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ABSTRACT 
Amazonia, the largest and most diverse tropical forest in the world, continues facing 
pressures and losing forest cover while vast areas remain biologically poorly known. 
Knowing where a species occurs, and the distribution of biologically unique areas is 
key in conservation and natural resource management. Collecting biological 
information is a basic requirement for determining such biologically important areas 
but it is time-consuming and expensive, especially in tropical and remote areas such 
as Peruvian Amazonia. Many forest institutions and forestry companies have already 
collected systematic tree data in Peruvian Amazonia, covering large and even remote 
areas. Also, remote sensing provides continuous information that is useful for 
biodiversity assessments over large extents. Therefore, combining existing field data 
on trees with available remote sensing and environmental layers would allow 
predicting spatial biodiversity patterns in large areas, even where field data is still 
missing. Here, I use forest inventory and census data from the Peruvian Amazon 
together with Landsat-derived predictors (such as optical bands from Landsat 
TM/ETM+ and vegetation indices) and other environmental layers (e.g., elevation) to 
model the distribution of trees at local extents (2,500–6,000 km2) and to predict 
floristic patterns of trees at broader extents (40,000–800,000 km2). At local extents, 
where relevant environmental layers are often not available, I found that the average 
reflectance values of Landsat imagery and elevation are important variables for 
predicting the distribution of tree species. At broader extents, floristic patterns of trees 
were mainly correlated with the reflectance values derived from Landsat imagery but 
also with climate layers. This enabled producing a predictive map of the main floristic 
gradients of trees throughout Peruvian Amazonia. Since taxonomic inaccuracies might 
exist in forestry data, it is important to assess data consistency when using it for 
ecological studies. Here, I found that using the entire tree inventory data set and 
analyzing it at the genus level yielded more congruent floristic patterns than analyses 
using only those tree stems that were identified to the species level. The combination 
of forest inventory and census data with available remote sensing and environmental 
layers offers an efficient way of mapping continuous biodiversity patterns, such as tree 
species distributions and tree community composition, in still poorly known regions 
such as Peruvian Amazonia. Mapping tree species distributions and floristic patterns 
of trees at different geographical extents is useful for (i) characterizing biodiversity 
patterns and forest resources in areas where field work is missing, (ii) identifying 
suitable areas for forest management and conservation purposes and hence for (iii) 
delivering practical information for decision-makers.  
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TIIVISTELMÄ 
Amazonia on maailman suurin ja monimuotoisin trooppinen metsäalue. Metsiä 
halutaan hyväksikäyttää mutta samalla niitä myös tuhotaan ilman että niitä olisi 
biologisesti juurikaan tutkittu. Tietämys lajien esiintymisalueista ja lajistollisesti 
erityisistä alueista on perusedellytys sekä suojelun että luonnonvarojen käytön 
suunnittelun onnistumiselle. Tämän tietämyksen kerääminen on kuitenkin kallista ja 
työlästä erityisesti Perun Amazonian kaltaisilla syrjäisillä alueilla. Tästä huolimatta 
useat tutkimuslaitokset ja metsäyritykset ovat toteuttaneet puulajistoinventointeja 
alueen eri osissa. Arvokasta informaatiota metsien vaihtelusta saadaan myös tasaisen 
kattavista kaukokartoitusaineistoista. Yhdistämällä pistemäistä maastoinventointi-
tietoa kaukokartoitusaineistoihin ja muihin kattaviin ympäristötietoihin voidaan 
arvioida biodiversiteetin tilaa sellaisillakin alueilla, joilta ei ole saatavissa suoria 
maastohavaintoja. Hyödynnän työssäni metsäinventointeja ja Landsat-satelliitti-
kuvia (esimerkiksi Landsat TM/ETM+ -kuvien optisia kanavia ja kasvillisuus-
indeksejä) puulajien levinneisyyksien mallintamiseen paikallisesti (2500–6000 km2) 
ja alueellisesti Perun Amazoniassa. Landsat-kuvien keskimääräiset heijastusarvot ja 
alueen korkeus merenpinnasta osoittautuivat paikallisesti hyvin toimiviksi 
ennustemuuttujiksi. Laajemmassa alueellisessa tarkasteluissa (40 000–800 000 km2) 
puulajiston vaihtelu korreloi myös muihin ympäristömuuttujiin, esimerkiksi 
ilmastoon ja pinnanmuotoihin. Esitän työssäni koko Perun Amazonian kattavia 
puiden levinneisyyksien ennustemalleja. Metsäinventointiaineistoihin voi kuitenkin 
sisältyä lajien tunnistamisen epätarkkuutta ja sen merkitystä tulee ekologisten 
tutkimusten yhteydessä kriittisesti arvioida. Havaitsin, että ennustemallien laatua 
voidaan parantaa muuntamalla lajitasoista inventointitietoa sukutasoiseksi 
informaatioksi. Metsäinventointitietojen, kaukokartoituksen ja ympäristötietojen 
yhteiskäyttö tarjoaa tutkimukseni valossa tehokkaan keinon luonnon moni-
muotoisuuden kartoittamiseen Perun Amazonian kaltaisilla heikosti tunnetuilla 
seuduilla. Kun puustokartoituksia tehdään eri mittakaavatasoilla, ne tukevat (i) 
heikosti tunnettujen metsien monimuotoisuuden ja resurssien arviointia, (ii) 
luonnonvarojen käyttöön tai suojeluun soveltuvien alueiden määrittämistä ja (iii) 
vahvistavat käytännön päätöksenteossa tarvittavaa tietoperustaa. 
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1 Introduction 

Amazonia, the largest and most diverse tropical forest in the world, continues facing 
several threats such as deforestation, habitat loss and fragmentation, forest 
degradation, climate change and forest fires. Amazonia experienced unprecedented 
forest fires in 2019 which led to hundreds of thousands of hectares of forest lost, 
mainly related to the expansion of the agricultural frontier and livestock farming. 
Recent reports have shown that, despite the current COVID-19 pandemic, forest fires 
are still on the rise in the region, especially in Brazilian Amazonia. At least 17% of 
Amazonia has already been deforested, while vast areas still remain botanically 
poorly known (Hopkins 2007; Schulman et al. 2007; Sousa-Baena et al. 2014). In 
the Peruvian Amazon the situation is slightly different. Even though deforestation 
rates have been slowly decreasing in the last couple of years and forest fires are not 
increasing when compared to Brazil, the annual average deforested area is still 
around 150,000 ha. The main drivers of deforestation in Peruvian Amazonia 
continue being small-scale agriculture and illegal gold mining (Zambrano et al. 
2010; “MAAP #122” 2020; “MAAP #124” 2020). 

Knowing where a species occurs, and the distribution of biologically unique 
areas, is key in conservation, natural resource management and land use planning, 
especially in a context where forest cover is continuously lost, and species go extinct 
on a yearly basis. Collecting biological information and characterizing forest 
resources are necessary steps for determining such biologically important areas, but 
they are time-consuming and expensive, especially in tropical and remote areas such 
as Amazonia (Köhl et al. 2006). 

Fortunately, in Peruvian Amazonia there have been recent efforts, both by 
national forest institutions and forestry companies, in collecting systematic forest 
inventory and census data mainly in order to characterize the economic potential of 
their forests. Such field data covers large areas and is available even from remote 
areas, which makes them a potential source of information for ecological studies 
(Steege 1998; ter Steege et al. 2006). Such data often get used only for assessing the 
timber potential and once this has been fulfilled, the data remains stored within the 
owner’s organization, limiting the possibilities of using it for further scientific 
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studies. Here, I accessed such forestry data and explore its potential for ecological 
studies in Peruvian Amazonia. 

To determine important areas for forest management and conservation purposes, 
not only field data is required but also spatially continuous predictions (maps) of 
important biodiversity patterns such as species distributions and floristic patterns. A 
powerful tool to derive such predictive maps over extensive areas is to combine the 
existing tree field data with available satellite images and environmental layers. 
Satellite images provide spatially and temporally continuous spectral information 
that have proved to be useful for predicting different aspects of biological diversity 
over extensive areas (Rocchini 2007; Saatchi et al. 2008; Saatchi et al. 2009; 
Rocchini et al. 2010; Baldeck & Asner 2013; Baldeck et al. 2014; van Ewijk et al. 
2014; Turner 2014; He et al. 2015; Asner, Martin, Knapp, et al. 2017; Asner, Martin, 
Tupayachi, et al. 2017; Rocchini et al. 2018; Van doninck & Tuomisto 2018; 
Tuomisto et al. 2019). Similarly, evidence suggests that both edaphic and climatic 
variables are good predictors of tree species distributions and community 
composition in Amazonia (ter Steege et al. 2006; Toledo et al. 2011; Baldeck et al. 
2013; Baldeck et al. 2016). Large number of environmental data layers, including 
climate (Fick & Hijmans 2017; Karger et al. 2017) and soils (Hengl et al. 2014; 
Hengl et al. 2017), are currently freely available, even though they can still contain 
accuracy problems (Soria-Auza et al. 2010; Moulatlet et al. 2017).  

