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This thesis explores various machine learning models and attempts to use them to
gain insight on individual di�erences in treatment responses of patients diagnosed
with multiple myeloma, a hematopic malignancy representing approximately 1%
of all cancers. While the 5-year survival rate exceeds 50%, treatments are not
personalized and treatment results are heterogeneous.

Machine learning systems processing large amounts of patient data could help tailor
the treatments to individual patients. Two research goals are set; understanding
the medical trajectory of a patient by predicting the best treatment response they
will reach in the future and predicting how long a given patient can remain on a
given drug.

The work is split into two main parts. In the �rst part the mathematical concepts
of machine learning and several commonly used machine learning models are
introduced. In the second part the theoretical portions are applied by training
the introduced models on a data set from the CoMMpass study by the Multiple
Myeloma Research Foundation to answer the research questions.

The results from the medical trajectory prediction are somewhat promising and
with additional research could become accurate enough for real-world use. The drug
duration prediction task turns out too complicated for the limited methodology of
this thesis. A discussion of the results and possible improvements on the methods
are provided.
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1 Introduction

1.1 Description of the disease

Multiple myeloma (MM) is a hematologic malignancy arising from an asymp-
tomatic condition known as Monoclonal Gammopathy of Undetermined Sig-
ni�cance (MGUS). MGUS, one of the most common premalignant disorders
in Western countries, can be found in approximately 3% in the Caucasian
population above the age of 50[1]. MGUS develops into MM at a rate of
approximately 1% per year.

MM accounts for approximately 1% of all cancers and 10% of hematologic
malignancies [2] in the United States. MM a�ects mostly the elderly which
is also visible in the data set in Figure 1.3. In a 2003 review of patients diag-
nosed with MM [3], the median age was 66 with only 2% of those diagnosed
under the age of 40. Both ethnic background and sex are source of disparities
in MM rates.

MM a�ects a type of white blood cell known as the B-cell. It causes
malignant plasma cells to expand and accumulate in the bone marrow [4].
This leads to reduction in blood cells, breaking down of bone tissue and in
most cases production of monoclonal protein, characteristic of plasma cell
tumors. Most common symptoms of MM are pain and fatigue [5].

Diagnostic testing for MM includes blood and urine tests and bone mar-
row samples. A typical �nding is the presence of the monoclonal protein, a
high presence of bone marrow plasma cells or a detection of plasmacytoma
in a biopsy [6]. Full radiographic skeletal surveys are done to detect bone
lesions, osteopenia or pathological fractures.

MM with no end-organ damage is called smouldering multiple myeloma
(SMM). Early treatment of SMM has shown no bene�t [6]. Patients with
SMM require no treatment but should be monitored for progression. End-
organ damage is detected by elevated calcium levels caused by breaking down
of bone tissue, renal failure, anemia and bone lesions.

Achieving a full cure or enduring remission of MM is rare [6]. Thus the
main goal of treatment is managing the disease. With modern treatments the
median survival of MM patients is above 5 years and the 3-year survival rates
have exceeded 75% [7]. Autologous stem-cell transplantation helps prolong
the survival, but has upper age limits that vary by country. Surgery and
radiotherapy can be used for bone-related complications [6].
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1.2 Motivation, research goals and outline of the thesis

While the expected survival duration of MM has increased in the last years,
the therapies are still in general not targeted but rather used in all suitable
cases [4]. A current major challenge is separating patients based on risk level
and treatment tolerance [6].

For both the patient and the doctor having a realistic idea of what the
future holds for the patient is of interest. Life expectancy and 5-year survival
rate are common metrics when talking about the future of cancer patients.
This thesis attempts to instead predict the medical trajectory of the patients.
The data set contains an evaluation of the patient's response to the treatment.
The encoded responses and their frequency in the data set are shown in Figure
1.1.

Research question 1.2.1. Given full medical data of a patient 1 is it possible
to predict what is the best treatment response the patient can reach in the
future?

When choosing a treatment option for a patient several di�erent factors
such as the expected e�cacy and side e�ects are taken into account. For
cancer treatments one factor of interest is how long a patient can remain on
a treatment plan until either the cancer becomes immune to it or the side
e�ects become unbearable. The distribution of drug durations is shown in
Figure 1.2.

Research question 1.2.2. Given a drug and full medical data of a patient
is it possible to predict how long the patient can remain on the drug?

In Chapter 2 I will present a mathematical formulation for machine learn-
ing problems and related basic concepts. In Chapter 3 I will present the
models that I use in Chapter 4 in answering the research questions 1.2.1
and 1.2.2. Discussion about machine learning in personalized medicine, the
results of the analysis and potential further work are discussed in Chapter 5.

1 Full medical data refers to the collection of all measurements performed on the pa-

tients in the CoMMpass study.
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Figure 1.1: Distribution of the encoded responses

Figure 1.2: Distribution of the drug duration
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1.3 Data set

The data set used in this thesis is from the CoMMpass (Relating Clini-
cal Outcomes in MM to Personal Assessment of Genetic Pro�le) study by
the Multiple Myeloma Research Foundation (MMRF) 2. MMRF researchers
tracked over 1000 newly diagnosed MM patients from their initial diagno-
sis through their treatment over a minimum of 5 years. Sequential tissue
collection was done to identify the e�ects of patients' molecular pro�le on
progression and treatment of the disease.

The data set covers the medical history of the patients along with the
history of cancer in their family and their ethnic background. The data gives
a longitudinal description of the progression of the disease for each patient
with each treatment plan, hospital visit, clinical test, medical decision and
outcome documented.

The data set is diverse in terms of ethnic background, age and sex. Figure
1.3 shows an approximation of the age and ethnicity distributions and 1.4
the absolute numbers for ethnic groups and sexes.

The patients in the data set were given 41 di�erent drugs, identi�ed
only by their index 1, . . . 41. Many drugs were given to only a handful of
patients. Figure 1.5 shows the number of patients that received a given drug
at least once during their treatment. Only drugs with 10 or more patients
are displayed.

Most of the initial data cleaning was done in a separate project. The
original data set included numerical data, categorical data and abstract data
in the form of doctor's notes. The data was spread over several �les that in
the initial cleaning phase were combined into one �le to be used in machine
learning projects. Some patients were missing a signi�cant amount of data
and were left out. Equally features with signi�cant amounts of data missing
were left out. Manual feature selection was performed to leave out irrelevant
data.

The data set given to me was built to track drugs given to patients and
a single visit to the facilities resulted in one row of measurements per drug
received by the patient. The contained 13512 rows covering information of
1012 unique patients and 236 features.

Further processing of the data set is described in Chapter 4.

2https://themmrf.org/
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Figure 1.3: The age and ethnicity densities

Figure 1.4: The total number of patients per ethnic background and sex
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Figure 1.5: The total number of patients that received a drug
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2 Machine learning basics

2.1 Representing data

Machine learning algorithms process massive amounts of data. This data
can come in various forms such as images, categorical data or real-valued
measurements. For a mathematical algorithm to be able to process data, it
must be in a form it can understand. Images are converted to real vectors,
depending on the algorithm categorical data can be processed as-is or encoded
into numeric form, equally numeric data can be processed as is or converted
into categorical form.

A simple example of an encoding scheme for a categoric-to-numeric map-
ping is to give each of the categories ki an index i. This approach can be
problematic as many algorithms would interpret the magnitude of the num-
bers to have some kind of inherent meaning. With some categories and
indices, such as as severity of metastasis, this could make sense. However
with examples such as gender and ethnicity this loses all meaning and can
cause certain models to perform poorly.

A common way of avoiding this issue is the so called one-hot encoding.
The idea of one-hot encoding is to add dummy variables for the categories
and use an indicator function to set the dummy variables to either 0 or 1
based on the categoric value. A binary "sex" variable can be replaced with a
new "is male" variable, with possible values 0 and 1. If the variable shows the
person not to be male, they are known to be female. This can be extended
to c1, . . . , cn categories being represented as v1, . . . , vn−1 numeric variables.
If all of the n− 1 variables are = 0 then the categorical variable must be cn.

A real-valued variable x ∈ A ⊂ R can be encoded into categorical data of
n categories by partitioning the variable space A into n sets Ai, . . . , An such
that Ai ∩ Aj = ∅ when i ̸= j and ∪n

i=1Ai = A. An indicator-like indexing
function ind : A → 1, . . . , n that gives the index i of the set Ai that x belongs
to maps a continuous variable to a discrete space. This value is then encoded
as an observation of the i:th category.
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2.2 Mathematical formulation of machine learning prob-

lems

Machine learning problems can be classi�ed [8] into three main types: super-
vised, unsupervised and reinforcement learning problems. Other types such
as semi-supervised learning can be seen as combinations or variations of the
former three. In supervised learning the input data corresponds to a human
labeled output and the goal is to �nd a function that maps a given input to
the correct output. Unsupervised learning lacks the human labeled output
and instead attempts to draw conclusions about the data by e.x. �nding
anomalies in the data or organizing the data into clusters. Reinforcement
learning deals with learning optimal behavior policies based on observations
of the environment and by the feedback provided by it as it is interacted
with.

This thesis is restricted to supervised learning problems and the de�ni-
tions used are not general enough to necessarily cover other problem types.
Supervised learning problems can be further divided into regression and clas-
si�cation problems based on the type of the output. In a classi�cation prob-
lem the output is a categoric variable with m categories one-hot encoded into
a vector in Rm with each element i corresponding to a probability of being
classi�ed as the ith category while in a regression problem the observation is
a scalar value.

De�nition 2.2.1. (Data set) A data set D is a set of pairs (xi,yi) where
xi ∈ Rn is a collections of measurements called instances and yi ∈ Rm their
corresponding observation.

The elements xi1, . . . xin of the instances xi are typically called the in-
dependent variables as they vary independently while the observation yi is
called the dependent variable as it depends on xi.

