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Companies might receive dozens or even hundreds of receipts and invoices per day. It
consumes a lot of working hours to keep them all organized — invoices must be paid on
time and receipts must be archived properly. This research aims to reduce the amount of
manual labor the organizing requires with automated classification.

Personally, I’m writing this thesis in collaboration with my workplace — a company called
Eneroc Ltd. They had a problem with document classification consuming too many work-
ing hours. Therefore, they created a system to automate this process. The existing system
uses a text-based approach that searches for specific key words in the documents. The
system works rather well, but the company wanted to find out if some modern approach
could outperform the existing system and add more features into the process.

The goal of this research is to find out if a machine learning based approach could be
used to classify documents into invoices and receipts. In addition to the classification, the
approach should also be able to collect key information from the documents. This thesis
describes the workflow of creating a machine learning based solution to tackle the given
challenge.

The research resulted in an application that takes in invoices and receipts in PDF format.
The system trains a k-nearest neighbors model with training data, that was created in the
process of the research. The model is then used to classify different parts of the new PDF
files into predefined categories. The key information is extracted from these categories.
The k-NN model was validated with k-fold cross-validation. The validation showed that
the model is performing correctly. Some preprocessing was also introduced in the process,
which further improved the results. Good results with the k-NN model imply that using a
proper machine learning solution would be profitable.

The final classification between receipts and invoices, as well as the key information ex-
traction, is done based on the classified document parts. This works rather well on the
classification and simple key information extraction. But more complex key information
extraction — like the product list extraction — still requires more work.

The research proved that machine learning solution could be used to classify documents
into invoices and receipts, and also to collect key information from the documents. The
created application isn’t yet ready for deployment, but it gives a good foundation for
future development. The research also shows which steps to take next and where to focus
on when improving the system.

Keywords: Classification, Machine learning, k-nearest neighbors, Portable document for-
mat, Document extraction
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1 Introduction

Companies might receive dozens or even hundreds of invoices and receipts per day. And
almost all of them look different, whether in electric or in paper format. It takes quite a
lot of working hours to keep them all organized, and to find the relevant information from
them. This thesis aims to tackle the problem with computer automation.

This thesis describes the work flow of creating a new system for processing invoices
and receipts. The system should be able to identify these documents as invoices or re-
ceipts. Furthermore, it should also be able to identify relevant key information from the
documents. This information includes, for example, the total amount and the tax percent-
ages.

The next section describes the inspiration behind this thesis — why is the system cre-
ated, and how it will be used. The section after that will guide you through this thesis. It
describes the main structure of the thesis, and presents which topics will be discussed in
the later chapters. It will also tell you what knowledge you should have before reading

the thesis.

1.1 Inspiration

I work at a company called Eneroc Ltd. They had a problem with receipts and invoices
consuming too many working hours. So instead of employees reading through the docu-
ments, they developed a piece of software that does the work.

This current approach handles the whole document as one long line of text. It searches
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for a set of predefined keywords in the text. When it encounters such a word, it tries to
find some relevant information from the next or previous words. For example, when the
system finds a keyword "VAT", it tries to find some number nearby that could be the VAT
percentage. This system works rather well on finding simple information, like the VAT
percentage or the total amount. But it doesn’t know how to read complex information,
like the receipt items.

The company wanted a new, improved method to handle the incoming invoices and
receipts. Today’s technologies allow the use of machine learning and other advanced

methods that could help to improve the old approach.

1.1.1 Existing solutions

There are already multiple solutions available on the market that offer similar functional-
ities as the new system should have. But it’s difficult to find a system that offers all the
needed features. And it’s impossible to find a system that can be as widely modified as
your own system.

The existing solutions usually offer document scanning with some key information
extraction. This data can then be stored into a cloud service or exported from the appli-
cation. Many of the applications are designed only for receipt tracking, but there are also
systems that support receipts and invoices. This kind of system could maybe be used to
achieve the desired results. But such a system would most likely require subscription pay-
ments. The existing applications also most likely contain multiple unnecessary features.
And even with different payment plans, users most likely end up paying for features they
don’t use.

Creating an own system gives us the ability to include only features that are needed
— and new features can also be added later. In the own system, the only cost is the de-
velopment process. After the development, it will be very cheap to maintain the system.

Creating an own system also gives the opportunity to sell product licenses to other com-
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panies and users once the system is working — potentially making the system profitable.

1.2 A guide for the reader

This thesis handles topics that include classification, machine learning, k-fold cross-
validation and k-nearest neighbors algorithm. The thesis will guide you through the topics
briefly, but any prior knowledge in the topics will help you understand the actual content
easier. This thesis is written for anyone interested in the work flow of creating a machine
learning application. Or anyone interested in extracting information from documents.

By now you should have read — or at least glanced through — the table of contents. The
backbone of this thesis consists of the chapters 3 (Approach) and 4 (System description).
The former of these chapters describes the approach used to create the system, without
going too deep into the technical details of the implementation. This chapter also provides
an introduction into the used techniques. The latter chapter, on the other hand, describes
the technical implementation of the system. It shows the used programming language and
the essential third party libraries. This chapter assumes you are already familiar with the
approach and the used techniques.

You should also take a look at the appendix A, before proceeding to the next chapter.
This appendix contains an example invoice that will be referred to in multiple places
throughout the text. The example invoice is an actual invoice from the data sets that are
used in this thesis. The invoice is written in Finnish — like most of the other documents
this thesis utilizes — but you will still see the basic structure of the invoice, even if you
don’t understand Finnish language. The most important information from the invoice is

listed also in English in the appendix.



2 Targeted data

The data used in this research consists of receipts and invoices. Most of the documents are
PDF files, which will be the main focus for this research. In addition to the PDF files, also
XML and traditional paper documents are included in the data. The final system should
be able to handle any of these file types, and transform them into one solid form which
can then be further processed. All of the documents are machine written. Hand written
documents are excluded from this thesis.

This chapter briefly tells about the different data types and how they should be han-
dled. It also describes what kind of data is used in the research and how much data is

available. Later in section 4.1 you will learn how each of these data types is processed.