The combination of available forestry field data with freely available satellite 
imagery and environmental layers offers a window of opportunities to assess whether 
it is possible to use such layers to model the distribution of tree species at local 
extents and also to predict floristic patterns of trees at broader extents such as across 
the Peruvian Amazon. Having continuous spatial predictions of important tree 
species distributions and floristic patterns of trees over large areas would not only 
enable reducing research gaps and having predictions over areas where field data is 
not yet available but also would contribute in improving natural resources 
management and prioritizing conservation schemes in Peruvian Amazonia.  

1.1 Usefulness of remote sensing in biodiversity 
studies 

It is often the case that in tropical areas, such as in Amazonia, environmental data 
layers from ground measurements are either not available at all or suffer from course 
resolution and accuracy problems (Soria-Auza et al. 2010; Moulatlet et al. 2017). 
Remote sensing observations, such as those from Landsat satellites, provide 
spectrally diverse, spatially explicit and temporally frequent information that can be 
used for assessing forest biological and structural state (Rocchini et al. 2010; Turner 
2014; He et al. 2015; Rocchini et al. 2016; Rocchini et al. 2018). Furthermore, 
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remotely sensed data have the great advantage compared to other available 
environmental layers, often based on interpolation techniques of sparse data, that 
they provide direct measurements and consistent data over vast areas. 

Different kinds of surfaces such as soil, vegetation or even different species of 
plants, reflect the electromagnetic radiation in different ways (Jones & Vaughan 
2010; Cavender-Bares et al. 2020). For instance, vegetation reflects a major 
proportion of incident radiation between the near-infrared and red spectrum (Jones 
& Vaughan 2010; Cavender-Bares et al. 2020) whereas other surfaces such as water 
bodies absorb most of the radiation in the same spectra. Even further, different plant 
species and vegetation types also reflect radiation differently (Cavender-Bares et al. 
2020). For instance, grasses, such as bamboo, reflect consistently more radiation in 
the near-infrared spectrum than trees (Carvalho et al. 2013). These reflectance values 
captured by satellite images have been useful for predicting different aspects of 
biological diversity (Rocchini 2007; Rocchini 2007; Saatchi et al. 2008; Saatchi et 
al. 2009; Rocchini et al. 2010; Baldeck & Asner 2013; Baldeck et al. 2014; van Ewijk 
et al. 2014; Turner 2014; He et al. 2015; Asner, Martin, Knapp, et al. 2017; Asner, 
Martin, Tupayachi, et al. 2017; Rocchini et al. 2018; Van doninck & Tuomisto 2018; 
Tuomisto et al. 2019). For instance, remote sensing has been used for predicting local 
species richness (Rocchini et al. 2005; Rocchini et al. 2007; Rocchini 2007; Rocchini 
et al. 2010; Schmidtlein & Fassnacht 2017), variation in species composition 
(Tuomisto, Poulsen, et al. 2003; Thessler et al. 2005; He et al. 2009; Rocchini et al. 
2009; Baldeck & Asner 2013; Baldeck et al. 2014; Leitão et al. 2015; Rocchini et al. 
2018; Tuomisto et al. 2019; Maximiano et al. 2020), functional diversity (Asner et 
al. 2009; Asner & Martin 2009; Féret & Asner 2014; Asner et al. 2014; Asner et al. 
2015; Asner, Martin, Knapp, et al. 2017; Asner, Martin, Tupayachi, et al. 2017) and 
spectral diversity (Féret & Asner 2014; Laliberté et al. 2020) in different regions. 

Many of the uses of remote sensing in biodiversity studies build upon the spectral 
variability hypothesis (SVH) and the spectral decay model. The SVH states that the 
variability in the spectral signal from remote sensing data is correlated with 
environmental heterogeneity and could be used as a proxy for species diversity 
(Palmer et al. 2002). Several studies have supported this hypothesis (Rocchini et al. 
2007; Rocchini 2007; Nagendra et al. 2010) even though it is sensitive to the 
characteristics of the remote sensing product (Rocchini et al. 2007; Nagendra & 
Rocchini 2008; Rocchini et al. 2016) and varies across spatial scales (Schmidtlein & 
Fassnacht 2017). On the other hand, the spectral decay model states that a pair of 
locations that are spectrally dissimilar are expected to share less species (be 
floristically more dissimilar), than a pair of locations that are spectrally similar. If 
environmental properties affect both canopy reflectance and species composition, 
then differences in reflectance can be used as indicators of compositional 
dissimilarities. This idea has been also been supported by different studies 
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(Tuomisto, Poulsen, et al. 2003; Rocchini et al. 2005; Rocchini & Cade 2008; 
Rocchini et al. 2009). 

There are several key considerations when using remote sensing in biodiversity 
studies. If the spatial resolution (the dimension of the minimum unit) is too high with 
respect of the target object (e.g: canopy trees), the spectral variability is expected to 
increase and lead to noise (Nagendra 2001; Nagendra & Rocchini 2008; Rocchini et 
al. 2010). Therefore, the spatial resolution of the satellite image should match the 
size of the target object. In addition to this, the higher the spectral resolution (the 
number of bands and the range of electromagnetic radiation at which they acquire 
information), the higher the power to discriminate among objects that reflect the 
radiation in a different manner. Therefore, more spectral bands would provide more 
accurate predictions (Asner & Martin 2009; Wang et al. 2018). Another important 
factor is the geographic extent, since a larger window or area will inevitably have 
higher spectral and environmental heterogeneity and, hence, is expected to have 
higher species richness (Rocchini et al. 2004). Some authors have found higher 
explanatory power of spectral variation when increasing the spatial extent (Rocchini 
et al. 2007), whereas others found higher correlations at smaller extents (Schmidtlein 
& Fassnacht 2017). Here, I explore the potential of Landsat imagery, which obtains 
reflectance values for 6 different sections within the optical portion of the 
electromagnetic spectrum at 30-m spatial resolution, across different geographic 
extents in Peruvian Amazonia. 

In Amazonian forests, reflectance values derived from Landsat satellite images 
have been useful for identifying land cover classes and vegetation types (Tuomisto 
et al. 1995; MINAM 2016b; MINAM 2019) and for predicting soil patterns (Sirén 
et al. 2013; Van doninck & Tuomisto 2018). It has also been particularly observed 
that differences in canopy reflectance can predict spatial patterns of species 
composition of understory plants (Tuomisto, Poulsen, et al. 2003; Tuomisto, 
Ruokolainen, et al. 2003; Salovaara et al. 2005; Higgins et al. 2011; Higgins et al. 
2012; Muro et al. 2016; Tuomisto et al. 2019) and are also useful complementary 
predictors for modeling the distribution of tree species and of understory plants at 
broad extents (Prates-Clark et al. 2008; Saatchi et al. 2008; Cord et al. 2013; Van 
doninck, Jones, et al. 2020). Elevation, another remote sensing variable, has also 
been related to geological substrates and soil nutrients in Amazonia (Vormisto et al. 
2004; Costa et al. 2005; Higgins et al. 2011) and other topographic variables derived 
from elevation, such as the vertical height above local drainage (HAND), have also 
been found to structure tree species distributions (Fortunel et al. 2018; Zuleta et al. 
2018). 

It still remains to be assessed whether canopy reflectance, derived from Landsat 
imagery, can be used to model the distribution of tree species at smaller geographic 
extents (I and II) and whether the reflectance values are also related to the floristic 
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composition of trees (III and IV) at broader extents such as across Peruvian 
Amazonia. The bulk of existing knowledge suggests that both reflectance values 
derived from Landsat imagery and elevation are ecologically informative remote 
sensing layers (Bradley et al. 2012; He et al. 2015; Leitão & Santos 2019) which can 
be potentially used also for modelling the distribution of canopy trees and predicting 
floristic patterns of trees at different geographic extents in Peruvian Amazonia. 

1.2 Using forest inventories and forest census data 
for ecological studies 

In Peruvian Amazonia, forests are divided into permanent production forests, local 
forests, reserve forests, protection forests, forests on indigenous and native 
communities’ lands, and private forests according to their land-use potential (“Ley 
Forestal y de Fauna Silvestre”). The Peruvian National Forest and Wildlife Service 
(SERFOR) promotes the sustainable management of the Peruvian forest resources 
and aims at characterizing such potential. Two main national forest inventory 
programs provide systematic and quantitative information on forest resources, such 
as timber. One of these programs takes place within permanent production forests, 
which can be granted as forest concessions for timber or non-timber production. The 
other inventory program aims at characterizing timber, non-timber, wildlife and 
carbon stocks in all forest types throughout the country. Both the permanent 
production forest inventory (“Inventario Forestal en Bosques de Producción 
Permanente”, IBPP) and the national forest and wildlife inventory (“Inventario 
Nacional Forestal y de Fauna Silvestre”, INFFS) offer a great potential not only for 
assessing forest resources but also for ecological studies. 