With m being appropriate for the task at hand, the assumption is that
there exists a function g : Rn → Rm that correctly maps the independent
variables to the dependent variable. Let ϵ be an m dimensional random
vector representing the noise in the system, with each component of ϵ a
random variable of an unknown distribution with �nite variance and mean
0. The relationship between the dependent and independent variables can
be written as

y = g(x) + ϵ. (2.2.1)

The goal is to �nd an approximation to g based on a data set D. The
function g can be modeled by either parametric or non-parametric models. A
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parametric model approximates g by a function f(w1, . . . , wk,x) with model
parameters w1, . . . , wk. A non-parametric model on the other hand builds an
approximating function f(x) from the data set D where the exact form of f
is not known in advance.

De�nition 2.2.2. (Parametric Model, Parameter space) A parametric model
F for vector variable x ∈ Rn with parameters w1, . . . , wk ∈ R is a family of
functions fw(x) = f(w1, . . . , wk,x) indexed by a parameter space W ⊆ Rk

with w = (w1, . . . , wk) ∈ W .

A non-parametric model can be seen as a special case of De�nition 2.2.2
with the parameter space W = {0} consisting of a single trivial element and
the function f(x) built by the model can be interpreted to be the function
f0(x) corresponding to the trivial element in D.

The �nal piece needed to properly de�ne a machine learning problem is
a way to evaluate how well the function fw is approximating the underlying
function g. A loss function L̂(f,D) → R+ measures how close to y the
function f maps the inputs x. Loss functions are discussed in more detail in
Chapter 2.4. The loss functions are assumed to be expressible as sums over
D, i.e.

L̂(f,D) =
∑︂

(x,y)∈D

L(fw(x),y). (2.2.2)

It is now possible to give a general de�nition for a machine learning
problem. Let D be a (training) data set, L a loss function, W the index set
of a model and fw the function corresponding to a given w ∈ W .

argmin
w

∑︂
(x,y)∈D

L(fw(x),y)

s.t. w ∈ W

(2.2.3)

The function solving optimization problem in Equation 2.2.3 is denoted
by f̂ . Interpreting a non-parametric model as a special case of a parametric
model is clearly compatible with the formulation of the problem in Equation
2.2.3 and its solution is the function f0(x). During the minimization process
the model is trained on the training set D, leading to a function f̂ that can
be said to have learned to approximate the underlying function g on D. The
function f̂ corresponds to an instance of the model F and is called a trained
model.

According to the principle of empirical risk minimization [9], a function
f̂(x) minimizing the loss for a training set D should also minimize the loss
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for yet unseen data. If the data set was split into a training and test set as
discussed in Chapter 2.3, the quality of the solution f̂ can be tested on the
test data to see how well it performs with unseen data. Good performance
on the test set suggests it will perform well on data collected in the future,
assuming the data set D was large enough and o�ered a good representation
of the future data as well.
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2.3 Training, validation and test sets and sampling

A data set is typically partitioned into at least two separate sets, a training
set and a test set. As the names suggest the model is trained on the training
set and once the training phase is complete the trained model is tested on the
test set. Sometimes evaluating the performance during the training phase is
useful. A part of the training set can be set aside for that purpose. This set
is called a validation set.

It is important to separate the test set completely from the training data
and not allow it to have any impact on the training phase. As an example
many algorithms require the continuous variables to be standardized. Stan-
dardizing the training data and test sets together is a form of data leakage
as the parameters used in standardizing the training data are a�ected by the
test data. The proper way to standardize a data set is to standardize the
training data separately, then standardizing the test data using the means
and the standard deviations of the training data.

The partitioning is typically done by random sampling. In some cases it
is useful to guarantee that the training and test sets are distributed similarly.
Consider a data set on cancer screening. If the number of positives is very
low and not o�set by a large enough sample size, it is possible for the rate
of positives in training and test sets to be di�er signi�cantly. In such a
situation it is useful to divide the data set into groups or stratum that are
then sampled independently to get the desired distributions in both training
and test sets.

Strati�ed sampling is used in Chapter 4 in the classi�cation task.
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2.4 Measuring success

To be able to compare models it is necessary to have a metric for how well the
underlying function g is being approximated. Naturally these metrics will
be di�erent for regression and classi�cation tasks and are therefore discussed
separately.

2.4.1 Regression

Let xi ∈ Rn, yi ∈ R for i = 0, . . . k and f be a function f : Rn → R such
that f(xi) ≈ yi. Several metrics for the measuring how well the function
f matches with the observations yi exist. In general these metrics start by
calculating the residual errors

ϵi = yi − f(xi). (2.4.1)

The errors ϵi can be used in di�erent ways to create a metrics with desired
properties.

Mean absolute error (mae),

mae =
k∑︂

i=0

|ϵi|
k
, (2.4.2)

calculates the average absolute deviation of the prediction from the true
value. The mae metric has the same unit as y making it easy to interpret.

While mae is easy to interpret, the penalty for deviation is linear. In real
world applications the cost of errors is often non-linear and large deviations
between the real and the predicted value can have devastating consequences
and thus oftentimes penalizing large deviations more is preferred. Mean
square error (mse),

mse =
k∑︂

i=0

ϵ2i
k
, (2.4.3)

penalizes outliers with the square term. However mse is not in the same unit
as the target variable. Additionally in problems where y has large values the
mse value can be very large leading to added di�culties in interpreting the
value. Root-mean-square error (rmse),

rmse =
√
mse =

√︄∑︁k
i=0 ϵ

2
i

k
, (2.4.4)

takes the square root of mse, mapping it to the same unit as y and to a more
easily understandable magnitude, leading to again easier interpretation.
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Minimizing mse is computationally simpler than rmse but leads to equiv-
alent results. Thus all models were built minimizing mse. The rmse value is
reported with mae shown alongside it.

The R2 metric o�ers a di�erent approach by measuring how much of the
variance of the dependent variable can be explained by the model. With
SSE =

∑︁k
i=0(ϵi)

2 being sum of squared estimation errors and TSS =∑︁k
i=0(yi − ȳ)2 the total sum of squares

R2 = 1− SSE

TSS
. (2.4.5)

It can be seen that if SSE = 0, or, if f(xi) matches perfectly with yi,
R2 = 1. If the function f always returns the mean of yi regardless of the
input, f(xi) = ȳ for all i then SSE = TSS and R2 = 0. There is no lower
limit for R2 as the SSE can be arbitrarily large.

The downside of R2 is that it does not measure goodness of �t or cor-
rectness of the model. High variance leads to low R2 values, even if the
model itself is correct. In Figure 2.1 two data sets were generated from
y = x + N(0, σ2) with two di�erent values for σ2 and the R2 values calcu-
lated for the model y = x. While the model is correct in both cases, it can
not be seen from the R2 values.

Figure 2.1: A high variance leads to a low R2 value, even when the model is
correct
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As R2 can still o�er a way of comparing models built and tested on the
same data the value is displayed alongside rmse and mae metrics.

2.4.2 Classi�cation

The simplest way to measure success for classi�cation tasks is accuracy. How-
ever as the only metric it can be very misleading. Consider a binary classi�-
cation task in early cancer screening. If 98% of the patients are classi�ed as
cancer negative and 2% as positive, a trivial classi�er classifying each patient
as negative would be 98% accurate.

One way to understand classi�cation accuracy better is the confusion ma-
trix. Each row of a confusion matrix corresponds to the true class Aj and
each column to predicted class Aj. It is possible to add a row and a column
for totals to make it easier to compare the distributions of the actual and the
predicted values and to notice degenerate behavior like always predicting the
most common class. As an example a confusion matrix for a hypothetical
3-class classi�cation task could look like this

n = 150 A1 pred A2 pred A3 pred Total
A1 80 15 5 100
A2 3 15 2 20
A3 20 5 5 30
Total 103 35 12 150

It can be seen that the hypothetical model misclassi�ed the class A3 much
more often than classes A1 and A2 and that the distribution of predicted
values and actual values do not look the same. The true number of instances
of A3 was higher than A2 but in the predictions A2 was predicted almost 3
times as often as A3.

A confusion matrix still does not o�er a single simple value to compare
models by. One possible metric for comparing classi�cation models with one
simple number is cross-entropy. Let qi be an indicator of a correct classi�ca-
tion and pi the probability of the true class being class i. Cross entropy is
de�ned as

CrossEntropy = −
n∑︂

i=0

qilog(pi). (2.4.6)

In this thesis the classi�cation models are built minimizing cross entropy
and it is the main metric used for comparing models. However due to how
di�cult it is to interpret the accuracy of the models is also provided.
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2.5 Optimization algorithms

Since (parametric) machine learning problems are formulated as optimization
problems it is natural that optimization algorithms play a key role in ma-
chine learning. Various algorithms, each with their own up- and downsides
have been proposed, commonly based on a simple algorithm called gradient
descent.

Since the negative gradient points towards the direction of the deepest
descent it is possible to iteratively take small steps in this direction, recalcu-
lating the gradient after each step. Let f be a di�erentiable function. The
algorithm is de�ned by the sequence

xi+1 = xi − η∇f(xi) (2.5.1)

where η > 0 is a hyperparameter called the learning rate. The learning rate
de�nes the size of the step taken in the direction of the negative gradient.
Choosing this hyperparameter carefully is important. Too large learning
rates can lead to oscillating around the optimal value or possibly even wors-
ening the error while too small values can lead to slow learning or being stuck
in a poor local minimum.

Consider a machine learning problem with a data setD and a loss function
expressible as a sum over D. Calculating the gradient of the loss function
over the whole D is computationally expensive when D is large. Stochastic
gradient descent is a modi�cation of the formerly presented regular gradient
descent algorithm where the gradient of the loss function is approximated by
using a single sample drawn from D instead of the whole data set [10].

