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Abstract 

This study examines how 22 different long short-term memory (LSTM) and gated recurrent 

unit (GRU) network architectures suit predicting U.S. business cycles. The networks create 91-

day forecasts for the dependent variable by using multivariate time-series data comprising 26 

leading indicators’ values for the previous 400 days. The proposed models are evaluated by 

using a train-test split, where the proposed models are trained with data from 1980 to 2005, and 

the out-of-sample set consists of data between 2005 and 2015. The performance is evaluated 

by using mean squared error (MSE) and mean absolute error (MAE), and early warning signs 

are also considered beneficial. 

The training algorithm consists of typical deep learning methods. MSE and L1 regulariza-

tion are used for determining the cost, and minibatches of 32 examples are applied together 

with Nesterov accelerated momentum (NAG) learning algorithm. Early stopping is introduced 

to halt the training process when strong signs of overfitting are detected. Each proposed recur-

rent neural network (RNN) architecture is trained three times, and these three networks’ aver-

aged predictions are examined when comparing the architectures. 

Performance-wise, a few LSTM networks stand out from the other proposed networks. 

Although the performance results favor the proposed LSTM networks slightly over their GRU 

equivalents, the difference is not substantial and, in turn, the proposed GRU networks offer less 

deviation in MSE and MAE between each architecture. However, these steadier performance 

results do not generate less volatile forecasts. Instead, the best performing networks and archi-

tectures differentiate by offering less volatile predictions that also vary less from the real values.  

Most of the models generate a considerable amount of early warning signs before the 2007 

recession, which indicates their suitability for detecting turning points in business cycles. More-

over, a wide range of the proposed LSTM and GRU network architectures learn the general 

pattern, also the smaller architectures comprising only one hidden layer and less than 500 op-

timizable parameters. This suggests that these methods offer noteworthy solutions for business 

cycle forecasting and, more widely, supports applying nonlinear machine learning methods 

with multivariate data for macroeconomic forecasting tasks where prevalent methods have been 

found unable to deliver adequate accuracy. 
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Tiivistelmä 
 
Tässä tutkielmassa vertaillaan 22 eri LSTM- ja GRU-neuroverkon soveltuvuutta 

Yhdysvaltojen taloussyklien ennustamiseen. Valittujen neuroverkkojen tehtävä on luoda 91 

päivän ennusteita valitulle selitettävälle muuttujalle käyttämällä 400:n aikaisemman päivän 

havaintoarvoja 26:sta indikaattorista. Valittujen mallien optimoimiseen käytetään havaintoja 

ajanjaksolta 1980-2005 ja niiden arviointiin ajanjaksoa 2005-2015. Suorituskyvyn 

arvioimisessa sovelletaan keskineliövirhettä ja keskiabsoluuttistavirhettä. Tämän lisäksi 

aikaiset signaalit syklin kääntymisestä nähdään suotuisina. 

Neuroverkkojen parametrien optimoimiseen käytetty algoritmi sisältää tyypillisiä 

syväoppimisen menetelmiä. Kustannus määritetään käyttämällä keskineliövirhettä ja L1-

termiä. NAG-algoritmia käytetään parametriarvojen päivittämiseen, jolle harjoitus instanssit 

syötetään 32 kappaleen erissä. Optimoiminen keskeytetään ennen takarajaa, mikäli saadaan 

merkittäviä viitteitä optimoitavan mallin ylisovittumisesta. Jokainen valittu 

neuroverkkoarkkitehtuuri treenataan kolme kertaa ja näiden kolmen neuroverkon tuottamien 

ennusteiden keskiarvoja käytetään pohjana eri arkkitehtuurien vertailussa. 

Suorituskykyä tarkasteltaessa, muutama LSTM-neuroverkko pystyy saavuttamaan muita 

vaihtoehtoja paremman tarkkuuden. Vaikka suorituskyvystä kertovat tulokset suosivat valittuja 

LSTM-arkkitehtuureita, erot LSTM- ja GRU-neuroverkkojen suorituskyvyssä ovat 

keskimäärin pieniä. Toisaalta, GRU-menetelmät pystyvät tarjoamaan vähemmän vaihtelua 

arkkitehtuurien keskinäisten neuroverkkojen suorituskyvyssä, mutta tämä ei kuitenkaan johda 

vakaampiin ennusteisiin. Sen sijaan, parhaat suorituskyvyt antavat LSTM-neuroverkot 

erottautuvat muista tarjoamalla muita vakaampia ennusteita, jotka myös eroavat todellisista 

arvoista muita vähemmän. Suurin osa tutkituista malleista tuottaa huomattavan määrän 

signaaleita syklin vaihtumisesta ennen vuonna 2007 alkanutta lamaa. Sekä pienet että suuret 

neuroverkot selviävät syklin ennustamisesta pääpiirteissään hyvin, minkä takia LSTM- ja 

GRU-neuroverkkoja voidaan pitää varteenotettavina vaihtoehtoina taloussyklien 

ennustamisessa. Tämän lisäksi, tulokset kannustavat soveltamaan epälineaarisia 

koneoppimismenetelmiä yhdessä usean muuttujan aikasarja-aineistojen kanssa sellaisiin 

makrotalouden ennusteongelmiin, joihin ei aikaisemmin ole löydetty tarpeellista tarkkuutta 

saavuttavaa ratkaisua. 

 Avainsanat Taloussyklit, ennustaminen, koneoppiminen, neuroverkot 
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1 INTRODUCTION 

Accurate predictions of business cycles could give valuable information for decision 

making, ranging from individuals’ consumption plans to countercyclical macroeconomic 

policies. However, predicting these fluctuations, especially the timing of recessions, has 

been proven to be a difficult task (Rudebusch & Williams 2008, 2; Zarnowitz & Braun 

1992, 21), making it an interesting area to try to develop more accurate methods. 

According to universal approximation theorem by Hornik et al. (1989, 363-364), a 

feedforward network with at least one hidden layer and nonlinear activation functions, 

can theoretically represent any function, linear or nonlinear. This unprecedented ability 

to represent functions that have been difficult with other current methods has made arti-

ficial neural networks (ANNs) stand out in problems that demand a very high modeling 

capacity from the applied model. However, finding a suitable ANN and optimizing its 

parameters has been found challenging, but lately, together with more enhanced methods, 

suitable data and computational resources, applying these methods has become more con-

venient. (Géron 2017, 258; Goodfellow et al. 2016, 280-290.) 

Because of these advances related to finding suitable ANNs and optimizing them, 

together with a large amount of existing economic data, these methods can be recognized 

as noteworthy tools for economists and especially for making predictions (Varian 2014, 

1, 6, 20-21). The predictions and insights that are made by using these sophisticated ma-

chine learning methods can be particularly helpful for policymakers in new ways that 

were not common, or even possible, with standard econometric methods (Basuchoudhary 

et al. 2017, 1). However, using ANNs in the domain of economics is relatively new, but 

interesting, because of the linear models’ incapability to model many real-world pro-

cesses that appear to include nonlinearity (Binner et al. 2004, 2). 

This study compares different size recurrent neural networks (RNNs) in predicting 

business cycles for the U.S. The proposed RNNs consist of either long short-term memory 

cells (LSTMs) or gated recurrent units (GRUs) and they are trained with multivariate data 

that comprises 27 time-series of several economic, financial and behavioral indicators. 

The RNNs are configured so that, per example, each model used 26 explanatory varia-

bles’ observations for the previous 400 days to generate a 91-day forecast of the U.S. 

business cycle. The results for the comparison are done by using a train-test split, where 

the models are trained with data from the time period between 1980 and 2005, and eval-

uated by using the data from the following ten years. Each proposed RNN architecture is 
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trained three times to counter the randomness and stochasticity that the training algorithm 

introduces to the parameter optimization process. 

The research is conducted so that it answers the following three research questions. 

Firstly, does the proposed methods suit predicting business cycles. Secondly, how large 

RNN architecture appears suitable for the task at hand. Thirdly, which method, LSTM or 

GRU, suits better the prediction problem. 

This study examines methods that are relatively little studied in the domain of eco-

nomics and, simultaneously, they appear to offer a vast number of potential applications. 

For this reason, this study tries to offer a reference point for the following studies and, 

hence, it concentrates on applying only common and approved methods. The main focus 

is on examining the performance-related effects of using different RNN models. The eval-

uation is done by using typical performance metrics, such as mean squared error (MSE) 

and mean absolute error (MAE). However, to gain a deeper understanding, the plots of 

the predictions for the testing set are examined. Appropriate early warning signals are 

considered beneficial, but evaluating them is recognized somewhat subjective. Thus, the 

evaluation favors more objective indicators. 

The research is organized into five separate sections. The theoretical background is 

split into two separate chapters. The first chapter concentrates on presenting the necessary 

theoretical foundations related to the business cycles, time-series analysis and the chosen 

methods. The theory review should offer the necessary knowledge for understanding the 

results and the motivations behind the chosen methods. Therefore, in order to serve com-

mon economics practitioners, the selected deep learning (DL) methods are introduced 

carefully. The second chapter introduces the related literature that comprises the previous 

studies related to time-series analysis, finance and economics. The previous studies indi-

cate the proposed methods’ weaknesses and strengths, along with suggesting suitable ap-

plications. The literature review also presents a timeline that helps to connect this study 

to the existing work and further motivates using these novel RNN methods for complex 

macroeconomic prediction problems. After the related theory and literature are reviewed, 

the chosen methods are examined in more detail in the fourth chapter. This chapter covers 

the data examination, the selected preprocessing methods for the data, the training algo-

rithm and the proposed RNN architectures that are used for generating the results. The 

results are examined in the fifth chapter, that is followed by the conclusions. 
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2 THEORY REVIEW 

2.1 Time-series 

In essence, time-series data is a collection of points arranged in chronological order. A 

time-series can be defined as 

𝑥1,𝑇 = {𝑥𝑡|𝑡 = 1, … , 𝑇}, 

where 𝑥1,𝑇 is a time-series for a time interval [1, 𝑇], 𝑥𝑡 is either a scalar or a vector that 

includes the realizations for time step 𝑡 and 𝑇 represents the number of captured realiza-

tions. If the realizations 𝑥𝑡 for the time interval are scalars, the time-series is one-dimen-

sional, but if they are vectors, the time-series is two-dimensional and can be denoted as a 

matrix 𝑋1,𝑇. Continuous processes can be tracked by collecting records of the process 

over time, creating a discrete time-signal. In time-series analysis, the examined processes 

are often stochastic, meaning that these collected realizations 𝑥𝑡 are generated by some 

random process that draws these values from some set of all the possible values according 

to some distribution function. (Lütkepohl 2005, 1-4.) 

According to Längkvist et al. (2014, 3-4), time-series data has several unique prop-

erties that distinguishes it from other types of data. The following description of these 

properties follows the structure and content that they used in their study. 

Firstly, time-series data usually contains noise that can make it harder to find valuable 

information from the data. For example, in the area of economics, the daily movements 

are not usually important when trying to extract information about the macro trends that 

occur more slowly and are not affected significantly by small frequent short-term move-

ment. 

Secondly, the underlying process might be very complex and, therefore, understand-

ing and modeling it tolerably, even by analyzing all the available time-series data, might 

still be too challenging or even impossible with the best possible techniques available. 

Thirdly, time-series data can have the same value at different time steps, meaning 

either the same or something else depending on, for example, some previous values. Mod-

eling this time-dependency correctly is challenging for many reasons, but also because 

the length of a sequence for capturing this relationship could be unknown. This, in turn, 

could make the selection of a suitable model and the related methods difficult. 

Lastly, there is stationarity. Since a realization 𝑥𝑡 can be captured only once at any 

given time unit 𝑡, it is not possible to identify the mean or variance of all the possible 
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realizations of 𝑥𝑡 per time unit 𝑡. For example, it is impossible to observe two or more 

different realizations of the S&P 500 index at any given time unit. However, the mean 

and covariance can be calculated for some time-series 𝑥1,𝑇 by using the realizations over 

some time interval [1, 𝑇]. For example, in order to use several popular autoregressive 

models and their extensions, the time-series data should be weakly or strongly stationary. 

A time-series is weakly stationary if 

𝐸(𝑥𝑡) = 𝜇 and 𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡+ℎ) = 𝛾𝑡,𝑡+ℎ = 𝛾ℎ, 

meaning that the expected value 𝜇 for a realization 𝑥𝑡 is a constant, and the covariance 

between values 𝑥𝑡 and 𝑥𝑡+ℎ depends only on their distance between each other, denoted 

here as ℎ. Strong stationarity is achieved when time-series values’ distribution is time-

invariant. For example, time-series 𝑥1,𝑇 is strictly stationary if the joint distribution func-

tion is identical for any two different subsets of 𝑥1,𝑇 that share the same length, such as, 

𝑥1,5 and 𝑥10,15. (Hamilton 1994, 45-46; Tsay & Chen 2019, 2.) 

Time-series analysis is a method for extracting knowledge from time-series data. By 

performing a time-series analysis, one can better understand the past, but also, use the 

extracted information to make predictions about the future. (Nielsen 2019, 1.) To make 

predicting plausible, data from important variables should be available, and it should con-

tain useful information related to the future developments of the chosen variable or vari-

ables. With this data, some function 𝑓(∙) can be found that could be used to make predic-

tions for one time step 𝑡 + 1 or several time steps [𝑡 + 1, 𝑡 + ℎ] ahead. The latter type of 

method is called sequence-to-sequence predicting, and it can be demonstrated for variable 

𝑦 by using multivariate data 𝑋 as follows 

𝑦̂𝑡+1,𝑡+ℎ = 𝑓(𝑋𝑡−𝑘,𝑡, 𝜃), 

where 𝑦̂𝑡+1,𝑡+ℎ denotes a sequence of predictions for an interval [𝑡 + 1, 𝑡 + ℎ], 𝑋𝑡−𝑘,𝑡 the 

input matrix containing several variables’ sequential data for time steps [𝑡 − 𝑘, 𝑡] and 𝜃 

the function 𝑓 parameter values. (Lütkepohl 2005, 1.) 

Various different models can be used for modeling the relationships between 𝑋𝑡−𝑘,𝑡 

and 𝑦̂𝑡+1,𝑡+ℎ, but some of them suit the problem better than the others. Finding a suitable 

model can be recognized as a model selection problem and, thus, it is related to the area 

of machine learning (ML). This study applies the typical ML approaches for finding a 

suitable model for the task at hand, that is modeling the relationships between the past 

values of the chosen 26 indicators and the future values of the U.S. business cycle. 
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2.2 U.S. business cycles 

Mitchell (1927, 468) describes business cycles as fluctuations in the economic activity 

that affect the major portion of an organized community, and are not seasonal but rather 

occasional in their nature. Each cycle includes one upward and downward motion, also 

called respectively as expansion and recession. Various definitions exist for these con-

cepts and, therefore, different actors might have different views on the economic situation 

of different economies. For the U.S., the National Bureau of Economic Research’s Busi-

ness Cycle Dating Committee determines the dates when its economy has a recession or 

expansion. According to NBER (2019), this decision is made by analyzing economic ac-

tivity in the U.S. broadly and  

 

“A recession is a period between a peak and a trough, and an expansion is a period 

between a trough and a peak.” 

 

The historical record of the recessions in the U.S. can be found from NBER’s website1, 

but also from the Federal Reserve Economic Data (FRED) databank2. This study com-

prises the time period between 1980 and 2015. During that time, the U.S. has experienced 

five recessions, shown in table 1. 

 

Table 1 – U.S. recessions between 1980 and 2015 (NBER, 2019b) 

Peak Trough Length (months) 

January 1980 July 1980 6 

July 1981 November 1982 16 

July 1990 March 1991 8 

March 2001 November 2001 8 

December 2007 June 2009 18 

 

Between the years 1980 and 2015, the U.S. has spent most of the time in economic ex-

pansion. The economy has spent a total of 56 months in recession and 364 months in 

expansion. Recessions’ share of the time period is approximately 13.334%, making them 

significantly rarer than the expansions, but not rare enough to be recognized as outliers. 

Though their scarcity makes the process of learning to predict them difficult, there are no 

appropriate methods to overcome these disbenefits. 

 
1 http://www.nber.org/cycles/cyclesmain.html 
2 https://fred.stlouisfed.org/series/USREC 
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2.3 Business cycles as a dynamical system 

In economics, a sequence is a subset of real numbers for some time interval 𝐼 (Giordano 

et al. 2013, 7). In this domain, the interval under consideration is typically limited to 

𝐼 = [0, +∞), 

(Barnett et al. 2015, 1751), where 0 denotes the first realization available. A dynamical 

system is a process that generates realizations over time that can be stored in a sequence 

to form a time-series. By using the known realizations, it is possible to describe the change 

from one time step to the next by estimating some function 𝑓 (Giordano et al. 2013, 5-7).  

The economy can be seen as a dynamical system that evolves in time, generating 

realizations whose fluctuations can be defined as business cycles. The classical dynamical 

system can be described as follows 

𝑠𝑡
(1)

= 𝑓(𝑠𝑡−1
(1)

, 𝜃(1)), 

where 𝑠𝑡
(1)

 resembles the state of the system at discrete time step 𝑡, and it is defined by 

some function 𝑓, previous state 𝑠𝑡−1
(1)

 and some set of parameters 𝜃(1). One important as-

pect of this process is that it is recurrent, meaning that the state 𝑠𝑡
(1)

 is dependent on its 

previous states, as depicted in figure 1. (Goodfellow et al. 2016, 369.) In addition, the 

formula can be decomposed to show the recurrence: 

𝑠𝑡
(1)

= 𝑓(𝑓(𝑓(𝑠𝑡−3
(1)

, 𝜃(1)), 𝜃(1)), 𝜃(1)). 

 

 

Figure 1 – Dynamical system 

This type of dynamical system’s change over time can also be affected by some external 

dynamical system 𝑠𝑡
(2)

, that is unique, but has similar properties to the first dynamical 

system 𝑠𝑡
(1)

. The function for the first dynamical system can be now written as 

𝑠𝑡
(1)

= 𝑓(𝑠𝑡−1
(1)

, 𝑠𝑡
(2)

, 𝜃(1)), 

where the first dynamical system’s state at time step 𝑡 depends on its previous state 𝑠𝑡−1
(1)

, 

some external system’s current state 𝑠𝑡
(2)

 and some set of parameters 𝜃(1), as depicted in 

figure 2. In this type of situation, one should also understand what is the second dynamical 

system’s effect on the first dynamical system. 
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Figure 2 – Related dynamical systems 

As mentioned earlier, these types of systems can be tracked by collecting realizations 

over time. The resulting time-series allow creating models that try to replicate the rules 

that define how the dynamical system evolves in time. As mentioned previously, the 

economy can be recognized as a dynamical process that affects and is affected by several 

different other dynamical systems. Because of these attributes, it is justified to use multi-

variate data that includes some set of so-called leading indicators, that comprises infor-

mation of several dynamical systems, for predicting business cycles (Qi 2001, 383-384). 

2.4 Supervised machine learning 

Machine learning (ML) is defined by Samuel (1959, 1) as a way to program a digital 

computer so it can be thought to be able to learn, or by Goodfellow et al. (2016, 96) as a 

study of designing algorithms that can learn from data. 