2.1 Supported data types

2.1.1 XML files

XML stands for eXtensible Markup Language [1]. A markup language doesn’t contain
any styles, but instead shows the structure of a data. For the purpose of this thesis, XML
files are very easy to work on. We can just pick the correct values from the data structure

as long as we know the attribute names we are looking for.
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2.1.2 Paper format

Paper format is luckily stepping aside and making way for new electric formats, but es-
pecially receipts are still very often received in paper format. These documents must be
turned into digital format in order to process them.

The first step is to scan the documents into images or PDF files. But this alone isn’t
enough. We must also read the text content on the documents using a method called
OCR. OCR stands for Optical Character Recognition. Using OCR we can turn scanned
documents into digital PDF files, where each recognized character is turned into a digital
letter. This text can then be processed, for example copied or modified. Furthermore,
OCR also preserves the location of the texts in the document. This proves to be very
useful in the latter chapters — compared to reading the whole document in a one long

string of text.

2.1.3 PD¥F files

PDF (Portable Document Format) is a file format developed by Adobe Systems Incor-
porated, and it is currently ISO standardized. It aims to be a format that can be created
and viewed in multiple different environments. These files may contain for example text,
graphics and hyperlinks. [2]

PDF files are the main focus of this thesis since majority of receipts and invoices are
received in this format. The diversity of PDF files also helps in achieving the desired
results. PDF files can contain images and texts in different sizes and colors. There isn’t
any template for PDF invoices or receipts — each company has their own template for
these documents. This is the key reason for this whole thesis. The final system should be

able to process receipts and invoices of any template.
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2.2 The data used in the research

The data used in this research consists of receipts and invoices. These documents are
actual documents that Eneroc Ltd. and it’s associates have received. The total amount of
the used documents is 336, which consists of three different data sets. The first one has
60 files, the second one 52 files and the third and the largest data set has 224 files. The
first two data sets are provided by Eneroc Ltd. and the third one by it’s associates. The
example invoice in appendix A is taken from the second data set.

Fortunately, the range of the documents is rather large. The receipts contain for ex-
ample taxi receipts, parking receipts, grocery store receipts and software subscription
receipts. The invoices contain for example rent invoices, magazine invoices and electric
equipment invoices.

On the downside, the variety in the documents is pretty limited. Many of the docu-
ments come from the same senders and may even contain the same items. For example,

monthly billed internet access invoices are more or less copies of each other.



3 Approach

When the research began, the best approach wasn’t clear right away. Thus, another ap-
proach was first tested. This approach is called template matching. Template matching is
used to find predefined patterns in images. This method was however quickly abandoned
because of the diversity of the receipt and invoice documents. Such templates don’t exist
that would work on every invoice and receipt. It was clear that handling text as text is the
best approach.

In order to find all desired information from the documents, a classification approach
was introduced. In this approach, the documents are cropped into multiple smaller ar-
eas and these areas are then classified into predefined categories. For example, all total
amount related information would be classified into "7otal amount" category. In the end,
all useful information is classified into correct categories. The desired information — for
example the total amount — is then extracted from these categories.

In this chapter, I will first briefly tell about the template matching technique and the
reasons why it was abandoned. Then I will move on to the techniques, the actual approach
and the programming methods that were used. This chapter focuses on describing the
approach without going into the technical details of the product. The next chapter 4,
"System description" , will tell the technical details and show how the approach, described

in this chapter, is implemented.
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3.1 The discarded template matching method

This chapter explains the basic idea of the template matching method, how it was imple-
mented for this task, and why it didn’t work well for this research. "Template matching"
as a term already gives a hint of what template matching is. In template matching, we have
a predefined template. Then we try to find occurrences of the template in new, unforeseen
data. Template matching could be used, for example, to find faces in images [3]. In that
approach, the template would be an image or images of a face. Then the system would
try to find the best position in the image where the template matches with the image —
resulting in a working face detection system.

In this research, the idea of using template matching, was to find elements in the
documents that are typical for invoices and receipts. For example, in invoices the total
amount is almost always stated somewhere in the document. Therefore, we could have
a set of templates taken from actual occurrences of total amounts in invoices. Then we
would try to find matches for these templates in the new documents.

This task, of finding the total amount with template matching, was actually imple-
mented in the early stages of this research to see if the method could work. Thus, it will
be used as the main example in this section. The implementation used the total amount
template from 10 different invoices with good variety. Then it tried to find similar tem-
plates in new invoices to find the total amount.

The problem with the template matching approach in this research is the wide variety
of the document templates. If we take a template of the total amount from one invoice, it
would probably work rather good on new invoices that appear in the exact same document
template. But it would most likely fail on new invoice templates, since the template for
the total amount could be very different. This method would work good only if there were
some standardized invoice template that everyone follows.

Furthermore, the total amount changes on different invoices. So, including the total

amount in the template means that one template from an invoice wouldn’t match com-
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pletely with an invoice of the same format, if the total amount differs. If we don’t include
the total amounts in the templates, then how do we know where the total amount is located

on the document?

3.2 Processing text as text

Since invoices and receipts are — most of all — text documents, it felt more natural to
process them as text rather than using image based template matching. At this point it was
very clear that this is the next direction of the research. Even if some of the documents are
scanned paper documents in image format, it would be extremely useful to first turn them
into text format and then process them as text documents. This is where optical character
recognition (OCR) steps in.

Optical character recognition is a method of turning text in image format into a ma-
chine readable text format [4]. These methods usually utilize machine learning tech-
niques, and they can be very complex systems. This research utilizes two different sys-
tems: Tesseract and ABBYY Finereader. These systems and OCR are better described
in the section 4.1.2.

The earlier example, of finding the total amount in a receipt, becomes much more
simpler with a text based document. Now, we don’t have to find any predefined image
template in the document. Instead, we try to find predefined words in the document. The
format of the document is no longer relevant. In order to find the total amount, we would
search for phrases like "Total", "Total amount", "Sum", etc. and try to find an appropriate

sum nearby.
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3.3 Tools

3.3.1 Programming language

For me, personally, there was only one answer to what programming language should be
used. The answer is Python. First of all, I already had some experience with Python.
Mostly in text-based machine learning tasks — tasks, that involve similar techniques, as
this thesis would most likely use. Secondly, Python offers powerful tools without complex
programming structures. This is the ideal situation for building small reusable scripts —
such as this thesis would probably use.

Python has also a great collection of useful libraries. This research uses multiple
libraries to, for example, identify relevant information and tag them. And ultimately,

Python has also a comprehensive selection of easy-to-use machine learning libraries.