The stochastic approximations to the gradient can be noisy, leading to
quick changes in the direction of descent. The algorithm might also oscillate
or stop in a local minimum. The concept of momentum mitigates this by
tracking ∆x, directions that have persistently lead to reducing the target
function. Let µ ∈ [0, 1] be a decay rate for the momentum and gi an approx-
imation of the gradient at iteration i. The Equation 2.5.1 can be modi�ed
to [11]

∆xi+1 = µ∆xi − ηgi

xi+1 = xi +∆xi+1

(2.5.2)

There exist several more modern versions of the gradient descent algo-
rithm. The algorithm used with neural networks in this thesis was ADADELTA
[12]. ADADELTA does not require learning or decay rates but adapts them
on its own by considering the root mean square of past gradients and steps
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with

xi+1 = xi −
rms[∆x]t1
rms[g]t

gi, (2.5.3)

where rms is the root-mean-square over last w samples.

2.6 Variance-bias trade-o� and over�tting

When selecting a parametric model to solve the machine learning problem
formulated in Equation 2.2.3 some kind of assumption about the complexity
and the structure the underlying function g is made. A model that with all
possible free parameters w consistently di�ers from g is said to be a biased as
an estimator [13]. Linear regression is a biased model since it assumes there
to be a linear relationship between the measurement and the observation.

Figure 2.2: A linear model is not complex enough to create an accurate
model

At the other end of the spectrum a high variance model is very sensitive
to the training data. A function fW could be an excellent approximation for
g over the training set, but produce very poor results with previously unseen
data. A function like this would not generalize well.

For the mse loss it is possible to decompose the the error of the model
into a bias term and a variance term[13]. To emphasize dependence of the
function f on the training set D it is written as f(x;D). With mse as the

16



Figure 2.3: A decision tree regressor over�ts to the data set. A linear model
would have been a better choice.

loss function

ED[L(f(x;D), y)]

= ED[(f(x;D)− y)2] = ED[(f(x;D)− y + E[f(x;D)]− ED[f(x;D)])2]

= ED[f(x;D)− ED[f(x;D)] + (ED[f(x;D)]− y)2]

+ 2ED[(f(x;D)− ED[f(x;D)])(ED[f(x;D)]− y)]

= ED[(f(x;D)− ED[f(x;D))])2 + (ED[f(x;D)− y2

+ 2ED[f(x;D)− ED[f(x;D)]])(ED[f(x;D)− y])

= ED[f(x;D)− y]2 + ED[(f(x;D)− E[f(x;D)))2]]

= ED[f(x;D)− yi]
2 + V ar[f(x;D)].

(2.6.1)

Interpreting the term E[f(x) − y]2 as the bias of the model, it can be
seen that the error of the model is a sum of the bias and the variance of the
model. Finding the correct balance between the bias and the variance of the
model is a key to building models that both learn e�ciently and generalize
well to unseen data.
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2.7 Regularization

As mentioned �nding the correct balance in model complexity is challenging.
Regularization tones down the variance of a parametric model by making the
solver take into account the complexity of the model.

Consider a function R : W → R+ that evaluates the complexity of the
function fw for w ∈ W . Taking the output of such a function into account
when evaluating the loss in Equation 2.2.3 would force the optimization al-
gorithm to take the complexity into account. Let L be a loss function, λ > 0
a regularization constant and R(f) a regularizer function. A regularized loss
function LR is of the form

LR(fw(xi), yi) = L(fw(xi), yi) + λR(fw). (2.7.1)

Consider a linear model fw(x) = w1x1 + . . . wkxk. Large values of wi

make the model more sensitive to small changes in xi. A model less sensitive
to changes in xi will have lower variance, thus preferring lower values of wi

can be justi�ed.
As the impact the parameter w has on a given model F varies by model

all models have their own regularization systems. The Chapter 3.2.2 looks
at ridge regression with R(fw) = λwTw.

Early stopping [14] is a regularization method associated with neural
networks, but it can be applied to any model where �nding the best �tting
function f̂ is done iteratively. A small validation set is used for tracking the
performance of the model periodically. If the performance of the training
set begins to di�er greatly from the validation set, the model is beginning to
over�t the training set and instead of learning the underlying structures of
the data it is �tting speci�cally to the training set. Allowing the algorithm to
continue over�tting would often result not only in general performance not
improving but sometimes it even declining. Once a certain threshold with no
improvement in performance on the validation set is reached the algorithm
is terminated and learning ends.

A simple neural network with 8 neurons on each of 3 layers was built to
demonstrate potential issues. The model was trained on the Boston housing
data set [15] to predict the median value of homes in areas of Boston from so-
cioeconomic data. Figure 2.4 shows the mae values of the test and validation
sets when training over 500 epochs or iterations on full data. The training
and validation set mae values began separating quickly. Looking only at the
training set makes it seem like there was an improvement in performance,
but in reality the model began performing worse on unseen data.

While other regularization approaches exist for neural networks they will
be omitted from this work.
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Figure 2.4: Early stopping would have prevented this model from
over�tting.
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2.8 Hyperparameters and cross-validation

Models often require certain decision that a�ect the learning process to be
made before the learning begins. The choice of the optimization algorithm
and constants such as the learning rate are some examples of such decisions.
These are called hyperparameters of the model.

The choice of the hyperparameters can impact the performance and po-
tentially the structure of the model built during the learning phase. To �nd
the best performing model it is necessary to test several di�erent sets of hy-
perparameters and compare the performance of the resulting trained models.
Of course the actual test set can not be used for this and the training data is
further split into a new, smaller training set and a test set used to evaluate
the performance of the trained model for each hyperparameter set.

If several di�erent hyperparameter sets are compared using the same test-
train split it is possible for the test-train split to a�ect the hyperparameter
selection process. The �nal model might perform well only on the exact
test set used during hyperparameter selection but not generalize as well as
expected. Having access to several training and test sets to con�rm that the
hyperparameters do indeed indeed build the best model in general would be
preferable. However typically only a �nite amount of data exists and using
it e�ciently is important.

k-folds cross-validation o�ers a way to validate the performance of a model
on more than 1 train-test set. Instead of splitting the data set into one
training set and one test set, the data is split into k sets called folds. The
learning process is performed k times with each set being the test set once
and the rest of the k− 1 folds forming the training set. The average error of
the k iterations is used to evaluate the performance of the model.

Figure 2.5 shows large performance di�erences between the folds observed
during the analysis portion of this thesis. The �gure shows a 3rd degree
polynomial used in the regression task. The x-axis shows the regularization
term λ. The k-folds average shows that the model performed in general
poorly but on fold number 5 it did seem like a reasonable candidate. The
loss curve of fold 5 is reasonably stable, small changes on λ result in only small
changes in the rmse. However the k-folds average is highly unstable in several
regions hinting at problems with the model. In this plot the neighborhood
of λ = 7 corresponds to a local stable minimum and could be chosen as the
optimal value.

Algorithm 2.8.1. (k-fold cross validation)
Let k > 0. Initialize the total error Etot = 0.
(1) Split the data set into k folds D1, . . . , Dk.
(2) For n = 1, . . . , k:
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Figure 2.5: An example of signi�cant performance di�erences between the
folds and the average of all 5 folds

(2.1) Train the model on train data T = D \Dn.
(2.2) Calculate the test error En using Dn as the test set.
(2.3) Add En to Etot.

(3) Calculate the average error Eavg.

This leads to each element having been once in the test set and k − 1
times in the training set as shown in Figure 2.6.

Several improved variations of the base algorithm of Algorithm 2.8.1 exist
[16]. These are typically computationally expensive and require computing
capabilities deemed infeasible for the scope of this thesis.
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Figure 2.6: A visualization of the test-train split on a 4-fold cross validation
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3 Machine learning algorithms

3.1 Decision trees and random forests

The decision tree algorithm and other algorithms derived from it are non-
parametric models resembling �owcharts. They can be used for both regres-
sion and classi�cation tasks. I will present decision trees and random forests
in the context of classi�cation problems due to the simplicity of their presen-
tation. However both classi�cation and regression trees are similar enough
that there is no need to explore both.

3.1.1 Decision trees

A decision tree can be seen as a �owchart leading a sample to its classi�cation.
A decision tree consists of internal nodes that partition the data into subsets
and terminal nodes or leaves that assign a class value to the sample and
terminate the algorithm.

Decision tree is an umbrella term covering various related algorithms
di�ering mainly on splitting and stopping criteria [17]. While multivariate
splits are possible splitting is usually done univariately, based on only one
feature. Let x ∈ X be an instance. A split on feature i on a value t ∈ R
results in the data being split based on the condition xi > t.

Choosing the feature i and the value t is done by comparing how the split
reduces impurity of the post-split data. Measuring impurity of the data can
be done as an example by the concept of entropy from information theory or
by the Gini impurity that calculates the probability of mislabeling a random
sample with a random category in the remaining instance space.

Tree building is done by recursively adding new nodes to partition the
instance space. Once the remaining space can not be partitioned further
based on a given stopping criteria, e.x. impurity reduction threshold value
or a maximum depth is reached, a leaf node with the most common value in
the remaining samples is created. The following algorithm is based on the
C4.5 algorithm [18], but does not include pruning which is discussed later.

Algorithm 3.1.1. (Decision tree)
Let there be features x1, . . . , xn ∈ X, m : P (X) → R+, an impurity measure
m, a stopping criterion λ for the impurity and a maximum depth d.
(1) For each feature x1, . . . , xn �nd the optimal splitting value ti that splits
the remaining data set D into Di− = {D|xi < ti} and Di+ = {D|xi ≥ ti}
and calculate the corresponding impurities Impurityi = m(Di−) + m(Di+)
and the information gains Gaini = m(D)− Impurityi
(2) Add a split to the tree splitting the data set with index j maximizing the
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Figure 3.1: A decision tree classi�er with depth 2 on the Iris data set

information gain into Dj− and Dj−.
(3) For both Dj− and Dj+: Denote the current set with T and test if the
stopping criterion m(T ) < λ for impurity is ful�lled or if the maximum
depth is reached. If either of the stopping criteria is met, create a leaf with
value Ai where Ai is the category with the largest frequency in T . Otherwise
set D = T and go to (1).

