thus, we add 1 to the
address of ‘evil’ and write it to the stack in little-endian
byte order.

NuttShell (NSH)
nsh> hello 42 0 20
hello 42 0 20
hex_strcpy: a=20009030; s_d=0; s_n=32
0000000000000000000000000000000064900020

b54101087541010800000000
foo 1
B
nsh> hello 10112233445566778899aabbccddeeff11111111

cd3f0108
hello 10112233445566778899aabbccddeeff11111111cd3f0108
hex_strcpy: a=20009010; s_d=0; s_n=32
0000000000000000000000000000000044900020

b54101087541010800000000
foo 1
(some unintelligible characters)
Evil function!

After printing “Evil function!”, the USB connection to our
device breaks as the system crashes.

The layout-shuffled version of Thingsee OS was built as
follows:

make distclean && cd configs/haltian−tsone/
patch Make.defs <<END_OF_PATCH
79,80c79
< LDFLAGS += −−gc−sections
< # −−sort−section=shuffle_obfuscation
−−−
> LDFLAGS += −−gc−sections −−sort−section=

shuffle_obfuscation
END_OF_PATCH
cd ../../tools/ && ./configure.sh haltian−tsone/nsh
make menuconfig
find and select "Hello, World!" example,
exit until it prompts to save, save
env SHUFFLE_OBFUSCATION_SALT=foo make
set Thingsee to flash mode
sudo dfu−util −d 0483:df11 −a0 −D nuttx.dfu −s :leave
socat − /dev/ttyACM0,rawer

Then the same exploit was run again:

NuttShell (NSH)
nsh> hello 10112233445566778899

aabbccddeeff11111111cd3f0108
hello 10112233445566778899aabbccddeeff11111111cd3f0108
hex_strcpy: a=20009030; s_d=0; s_n=0

foo 1
(some unintelligible characters)

Again, the connection is broken. However, now the func-
tion ‘evil’ is not called. Undefined behavior is invoked never-
theless, and Thingsee OS crashes. In this particular experi-
ment, execution happens to jump to halfway in the middle
of a 4-byte instruction word that is part of a tiny piece of
code that jumps to an exception handler. Figure 1 shows
the execution in both of the cases described above.

A crude estimate of the granularity of Thingsee OS layout
shuffling can be seen in Figure 4.2. It shows a histogram rep-
resenting the distribution of bytes in differently sized PROG-
BITS sections in the source object files of Thingsee OS. 6.2

306

evil()

...

... stack

08013fcc

33221110
77665544
bbaa9988
ffeeddcc
11111111
08013fcd

...

stm32_busfault

...

... stack

Memory space

08013fc6

33221110
77665544
bbaa9988
ffeeddcc
11111111
08013fcd

Return
address

Stack
buffer

Flash
memory

...

stm32_usagefa...08013fce

...

evil() 08024668

a) b)

SRAM

Figure 1: a) Normal OS: execution jumps to begin-
ning of evil(), b) OS layout-diversification: in this
particular case, execution jumps to the middle of an
instruction.

MB out of 20 MB in total are found in sections at most 1000
bytes in size.

4.3 Symbol diversification on Raspbian
We used a symbol diversification tool that has previously

been used to diversify x86 64 Linux [19]. The tool needed to
be modified to support 32-bit ELF files, which was straight-
forward. The necessary source code for the symbol diver-
sification tools in this experiment is comprised of approxi-
mately 2500 lines of C++ code and 300 lines of Python and
Bash scripts. We also needed to modify the glibc dynamic
linker source code with 225 inserted and 7 deleted lines in
6 files, plus an existing third-party SHA-2 implementation
that consisted of 2 files and 1262 lines of code.

We managed to get Raspbian to start systemd. Most of
the services seemed to start, but initially some did not. For
example, the login service did not start, and thus we could
not use the system. The problems were caused by run-time
dynamic loading. For example, /bin/login uses Pluggable
Authentication Modules and libdl.

To overcome these challenges, we implemented a source
code patch to glibc that makes it diversify symbols passed

0 20 40 60 80 100

0

2

4

6

Section Size [kB]

B
y
te

s
in

se
c
ti
o
n
s
[M

B
]

Figure 2: Histogram of the distribution of bytes in
differently sized PROGBITS sections in the source
object files of Thingsee OS.

to dlsym on the fly. The patched glibc contains a static
data object that contains the diversification secret and the
identification number of the algorithm to use. This data can
then be rewritten to include the correct diversification secret
in the library after compilation and linking, so including the
secret is a very inexpensive operation.

With the patched glibc, a symbol-diversified Raspbian can
boot, although only if using simple prefixation instead of
salted SHA hashing as the diversification transform. login

works, as does the shell basically, too. The programs read-
elf, less, and ssh work. Initially we had problems with
sudo, but we diversified more types of symbols in the sys-
tem to make it work. The ping command works after we set
the set-user-id bit to its metadata. Our diversification tools
did not copy that information. The man program cannot find
a library it needs without manually specifying the location
of the library with, for example, the LD LIBRARY PATH
environment variable. gdb starts but has some problems
that likely make it unusable for real debugging.

5. LIMITATIONS
Unfortunately, layout shuffling, especially in systems with-

out memory protection, does not prevent damage or denial-
of-service attacks caused by attempted security exploits. For
devices with a small address space, brute-force attacks are
also a potential problem. For example, the Thingsee One
device has only 512 KB of flash memory for program code
and in addition the device reboots when the system crashes,
so brute-force testing of different addresses could be a prob-
lem without additional measures when given enough time.
As an example, if one reboot takes 10 seconds, brute-force
attacks should succeed within about 60 days. However, it
is possible to set up other security measures to detect such
attacks.

It is worth considering how fast compromising the system
would be without the security measure. This would only
take an instant. Ideally, in the case of computer worms and
with diversification, a large scale compromise would not be

307

speed-limited only by network, but it would also be con-
strained by having to spend time and processing time on
compromising more devices with a similar vulnerability.

Although our shuffling scheme does not entirely prevent
all advanced return-oriented programming attacks. As the
embedded device we used was not configured to use mem-
ory protection hardware, stack buffer overflow attacks could
still utilize executable stack space, at least unless the stack
addresses are randomized. Even if attackers cannot pre-
dict the address of the stack, they can utilize NOP slides
to increase the probability of successfully having their mali-
cious code executed [15]. Therefore, layout shuffling alone,
without memory protection, will not prevent stack smash-
ing attacks from unwanted code execution. Still, our scheme
prevents several possible ROP attacks and would also con-
siderably slow down the spread of internet worms from one
device to another, for instance.