Within permanent production forests, concessions can be granted for timber 
production. The forest concession is often divided into annual management areas. 
Forest concessionaries are required to make a forest census at each annual 
management area before initiating any logging or harvesting activities. In those 
forest censuses, all commercial trees above 30 cm of diameter are tallied within the 
management area, and their local name, height, diameter and coordinates are 
recorded. Such forestry census data can cover large areas with high-resolution 
occurrence data of trees, which offer a unique opportunity to train species 
distribution models (SDM) at small extents in combination with Landsat imagery 
and other environmental layers of higher spatial resolution. 

Both forest inventory and census data are often used for assessing the forest 
timber potential and once such objectives are fulfilled, the data remain stored within 
the owner´s organization. Unfortunately, this limits the possibilities of exploring the 
use of such valuable forest field data for other relevant ecological studies. Sharing 
those datasets and making them accessible is a key step in increasing research and 
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improving the forest sector. Here, I requested access to the forest inventory data from 
SERFOR and to forest census data from Consolidado Otorongo forest concession in 
Southern Peruvian Amazonia. Fortunately, both institutions agreed on sharing such 
valuable field data for scientific purposes. 

A clear advantage of forest inventory and census data is that they can cover 
extensive areas and be available for remote areas. This indeed makes them a potential 
source of information for ecological studies (Steege 1998; ter Steege et al. 2006). 
Nevertheless, there are also associated disadvantages that are important to identify, 
acknowledge and if possible, address. One of these is taxonomical, since forest 
census data typically focus on large trees and do not document species identifications 
with herbarium vouchers. Even though some forest inventories might document 
species identifications with herbarium vouchers, a lot of taxa remain unidentified 
due to the large number of taxa, morphological similarities and practical difficulties 
in reaching tree crowns (Köhl et al. 2006) in tropical areas like Peruvian Amazonia. 
Another challenge of such forest inventory and census data is that they might rely on 
vernacular names, which are not necessarily consistent with scientific tree species 
(Guitet et al. 2014) particularly in species-rich tropical forests. Using this data 
requires hence identifying, acknowledging and addressing possible taxonomic issues 
when analyzing and drawing conclusions for ecological studies.  

Even though there are intrinsic taxonomic issues associated with forest 
inventory and census data, they still offer a great research potential. In this 
dissertation I explore such potential for characterizing biological patterns in 
a still poorly known region as Peruvian Amazonia. I use the forest census 
data together with remote sensing data to explore whether it is possible to 
model the distribution of tree taxa at local extents (I and II). I further explore 
the forest inventory data to investigate whether it is possible to predict 
floristic patterns of trees using remote sensing and environmental layers (III 
and IV). 

1.3 Species distribution models of trees at local 
extents 

Species distribution models (SDM) characterize the environmental conditions that 
are suitable for a species and then identify where those suitable environments are 
distributed in the geographical space (Guisan & Zimmermann 2000; Guisan & 
Thuiller 2005; Franklin & Miller 2010; Peterson et al. 2011; Guisan et al. 2017). 
When describing the species niche, SDMs have also been referred to as ecological 
niche models (ENM) and when describing the habitat suitability, they have been 
referred to as habitat suitability models (HSM) (Soberón & Nakamura 2009; 
Peterson et al. 2011; Peterson & Soberón 2012; Guisan et al. 2017). SDMs are used 
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to predict the occurrence of species in areas where field data are unavailable and to 
deliver predictive maps of species‘ distribution (Franklin & Miller 2010). This has 
many practical applications (Franklin & Miller 2010) such as reserve design and 
conservation planning (Rodríguez‐Soto et al. 2011), natural resources management 
(I), risks and impacts of invasive species (Barbet-Massin et al. 2018; Chapman et al. 
2019) and the effects of climate change on the distribution of species (Raghavan et 
al. 2019). 

Different environmental factors, both abiotic and biotic, shape the distribution of 
species (Franklin & Miller 2010; Peterson et al. 2011). In fact, the term niche has 
been defined as the multidimensional environmental space that contains suitable 
conditions for a species to persist (Hutchinson 1957), and such conditions include 
both abiotic and biotic factors or also referred as non-linked and linked, or indirect 
and direct factors (Hutchinson 1978; Austin & Smith 1989; Soberón & Nakamura 
2009; Peterson et al. 2011). These factors determining the distribution of a species 
are scale-dependent (Willis & Whittaker 2002; Pearson & Dawson 2003). Biotic 
factors, such as species interactions, often act at finer extents whereas abiotic factors, 
such as climate, often act at broader extents as a first environmental filter (Willis & 
Whittaker 2002). Accessibility or barriers of movement are also another limiting 
factor of a species’ distribution (Soberón & Nakamura 2009; Barve et al. 2011). 

In the past decade there has been several advances in summarizing and clarifying 
the terminology of SDMs (Guisan & Zimmermann 2000; Soberón & Nakamura 
2009; Franklin & Miller 2010; Peterson et al. 2011; Peterson & Soberón 2012; 
Guisan et al. 2017), increasing the availability of both open source species 
occurrences and environmental layers, the development of modelling techniques 
(Barbosa & Schneck 2015) as well as of standards and guidelines for delivering 
(Araújo et al. 2019), reproducing (Feng et al. 2019) and reporting SDMs (Zurell et 
al.). Typically, environmental layers are often freely available at coarse spatial 
resolution, such as climatic (Hijmans et al. 2005; Fick & Hijmans 2017; Karger et 
al. 2017) and soil variables (Hengl et al. 2014; Hengl et al. 2017), whereas finer-
scale environmental layers are still lacking. Therefore, most of the modelling 
exercises have been done at global to regional extents (Guisan & Thuiller 2005; 
Franklin & Miller 2010). Even though there has been some research in modeling the 
distribution of species at smaller extents (Thuiller et al. 2003; Franklin & Miller 
2010; Oke & Thompson 2015; Barbosa & Schneck 2015; He et al. 2015; Chaves et 
al. 2018), there are still advances to make in this research line. Remote sensing data 
are among the potentially most interesting sources of information that could be used 
for modelling the distribution of species at local extents with higher resolution layers 
(He et al. 2015). 

In Amazonian forests, the distributions of trees have been mainly modelled at 
regional to continental extents using climate only (OSINFOR 2013; OSINFOR 
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2016) and both climate and remote sensing layers (Prates-Clark et al. 2008; Saatchi 
et al. 2008; Cord et al. 2013). Remote sensing variables have been suggested to be 
useful complements of other environmental variables to model the distribution of 
species at broad extents (Prates-Clark et al. 2008; Saatchi et al. 2008; Bradley & 
Fleishman 2008; Bradley et al. 2012; Cord et al. 2013; He et al. 2015; Van doninck, 
Jones, et al. 2020), but not using remote sensing variables only. Since in Amazonian 
forests, reflectance values derived from Landsat imagery have been related to 
floristic variation and soil patterns (Tuomisto, Poulsen, et al. 2003; Tuomisto, 
Ruokolainen, et al. 2003; Sirén et al. 2013; Van doninck & Tuomisto 2018), remote 
sensing could provide ecologically informative variables for modelling the 
distribution of tree species at smaller extents. As far as investigated, only one study 
has modelled the distribution of trees in Amazonia at more local extents using 
different topographic variables and one vegetation index derived from remote 
sensing variables (Figueiredo et al. 2015). Nevertheless, the use of remote sensing 
variables only, such as the reflectance values derived from Landsat imagery, has not 
been explored yet. Here, I explore this potential by combining tree occurrence data 
from forest census data with medium-resolution Landsat satellite imagery and 
elevation (I and II). Modelling the distribution of tree taxa at local extents, made 
possible thanks to remote sensing data, could facilitate forest management practices 
and operative decisions both in natural resources management and conservation 
purposes. 

1.4 Floristic patterns of trees in Amazonia 
Some studies have suggested that soil fertility is the major gradient in shaping tree 
community composition followed by the dry season length (ter Steege et al. 2006) 
in Amazonia, whereas other studies have found that tree floristic variation is mainly 
associated with climatic gradients in comparison with edaphic variation (Toledo et 
al. 2011; Toledo et al. 2012). Even though different studies might cover different 
geographic extents and hence, different ranges of environmental gradients, they 
agree that edaphic, topographic and climatic variables are good predictors of tree 
species distributions and community composition of trees at different extents in 
Amazonia (Phillips et al. 2003; ter Steege et al. 2006; Ruokolainen et al. 2007; 
Toledo et al. 2011; Toledo et al. 2012; Baldeck et al. 2013; Baldeck et al. 2016). 
Specifically, in Peruvian Amazonia, it has been found that soils, topography and 
climate all contributed to explaining variation in tree community composition 
(Baldeck et al. 2016) at regional extents, whereas at landscape level, soil differences 
were more important in explaining floristic patterns (Phillips et al. 2003; 
Ruokolainen et al. 2007; Baldeck et al. 2016).  
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Floristic patterns of other plant groups in Amazonia have also been related to 
edaphic and climatic variables, such as for ferns and Melatomataceae (Tuomisto, 
Poulsen, et al. 2003; Tuomisto, Ruokolainen, et al. 2003; Higgins et al. 2011; 
Zuquim et al. 2012; Zuquim et al. 2014; Tuomisto et al. 2019) , Zingiberales 
(Figueiredo et al. 2018) and palms (Vormisto et al. 2004; Kristiansen et al. 2012; 
Cámara-Leret et al. 2017). Additionally, the compositional turnover of trees in 
Amazonia has been found to be strongly correlated with understory plant groups 
(Tuomisto et al. 1995; Ruokolainen et al. 2007; Higgins et al. 2011; Tuomisto et al. 
2016). This reaffirms that soils and climate variables are consistently related to 
floristic patterns in Amazonia. Accordingly, it is reasonable to expect that it is 
possible to predict the floristic variation of trees in Amazonia on the basis of 
environmental variables. 