The limitation of Algorithm 3.1.1 is that it can only process numeric
data. It is possible to extend the algorithm to also process categorical data
and to split on a single category in a node. Some implementations in the
R [19] package do implement this behavior. However this thesis used the
implementations of the sklearn [20] library which can only process numeric
data.

One big di�erence between tree-based algorithms and other algorithms
discussed in this thesis is that they can process categoric variables with a
numeric encoding. Since several splits can occur on the same feature in
one single tree, it is possible for a tree to separate classes A1, . . . , Ak of
a categoric variable encoded as 1, . . . , k by splitting on the feature several
times. This could have an impact with tree variants like random forests that
select the features considered for a split randomly. Consider a feature set of n
continuous variables and 1 categoric variable with the number of categories
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being > n. If the categoric variable is one-hot encoded, the feature pool
where the features considered for a split are drawn from will be heavily biased
towards the single categoric variable. On the other hand if the depth of the
tree is limited it might not be able to both perform the required number of
splits on the numerically encoded variable to separate instances of a single
category and to split on other features as well. It is also noteworthy that the
data need not be standardized. If t splits a continuous feature z optimally
and z is standardized by z′ = f(z, σ, µ) = z−µ

σ
, then t′ = f(t, σ, µ) splits z′

optimally.
Figure 3.1 shows a decision tree built with depth 3 using the Fisher's Iris

data set[21]. The data set consists of length and width measurements of the
sepals and petals and the species (Iris setosa, Iris virginica, Iris versicolor) of
the measured �ower.

Tight stopping criteria leads to small trees with low accuracy while loose
criteria leads to over�tted trees that generalize poorly. Overly complex de-
cision trees are also di�cult to interpret[22]. These issues can be solved by
pruning the trees by removing branches that do not signi�cantly contribute
to the accuracy of the tree. For a comparison of pruning algorithms see [22].

Regression trees di�er from classi�cation trees on two points: the impurity
measurement has to be appropriate for regression data and if there are more
than 1 instance in a leaf node their average is returned.

3.1.2 Random forests

Even pruned trees su�er from training bias and generalize poorly. This bias
can be combated by generating multiple smaller trees and having them work
together as an ensemble in making the prediction.

Bagging trees [23] algorithm builds an ensemble of independent trees, each
constructed from a bootstrap sample with a given number of samples drawn
with replacement from the data set D. Random forest algorithm improves
the bagging trees algorithm by considering only a random subset of features
at each split [24].

Algorithm 3.1.2. (Random forest)
Let n be the number of trees to be generated, m the number of random features
used at each split and k the number of samples to draw from the data set for
each tree.
(1) Draw n bootstrap samples from the data set, each with k samples from
the data set.
(2) For each bootstrap sample, grow an unpruned decision tree, except at
each node instead of using all features, sample m features at random without

25



replacement and choose the best one among those for the partitioning.
(3) In predictions use majority votes among all trees for classi�cation and
average of values for regression.

The idea behind the algorithm is that features that are good predictors of
the dependent variable will be selected more often than bad predictors. Since
the algorithm uses independent small random subsets of the data for each
tree it should not over�t to the training set as strongly as regular decision
trees. If the number of sampled features m is equal to the number of features
in the data set, i.e. all features are considered, the algorithm produces a
bagging tree ensemble.

Out-of-bag samples (OOB samples) are samples not in the bootstrap used
in building a tree. The out-of-bag error (OOB error) of a tree is the aggregate
error of the OOB samples when passed through the tree. The OOB error of
a random forest is the average of the OOB errors of its trees. The OOB error
of a random forest is a good estimate for the error of the forest on unseen
data.

A further modi�cation on the algorithm called extremely randomized
trees or ExtraTrees [25] does not optimize the split location t but chooses it
randomly.

3.1.3 Feature selection with random forests

Random forest based feature selection has been found e�cient for large med-
ical data sets [26]. Since random forests can be used for both regression and
classi�cation, random forest feature selection can similarly be used for both
types of problems.

A random forest allows for ranking of variable importance [27]. Each
tree t has its OOB sample OOBt. Denote the error of the OOB sample by
errOOBt. The importance of a feature Xj can be calculated by randomly

permuting the values of Xj in OOBt. Denote the perturbed sample by ˜︂OOBt

and the error of the perturbed sample err˜︂OOBt. The importance of a feature
Xj in a random forest with n trees is

Importance of Xj =
1

n

∑︂
t

(err˜︂OOBt − errOOBt). (3.1.1)

The following algorithm selects k best features in predicting a dependent
variable Y :

Algorithm 3.1.3. (Random forest feature selection)
Let D be a data set, n be the number of trees in the random forest, the
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hyperparameters for the random forest be chosen and k the number of features
to be selected.
(1) Build a random forest of n trees predicting the dependent variable Y .
(2) For each feature Xj calculate the importance value.
(3) Rank the features by their importances and choose the k features with the
highest importance values.

27



3.2 Linear models

3.2.1 Linear regression

Linear regression is a simple model for regression. The model, while simple,
is powerful enough as long as its assumptions are met. The model requires
the following conditions to hold [28]:

(1) Vectors xi and values yi must have minimal measurement error.
(2) The relationship between the independent variables xi and Y is linear,
or expressible as

y = a+Xβ + µ, (3.2.1)

where X is a matrix whose row vectors are samples x1, . . . ,xn and µ is a
random variable with mean 0.
(3) The random variable µ is homoscedastic, or has constant variance.
(4) No autocorrelation is present, or the residuals are independently dis-
tributed.
(5) The independent variables are linearly independent of one another.

Equation 3.2.1 can be written in a simpler form by using padded vectors.
Let xi = [x1

i , . . . , x
n
i ] be a sample with n features. The vector can be padded

with a constant and the padded vector written as xi = [1, x1
i , . . . , x

n
i ]. The

vector β is padded in a similar way. Now Equation 3.2.1 can be expressed
as a matrix multiplication and a random variable:

y = Xβ + µ. (3.2.2)

The loss is typically measured with mse which leads to the so called
ordinary least squares �t formula:

β̂ = (XTX)−1XTy. (3.2.3)

Computing β̂ of Equation 3.2.3 with simple matrix algebra is straightfor-
ward when the number of features is low. However as the size of the matrix
grows the calculation becomes prohibitively expensive. Large linear regres-
sion problems can be solved with algorithms stochastic gradient descent [29].

3.2.2 Ridge regression and kernels

Ridge regression is a regularized extension of linear regression. The higher
the values βi are, the more sensitive the model is to small changes in inputs.
To create a more stable model and less sensitive model, smaller values of β
are preferred.
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Ridge regression modi�es the loss function to the form

L(xi,yi,β) =
1

2
(yi − xT

i β)
2 +

1

2
λβTβ, (3.2.4)

where λ is the regularization strength of the model. In matrix form this
becomes

L(X,y,β) =
1

2
(y −Xβ)T (y −Xβ) +

1

2
λβTβ. (3.2.5)

Taking the derivative of L with respect to β

∂L(X,y,β)

∂β
= (XTX)β −XTy + λβ (3.2.6)

and setting Equation 3.2.6 = 0 leads to

(XTX)β −XTy + λβ = 0

(XTX+ λI)β = XTy

β = (XTX+ λI)−1XTy.

Thus best �t is reached with

β̂ = (XTX+ λI)−1XTy. (3.2.7)

Setting λ = 0 in Equation 3.2.7 proves the formula for ordinary least squares
�t in Equation 3.2.3

Ridge regression can take advantage of the so-called kernel trick, allowing
a linear model to learn non-linear behaviors without explicitly generating the
non-linear model or the non-linear features. Formally this means choosing a
more complex input space V over the initial input space χ with ϕ : X → V
and instead of solving the ridge regression problem with input x ∈ χ, solving
it with input ϕ(x) ∈ V . Denote new measurements by ϕi = ϕ(xi) for each i
and the matrix they form by Φ. If X was a m× n matrix of m samples and
n features, Φ is a m× p matrix with p >> n.

Substituting Φ for X in Equation 3.2.7 and applying the push-through
identity

(I+UV)−1U = U(I+VU)−1 (3.2.8)

yields
β̂ = ΦT (ΦΦT + λI)−1y. (3.2.9)

Denote ΦΦT = K. Taking a closer look at K

K =

⎛⎜⎝ϕT
1ϕ1 . . . ϕT

1ϕm
...

. . .
...

ϕT
mϕ1 . . . ϕT

mϕm

⎞⎟⎠ (3.2.10)
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It can be seen that the elements of K are formed of all dot product combi-
nations of ϕ(xi). What this means is that generating all of the features and
performing the algorithm in V is not necessary, calculating the dot products
of the elements in X in V is enough. In more general terms, given a function
k : X ×X → R and x1, . . . ,xn ∈ X, an n× n matrix with entries

Kij = k(xi,xi) (3.2.11)

is called a Gram matrix of k with respect to x1, . . . ,xn. In machine learning
literature a Gram matrix is commonly called a kernel.

For any positive semide�nite kernel the function k can be represented as
the inner product of some Hillbert space V [30]. The space V is called the
Reproducing Kernel Hilbert Space induced by the kernel.

De�nition 3.2.1. Any algorithm formulated in terms of a positive de�nite
kernel K is called kernelizable.

The so-called "kernel trick" means creating a new algorithm by replacing
the original kernel K of a kernelizable algorithm by a new positive de�nite
kernel K̃ that is the inner product of a more suitable feature space V . The
inner product ⟨ϕ(x1), ϕ(x2)⟩ can be seen as a similarity measure of x1 and
x2 under ϕ.