3.3.2 Machine learning and k-NN

My workplace already has an existing solution that reads receipts and invoices to find
all relevant information. This existing system works with predefined keywords to find
that information. They wanted to see if the results could be improved with more modern
techniques. Therefore, machine learning was in key position when the approach was
planned.

Machine learning methods can be quite complex and heavy. Sometimes it’s easier to
start with a simpler technique, and if it shows significant results, move to a real machine
learning solution. In this research, the simpler method would be k-NN, which is bet-
ter described in the following section. Eventually, the whole machine learning part was
dropped out of the scope of this research. The scope is to see if machine learning methods
could improve the results of the earlier system, and k-NN already gives us a good clue of

the machine learning capabilities.
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Figure 3.1: Illustration of k-nearest neighbors. [5]

k-NN

k-NN stands for k-Nearest Neighbors. This is an approach where new data is classified by
looking at earlier data, that has already been classified. We try to find predefined amount
(k) of data samples in the classified data, that are the most equal samples with the new data
(Nearest Neighbors). Then we classify the new data into the most popular class among
the nearest neighbors.

To better understand the k-NN functionality, take a look at the figure 3.1. In this
example image, the yellow squares on left are already classified into one category and the
green diamonds on the right to another category. The blue circle in the middle is a new
sample that is classified based on the 5 nearest neighbors. The dashed line shows that
3 squares and 2 diamonds are the 5 nearest neighbors. Based on this amount, the new
sample would be classified as an orange square.

In reality, k-NN isn’t a machine learning method, since the model doesn’t actually
learn anything. Instead it works by making decisions solely based on the old data. Never-
theless, if k-NN provides us with significant results, it is very likely that machine learning

methods would provide significant results as well.
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3.4 The classification task

One of the main tasks of this research is to be able to classify new documents into cat-
egories. The most important classification task is to correctly identify a document as an
invoice or a receipt. It is important for companies to pay invoices on time and to correctly
archive receipts, so correct classification is crucial.

Other classification tasks of this research include categorizing different parts of the
documents into predefined categories. For example, all tax related information should
be categorized into "Tax information" category. This will help us in identifying the most
relevant information on the document. For example, once we have all the tax related
information in one group, it will be much easier to read the tax percentages from that
group.

Classifying the document parts into categories means that it’s not enough to just in-
spect the documents as a whole, but instead they should be inspected bit by bit. The idea
for this is to go through the text in narrow rows and columns. Then these small areas are

classified into six predefined categories:

1. Receiver / Sender information
2. Product information

3. Total amount information

4. Tax information

5. Receipt information

6. Invoice information

All text, that doesn’t belong to any of the above categories, is classified as useless
information. So, after the classification process is done, we should have only useful in-

formation in the correct categories.
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The first category, "Receiver/Sender", will contain all information about the sender
and the receiver. This information will then be used to identify the sender by filtering out
the receiver information. The second category, "Product", contains all individual items
from the document. This class also contains the pricing information for the individual
products. The third category, "Total", contains information related to the total amount.
From this class we will pick the total amount of the receipt or the invoice. The fourth
class, "Tax", contains information about the taxing. This includes the total tax percentage,
and also the tax percentages for individual items, if such exists. The fifth class, "Receipt
information", contains all information related to receipts — for example, the used payment
method. The sixth class, "Invoice information", on the other hand, contains information
related to invoices. This includes for example the bank account number, where the invoice
is paid. The last two categories, Receipt information and Invoice information, are also

used to determine whether the document is a receipt or an invoice.

3.5 Preprocessing

Wherever machine learning is involved, there is preprocessing. Preprocessing includes all
the steps where the data is processed so that machine learning can learn something from
it. Preprocessing is also done to improve the learning and the results [6].

In this research, it became very early clear that some preprocessing is needed. The
information in the documents is very different on each document, so it cannot be given to
a machine learning model as is. The following subsections describe what preprocessing
methods were used in the system, and which methods could be used to further improve

the results.
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3.5.1 Text cleaning

One of the first and easiest preprocessing methods that can be done is turning all letters
into lowercase. This makes sure that the same word in two different cases isn’t treated
as two different words. For example, many receipts might say "TOTAL" in uppercase
letters to make it stand out better. We don’t want to treat this any differently than "total"
in lowercase.

More sophisticated preprocessing methods were also introduced in the application.
These methods are lemmatisation and stop word removal. These methods are language
specific, which means that we have to figure out the language for each document before
processing them. These methods and their advantages are briefly explained in the next

sections.

Stop word removal

Stop word removal is a method of removing common small words from text. In machine
learning, this helps the model to focus on the most important content. For example, with
a sentence "The total amount is $4.99.", stop word removal would remove the words
"The" and "is". The resulting sentence "total amount $4.99" still contains all necessary

information without the irrelevant content.

Lemmatisation

Lemmatisation is a process where words are transformed into their base format. This
helps machine learning models to process the different formats of one word as equal.
Lemmatisation would turn for example the words "tax", "taxes" and "taxing" into the

base format "tax".
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Sophisticated preprocessing problems

The sophisticated preprocessing methods also introduced a few problems. Firstly, some
of the documents contain the same information in English and Finnish. This means that
lemmatisation and stop word removal should be used for both languages. Especially
lemmatisation for two languages doesn’t really work. It is also difficult to find a working
lemmatisation solution for Finnish language. Therefore, Finnish language doesn’t use
lemmatisation in the produced application. In the final application this should be fixed to

further improve the results.

3.5.2 Tagging

We don’t want to teach any machine learning model the specific information in the docu-
ments. Instead, we want to teach the general format and patterns of the documents. This
way, the model will be more successful when processing new documents.

Let’s examine the example invoice in appendix A to get a better idea. If we teach a
machine learning model that for example "Yhteensd € 34,89" describes the total amount.
Then we give it a document that contains a text "Yhteensd 41,20 €". The model might not
identify this as a total amount field, since they contain different numbers. To overcome
this problem, we use a method called "tagging".