Field data on environmental gradients, such as soil properties, would allow a 
more accurate assessment of relationships between environmental patterns and 
floristic patterns of trees. Unfortunately, the forest inventory field data accessed for 
this dissertation only includes tree data but not direct measurements of 
environmental variables. Fortunately, many environmental data layers, including 
climate and soils (Fick & Hijmans 2017; Hengl et al. 2017; Karger et al. 2017), are 
already freely available and are a potential source of information for predicting 
floristic patterns of trees in Peruvian Amazonia even though some might still suffer 
from accuracy problems (Moulatlet et al. 2017). Furthermore, it is already known 
that average canopy reflectance, derived from Landsat imagery, is related to soil 
patterns in Amazonia (Higgins et al. 2011; Sirén et al. 2013; Van doninck & 
Tuomisto 2018). 

Even though it is known that the floristic patterns of trees are related to soils and 
climate and that satellite imagery is related to soils in Amazonia, so far, no research 
has derived spatial predictions of floristic variation of trees in Amazonia, meaning 
predicted maps of floristic patterns. Knowing the main drivers of floristic variation 
of trees in Peruvian Amazonia and identifying the availability of potential 
environmental and remote sensing predictors are important steps when aiming at 
spatially predicting those floristic patterns over vast areas. Having spatial predictions 
of tree floristic patterns maps would be useful and required for assessing 
conservation priorities or natural resources management at national level. Here, I use 
available remote sensing and environmental layers to assess whether it is possible to 
predict floristic patterns of trees derived from national forest inventory data (III and 
IV). 
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1.5 Aims of the thesis 
The present dissertation aims at utilizing available existing forest inventory and 
census data in Peruvian Amazonia together with freely available Landsat imagery 
and environmental layers to model the distribution of important tree species at local 
extent and to predict floristic patterns of trees in broader extents, ultimately 
throughout all Peruvian Amazonia. 

In I, the main questions were whether it is possible to use the raw digital numbers 
of Landsat TM bands to derive SDMs, whether the use of averaging moving filters 
improve SDM performance and, finally, whether NDVI and elevation further 
improve the distribution models. For this, I modelled the distribution of tree taxa at 
a local extent (6,000 km2) in Peruvian Southern Amazonia combining tree 
occurrence data from forest census data and remote sensing data as predictor 
variables. 

In II, the main aim was to investigate and quantify to what degree SDMs differ 
when using different spatial configurations of the tree occurrence data and how such 
spatial configurations can improve the applicability of SDMs for tropical forest 
management at local extent (6,000 km2). For this, I also modelled the distribution of 
tree taxa at local extent following the framework suggested in I, but with five times 
more tree occurrence data which enabled building different spatial configurations of 
the training data. 

In III, the main aims were to assess whether the floristic composition of trees 
differ between bamboo-dominated forest and adjacent non-bamboo forests, whether 
the floristic patterns of trees can be predicted using Landsat data, and whether the 
results are sensitive to different taxonomic resolution and tree size classes. For this, 
I used regional forest inventory data (IBPP) and Landsat-derived remote sensing data 
and elevation. 

In IV, the aims were to assess how floristic patterns of trees relate to canopy 
reflectance and environmental layers, to map floristic variation of trees across the 
Peruvian Amazon (~800,000 km2), and to derive a classification of floristic variation. 
For this, I used genus-level tree data from the Peruvian national forest inventory 
(INFSS), Landsat imagery and environmental layers (climate, soil and topography) 
to predict floristic patterns of trees throughout Peruvian Amazonia using random 
forest regression.  
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2 Methods 

2.1 Study area 
The study area in this dissertation comprehends different parts of Peruvian Amazonia 
(Figure 1) as defined by the Peruvian Ministry of Environment (MINAM 2016a). 
The study areas of the first and second chapters (I and II) are located in Madre de 
Dios region (Southern Peruvian Amazonia) covering approximately 2500 and 6000 
km2, respectively, in mainly lowland forests. The third chapter (III) of this 
dissertation focuses on an area in Ucayali region (Central Peruvian Amazonia) 
covering almost 40,000 km2. Finally, the study area of the last chapter (IV) covers 
the whole Peruvian Amazonia, an area of more than 780,000 km2, including lowland 
forests, seasonally flooded areas and montane forests. The focus in I and II is to 
model the distribution of tree taxa at local extents whereas in III and IV, to predict 
floristic patterns at regional to national extent. 
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Figure 1.  Scheme of the geographic extent of the study areas for each chapter throughout 

Peruvian Amazonia.  

Throughout Peruvian Amazonia, the climate is mainly tropical and humid with a 
monthly average temperature of 24 °C (ranging between 15°C on the Andean slopes 
and 26 °C in the lowland forests) and an average annual rainfall of 2300 mm (ranging 
from 700 to more than 7000 mm) as extracted from Climatologies at High Resolution 
for the Earth’s Land Surface Areas CHELSA (Karger et al. 2017) (Figure 2A,B). 
The elevation ranges between 100 and 3000 m above sea level (Figure 2C) and the 
soils tend to richer closer to the Andes (Figure 2D) but in IV we limit the analyses 
up to 2000 meters of elevation 
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Figure 2.  Geographical characteristics of the study area in Peruvian Amazonia (A) Mean annual 

temperature, (B) annual precipitation, (D) elevation, and (C) cation exchange capacity 
(CEC) in the study area. (D) Landsat TM/ETM+ composite (bands 5, 4, and 3 assigned 
to red, green, and blue, respectively) of Peruvian Amazonia. 

2.2 Forest inventory and census data 
The field data used in this dissertation came from a Peruvian national forest 
institution and a forest concession company. In chapters I and II, I used forest census 
data provided from Consolidado Otorongo timber forest concession in Peruvian 
Southern Amazonia. In chapter III, I used data from regional forest inventories 
(IBPP) whereas in chapter IV, I used data from the Peruvian national forest and 
wildlife inventory (INFFS). Both forest inventory datasets were provided by the 
Peruvian Forest and Wildlife Service (SERFOR). Below I describe the field data 
used on each of the chapters. 
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Table 1.  Characteristics of the field datasets used in each study 

CHAPTER TYPE NUMBER OF 
PLOTS / AREA 

(HA) 

DATABASE REGION BOTANICAL 
GROUPS 

I Forest census 2500 Otorongo Madre de Dios Trees 

II Forest census 15,000 Otorongo Madre de Dios Trees 

III Forest inventory 25 IBPP Ucayali Trees and palms 

IV Forest inventory 157 INFFS Peruvian 
Amazonia 

Trees, tree ferns 
and palms 

 

2.2.1 Forest census data 
The forest census data used in I and II were produced by Consolidado Otorongo 
forest concession (Otorongo dataset) within their forest management areas. In I, I 
used forest census data from approximately 2500 ha whereas in II, more forest 
census data became available, including approximately 15,000 ha of the 
concession’s management areas. Within those areas, all commercial trees (for 
timber) with diameter at breast height (dbh) at least 30 cm were registered along 
linear transects and their local name, height, dbh and geographical location were 
recorded. The beginning and end of each evaluation transect were georeferenced 
using GPS devices. Individual trees were georeferenced in the field using a relative 
system of X and Y coordinates. Geographical coordinates were later assigned to each 
tree by combining their field measured within-transect locations with the transect 
GPS coordinates. 

The original forest census database consisted of approximately 30 tree taxa, of 
which only a few were selected based on two criteria: abundance and taxonomic 
consistency. The primary selection criterion was that the tree was abundant enough 
for robust species distribution modeling, and hence the number of presence records 
should be above the recommended minimum of 20–50 observations (Guisan et al. 
2007; Merow et al. 2014; van Proosdij et al. 2016). The second selection criterion 
was that the taxonomic identification was considered reliable at the genus level. 
Identification of tropical trees to biological species is difficult (Köhl et al. 2006), 
especially without voucher specimens. Since the forest census was performed for 
commercial rather than scientific purposes and voucher specimens were not 
collected, the species identifications may not be entirely accurate. All the selected 
genera contain only one species within the forest census dataset, and external sources 
indicate that they have few species in the area in general. Nevertheless, I will be 
referring to them with their generic names and using the term 'taxon' instead of 
'species'. 
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2.2.2 Forest inventory data 

In III, I used regional forestry inventory data collected in February and March 2016 
in 25 1-ha inventory plots by the Peruvian Forest and Wildlife Service (SERFOR). 
The main objective of the regional forestry inventory was to characterize the timber 
potential within permanent production forests (IBPP) which are delimited by the 
Peruvian government for timber production. The central point of each plot was 
georeferenced using a GPS device. Each cross-shaped plot (1 ha) consisted of four 
rectangular subunits of 0.25 ha. Each subunit was divided into 10 registration units 
(25 m x 10 m) for a total of 40 registration units per plot. Trees and palms with 
diameter at breast height (dbh) of at least 30 cm (“canopy trees”) were recorded in 
the entire plot (1 ha). In addition, trees with dbh between 10 cm and 30 cm (“pole 
trees”) were recorded in the two central registration units of each sub-unit, totaling 
0.2 ha per plot. For each tree, its dbh (cm), total height (m), species and local name 
was recorded in the field. A complete set of vouchers is deposited in the herbarium 
of La Molina National Agrarian University (MOL) but their identifications have not 
been cross-checked. 