With n features, generating all polynomial combinations up to k degrees
leads to generating

(︁
n+p
p

)︁
features. This can easily lead to the number of

features overtaking the number of samples a data set contains. Using the
kernel trick makes the calculation simpler.

Table A.1 shows some kernels and the dimensions of V when the feature
space has n dimensions.

De�ning α = (K+ λI)−1y and substituting to Equation 3.2.9 gives

β̂ = ΦTα. (3.2.12)

Predicting a new y using β̂ and the new features ϕ(x) of x is done with

y = βTϕ(x) = (ΦTα)Tϕ(x) = αTΦϕ(x). (3.2.13)

The goal of the training phase is to �nd α. With even a moderate number
of features this can not be done in a closed form and the training phase �nds
an approximation to α.
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3.2.3 Logistic regression

Logistic regression despite its name is a classi�cation algorithm. It is a linear
model for the log-odds of a binary random variable, but can be extended
to general �nite discrete cases. Let Y ∼ Ber(p) be a Bernoulli distributed
binary random variable, the log-odds of Y1 are

l = logb(
p

1− p
). (3.2.14)

The choice of basis b is arbitrary for any b > 1, here the basis used will be e
and the the natural logarithm denoted by log.

The logistic regression model assumes that the log-odds are linearly de-
pendent on the predictor variables x1, . . . xn. As before the predictor variables
are written as a padded n + 1 dimensional column vector x with x0 = 1 to
simplify the linear model. The dependence of the resulting probability dis-
tribution is emphasized with the notation Pβ(Y = y). The �nal model can
be written as:

fβ(x) = xTβ = β0 + x1β1 . . . βnxn = log(
P (Y = Y1)

1− P (Y = Y1)
). (3.2.15)

The model does not strictly classify a sample into a category, but the prob-
ability of it being in a given category can be retrieved from Equation 3.2.15.
A sample can then be classi�ed into the class with the highest probability.

Each weight vector β corresponds to a distribution of Y . The likelihood
of observing a given pattern can be measured with the likelihood function

L(β|y1, . . . , yn) = P (Y = y1 and . . . Y = yn|β). (3.2.16)

Since the observations are independent and identically distributed the likeli-
hood function can be written as a product

L(β|y1, . . . , yn) = P (Y = y1|β) · . . . P (Y = yn|β). (3.2.17)

Maximum likelihood estimation (MLE)[31] �nds the optimal value of β
by maximizing the likelihood of observing a distribution matching the data
set. A common way of �nding the maximum is to apply gradient descent to
the function −L thus maximizing L.

Figure 3.2 shows the logistic regression model �tted to an imaginary data
set shown in Table A.2 of household income and stock ownership.

For a general model with outcomes Y1, . . . , Yn, a pivot index is chosen.
Because the indexing is arbitrary, choosing the last index n as the pivot leads
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Figure 3.2: Binary classi�cation with logicistic regression

to no loss of generality. For each index i = 1, . . . n− 1 a model li is created,
each with their own weights βi. Instead of the log-odds of P (Yi)

1−P (Yi)
like in

the binary case, P (Yi)
P (Yn)

is used and assumed to be linearly dependent of the
independent variables:

log(
P (Yi)

P (Yn)
) = xTβi. (3.2.18)

Solving Equation 3.2.18 for P (Yi) yields

P (Yi) = P (Yn)e
xTβi

. (3.2.19)

Since the sum of probabilities
∑︁n

k=1 P (Yj) = 1 and each P (Yi), i ̸= n can be
written in terms of P (Yn) and βi, the term P (Yn) can be written as

P (Yn) =
1

1 +
∑︁n−1

k=1 e
xT bk

, (3.2.20)

and for i < n

P (Yi) = P (Yn)e
xTβi

=
ex

Tβi

1 +
∑︁n−1

k=1 e
xT bk

. (3.2.21)

The vector β̂ can again be found with MLE [32].
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3.3 Deep neural networks

An arti�cial neural network (ANN) is a machine learning system based
loosely on biological brains. The structure imitates neurons and the synapses
connecting them [33]. Much like in biological brains, neurons can become ac-
tivated causing synapses to transmit information about the activation to
other neurons.

ANNs have a long history with the earliest related ideas being traceable
to the 1940s and 1950s [34]. Two much later breakthroughs were necessary
for their wide adoption; the backpropagation algorithm for e�cient gradi-
ent calculation in 1970s and the introduction of the graphics processing unit
(GPU) that, while not initially intended for machine learning, ended up pro-
viding hardware specializing in fast, parallel matrix multiplication allowing
fast training of ANNs.

While ANNs are well known for their performance in image and pat-
tern recognition they are extremely �exible having wide applications ranging
from natural language processing to self-driving cars. ANNs have biomedical
applications in diagnostic medicine, especially in the �eld of medical image
recognition.

The downside of ANNs is that they are in practice black boxes. The
massive amount of connections in subsequent layers scramble the data in a
way that makes reasoning about their internal logic extremely di�cult. In
contrast models such as decision trees are easy to track and their logic is
entirely transparent.

In mathematical terms an ANN is a computational graph. The base
level building block of an ANN is the arti�cial neuron, a node in the graph,
modeled by an activation function determining the neuron's output. These
arti�cial neurons are interlinked by synapse-like connections. Three types
of neurons exist; input neurons reacting to input fed from the environment,
inner neurons reacting to the activation of other neurons and output neurons
outputting the result of the computation. The input of a non-input neuron
is the weighted sum of the activation of the neurons feeding into it and the
neuron's bias term. Figure 3.3 shows how the three types of neurons link
together forming a neural network.

In general neurons can be connected in any way imaginable. A special
type of ANN called feed-forward network has its neurons in subsequent layers
1, . . . , n. The �rst layer, the input layer, receives the independent variables
as input while the last layer, the output layer, outputs a prediction for the
dependent variable. The layers between the input and the output layers are
called hidden layers. An ANN with 2 or more hidden layers is called a deep
neural network (DNN).
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Figure 3.3: Three types of neurons are connected to form a computational
graph

This thesis focuses only on feed-forward networks and the terms ANN and
DNN are interpreted to refer exclusively feed-forward networks. DNNs are
often massive, consisting of hundreds or even thousands input neurons and
several layers. Figure 3.4 shows the 32-32-32 architecture for the classi�cation
task used in Chapter 4.

Let there be an ANN consisting of layers indexed k ∈ {1, . . . ,m}, each
with nk neurons. Let neuron ηij be the jth neuron of layer i and wi

jh the

weight of the connection from neuron ηij to neuron ηi+1
k . The weights of

neurons in layer i − 1 connecting to ηij can be written in vector form as
wi

j ∈ Rni−1+1, where the �rst element is the bias term.

Denote the output of neuron ηij by zij. Again using a padded vector to
allow for simple handling of the bias term the outputs of the neurons in layer
k can be written as a vector zk ∈ Rnk+1 with zk = (1, zk1 , . . . , z

k
nk+1).

The input of neuron ηij denoted by aij is now given by aij = (wi−1
j )Tzi−1

and the output zij = ϕi
j((w

i
j)

Tzi−1). Furthermore, the nk weight vectors of
layer k form a weight matrix Wk ∈ Rnk×nk+1+1 and the input aij is the jth
component of the vector WT

i−1z
i−1.

All of the neurons on a layer of an ANN typically share the same activation
function. Given a shared activation function ϕ : R → R shared by all neurons
in layer k, denote ϕk : Rn → Rn as the activation function applied to all of
the nk neurons of layer k.

Activation functions can take almost any form imaginable, but certain
properties are desirable. At least some non-linearity is required to allow the
network to approximate non-linear functions. Di�erentiability enables the
use of gradient-based optimization algorithms for learning and monotonicity
helps the algorithm converge faster.

A notable exception to the global di�erentiability requirement is the recti-
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Figure 3.4: One of the neural network architectures considered in the
classi�cation task. The alpha values of the lines showing the connections
were randomly sampled to prevent too many black lines from making the

image impossible to interpret.

35



Figure 3.5: Examples of activation functions

�ed linear unit (ReLU) function which is not di�erentiable at x = 0. However
ANNs using ReLU activation still converge under stochastic gradient descent
as long as the network is wide enough [35]. Historically the sigmoid function
was the most common activaction function but ReLU has largely taken its
place. Figure 3.5 shows a visual comparison of di�erent activation functions.

For a classi�cation task the �nal layer of the network should be the soft-
max function

ϕ(x) =
exi∑︁n
j=0 e

xj
for each i = 1, . . . , n. (3.3.1)

transforming the output to an n dimensional vector with components de-
noting the probability of the input being classi�ed as the nth class. For a
regression task the �nal activation function is typically linear ϕ(x) = x with
range (−∞,∞), however any function with the appropriate range for the
task would be acceptable.

De�nition 3.3.1. (ANN) An ANN is a model F where the functions fw ∈
F are of the form

fw(x) = f(x, w1
1 . . . w

1
n1
, w2

1 . . . , w
k
nk
)

= ϕk((W
k)Tϕk−1((W

k−1) . . . ϕ1((W
1)Tx))),

(3.3.2)

where ϕk is the activation function of layer k, w1
1, . . . , w

k
nk

the weight vectors,
W1, . . . ,Wk the weight matrices and x is the input of the network.
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The layer structure with their neuron counts and activation functions
de�nes a neural network model . The structure is often called an architecture.
There are obviously an in�nite number of ANN models one could choose for
any problem.