Tagging is a method where relevant, changing information is replaced with predefined
strings. These strings should be something that don’t appear in the text naturally. In the
above example, we could replace the changing numerical amounts to a tag "<amount>".
So, instead of the original text, we would teach the machine learning model that "Yhteensd
€ <amount>" describes total amount. Then the new data — preprocessed to "Yhteensdi
<amount> €" — would much more likely be identified as a total amount field. Other

fields that could be tagged are for example emails, organizations and phone numbers.
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3.6 Creating training data and putting it into use

One big issue with machine learning tasks in general, is the lack of data. All machine
learning solutions need training data in order to learn anything — and the more the mer-
rier. Unfortunately, good training data is sometimes hard to come by. And even if data was
available, it might not be suitable for the machine learning task. Very often researchers
have to rely on gathering the suitable training data themselves. This applies to this re-
search as well.

Eneroc Ltd. and it’s associates provided me with about 300 documents. These doc-
uments are actual receipts and invoices, that the companies have received in their work.
And the final application would be used with very similar documents. It is good to have

real data to be used as the training data, but unfortunately this data isn’t classified at all.

3.6.1 Classification application

In order to create a machine learning model that knows how to classify documents, and
parts of documents, into predefined categories, we need training data that is already clas-
sified into these categories. Therefore, an application was created, that is used to classify
the data into these categories manually.

The application shows one document at a time to the user, and goes through the doc-
ument in small areas. It shows where the area is on the document, and it also shows what
text was extracted from that area. User then has the option to classify each of the areas
into one of the predefined categories, presented in the section 3.4. As a result, we will
have two text files per each document. One of these files contains all extracted texts, each
on a new line. And the other file contains the labels i.e. the classes, that the lines belong
to. A more specific description of the application can be found in the chapter 4.3.

The classification process takes quite some time to complete, since all the available

documents should be classified, in order to have as large training data set as possible. And
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classification by hand is a slow process, even when done with the classification applica-

tion.

3.6.2 Training the model

Once we have the training data in a suitable format, we can move on to training the
machine learning model. At this point, the data is in the exact format that was extracted
from the PDF files. So, before training the model, the data is preprocessed as described
in the section 3.5. This allows the model to learn the common patterns of the documents,
instead of some specified details.

Before training the model, the data must be divided into training and test data, in order
to validate the model. The model should never be tested against data that it has already
seen. This would give us unreliably good results, since the model has learned how the test
data should be classified. Therefore a separate test data is used to test the model accuracy.
One unfortunate fact is, that some of the documents in the available data are very similar
in format and content. So, the training data and the test data will most likely overlap each
other a bit, for some of the documents.

To overcome this problem, and to get reasonably reliable results, a method called k-
fold cross-validation is used. In all its simplicity, this means that the model is split into
training and test data sets multiple times, and the model is trained and validated with all
these sets [7]. The final accuracy is then measured from the average of all accuracies.
This way, if one of the loops — called fold — provides too good results, the other folds will
compensate for it.

The figure 3.2 visualizes how the k-fold cross-validation works. This example image
uses 10-fold cross-validation, which means that the data set is split into training and test
data set 10 times. Each fold uses 1/10 of the data set as the test data set (or validation data
set) and 9/10 as the training data set. The test data sets never overlap each other between

the folds. This way, each data sample is used as a validation sample exactly once.



CHAPTER 3. APPROACH 18

( Dataset

Runl(1&2@3\(4@5((6((7(‘&8(9K100
{

Rn2 (1 (2 (3 (a4 (s (6 (7 (8 ( o ( 10

Trajning\ ;
|

Run9(1@2\w5

w
—
S
=
wh
—
=N
=
-~
l—
0
=)
==
—_
o
—

Rinto (1 (2 (3 (4 (s (6 (7 ( s[>

)
N
o

T

Figure 3.2: Flowchart of 10-fold cross-validation. [5]

The test data and the folds are only needed for validating the system. In the final
product, all available training data can be used in the training. This is because all the new

documents, processed with the final system, will be unforeseen data.

3.7 Reading the classified information

After the model is trained, and documents have been processed with it, we will have data
that is split into the predefined categories. Now, we still must extract only the needed
information from the classified texts.

The first class contains information about the sender and the receiver. This includes
names, cities, countries, postal codes, companies, etc. In order to distinguish the sender
information from the receiver information, the system needs to be provided with the re-
ceiver information. Then it tries to remove all receiver related information from the ex-
tracted text, and leave only unique text.

Reading product information is by far the most difficult category, since it can contain
pretty much any information. And on the other hand, it is also the least essential of the
categories. Therefore, little effort was put into reading the product information. Currently
it just removes duplicated information from the extracted text. And user must then do the
final decision on which of the texts are actual products. This category is something that

should be improved in the future. Chapter 6 will talk more about future improvements.
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The total amount is a very essential piece of information on each receipt and invoice.
The system will therefore first try to find it in the extracted text. And if it isn’t found, the
system tries to calculate it from the tax percentage and the other found amounts.

Similar to the total amount, the tax percentage is also rather essential information.
And it is also possible that there are more than one tax percentages on one document.
For example, food products might be taxed differently than alcohol products. And it is
important to find all used tax percentages and preferably the amounts that are taxed with
each percentage. If tax percentages or taxed amounts aren’t found, the system will also
try to calculate these from the total amount and the other amounts and percentages.

Last but not least, the system will try to determine whether the processed document
is an invoice or a receipt. For this purpose, the two last categories are used. These cate-
gories contain information common for an invoice or a receipt. In addition to determining
the document type, the system will also try to find other essential information from these
categories. This additional information together with the amount of data in the categories
is then used to determine the document type. For example, a document with a due date,
is most likely an invoice that requires action from the user.

In the end, the system will print all the gathered information, described in this sec-
tion, to the user. It will also provide the user with possible errors that occurred during the
process. For example, if the tax percentage information is missing completely, it is im-
possible to return any tax percentage — found or calculated. The system will also tell the

user which information is found on the document and which information is calculated.



4 System description

The previous chapter, chapter 3, described the approach that was used in the research of
this thesis. This chapter will now dive deeper into the technical details and the code that
was used to achieve the described approach. The structure of this chapter will somewhat
follow the structure of the previous chapter.

The first section in this chapter describes how the different data types, presented in the
section 2.1, are processed. It concludes why the PDF file type became the most important
data type in the research. The latter sections describe how the PDF files are processed —
how they are turned into training samples, how the training samples are used to classify

new documents and how to extract the wanted information from the new documents.