ML has a close relationship with other common data analyzing and modeling tools 

since they share several methods and tools. According to Varian (2014, 5-6), in statistics 

and econometrics, the data analysis can be broken into four categories: 1) prediction, 2) 

summarization, 3) estimation and 4) hypothesis testing. He suggests that the major dif-

ference between ML, common statistics and econometrics is that where statisticians and 

econometricians focus primarily on insights and relationships that can be found from the 

data, ML concentrates mostly on making accurate predictions. Thus, ML should be con-

sidered when the focus is on predicting. 

Machine learning can be divided into two main classes, that are a predictive and de-

scriptive approach (Murphy 2012, 2). The predictive ML algorithms can be used for pre-

dicting some missing information by using some known information, and the descriptive 

ML algorithms are typically used for finding and describing patterns in data. The algo-

rithms for the predictive tasks are commonly trained by using supervised learning meth-

ods and the latter by using unsupervised learning methods. It is also good to acknowledge 

that there are many other ways to classify different types of machine learning, but they 
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are out of the scope of this study, which only applies supervised learning algorithms for 

business cycle forecasting.  

In supervised learning, algorithms are provided with input-output pairs. (Hastie et al. 

2009, 29; Goodfellow et al. 2016, 103.) Inputs can be defined, for example, as a matrix 

𝑋 ∈ ℝ𝑖×𝑗 where 𝑖 represents the number of examples or rows in the data and 𝑗 represents 

the number of explanatory variables or features. In turn, similarly to the inputs, also the 

outputs can be defined by using some common data object, such as a matrix 𝑌 ∈ ℝ𝑖×𝑘 or 

a vector 𝑦 ∈ ℝ𝑖𝑥1, depending on the number of dependent variables 𝑘. 

A supervised machine learning prediction problem can be described with the follow-

ing equation: 

𝑓(𝑥(𝑖), 𝜃) = 𝑦̂(𝑖). 

Here the vector 𝑥(𝑖) represents the 𝑖th example, that is on row 𝑖 in the data matrix 𝑋. 𝑓(∙) 

represents some function, 𝜃 the function’s parameters and 𝑦̂(𝑖) the outputs for the 𝑖th in-

puts. In supervised ML, the task is typically to find some function with some set of pa-

rameters that is able to achieve satisfying accuracy at mapping the known input values 

into estimated output values that are as close as possible to the real output values. (Varian 

2014, 6; Goodfellow et al. 2016, 103-105.) 

In machine learning, it is recognized that there are plenty of different types of models 

that suit different types of tasks and data. Therefore, much of the ML theories and meth-

ods concern finding a suitable model for a given problem and data. For example, classi-

fication, regression and clustering tasks have their own typical models and other data 

related techniques, but behind it all, there lies a fundamental theory that motivates ques-

tioning the current common practices and testing new methods. According to Wolpert 

(1996) and Wolpert and Macready (1997) papers’ mathematical demonstrations, if abso-

lutely no assumption about the data or the task is made, no model or algorithm is better 

than all the other possible alternatives in every different task. Therefore, in this situation, 

one should evaluate all the possible options, also called the hypothesis space, in order to 

find the solution that fits the given problem the best. These theorems are called the No 

Free Lunch theorems (NFL-theorems), and they are recognized as one of the most im-

portant theories in the field of ML. 

However, Géron (2017, 31) notes that, in practice, evaluating all the different possi-

ble models is impractical, or even impossible with the scarce resources and, hence, some 

assumptions about the data and the task should be made in order to narrow down the set 
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of algorithms to evaluate. Therefore, even though there lies a significant motivation for 

trying out all the known models and methods when creating systems that can learn, the 

previous work in the field has a significant role in the human and computing resource 

allocation. 

2.5 Bias-variance trade-off 

Bias, variance and their trade-off are fundamental at understanding the essential concepts 

of machine learning, such as under- and overfitting, generalization error and model ca-

pacity, which build the framework for finding a suitable model for some prediction task. 

Typically, error in an estimator can be divided into two components: bias and variance. 

Bias addresses the amount of error that occurs from the prediction’s expected deviation 

from the real value, and variance tells how much error is generated from the deviation of 

the expected prediction from the real prediction. (Goodfellow et al. 2016, 120-128; Ge-

man et al. 1992, 2.) 

In this study, the mean squared error (MSE) is the most important error measure 

because it is used in parameter optimization and model evaluation. By following Mur-

phy’s (2012, 202) notations, we can derive the expected bias and variance for the expected 

MSE as follows 

𝑀𝑆𝐸 = 𝔼[(𝑦̂ − 𝑦∗)2], 

𝑀𝑆𝐸 = 𝔼 [((𝑦̂ − 𝑦̅) + (𝑦̅ − 𝑦∗))
2

], 

𝑀𝑆𝐸 = 𝔼[(𝑦̂ − 𝑦̅)2] + 2(𝑦̅ − 𝑦∗)𝔼[𝑦̂ − 𝑦̅] + (𝑦̅ − 𝑦∗)2], 

𝑀𝑆𝐸 = 𝔼[(𝑦̂ − 𝑦̅)2] + (𝑦̅ − 𝑦∗)2, 

𝑀𝑆𝐸 = 𝑣𝑎𝑟(𝑦̂) + 𝑏𝑖𝑎𝑠2(𝑦̂), 

𝑀𝑆𝐸 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑏𝑖𝑎𝑠2. 

Here, 𝑦̂ stands for the prediction, 𝑦∗ for the real value, and 𝑦̅ for the expected prediction 

for a given input. The expected MSE and the expected prediction 𝑦̅ can be discovered by 

testing the model repeatedly by using a large number of training data and then averaging 

the result (James et al. 2013, 34).  

From the decomposition, one can see that, in order to minimize MSE, both variance 

and bias should be decreased. However, they are connected to model capacity, as depicted 

in figure 3. 
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Figure 3 – The bias-variance trade-off (Goodfellow et al. 2016, 118, 128) 

Generally, the models with too low modeling capacity for modeling some data tend to 

have high bias and low variance, and in turn, the models that possess too much modeling 

capacity tend to have small bias but high variance. This happens because the more capable 

models are able to model the random noise in the data and become too sensitive to small 

changes in the input data and, thus, gain more variance when tested with unseen data. 

This phenomenon is also called overfitting. In turn, underfitting occurs when using insuf-

ficient models that are too constrained to find a suitable fit for the data. These two phe-

nomena are interlinked by the modeling capacity, and they form a theory called the bias-

variance trade-off. (Goodfellow et al. 2016, 127-128; James et al. 2013, 33-36.) 

An estimate of a model’s true performance, also called the generalization error, can 

be obtained by testing the model with examples that are not used for tuning its parameters. 

This estimation is usually done by dividing the available data into two or more folds that 

are then used either to train or to test the model. (Goodfellow et al. 2016, 108-111.) In 

this study, the generalization error is estimated by dividing the whole data into two folds 

where one is used for model training and the other for estimating the generalization error. 

The methods used in this study for dividing the data into training and testing sets are 

examined in more detail in section 2.6.4. 
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2.6 Preprocessing 

A dataset is seldom instantaneously ready to use for ML tasks. Instead, it is usually pre-

processed so that it suits better the chosen models and parameter optimization methods. 

In fact, finding good quality data and preprocessing it accordingly is found as one of the 

most important areas in ML. (Nielsen 2019, 17; Géron 2017, 26.) 

In this study, the motivation for the chosen preprocessing methods comes from three 

sources. Firstly, deep learning solutions prefer particular types of properties from the data. 

Secondly, time-series data has its own ways when it comes to preprocessing. Thirdly, the 

preprocessing should be done in a way that is also possible in the production environment. 

Essentially, this means that the preprocessing methods should not use information from 

the time steps that are not known at some particular moment for some particular instance. 

In this study, for convenience, only the future information is cropped when preprocessing. 

It does not take into account the lag between the date when a realization occurs and the 

date when it is actually released.  

The time-series data used in this study had several imperfections, such as missing 

values, incoherent value scales and trends. These defects have been handled by using 

common preprocessing methods that are introduced in the following sections. 

2.6.1 Linear interpolation 

The data used in this study suffers from missing values that mostly originate from low-

frequency time-series. In order to obtain more data for the data-hungry deep learning 

methods, daily data is used. Hence, all the time-series with a lower frequency demand 

upsampling.  

Interpolation is a common method for handling missing values and upsampling. It 

approximates missing values in a time-series by using their neighboring data points. In 

this study, a linear interpolation is used, whose equation is 

𝑦(𝑡) = 𝑦(𝑡−1) +
(𝑥(𝑡)−𝑥(𝑡−1))(𝑦(𝑡+1)−𝑦(𝑡−1))

𝑥(𝑡+1)−𝑥(𝑡−1)
, 

where (𝑥(𝑡−1), 𝑦(𝑡−1)) and (𝑥(𝑡+1), 𝑦(𝑡+1)) are the known data points that are used for 

finding the missing coordinate 𝑥(𝑡) or 𝑦(𝑡). Linear interpolation can also be used to fill a 

chain of missing values, for example, when upsampling quarterly data into daily data. 

Figuratively, it draws a line between two known realizations and the missing values in 

that range are filled by using this particular line, as depicted in figure 4. 
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Figure 4 – A depiction of linear interpolation 

If there are no realizations before or after the missing value, the adjacent slope can be 

used. In this study, the previous slope is used for the last missing values that would not 

otherwise receive a value. As depicted in figure 4, the missing value for time step 𝑡 + 2 

would be set by using the slope determined by the realizations for time steps 𝑡 − 1 and 

𝑡 + 1. In turn, when dealing with the first missing values, this same slope could be used. 

However, in this study, the previous realizations are used for determining these missing 

values in order to get more accurate time-series. Thus, for example, the realizations for 

time steps 𝑡 − 3 and 𝑡 − 1 are used for determining the value for the missing realization 

on time step 𝑡 − 2. Here, the 𝑡 − 3 realization is drawn from outside of the data sequence 

under consideration, an area called interpolation buffer. This method should not be used 

for the last missing values if one wants to simulate a situation where there is no infor-

mation about future values and prevent the aforementioned lookahead effect. 

Linear interpolation has some defects. Firstly, the realizations of a dynamical system 

seldom follow the aforementioned equation. Hence, a time-series that is impaired of miss-

ing values cannot be fully repaired by using linear interpolation and, therefore, time-series 

with fewer missing values should be preferred. Secondly, the adjacent data points’ ability 

to provide valuable information about the missing value or many values between them 

might be weak, for example, when the signal is very similar to a random walk or is oth-

erwise very volatile. Thirdly, if used incorrectly, it might also provide lookahead infor-

mation to the data. (Nielsen 2019, 48-50.) 

Even though of these defects, interpolation is a useful method for handling the miss-

ing values since it enables the use of some valuable time-series. Moreover, the trends in 

macroeconomic data tend to be medium and long-term movements, making the short-

term variations less significant and, therefore, allowing more short-term imprecision from 
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the data that, in turn, supports using fairly simple methods for handling the missing values 

in this study. 

2.6.2 Detrending 

A trend in the context of time-series data is typically a systematic change that is not sea-

sonal. A trend in a time-series can be detected, for example, by examining its plot or by 

testing its stationarity. In economic time-series, trends are typical because several eco-

nomic processes’ realizations depend on their previous values. Zhang and Qi (2002; 2005) 

showed that if a time-series contains trends and seasonal variations, both should be pre-

processed before feeding it to an ANN model. Furthermore, Qi and Zhang (2008) demon-

strated that differencing should be used for detrending a time-series. 

Because ANN models can deal with nonstationary data, stationarity tests are not im-

plemented in this study, and differencing is used for handling only the time-series with 

notable trends that can be detected by exploring their plots. The differencing is done by 

using the previous time step value. No deseasonalization is implemented to the time-se-

ries, but several already deseasonalized time-series are used. 

2.6.3 Min-max scaling 

When using deep learning, the data is typically scaled between 0 and 1 (Bengio 2012, 

447). Because many scaling or normalization methods use minimum and maximum val-

ues, they are vulnerable to trends and outliers. If a trend continues after the parameters 

for the scaling function are set, it is likely that the future data can cross the boundaries if 

the scaling parameters are not adjusted. The notable trends are handled in this study and, 

therefore, the common min-max scaling equation: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛), 

should be feasible for scaling the time-series data. In min-max scaling, some value from 

a time-series 𝑥, or the whole time-series, is scaled by using its the smallest 𝑥𝑚𝑖𝑛 and 

highest 𝑥𝑚𝑎𝑥 value. Each time-series is scaled separately. 

Although this method is popular, it is vulnerable to outliers because it utilizes the 

minimum and maximum values. The data used in this study is relatively smooth, and it 

does not seem to include significant changes that could not be explained. Moreover, for 

this particular application, some rare values typically have a reasonable explanation and, 

therefore, might be necessary when predicting business cycles. 
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2.6.4 Train-test split 

To estimate the generalization error of some model, which is the expected value of some 

chosen error measure, such as MSE, when averaged over the future data, one can use a 

common method called a train-test split. It is applied by dividing a data set once into two 

separate sets: the training set, that is used for optimizing the models’ parameters, and the 

testing set, that, in turn, is used for testing the models’ performance with unseen data 

examples, hence yielding an estimate of the models’ generalization error. (Goodfellow et 

al. 2016, 108-111; Murphy 2012, 23.) One crucial aspect of this method is to define the 

training and testing sets in a way that simultaneously maximizes the models’ performance 

and the accuracy of the generalization error estimate. Furthermore, when defining the 

split, a trade-off should be acknowledged. Since, generally, the more data is used for op-

timizing the model, the better the model performs, and in turn, the more data is used for 

evaluating the model, the better estimate of the generalization error is achieved. Hence, 

when using train-test split, it tends to give pessimistic estimates of the generalization er-

ror, compared to what the models could achieve by using the whole available data. More-

over, the sets should be somewhat similar to each other. The training set should contain 

the information, the so-called general pattern, to be learned, and the testing set should test 

how well the models learned to model this pattern and, hence, it needs to contain a suffi-

cient number of examples about the general pattern. (Goodfellow et al. 2016, 108-111.) 

When dealing with time-series data, both, the training and testing set, should contain 

a continuous sequence of consecutive examples that form a continuous time window. 

Furthermore, when trying to predict the future by using past information, the sequence 

used for testing should contain the newer data points, and the training set the older data 

points, in order to simulate the real-life use case. (Nielsen 2019, 343.) 

As introduced in the NFL-theorems, there is no universally superior model for every 

possible prediction problem. Instead, any model from the vast hypothesis space should 

be considered as a possible option if no assumptions are made concerning the task at hand. 

A model suitable is commonly found based on the bias-variance trade-off framework, 

together with some performance measures that guide the decisions concerning the model 

capacity. Generally, a complex problem demands a model that is able to model complex 

relationships and vice versa (Goodfellow et al. 2016, 112-113). 
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As is introduced earlier, the evaluation of the generalization error is fundamental for 

the model selection process. Now the generalization error can be estimated to some de-

gree by using a train-test split, as shown in figure 5. If the sets for training and testing are 

ideal, the error obtained by testing the model with the testing set’s data will represent the 

generalization error. Hence, when the model underfits or overfits the data, the testing error 

should increase due to the bias-variance trade-off. A model with less than the optimal 

modeling capacity has trouble to capture the general pattern adequately. Though these 

models cannot offer the best performance, they might be useful for providing information 

about the task at hand, possibly about the most important relationships. When the model 

capacity is increased over the optimal value, the model can adjust itself better to the train-

ing set specific noise and other irregularities that weakens its ability to perform well with 

unseen examples in the training set. (Goodfellow et al. 2016, 108-114, 127-128; James et 

al. 2013, 33-36.) 

 

 

Figure 5 – A depiction of a typical relationship between model capacity, training 

error and testing error 

The train-test split is done in this study by dividing the data into two separate time win-

dows where the latest data is used for testing and the rest for training a selection of artifi-

cial neural network models. In order to make the testing set adequate, it should include 

the general pattern, here the business cycle. Hence, the whole time-series data is divided 

so that the testing set includes the latest U.S. business cycle between 2005 and 2015. The 

chosen train-test split together with all the selected time-series are introduced in more 

detail in sections 4.1. and 4.2.3. 
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2.7 Deep learning 

An artificial neural network (ANN) with more than one layer between the input and out-

put layers is considered deep. These types of ANNs are called deep neural networks 

(DNNs) and all the methods concerning finding a suitable DNN and its parameter values 

more broadly as deep learning (DL) (Goodfellow et al. 2016, 8-18). Hornik et al. (1989) 

proved that a classical ANN model, a multilayer perceptron (MLP) that possesses a suf-

ficient number of units with nonlinear activations function can approximate any continu-

ous function at an arbitrary level of accuracy. For this reason, ANNs are regarded as uni-

versal function approximators. Since their very high capacity to model complicated pat-

terns in data, DL algorithms have enjoyed success in extremely complex domains, such 

as, image and speech recognition that were not conquered by any other models. (Good-

fellow et al. 2016, 152, 225.)  

In deep learning, the model consists of numerous individual arithmetic operations 

that together form a bigger entity, a network of small functions that is optimized, for 

example, to map inputs to outputs if the task is a supervised learning problem. Before 

introducing the more advanced ANNs that are used in this study, a multilayer perceptron 

(MLP) is explained, which serves as a background. A common way to examine ANNs is 

by studying their architecture from a computational graph or some other depiction. In this 

way, the computations might be easier to be perceived and the network’s main traits to 

be evaluated (Goodfellow et al. 2016, 201). 

 

 

Figure 6 – A multilayer perceptron 
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Figure 6 depicts an MLP with four separate layers. The model receives an input vector 𝑥 

that is then transformed into an estimate 𝑦̂. The two hidden layers in the model will ulti-

mately create two different representations of the original inputs by doing several simple 

arithmetic operations that they feed forward to the next layer along with the related 

weights. For example, an activation for unit 𝑎5
1 is calculated by taking a weighted sum of 

the previous layer’s activations and their relative weights for the examined unit that is 

then added to the bias term 𝑏0, following some activation function to introduce nonline-

arity. Several different functions can be used as an activation function, such as sigmoid 𝜎 

or hyperbolic tangent 𝜏. The activation 𝑎5
1 can now be written in a vector notation by 

using dot product as follows 

𝑎5
1 = 𝜎((𝑤5

1)⊤𝑥 + 𝑏0). 

As depicted in figure 6, the activations for layer 𝐿 are calculated with the previous acti-

vations 𝑎𝐿−1 or inputs 𝑥, the matrix 𝑊𝐿 that consists of the relative transposed weight 

vectors 𝑤𝑗
𝐿 for each separate unit 𝑗 in the layer 𝐿, the bias term 𝑏𝐿−1 and some activation 

function as follows 

𝑎𝐿 = 𝜎(𝑊𝐿𝑎𝐿−1 + 𝑏𝐿−1). 