Training an ANN is the task of minimizing the error produced by it over
the training set. Given a loss function L, the total loss over a data set D can
be written as

L(D) =
∑︂

{xi,yi}∈D

L(fw(xi),yi). (3.3.3)

Finding the gradient of the loss function ∇L in the parameter space
allows for gradient based optimization algorithms to do the training. The
backpropagation algorithm [36], an e�cient algorithm for calculating the
gradient, arises from the chain rule and from realizing that all of the factors
of the chain rule product are needed at di�erent parts of the gradient. The
backpropagation algorithm for feed-forward networks was initially described
in [37] for the sigmoid activation function

ϕ(x) =
1

1 + e−x
(3.3.4)

and the mean squared error loss function, but generalizing to any di�eren-
tiable activation function and loss function expressable as a sum L(D) =∑︁

(x,y)∈D L(x,y) is easy.
Let there be an ANN with k layers. Denote the total error of the ANN

for a sample (x,y) ∈ D with E. With the chain rule the partial derivative
of E with respect to a weight wl

ij in layer l is

∂E

∂wl
ij

=
∂E

∂ali

∂ali
∂wl

ij

. (3.3.5)

The �rst term is called the error and denoted by δlj,

δlj =
∂E

∂alj
. (3.3.6)

The second term of Equation 3.3.5 is simply

∂akj
∂wk

ij

=
∂wkzk−1

∂wk
ij

= zk−1
i . (3.3.7)

Combining equations 3.3.5, 3.3.6 and 3.3.7 yields the formula

∂E

∂wl
ij

= δljz
k−1
i . (3.3.8)
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Let l be a hidden layer. Applying the chain rule to δl it can be written
as

δlj =

nl+1∑︂
p=1

∂E

∂al+1
p

∂al+1
p

∂alj
=

nl+1∑︂
p=1

δl+1
p

∂al+1
p

∂akj
. (3.3.9)

The input in terms of the activation function is al+1
p = wl+1

p zl = wl+1
p ϕl(al)

and its partial derivative

∂al+1
p

∂alj
= wl+1

jp ϕ′
l(a

l
j). (3.3.10)

Combining equations 3.3.9 and 3.3.10 yields

δlj =

nl+1∑︂
p=1

δl+1
p wl+1

jp ϕ′
l(a

l
j). (3.3.11)

Thus knowing the error δl+1 allows one to calculate the partial derivatives of
E with respect to the weights in layer l very easily. All that is left is dealing
with the output layer k. The error of neuron i of layer k is

δki =
∂L(zki , y)

∂akij
, (3.3.12)

which needs to be calculated for the loss function L.
Because the requirement for the loss function L was that the total loss for

a data set can be expressed as a sum of single sample losses, the di�erentials
of the total error for a data set can be calculated as the sum of single samples.
Having an algorithm for computing the gradient it is now possible to use the
gradient-based optimization algorithms presented in Chapter 2.5 to minimize
the error.
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4 Analysis

In this chapter I present my attempts at answering the research questions
posed in Chapter 1.2. The chapter is split into 3 parts; feature selection which
was similar for both the regression and the classi�cation tasks, classi�cation
models for the best response and regression models for the drug duration. A
summary of the results is provided in Chapter 5.

4.1 Preprocessing the data

The data set I received had no missing values. However some continuous
features such as weight and height had value 0 signifying either that the value
had been missing but automatically �lled or had not been copied correctly.
Features where a value of 0 signi�ed an error were identi�ed and handled
by replacing the value with the mean of the feature. No categorical features
with missing values were present but had there been any the missing value
would have been replaced by the mode.

From Figure 1.1 the encoded response variable was judged to have too
many classes. The number of classes was dropped from 10 to 5 using encoding
shown in Table A.3. The resulting distribution of encoded responses is shown
in Figure 4.1.

Simple feature engineering, constructing new features from existing data,
was performed. A feature best future response was created as the target
variable for the classi�cation task. For each patient and each treatment
line the best response found on a future date was set as the value. A new
category was added for cases where there were no more future visits. The
encoding can be found in Table A.4. A similar feature was created for the
best result the patient had reached in the past as this could help the models
see if the patient's medical trajectory is declining. The No information class
corresponds to either in the case of future responses the last visit or in the
case of past responses the �rst visit.

A feature for drug duration had to be created. A treatment line consisted
of periods during which a patient was given a combination of drugs. Each of
these periods were documented with start and end dates and drugs given to
the patient. The treatment lines changed over time with some drugs being
dropped or replaced with other drugs. The starting day of a drug was de�ned
as the start day of the �rst period in a treatment line where the drug was
given to the patient. Similarly the last day of a drug was de�ned as the
ending day of the last period of a treatment line where the drug was given
to the patient. The drug duration was then de�ned as the number of days
between the start and the end dates of a drug.
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Figure 4.1: Distribution of the new encoded responses

The given de�nition for drug duration is not perfect. Sometimes the
periods were not consecutive but had breaks between them, meaning that
the drug was not given to the patient continuously during the whole duration
of the drug. Other potential problems can also be imagined. Consider a drug
that causes very serious side e�ects but is also very e�ective. Such drug might
be dropped from a treatment line at an early stage due to unbearable side
e�ects but later used again if the patient does not respond to other drugs.
In such a case the drug duration would seem much longer than it was in
reality. Other de�nitions were also considered, such as summing the number
of days a drug was given to a patient. The other potential de�nitions had
also their own downsides. Summing the number of days the patient was on
the drug would have broken the connection between the day the observations
were recorded and the drug duration. Even with its imperfections the chosen
de�nition was judged to be the most suitable for this task.

The total number of di�erent drugs that patients could receive was 41.
As mentioned in Chapter 1.3 and shown in Figure 1.5 many drugs were given
to only a small number of patients and modeling their duration would have
been di�cult. Drugs with less than 100 patients were left out of the study.

The two questions this study attempts to answer are very di�erent and
the data the models should and should not have access to di�ers on both
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tasks. Hence both research questions used their own copies of the data set.
For both data sets features containing data that the practitioner could not

have been able to know at the time of the observations were left out. To pre-
vent any data leaks and to protect the integrity of the study feature selection
on features lacking proper documentation erred on the side of caution.

For both data sets 20% of the patients were set aside for a test set. For
the classi�cation task strati�ed sampling was used to build a test set with
the distribution of the dependent variable matching that of the full data set.
Patients were divided into classes based on the best response they reached
during any time of their treatment and from each class 20% were randomly
sampled into the test set.

The test set was kept completely separate from the training process.
When features were standardized the mean and the standard deviation of
the training set were used for standardizing the test set.

4.2 Feature selection

The data set consisted of 236 features, many of them either correlated with
other features or simply irrelevant. The work�ow described in this chapter
was applied independently to both the regression task and the classi�cation
task, resulting in 4 data sets for each of them. Table A.5 shows which data
set was used with which algorithm.

As the goal of the regression task was to predict the time a patient can
remain on a given drug, the drug the patient was receiving had to be in
the feature set. To achieve this when performing feature selection in the
regression task the drug feature was left out of the feature selection procedure
and added later to the set of features.

Neural networks, bagging trees and random forests are able to handle
large amounts of features and thus data sets with no feature selection were
prepared. Neural networks require categorical features to be one-hot encoded
while tree-based models could theoretically handle either numerical or one-
hot encoding. As mentioned in Chapter 3.1.1 one-hot encoding could in some
cases be counterproductive with tree-based models and thus a data set with
numeric encoding was also prepared.

Similarly two data sets with features selected using Algorithm 3.1.3 were
prepared; one with numeric encoding for categorical variables to be used only
with tree-based models and one with one-hot encoding that could be used
with any model. The algorithm was run with n = 2500 trees and the number
of features considered at each split was the square root of the total number of
features. The features were ranked by their importance and a number of the
highest ranked features were selected. For the numerically encoded data set
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the number of features selected at this stage was 30, for the one-hot encoded
version it was lowered to 25 as the drug feature was one-hot encoded and
added several new features. This approach lead to both data sets containing
approximately the same number of features.

The remaining features were still potentially correlated. To get a set of
independent features the following algorithm was applied:

Algorithm 4.2.1. (Independent feature �ltering) Let X1, . . . Xk be features
ranked in order of importance, t > 0 a threshold and K a set of independent
features.
(1) Initialize K = ∅.
(2) In the order of importance from the highest to the lowest, for each feature
Xj:
(3.1) Calculate the correlations c1, . . . , cn between Xj and each feature

XK0 , . . . , XKn ∈ K.
(3.2) If max(|c1|, . . . , |cn|) < t) add Xj to K, otherwise reject it.

The threshold t was set to t = 0.7 which is commonly interpreted as the
lower bound for strong correlation.

4.3 Models and hyperparameter optimization work�ow

For the sake of simplicity models for both tasks were quite similar as were
the hyperparameter sets considered.

For tree ensembles the number of trees was tested for the range [5, 250].
The maximum depth of the trees was tested with values 3, 6, 9 and with
unlimited depth. Random forests were applied to the data set with no feature
selection while bagging trees were tested with both the feature selected and
the raw data set. The number of features random forests sampled at each
split was the square root of the total features in the data set. The number of
samples in the bootstraps of the tree ensembles was the number of samples
in the training data set.

A manual search for the best neural network architecture was performed.
The architectures included 3 di�erent neuron con�gurations for the hidden
layers; 512-512, 32-32-32 and 256-256-64. All neuron con�gurations were
tested with both ReLU and sigmoid activation functions. For the regression
task the �nal layer had one neuron with a linear activation function while
in classi�cation the number of neurons corresponded to the classes of the
dependent variable and the activation function was softmax. The fold desig-
nated as the test set was set as the validation set so that the performance of
the network could be easily tracked over the learning process.
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Figure 4.2: Model selection work�ow

For the classi�cation task logistic regression was tested with both l1 and
l2 regularization with the value of λ being optimized. For the regression task
kernel ridge regression was tested with 2 kernels with 4 kernel-related values
each; polynomial with degrees 1, . . . , 4 and RBF with 4 di�erent values from
the range (0, 1] for σ. For each con�guration the value of λ was again varied.