The limitations of symbol diversification are more imple-
mentation specific. Systems that are specifically designed
with changing the symbol names in mind should be simple
to diversify. Diversification can make binary-related activi-
ties, such as debugging, more difficult [17]. Naturally, more
challenges emerge when adding symbol diversification to a
system that does not support changing symbol names well.

Run-time dynamic loading presents one of the greatest
challenges for symbol diversification. In POSIX systems,
this is done using the dlopen/dlsym class of functions. Since
the binary and library files in a diversified systems do not
have access to the information about the original symbol
names through their symbol tables, resources cannot be loaded
from them by searching with the original name. Thus, the
dlsym implementation needs to obtain the diversified name,
either by getting the diversified symbol as a parameter from
the its caller, or by computing the diversified symbol from
an undiversified symbol name parameter. We consider the
former approach more secure but also more challenging to
implement, since all programs using dynamic loading should
be analyzed and modified to provide the diversified versions
of symbols.

Different types of symbols also pose a challenge. Some
types of symbols may not be good for diversification. For
example, there are symbol types such as STT SECTION
and STT FILE in ELF binary format. While, for example,
file names are one possible interface for diversification, it
might not be a good idea to diversify STT FILE symbols
the same way as function and data objects. And if not all
symbols are diversified, there might be a need to create sepa-
rate diversifying and non-diversifying versions of dlsym, the
programming interface to dynamic linking loader. Though
the preferred method of handling dlsym would be to sup-
ply the diversified symbols in the application code that calls
dlsym.

Additionally, the symbol diversifier that we used in our ex-
periments complicates the structure of the ELF files, leaving
zero-filled gaps into the file and moving data to unusual po-
sitions. The Linux ELF loader also has a quirk requiring the
program header table to reside at a specific offset in the ELF
file in relation to its address in the process image, for which
we devised a workaround that may increase the file size. In
our experiments, the executables and shared libraries, origi-
nally taking approximately 230 MB of space, increased their
size by about 80% on average. Since much of the additional
data is NUL bytes, using file systems that support sparse

files will mitigate the actual effect of this additional space
usage.

We have seen that there are some challenges for memory
layout shuffling and symbol diversification in IoT operating
systems. However, we have also shown that most of these
challenges can be overcome or their effects can be reasonably
mitigated.

6. CONCLUSION AND FUTURE WORK
We have presented two diversification approaches for IoT

operating systems, memory layout shuffling and symbol di-
versification. We have also built and experimented practical
implementations for these schemes to demonstrate their fea-
sibility.

According to our observations, the layout-shuffled pro-
grams worked correctly in normal well-behaved cases. Unde-
fined behavior, such as the stack smashing exploit, correctly
causes the behavior of diversified programs to diverge from
that of undiversified programs so that the adversary cannot
invoke malicious functionality.

Layout shuffling scheme we devised can be applied to prac-
tically all computing devices, since its basic requirements are
just an instruction memory and a processor that supports
jumping to specified addresses there. Systems that already
implement address space layout randomization (ASLR) do
not benefit from this link-time layout shuffling, except for
code to which ASLR is not applied.

It is best to apply the layout shuffling scheme we imple-
mented at compile and link time, as the compiler should
be informed to dedicate an individual section to each func-
tion and data object to maximize entropy, and the linker
stage actually applies the layout randomization. Software
vendors who do not want to disclose their source code could
distribute their software as compiled object code, with pos-
sibly diversified symbol and section names, to be linked by
the recipient of the software.

We also presented a scheme for diversifying the symbolic
names of all the library entry points that lead to critical
resources of a operating system. Our symbol diversification
tool has been shown to be able successfully diversify exe-
cutables in an IoT operating system so that their run-time
functionality is not greatly affected, while preventing mali-
cious attacks at the same time.

In practice, both presented approaches can be applied dur-
ing the life cycle of a device by adding an extra processing
stage before uploading firmware to each device. Each de-
vice gets an unique firmware modified with layout shuffling
and/or symbol diversification before shipping. In a similar
way, updating a device would work by giving each customer
an unique instance of the updated code from a pregenerated
buffer of diversified firmware binaries. This would also es-
sentially switch diversification secrets on the device to fresh
ones.

As future work, a more comprehensive diversification scheme
covering several approaches could be tested in an IoT oper-
ating system. For example, system call diversification [18],
which we did not include in our practical implementation in
this paper, would also potentially be a useful technique in
IoT environment.

Based on our experiments presented in this paper, we be-
lieve both memory layout shuffling and symbol diversifica-
tion can be successfully applied to protect IoT operating
systems and their applications from malicious attacks.

308

Acknowledgment
The authors gratefully acknowledge Tekes – the Finnish
Funding Agency for Innovation, DIMECC Oy and Cyber
Trust research program for their support. This research is
also supported by Tekes project 1881/31/2016 ”Cybersecu-
rity by Software Diversification”.

7. REFERENCES
[1] NuttX Real-Time Operating System.

http://nuttx.org/. Accessed 17 August 2016.

[2] Raspbian. https://www.raspbian.org/.

[3] ThingSee One. https://thingsee.com/. Accessed 17
August 2016.

[4] Internet of things research study: 2015 report.
http://www8.hp.com/h20195/V2/GetPDF.aspx/
4AA5-4759ENW.pdf, 2015.

[5] Procedure Call Standard for the ARM R© Architecture.
http://infocenter.arm.com/help/topic/com.arm.doc.
ihi0042f/IHI0042F aapcs.pdf, 2015.

[6] M. Abadi and G. D. Plotkin. On protection by layout
randomization. ACM Trans. Inf. Syst. Secur.,
15(2):8:1–8:29, July 2012.

[7] E. Bhatkar, D.C. Duvarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits. In In Proceedings of
the 12th USENIX Security Symposium, pages 105–120,
2003.

[8] F.B. Cohen. Operating system protection through
program evolution. Computers & Security, 12(6):565 –
584, 1993.

[9] C. Collberg, C. Thomborson, and D. Low. A
Taxonomy of Obfuscation Transformations. Technical
Report 148, The University of Auckland, 1997.

[10] M. Franz. E unibus pluram: Massive-scale software
diversity as a defense mechanism. In Proceedings of the
2010 Workshop on New Security Paradigms, NSPW
’10, pages 7–16, New York, NY, USA, 2010. ACM.

[11] Gartner. Gartner Says 6.4 Billion Connected things
Will Be in Use in 2016, Up 30 Percent From 2015.
http://www.vxdev.com/docs/vx55man/vxworks/
guide/c-vm.html. Accessed: 2016-06-23.