In IV, I used part of the national forest and wildlife inventory (INFFS) collected 
between 2013 and 2018 in 157 sampling plots distributed across Peruvian Amazonia, 
which was stratified for sampling into lowland, hydromorphic (or also referred to as 
seasonally flooded) and montane forests (up to 2000 meters of elevation). The 
inventory plots were L-shaped and consisted of either 10 0.05-ha subunits totaling 
0.5 ha (hydromorphic or mountain forests) or seven 0.1-ha subunits totaling 0.7 ha 
(lowland forests). The corner of each L-shaped plot was georeferenced using a GPS 
device. Trees (including palms and tree ferns) exceeding 30 cm in diameter at breast 
height (dbh) were recorded in all subunits of each plot. In addition, trees between 10 
and 30 cm dbh were recorded in half of the subunits per plot. For each tree, its dbh 
(cm), height (m), scientific name, and local name were recorded in the field. The 
voucher specimens were deposited in La Molina National Agrarian University 
Herbarium (MOL), but voucher specimens were not cross-checked among botanists. 
Therefore, we used only genus-level identifications in the analyses even when 
species-level identifications were available in the inventory database. 

2.3 Predictor layers 

2.3.1 Landsat satellite imagery 
Different Landsat satellite image products were used in all the chapters of this 
dissertation. The Landsat products consisted of six bands that correspond to different 
sections in the optical portion of the electromagnetic spectrum: 1 (blue), 2 (green), 3 
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(red), 4 (near infrared), 5, and 7 (the latter two shortwave infrared). In chapter I, a 
single Landsat 5 TM scene from 2011 was used since it covered the whole study 
area. The raw digital numbers (DN) of bands 3-7 were used as predictors in I. In 
chapters II and IV, the available Amazon Landsat TM/ETM+ composite (Van 
doninck & Tuomisto 2018) was used and cropped to each study area. The composite 
was based on all Landsat acquisitions from the dry season months of the 10-year 
period 2000–2009 (Van doninck & Tuomisto 2018). In chapter III, another Landsat 
ETM+ composite was produced over the study area by combining acquisitions of 
more than 1000 images of six Landsat scenes from a 3-year period (2014-2016). 
When producing both composites for II, III and IV, the Landsat images were 
transformed to surface reflectance and corrected for atmospheric and directional 
effects (Van doninck & Tuomisto 2015; Van doninck & Tuomisto 2017a). They 
were composited using the medoid method, which ensures that the reflectance values 
represent relatively stable ground cover characteristics that can be expected to be 
relevant for canopy trees (Van doninck & Tuomisto 2017b; Van doninck & 
Tuomisto 2018). 

In chapters I and II, the values of the Landsat bands 3, 4, 5 and 7 were used as 
predictor variables. A normalized difference vegetation index (NDVI), calculated as 
NDVI = (band 4 + band4) / (band 4 – band 3), was used as an additional predictor. 
Reflectance values from each of the Landsat bands and NDVI were acquired at a 30-
m spatial resolution. In chapters III and IV all six Landsat bands were used as 
predictors. In chapter III, a principal component analysis (PCA, based on a 
correlation matrix) of all the six Landsat bands (Landsat-PCA) was performed and 
the first two axes of the PCA were used as additional variables together with a NDVI 
layer. 

In chapter III, an additional Landsat-based predictor was the percentage of pixels 
classified as bamboo within a 275-m buffer from the central coordinates of each 
inventory plot. To do so, bamboo and non-bamboo forests were mapped based on an 
time series analysis of yearly Landsat TM/ETM+ composite images from 1984 to 
2018 over the study area (Van doninck, Westerholm, et al. 2020). Reflectance values 
of Landsat bands, NDVI, the Landsat-PCA layers and the bamboo percentage are 
collectively referred to as “Landsat layers” hereafter. 

2.3.2 Environmental layers 
In all the chapters, elevation was used as an environmental predictor. In I, II and III, 
a digital elevation model (DEM) was used and obtained from ASTER GDEM (Aster 
Global Digital Elevation Model), whereas in IV, it was obtained from the SRTM 
digital elevation model (Shuttle Radar Topography Mission). I acknowledge that 
ASTER GDEM has errors in tropical areas and therefore in the last chapter I decided 
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to use another digital elevation model source. All elevation layers were obtained at 
30-m spatial resolution. Soil cation exchange capacity (CEC) at a 0.05-m depth was 
obtained from SoilGrids (Hengl et al. 2017) at a 250-m spatial resolution. Climatic 
data (19 bioclimatic variables) at approximately a 1-km spatial resolution were 
obtained from CHELSA (Karger et al. 2017). Elevation, soil, and climatic data are 
hereafter collectively referred to as “environmental layers’’. 

Table 2. Summary of the response and predictor variables and the methods used in each 
chapter. 

CHAPTER RESPONSE 
VARIABLES 

PREDICTOR VARIABLES METHOD 

LANDSAT ENVIRONMENTAL 

I Occurrence of 
tree taxa 

Raw digital numbers 
of Landsat 5 TM 

image (bands 3, 4, 5 
and 7) and NDVI 

Elevation (DEM) Maximum 
entropy (Maxent) 

algorithm 

II Occurrence of 
tree taxa 

Reflectance values1 
of a 10-year Landsat 
composite TM/ETM+ 
(bands 3, 4, 5 and 7) 

and NDVI 

Elevation (DEM) Maximum 
entropy (Maxent) 

algorithm 

III Floristic 
dissimilarities 

Reflectance values1 
of a 3-year Landsat 
composite ETM+ 

(bands 1, 2, 3, 4, 5 
and 7), Landsat-
PCA, NDVI and 

Bamboo (%) 

Elevation (DEM) Mantel and 
partial mantel 

test 

IV (a) Floristic 
dissimilarities 
(b) Floristic 

ordination axes 
(NMDS 1, 2 and 

3) 

Reflectance values1 
of a 10-year Landsat 
composite TM/ETM+ 
(bands 1, 2, 3, 4, 5 

and 7) 

Soil cation exchange 
capacity (CEC), 19 
bioclimatic layers 
(BIOCLIM) and 
elevation (DEM) 

(a) Mantel and 
partial mantel 

test 
(b) Linear 
regression 

analysis and 
random forest 

regression 
1 Surface reflectance and corrected for atmospheric and directional effects 

2.4 Data analysis 

2.4.1 Data preparation and extraction 
In chapter I, averaging filters based on a 3x3 and 5x5 pixel window (90 x 90 and 150 
x 150 m, respectively) were applied to the Landsat layers in order to reduce noise. 
Three sets of Landsat layers were used as predictors: with no filter, a 3x3 filter and 
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a 5x5 filter. In chapter II, only a 5x5 filter was applied to the Landsat layers. No 
moving averaging filters were applied to the Landsat layers in chapters III and IV. 

In chapters I and II, the original 30-m spatial resolution Landsat and elevation 
layers were used for model prediction. In chapters III and IV the original 30-m 
resolution Landsat and elevation layers were used to extract the median values within 
a buffer around the central coordinates of each inventory plot, relative to each plot’s 
dimensions. Buffers of 275 and 450 m were used for chapters III and IV, 
respectively in relation to the inventory plots dimensions. In chapter IV, climate and 
soil data were obtained for each inventory plot by extracting the required predictor 
value from the pixel corresponding to the inventory plot coordinates. For model 
prediction, in chapter IV all predictor layers (Landsat and environmental) were 
rescaled to 450-m spatial resolution since it corresponds to the inventory plot 
dimensions and previous studies found that spatial predictions at such spatial 
resolution in Amazonia are congruent with predictions at finer resolutions (Tuomisto 
et al. 2019) and computationally more efficient. 