The examined MLP in figure 6 consists of one input layer, two hidden layers and one 

output layer. These layer operations formulate a chain of functions that yields the output 

𝑦̂ in the following way 

𝑓(𝑥, 𝜃) = 𝑊3𝜎(𝑊2𝜎(𝑊1𝑥 + 𝑏0) + 𝑏1) + 𝑏2 = 𝑦̂, 

where 𝜃 consists of all the parameters in the model, which are the weights 𝑊𝐿 and the 

bias terms 𝑏𝐿. In this example, the output layer does not apply an activation function. 

(Goodfellow et al. 2016, 164-172; Graves 2012, 12-16.) 

To control the model capacity in DL, one has to adjust the architecture and possible 

regularization terms. Generally, the more a model has parameters and less regulation, the 

higher is its ability to model complex patterns and the more prone it is to overfit to the 

provided data. The depth of the examined MLP model is three. Essentially, all layers other 

than the input layer are counted. The width of a layer is determined by the number of 

units it has. Several studies have found that typically larger architectures tend to be the 

most successful if they are regularized properly, especially the networks with higher 

depth. (Bengio 2012, 450-451; Goodfellow et al. 2016, 165, 193-197.) Although the uni-

versal approximation theorem shows that an ANN with just one hidden layer and a suffi-

cient number of units can represent any continuous function, deeper models are favored. 
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Typically, depth gives more modeling capacity with fewer parameters and, thus, requires 

less computational resources, albeit exposing the training process to more faults, such as 

exploding and vanishing gradients. (Goodfellow et al. 2016, 193-197, 285-287.)  

This MLP model is also classified as a deep feedforward network that comes from 

the nature of how the activations are propagated through the network, which is forward 

layer-by-layer. In addition to forward propagating networks, there are also networks with 

connections that allow them to feed activations back into the network, called recurrent 

neural networks. (Goodfellow et al. 2016, 164.) 

2.7.1 Recurrent neural networks 

Recurrent neural networks (RNNs) are a class of ANN models that include recurrent con-

nections in their architecture. Feeding information back into the network builds a 

memory-like function to RNN models, which makes them more suitable for some sequen-

tial tasks than the typical feedforward networks. (Goodfellow et al. 2016, 367; Graves 

2012, 18-19.) 

 

 

Figure 7 – A depiction of a classical recurrent unit 

Similarly to the normal hidden units that were introduced in the MLP example, a recurrent 

unit 𝑎1 receives a bias term 𝑏 and inputs 𝑥 at time step 𝑡 that are multiplied with their 

relative weights, as depicted in figure 7. The addition is the recurrent connection that 

multiplies some activation at the previous time step, that is here its own previous activa-

tion 𝑎1,(𝑡−1) with its relative weight 𝑣11. After these arithmetic operations, an activation 

function 𝜎 is introduced to add nonlinearity to the recurrent unit’s activation. (Goodfellow 

et al. 2016, 369-376; Graves 2012, 18-21.) The function for this classical recurrent unit 

at time step 𝑡 can be written by using a vector notation as follows 

𝑎1,(𝑡) = 𝜎(𝑤⊤𝑥(𝑡) + 𝑣⊤𝑎(𝑡−1) + 𝑏). 
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There are a vast number of different options on how the network could be designed 

by defining the number of layers (depth), choosing the number of units per layer (width) 

and the connections between them. The following simple example of an RNN model fol-

lows Goodfellow et al. (2016, 372-376) outlines. 

 

 

Figure 8 – A depiction of a recurrent neural network 

An RNN with one hidden layer comprises three weight matrices 𝑊21, 𝑊22 and 𝑊32, as 

depicted in figure 8. The bias terms can be regarded as input nodes that feed forward a 

value of one that is multiplied by a weight parameter and, thus, can be included in the 

weight matrices to simplify the notations. During a forward pass, the RNN generates a 

prediction 𝑦̂ for time step 𝑡 according to the following equation: 

𝑦̂(𝑡) = 𝑊32𝜎(𝑊21𝑥(𝑡) + 𝑊22𝑎(𝑡−1)
1 ), 

which resembles the MLP model apart from the recurrent connections 𝑊22𝑎(𝑡−1)
1 .  

To illustrate how an RNN operates with sequential data, the computational graph can 

be unfolded with respect to time steps so that the recurrence stands out better, as depicted 

in figure 9. The model is given the sequential input data one time step at a time, and with 

every input, the model is able to produce an output for that particular time step. 

 

 

Figure 9 – An unfolded computational graph 

RNNs are able to use past information to make predictions, but RNNs that consist of only 

the classical recurrent units perform poorly when modeling long-term dependencies in 

sequential data (Bengio et al. 1994). This is due to the common problems in deep learning, 
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called vanishing and exploding gradients that might occur when backpropagating the cost 

to the model parameters (Goodfellow et al. 2016, 390). This defect makes it oftentimes 

unideal to use this type of RNN for tasks that demand good handling of long-term de-

pendencies, and for this reason, the classical recurrent units were introduced only as an 

introduction to the RNNs and are not used otherwise in this study. Instead, more sophis-

ticated methods are chosen that are able to handle better sequences with long-term de-

pendencies called long short-term memory cells (LSTMs) and gated recurrent units 

(GRUs). These gated RNN methods exploit the so-called paths through time that make 

their training process more robust against the aforementioned issues (Goodfellow et al. 

2016, 404). According to the results by Greff et al. (2017) and Jozefowicz et al. (2015) 

studies, these two aforementioned gated RNN methods seem to perform quite evenly 

along with few other similar designs in different types of tasks that use sequential data. 

2.7.2 Long short-term memory cell 

The first version of LSTM was introduced by Hochreiter and Schmidhuber (1997) to cre-

ate a method that could overcome the previous RNNs’ problems related to modeling long-

term dependency. According to Olah (2015), the later versions of the LSTM and its other 

modifications are widely used in different problems that demand good performance in 

handling data with long-term dependencies. The following example of an LSTM cell fol-

lows the outlines made by Goodfellow et al. (2016, 404-406), Graves (2012, 31-38) and 

Olah (2015). 

An LSTM cell, depicted in figure 10, receives some inputs and produces some out-

puts for the next layer and for itself for the next time step, similarly to the previously 

examined classical recurrent unit. The difference is the architecture of arithmetic opera-

tions inside the LSTM cell, along with two different outputs, the activation 𝑎 and the cell 

state 𝑐. LSTM cell’s core idea is to update the cell state every time step, and then use it 

to create a cell activation in accordance with some inputs and parameter values. It is this 

cell state, also called the cell memory, that creates the path through time, and makes the 

LSTM more robust against the aforementioned unideal backpropagation behavior. 
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Figure 10 – A long short-term memory cell 

The LSTM cell’s arithmetic operations can be seen to construct three gates that control 

the flow of information in the cell and also out of it. Two of the three gates are dedicated 

to forget and add information into the cell state as follows 

𝑐(𝑡) = 𝑔(𝑡)
𝑓

𝑐(𝑡−1) + 𝑔(𝑡)
𝑖 𝑖(𝑡), 

where 𝑐(𝑡) stands for the cell state at time step 𝑡, 𝑔(𝑡)
𝑓

 for the forget gate, 𝑐(𝑡−1) for the 

previous cell state at time step 𝑡 − 1, 𝑔(𝑡)
𝑖  for the input gate and 𝑖(𝑡) for the input, that is 

now a combination of the previous layer’s current activations, here denoted as 𝑥(𝑡), and 

the current layer’s previous activations 𝑎(𝑡−1). 𝑔(𝑡)
𝑓

, 𝑔(𝑡)
𝑖  and 𝑖(𝑡) are calculated with op-

erations similar to the classical recurrent unit: 

𝑔(𝑡)
𝑓

= 𝜎(𝑊𝑓𝑥(𝑡) + 𝑉𝑓𝑎(𝑡−1) + 𝑏𝑓), 

𝑔(𝑡)
𝑖 = 𝜎(𝑊𝑖𝑥(𝑡) + 𝑉𝑖𝑎(𝑡−1) + 𝑏𝑖), 

𝑖(𝑡) = 𝜏(𝑊𝑥(𝑡) + 𝑉𝑎(𝑡−1) + 𝑏). 

The operation that handles “the forgetting” in the cell is the multiplication between the 

forget gate 𝑔(𝑡)
𝑓

, that receives a value between 0 and 1 due to the sigmoid activation func-

tion 𝜎, and the cell state on the previous time step 𝑐(𝑡−1). The forget gate should learn 

when it needs to decrease the cell state and by how much, by finding the right parameter 

values 𝑊𝑓, 𝑉𝑓 and 𝑏𝑓. Similarly, the input gate 𝑔(𝑡)
𝑖  and the inputs 𝑖(𝑡) should learn when 

and what they should add to the cell state, by finding the optimal parameters 𝑊𝑖, 𝑊, 𝑉𝑖, 

𝑉, 𝑏𝑖 and 𝑏.  
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In addition to these operations that concentrate on evolving the cell state, there are 

operations that determine the actual activation that the LSTM cell outputs at time step 𝑡. 

These operations are hyperbolic tangent function 𝜏 and the output gate 𝑔(𝑡)
𝑜 . The activation 

is drawn from the cell state 𝑐(𝑡) as follows 

𝑔(𝑡)
𝑜 = 𝜎(𝑊𝑜𝑥(𝑡) + 𝑉𝑜𝑎(𝑡−1) + 𝑏𝑜), 

𝑎(𝑡) = 𝑔(𝑡)
𝑜 𝜏(𝑐(𝑡)). 

Similarly to the previous gates, the output gate 𝑔(𝑡)
𝑜  should learn how much it should 

decrease the mapped cell state at a given time step. However, before applying the output 

gate, the hyperbolic tangent function maps the cell state between -1 and 1.  

An RNN that uses only LSTM cells is called an LSTM network. When compared to 

the depiction of the RNN in figures 8 and 9, the LSTM cells can be thought to replace the 

classical recurrent units while maintaining the same layer-wise connections. As can be 

derived from the LSTM cell’s arithmetic operations, an LSTM network introduces lots of 

parameters and arithmetic operations. Since computational resources and digital memory 

are scarce, there has been an incentive to create lighter versions of the traditional LSTM 

cell, and several modifications have been introduced, one being a gated recurrent unit 

(GRU). 

2.7.3 Gated recurrent unit 

Cho et al. (2014) created an LSTM variant called a gated recurrent unit (GRU) that re-

quires fewer computations but is able to perform similarly in tasks that require modeling 

long-term dependencies in data. In comparison to an LSTM cell’s architecture, a GRU 

has only two gates for controlling the information flow inside the unit, whereas an LSTM 

cell has three. Therefore, it also requires fewer parameters, since it has only three embed-

ded hidden layers. Also, a GRU does not have a separate cell state, as shown in figure 11. 

Instead, it uses the activations from the previous time step 𝑎(𝑡−1), and the previous layer’s 

activations at the current time step 𝑥(𝑡) to produce a new activation 𝑎(𝑡), according to its 

arithmetic architecture and parameter values. 
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Figure 11 – A gated recurrent unit 

The activation at time step 𝑡 for a GRU is calculated by the following equation: 

𝑎(𝑡) = 𝑔(𝑡)
𝑢 𝑎(𝑡−1) + (1 − 𝑔(𝑡)

𝑢 )𝑎(𝑡)
𝑛 , 

where the new activation 𝑎(𝑡)
𝑛  is obtained as follows 

𝑎(𝑡)
𝑛 = 𝜏(𝑊𝑛𝑥(𝑡) + 𝑉𝑛(𝑔(𝑡)

𝑟 𝑎(𝑡−1)) + 𝑏𝑛). 

The functions for the reset and update gate are the following: 

𝑔(𝑡)
𝑟 = 𝜎(𝑊𝑟𝑥(𝑡) + 𝑉𝑟𝑎(𝑡−1) + 𝑏𝑟), 

𝑔(𝑡)
𝑢 = 𝜎(𝑊𝑢𝑥(𝑡) + 𝑉𝑢𝑎(𝑡−1) + 𝑏𝑢). 

Similarly to an LSTM cell’s gates, the reset gate 𝑔(𝑡)
𝑟  and the update gate 𝑔(𝑡)

𝑢  should learn 

when and by how much they decrease the information flow in the unit by discovering 

suitable values for their weights and biases. The new activation 𝑎(𝑡)
𝑛  is obtained by gating 

the previous activations 𝑎(𝑡−1) through the reset gate 𝑔(𝑡)
𝑟  and then using the result as an 

input alongside with activations from the previous layer, denoted here as 𝑥(𝑡). Together 

with the parameters 𝑊𝑛, 𝑉𝑛 and 𝑏𝑛, they form an affine function whose output is then 

mapped between -1 and 1 by using the hyperbolic tangent 𝜏 as a nonlinear activation 

function. The activation for the GRU is combined from the previous activation 𝑎(𝑡−1) and 

the new activation 𝑎(𝑡)
𝑛  in a ratio that is determined by the update gate 𝑔(𝑡)

𝑢 . (Cho et al. 

2014, 3; Goodfellow et al. 2016, 407-408.) 
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2.7.4 Deep neural network architectures 

The more an ANN has learnable parameters, the more it tends to offer modeling capacity, 

but also its architecture has a significant effect on its ability to express patterns in data. 

Arguably, the most significant effect comes from multiple hidden layers that are con-

nected to each other. (Goodfellow et al. 2016, 165, 193-197.) In theory, the layers closer 

to the input layer concentrate on finding lower-level details from the data, and the follow-

ing layers are able to use these concepts and build higher-level concepts that are relevant 

for solving the task and decreasing the cost (Goodfellow et al. 2016, 195-197). Although 

Hornik et al. (1989) have shown that an ANN with only one hidden layer can approximate 

any continuous function, it is seldom used when applied to complex tasks, because ANNs 

with more than one hidden layer typically offer better performance with fewer parame-

ters. (Delalleau & Bengio 2011; LeCun et al. 2015.) 

Several studies, such as Graves et al. (2013), found RNNs with multiple hidden layers 

offering significant performance gains compared to other established methods at the time. 

Cho et al. (2014, 3) argue that an LSTM or GRU network with only one hidden layer is 

able to learn various dependencies over different time scales in the data because of their 

unique gates. However, Pascanu et al. (2014, 1) suggest that this effect is further strength-

ened via additional hidden layers that are able to create higher-level concepts from the 

previous layers’ activations. 

Based on these findings, testing deep recurrent neural networks for the task at hand 

is reasonable, although they introduce a higher risk for exploding and vanishing gradients. 

As these risks are acknowledged, the training algorithm for optimizing the selected LSTM 

and GRU networks includes methods that should make the training process more stable, 

such as Nesterov accelerated momentum. 

2.7.5 Training epoch 

In the context of ML, the parameter optimization is responsible for the phenomenon 

called learning. Basically, the goal for the parameter optimization in supervised deep 

learning is to find a set of parameters 𝜃 that minimizes the value determined by some cost 

function 𝐽(∙). Optimizing an ANN’s parameters is a nonconvex optimization problem 

since the model itself is nonconvex. Therefore, it does not possess many of the helpful 

attributes for optimization compared to convex models. Arguably, the most significant 

difference is that an ANN usually has several local minima. For this reason, it is possible, 
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and quite likely, that the parameter optimization does not find the global minimum on the 

cost function. However, this has not necessarily been a deal-breaker in various applica-

tions because stochastic gradient descent (SGD) and its modifications tend to find param-

eter values that yield a low enough value with a reasonable number of computations. 

(Goodfellow et al. 2016, 149-150, 271-272, 279-285.) 

 

 

Figure 12 – A training loop 

Finding a satisfying set of parameters for an ANN model is usually an iterative process 

that consists of separate steps, all of which are designed to minimize the cost or provide 

information about how the optimization process evolves. The steps that are used in this 

study are depicted in figure 12. During the whole training process, the training set, and 

typically also the testing set, are fed into the model several times. These datasets can be 

fed through the training loop all at once, in smaller batches, also commonly called mini-

batches, or one example at a time. Typically, only the training set is divided. In the opti-

mal scenario, the training set is fed one example at a time. However, it demands lots of 

computations, especially if the training set consists of a vast number of examples and, 

hence, minibatches are often used instead. When the whole training set has been fed 

through the training loop in one way or another, one epoch of training has been carried 

out. (Bengio 2012, 442-444; Goodfellow et al. 2016, 149-150, 274-276.) This study ap-

plies the minibatch training method, and the following sections introduce the steps in the 

proposed minibatch training loop in more detail. 
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2.7.6 Forward pass and cost function 

The phase where the model receives some inputs and calculates some outputs is called 

the forward pass and it is generally denoted as 

𝑓(𝑥, 𝜃) = 𝑦̂, 

where the function 𝑓 is an ANN that transforms some input values 𝑥 into estimates 𝑦̂. 

These estimates are then used in the next step to determine the cost according to some 

cost function 𝐽(∙). The cost function typically consists of some loss function and it might 

also include regularization terms. (Goodfellow et al. 2016, 172, 272.) In this study, mean 

squared error (MSE) is used for calculating the loss 𝐿(𝑦̂, 𝑦) and an L1 regularization term 

𝑙1 to drive weight decay during the training process. The cost function can be written as 

follows 

𝐽(𝜃) = 𝐿(𝑦̂, 𝑦) + 𝑙1. 

The cost function can be seen to lead the learning process and, hence, it should be 

examined carefully to better understand the behavior the models learn from the training 

set. By selecting what type of errors and model attributes generate how much cost, the 

model can be guided to focus on certain types of patterns in the data, and to produce a 

certain type of outputs. The following sections provide more details concerning the cho-

sen cost function, along with justifying the selected methods. 

2.7.6.1 Loss function 

Mean squared error (MSE) and mean absolute error (MAE) are both common functions 

for calculating loss in regression problems. For some minibatch 𝑏, MSE and MAE can be 

calculated by using equations: 

𝑀𝑆𝐸𝑏 =
1

𝑛
∑ (𝑦̂(𝑖) − 𝑦(𝑖))2𝑛

𝑖=1 , 

𝑀𝐴𝐸𝑏 =
1

𝑛
∑ |𝑦̂(𝑖) − 𝑦(𝑖)|2𝑛

𝑖=1 , 

where 𝑛 represents the number of examples in minibatch 𝑏, and 𝑖 the index of an example 

in the minibatch. When applied in a cost function, the loss function is used for calculating 

the average loss for a minibatch after example-specific losses have been obtained. 
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Figure 13 – An error curve comparison between MSE and MAE 

In this study, the regression task resembles a binary classification since the business cycle 

time-series has only two possible values, 1 and 0. However, it is important to 

acknowledge that the predictions do not exactly represent real probabilities. Because the 

model treats the task as a pure regression, there are fundamentally no boundaries for the 

prediction values, but during the training process, the model should learn to target the 

predictions between 0 and 1. When comparing the equations and the error graphs for the 

aforementioned interval in figure 13, one can find that MSE generates less or an equal 

amount of error compared to MAE if the model predicts values between -1 and 1. 