[12] S. Hosseinzadeh, S. Hyrynsalmi, and V. Leppänen.
Obfuscation and diversification for securing the
Internet of Things (IoT). In Rajkumar Buyya and
Amir Vahid Dastjerdi, editors, Internet of Things
Principles and Paradigms, chapter 14, pages 259–274.
Morgan Kaufmann is an imprint of Elsevier,
Cambridge, MA 02139, USA, 2016.

[13] S. Hosseinzadeh, S. Rauti, S. Hyrynsalmi, and
V. Leppänen. Security in the internet of things
through obfuscation and diversification. In Computing,
Communication and Security (ICCCS), 2015
International Conference on, pages 1–5, Dec 2015.

[14] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä,
J. Holvitie, S. Hyrynsalmi, and V. Leppänen. A survey
on aims and environments of diversification and
obfuscationin software security. In International
Conference on Computer Systems and Technologies
-CompSysTech’16, page 8 pages, 2016. accepted-to be
published in 2016.

[15] F.-H. Hsu, C.-H. Huang, C.-H. Hsu, C.-W. Ou, L.-H.

Chen, and P.-C. Chiu. Hsp: A solution against heap
sprays. Journal of Systems and Software, 83(11):2227
– 2236, 2010. Interplay between Usability Evaluation
and Software Development.

[16] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (aslp): Towards
fine-grained randomization of commodity software. In
Computer Security Applications Conference, 2006.
ACSAC ’06. 22nd Annual, pages 339–348, Dec 2006.

[17] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
SoK: Automated software diversity. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages
276–291, May 2014.

[18] S. Lauren, S. Rauti, and V. Leppänen. Diversification
of system calls in linux kernel. In Boris Rachev and
Angel Smrikarov, editors, Proceedings of the 16th
International Conference on Computer Systems and
Technologies, volume 1008 of ACM ICPS, page
284–291. ACM Press, 2015.

[19] S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh,
S. Hyrynsalmi, and V. Leppänen. Symbol
diversification of linux binaries. In C.A. Shonigun and
G.A. Akmayeva, editors, Proceedings of World
Congress on Internet Security (WorldCIS-2014), page
75–80. Infonomics Society, 2014.

[20] Y. Le and H. Huo-Jiao. Research on java bytecode
parse and obfuscate tool. In International Conference
on Computer Science Service System (CSSS), pages
50–53, Aug 2012.

[21] A. R. Pop et al. DEP/ASLR implementation progress
in popular third-party windows applications. 2010.

[22] S. Rauti, S. Laurén, S. Hosseinzadeh, J.-M. Mäkelä,
S. Hyrynsalmi, and V. Leppänen. Diversification of
system calls in linux binaries. In Moti Yung, Liehuang
Zhu, and Yanjiang Yang, editors, Trusted Systems —
6th International Conference, INTRUST 2014,
Lecture Notes in Computer Science, page 15–35.
Beijing Institute of Technology, 2014.

[23] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07,
pages 552–561, New York, NY, USA, 2007. ACM.

309

Publication VI

Mitigating Branch-Shadowing Attacks on

Intel SGX using Control Flow Randomiza-

tion

Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, Andrew

Paverd. In Proceedings of the 3rd Workshop on System Software for

Trusted Execution (SysTEX ’18), pages 42-47. ACM, 2018.

c© 2018 ACM. Reprinted, with permission.

137

138

Mitigating Branch-Shadowing Attacks on Intel SGX
using Control Flow Randomization

Shohreh Hosseinzadeh∗
University of Turku, Finland

shohos@utu.fi

Hans Liljestrand∗
Aalto University, Finland
hans.liljestrand@aalto.fi

Ville Leppänen
University of Turku, Finland

ville.leppanen@utu.fi

Andrew Paverd
Aalto University, Finland
andrew.paverd@ieee.org

ABSTRACT
Intel Software Guard Extensions (SGX) is a promising hardware-
based technology for protecting sensitive computation from poten-
tially compromised system software. However, recent research has
shown that SGX is vulnerable to branch-shadowing – a side channel
attack that leaks the fine-grained (branch granularity) control flow
of an enclave (SGX protected code), potentially revealing sensitive
data to the attacker. The previously-proposed defense mechanism,
called Zigzagger, attempted to hide the control flow, but has been
shown to be ineffective if the attacker can single-step through the
enclave using the recent SGX-Step framework.

Taking into account these stronger attacker capabilities, we pro-
pose a new defense against branch-shadowing, based on control
flow randomization. Our scheme is inspired by Zigzagger, but pro-
vides quantifiable security guarantees with respect to a tunable
security parameter. Specifically, we eliminate conditional branches
and hide the targets of unconditional branches using a combination
of compile-time modifications and run-time code randomization.
We evaluated the performance of our approach using ten bench-
marks from SGX-Nbench. Although we considered the worst-case
scenario (whole program instrumentation), our results show that,
on average, our approach results in less than 18% performance loss
and less than 1.2 times code size increase.

KEYWORDS
Intel SGX; side-channel attack; branch-shadowing attack

ACM Reference Format:
Shohreh Hosseinzadeh, Hans Liljestrand∗, Ville Leppänen, and Andrew
Paverd. 2018. Mitigating Branch-Shadowing Attacks on Intel SGX, using
Control Flow Randomization. In 3rdWorkshop on System Software for Trusted
Execution (SysTEX ’18), October 15, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3268935.3268940

∗S. Hosseinzadeh and H. Liljestrand contributed equally to this work, which was done
while S. Hosseinzadeh was visiting the Secure Systems Group at Aalto University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SysTEX ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5998-6/18/10. . . $15.00
https://doi.org/10.1145/3268935.3268940

1 INTRODUCTION
Intel Software Guard Extension (SGX)1 is a recent hardware-based
Trusted Execution Environment (TEE) providing isolated execution
and guaranteeing the integrity and confidentiality of data within
an enclave. The enclave is protected from all other software on
the platform, including potentially malicious system software (e.g.,
operating system, hypervisor, and BIOS). Additionally, SGX enables
hardware-based measurement and attestation of enclave code.