4.1 Processing different data types

This chapter briefly tells how each supported data type is processed. The possible types
for the documents are XML files, paper documents and PDF files. You will see why the
XML files were eventually bypassed in the research, how paper documents are processed

and why the PDF file type is paid so much attention to.

4.1.1 Processing XML files

XML files are markup files, so extracting information from them is rather easy. You just

need to know the correct tag names for the information you are searching for. And then,
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you of course need a tool to extract the information. Python has a package called xm1,
that contains a set of tools that can be used to process XML files. This research utilized a
submodule xml .etree.ElementTree to extract the wanted information.

It was concluded that extracting the information from XML files is very easy. There-
fore, the XML files were eventually dropped out of the scope of this research. The re-
search aims to find some predefined information from a given document — e.g. tax per-
centage from an invoice. And if it’s as easy as reading a tag <VatRatePercent>, itis

not really worthwhile to invest time in this topic.

4.1.2 Processing paper documents

Almost all documents that a company receives in paper format, are scanned into digi-
tal format, for easy storage and to ensure that the documents don’t disappear. Scanners
usually provide the option to scan a document into a PDF file or an image format. Unfor-
tunately the PDF files usually don’t include any actual text content. And image formats
obviously don’t contain any text. Before further processing, these file formats must be
transformed into files that contain text.

The image format documents are machine read into PDF files with the help of Optical
Character Recognition. Some scanners provide built in functionalities to turn scanned
documents into PDF files with OCR [8]. If this is the case, the files should be scanned
into PDF directly. But since the option is not always available, this research utilized two
systems for the OCR task: Tesseract and ABBYY Finereader.

Tesseract is an open-source OCR engine that can be downloaded and used directly
from the command line. It was tested on a receipt from a grocery store. Tesseract per-
formed pretty good, but there are some errors in the text output. These errors in the text
would have a negative impact on the machine learning model training and validation.

ABBYY Finereader on the other hand, is a paid OCR engine. My workplace, Eneroc

Ltd., is already using this system to read scanned documents into PDF format. Therefore,
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ABBYY Finereader was also tested for this research. The same receipt scanned with
Tesseract, was now scanned with ABBY'Y Finereader. The results seemed much better,
so ABBYY Finereader would probably be used in the final product.

After the paper documents are turned into PDF files, they will be processed just like
any other PDF document. The actual method used in the conversion isn’t relevant. There-

fore this topic wasn’t studied any further.

4.1.3 Processing PDF files

PDF is one of the most common invoice and receipt file formats received by companies
— if not the most common. Therefore, most of the research focuses on extracting infor-
mation from PDF files. There are countless amounts of different templates that PDF files
come in, so the information extracting isn’t as trivial as with XML files. PDF file format
is also rather complex, so the text cannot be extracted directly from the document file.
The PDF files will be completely processed with Python. Python has packages that
can be utilized, for example, to extract the text from the files. The following sections will

show in detail how the PDF files are processed in the research.

4.2 Turning PDF files into training data

In order to use the PDF files in a machine learning system, the files must be first turned
into a suitable format. The object is to divide the files into smaller pieces and then classify
each of these pieces into a predefined category.

The first approach was to turn the PDF files into images, and then split these images
into smaller pieces. The pieces would then be read with OCR to extract the text from each
piece. This didn’t work as intended, so another approach was used. The next approach
splits the actual PDF file into smaller PDF files to make sure the text remains as is. The

following sections describe both of these approaches.
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4.2.1 The discarded cropping of images

In the first approach the PDF file was first turned into an image. Then the image was
cropped into smaller areas in a loop. Each of these crop areas was then read into text with
the help of Tesseract. These texts could then be classified and used to train the machine
learning model. This approach, however, had multiple problems, that would be very hard

to solve. Therefore, the approach was discarded from the final approach.

Problems with the image cropping

The first problem was, when the document was cropped into narrow horizontal slices,
the intersection would very often cut lines of text into two halves. This made it almost
impossible for any OCR engine to actually recognize what the lines said. Itis very difficult
even for a human being to read these lines. And to further complicate the problem, the
OCR machines would still recognize the split lines as text. The lines would be read
into totally meaningless strings of characters. The figure 4.1 shows an example where
split lines and complete lines have been processed with Tesseract. The figure helps to
understand the problem with split lines. To overcome the problem, we would have to
somehow recognize where the line spacing is located before cropping the image. With
variations in font size, this would be very difficult as well.

Secondly, receipts and invoices are very often divided into some sort of columns. So,
reading a full width row of text might belong to two different classes — for example tax
percentages on the left column and total price on the right column. This means that the
cropped areas should also be read in columns. With the current approach, this would
sometimes lead into cutting lines of texts vertically half, which makes the classification
very difficult.

Combine the horizontal cutting of texts with vertical cutting, and no one will know
what the original document said. Once again it was concluded, that text files should be

processed as text files.
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Figure 4.1: Example from an invoice that has been split to narrow image rows. These
rows have then been processed with Tesseract OCR engine. The grey area shows how
Tesseract has processed the whole lines correctly, but the split lines produce completely

meaningless text.

4.2.2 Cropping the PDF files

In order to crop the document, and to get reliable text output from the cropped area, it
was decided to crop the actual PDF file and then extract text from the cropped file. This
is ideal approach for the original PDF files, since the original text is kept intact, and we
don’t have to rely on OCR engines at any point. And if the original documents are in
image format, we can use the OCR engines on the whole document rather than on a small
area.

Cropping a PDF file isn’t as easy as image cropping, since the PDF file type is rather
complex. A couple different PDF Python libraries had to be tested and utilized to finally
get the cropping to work. Some of the libraries cropped the PDF files only into images.
And some of them cropped the PDF files correctly, but the files still included all text
content from the original file.

The final approach was able to crop the document area to desired size, and then copy
the text inside that area. Now this had to be done multiple times for the same file in
different coordinates. The system reads the PDF document area size in pixels and divides
it to predefined sizes. Then it goes through the file in an area of that size. For example 3

columns and 100 rows would use 1/3 of the original width and 1/100 of the original height
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as the crop area size. The texts from each area can be written to a text file for example.

4.3 Classification application to produce training data

Once it was figured out how a PDF file can be cropped into smaller areas, and how the
text can be extracted from each area, it was time to create training data for the upcoming
machine learning task. It was very clear that the training data must be created by hand
since no appropriate data exists yet. To help speed up this process, an application was
created that can be used to classify the texts.