2.4.2 Modelling species distributions 
In chapters I and II, the location of tree taxa from the forest census dataset was used 
together with Landsat and elevation layers to model their distribution within the 
study areas. In both chapters, the occurrence data was divided into training and test 
datasets that were spatially separated but covered similar ranges of the remote 
sensing layers. The census dataset had information about the presence of just a few 
tree taxa and only individuals of more than 30 cm of diameter, hence the use of 
presence-absence algorithms was not suitable as the modelling framework. Of the 
other possible available modelling algorithms, I chose the complementary log-log 
(cloglog) link function (Phillips et al. 2017) of MaxEnt algorithm, which considers 
presence-only data and background information to model species distributions 
(Phillips et al. 2017). A previous exercise that modelled the distribution of trees in 
Amazonia at local extents using remote sensing variables utilized MaxEnt 
(Figueiredo et al. 2015) and therefore, I opted the same framework for comparison 
purposes. Furthermore, MaxEnt has performed equally well or better than other 
modelling algorithms (Phillips et al. 2006; Elith et al. 2006; Hernandez et al. 2006; 
Wisz et al. 2008; Giovanelli et al. 2010; Merckx et al. 2011; Aguirre-Gutiérrez et al. 
2013; Merow Cory et al. 2014; Villar Hernández & Pérez Elizalde 2015), deriving 
more consistent predictions across different calibration areas (Giovanelli et al. 2010) 
and being less sensitive to configuration settings (Hallgren et al. 2019). We used the 
same features for all the models to facilitate comparisons of model predictions 
among the different tree taxa and models sets.  
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In II, the training area used in the modelling procedure was divided in different 
spatial configurations of similar area but different shape. This was done in order to 
assess how much of the available environmental space from the study area they 
covered and how related it was with the model performance. 

2.4.3 Predicting floristic patterns 
Both in chapters III and IV, I investigated the relation between floristic patterns of 
trees at the community level with Landsat and environmental layers. In chapter III, 
floristic patterns were assessed at different tree size classes (pole trees - dbh 10-30 
cm, canopy trees – dbh >= 30 cm, and all trees together – dbh >= 10 cm) and different 
taxonomic cleaning strategies (genus, identified species and consistent species). 
Lumping all trees to the genus-level allows including a higher proportion of the 
inventory database records at the expense of losing part of the ecological signal of 
species-environment relationships. Another common strategy is to only include 
those tree individuals which have been identified to species level (identified species). 
This enables maintaining the ecological signal but losing an important proportion of 
the database. A further step is to include only records that are consistent among 
brigades (consistent species). In chapter IV, floristic patterns were assessed using all 
trees (dbh >= 10 cm) at the genus level only.  

An ordination (non-metric multidimensional scaling or NMDS) was used to 
summarize the main floristic variation among the forest inventory plots into two axes 
(NMDS 1 and 2) in III and three axes (NMDS 1-3) of variation in IV. In both 
chapters, the Sørensen dissimilarity index was used which considers only presence-
absence data of the taxa. The extended (step-across) version of the index was used, 
because it provides ecologically realistic dissimilarity values between plots that 
share no genera (De’ath 1999; Tuomisto et al. 2012; Zuquim et al. 2012). In chapter 
III, the NMDS results were used to derive convex hulls and visualize the floristic 
dissimilarity patterns between bamboo and non-bamboo forests, and to determine 
differences in floristic composition between the two forest types using an analysis of 
similarity (ANOSIM). In chapter IV, the NMDS results were used to visualize 
floristic dissimilarities and to assess their relationship with Landsat and 
environmental variables through a linear regression analysis and a random forest 
regression. 

In III and IV, Landsat and environmental distance matrices were obtained using 
pairwise Euclidean distances between the inventory plots, calculated for each 
variable separately. Geographical distances between inventory plots were calculated 
using their coordinates and the values were transformed to their natural logarithm 
before analysis. Mantel tests of the matrix correspondence (Legendre & Legendre 
2012) were used to define whether floristic differences were correlated with Landsat 
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and environmental distances. The Pearson correlation method was used in the test 
with 999 permutations. Partial Mantel tests were used to assess residual correlations 
after controlling for the effect of geographic distances. 

In IV, the floristic patterns of trees across Peruvian Amazonia were modelled 
using random forest (RF) regressions. Random forest is a machine learning 
algorithm that allows non-linear relationships in the data with high expected 
predicted power (Kuhn & Johnson 2013). Each of the NMDS axes 1–3 was used as 
the response variable whereas the Landsat and environmental variables were used as 
the predictor variables. Different cross-validation techniques and a feature forward 
selection (ffs) method was used to select the best RF models, which were then 
applied over the whole Peruvian Amazonia in order to produce predictive maps of 
each of the main floristic gradients (NMDS axes 1–3). Such predictive maps were 
classified in 10 classes using a k-means clustering method. An indicator analysis (De 
Cáceres et al. 2012) was performed based on indicator values (Dufrêne & Legendre 
1997) to evaluate which taxa were associated to each of the 10 classes in IV and to 
bamboo and non-bamboo forests in III. 
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3 Results and Discussion 

3.1 Average reflectance values of Landsat imagery 
are good predictors to model the distribution of 
trees at local extents 

In I and II, I found that it is possible to use average values derived from Landsat 
imagery to model the distribution of tree taxa at local extents in Peruvian Amazonia. 
One of the main findings in I was that the use of averaging filters applied to the 
Landsat data consistently increased the SDMs performance in all tree taxa. It is 
important to note that species-specific spectral patterns are not being measured but 
rather the average spectral canopy signal as a measure of environmental patterns or 
habitat type. The size of a pixel in Landsat data is comparable to the crown of a 
single large canopy tree, but the spectral values obtained per pixel can be a mixed 
signal of different canopy crowns and canopy structure and shaded trees, since 
landscape heterogeneity does not follow pixel limits. By applying averaging filters, 
it is possible to suppress high-frequency variation, reduce the effects of local noise 
but retain landscape variation (Jones & Vaughan 2010). Furthermore, earlier studies 
in Amazonia have found that average filtering improves the correspondence between 
pixel data and floristic data (Rajaniemi et al. 2005; Salovaara et al. 2005; Thessler et 
al. 2005). Additionally, using averaging filters increase the likelihood that the field 
observation (coordinates of each tree) comes from the area covered in the spectral 
data. This is particularly relevant since the tree coordinates at the base of the trunk 
can be located several meters away from the actual position of the tree canopy, and 
the coordinates also have an associated spatial error. 

A reason why averaging filters improved model performance is probably related 
to fact the average reflectance values of Landsat bands are strongly correlated both 
to soil properties (Higgins et al. 2012; Sirén et al. 2013; Van doninck & Tuomisto 
2018) and also floristic patterns of understory plans (Tuomisto, Poulsen, et al. 2003; 
Tuomisto, Ruokolainen, et al. 2003; Salovaara et al. 2005; Higgins et al. 2012; Muro 
et al. 2016; Tuomisto et al. 2019) and canopy trees [III, IV]. Importantly, neither 
soils nor understory plants are directly visible to the satellite, so the predictive power 
comes from the fact that soils affect such properties of the forest canopy that in turn 
affect reflectance. These include species composition, tree architecture, leaf 
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mesophyll structure and leaf chemistry. As suggested by some studies, the inclusion 
of continuous remote sensing variables in SDM should be justified and they should 
characterize the potential habitat (Bradley et al. 2012; He et al. 2015; Leitão & Santos 
2019). The spatially filtered average reflectance values do not reveal the occurrence 
of individual tree species but can serve as indicators of variation in ecologically 
relevant habitat conditions, which makes them ecologically informative layers for 
modelling the distribution of species.  

3.2 Elevation improves distribution models of trees 
at local extents 

Another important finding from I and II was that elevation is an important 
contributor to SDM performance of canopy trees in Southern Peruvian Amazonia. 
In I, the inclusion of elevation consistently increased the SDMs performance of all 
tree taxa and was considered one of the most contributing predictors. In II, elevation 
was the most contributing factor for all the taxa. It is important to point out that, 
since more field data became available in II, the elevational range covered by the 
training data naturally increased. Nevertheless, the elevational range both in I and II 
was too small (between 250 and 400 meters) to be related to other relevant 
environmental gradients, such as climate. At least one study modelled the 
distribution of trees at local extents using different topographic variables (Figueiredo 
et al. 2015) and found that elevation also contributed the most in the SDMs. 

Elevation is an indirect environmental variable, meaning that it does not directly 
affect the performance of biological organisms. Nevertheless, elevation can be used 
as a proxy for other environmental variables that do affect species occurrences and 
are correlated with it. Elevation is generally related to soil drainage and water 
availability, since water tends to accumulate into depressions while soils at higher 
topographical positions remain drier. In addition, in Amazonia several studies have 
found that elevation is related to geological substrates and soil nutrient 
concentrations (Vormisto et al. 2004; Costa et al. 2005; Higgins et al. 2011). Soils 
are relevant factors for modelling the distribution of plant species in Amazonia 
(Figueiredo et al. 2018; Zuquim et al. 2020), but accurate soil data are often not 
available at local extents. Even though soil maps are available (Hengl et al. 2014; 
Hengl et al. 2017), they have been found to contain major inaccuracies in Amazonia 
(Moulatlet et al. 2017).  