Whereas MAE can be considered more neutral when it comes to determining how much 

loss is generated from an inaccurate prediction, MSE would encourage a model to give 

more significant signals if it finds a risk of a peak or trough happening during the multi-

step prediction, since it produces less loss than MAE. This attribute is considered valuable 

for an application that could be used as an early warning system, although it further averts 

the predictions from pure probability values. While it is reasonable to penalize less from 

giving a hint that a peak or trough might occur during the forecasting period, choosing 

MSE can also be justified by examining the ratio between expansions and recessions. As 

mentioned in section 2.2, recessions’ share of the whole time period between 1980 and 

2015 is only approximately 13.334%. Therefore, it is probable that the model recognizes 

recessions quite rare and, hence, favors predicting values close to zero. Therefore, in order 

to encourage a model to output some other values, MSE could be selected over MAE. 

Furthermore, predicting values over one is unnecessary and, therefore, generating more 

error for such values is reasonable and should not affect the learning negatively. For these 

reasons, MSE has been selected as the loss function for the model training process, but 

both, MSE and MAE, are used for model evaluation in this study. 
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2.7.6.2 L1 regularization 

The L1 regularization consists of one coefficient hyperparameter 𝜆 and the sum of all the 

parameters’ absolute values: 

𝑙1 = 𝜆 ∑ |𝜃𝑝|𝑃
𝑝=0 , 

where 𝑃 denotes the number of parameters in the model. Its core idea is to drive parame-

ters that model weak, probably unnecessary, relationships or noise close to zero. This 

method, therefore, helps to reduce the model’s sensitivity to small changes in input values 

and, hence, decreases the amount of variance the model introduces to its predictions. In 

addition to the ability to make the training process more robust against overfitting, it can 

also be seen to further enhance the ANN models’ feature selection properties, where it 

diminishes the less important relationships’ effect on the output. (Bengio 2012, 451-452.) 

L1 regularization is used over some other regularization methods because it offers 

desirable theoretical foundations for more effective feature selection when using noisy 

multivariate data. Because the multivariate data used in this study contains time-series 

from several economic indicators, it is probable that some of their own movements alone 

or their combined representations that are made by the networks themselves are irrelevant 

when trying to model only the general relationships between the inputs and outputs. In 

addition to the L1 regularization, there is also a popular L2 regularization method, but 

according to Bengio (2012, 451), it should not be used together with an early stopping 

method and, therefore, L1 is preferred instead. 

2.7.7 Backpropagation through time 

A backpropagation algorithm allows calculating the parameter specific gradients 𝑔, that 

are then used for updating these parameter values by using some learning algorithm, such 

as stochastic gradient descent. When using RNNs, the common algorithm for calculating 

these gradients is a backpropagation through time (BPTT) algorithm. If predictions from 

multiple time steps are used, not only from the last time step, the loss accumulates from 

several output values 𝑦̂𝑡
(𝑖)

 at different time steps 𝑡, as depicted in figure 9. Thus, the ac-

cumulated loss for example 𝑖 would be 

𝐿(𝑦̂(𝑖), 𝑦(𝑖)) = ∑ 𝐿(𝑦̂𝑡
(𝑖)

, 𝑦𝑡
(𝑖)

)𝑇
𝑡=1 , 

where 𝑇 denotes the number of time steps whose output values are used for calculating 

the loss. At each time step, the output values are typically calculated by using different 
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input values, but in turn, the parameter values stay the same. Therefore, the same param-

eters account for several output values’ errors in accordance with their relative inputs. 

(Goodfellow et al. 2016, 373, 378-380.) Now the equations for determining the cost for 

example 𝑖 can be written as follows 

𝐽(𝜃)𝑡 = 𝐿(𝑦̂𝑡
(𝑖)

, 𝑦𝑡
(𝑖)

) + 𝑙1 

𝐽(𝜃) = ∑ 𝐽(𝜃)𝑡
𝑇
𝑡=1 . 

When calculating the gradients, BPTT takes into account the possible multiple out-

puts at different time steps and the cumulative effect of the parameters that are used in 

recurrent connections to the outputs. This method works in the opposite direction of the 

forward propagation by utilizing the chain rule for partial derivatives for determining the 

parameter specific gradient values and then summing them together. (Graves 2012, 19-

20; Goodfellow et al. 2016, 378-380.) The common equation for the BPTT algorithm is 

the following 

𝜕𝐽(𝜃)

𝜕𝜃
= ∑

𝜕𝐽(𝜃)𝑡

𝜕𝜃
𝑇
𝑡=1 , 

whose actual calculations depend significantly on the network, similar to the forward 

propagation. Several more accurate presentations exist for the common RNN architec-

tures.3,4 This study uses only the output values 𝑦̂𝑇
(𝑖)

 that are received on the last time step 

𝑇. In the following sections, the BPTT algorithm is denoted ∇𝜃 and all the gradients for 

the parameters 𝜃 are stored in 𝑔. 

Because BPTT applies an extensive number of multiplications, it is sensitive to the 

values that it multiplies. High and low input and activation values might cause gradient 

values to increase or diminish substantially and these problems are called the exploding 

and vanishing gradients. (Goodfellow et al. 2016, 282-285.) When considering the cost 

plane, this introduces sharp edges and plateaus that could oscillate the training process if 

it happens to traverse through this type of region. Therefore, training an RNN typically 

oscillates more than the other type of networks, such as an MLP. However, LSTM and 

GRU should be more robust against these types of problems, but in addition, a more stable 

learning algorithm is also used in this study. 

 
3 For a classical RNN unit: Graves (2012, 19-20) and Goodfellow et al. (2016, 378-380) 
4 For an LSTM cell: Graves (2012, 38) 
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2.7.8 Nesterov accelerated gradient 

A stochastic gradient descent (SGD) and its different variants are considered as the most 

popular learning algorithms in DL. An SGD uses the average gradient values that are 

calculated over a minibatch of 𝑛 examples. To summarize the previous steps in the train-

ing loop, the equation for calculating gradients at epoch 𝑒 for minibatch 𝑏 by using some 

backpropagation algorithm ∇𝜃 is 

𝑔(𝑒,𝑏) = ∇𝜃 ((
1

𝑛
∑ 𝐿(𝑓(𝑥(𝑖), 𝜃), 𝑦(𝑖))𝑛

𝑖=1 ) + 𝑟). 

First, the training set is divided into minibatches 𝔹(𝑏) that contain 𝑛 number of examples, 

hence 𝔹(𝑏) = {𝑥(1), . . . , 𝑥(𝑛)}. The examples in minibatch 𝑏 are then provided to a for-

ward pass to generate estimates for a loss function. Next, the sum of the example wise 

loss is divided by the number of examples in the minibatch. Then, some regularization 

terms could be added, that follows some backpropagation algorithm ∇𝜃, such as BPTT, 

that obtains parameter specific average gradients for the minibatch that are stored in 

𝑔(𝑒,𝑏). (Goodfellow et al. 2016, 149-152, 276, 290-292.) 

 

 

Figure 14 – A gradient descent step for one parameter 

After the average gradients have been calculated for minibatch 𝑏, for example, an SGD 

can be applied to handle the actual learning by updating the parameter values by using 

the following equation: 

𝜃(𝑒,𝑏) = 𝜃(𝑒,𝑏−1) − 𝛼(𝑒)𝑔(𝑒,𝑏). 

The fundamental idea of a gradient descent algorithm is to minimize the cost gradually 

step-by-step. An example is depicted in figure 14 for some parameter 𝑤. This parameter 

is updated in the opposite direction to its gradient, by a magnitude defined by the gradient 
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and an adjustable learning rate 𝑎(𝑒). The learning rate is typically decreased during the 

training process to allow larger updates at the beginning of the training process to speed 

up learning, and later, the smaller updates enable it to settle to some minimum on the cost 

plane. (Goodfellow et al. 2016, 149-150, 290-292.) The learning rate is examined in more 

detail in section 2.7.9. 

The parameter specific cost curve, depicted in figure 14, is a two-dimensional slice 

of the multidimensional cost plane that is determined by the cost function. For every ex-

ample, the curvature of the cost plane is different, because it is determined by the factors 

that are used for calculating the cost 𝐽(∙). Moreover, the longer multiplication chains the 

network architecture introduces and the higher input and activation values it receives and 

generates, the steeper curvatures exist on the cost plane. (Goodfellow et al. 2016, 285-

286; Trask 2019, 86-87.) 

When a parameter value is changed, the coordinate on the global cost plane changes. 

The global minimum can be found without updating all the parameters, but typically when 

training an ANN, all the parameters are updated at the same time because there are no 

sufficient methods that could determine what parameters to update or not. (Trask 2019, 

86-89.) 

Vanishing and exploding gradients occur due to irregularities on the cost plane. Es-

sentially, a gradient can receive a high value if the coordinate on the cost plane appears 

on a steep edge, as depicted in figure 15. If the gradient values are huge, they will move 

the coordinate on the global cost plane substantially, possibly in the wrong direction and, 

hence, damage the learning process. Also, vanishing gradients harm the learning process 

by making parameter updates close to zero and, thus, impeding the search for lower values 

on the global cost plane. (Goodfellow et al. 2016, 285.) 

 

 
Figure 15 – A three-dimensional illustration of how a cliff affects a training process 

(Goodfellow et al. 2016, 285) 
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Several modifications of the SGD method exist that allow a more stable and efficient 

training process. The momentum method adds a vector to the normal gradient descent 

algorithm that gives it a similar attribute as mass does to objects in physics. It typically 

helps the learning algorithm to navigate more consistently on the cost plane and allows it 

to converge faster. (Géron 2017, 299-300; Goodfellow et al. 2016, 292-293.) Figure 16 

compares parameter updates made by an SGD with and without momentum. In this illus-

trative example, the red line represents the learning path when the momentum is used, 

and the black arrows depict what the parameter updates would have been without the 

momentum. When using the momentum, the parameter updates appear less radical and, 

hence, it also converges to the minimum faster. 

 

 

Figure 16 – A comparison of gradient descent updates with and without momentum 

(Goodfellow et al. 2016, 293) 

The equations for an SGD algorithm with momentum are 

𝑚(𝑒,𝑏) = 𝛽𝑚(𝑒,𝑏−1) − 𝑎(𝑒)𝑔(𝑒,𝑏), 

𝜃(𝑒,𝑏) = 𝜃(𝑒,𝑏−1) − 𝑚(𝑒,𝑏), 

where 𝑚(𝑒,𝑏) is a momentum vector that consists of all the momentum values, one for 

each parameter, at the current epoch 𝑒 and batch 𝑏. It is calculated by using the previous 

momentum 𝑚(𝑒,𝑏−1), the hyperparameter 𝛽, that determines the momentum effect’s 

strength, which is typically set to 0.9, the current gradient 𝑔(𝑒,𝑏) and learning rate 𝑎(𝑒). 

(Géron 2017, 299-300.) 

Nesterov accelerated gradient (NAG) is a modification to the SGD with a momentum 

that, according to Géron (2017, 300-301) and Goodfellow et al. (2016, 296), typically 

further speeds up the learning process and, hence, requires less computing to converge. 

The fundamental idea in NAG is to take the previous momentum values into account 
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when calculating the current gradients. By adding the previous NAG momentum effect 

𝛽𝑚(𝑒,𝑏−1)
𝑁𝐴𝐺  to the parameter values, the gradients can be calculated from a further point on 

the cost plane and, thus, correct and speed up the parameter updates. In this study, NAG 

is used for parameter optimization in order to use scarce computing resources more effi-

ciently. Now the parameter updates are given by the following equations: 

𝑔(𝑒,𝑏)
𝑁𝐴𝐺 = ∇𝜃 ((

1

𝑛
∑ 𝐿(𝑓(𝑥(𝑖), 𝜃 + 𝛽𝑚(𝑒,𝑏−1)

𝑁𝐴𝐺 ), 𝑦(𝑖))𝑛
𝑖=1 ) + 𝑟), 

𝑚(𝑒,𝑏)
𝑁𝐴𝐺 = 𝛽𝑚(𝑒,𝑏−1)

𝑁𝐴𝐺 − 𝑎(𝑒)𝑔(𝑒,𝑏)
𝑁𝐴𝐺 , 

𝜃(𝑒,𝑏) = 𝜃(𝑒,𝑏−1) − 𝑚(𝑒,𝑏)
𝑁𝐴𝐺 . 

When using an SGD or some of its modifications along with time-series data, it is 

prone to parameter changes over time because the model is trained with data that is in 

chronological order. For example, the last gradients will be calculated by using the last 

minibatch of data, including the latest events that will now have the last say in the training 

process. If this last minibatch is very different compared to all the other minibatches, it 

could play a bigger role in parameter learning than is necessary. (Nielsen 2019, 347.) One 

way to prevent problems with too diverse minibatches is to increase the batch size to 

include more examples from a longer time span, therefore potentially making the separate 

minibatches’ distributions of different types of events more alike and, hence, giving less 

importance on extreme events when calculating the gradients. However, using very small 

minibatches typically offers the best generalization and also adds regularization (Good-

fellow et al. 2016, 276). The batch size is typically set between one and a few hundred, 

but when using graphical processing units (GPUs), as in this study, it is recommended to 

use power of two batch sizes since they offer a better runtime. (Bengio 2012, 448; Good-

fellow et al. 2016, 276.) In order to arrive at some compromise, the minibatch size was 

set to 32, where each example represents one day. 

2.7.9 Learning rate 

The learning rate and its initial value at the beginning of a training process are argued to 

be among the most important hyperparameters in DL when an SGD or some of its modi-

fication is used. The typical values for a learning rate are between 1 and 10-6 if the inputs 

are scaled between 0 and 1. As mentioned previously, the learning rate is commonly de-

creased during the training process according to some schedule or function. No optimal 

learning rate method has yet been found. Instead, a suitable learning rate decay depends 

significantly on the task and other proposed methods. (Bengio 2012, 447-448.) 
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Figure 17 – The learning rate curve 

Because the learning process is unique for every different problem, a handmade learning 

rate schedule is used, which is based on several test runs with the chosen setup. The learn-

ing rate schedule is determined by the following equation: 

𝑎(𝑒) = 0.95⌊𝑒/𝜗⌋𝑎(0), 

where 𝑎(𝑒) denotes the learning rate for epoch 𝑒, ⌊𝑒/𝜗⌋ means the highest integer that is 

not more or equal to 𝑒 divided by 𝜗. This gives the frequency of how often a drop to the 

learning rate should be applied. The initial learning rate 𝑎(0) is set to 0.1, and the drop is 

applied to every other epoch, meaning that the hyperparameter 𝜗 has a value of 2. At the 

beginning of the training process, the learning rate has relatively high values to speed up 

learning and to allow escaping some local minimum on the global cost plane. During the 

training process, the learning rate is gradually decreased, as shown in the learning rate 

curve in figure 17, in order to make it possible to settle down on some minima. This 

learning rate schedule may suit some ANNs better than the others. Therefore, studying 

the effect of different learning rate schedules and adaptive learning rate optimization al-

gorithms, such as RMSprop and Adam, is motivated in future work. 

2.7.10   Parameter initialization 

The initial parameter values of an ANN model have a substantial effect on the whole 

training process. Typically, at the beginning of the training process, some small negative 

and positive values are set to the parameters by using some random function when using 

gradient descent learning algorithms together with RNNs (Graves 2012, 30; Goodfellow 

et al. 2016, 296-298). Furthermore, Goodfellow et al. (2016, 297-299) argue that random 

values should be used in order to break the symmetry between an ANN’s units that would 
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otherwise make it possible for the learning algorithm to update them identically through-

out the training process if some other unit specific stochasticity is not implemented. Also, 

when using RNNs that introduce long chains of computations, smaller initialization val-

ues should be preferred in order to avoid exploding gradients and unnecessarily high sen-

sitivity to some input values. 

Graves (2012) used in his RNN experiments a flat random distribution in the range 

between values −0.1 and 0.1, along with a Gaussian distribution with a mean of 0 and a 

standard deviation of 0.1. He found that these two methods performed similarly. In order 

to follow these guidelines, the same Gaussian distribution with a mean of 0 and a standard 

deviation of 0.1 is used for the parameter initialization in this study. 

2.7.11 Training process and early stopping 

The typical goal for the training process in DL is to find the parameter values 𝜃 that make 

the ANN model 𝑓 as similar as possible to the function 𝑓∗, which has generated the data 

(Goodfellow et al. 2016, 164). As introduced in section 2.7.5, the process involves train-

ing epochs that drive the parameter values iteratively towards a low-cost area on the 

global cost plane. There is no strict limit to the number of epochs, but theoretical founda-

tions suggest that there is a relationship between error and the number of training epochs. 

 

 

Figure 18 – Error curves for the training process 

Figure 18 shows an example of a training graph where the metric on the vertical axis is 

some error measure and the horizontal axis shows the training epochs. Since the initial 

weights are usually small random numbers, the error curves tend to start from high values, 

but during the training process, the weights begin to settle on more suitable values as they 

begin to model meaningful relationships in the data, enabling a better fit. This, in turn, 
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decreases the error, but could also make the model eventually overfit the data if it has 

enough modeling capacity. (Murphy 2012, 572.) This behavior is strongly related to the 

bias-variance trade-off. At the beginning of the training process, the out-of-sample error 

is typically dominated by a high bias value, but if the model’s modeling capacity is large 

enough, the bias decreases during the training process and the variance begins to increase, 

though these changes are rarely monotonic. (Prechelt 2012, 64-65.) 

Early stopping is a practical method when training an ANN with sufficient capacity 

to start overfitting. It can be seen as a regularization method since its goal is to end the 

training process at the right time when the model performs best with unseen data. When 

the training process is running, the performance metrics can be used to detect overfitting, 

that is indicated by a rising test set error curve. The stopping criterion is typically set so 

that the training is halted when reasonably strong signs of overfitting have been received. 

A well working early stopping method stops the training process close to the point where 

the lowest out-of-sample error has been achieved. It also allows saving computing re-

sources by halting the process before some of the unnecessary iterations have been exe-

cuted. (Goodfellow et al. 2016, 243; Géron 2017, 136; Prechelt 2012, 54.) 

Finding the optimal point to stop the training process is difficult for various reasons. 

Firstly, as shown in figure 16, the parameter updates might take missteps and, hence, the 

out-of-sample error can spike occasionally. Therefore, stopping the training process in-

stantly when the out-of-sample error increases could be unreasonable. Secondly, the out-

of-sample error itself is just an estimation of how well the model would perform in the 

future. Hence, stopping at the lowest out-of-sample set error does not guarantee the best 

possible model. Thirdly, the process depends heavily on the error measure. If the error 

measure is not well in line with the actual goal, early stopping itself would not yield op-

timal models even though it could stop the training process close to the lowest point. 

Lastly, as Prechelt (2012, 53-55, 64) points out in his study, the stopping criterion is often 

set by using some task-related knowledge instead of following some theoretical founda-

tion. Arguably, because the training curves are also acknowledged to be task-dependent. 

Because this study focuses on comparing different ANN architectures, not different 

optimization methods, only one early stopping method is used. Although Prechelt (2012) 

has suggested more advanced methods that have the potential to generalize well on dif-

ferent types of tasks, a lighter solution is used in this study. The chosen early stopping 

threshold is set so that the training process is halted when the test set cost has not de-

creased during the last 25 epochs. This method has been chosen based on a few test runs 
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to figure out how well a network with a mid-tier modeling capacity in this study appears 

to converge. Also, the test set cost curves tended to oscillate considerably, and the 25 

epoch patience buffer appears to have enabled the training processes to reach the bottom 

of the test set curve most of the time. 