Python is not an ideal programming language to create graphical user interfaces. But
since all other functionalities are programmed in Python, the application was also created
with Python. Also, this will not be a commercial program, so the UI appearance is irrel-
evant. Python has a popular GUI package called TkInter, that was used to create the
GUIL

The application takes in a folder of PDF files as an argument. Then it loops through
the files, and all pages in each file. The GUI shows an image of the current page to the
user. Then the application starts cropping the page and going through each crop area as
described in section 4.2.2. The current crop area is then painted as a rectangle on top of
the page image. The extracted text from this crop area is also shown to the user as plain
text. User then has the option to classify the shown text into one of the six predefined
categories, listed in section 3.4, by clicking the corresponding button. There are also
buttons to skip the current crop area or to skip the whole page.

The figure 4.2 shows the layout of the application. The example invoice from the
appendix A is currently being processed in the figure. On the left side, is an image of the
processed document. And on top of the image — in the upper left corner — is a narrow
rectangle showing the location of the current crop area. The extracted text from this crop

area is visible in the upper right section of the application. All application buttons are
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Figure 4.2: Graphical user interface of the manual classification application.

positioned below the text area. The buttons can be used to classify the current text into a
category or to skip the current area or the whole page. In this figure, user should click the
button "1 - Receiver/Sender", since the text "Telia Finland Oyj" is the name of the sender.
The button is being hovered in this image, and is thus highlighted.

As a result, the application will produce two folders: "texts" and "labels". Both of
these folders will contain one text file for each processed PDF file. The first folder,
"texts", holds files that contain the extracted texts from each file — one area per line.
And the folder "labels", on the other hand, contains matching labels for each line of each
file in the texts folder. For example, a PDF file called ". /file.pdf" would produce
files"./texts/file.txt"and"./labels/file.txt". Then the first line of text
in"./texts/file.txt" is the extracted text from the first processed crop area of
"./file.pdf". And the first line in the file ". /labels/file.txt" would contain

the label (0-6) for the extracted text.
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To better understand the application process, take a loog at the figure 4.3. This diagram
shows how the application will go through the provided files, the pages in these files and
the crop areas in each page. Whenever an area with text content is encountered, the
program will wait for user input before proceeding. Based on the input, the area is either

classified or skipped, or the whole page is skipped.

4.3.1 Problems of the classification application

As mentioned earlier, the structure of a PDF file is very complex. Therefore, handling
PDF files is very error-prone. If one PDF file is processed without errors, it doesn’t
mean that all PDF files will work with the same process. This application needed a lot of
refactoring to make sure it has proper error handling to process as many files as possible.
The more training data we have, the better results we will have.

There were multiple different problems encountered in the files during the processing,
some of which are listed here: When extracting text from the file, some files included an
addition euro sign (€) at the end of each area, even though not visible on the PDF file.
Some files contained characters that weren’t recognized by the text extracting library.
Some files showed all text content in each cropped area. And some of the files used an
encryption method that isn’t supported. These problems might be problems in the PDF
files themselves, but more likely they are problems of the used PDF libraries.

Fortunately, most of the files processed correctly and resulted in the desired output.
However, when the cropped areas were classified by hand, it wasn’t always clear which
class an area belongs to. Sometimes the areas contained parts of two classes, and some-
times the area contained data that is difficult to classify. For example, a text "0.00" con-
tains very little information to any category. For these reasons, the button to skip a crop
area was added into the application.

The later chapter 5.1 will show in detail how many of the available files were read

and processed successfully. It shows that most of the skipped files are files that don’t
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Figure 4.3: A flowchart for the training data creation application.
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contain any text content. These are files that should be processed with OCR in the final
application. The section 5.1.1 will also show how many training samples the available

PDF data produced.

4.4 Training the k-NN model in action

Once the training data was created, it was time to put it into use. This means training
the k-NN model with the training files, and then processing new files with that model. In
order to see if the system really works, a k-fold cross-validation system was implemented.
The validation showed promising results for the data as is, but the results could be further

improved with preprocessing.

4.4.1 Training a k-NN model with Python

Training a k-nearest neighbors model in Python is relatively easy — thanks to comprehen-
sive Python libraries, that is. This thesis utilized a package called sk1learn (scikit-learn)
for the training task. The package provides easy-to-use fitting functions with automatic
stop word removal. User doesn’t have to know anything about what happens behind the
scenes.

More precisely, this thesis used a package called TfidfVectorizer from sklearn
to vectorize the training texts. In short, this applies more weighting for the more impor-
tant words, and less weighting for the less important words in the training data [9]. Then
the model was trained with the vectorized texts and the label files together. The training

utilized a package called KNeighborsClassifier from the sklearn package.

4.4.2 k-fold cross-validation with Python

The k-fold cross-validation method is shortly described at the end of the chapter 3.6.2.

Python provides packages that have this validation method already implemented and
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ready to use, but since the functionality is very simple, I decided to create it myself.
This gives me more power to control what happens inside the validation.

The implemented validation splits the amount of files into given amount (k) of equal
portions. Then it loops through the portions and trains the model, as described in the
previous section 4.4.1, but leaves the files in the current portion out of the training files.
These loops are called folds. In each fold, the left out files are then classified with the
trained model. Then the fold accuracy is measured as the percentage of correctly classified
texts. This can be measured because we already have the correct labels for those files. And
in the end, the total accuracy of the model is the average accuracy of all folds.

The chapter 5.2 will show the validation results without preprocessing and with pre-
processing. The results indicate that the k-NN classification is working as intended. They
also show that the results can be further improved with preprocessing. Preprocessing is

handled in the next section 4.5.

4.5 Implementing preprocessing

Even though the k-fold cross-validation at this point showed promising results, it was
clear that they could be improved with text preprocessing. The basic preprocessing meth-
ods used in the training are lemmatisation, stop word removal, turning text to lowercase,
removing unnecessary punctuation and, finally, tagging. The other methods are rather
straight forward and easy-to-implement with existing libraries, but tagging needed more
focus in order to work in the desired way. The other preprocessing methods are better

described in the section 3.5. And the tagging implementation is described below.