Topographic variables derived from elevation have been found to structure tree 
species distributions (Zuleta et al. 2018) and elevation has been found to be the most 
important predictor when modelling the distribution of canopy trees in Amazonia at 
local extents (Figueiredo et al. 2015). Other topographic variables, derived from 
elevation, are related to hydrology and sedimentation (Wittmann et al. 2004) and 
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more subtle changes in drainage can also be related to topography (Vormisto et al. 
2004; Moulatlet et al. 2014) although slope is not necessarily a strong surrogate of 
soil moisture and drainage (Zuquim et al. 2009). In agreement with this, height above 
the nearest drainage (HAND) and slope contributed little in modelling the 
distribution of tree species in Amazonia at local extents (Figueiredo et al. 2015). 
Nevertheless, topographic variables such as HAND could indeed be used as 
surrogates of hydrological conditions in other study areas. 

3.3 Training species distribution models from 
elongated areas derive more consistent 
models and spatial predictions 

Since the field data used for the SDMs were highly concentrated in the study areas 
of I and II, the predictions made for areas close to the training data can be expected 
to be more accurate than those made for areas further away. Since more data had 
become available, an obvious question in II was to assess to what degree SDM 
performance and spatial predictions differed between the models that were trained 
using different configurations of the occurrence data. An important finding was that 
more elongated configurations of the training area often derived better and more 
robust SDMs, since they were more representative of the available environmental 
space and they often covered a larger proportion of it. For instance, the standard 
deviation of model performance (AUC) derived from training data occurring in more 
elongated configurations was half compared to models that use training data from 
less elongated or compact configurations. Another important result was that using a 
larger number of occurrences (4-fold) provided better distribution models for all tree 
taxa, which agrees with several previous studies (Stockwell & Peterson 2002; 
Hernandez et al. 2006; Wisz et al. 2008; Mateo et al. 2010; van Proosdij et al. 2016). 
For instance, model performance increased by 20% for some taxa when using four 
times more occurrence data for model training. 

The predicted distributions using different spatial configurations of the training 
occurrences were rather stable for some taxa but in others, the spatial variation 
among models was higher. In II, a map of spatial variation is reported showing areas 
where there is more uncertainty associated with each taxon, which has been 
previously suggested in SDMs (Rocchini et al. 2011). Both the average suitability 
values and the spatial predictions differed when using different spatial arrangements 
of the training area. These findings address the importance of taking into 
consideration the spatial arrangement of the training area when using geographically 
highly concentrated occurrence data for modelling the distribution of trees at local 
extents.  
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Hopefully, forest management practitioners will use this framework in the future 
to estimate the distribution of important taxa within their management units even 
before forest census campaigns and for forest planning activities. If this practice is 
eventually adopted, having estimates of SDM performance variation, such as the 
standard deviation, would allow assessing uncertainty in the distribution potential of 
the tree taxa. Similarly, if SDMs are adopted for tropical forest management, using 
tree occurrence data from more elongated training areas will provide most robust 
results and species distribution estimates. 

3.4 Floristic patterns of trees are consistent at 
different taxonomic resolutions 

A key finding from III was the consistency of floristic patterns using different 
taxonomic cleaning strategies. By coarsening the taxonomic resolution to the genus 
level, it is possible to include a higher proportion of the available dataset but at the 
expense of blurring the relationship between species preferences and environmental 
gradients. Nevertheless, some studies have found a high degree of congruence 
between genus-level and species-level data (Higgins & Ruokolainen 2004; Cayuela 
et al. 2011; III). Additionally, excluding unidentified stems could include serious 
bias caused by separate identifiers if identifications are not cross-checked. Moreover, 
including only taxonomically consistent identifications could reduce such biases but 
at the expense of considerably reducing the usage of species and stems, and hence 
causing additional uncertainty in the analyses of species composition and its 
relationship with environmental gradients (Cayuela et al. 2011).  

The floristic consistency found at different resolutions agrees with some studies 
that found a high degree of congruence between genus-level and species-level data 
(Higgins & Ruokolainen 2004; Honorio Coronado et al. 2009; Cayuela et al. 2011). 
This is particularly practical for ecological studies since it is possible to derive 
consistent floristic patterns of trees using legacy forestry inventory data without a 
detailed and time-consuming cross-checking of species-level identifications. In III, 
97% of the original stems in the forest inventory database were used in the analyses 
since they were at least identified to the genus level, whereas only 56% were 
identified to the species level. By using genus-level data, it is possible to retain most 
of the database and at the same time derive consistent floristic results. This served 
as basis for analyzing genus-level patterns of trees in IV, in which 80% of the stems 
in the forest inventory database were identified to the genus level, whereas less than 
45% were identified to the species level.  

It is important to consider the proportion of monospecific genera in the forest 
inventory datasets, which might contribute to explaining the floristic similarities at 
different taxonomic resolutions. For instance, in III and IV forest inventory datasets, 
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44% and 38% of the genera, respectively, were monospecific. If a high proportion 
of taxa is monospecific in the inventory dataset, those taxa will behave in exactly the 
same manner as when they would be considered at the species level, and therefore 
the floristic patterns will remain similar when compared at species or genus-level 
resolution.  

3.5 Floristic dissimilarities of tree communities are 
strongly correlated with spectral distances 

In III and IV, floristic dissimilarities of tree communities were strongly correlated 
with differences in the spectral values derived from the Landsat data but also with 
other environmental layers. In particular, floristic patterns of trees were mainly 
correlated with the spectral values of the short-wave infrared spectrum of Landsat 
imagery (bands 5 and 7 from Landsat TM/ETM+ sensors). Previous studies have 
found that floristic similarity patterns of understory plants in Amazonia are also 
strongly correlated with the spectral values of red, infrared and short-wave infrared 
bands of the Landsat satellite (Tuomisto, Poulsen, et al. 2003; Tuomisto, 
Ruokolainen, et al. 2003; Higgins et al. 2012). It is also known that floristic patterns 
of understory plants and trees tend to be congruent in Amazonia (Tuomisto et al. 
1995; Ruokolainen et al. 2007; Higgins et al. 2011; Tuomisto et al. 2016) so this 
reaffirms the potential of using Landsat bands to predict floristic dissimilarity 
patterns in Amazonia. 

Interestingly, differences in the spectral values of Landsat bands had congruent 
roles in explaining the floristic dissimilarities at different geographic extents. For 
instance, in IV the geographic extent was more than 20 times bigger than in III, and 
still in both areas, Landsat bands explained over 40% of the floristic dissimilarities. 
In III, at least two forest types (bamboo and non-bamboo forests) were identified 
whereas in IV, at least “tierra firme” forests, bamboo forests, hydromorphic forests, 
montane forests and seasonally inundated forests. This suggests that we can 
consistently use differences in the reflectance values of the near-infrared spectrum 
to predict floristic dissimilarities at different extents and different forest types in 
Amazonia. 

In III, floristic dissimilarity patterns were assessed at different taxonomic 
cleaning strategies, including genus-level and species-level resolution. An important 
finding was that the correlation between floristic dissimilarity and spectral distances 
(differences in reflectance values) was higher when using genus-level data than when 
using species-level data. This pinpoints another advantage of lumping the inventory 
data to the genus level (Section 3.4), since more ecologically meaningful results 
could be obtained when including more genus-level data than when excluding 
incompletely identified stems from the analyses.  
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3.6 Bamboo forests are floristically different from 
adjacent non-bamboo forests 

In III, the focus was on assessing floristic differences between two adjacent forest 
types: bamboo and non-bamboo forests. Such floristic differences were assessed at 
different tree size classes and taxonomic cleaning strategies (genus, identified 
species and consistent species). One of the main findings was that bamboo-
dominated forests were floristically different from adjacent non-bamboo forests, 
independent of the tree size class and the taxonomic resolution. These floristic 
differences between both forest types are congruent with previous findings in 
Peruvian Amazonia (Griscom et al. 2007) but here such differences were determined 
using forestry inventory data, which focuses mainly of the timber potential. 

Since the forest inventory data used in III came from permanent production 
forests, selective logging for timber production occurred in the study area at least 
since 2002. It is known that logging activities may favor the establishment of non-
commercial species and can affect forest structure and the tree community (Rockwell 
et al. 2014; Cazzolla Gatti et al. 2015). Nevertheless, since we found floristic 
differences also in a tree size class not directly affected by logging, the general 
floristic patterns documented are unlikely to be dominated by selective logging 
activities.  

Another interesting floristic finding was the association of different palm taxa 
with bamboo and non-bamboo forests. In III, Socratea exorrhiza (Mart.) H.Wendl. 
was strongly associated with bamboo-dominated forests whereas Iriartea deltoideia 
Ruiz & Pav. was mainly associated with adjacent non-bamboo forests. The 
preferences of Socratea with poorly drained soils (Pacheco 2001) supports its 
association with bamboo-dominated forests (Griscom et al. 2007). Even though the 
causal effect of such associations (whether it is directly related to the presence-
absence of bamboo or to soil characteristics) remains unclear, this finding confirms 
the association of certain palm taxa with each forest type. 