Although Intel has stated that side-channel attacks are beyond
the scope of SGX2, recent research has demonstrated that SGX is
susceptible to several side-channel attacks, which could leak secret
information. In particular, Lee et al. [10] demonstrated a branch-
shadowing side channel attack that allows untrusted software to
learn the precise control flow of code running inside an enclave.
If this control flow depends on any secret information, this side
channel would leak the secret information. This attack abuses the
CPU’s Branch Prediction Unit (BPU), which is used to improve
performance by allowing pipelining of instructions before exact
branching decisions are known, i.e., whether or not branches are
taken, and the targets of indirect branches. The BPU bases its deci-
sions on recent branch history, which is stored in the CPU’s internal
Branch Target Buffer (BTB). Two critical factors allow this attack
to proceed: 1) BTB entries created by branches inside the enclave
are not cleared when the enclave exits; and 2) BTB entries only
contain the lower 31 bits of the branch instruction’s address, allow-
ing the attacker to create shadow branch instructions outside the
enclave that map to the same BTB entries as the enclave’s branches.
The attacker executes the victim enclave, interrupts it immediately
after the branch instruction, executes the shadow branch code,
and checks whether the branches were correctly predicted, thus
revealing whether the BTB entry had been created by the enclave.

Lee et al. [10] also proposed a software-based defense against
branch-shadowing, called Zigzagger. Using compile-time instru-
mentation, Zigzagger converts all conditional and unconditional
branches into unconditional branches targeting Zigzagger’s tram-
polines, i.e., minimal code sections that hold intermediate jumps
— bounces — to the target locations. The Zigzagger trampolines
initiate a series of jumps back-and-forth to different branches. The
idea is that the attacker cannot interrupt the enclave with suffi-
cient precision to shadow the target branch in this rapid series
of jumps. However, SGX-Step [15] invalidates this assumption by

1https://software.intel.com/en-us/sgx
2https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

42

showing how an enclave can be interrupted with single instruction
granularity, thus breaking the Zigzagger defense.

The recent Spectre [9] attacks, and their subsequent SGX-specific
SGXPectre variant [4] are similar to branch-shadowing in that they
exploit the BPU. However, we have confirmed experimentally that
neither recent firmware patches, nor the Retpoline compiler-based
mitigation affect the ability to perform branch-shadowing attacks.

To overcome this challenge, we present a new defense against
branch-shadowing, even if the attacker can single-step through
the enclave. Similar to Zigzagger, we use compile-time modifica-
tions to convert all branch instructions into unconditional branches
targeting our in-enclave trampoline code. At run-time, we then ran-
domize the layout of our trampoline, forcing the attacker to shadow
all possible locations. The finite size of the BTB limits the number
of guesses the attacker can perform, and thus we can quantify and
limit the success probability of a branch-showing attack using the
size of the trampoline as a tunable security parameter.

Our contributions are therefore:
• Experimental analysis demonstrating that the recent Spectre
mitigation techniques do not affect the branch-shadowing attack
(Section 3).

• A new approach for defending against branch-shadowing attacks,
even in the presence of single-step enclave execution, using con-
trol flow randomization (Section 5).

• An initial LLVM implementation of our solution (Section 6)3
and a quantitative evaluation of its performance and security
guarantees (Section 7).

2 BACKGROUND
2.1 Branch Prediction
Intel CPUs use instruction pipelining to load and execute instruc-
tions in batches. This allows optimization such as parallelizing
and reordering of instructions. The CPU also performs speculative
execution, i.e., it uses the BPU to predict which branches will be
taken, and executes them before knowing if they are taken.4 In
modern microprocessors, the BPU typically consists of two main
subsystems, a BTB and a directional predictor.

The BTB is used to predict the targets of indirect branches.5
Whenever a branch is taken, a new record is created in the BTB
associating the branch instruction’s addresses with the target ad-
dress. Upon encountering subsequent branch instructions, the BPU
checks the BTB for the branch instruction address and, if an entry
exists, it predicts that the current branch instruction will behave in
the same way. The exact details of the BTB lookup algorithms, hash-
ing and size are not public, but the BTB size on Intel Skylake CPUs
has been experimentally determined to be 4096 entries [10]. The
directional predictor is used to predict whether or not a conditional
branch will be taken [5].

Multiple processes executing on the same core share the same
BPU, allowing an attacker to misuse the BPU across processes to
infer the target and direction of branch instructions [5, 10].

3Available online at https://github.com/SSGAalto/sgx-branch-shadowing-mitigation
4https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
optimization-reference-manual
5https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-
2abcd-3abcd.pdf

2.2 Intel SGX
Intel SGX is an instruction set extension that provides new instruc-
tions to instantiate Trusted Execution Environments (TEEs), called
enclaves, consisting of code and data. An enclave’s data can only
be accessed by code running within the enclave, thus protecting it
from all other software on the platform, including privileged system
software such as the OS or hypervisor. Enclave data is automatically
encrypted before it leaves the CPU boundary. However, the OS re-
mains in control of process scheduling and memory mapping, and
can therefore control the mapping of (encrypted) enclave memory
pages and interrupt enclave execution.

2.3 Branch-shadowing Attacks on SGX
In the branch-shadowing attack by Lee et al. [10], the attacker first
statically analyzes the unencrypted enclave code and enumerates
all branches (i.e., conditional, unconditional, and indirect) together
with their target addresses. She then creates shadow code where
the branch-instructions and target addresses are aligned such that
they will use the same BPU history entries. The attacker then
allows the enclave to execute briefly before interrupting it. Finally,
she enables the performance counter, in particular the Last Branch
Record (LBR), and executes the shadow code, prompting the CPU to
predict shadow-branch behavior based on prior enclave execution.
The LBR contains information on branch prediction but cannot
record in-enclave branches. However, the in-enclave branches can
be inferred from the LBR entries for the branches executed after
exiting the enclave. Unlike cache-based channels, this does not
require timing because the LBR directly reports prediction status.

2.4 Zigzagger and SGX-Step
Zigzagger [10] is presented as a software-based countermeasure to
thwart branch-shadowing attack. Zigzagger removes the branches
from the enclave functions by obfuscating and replacing a set of
branch instructions with a series of indirect jumps. Instead of each
conditional branching instruction, an indirect jump and a condi-
tional move (CMOV) is used. Zigzagger assumes that an attacker
cannot precisely time the enclave interrupts, i.e., a single probe will
cover over 50 instructions. It introduces a trampoline to exercise
all unconditional jumps before finally jumping to the final destina-
tion. The attacker will typically always detect the same set of taken
jumps (i.e., all the unconditional jumps) and cannot distinguish the
final jump from the decoy-jumps.