4.5.1 Tagging implementation

The documents contain a lot of changing information, that is still relevant to the context,

but machine learning models may have a hard time learning anything from the changing
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information. For example, teaching the model that an IBAN is invoice information, is
very relevant. But teaching the model that a specific IBAN is invoice information, is
useless. The model should identify all future IBANs as invoice information. Therefore,
tagging was introduced to replace these changing words with known tags. The first task
was to identify which information should be tagged. Seven tags were created: <url>,
<bic>, <date>, <iban>, <email>, <number> and <amount>.

The implementation works by splitting the text into an array, where one item is one
word. Then it goes through the array and runs each word through an algorithm that tries
to figure out if the word should be replaced with any of the predefined tags. The following

section shows how each tag is handled.

Tagging numbers

Receipts and invoices contain a lot of changing numbers, so tagging them is quite im-
portant. Therefore, the number tagging was split into two different tags: <number>
and <amount>. The <amount> tag is used to tag any numbers that reassemble some
amount. Usually an amount of money. The <number> tag, on the other hand, tags all
remaining numbers. The implementation tags all numbers that have a dot (.) or a comma

(,) as the third last character as <amount >, for example "7100,00" or "0.89".

Tagging banking information

Tagging international bank account numbers (IBAN) and business identifier codes (BIC)
is useful to identify a document as an invoice. This is also important information for
the user of this software, so the user knows where the invoice should be paid to. The
implementation works by searching for a word that begins with two letters and is followed
by a line of numbers. The found text is then validated with an IBAN validator, and correct
IBANSs are tagged with <iban>. BICs, however, are listed in a predefined list. All

8 character long words are compared with this list to correctly tag BICs. The current
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implementation supports only Finnish BICs.

Tagging emails and web addresses

Emails are also tagged, since they are usually part of sender or receiver information.
The application uses a Python package called validate_email to tag correct email
addresses with <email>. Web addresses are tagged in a similar approach. The words

are validated with a package urlextract, and tagged with <url>.

Tagging dates

Tagging dates is the most difficult task in the tagging process. Dates can be presented in
various formats and in different languages. It would require a lot of effort to correctly tag
all date formats — and the tagging mainly affects only to the due date detection. Therefore,
a lot of effort wasn’t put into the date tagging. The implemented method supports only

the format "D.M.Y", for example "712.3.2019" or "5.12.20".

4.5.2 Using the implemented preprocessing methods

Once the preprocessing methods were implemented, they were introduced into the train-
ing and classification processes. The training data we have, is not preprocessed in any
way — this is the common situation in machine learning tasks. Therefore, the preprocess-
ing implementation must be run for each sentence we use in the training process, before
training the model. And since the model is then trained with preprocessed data, the new
data must also be preprocessed with the same implementation before running it through
the classification.

After the preprocessing was utilized in the application, the model was once again
tested with the same k-fold cross-validation method as earlier. Using the same data with
the same process — other than preprocessing — revealed that the results did indeed improve

with preprocessing. These results are represented in the section 5.2.
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4.6 Classifying new documents

After the classification process proved to be successful, it was time to implement it into a
more user friendly environment that can take in new documents and classify their content.
This meant combining things from the previous tasks into one application.

The application would have a graphical user interface, that would very closely follow
the GUI of the manual classification application from the chapter 4.3. Then it needs to
take in training files and train the k-NN model as described in the section 4.4.1. And
before the training is performed, the application needs to apply preprocessing to the text
as described in the chapter 4.5. And the preprocessing needs to be performed on the new
text files as well before the classification. Once all this works, the relevant information
from the classified texts should be extracted. This extraction will be described in the
section 4.7.

The next section 4.6.1 describes how the graphical user interface of the application
works. It also contains a figure to help understand the layout. The functionalities of the

application are explained deeper in the section after that — in section 4.6.2.

4.6.1 The graphical user interface

Classifying a document creates two files, one with the texts for each crop area from the
document and one with the corresponding labels for these texts. These files don’t really
give any information for the user. Therefore, a graphical user interface was created for
the classification application.

The application loops all documents in a given folder and all pages in each document.
It shows the current page as an image on the left side of the application. The user then has
the opportunity to either skip the page and move on to the next one or to process the page.
Processing the page loops all crop areas in the document and classifies the areas with the

trained k-NN model. After this, it will paint the areas on top of the document with a color
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matching to the class.

The class names and colors are presented on the right side of the application. This
allows the user to inspect which areas of the document were classified into which classes.
The right side also displays the file name and the page number of the currently visible
page. There is also a button to open that file with the operating system default PDF
reader, since the image of the page might sometimes be a bit blurry.

The figure 4.4 shows an image of the GUI. In this figure, the shown page is already
processed with the trained k-NN model, using three nearest neighbors. On the left side
of the application is an image of the processed page with classified areas colored on top.
The right side of the application shows the colors for each category. Above these colors
we can see the name of the file, the page number and a button to open the document. This
document can be found in the appendix A, figure A.1.

Inspecting the image shows us that the system gives promising results. We can see
that the receiver and sender information at the top left section of the document, as well
as in the invoice template at the bottom of the page, is classified into "Receiver/Sender"
class (red). We can also see some product information around the middle section of
the page (yellow), then total amount information below the products (green) and taxing
information below that (purple). This is a very common structure for an invoice. There
are also quite a few areas classified into the class 6, "Invoice information" (orange), but
no areas classified into the class 5, "Receipt information" (blue). This is a good sign for

an invoice.

4.6.2 Behind the GUI

When the application is executed, it will train the k-NN model with the provided folders
of training texts and corresponding labels. Then it will go through the new documents in
another provided folder. For each document, it will make an image of all the pages with

a package called pdf2image. These images will be shown on the GUI when looping
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Figure 4.4: Graphical user interface of the automatic classification application.

through the pages. It will also detect the language or languages for each page with the
help of 1langdetect package. These languages will be used for the stop word removal.

After the training is finished, the application will display the first page of the first
document to the user. It will also update the file name and the page number correctly. If
the user decides to process the visible page, the application will start going through the
rows and columns of the page — the crop areas. For each crop area, the application will
make a copy of the original PDF file, and crop that file into the crop area size. For the
cropping, the application uses a package called PyPDF2. From that package, it uses a
class PAfFileReader, which allows resizing the document size.