When the training process is over, it is possible to examine the ANN with parameters 

that generated the lowest error or cost, but this could give a too optimistic picture of the 

ANN’s general performance because of the notable oscillations in the out-of-sample error 

and, hence, the last parameter values are used instead. 

2.7.12 Deep learning hyperparameters 

Bengio (2012, 446) defines a hyperparameter for some ML algorithm A as 

 

“a variable to be set prior to the actual application of A to the data, one that is not directly 

selected by the learning algorithm itself.” 

 

Thus, hyperparameters, such as ANN architecture, learning rate, minibatch size and the 

maximum number of training epochs, can also be described as control knobs for the actual 

parameter search. They form their own search space and, hence, when applying DL, one 

has to deal with two search problems. Because the hyperparameters define the parameter 

search, they have a fundamental role in finding a well-fitting ANN model. 

 The hyperparameter search can be conducted by hand or by some search algorithm. 

Furthermore, the theoretical background does not offer clear foundations for finding an 

adequate hyperparameter setup and instead, the process usually involves trial and error 

loops when finding a suitable setup. Though the absence of a mathematically proven best 

practices for hyperparameter tuning, some guidelines exist. In this study, the current 

guidelines and common best practices have been followed together with some pretesting 

to tailor the setup more suitable for the task at hand. However, in the future, more hy-

perparameter setups should be reviewed. 
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3 LITERATURE REVIEW 

3.1 Deep learning for time-series analysis 

Deep learning is a relatively novel set of methods in the field of time-series forecasting, 

but it has already been recognized providing prominent tools for certain types of prob-

lems. Zhang (2012, 463) and Nielsen (2019, 289-290) propose that ANN models are data-

driven nonparametric modeling methods, and they are less vulnerable to model misspec-

ification when compared to the more traditional parametric methods in time-series fore-

casting. Furthermore, they do not require as many and as strict assumptions from the data 

generating process as the more traditional time-series methods. For example, no assump-

tions about the data distribution are required and stationarity is not necessary. Also, they 

appear to fare well with heterogeneous data. Because of these properties, ANNs enable 

using some time-series that would have been unideal with the more traditional methods. 

However, using DL often requires large datasets and, thus, might not be suitable for tasks 

that cannot offer time-series with a sufficient number of realizations (Nielsen 2019, 186). 

In addition to their flexibility, they are recognized as universal approximators and, 

therefore, in theory, they are suitable for modeling very complex stochastic processes. 

Moreover, ANNs belong to a class of models that offer an ability to model nonlinear data 

due to their nonlinear activation functions. When compared to nonlinear methods, linear 

methods have been more popular in time-series analysis, albeit in many real-world appli-

cations, the time-series data is nonlinear (Tsay & Chen 2019, 1). The popular linear meth-

ods have offered good performance in a variety of modeling tasks in different domains, 

and they can be fit to data reliably and efficiently, but their modeling capacity is limited 

to linear functions (Goodfellow et al. 2016, 165). Therefore, fitting one to a nonlinear 

process causes underfitting and, hence, nonoptimal performance.  

It is argued that some economic and financial time-series data contains nonlinearity. 

This makes the models that are able to model also these nonlinear relationships interesting 

in these particular domains because they can model nonlinear patterns and, thus, possibly 

gain a better performance when compared to the prominent linear models. The following 

sections offer a review of how ANNs have fared in previous related research and, thus, it 

serves as a background and motivation for the proposed methods. 
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3.2 The novel RNN methods’ performance in the previous literature 

According to the NFL-theorems, no model is universally better than all the other options 

in every situation where modeling is needed. Furthermore, according to the bias-variance 

trade-off theory, the model capacity should be suitable for the underlying problem. Hence 

the question, in the domain of time-series analysis, what type of problems the novel RNNs 

suit the best? 

 

 
Figure 19 – Forecasting performance (sMAPE) of the ML and statistical methods 

included in the study (Makridakis et al. 2018, 15) 

Recently, plenty of research has been conducted concerning how well the novel RNN 

methods suit time-series forecasting. An extensive study made by Makridakis et al. (2018) 

evaluated a wide range of different types of models by using more than 1000 univariate 

time-series from different areas, economics and finance included. The results of this 

study, shown in figure 19, suggest that the applied LSTM methods are among the worst-

performing when univariate time-series are used. These findings are in line with several 

other previous studies. Gers et al. (2001) also point out LSTM methods’ weak perfor-

mance when applied to univariate time-series forecasting. Moreover, Makridakis and 

Hibon (2000, 458) found that 

 

“Statistically sophisticated or complex methods do not necessarily produce more accu-

rate forecasts than simpler ones,” 

 

when applied to univariate data, which can also be verified in figure 20.  
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These findings imply that an LSTM network and its close variants should not be 

considered if univariate time-series is chosen. One possible explanation for these results 

is that these univariate datasets do not contain aspects that could be exploited by using 

these more sophisticated methods. For example, an MLP, the common feedforward ANN 

structure that is not developed particularly for analyzing sequential data, which is exam-

ined in section 2.7, is able to beat the more sophisticated LSTM network in these partic-

ular time-series tasks. The reason why the MLP was able to outperform the LSTM net-

work might be due to its ability to concentrate better on simpler patterns in the data and 

model less noise than the LSTM network, but this has not been verified. Also, the ratio 

between nonlinear and linear datasets might have affected the results, here possibly to the 

benefit of the proposed linear models. 

 

 
Figure 20 – Forecasting performance (sMAPE) versus computational complexity 

(Makridakis et al. 2018, 18) 

However, unprecedented results have been achieved when LSTM networks and their var-

iants have been applied to very difficult sequential tasks, such as analysis of audio 

(Marchi et al. 2014), video (Donahue et al. 2017) and machine translation (Luong et al. 

2015). This indicates that there is a specific area of sequential tasks that are suitable for 

these more sophisticated methods. These tasks seem to have similar features as the other 

areas where ANNs have enjoyed greater success than any other model class; the relation-

ships between input and output pairs are difficult to express by using human-made math-

ematical functions and a sufficiently large amount of high-quality data is available for an 

extensive training process.  
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These findings indicate that, although the performance with univariate time-series 

data appears appalling, they seem to fare well in very complex domains, which is in line 

with the presented theories. Therefore, these methods should be applied first and foremost 

to very complex tasks that are more suitable for their characteristics. 

As the novel RNNs have been found to perform rather poorly with univariate time-

series, they have also been criticized for lacking strong theoretical foundations concerning 

some fundamental decisions when creating, training and interpreting these models. For 

example, Brooks (2014, 420) finds that ANN models have four major weaknesses. Firstly, 

the parameter values in an ANN do not offer a meaningful interpretation and, hence, these 

models are commonly regarded as “black boxes.” Secondly, no diagnostic or specifica-

tion tests exist for determining an ANN model’s adequacy properly. Thirdly, ANN mod-

els tend to overfit quickly to a training set and, therefore, they might provide poor perfor-

mance with a testing set and later in a production environment. Lastly, when compared 

to the other possible options, optimizing the parameters of an ANN model demands typ-

ically significantly more computational resources than the other typical methods. In ad-

dition to these aforementioned weaknesses, there is a shortage of proper theoretical foun-

dations for determining and adjusting hyperparameters in DL. Hence, scientifically 

proven best practices for hyperparameter search do not exist, but the area has developed 

some guidelines through continuous research. 

The hyperparameter setups used in this study were motivated by other research in the 

field and, therefore, this study can be seen as a part of this larger research related to DL 

and suitable hyperparameter combinations. Also, to take into account the other weakness 

mentioned by Brooks (2014, 420), this study focuses on finding a suitable network archi-

tecture for the task at hand and, thus, makes interpreting the parameter values redundant. 

The evaluation of a set of different RNN architectures, which is ultimately a hyperparam-

eter search problem, is done by examining their fit to unseen data by using common per-

formance measures. The ANNs’ tendency to overfit data is taken into account by applying 

L1 regularization, and the test set performance measures are tracked throughout the train-

ing process in order to notice possible overfitting. Furthermore, an early stopping func-

tionality is used to abort the training process before significant overfitting occurs. These 

methods should offer a relatively satisfying base for making decisions related to assessing 

these methods’ general adequacy to the task at hand. 
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3.3 Review of the previous related research in finance and economics 

Overall, machine learning methods have not yet obtained a significant role in economics, 

although they have been found to offer great tools for forecasting (Varian 2014). How-

ever, even though only a limited amount of research has been conducted on ML in the 

domain of economics, many studies have been conducted concerning their applicability 

to finance, possibly because it is generally more focused on predicting than on under-

standing the underlying process. Although finance and economics are considered separate 

fields, their time-series data typically has similar qualities, such as nonlinearity, noise, 

seasonality and trends, together with an underlying data generating process that is con-

sidered extremely complex. Hence, the findings done in the domain of finance can give a 

clue how well these methods perform when applied to economic forecasting. Although 

several studies have been conducted related to applying ANNs to finance and economics, 

only a few are examined here that help to understand the bigger picture, the most promi-

nent trends in financial and economic forecasting over time and the reasons behind them. 

3.3.1 Related research in finance 

Kumar (2009), Niaki and Hoseinzade (2013), Sheta et al. (2015) and Fischer and Krauss 

(2018) compared different models for predicting popular stock indexes, such as S&P 500 

and Dow Jones Industrial Average. Kumar (2009) found that an MLP was able to outper-

form an ARIMA model when a univariate data of S&P 500 returns was used. In his study, 

the MLP could predict the direction of change (a classification problem) for the next day’s 

S&P 500 value better than the proposed ARIMA model. When compared to results by 

Makridakis et al. (2018) where the ARIMA tended to outperform the MLP when applied 

to univariate data, this finding suggests that there can be exceptions when these models 

are applied to different time-series and different types of tasks, here a classification in-

stead of pure regression. 

Niaki and Hoseinzade (2013) and Sheta et al. (2015) compared MLPs to other types 

of models when using multiple input variables for predicting S&P 500 daily returns, 

which in turn was a regression task. The input variables included several common finan-

cial time-series, such as a relative change in gold and oil, a few dollar related exchange 

rates and the change in the market yield on U.S. Treasury securities for several maturities. 

They found that MLPs were able to outperform the proposed linear models. However, 

Sheta et al. (2015) discovered that a support vector machine, which is a common ML 
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model class that is also capable of modeling nonlinear relationships in data, could outper-

form the proposed MLP model. This is also in line with the Makridakis et al. (2018) 

results where the SVR model, which is a support vector machine model for a regression 

task, outperformed the MLP when applied to univariate data. Moreover, this suggests that 

more emphasis should be put on using different types of nonlinear machine learning mod-

els for modeling financial data, not just ANNs with nonlinear activation functions. 

To summarize, Kumar (2009) studied the common MLP model and found that when 

using univariate data, the method might be useful when the prediction problem is trans-

formed into a classification task. In turn, Niaki and Hoseinzade (2013) and Sheta et al. 

(2015) found that when using multivariate data, the nonlinear methods, including MLPs, 

are able to outperform the tradition linear models, possibly by exploiting the nonlinearity 

in the data. Both findings are in line with the Makridakis et al. (2018) findings, and further 

build up the understanding of which methods should be applied to what type of prediction 

problems. Moreover, many of these aforementioned researches put emphasis on short-

term dependencies in the data and, thus, they leave the effect of the ability to model long-

term relationships unknown.  

As presented previously, in theory, the novel RNN methods should suit very complex 

modeling tasks that require modeling long-term dependencies. However, relatively few 

research exist where these methods have been applied to established research areas. As 

mentioned earlier, ANNs have several drawbacks, and the first RNNs were difficult to 

train and could not deliver good performance when modeling long-term dependencies 

was necessary. These reasons might have slowed down the ANN and RNN related re-

search in finance and economics. However, more lately, possibly encouraged by the suc-

cess in other areas, these methods have gained more attention in finance. Fischer and 

Krauss (2018) studied how well LSTM networks can predict the future share price for 

stocks that are included in the S&P 500 list. The study compared LSTM networks perfor-

mance against MLP, random forest and logistic regression models. Their data comprised 

approximately 500 univariate time-series, one for each stock in the S&P 500 list during 

the examined time period from 1992 to 2015. Each model received only one stock’s data, 

hence yielding approximately 500 separate models for each model class. The task was a 

binary classification, where a model predicts which side of the cross-sectional median 

revenue some particular stock would be at the next time step. After conducting several 

tests, they found that the chosen LSTM networks could outperform the other models, 

though random forest models, which is also a common nonlinear ML model class, could 
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achieve similar scores in some areas. This is in line with the previous studies since both, 

the support vector machine that outperformed the MLP in the Sheta et al. (2015) study 

and the random forest, are nonlinear ML models that possess high modeling capacity. 

What stands out is that when compared to Makridakis et al. (2018) results, an LSTM 

network could now outperform an MLP even though univariate data was used. This might 

be due to altering hyperparameter setups between the studies or because the task was 

transformed into a classification task in Fischer and Krauss (2018) study. Either way, 

finding a suitable ANN model and training it in the best possible manner might be harder 

when compared to the other proposed methods in these studies because of their vast hy-

perparameter space and nonconvexity (Krauss et al. 2017, 695). Therefore, more hyperpa-

rameter setups should be traversed before determining which method is best suited for 

predicting the S&P 500 and other stock indexes. 

3.3.2 Related research in economics 

After decades of research, sophisticated nonlinear ML models have started to gain more 

traction also in economics. This change is arguably driven by two main reasons. Firstly, 

macroeconomic forecasting is typically recognized as a very complex prediction problem. 

Secondly, the prevalent econometric and linear models have been found lacking the abil-

ity to forecast macroeconomic variables sufficiently (Moody 2012, 345). It appears that 

the econometric models that are created for evaluating and describing the economy are 

not suitable for making accurate forecasts, and the linear models’ inability to model non-

linearity is arguably a defect when one wants to model complex macroeconomic pro-

cesses that are considered to include nonlinearity. For example, business cycles, in par-

ticular, are thought to be a nonlinear process for a few reasons. Firstly, even though de-

fining a recession and expansion is found somewhat difficult, expansions typically last 

longer than recessions (Mitchell 1927, 456-458). Secondly, the upward and downward 

motions seem to be asymmetrical. Generally, an expansion evolves gradually as the fa-

vorable events in the economy have a cumulative effect on each other until, at some point, 

the process starts to work in the opposite direction, but typically in a shorter time span 

and a more volatile manner (Keynes 1936, 313-314). Thirdly, Mitchell (1927, 458) finds 

the economy highly sensitive to rare, possibly unpredictable phenomena, such as wars, 

poor harvests and epidemics that typically escalate quickly, and because of the economic 

processes’ interdependency, also globally. Moreover, these types of phenomena rarely 

expand the economy and, instead, they often account for a quick and volatile drop in 
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economic activity. This finding is also found true recently due to the economic conse-

quences of the COVID-19 pandemic. Fourthly, Friedman (1964) suggested a “plucking 

model” when he observed that the amplitude of a recession is strongly related to the 

strength of the following expansion, while the expansion’s amplitude does not appear to 

have a significant effect on the following economic contradiction. 

However, the early economic forecasting research found linear methods superior to 

nonlinear correspondents (Meese & Geweke 1984; Makridakis et al. 1982; Makridakis et 

al. 1993; Weigand & Gershenfeld 1994; Swanson & White 1995; Swanson & White 

1997; Stock & Watson 1998). These studies have been conducted by using univariate 

time-series from various sources, generally finding exponential smoothing and auto-

regressive models the most suitable. As examined previously, similar results have been 

received from the more recent studies that have used univariate data. For example, Ma-

kridakis and Hibon (2000) and Makridakis et al. (2018) found that exponential smoothing 

(ETS) and autoregressive integrated moving average (ARIMA) seem to have led the pack 

performance-wise. In addition to the linear methods’ strong performance compared to 

nonlinear methods when using this particular type of data, Stock and Watson (1998) pro-

posed that, in order to achieve the best possible performance, a combination of two dif-

ferent linear models’ forecasts should be used. This type of procedure is a common tech-

nique in ML, which is typically called ensemble learning, where two or more models are 

used to create predictions together by using, for example, some voting or weighting mech-

anism for crafting the final prediction values (Géron 2017, 182-187). 

ANNs have received mixed results in economic forecasting research. Swanson and 

White (1997) conducted an extensive study where they compared ANNs to VAR models 

by using several different macroeconomic multivariate datasets and found little to no im-

provement in accuracy when using ANNs. However, after this study, the DL methods 

have evolved significantly and, as opposed to these findings, the later research found suit-

able modeling tasks for ANNs also in macroeconomics. Tkacz (2001), Chuku et al. (2017) 

and Jahn (2018) showed that ANNs were able to offer better accuracy than the common 

linear methods when forecasting GDP growth. In addition to the suitability of forecasting 

GDP growth, Binner et al. (2004) found two different types of nonlinear models: an RNN 

and regime-switching VAR, superior to a linear VAR when modeling U.K. inflation, 

again showing that more emphasis should be put on different types of nonlinear models 

in future research. 
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Moreover, ANNs have been found promising in predicting business cycles, which 

has been regarded as a very complex prediction problem in a range of studies. For exam-

ple, Moody (2012, 344-364) argues that forecasting business cycles is challenging due to 

five main reasons. Firstly, macroeconomics is recognized as a non-experimental science 

because economies are not closed systems. Hence, controlled macroeconomic experi-

menting is difficult, or even impossible, to conduct to get a better understanding of how 

the economy functions. Secondly, this particular macroeconomic process appears ex-

tremely complex. Commonly, practitioners have applied two different types of models: 

econometric and linear time-series models, but neither method has produced a satisfying 

solution for the task, possibly due to their insufficient modeling capacity. Thirdly, it is 

argued that business cycles are nonlinear (Mitchell 1927, 456-458; Keynes 1936, 313-

314; Friedman, 1964). Therefore, macroeconomic forecasting can possibly be improved 

by finding a suitable nonlinear model that could achieve better accuracy by exploiting the 

nonlinearities in the data that the common linear methods cannot model accurately. 

Fourthly, macroeconomic time-series typically contain a considerable amount of noise 

and, hence, the important patterns in the data might be difficult to observe and model. For 

this reason, the model should be somewhat robust against the noise in the input data, but 

still be able to provide accurate predictions. Lastly, many macroeconomic series are non-

stationary. This feature comes from the combination of how the economy evolves and 

how it is tracked. Often macroeconomic time-series include strong trends that might re-

quire applying some technique for reducing the nonstationarity in the time-series or leav-

ing them out completely, which can lead to a loss of some valuable information. 

Qi (2001) studied how to predict U.S. recessions with an MLP together with multi-

variate data and found them ideal for this particular forecasting task because 

  

“… business cycles are asymmetric and cannot be adequately accommodated by linear 

constant parameter single-index models. NNs are a class of flexible nonlinear models. 