However, Van Bulck et al. [15] presented SGX-Step, a framework
consisting of a Linux kernel driver and runtime library that manipu-
lates the processor’s Advanced Programmable Interrupt Controller
(APIC) timer in order to interrupt an enclave after a single instruc-
tion i.e., to single-step the enclave’s execution. They show that this
makes the Zigzagger defense ineffective because the attacker can
distinguish meaningful jumps from decoys.

3 SPECTRE MITIGATION TECHNIQUES
The recent Spectre [9] and SGXPectre [4] attacks are similar to
branch-shadowing in that they abuse the BPU to exploit specu-
lative execution. Whereas branch-shadowing aims to infer prior
branching behavior, these attacks instead manipulate upcoming

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

43

branch prediction, e.g., cause speculative execution to touch oth-
erwise inaccessible memory. Although not designed to do so, we
suspected the new Spectre mitigation techniques could also affect
the branch-shadowing attacks. However, our testing indicates that
neither the recent firmware patches from Intel6, nor the compiler-
based Retpoline7 affect the ability to perform branch-shadowing
attacks against SGX.

In particular, we confirmed that Indirect Branch Restricted Specu-
lation (IBRS) — designed to prevent unprivileged code from affecting
speculation in privileged execution, e.g., within the enclave — has
no effect on branch-shadowing. In our tests we saw no difference
between an updated i7-7500U CPU and non-updated machines. We
speculate that this is because IBRS is specifically designed to pre-
vent low-privilege code from affecting high-privilege code.Whereas
branch-shadowing relies on high-privileged code affecting in sub-
sequent low-privilege code. The Retpoline defense replaces branch
instructions with return instructions but our tests indicate that
return statements affect the BTB, not only the dedicated Return
Stack Buffer (RSB). SGXPectre further demonstrated that Spectre
attacks can be performed against Retpoline.

4 THREAT MODEL AND REQUIREMENTS
We assume that the attacker has fine-grained control of enclave
execution, i.e., can interrupt the enclave with instruction-level ac-
curacy. The attacker can thus perform a branch-shadowing attack
against every branch instruction. Specifically, the attacker can de-
termine whether or not a branch instruction has been executed and
taken (i.e., whether a conditional jump fell through or not). If the
branching decisions depend on sensitive enclave data, the attacker
can infer this data through the branch-shadowing attack.

This is a significantly stronger attacker capability than that as-
sumed by previous work [10] because Van Bulck et al. [15] showed
that single-step execution of SGX enclaves is both feasible to imple-
ment and sufficient to break existing defenses like Zigzagger [10].
We focus on branch-shadowing attacks and do not consider other
side-channels, such as cache or page-fault attacks.

Given these attacker capabilities, we require a defence mecha-
nism that prevents fine-grained branch-shadowing from revealing
secret-dependent control flow. Specifically, in the instrumented
code, we require that:
R.1 Any branch that can be directly observed through branch shad-

owing reveals no secret-dependent control flow information.
R.2 For any secret-dependent branches, the attacker’s probability

of success is bounded based on a security parameter k.

5 PROPOSED APPROACH
Our mitigation scheme uses compile-time obfuscation and run-time
randomization to hide the control flow of an enclave application.
While our proposed method is inspired by and uses a similar ap-
proach to Zigzagger, we assume a stronger attacker model. Specifi-
cally, our approach can defend against branch-shadowing even in
the presence of an attacker with single-step capabilities.

6https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-
Execution-Side-Channel-Mitigations.pdf
7https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-
Target-Injection-Mitigation.pdf

Figure 1: System design

Figure 1 illustrates the high-level view of our approach. The
system consists of two main components: an obfuscating compiler
and a run-time randomizer. The obfuscating compiler modifies the
code by converting all branching instructions to indirect branches.
The indirect branch targets are then explicitly set by the instrumen-
tation depending on the converted branch type. We use conditional
moves as replacements for conditional branches, allowing us to
replicate the functionality of any conditional branch without in-
volving the BPU. The observable control flow transitions, i.e., non
trampoline branches, are further organized so that they are always
unconditionally executed in the same order. The key insight of our
approach is that, unlike Zigzagger, the trampolines are randomized
inside the enclave at run-time by the randomizer. This prevents
the attacker from reliably tracking their execution. Since only the
trampolines are randomized, all other code remains in execute-only
memory. Taken together, these two properties fulfill requirements
R.1 and R.2, as we show in our security evaluation in Section 7.

Listing 1 and Figure 2 show a single if-statement and corre-
sponding Control Flow Graph. The corresponding obfuscated CFG
is show in Figure 3. Figure 4 shows the same obfuscated code with
the branch instructions converted. The static code is produced at
compile time and its layout is assumed to be known to the attacker.
The trampoline is similarly produced at compile time but is then
randomized at run-time within the enclave. We assume that the
attacker can observe and shadow the static code whereas the tram-
poline is unknown. Specifically, our approach works as follows:

Branch conversion: All branching instructions are converted
to indirect unconditional branches. A register (r15) is reserved and
populated with the original branch targets, which are stored in
a jump-table that is updated during randomization. Conditional
branches are converted to conditional moves (cmov) (e.g., Block0
in Figure 4).

Jump blocks: Each block is followed by a jump-block that jumps
to a trampoline indicated by r15. Execution flows that do not in-
clude a specific block still go through any intermediate jump-blocks
to ensure that all indirect jumps outside the trampolines are exe-
cuted. For instance, when taking the if-clause (Block1), the else-
block (Block2) must not be executed but the corresponding jump-
block (B2J) must be (e.g., the blue line in Figure 4). This ensures
that an attacker always sees the same sequence of jumps (i.e., B0J,
B1J, and B2J), regardless of actual executed code.

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

44

Listing 1: Example code before instrumentation
i f (a ! = 0)

/ ∗ Block1 ∗ /
e l se

/ ∗ Block2 ∗ /
/ ∗ Block3 ∗ /

Block 0

Block 1 Block 2

Block 3

a = 0a! = 0

Figure 2: Original control flow graph

Trampolines: The corresponding trampolines are created, cor-
responding to either the branching target or the fall-through block
(i.e., the next block that will be executed when a conditional branch
is not taken). In Figure 3, after execution of the if-block (Block1) the
control flow is transferred to tb2S that will jump to the following
jump-block B2J without executing the corresponding Block2 itself.

Skip blocks:When skipping a block — e.g., the else block after
taking the if block — we must nonetheless execute the correspond-
ing jump-block to prevent its omission from leaking information.
The jump-block target is prepared in the prior trampoline block
by setting r15. For instance, after executing the if-block the cor-
responding trampoline (tb2S) not only jumps to the correct jump-
block, but also sets the next target, tb3, into r15. To prevent timing
attacks that measure the number of instructions between jump-
blocks, the skipping trampolines (e.g., tb1S and tb2S) are populated
with dummy-instructions to ensure that the timing between each
jump-block is constant regardless of control flow. Although not
shown in our example code, nested blocks are treated similarly to
ensure that they execute all intermediary jumps.