The optimization work�ow was straightforward and simple. The training
sets were separated randomly into 5 subsets by randomly sampling patients
into a subset. For the classi�cation task strati�ed sampling was used to keep
the distribution of the dependent variable the same over each subset. For each
set of hyperparameters the performance of the resulting model was validated
with a 5-fold cross validation described in Algorithm 2.8.1 using previously
described subsets as the 5 folds. The best performing hyperparameters were
selected and used to build the �nal models. The work�ow is described in
Figure 4.2.

The hyperparameter optimization could have been more e�cient and cov-
ered a wider area had random search been used instead of the manual and
grid searches performed[38]. This was however deemed computationally too
expensive to �t within the scope of this work.

4.4 Predicting the best response

Unlike in the regression task including the drug the patient was receiving
was not a necessity. This meant that if feature selection did not choose the
drug the patient was on to be a good predictor at least the feature selected
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Figure 4.3: Optimizing the neural network architecture for the classi�cation
task. Networks on the left used all features while networks on the right

used the feature selected data set.

data set would contain duplicate entries as the di�ering column, the drug,
would be removed. Three options were considered; removing the drug from
the features and then removing duplicates, removing duplicates if the drug
the patient was on was not selected as a good predictor or simply ignoring
the issue and allowing the duplicates to remain.

Each option had its own problems. Removing the treatment the patient
was judged to lead to potentially losing useful information and was rejected.
Removing duplicates from the feature selected set would have lead to an im-
balance between the feature selected set and the raw set. Since the plan was
to use both of the data sets in this task this was judged to lead to potential
problems and left out. The simplest option of allowing the duplicates to
remain was chosen.

The best possible option would have been to one-hot encode the drug
feature and to then combine each visit to one entry such that features cor-
responding to drugs the patient was getting would be given a value of 1 and
ones corresponding to treatments not received by the patient a value of 0.
Sadly time restrictions did not permit this option.

Logistic regression was solved using a solver based on stochastic gradient
descent. The default maximum iteration count was 100 but it was increased
to 2500 in an attempt to ensure convergence. The stopping criteria tolerance
was the default value of 10−4. The model failed to converge with all values
of λ with both l1 and l2 regularization. All values of λ lead to very similar,
poor performance with both l1 and l2 regularization. This suggests that the
relationship between the log-odds of the classes and the independent variables
was not linear. The default model was chosen with l2 regularization and
λ = 1.

Neural networks shown in Figure 4.3 showed signi�cant di�erence in their
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Figure 4.4: Optimizing the hyperparameters of the bagging tree model for
the classi�cation task. The feature sets, categorical variable encoding,

maximum depth and number of trees were varied.

performance. The networks using all features began over�tting to the train-
ing set almost immediately. This could have been caused by the full feature
set containing genomic data and the network having learned very quickly to
identify individuals in the training set instead of patterns applicable to all
patients. With the feature selected versions the sigmoid networks performed
better than ReLU ones. All of the sigmoid networks reached similar levels in
performance but the 32-32-32 network was the slowest to over�t. Over�tting
slowly is a signi�cant upside as the early stopping criterion would otherwise
have to be very strict and risk random noise stopping the learning process
with potential gains remaining or with loose criterion risk fast over�tting and
a loss in performance.

Bagging trees shown in Figure 4.4 and random forests in Figure 4.5 per-
formed better with one-hot encoded data. Both bagging trees and random
forests performed poorly with maximum depth 3 and those models were left
out from the plots. Most of the models reached stable performance when
the number of trees was close to 100 with one-hot encoded bagging trees
using selected features and no maximum depth as the exception requiring
approximately 150 trees.

Bagging trees outperformed random forests and the best performance
was reached with feature selected data set using one-hot encoded features
and either a maximum depth of 9 or with unbound depth. A model using a
maximum depth of 9 is signi�cantly simpler than one with unbound depth
and as such was chosen as the better model.

The �nal accuracy of the models was analyzed on 6 measurements. The
cross entropy and the accuracy values for the full data set are provided.
However further analysis can be done by considering subsets of the test set.

45



Figure 4.5: Optimizing the hyperparameters of the random forest model for
the classi�cation task. The categorical variable encoding, maximum depth

and number of trees were varied.

As cross entropy is not easily interpretable only accuracy value is displayed
for the subsets.

Cases where there were no future visits had the future best response no
information. These cases are not interesting as there could be too many
reasons for the visits to stop varying from the death of the patient to the
visit day having been close to the end of the study. A test set of feasible cases
was created by removing cases where true value of the best future response
was no information.

Cases that were feasible and where there was a change in the response, i.e.
the current encoded response did not match the best future response, were
considered unstable. Cases that were feasible but not unstable were stable.

Finally seeing the prediction accuracy from the �rst visit was of interest.
For each patient found in the feasible set data from their �rst visit was
searched. These cases formed the �rst visit set.

Table A.6 shows the number of rows in each of the 5 test sets. Table 4.1
shows the performance of the models on each of the 6 metrics. The logistic
regression performed the worst in all tests. On the full test set cross entropy
the neural network outperformed the bagging trees. However in every other
test the bagging trees performed better and were considered in general the
superior model for this task.

From the performance table it can be seen that the bagging tree classi�er
identi�es stable patients who will see no change in the response to the treat-
ment with high accuracy but performs poorly with unstable patients. Even
though the model does not classify patients with unstable trajectories cor-
rectly, it is possible to attempt to predict a simpli�ed trajectory. New groups,
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Metric/Alg DNN Bagging trees Logistic regression
Cross entropy (full) 0.79 0.75 1.10
Accuracy (full) 0.68 0.69 0.65
Feasible 0.83 0.87 0.73
Unstable 0.22 0.29 0.19
Stable 0.94 0.98 0.82
First 0.80 0.83 0.72

Table 4.1: Classi�cation model performance. Best result is bolded.

Improvingpred Stablepred Worseningpred Total
Improving 166 28 23 217
Worsening 0 83 10 93
Total 166 111 33 310

Table 4.2: Direction of the predicted change vs real direction on the
unstable set

improving, stable and worsening, are de�ned by comparing the best future
response to the current response. Looking closer at the unstable group Table
4.2 shows that while only 29% were initially labeled correctly, in 62% of the
cases the model did predict an upcoming instability in the drug response, i.e.
the predicted future best response was not the same as the current response.
Of the cases where a better response was reached 76% were identi�ed while of
the cases where the patient took a turn for the worse only 5% were identi�ed
correctly with most of the patients on a downward trajectory being predicted
to remain stable. The total accuracy with simpli�ed labels on the unstable
set was 0.57.

A confusion matrix with simpli�ed classes of the full feasible set is pro-
vided in Table A.7. The accuracy with simpli�ed labels for the full feasible
set is 0.92.

While the initial model was not very accurate simplifying the model to
predict only stability or direction of change improved the accuracy signi�-
cantly.

4.5 Predicting the drug duration

Out of the ridge regression models the linear polynomial performed the best
with rmse value in the [340, 350] range. No signi�cant performance di�erence
was observed with di�erent values of λ. Of the non-linear versions degree 2
managed to get to rmse 400 with high values of λ, higher degrees had much
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Figure 4.6: Optimizing the hyperparameters of the bagging tree model for
the regression task. The feature sets, categorical variable encoding,

maximum depth and number of trees varied

worse performance with rmse values well above 800.
Bagging trees performance is shown in Figure 4.6. The model performed

the best when allowed to use all features in the data set. Both random
forests and bagging trees using maximum depth 3 performed poorly and
were left out of the plots. With bagging trees maximum depth of 6 lead to
best performance with higher depths generalizing poorly. Random forests in
Figure 4.7 on the other hand performed best with either maximum depth of
9 or with no maximum.

For both bagging trees and random forests one-hot encoded versions per-
formed in general worse than their numerically encoded counterparts. The
tree count required to stabilize the performance varied but in general no
large deviations were seen with values above 100. Out of all of the tree-based
models the bagging trees using numerical encoding for categorical variables,
all features and a maximum depth of 6 performed the best.

Similar to Chapter 4.4 neural networks using all features in the data set
began over�tting to the data set almost immediately as can be seen from
Figure 4.8. Feature selection lead to better performance and the 32−32−32
networks seem to have learned the actual underlying patterns and not just
over�t into the training set as the rmse can be seen decreasing for some time.

The ReLU network begins over�tting earlier but performs signi�cantly
better than the sigmoid network. The 32− 32− 32 architecture with ReLU
activation and selected features is chosen as the best performing model, but
early stopping using a validation set is clearly necessary.

The best performing models were trained on the full data. 20% of the
patients in the training set were sampled as the validation set for the neural
network and the tolerance for iterations with no improvement set to 25.
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Figure 4.7: Optimizing the hyperparameters of the random forest model for
the regression task. The categorical variable encoding, maximum depth and

number of trees were varied.

Figure 4.8: Optimizing the neural network architecture for the regression
task. Networks on the left used all features while networks on the right

used the feature selected data set.

Algorithm mae rmse R2

DNN 234.52 313.54 0.50
Bagging trees 236.76 310.89 0.51
Linear Ridge 249.30 330.31 0.45
Poly Ridge 249.30 330.31 0.45
RBF Ridge 339.52 452.05 −0.03

Table 4.3: Final regression models with the best value bolded
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Figure 4.9: DNN predicting drug duration on the test set

The performance comparison can be seen in Table 4.3. Bagging trees
and neural networks performed the best, both reaching R2 ≥ 0.5. While the
results are not as good as one would have initially hoped, they can be seen
as somewhat promising and deserve a closer look.

Figures 4.9 and 4.10 show the predicted drug duration with the neural net-
work and bagging trees. To gain a better understanding of the performance
points were color coded to show the day the patient visited the facilities,
counting from the �rst day the patient received the drug. It seems like in
both cases the 3 colored groups form bands. The red markers corresponding
to visits dates ≤ 300 have their predicted drug durations largerly ≤ 500.