Given enough data, they can approximate almost any functions arbitrarily close. Because 

there is little a priori knowledge about the true underlying function that relates financial, 

economic and composite indicators to the probability of future recessions, the NN models 

are an ideal choice for modeling these relationships.” 

  

The focus of Qi’s study was to find the best explanatory variables for predicting U.S. 

recessions and using MLP models as a guide. The study found that the interest rate spread 
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between the 10-year Treasury bond and the 3-month Treasury bill was the most important 

explanatory variable while some other useful explanatory variables being the Department 

of Commerce leading index, Stock and Watson (1998) index, real money supply and S&P 

500 index, some of which are also used in this study. Furthermore, the proposed MLP 

models could predict well all the recessions in the proposed testing set and, thus, it ended 

up also concluding that ANN models are promising for forecasting business cycles. 

3.4 Conclusions of the previous literature 

The previous literature has offered somewhat clear conclusions that correspond to the 

assumptions drawn from the underlying ML related theory. From these studies’ findings, 

one can remark that, although ANNs are regarded as universal approximators and, there-

fore, should be in theory suitable for any given prediction task, they tend to perform worse 

than the popular linear methods when the task caters only univariate time-series and it is 

a regression problem. Instead, more promising results have been obtained when these 

methods have been deployed to problems that introduce more complexity, nonlinearity, 

relevant multivariate data. These findings are in line with the NFL-theorems and the bias-

variance trade-off theory since they show that ANNs are not superior to all the other 

models, albeit being universal approximators, and instead, they should be applied based 

on the attributes of the underlying task. 

The performance of the applied ANN models varies notably between the examined 

studies and, hence, defining unambiguous criteria concerning the attributes that should be 

met when ANNs or the novel RNN methods are applied is challenging. It is important to 

acknowledge that DL and time-series forecasting offer numerous options, each of which 

can affect the results. Firstly, for example in economics, the timing of a prediction might 

have a significant effect on its accuracy. Especially during rare circumstances, as Kock 

and Teräsvirta (2014, 628) found when making predictions for the time period between 

2007 and 2009 across different modeling techniques, including an ANN. Secondly, dif-

ferent types of ANN architectures, optimization algorithms and hyperparameter setups 

have their own effect on performance. Thirdly, random parameter initialization and the 

stochasticity in the training process introduce variation also to the predictions and, thus, 

also to the performance results. Fourthly, different data and preprocessing methods have 

a significant effect on various elements in the process. Lastly, the DL methods’ quick 

progress has made some of the previous studies’ findings unable to represent the current 

methods’ performance. 
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In general, however, it appears that DL methods are suitable in complex nonlinear 

domains, where the previous theory does not offer a clear understanding of the data gen-

erating process, or it is even thought to be too complex to be written in a functional form. 

Due to the ANN’s favorable properties, along with Qi (2001) and others’ findings, DL 

methods should be considered as a relevant option when forecasting macroeconomic 

time-series. Arguably, several important areas have not yet been studied and, therefore, 

more ANN related research should be conducted in economics, concerning especially the 

modern DL methods, such as the more advanced RNN methods that, in theory, should 

suit well prediction problems that include sequential data with long-term dependencies. 

Qi (2001) found ANNs suitable for forecasting U.S. business cycles, but the study did not 

focus on which type of ANN models suit the problem best. Hence, the findings of this 

study should be significant in assessing DL methods’ suitability for business cycle fore-

casting, but also to the progress of the macroeconomic forecasting. 
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4 METHODS 

According to Lütkepohl (2005, 1), it is common that the values of economic variables are 

related to their own and some other variables’ earlier realizations in time. Therefore, using 

a multivariate time-series data for modeling economic process, particularly the business 

cycles, is justified. In addition, as Baumohl (2012, 7) argues, the U.S. economy is a very 

complex process and to understand it, even partially, requires using information from 

various economic indicators. Though, understanding it, or furthermore predicting its fu-

ture movements, appears to be a task so challenging that some professionals regard it as 

“a black box,” a function so complicated at producing outputs from inputs that it is treated 

as an entity whose inner workings are not revealed to the examiner. Hence, trying ANN 

models that are also regarded as black boxes, though slightly unorthodox in the domain 

of economics, seem to be justifiable when based on the prevalent theories in ML, and the 

previous findings that suggest using a model with sufficient modeling capabilities com-

pared to the attributes of the underlying process. 

The focus of this study is to empirically compare how the popular and prominent 

recurrent neural network methods can handle predicting business cycles for the U.S. econ-

omy. The emphasis is on gaining insights about their general performance, since finding 

the best possible ANN solution for predicting the U.S. recession is recognized as a too 

advanced task with the currently available knowledge and resources. The experiments are 

conducted using the same setup, apart from the initial parameter values, for every chosen 

RNN architecture to provide a fair comparison. Every RNN architecture receives the same 

training and testing set, where their performance is evaluated by using the latter, which 

included the 2007 financial crisis, a recession that only a few could foresee. Arguably, 

finding the model that achieves the best test set performance scores in this setting does 

not justify to regard this particular RNN architecture as the absolute best solution with 

other methods or new data. However, it might show that the suggested DL methods are 

able to predict business cycles and, possibly, if several prospects perform well, it is justi-

fied to say that these methods deliver prominent instruments for economic forecasting. 

Also, by testing different types of RNN architectures, it is possible to receive some infor-

mation about the necessary model capacity for the problem and the difference in the per-

formance between LSTM and GRU networks. 

All the data handling operations, model training and examination were executed in 

Python 3.6 (Python Software Foundation 2019). The following Python libraries were used 
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for data handling: NumPy by van der Walt et al. (2011), Pandas by McKinney (2010) and 

Scikit-learn by Pedregosa et al. (2011). The models were created and trained using Keras 

library by Chollet et al. (2015), which consumed TensorFlow library by Abadi et al. 

(2015). To speed up the training process, a Nvidia GeForce GTX 1080 Ti Founders Edi-

tion GPU was utilized. The various graphs in this study were created by using Excel by 

Microsoft Corporation (2018) and Matplotlib Python library by Hunter (2007). 

In the following sections, the whole setup used for creating the results is examined 

in more detail. At first, the time-series data is displayed, followed by an introduction of 

the preprocessing algorithm and its methods along with their parameters. After the data 

related topics have been reviewed, the selected RNN architectures are presented together 

with a short re-examination of the training algorithm and its hyperparameter setup. 

4.1 Data 

The chosen indicators for this study are issued using numerical values, making the pre-

processing more straightforward. The data is gathered from various sources. The plots for 

the selected time-series are classified into the following three categories: economic, fi-

nancial and behavioral variables, and they are displayed in their own tables 4, 5 and 6, 

along with other time-series specific attributes, such as its source, frequency, minimum, 

maximum, mean and variance value over the period under investigation. Some abbrevia-

tions are used to make the large tables clearer, which are shown in table 2. The require-

ments for the time-series are shown in the following list: 

 

• it has been tracked throughout the chosen period and the whole time-series data is 

available, 

• it is accurate and reliable, 

• it gives valuable information about the underlying process, based on some eco-

nomic theory or expert knowledge and  

• it should cover the most fundamental aspects of the economic process, especially 

related to the U.S. business cycles. 

 

Because of the first requirement, many, possibly otherwise prominent, indicators have 

not been chosen. The reason for this significant decision is that an extended period of 

missing values would probably affect the models’ performance negatively, and it is out 

of the scope for this study to generate some estimates to fill these large gaps. 
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Table 2 – Abbreviations for the data tables 

Data source Abbreviation 

U.S. Bureau of Economic Analysis BEA 

Board of Governors of the Federal Reserve System BGFRS 

U.S. Bureau of Labor Statistics BLS 

U.S. Congressional Budget Office CBO 

U.S. Census Bureau CB 

Federal Reserve Bank of Chicago CF 

U.S. Department of Housing and Urban Development DHUD 

Federal Reserve Bank of St. Louis FRED 

London Bullion Market Association LBMA 

University of Michigan UM 

Frequency Abbreviation 

Daily D 

Weekly W 

Monthly M 

Quarterly Q 

Others Abbreviation 

Instead of the primary source, the time-series is re-

trieved from the following source 

ret. 

Seasonally adjusted (SA) 

Not seasonally adjusted (NSA) 

Will be differenced during the preprocessing (Diff) 

 

Table 3 – Economic variables 
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Table 4 – Financial variables 
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Table 5 – Behavioral variables 
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4.2 Preprocessing 

In this section, the selected data preprocessing methods are introduced. The preprocessing 

algorithm, depicted in figure 21, shows the different preprocessing methods and the order 

of these procedures. Two aims for the preprocessing algorithm are recognized. Firstly, 

the data should follow the common rules and best practices in time-series analysis and 

deep learning. Secondly, lookaheads should be prevented by creating a preprocessing 

structure that simulates a real-world application, where the future information is unavail-

able. 

 

 

Figure 21 – Preprocessing phases 

The algorithm starts by downloading the data, followed by the detrending phase, where 

the variables with strong trends are processed by differencing. Variable scaling, a typical 

phase, especially when using deep learning methods, is introduced next. After the values 

have been scaled, the missing values are handled by using linear interpolation. Finally, 

the data is reshaped and split into training and testing set for the following training and 

evaluation phases. The following sections introduce these steps in more detail, along with 

some other data-related matters and motivations. 

4.2.1 Detrending and scaling 

Some of the time-series used in this study contain a strong trend that should be handled 

by using some detrending method. The chosen method is differencing by using the pre-

vious time step. Since ANNs do not require stationary data, detrending is applied only to 

the time-series that showed strong trends. Differencing is executed by using Pandas Py-

thon library. The following time-series were detrended: 

 

• Personal Consumption Expenditures, 

• Median Sales Price of Houses Sold for the United States, 

• Mortgage Debt Outstanding, All holders, 

• Gross Private Domestic Investment, 

• Net domestic investment: Private: Domestic business, 

• S&P 500 Real Price by Month, 

• Gold Price: London Fixing USD ante meridiem and 

• Spot Crude Oil Price: West Texas Intermediate. 
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After detrending, the data is scaled between 0 and 1. In order to simulate a situation 

where a model is used during the testing set’s time period and prevent lookaheads, the 

training set is scaled first, and then the testing set is scaled by using the training set’s 

minimum and maximum values. The actual scaling is done by using Scikit-learn’s 

MinMaxScaler function. At this point of the process, the exact split date is already de-

cided and used for determining the two separate sets for scaling, but the actual split is 

executed later, after interpolation and data shaping. 

4.2.2 Interpolation and reshaping 

One of the most important hyperparameters when using time-series data is the number of 

lags provided to the model. By determining the number lags, one can affect the examples’ 

noisiness and nonstationarity, but there is a trade-off. The longer the sequence or, in other 

words, the more lags per example are provided to the model, the more it can contain 

nonstationarity. In turn, the smaller the time window, the less there tends to be infor-

mation, compared to noise. (Moody 2012, 345.) In addition to these findings, Nielsen 

(2019, 413) suggests that there is a positive relationship between the number of lags for 

prediction and input sequences. This means that the further one wants to predict, the fur-

ther back one should look in history. Typically, the predictions have fewer lags than the 

inputs, but any common ratio does not exist for the problem and, therefore, some method-

specific rationale and intuition are typically used instead. 

A quarter year is a very common unit of measure in economic research and business 

overall and, hence, it is used as the length for the prediction sequence. To cover the cal-

endar effects and include information concerning the long-term macro movements, the 

input sequence is set to include 400 lags. With these properties and the chosen time pe-

riod, the data transforms into input and output data objects in the following manner. 

 

 

Figure 22 – A depiction of X and Y 
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The tensor 𝑋 contains 12293 examples and each example consists of 400 lags of each 

explanatory variable. In turn, the array 𝑌 for the dependent variable also contains 12293 

examples, each having 91 lags of one variable. As depicted in figure 22, 𝑋 has three di-

mensions and it can be depicted as a cube, whereas 𝑌 has only two dimensions and can 

be shown as a rectangle. 

 

 

Figure 23 – A depiction of X and Y examples 

Each example in 𝑋 represents some particular date 𝑡 and is a data matrix that contains the 

values for every 26 explanatory variables over the last 400 days. In turn, each example in 

𝑌 forms a data vector that contains the values of the upcoming 91 days for the dependent 

variable, as depicted in figure 23. 

 

create an empty array Y 

create an empty three-dimensional tensor X 

for each variable 

      if dependent variable 

            for each time step t  

                  create a sequence of the values between (t+1-interpolation buffer) and (t+92) 

                  interpolate this sequence 

                  cut out the interpolation buffer 

                  add the sequence into Y 

      else (explanatory variable) 

            create an empty array X-help 

            for each time step t 

                  create a sequence of the values between (t-399-interpolation buffer) and (t) 

                  interpolate this sequence 

                  cut out the interpolation buffer 

                  add the sequence into X-help 

            add X-help into X 

Figure 24 – Combined interpolation and reshaping function 

The linear interpolation function by Pandas is applied for handling the missing values in 

the data. In order to avoid lookaheads, the interpolation is combined with the data shaping 

function that processes each variable, one by one. This reshaping function creates either 

400 or 91 lag sequences from the original time-series, depending on whether the time-

series belongs to an explanatory or dependent variable, and creates the final 𝑋 and 𝑌 data 

objects. The combined process is described in detail in figure 24. 
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4.2.3 Train-test split 

According to Murphy (2012, 23), approximately 80 percent of the data is typically used 

for the training set and the remaining 20 percent for the testing set. In this study, the aim 

of the models is to learn to predict business cycles. Hence, the interesting phenomena in 

the data are the five U.S. recessions between the years 1980 and 2015. By applying the 

80-20 rule, the training set should include four of the five U.S. recessions, and the last 

recession, 2007 U.S. sub-prime financial crisis, should be included in the testing set. The 

split date is set to 1.1.2005, shown in red in figure 25. In this way, the testing set also 

includes slightly more examples of the expansions. This is favorable since their share of 

the time period is considerably larger and, thus, should test better how well the models 

predict the more common expansion. 

 

 

Figure 25 – The train-test split 

In order to gain useful information from the train-test split procedure, the training and 

testing set should contain similar patterns. Over the last 40 years, the world has changed 

considerably, but some of the basic dynamics have stayed the same. For example, the 

spread between the short and long-term interest rates for the U.S. Treasury bonds appears 

to have produced valuable information concerning the timing of a U.S. recession over 

many years (Qi, 2001), and they might also continue to be prominent for this particular 

application in the future. By including the information about these types of indicators into 

the training data, the models should be able to learn the correlations between the explan-

atory and dependent variables and, thus, they should learn to predict the general pattern 

at some level. Therefore, the proposed train-test split should be adequate for testing how 

well the models generalize, even though the economy’s evolving process includes argu-

ably a considerable amount of noncyclical progressions. 
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However, using only one U.S. recession for evaluating some ANN architectures’ 

ability to predict U.S. recessions introduces several possible shortcomings. Every reces-

sion is in some way unique, for example, depending on its cause, and in this case, the 

2007 financial crisis emerged from a somewhat untypical situation comprised of lax fi-

nancial regulation and moral hazard in the financial industry. Nonetheless, Reinhart and 

Rogoff (2008) found the 2007 financial crisis having similar properties to the previous 

financial crises, suggesting that the event could be predicted by using the previous cycles. 

However, it should be acknowledged that the proposed testing setup might be rather chal-

lenging for the models and, thus, it might yield pessimistic results concerning the models’ 

ability to perform in the future. Although this weakness is known, the available data does 

not allow using more cycles without applying some advanced methods for filling a large 

number of missing historical values. However, applying this type of method would not 

serve the scope of this study, that is to produce baseline findings for future research and 

improvements, which could be affected too much by some unusual method. 

4.3 Recurrent neural network selection 

In DL, the model training process discovers some set of parameters for a given ANN 

model, but, typically, it does not find a desirable set of hyperparameters that defines the 

parameter search. The potential hyperparameters form a vast search space of different 

possible configurations, each introducing some effect on the parameter search. Therefore, 

some sort of search should be performed to find a set of hyperparameters that enable 

settling upon satisfying parameter values in the training process. 

This study is essentially a hyperparameter search with three main research questions 

related to finding a suitable RNN architecture. Firstly, do these novel RNN methods ap-

pear useful in forecasting U.S. business cycles? Secondly, from the model capacity’s per-

spective, how large architecture suits best this prediction problem? Thirdly, does either 

LSTM or GRU networks outperform the others in this task? The research concentrates on 

examining these different types of networks’ effect on forecasting U.S. business cycles. 
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Figure 26 – Recurrent GRU or LSTM neural network architecture 

As shown in figure 26, an artificial neural network typically has three different types of 

layers: input, hidden and output layers. In this study, the input layer receives the input 

values for each explanatory variable and feeds them forward to the following hidden layer 

one time step at a time. In turn, the hidden layers apply some arithmetic operations to 

transform this data and, in the end, the last hidden layer feeds forward the last hidden 

activations for the example at index 𝑖, that are multiplied with the last weight matrix be-

fore ending up to the output layer. The ANN has then transformed 𝑖th instance’s input 

values, that is a matrix comprising 400 sequential values for every 26 explanatory varia-

bles, into a sequence of 91 values that represents the forecast for the dependent variable 

for the following 91 time steps, as outlined in the following equation: 

𝑓(𝑋𝑡−399,𝑡
(𝑖)

, 𝜃) = 𝑦̂𝑡+1,𝑡+92
(𝑖)

. 

The exact implementation of these methods might vary between different DL Python li-

braries, but the presented basic principles still apply. 

The model architecture is recognized as one of the hyperparameters in DL. By keep-

ing all the other hyperparameters constant, the hyperparameter search conducted in this 

study is able to put its emphasis on examining the different ANN architectures’ effect on 

forecasting performance. In practice, this relationship is studied by training a set of ANNs 

with different architectures and testing their ability to generalize by using the testing set. 

As introduced earlier, the architecture can be changed, for example, by increasing or de-

creasing the number of hidden layers and the units on these layers. The intuition is that 

the more there are hidden layers and units, and thus also the parameters, the more the 

network can express different types of functions, meaning a higher modeling capacity. 
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As introduced in section 2.5, models with different amounts of modeling capacity 

should be tested. However, according to Bengio (2012, 450-451), in practice, it is funda-

mental to have enough units in the network and, therefore, if sufficient regularization 

methods are used, one should rather have them too many than too little. Since two regu-

larization methods are used, L1 and early stopping, the conducted hyperparameter search 

also includes several networks that one could find unnecessarily large for the problem. 

Although large networks are typically recommended, small ANN architectures should 

still be tested. It is possible that only a few patterns in the data are very significant when 

predicting business cycles and, hence, using models that are capable of modeling fewer 

relationships in the data can give information about the problem’s complexity, or even 

outperform the larger architectures. 