Randomization: Trampolines are prepared during compilation,
and are randomized at run-time inside the enclave. The random-
ization is implemented such that shadowing it does not reveal the
randomization pattern. Randomizing the trampolines forces the
attacker to shadow all possible locations in the enclave and thus,
prevents shadowing the trampoline branches and reliably tracking
the program’s execution.

Re-randomization: Since an attacker could repeatedly call the
same enclave functionality to gradually determine the randomiza-
tion pattern, we can periodically re-randomize the trampolines. For
example, the trampolines could be re-randomized on each enclave
entry. As future work we envision to: a) provide code-annotation
for limiting the obfuscation to only developer-determined sensitive
parts, and b) randomize the trampoline code only when detecting
multiple enclave entries (i.e., after a given number of potential
shadowing attempts).

Block 0

B0J

tb1 tb1S

B1J

tb2S

Block 1

tb2

B2J

Block 2

Block 3

a != 0

a = 0a != 0

a = 0

Figure 3: Modified control flow graph

a! = 0
a = 0Block0: lea tb1, r15

cmp 0, a
lea tb1S, r14

B2J: jmp r15

B1J: jmp r15

B0J: jmp r15

Block1: <code1>

Block2: <code2>

Block3: <code3>

tb1: lea tb2S, r15
jmp Block1

tb3: jmp Block3

tb2S: lea tb3, r15
jmp B2J

tb1S: lea tb2, r15
jmp B1J

tb2: lea tb3, r15
jmp Block2

Static code Trampolines

cmov r14, r15

Figure 4: Modified code protected by our approach

6 IMPLEMENTATION DETAILS
We have implemented an open-source prototype of our approach,
based on LLVM 6.0 and implemented in the X86 target backend.
The instrumentation is applied by systematically traversing all func-
tions and modifying their branching instructions, as explained in
Section 5. Since the run-time randomization library cannot be ran-
domized, it must be resistant to branch-shadowing attacks. While
implemented, we have not yet integrated the randomizer to our in-
strumentation. For efficient and fine-grained randomization we do
not preform in-place randomization, instead, we move trampoline
entries between two trampoline areas. Listing 2 shows an overview
of our randomization algorithm. Detailed description is available
in our extended technical report [8].

We have also implemented an application for shadowing in-
enclave execution in a controlled manner. Our setup is similar
to [10] i.e., our application 1) retrieves branch instruction addresses

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

45

Listing 2: Randomization algorithm
for (en t ry = 0 : j ump_ t a b l e _ e n t r i e s) {

l o c a t i o n = rand () % t r ampo l i n e _ s i z e ;
i f (f i t s (ent ry , l o c a t i o n))

mark_rese rved (l o c a t i o n , en t r y) ;
e l se

l = (l +1) % t r ampo l i n e _ s i z e ;
move_entry (entry , l o c a t i o n) ;

}

and sets up a corresponding shadow-jump, 2) executes the victim
enclave function and returns, 3) enables performance counters
and executes the shadow-code, and 4) reads performance counters
to infer in-enclave execution. Our setup is such that it could be
integrated into the SGXStep-framework. We have replicated the
shadowing techniques shown by [10] and performed shadowing
on return statements.

7 EVALUATION
7.1 Security Analysis
As specified in Requirements (Section 4), we must prevent an at-
tacker from inferring the secret-dependent control flow by R.1)
ensuring that observable branches do not leak information, and
R.2) preventing the attacker from probing other branches with a
probability based on the security parameter k.

To hide any data-dependant branches (R.1), we replace all condi-
tional branches with unconditional branches. We further setup the
control flow so that each block in the static code section is executed
in the same order and on each function call. One limitation is that
we do not conceal the number of loop executions, because this
is typically unknown compile time. In some cases this could be
avoided by unrolling loops.

The remaining branching instructions are exclusively in the
trampolines, for which the locations are randomized to defend
against shadowing (R.2). Without knowing the exact trampoline
layout, the attacker is forced to guess or exhaustively probe all
possible locations. The probability of attack success (Pattack) is
given by Pattack =

G
k , where G is the number of guesses and k the

number of possible trampoline locations.
The upper limit for G is the number of BTB entries, but in prac-

tice this is lowered by any intermediate code (e.g., system calls
and attack setup) that pollutes the BTB. The security parameter
k determines the trampoline randomization space. Because X86
allows unaligned execution, a single 4KB range gives us up to 4091
potential trampoline locations (with a trampoline size starting at
5 bytes). With a randomization area of 8KB and 4096 BTB entries,
the success probability of shadowing a single branch has an upper
bound of 0.5. The probability of following the full control flow drops
exponentially as the number of targeted branches increase.

7.2 Performance Evaluation
Weevaluated the overhead of our system in terms of CPU-utilization,
memory use, and code size. All software was compiled using the
SGX SDK version 2.0 and run on an SGX-enabled Intel Skylake Core

Table 1: Computational performance (iterations/second) be-
fore and after instrumentation, excluding randomization
and dummy instructions.

Benchmark Before
(std. dev.)

After
(std. dev.)

Performance
loss

Numeric sort 828.8 (0.79) 578.8 (0.21) 30%
String sort 86.59 (0.09) 67.72 (0.21) 21%
Bitfield 1.839e8 (1.34e5) 1.370e8 (3.27e5) 25%
Fp emulation 87.70 (0.11) 42.73 (0.02) 51%
Fourier 1.789e5 (1.19e2) 1.500e5 (1.50e2) 16%
Assignment 21.64 (0.03) 7.769 (0.01) 64%
Idea 2667 (1.26) 2665 (1.84) 0.1%
Huffman 2354 (4.07) 860.5 (0.71) 63%
Neural net 35.16 (0.03) 25.57 (0.22) 27%
Lu decomp 973.1 (1.45) 785.0 (1.41) 19%
Geometric mean 17.17%

i5-6500 CPU clocked at 3.20 GHz, with 7,6 GiB of RAM, running
Ubuntu 16.04 with a 64-bit Linux 4.4.0-96-generic kernel.