While the initial R2 values seemed promising it seems like the models do
perform poorly. The model can be changed to approximate the number of
days remaining on the current treatment by subtracting the visit day from the
predicted drug duration. This is not perfectly accurate due to the problems
in de�ning drug duration discussed earlier. It is possible to see that in Figure
4.9 there are some green markers with true values < 300 which would mean
a negative duration. In reality this means that the drug was started later
in the treatment line. This same issue exists when subtracting the visit day
from the true drug duration. Thus the change to approximated remaining
time on a drug results in a plot that, while not a perfect representation of
time remaining on the drug, is internally consistent.

50



Figure 4.10: Bagging trees predicting drug duration on the test set

The performed on the predicted drug duration by bagging trees drug
yields Figure 4.11. As both DNN and bagging tree models showed the same
behavior when predicting performing the same analysis on DNN is left out.

The plot shows that the predictions are indeed inaccurate and the model
predicts time remaining on the drug to be mostly ≤ 500 regardless of the
visit day or the true approximated remaining time. The R2 value is barely
above 0 and the model works poorly. In conclusion even the best model built
for Question 1.2.2 has poor accuracy and negative results are reported.
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Figure 4.11: Bagging tree predictions approximating time left on a drug
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5 Discussion

5.1 Machine learning in personalized medicine

Machine learning has found several applications in the medical �eld where it
can compete human practitioners in several areas. Models have been reported
to outperform human experts on tasks such as cancer screening, cardiac
disease diagnosis and early diagnosis of Alzheimer's disease [39]. However
areas like diagnosing neurodevelopmental disorders have seen less progress
[40] and o�er an interesting area for research.

Machine learning models can support the human practitioners in tasks
that are di�cult for humans. In areas like the aforementioned medical image
recognition machine learning models can learn to detect patterns from details
too small or too complex for a human to detect. The ability to process data
on scales infeasible for humans allows models to �nd new patterns that help
diagnose and treat various diseases.

Machine learning in personalized medicine can serve many goals. Re-
purposing old drugs can save resources in drug development, allowing for the
resources to be directed at other yet unsolved problems. Many cancer drugs
are currently used in all applicable cases. Being able to predict the response
of a patient to a given drug bene�ts both the patient and the society. Cancer
often requires quick responses and not wasting any time on drugs that either
will not work or that will cause unbearable side e�ects helps the survival of
the patient. Cancer drugs are often extremely expensive and saving money
by not wasting drugs on patients where there will be no positive response is
a massive bene�t for the society. Predicting both the adverse e�ects and the
e�cacy of drugs could help tailor treatment plans matching patients' wishes
on balancing expected survival and quality of life. Machine learning mod-
els analyzing genetic data gives rise to potentially tailoring treatments for
individual patients based on their genotype. Accurately predicting risks of
having various diseases from a genotype can personalize screening programs.
This would help focus the limited resources more e�ciently by not screen-
ing low-risk patients too often and simultaneously creating more e�cient
programs for high-risk patients leading to early intervention and hopefully
better outcomes.

One of the bottlenecks for progress in the �eld is the limited amount of
data. Many data sets are private and not freely available to researchers.
Many non-pro�t organizations like the Multiple Myeloma Research Founda-
tion are vital in the data gathering process.

A challenge with diseases with a slow onset and progression is that the
data collection portion can last prohibitively long. The CoMMpass study has
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been tracking patients for over 8 years and is still going on. This challenge is
obvious with models attempting to diagnose diseases early and to provide the
patient with an early prognosis as they require data sets that are extremely
di�cult to gather. This can in part explain why most of the progress is found
in �elds like medical image detection, the necessary data sets are much easier
to gather.

Choosing whether to participate in research is not an easy choice for the
patient either. Most likely there is no bene�t for the patient as the improved
treatments, drugs and techniques will become available to future patients.
Participating in data gathering like this is an act of kindness and charity
for future generations. While one might say that there is no downside in
participating in studies and every patient should make their data available,
everyone has a right to privacy. Potential downsides also exist. While re-
searchers handle the data with care and remove identifying information, as
more and more data of a patient is gathered identifying them from the data
becomes a theoretical possibility. This is especially true with genetic in-
formation. Additional medical tests that have no impact on the treatment
might also be performed on the patient, causing discomfort and taking time
away from the patients potentially limited remaining lifetime.

5.2 Summary of the results

This thesis seeked to answer two research questions posed in Chapter 1.2.
Question 1.2.1 asked if it was possible to build a model predicting the best
response a patient would reach during their treatment to understand the
medical trajectory of the patient. Question 1.2.2 asked if it was possible
to predict how long a patient can stay on a given drug to potentially help
practitioners choose personalized treatment options for patients.

Answering Question 1.2.1 is complicated. While a model predicting the
best response a patient will reach in the future was built, the accuracy on
patients with change from their current response was quite low. As the latter
part of Chapter 4.4 shows when the categories were simpli�ed into 3 possible
outcomes, improving, stable and worsening when comparing to the current
response, the accuracy improved to a level that can be seen as somewhat
promising.

No good model for Question 1.2.2 was found. The accuracy of even the
best model was poor. Chapter 5.3 discusses possible improvements to the
work�ow to potentially build a better model.
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5.3 Further work

This work was limited in scope but it could be expanded. While the results
of the classi�cation task were promising space for improvement remains. No
good model was found for the regression task, but improvements on the
methodology could lead to �nding a model giving accurate predictions.

Only one feature set per task was tested but varying the number of fea-
tures selected could have lead to better performing models. Only one feature
selection method was tested but other methods could have selected better
features. Other related approaches like principal component analysis could
have helped squeeze the information contained in the data set into a lower-
dimensional space, leading to more information contained in each selected
feature. The hyperparameter optimization scheme was limited and with more
computing power could be improved.

Only a limited number of models were tested. With neural networks
only a handful of architectures from the in�nite number of possibilities were
considered. Other activation functions could have been tested. The only
regularization applied to neural networks was early stopping but other regu-
larization approaches could have helped the network learn for a longer time
without over�tting hopefully leading to improved performance. Other mod-
els such as gradient boosting and support vector machines could have been
tested. Gaining a better understanding of the data set and the disease could
help in feature engineering new features from the already existing data, lead-
ing to possible improvements in performance.

In the classi�cation task the classes contained an unbalanced number of
patients. Better balanced data set could have lead to improved performance.
A better balance could have been achieved by undersampling the largest
classes or by using algorithms like SMOTE [41] to create synthetic samples
for the under-represented classes. The duplicate entry issue mentioned in 4.4
could be solved by combining each visit to one row leading to more accurately
interpretable results.

The simpli�ed classi�cation model showed potential and redesigning the
experiment with more modest goals with insight gained here could lead to a
model accurate enough for practical use. Uncertainty with time spans could
be an issue. A patient knowing that their medical trajectory will change
in the future would bene�t from knowing more accurately when this will
happen. Thus a possible modi�cation would be to limit the time span and
to build separate models predicting changes in trajectory at as an example
1 and 3 years into the future.

Some research based on the CoMMpass data set has already been pub-
lished. Some of the research has been focusing on the genomic data on
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questions like choosing the best drug based on genetic expressions [42] and
studying the link between chromosomal translocations, MM diagnosis and
prognosis[43]. The CoMMpass study is still continuing with the data set
growing every year. Hopefully in the future the data set can help answer
several open questions related to MM. Open questions already mentioned
in this thesis include estimating the treatment tolerance of patients and un-
derstanding the causes of the heterogeneity in treatment results. As MM
currently has no permanent treatment and will in the end most likely lead
to the death of the patient research focusing on improving the quality of the
remaining lifetime could be of interest.
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Appendix

A Tables

Kernel name k(x,y) Dimensions
Linear xTy n

Polynomial (xTy + c)d
(︁
n+d
d

)︁
Gaussian exp(−∥x−y∥2

2σ2 ) ∞
Laplacian exp(−∥x−y∥

σ
) ∞

Table A.1: Kernels
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Household income (10k EUR) Owns Stocks
10 False
14 False
19 False
24 False
28 False
33 False
38 False
43 True
47 False
52 True
57 True
62 True
66 True
71 True
76 False
81 True
85 True
90 True
95 True
100 True

Table A.2: An imaginary data set for household income and stock
ownership

Encoding Original explanation New encoding New explanation
Y0 Complete remission Y0 Remission
Y1 Near complete remission Y0 Remission
Y2 Very good partial response Y1 Very good partial response
Y3 Partial response Y2 Partial response
Y4 Stable disease Y3 No response
Y5 Progressive disease Y3 No response
Y6 Lack of response Y4 Poor outcome
Y7 Adverse event or co-morbidity Y4 Poor outcome
Y8 Disease progression or relapse Y4 Poor outcome
Y9 Completed regimen Y4 Poor outcome

Table A.3: Old and new encodings of the treatment response
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Encoded value Explanation
Y0 Remission
Y1 Very good partial response
Y2 Partial response
Y3 No response
Y4 Poor outcome
Y5 No information

Table A.4: Encoding of the best future/past response

Algorithm All, numeric All, one-hot Selected, numeric Selected, one-hot
Neural networks ✓ ✓
Random forest ✓ ✓
Bagging trees ✓ ✓ ✓ ✓
Logistic regression ✓
Kernel ridge ✓

Table A.5: Data sets, indicated by feature sets and encoding of categorical
variables, and algorithms applied to them

Full Feasible Unstable Stable First visit
2726 2044 310 1734 428

Table A.6: Number of cases in each test set

Improvingpred Stablepred Worseningpred Total
Improving 166 28 23 217
Stable 15 1697 22 1734
Worsening 0 83 10 93
Total 181 1808 55 2044

Table A.7: Direction of the predicted change vs real direction on the
feasible set
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