3.7 Floristic patterns of trees in Peruvian Amazonia 
are correlated with reflectance values derived 
from Landsat imagery and with other 
environmental layers 

Floristic patterns of trees at the genus level were strongly correlated with Landsat 
reflectance values and, to a lesser extent, with other environmental variables such as 
climate layers across Peruvian Amazonia. For instance, in a floristic ordination in 
IV, the first floristic axis was strongly correlated with the canopy reflectance values 
of all Landsat bands, especially within the short-wave infrared and near-infrared 
spectrum. The secondary axes were mainly correlated with climate layers. Since 
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canopy reflectance values have been found to predict soil properties rather well 
(Sirén et al. 2013; Van doninck & Tuomisto 2018), it is likely that the first floristic 
axis in IV is related to soil characteristics. Floristic patterns of trees were also 
correlated with different environmental variables, such as soil, topography, and 
climate, which agrees with many previous floristic studies of trees in Amazonia 
(Phillips et al. 2003; ter Steege et al. 2006; Ruokolainen et al. 2007; Toledo et al. 
2011; Toledo et al. 2012; Baldeck et al. 2013; Baldeck et al. 2016). 

Based on the correlates of floristic patterns of trees with Landsat and 
environmental layers, it was possible to build predictive models of the main floristic 
gradients of trees using random forest algorithm and apply them over the whole 
Peruvian Amazonia. In IV, the best models explained more than 60% of the variation 
along the first and second floristic gradients and 40% of the variation along the third 
floristic axis, which partially agrees with a similar approach used to map 
geoecological patterns as indicated by fern species composition across all Amazonia 
(Tuomisto et al. 2019). Soil, climate and Landsat layers had congruent roles in 
predicting floristic spatial patterns even though the target groups (ferns at the species 
level and trees at the genus level) were phylogenetically distant, occupy different 
forest layers and were identified to different taxonomic resolutions. Furthermore, 
other studies have already found congruent floristic patterns between trees and 
understory plants in Amazonia and Central America (Tuomisto et al. 1995; 
Ruokolainen et al. 2007; Higgins et al. 2011; Jones et al. 2013; Tuomisto et al. 2016). 

For the first time, in IV it was possible to visualize the predicted floristic 
variation of trees at the genus level in Peruvian Amazonia. The spatially predicted 
floristic patterns of trees are congruent with previous ecosystem and vegetation 
classifications (MINAM 2016b; MINAM 2019) and trait diversity in Peruvian 
Amazonia (Asner, Martin, Tupayachi, et al. 2017). Based on such spatial predictions, 
it was possible to discriminate between known ecosystems such as hydromorphic 
forest in Northern Peruvian Amazonia, bamboo forests in Southern Peruvian 
Amazonia and mountain tropical forests following the Andes. Having a map of 
predicted community composition is useful for reducing research gaps in a still 
unknown area like Peruvian Amazonia and it is useful also for identifying suitable 
areas for conservation purposes.  

3.8 Future directions 
Throughout this dissertation I explored the potential of Landsat imagery (I; II, III 
and IV), which has a global coverage at a medium 30-m resolution and a 16-day 
revisit time. Landsat has been also collecting information for several decades 
already, which enhances the possibilities of using it for forest monitoring. Different 
satellite sensors provide appropriate data for different purposes depending of the 
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target object and the spatial, temporal and radiometric characteristics of the sensor 
(Wang et al. 2010). At broad extents, such as Peruvian Amazonia, analyzing 30-m 
resolution satellite imagery is already computationally challenging. Using higher 
resolution satellite products would allow identifying smaller objects but would be 
computationally even more complex. Obtaining reflectance values at different and 
narrower spectral range (higher spectral resolution) would allow a better spectral 
discrimination between different objects and surfaces. An obvious source of 
information worth further exploring is Landsat 8 satellite imagery as well as 
Sentinel-2A. Sentinel-2A, from the European Space Agency (ESA), is operative 
since 2015 and records information at 13 spectral bands (443–2190 nm) and at a 
spatial resolution of 10 m (for four visible and near-infrared bands), 20 m (six red 
edge and shortwave infrared bands) and 60 m (three atmospheric correction bands). 

The spectral values used in the different analyses throughout the presented 
chapters were a spatial average (I and II) or median measure of canopy reflectance 
(III and IV). Average spectral values in I and II were proved to be good predictors 
for modelling the distribution of trees at local extents, since they measure habitat 
conditions and are good proxies of soil characteristics. In III and IV, the median 
reflectance values were strongly correlated with dissimilarity patterns of trees. 
Nevertheless, I would like to further explore other spectral measures, mainly related 
to spectral heterogeneity, such as the distance to the spectral centroid (Palmer et al. 
2002; Rocchini et al. 2007; Rocchini et al. 2010), the variability in the reflectance 
values among pixels (Gillespie et al. 2008; Wang et al. 2018; Laliberté et al. 2020) 
and Rao’s Q diversity index (Rocchini et al. 2017). It would also be interesting to 
explore the relationships between biodiversity patterns or species distributions and 
different measures of geodiversity (Record et al. 2020), including measures of 
topographic heterogeneity such as variance or fine scale texture of elevation. 
Similarly, I would further explore predicting not only variation in community 
composition (beta diversity) and floristic dissimilarities but also local species 
richness (alpha diversity) and spectral diversity. 

The research conducted in IV was based on one of many campaigns of the 
national forest and wildlife inventory program in Peruvian Amazonia. The forest 
inventory data used in IV consisted of 157 inventory plots which were part of the 
first panel of a five-stage inventory program. The whole inventory program is 
planned to eventually include over 1800 inventory plots throughout Peru. Therefore, 
more inventory field data will become available in the near future, across different 
ecosystems in Peru, including Peruvian Amazonia. Additional information could be 
used as independent test data what would enable further validating and improving 
the current map of predicted floristic variation of trees in Peruvian Amazonia.  

Even though the random forest regression in IV explained most of the variation 
of the floristic gradients, an estimate of spatial uncertainty would allow a better-
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quality assessment of the predicted floristic maps. Recent existing frameworks allow 
quantifying spatial variation of uncertainty in random forest predictions 
(Meinshausen 2006; Wager et al. 2014; Coulston et al. 2016; Mentch & Hooker 
2016; Meyer & Pebesma 2020) and hence, it would be recommended to address this 
important issue in future research. One of these frameworks allows estimating the 
area to which a prediction model can be reliably applied (Meyer & Pebesma 2020). 
This method, called “area of applicability” (AOA), derives a “dissimilarity index" 
(DI) that is based on the minimum distance to the training data in the predictor space. 
The following figure shows an example of the AOA method applied to the spatial 
random forest predictions on the floristic ordination axes (NMDS 1,2 & 3) in chapter 
IV.  

 
Figure 3.  Spatial patterns in the predicted community composition of tree genera across Peruvian 

Amazonia. (A, B and C) represent the predicted NMDS ordination axes 1, 2 and 3 
respectively. (D, E, F) represent the dissimilarity index (Meyer & Pebesma 2020) for 
each of the NMDS predictions. Red colors in panels D, E and F show areas that are too 
different from the data used for model training to provide reliable results and, hence, 
model predictions should not be made for those areas. 
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4 Conclusions 

Average reflectance values derived from Landsat imagery are good ecologically 
relevant predictors to model the distribution of tree taxa at local extents in Peruvian 
Amazonia. The average spectral values derived from Landsat imagery reflect habitat 
conditions and their underlying properties such as soil characteristics, and not 
species-specific spectral patterns. Including elevation as an additional variable 
consistently improves model performance when modelling the distribution of trees 
at local extents. Having maps of predicted distribution of tree taxa at local extents 
could help forest management practitioners to estimate the distribution of important 
tree taxa within their management areas even before collecting field data and even 
before requesting an area as a forest concession. This modelling framework could 
also be adopted by government forest institutions aiming at estimating timber 
potential as well as prioritizing or delimiting conservation or management areas for 
endangered tree species. 

It is possible to use differences in the reflectance values of the near-infrared and 
short-wave infrared spectrum of Landsat imagery to consistently predict changes in 
the floristic composition of trees at different extents and different forest types in 
Amazonia. Floristic patterns of trees were strongly correlated with Landsat 
reflectance values and, to a lesser degree, to other environmental variables such as 
climate layers across Peruvian Amazonia. Based on those remote sensing and 
environmental correlates it was possible to derive the first map of predicted floristic 
variation of trees throughout all Peruvian Amazonia. This map offers a unique 
opportunity for government forest institutions to identify and prioritize suitable areas 
for conservation purposes. 

Forest inventory and census data are sources of information of paramount 
importance for ecological studies since they cover vast areas from remote places. 
Combining legacy forestry data with available remote sensing and environmental 
layers offers an efficient way of mapping continuous biodiversity patterns, such as 
species distributions and floristic patterns, over large areas in Amazonia. Mapping 
tree species distributions and floristic patterns at different geographical extents are 
useful for practical applications such as characterizing biodiversity patterns and 
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forest resources in areas where field work is yet missing and identifying suitable 
areas for forest management and conservation purposes. 
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