We used SGX-Nbench8 which is adapted fromNbench-byte-2.2.3,
to measure the CPU and memory overhead of 10 different bench-
marks executed within an enclave. All benchmarks were conducted
with full instrumentation, but do not include randomization or
dummy-instructions. Although the randomization would introduce
additional overhead, it need not be constantly repeated. Instead it
can be performed once on enclave creation and then later after a
specified number of enclave re-entries.

CPU overhead: Table 1 shows the computational performance
of various benchmarks in the enclave before and after obfuscation.
The decrease in performance (i.e., the number of iterations per
second) results from the addition of trampoline jumps and the need
to exhaustively execute all jump-blocks. However, since we have
obfuscated the entire program, these results represent the worst
case scenarios. In real deployments, only the parts of the code
that depend on secret data would be obfuscated. The performance
penalty depends on how complicated the function is in terms of size
and number of branches. The Assignment benchmark, for instance,
has functions with many nested conditional branches, all of which
require corresponding jump-blocks to be added and executed.

Memory overhead: As expected, our instrumentation does not
increase heap or stack usage of the enclave.

Code size: To measure the increase in code size, we compared
the size of the enclave object files before and after instrumentation.
The size of the SGX-Nbench object files increased from 329.1 kB to
370.1 kB after instrumentation. Similarly to performance overhead,
code size overhead will also decrease when instrumenting only the
secret-dependent sections of the code.

8 RELATED WORK
There is a growing body of research on side channel attacks target-
ing Intel SGX and corresponding countermeasures. In addition to
the branch-shadowing attacks [5, 10], there are other side channel
attacks targeting SGX enclaves [2, 7, 14, 16].

8https://github.com/utds3lab/sgx-nbench

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

46

Several approaches have been presented to thwart controlled-
channel (page-fault) attacks. SGX-Shield [11] randomizes the mem-
ory layout, similar to Address Space Layout Randomization (ASLR),
to prevent control flow hijacking and hide the enclave memory
layout. This approach impedes run-time attacks that exploit mem-
ory errors or attacks that rely on a known memory layout (e.g.,
controlled-channel attacks). SGX-Shield uses on-load randomiza-
tion, allowing repeated branch-shadowing attacks to gradually
reveal the randomization pattern. Our approach solves this through
run-time re-randomization. We further minimize the additional
attack-surface by limiting the randomization to the trampolines.

Shinde et al. [13] propose an approach that masks page-fault
patterns by making the program’s memory access pattern determin-
istic. More precisely, they alter the program such that it accesses
all its data and code pages in the same sequence, regardless of
the input. This makes the enclave application demonstrate the
same page-fault pattern for any secret input variables. T-SGX [12]
leverages Intel Transactional Synchronization Extensions (TSX)
to suppress encountered page-faults without invoking the under-
lying OS. Although T-SGX does not mitigate branch-shadowing
attacks [10], it could be combined with our approach to address
both branch-shadowing and page-fault attacks.

DR.SGX [1] is presented to defend against cache side-channel
attacks. It permutes data locations, and continuously re-randomizes
enclave data in order to hamper correlation of memory accesses.
This approach prevents leakages resulting from secret-dependant
data accesses. Similarly, Chandra et. al [3] inject dummy data in-
stances into the user-supplied data instances in order to add noise
to memory access traces. They randomize/shuffle the dummy data
with the user data to reduce the chance of extracting sensitive in-
formation from side-channels. Both approaches are similar to ours
in that they employ randomization, but they are not designed to
defend against branch shadowing attacks since they randomize
data memory locations rather than control flow.

CCFIR (Compact Control Flow Integrity and Randomization) [17]
is a new method proposed to impede control-flow hijacking attacks
(e.g., return-into-libc and ROP). CCFIR controls the indirect control
transfers and limits the possible jump location to a whitelist in a
Springboard. Randomizing the order of the stubs in the Springboard
adds an extra layer of protection and frustrates guessing of the
function pointers and return addresses. However, CCFIR has not
been designed for use in SGX enclaves.

Obfuscation techniques were previously used to thwart leakages
via side-channel attacks. Oblivious RAM (ORAM) [6] conceals the
program’s memory access pattern by shuffling and re-encrypting
the accessed data. However, the state should be stored/updated at
client-side, which makes it difficult to use for protecting cache since
it is challenging to store the internal state of ORAM securely with-
out hardware support, given the small size of cache lines. Moreover,
this approach incurs significant performance overhead.

None of the above countermeasures focus on mitigating branch-
shadowing attacks, and additionally, Lee et. al [10] have demon-
strated that their branch-shadowing attack is capable of breaking
the security constructs of SGX-Shield, T-SGX, and ORAM.

9 CONCLUSION AND FUTUREWORK
We propose a software-based mitigation scheme to defend against
branch-shadowing attacks, even in the presence of attackers with
the ability to single-step through SGX enclaves. Our approach
combines compile-time control flow obfuscation with run-time
code randomization to prevent the enclave program from leaking
secret-dependant control flow.We evaluated our approach using ten
benchmarks from SGX-Nbench. Although we considered the worst-
case scenario (whole program instrumentation), our results show
that, on average, our approach results in less than 18% performance
loss and less than 1.2 times code size increase.

As future work, we will integrate the randomizing component
and optimize our obfuscating compiler to reduce overhead. In ad-
dition, we plan to integrate our approach with other defences, in
order to mitigate a broader range of side-channel attacks.

ACKNOWLEDGMENTS
This work was supported in part by the Intel Collaborative Research
Institute for Collaborative Autonomous and Resilient Systems (ICRI-
CARS) at Aalto University.

REFERENCES
[1] F. Brasser et al. 2017. DR.SGX: Hardening SGX Enclaves against Cache Attacks

with Data Location Randomization. (2017). http://arxiv.org/abs/1709.09917
[2] F. Brasser et al. 2017. Software Grand Exposure: SGX Cache Attacks Are Practical.