 

Table 6 – The selected recurrent neural network architectures 

 LSTM network GRU network 

1 2 2 

2 4 4 

3 4-2 4-2 

4 8-4 8-4 

5 16-8 16-8 

6 32-16 32-16 

7 64-32 64-32 

8 128-64 128-64 

9 256-128 256-128 

10 256-128-64 256-128-64 

11 256-256-256 256-256-256 

 

The selected ANN architectures are shown in table 6, where the number of units or cells 

is declared only for the hidden layers, the most left number being the first hidden layer 

after the input layer, and the most right number is related to the last hidden layer before 

the output layer. Each unit or cell on the previous layer is always connected to all the 

following layer’s units or cells. Long short-term memory cells and gated recurrent units 
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are not mixed in the proposed architectures in order to keep the number of different ar-

chitectures sufficiently small. Also, to enable a comparison between the LSTM and GRU 

networks, they are tested with identical architectures. 

These particular architectures are chosen for a few reasons. Firstly, as motivated pre-

viously, the selected architectures should cover a wide range of different model capaci-

ties, while being limited by scarce computing resources. Secondly, the range of model 

capacity under inspection should be traversed in a somewhat smooth manner, without 

leaving wide gaps between any selected architectures. Thirdly, there is no widely ac-

cepted theory for selecting the number of units per hidden layer. So, in order to traverse 

as wide a model capacity range as possible, also the smoothness in mind, the log scale is 

used to decide the network architectures. Moreover, one could use any integer as a hidden 

layer’s width, but here the powers of two are used that can offer some pattern to the dif-

ferent architectures and a quite smooth parameter increase on the log scale, as depicted in 

figure 27. 

 

 

Figure 27 – The architectures and the number of parameters 

The interruptions to the parameter curves in figure 27 come when an additional layer is 

added with fewer units when compared to the previous last hidden layer. This yields fewer 

connections between this new last hidden layer and the output layer than previously and, 

therefore, the curve appears irregular when depicted by using only the number of param-

eters. However, it should not be as significant a problem from the model capacity’s per-

spective because the additional layer offers an additional amount of model capacity. 
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Hence, the model capacity can be thought to increase smoothly between the selected ar-

chitectures. 

As introduced in section 2.7.10, the initial parameter values should be small and de-

termined by using some random distribution. This randomness scatters the results and, 

thus, the training and evaluation should be repeated in order to get a better understanding 

of the different architectures’ general performances. (Graves 2012, 30.) For this reason, 

each architecture option is trained three times, and the emphasis is on evaluating these 

three models’ average performance. Therefore, each architecture option forms an ensem-

ble of three RNNs, whose predictions are the average of these three models’ estimates. 

During the training of the selected 66 RNN architectures, the optimization setup is 

kept unchanged. MSE is chosen as the loss function for training, and an L1 regularization 

method is introduced to drive weight decay. The L1 coefficient hyperparameter is set to 

0.00001. The cost function adds the MSE loss function and the L1 regularization term 

together. The gradients are computed by using backpropagation through time algorithm. 

Nesterov accelerated stochastic gradient descent with a typical 0.9 momentum coefficient 

with minibatches of 32 examples are used for updating the parameter values. The learning 

rate is gradually decreased between the training epochs 𝑒 according to the following equa-

tion 

𝑎(𝑒) = 0.1 ∗ 0.95⌊𝑒/2⌋. 

The maximum number of epochs for each iteration is set to 200, but early stopping is 

executed whenever there is no improvement in the test set cost during the last 25 epochs. 

The last parameter values are kept after the training process. The initial parameter values 

are determined by using a Gaussian distribution with a mean of 0 and a standard deviation 

of 0.1. Now, when all the other hyperparameters than the model architecture are fixed, 

the emphasis can be put on examining the effect of different RNN architectures on the 

forecasting performance. 



73 

 

5 RESULTS 

The results yielded a considerable amount of information about different types of phe-

nomena. These phenomena are examined by dividing these findings into smaller sections 

that present their relationship to the three main research questions, or in other words, to 

the models’ capacity, type and overall performance. First, the training processes are eval-

uated to assess information concerning the selected optimization methods’ suitability to 

train the proposed models. For example, did the chosen methods and their hyperparameter 

values provide a sufficient environment for the different RNNs to learn to predict U.S. 

business cycles? This examination answers partly to the first research question, by eval-

uating the chosen methods’ suitability for the task at hand. After the training process is 

evaluated, the performance-related findings are inspected in smaller segments. First, the 

bigger picture is examined, followed by sections that concentrate on some particular ar-

chitecture class’ results, along with some other significant findings that serve in under-

standing the process and results further. In addition, appendix 1 and 2 provide compre-

hensive tables of all the iteration and ensemble specific results. 

5.1 Architectures and the training process 

Before examining the performance-related results, one should examine how consistently 

the training algorithm, which is the combination of methods used for optimizing the pa-

rameter values, such as the cost function, BPTT, NAG and their hyperparameter values, 

could drive the proposed models towards better performance. For example, did it allow 

the models to find reasonably well some minima on the cost plane, thus enabling a fair 

and valid comparison between the proposed architectures and their types? One way of 

evaluating the training algorithm’s suitability for the task at hand is to examine, are the 

findings in line with the existing theories and other reasonable expectations that are drawn 

from the training algorithm’s characteristics and the proposed RNNs, such as the chosen 

cost function and the number of optimizable parameters. 

One should expect that large RNNs take more epochs to train on average because 

there is more cost to decrease. This is due to a large number of parameters, L1 regulari-

zation and random parameter initialization. Also, large networks might introduce more 

variance to the training process because of a large number of epochs, that introduces more 

chances to face troubles on the cost plane, though the learning rate is reduced throughout 

the process to make the parameter updates more gradual towards the end of the process. 
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In turn, small networks might also introduce slightly more variation in the training process 

because the learning rate stays rather high throughout their typically shorter training pro-

cess, making them less capable of settling to some minima on the cost plane. 

 

Table 7 – Architectures and epochs 

Architecture LSTM epochs avg. GRU epochs avg. LSTM epochs var. GRU epochs var. 

2 39.667 28.334 376.334 0.334 

4 32.667 35.334 2.334 162.334 

4-2 34.667 29.0 6.334 1.0 

8-4 50.667 29.334 114.334 1.334 

16-8 33.334 28.334 85.334 2.334 

32-16 35.667 27.0 21.334 0.0 

64-32 41.667 37.0 126.334 300.0 

128-64 52.0 32.0 76.0 61.0 

256-128 70.667 113.334 94.334 4266.334 

256-128-64 94.334 152.0 134.334 1828.0 

256-256-256 129.334 177.334 3889.334 1541.334 

Mean 55.879 62.636 447.848 742.182 

 

 
Figure 28 – Architectures and epochs 

Some of these aforementioned phenomena can be verified in table 7 and figure 28. The 

larger networks in this study typically took more epochs to train, although only three 

iterations reached the maximum of 200 epochs. They also introduced more variance in 

the training duration when compared to other options; the three largest architectures had 

five of the ten highest epoch variance scores. In turn, the smaller networks took consid-

erably fewer epochs to train. To support the assumptions related to the smaller networks’ 
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problems to settle during the training process, the results show that the three smallest 

architectures accounted for two of the ten highest epoch variance scores, though in con-

trast, most of them offered very low values. This indicates that, while some variation 

among the smaller models’ training process occurred, it appears overall rather mild and, 

therefore, the training algorithm seems to have suited the smaller networks satisfactorily. 

This is also verified in the following sections that show that the smaller architectures were 

able to deliver similar performance to the larger networks. 

When comparing the two different techniques, LSTM and GRU, one can find that 

the GRU networks showed much more variance on average when the number of epochs 

is examined. Also, while the small and midsize networks using GRUs seem to have con-

sumed fewer epochs during the training process than the matching LSTM networks, the 

largest GRU networks used remarkably more epochs than their LSTM counterparts. At 

first, this difference appears out of place, but, as the further examination shows, it seems 

justifiable if LSTM networks are considered to possess more modeling capacity or de-

mand more regularization than their GRU equivalents. Hence, they would be more prone 

to overfit the data, which, in turn, would have yielded shorter training processes due to 

early stopping. 

These findings suggest that the chosen training algorithm seems to have suited the 

task at hand, but did it offer a level playing ground for all the proposed architectures? It 

is good to acknowledge that, ideally, each network should be trained by using a tailored 

training algorithm that would achieve the best possible performance of that particular 

network for some particular problem. However, as is traversing all the hyperparameter 

options recognized impractical or even impossible with the current computing costs, so 

is finding the best possible training algorithms for each network architecture. Hence, one 

has to settle for less, and here, the focus was more on the general results than on finding 

the absolute best architecture for the problem. The chosen training algorithm satisfied this 

need by allowing a basic comparison between the proposed network architectures and, 

also, it appears to have offered valid results that can be used in future work. 

As the following examination shows, the midsize LSTM architectures offered the 

best performance when measured with the test set MSE and MAE, but the other networks 

were not far behind. This suggests that the playing field was quite even between the dif-

ferent models, though some of the networks showed unideal behavior, such as overfitting 

and unstable training, that might have been possible to avoid by using a different training 

algorithm. 
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5.2 Model capacity and performance 

The estimates of the generalization error for the proposed RNN models are depicted in 

figure 29, where the model capacity is represented on the x-axis by the number of opti-

mizable parameters. The log scale is chosen in order to make the graphs easier to interpret. 

On the y-axis, the chosen error measure is displayed, which is either MSE or MAE for 

the testing set. On the left side graphs, the results for each iteration are shown to illustrate 

how much variation exists between all the 66 iterations and each architecture. On the right 

side, the average values over all the three separate iterations for each architecture are 

pictured. These two graphs show the relationship between the generalization error and 

the model capacity. According to the bias-variance trade-off theory, the relationship is 

typically an upward opening parabola if under- and overfitting exists. The data pictured 

by these graphs is also available in tables 8 and 9 for more accurate inspection. 

 

 

 
Figure 29 – Errors for single iterations and ensembles 

MAE yielded higher error values due to reasons explained in section 2.7.6.1, but also 

because it was not included in the cost function, unlike MSE. Hence, the models ended 

up concentrating on minimizing MSE instead of MAE, that generated slightly differently 

behaving models than what would have been achieved by using MAE. Now, when using 
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MSE instead of MAE, the models were encouraged to output more early warning signs. 

Because some of the models ended up offering more early warning indications than oth-

ers, MAE showed slightly more variance between the separate iterations and the average 

values over the three iterations for each architecture. Also, when measured with MAE, 

one outlier appears in the result data, which was not as striking when measured with MSE. 

This one particular model was very different from the other models since it did not predict 

any cyclic motion. This distinctive model is examined in more detail in section 5.4. 

When observing the general pattern in the graphs, the GRU networks appear to have 

offered quite similar average performance with each proposed architecture option, unlike 

the LSTM networks, that offered the best performance with the three midsize architec-

tures: 16-8, 32-16 and 128-64. This finding suggests that these midsize LSTM models 

were able to offer the most suitable model capacity for the task at hand with the current 

setup. As is examined in more detail in section 5.5, the large LSTM networks showed 

signs of overfitting that might explain the slightly worse performance. In turn, even the 

largest GRU-256-256-256 model did not show signs of overfitting in the training graphs. 

Hence, it is possible that the three largest GRU architectures were more robust against 

overfitting, which could also explain why they were able to offer generally better results 

than their LSTM equivalents. Otherwise, the LSTM architectures could offer on average 

similar or even slightly better performance than their GRU counterparts. 

When examining the GRU networks, it appears that the largest networks may not 

have overfitted and even the smallest networks seem to have handled the task quite nicely 

when measured with MSE and MAE. Therefore, the estimated generalization error curve 

for the GRU networks did not resemble a curve all that much. On the other hand, when 

examining the LSTM networks, the three midsize architectures: 16-8, 32-16 and 64-32 

offered better performance than the smaller ones, and the larger LSTM architectures could 

not take advantage of the additional model capacity and, instead, ended up overfitting the 

training data. Hence, the proposed upward-opening generalization error curve seems to 

exist for the LSTM architectures. This finding suggests that LSTM cells might offer more 

modeling capacity than GRUs. It can possibly be explained by the fact that the GRUs are 

simplifications of the LSTM units and they have slightly fewer parameters, but this dif-

ference has not been verified in the previous studies. Instead, they have typically fared 

somewhat similarly (Greff et al. 2017; Jozefowicz et al. 2015). 
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Table 8 – Architectures and MSE for ensembles 

Architecture LSTM MSE avg. GRU MSE avg. LSTM MSE var. GRU MSE var. 

2 0.049334 0.059608 0.001863 0.000163 

4 0.065772 0.063266 0.000234 0.001547 

4-2 0.060348 0.059747 0.000234 0.000001 

8-4 0.059149 0.066610 0.001875 0.000050 

16-8 0.047388 0.064997 0.000743 0.000807 

32-16 0.036788 0.068064 0.000428 0.000056 

64-32 0.061680 0.057906 0.000617 0.000028 

128-64 0.049957 0.064641 0.000002 0.000021 

256-128 0.074477 0.057347 0.000295 0.000894 

256-128-64 0.070708 0.063725 0.000314 0.000140 

256-256-256 0.066753 0.057201 0.000624 0.000203 

Mean 0.058396 0.062101 0.000657 0.000355 

 

Table 9 – Architectures and MAE for ensembles 

Architecture LSTM MAE avg. GRU MAE avg. LSTM MAE var. GRU MAE var. 

2 0.090180 0.094714 0.002221 0.000221 

4 0.103717 0.134354 0.000243 0.004808 

4-2 0.092278 0.086870 0.000499 0.000001 

8-4 0.099685 0.098398 0.001916 0.000148 

16-8 0.081731 0.113291 0.000885 0.000644 

32-16 0.070914 0.100011 0.000480 0.000077 

64-32 0.101216 0.096346 0.000572 0.000032 

128-64 0.080880 0.098514 0.000048 0.000008 

256-128 0.113900 0.089432 0.000291 0.000937 

256-128-64 0.098769 0.084791 0.000476 0.000205 

256-256-256 0.097856 0.103426 0.000688 0.000824 

Mean 0.093739 0.100013 0.000756 0.000719 

 

The LSTM ensemble models achieved lower MSE and MAE values on average, but they 

typically introduced more variance between the three iterations of each architecture than 
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the GRU counterparts. However, the gap between these two methods’ performance was 

not wide and, in fact, they typically included similar behavior in their predictions. 

MAE penalized more from deviations from the real values than MSE. These devia-

tions can be either useless or useful, based on how well it gives information about the 

future values. When examining the graphs in figure 29 or tables 8 and 9, it appears that 

the GRU networks’ predictions varied more from the real values. Moreover, based on the 

MAE results, the GRU networks were slightly weaker than the LSTM networks, but be-

cause useful early warning signs are recognized as an advantage, the comparison cannot 

be decided by using only the MAE and MSE scores. These deviations could either be 

noise, false predictions or some useful information for early warning purposes, possibly 

suggesting that a probability for a peak or a trough to happen has risen. However, the 

quality of these deviations can only be determined by viewing the actual predictions, as 

is done in the following sections.  

 

 
Figure 30 – Variance per architecture 

These performance-related results appear to have correlated with the previously examined 

training durations. Commonly, the more problems occur during a training process, the 

more its error measures oscillate during it, and, due to the early stopping, the training 

process’ length can vary significantly between the iterations of the same architecture. This 

variation typically had an effect on the trained models’ performance. The results show 

that, the more there was variation in the number of epochs for some particular architec-

ture, the more there seems to have been variation between these iterations’ performance. 

However, as can be found from the graphs in figure 30, the smaller LSTM networks’ 

performance between the iterations of each architecture varied more when compared to 

the larger LSTM networks. Whereas, apart from the outlier, the GRU networks introduced 
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the opposite behavior, where the performance results between the iterations of each ar-

chitecture varied more among the larger GRU networks than the smaller ones. Because 

the GRU models offered relatively good results also with the larger architectures, it ap-

pears that much of the higher variation between the performance was not due to actual 

problems during the training process. Instead, it might be related to where on the cost 

plane the training process ends. Because of the longer training processes, the larger GRU 

networks could have moved more on the cost plane and, thus, eventually ended up on 

very different local minima. This, in turn, would have generated very different parameter 

values and, hence, different behavior in the predictions. 

When compared to their LSTM counterparts, the large GRU networks introduced 

notably longer training processes. This was due to the large LSTM networks’ tendency 

to overfit, that, together with the applied early stopping method, made the training pro-

cesses stop sooner than their GRU equivalents, which did not show significant overfitting 

effect, as is examined in more detail in section 5.5. In addition to their shorter training 

processes, it appears that all the three largest LSTM architectures’ iterations had some-

what similar training durations with each other and, hence, the variance between their 

performance is not striking. However, even though the large GRU networks’ results var-

ied more than those of the smaller GRU networks, their variance in MSE and MAE was 

similar to the large LSTM networks. 

Apart from the three largest architectures, the GRU networks showed, per architec-

ture, typically less variance between the training duration and performance of each itera-

tion when compared to the LSTM networks. The training duration was similar between 

small and midsize architectures of both types and, therefore, it is not a probable explana-

tion for this phenomenon. Moreover, as was also suggested earlier, if the training process 

is short, the learning rate does not receive low values, making settling to some minima on 

the cost plane difficult. Instead of settling, the parameter values might continue to move 

arbitrarily on the cost plane and end up with an uncommon parameter setup. However, it 

does not explain why mostly the small and midsize LSTM networks appear to have suf-

fered from this type of phenomenon and, thus, is assumedly not a suitable theory. As is 

found in section 5.4, even the GRU outlier, which also had a small architecture, most 

likely did not suffer from this type of defect in the training algorithm. To point out, even 

the best performing architectures, the midsize LSTM networks, produced more variance 

than their GRU equivalents. Also, the random parameter initialization in the training pro-
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cess might have generated some untypical results, but the difference between these net-

works appears quite systematical and, therefore, it was probably not created by chance. 

No satisfactory explanation was found for why GRU networks were more stable in gen-

eral than their LSTM counterparts. This suggests that more work should be done, for 

example, in testing different hyperparameter values and other methods related to the train-

ing algorithm to find if the cause is in the selected training setup. 

So, it appears that, commonly, the more there was variation between the iterations’ 

training durations, the more their performance varied. In addition to this finding, the large 

GRU networks showed that the longer training processes also introduced additional var-

iance to the performance. However, the small LSTM networks seem to have suffered 

more from performance-related variance, possibly because the training process did not 

reach small learning rate values, but this cannot be verified because this behavior did not 

appear as significant with the small GRU networks. Furthermore, the reason for why the 

LSTM networks appear to have varied more than the GRU networks remains unclear. All 

the proposed GRU networks seem to have offered quite similar performance. In turn, the 

midsize LSTM networks generated typically better performance than the small and large 

LSTM networks. 

5.3 The performance of the small architectures 

Surprisingly, the small networks were able to find relatively good parameter values, even 

though the training process was typically quite short and, hence, the learning rate had 

only relatively large values. The training process evolved quickly because the learning 

rates were large and the cost from L1 regularization was small. With the three smallest 

architectures, the training process typically lasted less than 35 epochs. Because the early 

stopping method introduced an extra 25 epochs after the smallest test set cost was 

achieved, the actual number of needed epochs was close to ten. After that point, it could 

not improve the accuracy of the model. Instead, it drifted away from the lowest value. 

The small GRU and LSTM networks fared quite differently in this study, as seen in 

tables 8 and 9. Where the small GRU networks could offer relatively stable performance 

values for the test set, apart from the aforementioned outlier, the LSTM equivalents seem 

to have altered more from each other when measured with either MAE or MSE. Although 

there is a notable difference when examining the performance-related variance, the actual 

estimates for the test set appeared quite similar. 
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The graphs in figure 31 show the average estimates from all the three networks of 

each architecture option. All the forecasts for each time step in the testing set are shown 

in one graph on top of each other. The color cyan is used for illustrating the estimates, 

where the more estimates are located in some area, the darker the color. The red color 

represents the real values. Apart from the GRU-4 architecture’s results, all the networks 

could identify the recession and its ending quite well. The biggest differences came from 

the number of early warning signals before the recession. The less there were notable 

early warning signs, the smaller was the MAE error for that particular RNN architecture, 

as shown in table 9. When comparing these six architectures’ average estimates, GRU-4-

2 seems to have been the most stable before the recession, and it also received the lowest 

MAE score in this group. In turn, LSTM-2 networks could offer the smallest MSE value. 

 

 

 

 
Figure 31 – The average estimates for the three smallest LSTM and GRU architec-

tures 
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It was common for all the different architectures, small or large, to show some early warn-

ing signs before the recession. Interestingly, many of these models forecasted a peak be-

tween 2006 and 2007. One possible explanation for this behavior comes from a dip in 

S&P 500 during that time period, along with some other possible triggering conditions, 

such as decreasing OECD Business Confidence Index for the U.S. and a low yield spread. 

When comparing the forecasts before and after the recession, one can find that the mod-

els’ predictions varied typically considerably less after the recession. This indicates that 

the probability of a recession to occur was very low for the U.S. during that period, which 

is more or less correct. Furthermore, this finding suggests that these models did not suffer 

much from pure noise, and the early warning signs are due to relevant patterns in the data. 

In addition to low noise and notable early warning signs for the 2007 peak, it was 

common for all the networks to forecast the recession to end slightly before 2009, which 

could be classified as a clear mistake. This defect might be due to the fact that the previous 

recessions in the training data typically lasted less than ten months. In turn, the recession 

in the testing set lasted for 18 months, that was unprecedented for the models and, thus, 

could explain why they predicted it to end so early. However, after this common blunder, 

all the networks continued to forecast a recession, sometimes even slightly longer than 

necessary. The midsize and large networks could generally signal slightly better when the 

recession ends than the smaller ones. 

When the shape of the predictions is considered, the small networks’ forecasts tended 

to have a strong curve instead of a straight line, which is rather perplexing when predict-

ing a binary time-series. No definite explanation for this type of behavior is offered. One 

possible reason is that the smaller networks were able to concentrate only on a limited 

number of phenomena in the data and, hence, they formed their forecasts from a smaller 

set of concepts that were only enough to position and twist some preferred shape. In turn, 

the larger networks could create more sophisticatedly shaped forecasts, though they had 

problems positioning them, as is shown in figures 35 and 36. However, this theory cannot 

be verified with the available results. 

5.4 The third GRU-4 iteration 

The worse iteration in this study was the GRU-4 architecture’s third iteration, whose es-

timates for the testing set and the cost curves from the training process are shown in figure 

32. It appears that the training got stuck at a local minimum, which made the model pre-

dict only the values between 0.100 and 0.111. Interestingly, these values are close to the 
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recessions’ share of realizations in the training set, which is approximately 12.667%. This 

indicates that a cost plane can include local minima that make an ANN able to fit the data 

similarly to some other model options, here a straight line. To answer how this particular 

network’s parameters ended up having these particular values, one can examine the cost 

curves depicted on the right side in figure 32. 

 

 
Figure 32 – The third GRU-4 iteration 

It is possible to derive from the cost curves that the training process happened to evolve 

the model parameters to a direction where it ended up stuck at some high-cost area on its 

cost plane. This incident is probably not due to an especially steep shape on the cost plane 

because that would have yielded very high gradient values, that, in turn, would have con-

tinued to show in the following gradients due to the momentum term. What the cost 

curves indicate is that, after the rise between epochs five and seven, the process did not 

vary much, which suggests relatively steady gradients. The training process got stuck 

immediately after climbing on top of the high-cost area, suggesting that the process 

missed the steep hill and ended up straight on top of this particular area. 

As is shown in appendix 1, MSE generated significantly less error than MAE for this 

particular model. When considering the training process, the smaller error also meant 

smaller cost and, hence, less significant gradients that were not enough to move out from 

the undesired location on a cost plane. Therefore, the use of MSE can be questioned, and 

testing MAE as the loss function might be desirable in future work. 

Although this result is exciting, it is far from ideal when trying to predict business 

cycles. These unorthodox predictions yielded, not only very high MSE and MAE values 

for this particular iteration, but also a significant negative effect on the GRU-4 networks’ 

combined performance, as seen in figure 30 and the performance-related tables 8 and 9. 

This exceptional outcome also makes interpreting the general pattern less convenient. 

Moreover, nothing similar exists in these results. Several heavy oscillations in the test set 
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performance occurred during a few training processes, that made them stop at an unideal 

point with unideal parameter values, but also in these cases, these networks were able to 

find the strongest patterns, though being often too pessimistic and predicting a peak too 

early. Also, when these networks were combined with one or two successful iterations, 

the ensemble fared reasonably well and the outcomes are somewhat in line with the re-

lated theories. In contrast, the GRU-4 ensemble could find the general pattern, thanks to 

the other two networks, but it was severely distorted. For this reason, its test set MSE and 

MAE received high values, that did not reflect this particular architecture’s true perfor-

mance accurately, suggesting to regard it as an outlier. 

5.5 The large architectures and overfitting 

As shown in the graphs in figure 33, all the GRU architectures achieved a somewhat 

similar performance apart from the outlier, and no significant under- or overfitting is 

found. On the other hand, when examining the LSTM networks’ results, more signs of 

the bias-variance trade-off appears. The smaller LSTM networks with less modeling ca-

pacity tended to be outperformed by the midsize LSTM networks, and after some point 

when the network size was increased enough, the performance began to drop due to over-

fitting. 

 

 

Figure 33 – Model capacity and fit 

Smaller networks’ weaker performance was probably mostly due to the underfitting effect 

that was caused by insufficient model capacity, it may also have been caused by an uni-

deal training algorithm, as suggested previously. Therefore, unfortunately, more experi-

ments should be done before a clear understanding of the underfitting effect can be ob-

tained. 
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Figure 34 – Test set MSE over the training epochs the three largest LSTM and GRU 

architectures 

The overfitting effect can be assessed by examining the large networks’ training graphs. 

In figure 34, the evolution of the test set MSE during all the three networks’ training 

process for each of the three largest LSTM and GRU architectures are shown. When com-

paring the chosen training graphs between the three largest LSTM and GRU architectures, 

there seems to have been two major differences. Firstly, the large GRU networks gener-

ated longer training sequences and, secondly, the test set MSE curves for the LSTM iter-

ations tended to increase towards the end of the training process. As proposed earlier, the 

second phenomenon causes the first one to occur due to early stopping. Also, a rising 

error graph is essentially a strong indicator of overfitting. Although it does not apply to 

every LSTM iteration, it is common enough to show in the average performance scores. 
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In addition to the findings related to overfitting, one can notice that the third training 

iterations of GRU-256-256-256 and LSTM-256-128-64 faced problems during the pro-

cess. These types of oscillations indicate that the cost plane includes strong shapes that 

might affect the training significantly, as depicted in figure 15. A steep edge on the cost 

plane may move the training process considerably on the cost plane if the gradient values 

are not limited. Limiting the gradient values, a method called gradient clipping, would 

have made the training process more robust against these types of heavy oscillations. In 

this study, the momentum dampens this effect, but, apparently, it was not enough to make 

it inconsequential. 

The large LSTM networks that suffered from overfitting should be slightly too sen-

sitive to the changes in the data. When examining the average predictions of these pro-

posed large architectures in figure 35, one can find that the overfitting effect on the pre-

dictions was not very significant when compared to their GRU counterparts. For example, 

during the expansions, the large LSTM networks’ predictions were generally as close or 

even closer to zero than the equivalent GRU networks’ predictions. Furthermore, both 

methods introduced early warning signs extensively. Interestingly, the clear early warning 

signals of the GRU-256-256-256 networks were mostly generated by the third network, 

that suffered from severe oscillations during the training process and, thus, ended up un-

ideal. Moreover, the networks that did not have a smooth training process were typically 

more pessimistic, predicting recessions more than necessary. See appendices 1 and 2 for 

more examples. This suggests that the models learned to predict less recessions when they 

iterated towards the low-cost areas on their cost planes, and that the initial setting was 

quite neutral for predicting these two output values. Neither, recession or expansion, ap-

pears to have been favored significantly by the chosen methods. When these unideal mod-

els were combined with the other two networks, they offered more early warning signals 

and, therefore, this behavior was less harmful. 

The reason why there does not seem to be a significant difference between these two 

methods is arguably due to their similar performance when measuring with MSE and 

MAE. Although the large LSTM networks’ predictions should have been slightly too sen-

sitive to noise and ungeneralizable phenomena in the data, the large GRU networks could 

not do much better. Thus, the overfitting effect is clearer when compared to the midsize 

LSTM networks’ predictions in figure 36, which offered the best performance. Also, this 

indicates that the large GRU networks might have somehow overfit the data even though 

they did not show rising training error curves. Unfortunately, this phenomenon is difficult 
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to examine further with the obtained results and, thus, is left out of the scope of this study, 

but should be revised in future work. 

 

 

 

 
Figure 35 – The average estimates for the three largest LSTM and GRU architec-

tures 

As proposed earlier, the networks with high model capacity should have been able to 

modify their predictions more than the smaller networks. Here it shows as more scattered 

predictions, which are not desirable, unless if they offer some meaningful information. 

Furthermore, some of the predictions were unnecessarily low or high (below 0 and over 

1). It appears that these larger networks found out that it is useful to shoot predictions 

almost along the vertical line, either upwards or downwards, but for some reason, timing 
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and placing these predictions on the right spot on the vertical axis emerged difficult, es-

pecially when predicting a trough.  

If the early stopping indications are considered useful, the networks appear to have 

been relatively successful when predicting the beginning of the recession. However, pre-

dicting when it ends was challenging. In fact, it appears that the smaller networks fared 

rather well against the other proposed networks because their predictions were more sta-

ble during the recession. It is possible that the larger networks began to overfit to the 

training data more than the less capable models and, hence, emphasized more, for exam-

ple, the finding that the recessions did not typically last more than ten months. Hence, 

instead of focusing on the general relationships in the data, the large networks possibly 

started to apply these training set specific findings more on the testing set and, thus, could 

not generalize well. When compared to the other sized architectures’ predictions, the 

small and midsize networks appear to have focused better on more general relationships 

in the data because their predictions are less dispersed. If these findings are correct, it 

further suggests that the large GRU networks might have overfitted the data. 

5.6 The performance of the midsize architectures 

The architectures 16-8, 32-16 and 64-32 are considered in this study midsized. As sug-

gested earlier, the midsize LSTM networks offered on average the best performance when 

measured with the test set MSE and MAE. In contrast, the equivalent GRU architectures 

had typically very small deviation between their training iterations’ performance, but 

slightly worse performance. Moreover, two out of three best MSE and MAE scores be-

longed to these three LSTM ensembles, which suggests that these midsize LSTM net-

works suited the task at hand rather well with the chosen setup. 

The midsize LSTM networks could outperform their GRU equivalents when MSE 

and MAE are considered, and it also shows in figure 36 as more stable predictions. For 

example, after 2010, the GRU predictions vary considerably more than the LSTM pre-

dictions, which was also typical among the larger networks, shown in figure 35. The rea-

son for this phenomenon remains unclear, but it might be related more to a GRU itself 

than on the network size because it did not appear when LSTM cells were used. However, 

when examining the smaller networks’ estimates in figure 31, this behavior did not seem 

to appear, suggesting that it needs a large enough network with GRUs to occur, though it 

appears stronger with these midsize network architectures than with the three largest ar-

chitectures and, hence, it might not relate strictly to modeling capacity and overfitting.  
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Furthermore, as the midsize networks began to favor a vertical line as the shape of 

the predictions when the probability of a peak or trough to occur increased enough, the 

GRU networks had more troubles placing these predictions on the y-axis. For example, 

these midsize GRU networks tended to predict considerably lower values than necessary, 

whereas this effect was notably smaller with the LSTM counterparts. The midsize GRU 

networks appear to have been too sensitive to changes in the input data, which is typical 

for models that suffer from overfitting. In turn, the best models in this study could stand 

out by limiting these defects, suggesting that they possessed a suitable modeling capacity. 

 

 

 
 

Figure 36 – The average estimates for three midsize LSTM and GRU architectures 

Similarly to the other networks, the midsize networks also tended to predict a peak be-

tween 2006 and 2007 and a trough too early. Again, the notable difference here was that, 
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the more the network possessed modeling capacity, the worse it tended to predict the 

trough. This finding is true for both network types, though it was slightly more severe for 

the GRU networks. This suggests that much higher modeling capacity would not probably 

suit the problem and, here, LSTM-16-8 and LSTM-32-16 appear to have offered the best 

performance based on both: the performance scores and the plotted predictions. 

5.7 The best architecture 

When measured either with test set MSE or MAE, LSTM-32-16 ensemble achieved the 

lowest value. Although the performance for the ensemble was desirable, the related vari-

ance values were slightly up, suggesting that some variation between these networks’ 

predictions existed. Also, because of this variation, their predictions may have corrected 

each other just right when averaged and, thus, yielded an excellent ensemble performance. 

Although this effect was somewhat common with the proposed ensembles, it was not 

particularly strong with LSTM-32-16. Two out of the three lowest test set MSE scores 

between all the separate iterations belonged to LSTM-32-16 networks, indicating that the 

first place is somewhat deserved. However, the performance was slightly worse when 

MAE is considered, suggesting that some benefits have been gained from combining this 

ensemble when the effect of the model specific noise and other behavior was reduced, but 

it was somewhat common for all the ensembles. 

 

Table 10 – LSTM-32-16 performance 

Architecture Epochs Test set MSE Test set MAE 

LSTM-32-12 ensemble - 0.0368 0.0709 

LSTM-32-12 iteration 1 41 0.0743 0.0983 

LSTM-32-12 iteration 2 33 0.0359 0.0686 

LSTM-32-12 iteration 3 33 0.0417 0.0556 

 

The graphs in figure 37 are in line with the related MSE and MAE scores in table 10. The 

second network’s predictions offered notable early warning signs that generated some 

MAE, but it was able to keep the predictions otherwise relatively consistent with the real 

values. In addition, the second network favored more symmetrical curve shaped predic-

tions than the other two networks. These types of predictions were common among the 

small networks and, as proposed earlier, the larger the network, the more the predictions’ 
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shape appears to have varied, possibly because of their ability to take more patterns into 

account. Thus, this second LSTM-32-16 network might have concentrated on fewer phe-

nomena in the data than the two other networks and, therefore, could generalize better. 

The third network’s predictions offered considerably less early warning signs than 

the other two networks’ predictions and, hence, it generated less MAE. However, it was 

not able to be as consistent during the recession as the second network and, thus, was 

penalized slightly more. Although the first network received weaker MSE and MAE 

scores, it offered the best early warning signs from these three networks. Interestingly, 

the first and third networks generated unnecessarily high outputs. It seems that these net-

works learned to form a suitable output shape for predicting a peak and trough, as opposed 

to the second network, but they were, along with several other midsize and larger net-

works, rather awkward at placing it correctly on the y-axis. 

 

 
Figure 37 – LSTM-32-16 predictions 

When these three relatively different predictions were averaged, the end result offered 

quite nice behavior. Apart from predicting a trough too early, which was also somewhat 

common among all the proposed networks, the average predictions were rather pleasing 

and yielded the best performance of all the chosen architecture options. This suggests that 

the proposed methods are suitable for predicting business cycles if this type of architec-

ture is used in conjunction with some ensemble solution. 
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6 CONCLUSIONS 

This study focuses on how several different recurrent neural networks (RNNs), compris-

ing either long short-term memory cells (LSTMs) or gated recurrent units (GRUs), can 

handle predicting U.S. business cycles between the years 2005 and 2015. The set of pro-

posed architectures covers a wide range of possible model capacities from networks with 

one hidden layer and less than 600 optimizable parameters to ones with three hidden lay-

ers and over one million adjustable parameters. Each different architecture is trained three 

times and these three separate networks’ predictions are averaged together to create en-

sembles that could represent better the potential performance of each architecture. How-

ever, even with the applied precautions, the results show notable signs of volatility. 

According to the bias-variance trade-off, the out-of-sample prediction performance 

can indicate which model is the most suitable for finding the general pattern in the se-

lected dataset and, thus, reveal what type of models one should apply for predicting the 

future examples. However, while these results help finding a suitable RNN architecture 

from a vast set of viable alternatives, they were generated by using only one possible 

group of methods and hyperparameters. Therefore, it is highly probable that these meth-

ods’ performance does not appear identical in some other setup. 

With the proposed setting, which comprised typical machine- and deep learning 

methods, the results recommend using LSTM networks with two hidden layers and the 

number of optimizable parameters should be between 1 000 and 100 000. Interestingly, 

where some of the LSTM networks showed clear symptoms of under- and overfitting, 

their GRU counterparts’ performance did not vary significantly between different GRU 

architectures and their under- and overfitting effect remains slightly obscure. For exam-

ple, the large GRU networks did not offer evident signs of overfitting in their training 

graphs, but their predictions included behavior that is similar to the large LSTM net-

works’ predictions, which suffered from overfitting. 

The LSTM and GRU networks fared differently depending on the measure and nei-

ther could outperform the other in all the examined areas. When based on the preferred 

performance metrics: mean squared error and mean absolute error, the midsize LSTM 

networks could offer the best performance. However, surprisingly, even the smallest net-

works in this study could achieve good performance, suggesting that one does not need a 

vast RNN architecture for modeling business cycles if LSTM cells or GRUs are used.  
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Because a wide range of architectures are able to learn the general pattern satisfacto-

rily, these novel RNN methods can be recognized as noteworthy solutions for business 

cycle forecasting. However, more research should be conducted to verify these results 

and, also, to find even more enhanced algorithms. This study examines only a small set 

of possible deep learning methods and hyperparameter values and it is very likely that 

better combinations exist. In the future, more focus should be put on different types of 

preprocessing methods that can reduce the amount of noise and other unnecessary short-

term movements in the data that are redundant, or even harmful, for predicting long-term 

macroeconomic developments. Also, different options in the training algorithms should 

be studied, such as the popular adaptive learning rate methods: Adam, RMSprop and oth-

ers. Furthermore, using mean absolute error instead of mean squared error in the cost 

function could provide more stable predictions and less early warning signs. If early warn-

ings are wanted, the business cycle time-series in the training set could be manipulated 

so that it gradually increases and decreases before every peak and trough to encourage 

the model to show more clues of a turn in the cycle. 
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APPENDICES 

Appendix 1. LSTM results  
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