In 11th USENIX Workshop on Offensive Technologies. https://www.usenix.org/
conference/woot17/workshop-program/presentation/brasser

[3] S. Chandra et al. 2017. Securing Data Analytics on SGX with Randomization. In
22nd European Symposium on Research in Computer Security. https://doi.org/10.
1007/978-3-319-66402-6_21

[4] G. Chen et al. 2018. SGXPECTREAttacks: Leaking Enclave Secrets via Speculative
Execution. (2018). https://arxiv.org/abs/1802.09085

[5] D. Evtyushkin et al. 2018. BranchScope: A New Side-Channel Attack on Direc-
tional Branch Predictor. In 23rd International Conference on Architectural Support
for Programming Languages and Operating Systems. https://doi.org/10.1145/
3173162.3173204

[6] O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simulation on
Oblivious RAMs. J. ACM 43, 3 (1996), 431 – 473. https://doi.org/10.1145/233551.
233553

[7] J. Götzfried et al. 2017. Cache Attacks on Intel SGX. In 10th European Workshop
on Systems Security. https://doi.org/10.1145/3065913.3065915

[8] S. Hosseinzadeh et al. 2018. Mitigating Branch-Shadowing Attacks on Intel SGX
using Control Flow Randomization. (2018). https://arxiv.org/abs/1808.06478

[9] P. Kocher et al. 2018. Spectre Attacks: Exploiting Speculative Execution. (2018).
https://spectreattack.com/spectre.pdf

[10] S. Lee et al. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho

[11] J. Seo et al. 2017. SGX-Shield: Enabling address space layout randomization for
SGX programs. In Network and Distributed System Security Symposium. https:
//doi.org/10.14722/ndss.2017.23037

[12] M.-W. Shih et al. 2017. T-SGX: Eradicating controlled-channel attacks against
enclave programs. In Network and Distributed System Security Symposium. https:
//doi.org/10.14722/ndss.2017.23193

[13] S. Shinde et al. 2015. Preventing Your Faults From Telling Your Secrets: Defenses
Against Pigeonhole Attacks. (2015). http://arxiv.org/abs/1506.04832

[14] J. Van Bulck et al. 2017. Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution. In 26th USENIX Security
Symposium. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/van-bulck

[15] J. Van Bulck, F. Piessens, and R. Strackx. 2017. SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control. In 2nd Workshop on System
Software for Trusted Execution. https://doi.org/10.1145/3152701.3152706

[16] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In IEEE Symposium on Security
and Privacy. https://doi.org/10.1109/SP.2015.45

[17] C. Zhang et al. 2013. Practical Control Flow Integrity and Randomization for
Binary Executables. In IEEE Symposium on Security and Privacy. https://doi.org/
10.1109/SP.2013.44

Session 2 SysTEX’18, October 15, 2018, Toronto, ON, Canada

47

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems
224. Pekka Naula, Sparse Predictive Modeling – A Cost-Effective Perspective
225. Antti Hakkala, On Security and Privacy for Networked Information Society –
 Observations and Solutions for Security Engineering and Trust Building in
 Advanced Societal Processes
226. Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services – Operational
 Level Challenges and Opportunities
227. Samuel Rönnqvist, Knowledge-Lean Text Mining
228. Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in

Dark Silicon Era
229. Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and

Datasets: The Logicome and the Reaction Systems Approaches
230. Erkki Kaila, Utilizing Educational Technology in Computer Science and

Programming Courses: Theory and Practice
231. Fredrik Robertsén, The Lattice Boltzmann Method, a Petaflop and Beyond
232. Jonne Pohjankukka, Machine Learning Approaches for Natural Resource Data
233. Paavo Nevalainen, Geometric Data Understanding: Deriving Case-Specific

Features
234. Michal Szabados, An Algebraic Approach to Nivat’s Conjecture
235. Tuan Nguyen Gia, Design for Energy-Efficient and Reliable Fog-Assisted

Healthcare IoT Systems
236. Anil Kanduri, Adaptive Knobs for Resource Efficient Computing
237. Veronika Suni, Computational Methods and Tools for Protein Phosphorylation

Analysis
238. Behailu Negash, Interoperating Networked Embedded Systems to Compose the

Web of Things
239. Kalle Rindell, Development of Secure Software: Rationale, Standards and

Practices
240. Jurka Rahikkala, On Top Management Support for Software Cost Estimation
241. Markus A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words
242. Mojgan Kamali, Formal Analysis of Network Routing Protocols
243. Jesús Carabaño Bravo, A Compiler Approach to Map Algebra for Raster Spatial

Modeling
244. Amin Majd, Distributed and Lightweight Meta-heuristic Optimization Method for

Complex Problems
245. Ali Farooq, In Quest of Information Security in Higher Education Institutions:

Security Awareness, Concerns, and Behaviour of Students
246. Juho Heimonen, Knowledge Representation and Text Mining in Biomedical,

Healthcare, and Political Domains

247. Sanaz Rahimi Moosavi, Towards End-to-End Security in Internet of Things based
Healthcare

248. Mingzhe Jiang, Automatic Pain Assessment by Learning from Multiple
Biopotentials

249. Johan Kopra, Cellular Automata with Complicated Dynamics
250. Iman Azimi, Personalized Data Analytics for Internet-of-Things-based Health

Monitoring
251. Jaakko Helminen, Systems Action Design Research: Delineation of an Application

to Develop Hybrid Local Climate Services
252. Aung Pyae, The Use of Digital Games to Enhance the Physical Exercise Activity of

the Elderly: A Case of Finland
253. Woubishet Zewdu Taffese, Data-Driven Method for Enhanced Corrosion

Assessment of Reinforced Concrete Structures
254. Etienne Moutot, Around the Domino Problem – Combinatorial Structures and

Algebraic Tools
255. Joonatan Jalonen, On Some One-Sided Dynamics of Cellular Automata
256. Outi Montonen, On Multiobjective Optimization from the Nonsmooth Perspective
257. Tuomo Lehtilä, On Location, Domination and Information Retrieval
258. Shohreh Hosseinzadeh, Security and Trust in Cloud Computing and IoT through

Applying Obfuscation, Diversification, and Trusted Computing Technologies

Turku
Centre for
Computer
Science

University of Turku
Faculty of Science and Engineering
 • Department of Future Technologies
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3992-2
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

Shohreh H
osseinzadeh

Shohreh H
osseinzadeh

Shohreh H
osseinzadeh

S
ecurity and Trust in C

loud C
om

puting and IoT

S
ecurity and Trust in C

loud C
om

puting and IoT

S
ecurity and Trust in C

loud C
om

puting and IoT

	Introduction
	Preliminaries
	Cloud Computing
	Definition
	Deployment Models
	Cloud Architecture and Service Models
	Virtualization Models
	Status of Security in Cloud Computing

	Internet of Things
	Definition
	Operating System and Software on IoT Devices
	Protocols Used for Connection of IoT Devices
	Security Status of IoT

	Obfuscation
	Diversification
	Trusted Computing
	Trusted Execution Environment

	Contributions of the dissertation
	Motivation and Objective of the Research
	Research Questions
	Research Methodology and Research Approach
	Research Process and Publications
	Description of the Original Publications Included in the Dissertation
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI

	Conclusions
	Contributions
	Challenges
	Future Directions

	Original Publications
	Blank Page