Once an area is cropped to the desired size, it is time to read and classify the text from
the cropped PDF file. The text content is extracted with a library called pdfminer. Then
the text is preprocessed as described in section 4.5. And after that, it is classified with the
k-NN model that was trained when the application was started. This process is done for

all crop areas until the whole page is processed.
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When all the crop areas of the page are classified, the classified areas are drawn on
top of the image. Then the user can move on to the next page to process it. Processing
the next page starts the classification process from the beginning. After all pages of a
document are processed, the classified texts can be saved to a new text file, where all texts
from one class are grouped together. The next section 4.7 shows how these saved files
will be used to extract the wanted information.

The following figure 4.5 shows a flowchart, that visualizes the basic process of the
described application. In the beginning, the k-NN model is trained. After that, the PDF
file pages are looped. If the user decides to process a page, all crop areas on the page
are looped and possibly classified. If all pages of a document were processed, the results
are saved into an output file. This is the basic process of the application. By changing
the code settings, the user may, for example, change the class names, the class colors, the
crop area size and the number of neighbors. The user can also decide to save the output

files for each page separately. And even the graphical user interface can be hidden.

4.7 Extracting the needed information

After the classification process is completed for one whole file, the system will output a
text file where the classified texts are grouped together. The file contains for example a
line "# 3 - Total", and then below that line are listed all lines of text that belong to the
class "Total amount". Now we still need to extract the actual total amount information
from those lines of text.

The next 5 sections will go through each of the collected information types and show
how they are extracted. After these sections, the section 4.7.6 will sum up how the ex-
tracted information could be further processed. The goal of the thesis, however, is reached
after the data extraction is complete. Section 5.3 shows how well the system performs in

extracting the desired data.
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Figure 4.5: A flowchart for the classification application.
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4.7.1 Sender information

The sender information is extracted from the class 1, "Receiver / Sender information".
This happens by filtering the receiver information out of the text and then leaving only
unique information in the returned text. The application must be provided with the re-

ceiver information before running the extraction script.

4.7.2 Product information

The second class, "Product information", is the most difficult class to process. Product
information can contain almost any text, so it is hard to distinguish which information
is relevant and which is not. And on the other hand, the outcome of this process is not
very relevant for the final program. Therefore, the current process is a very simple imple-
mentation that only removes all duplicated lines of information. The actual names of the

products are left for the user to identify.

4.7.3 Total amount and currency

Unlike the product information, the total amount information is very relevant in the aspect
of this research. The implementation tries to find the total amount and the used currency of
that amount from the class 3, "Total amount information". If the total amount isn’t found
in this class, the system will try to calculate it from the tax percentages as described in the
next section 4.7.4.

The system supports only four currencies that are found in the provided test data —
EUR, USD, GBP and SGD - but could be extended to support more. In order to find
the used currency, the application counts all appearances of the used currencies or their
symbols. Then the most used currency will be the currency for the total amount.

Finding the total amount works in a similar way. The application tries to find an

amount in each word in the class. Then it makes sure the previous word, the current
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word or the next word don’t contain the percent sign (%), in order to make sure that the
current amount isn’t an incorrectly classified tax percentage. The application counts all
appearances for each found amount. The final total amount is then the amount with the

most appearances or the highest amount found.

4.7.4 Tax percentage and the amount verifications

The tax percentage information is collected from the class 4 — "Tax information". The
application goes through each word in the class, and tries to find the percent sign (%) in
the word. Then it will inspect that word and possible next or previous words. If an amount
is found in them, it is marked as a tax percentage. Tax extraction also collects all amounts
from the text, that aren’t marked with the percent sign.

If the system didn’t find any tax percentage with the process, but it did find a total
amount in the previous process (4.7.3), it tries to calculate the tax percentage. This is
done by looping through the found amounts from the class 4. The amount must be smaller
than the total amount in order to be the tax percentage or the total amount without tax.
If it’s smaller than half of the total amount, assume it’s the tax percentage. If it’s higher,
assume it’s the total amount without vat. This assumption is made because tax percentage
is very rarely above 50 %. Then the system calculates the percentage and the amount of
tax based on these assumptions.

In the end, the tax percentage extraction will loop through all the found percentages
and all the found amounts, and it will calculate the total amount, the amount of tax and the
total amount without tax, for all amount and percentage combinations. Then it will try to
find any of these calculated amounts among the found amounts. And after that, it will still
go through the percentages that aren’t yet identified as a tax percentage. It tries to calculate
the correct amounts for those percentages based on the remaining untaxed amount. This
complex process is done in order to verify the found amounts and percentages. And

if some of them are missing, the system tries to calculate them and find the calculated
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numbers in the text.

4.7.5 Document type and type specific information

One of the key objectives for this thesis is to identify the document type as a receipt or
an invoice. For this purpose, the last two classes are used: "Receipt information" and
"Invoice information". These classes contain also other information, specific to those
classes. The system will first extract this information, and then the final decision is based
on the found information and the length of the classes.

The receipt information extraction tries to find the charged payment card manufacturer
and the last digits for the card. The implementation supports only "Visa" and "Master-
card" payment cards, but could easily be extended to other manufacturers also. First, the
system tries to find those manufacturers in the text. Then it tries to find numbers next to
those words or some hidden text marks, for example "****"_ If the manufacturer or the
digits are found, these are included in the receipt information.

The system will then go through the invoice information to find information specific
to invoices. These are the due date and the receiver IBAN. The due date extraction looks
for predefined words, like "due". Then it tries to find a date next to that word. If such a
date is found, it is marked as the due date. The IBAN extraction currently supports only
Finnish IBANs. The system searches for words that begin with "fi". Then it tries to collect
the following numbers and check that it is a correct IBAN. The found due date and IBAN
are included in the invoice information.

If the system successfully found a due date or the receiver IBAN, it will assume that
the document is an invoice. Or if it found the used card, it assumes the document is a
receipt. If none of these information is found, the system will make the decision based on

the amount of content in the classes "Receipt information" and "Invoice information".
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4.7.6 Concluding the information extraction

Once all information from the provided text file is collected, the system will print the
information for the user. It displays all information that it was able to extract. And it
will also print a warning for the information that it was unable to extract. For the tax
percentages, it prints all percentages and amounts related to that percentage. The output
also tells whether the amounts are calculated or found in the text. The system always
prefers the found amounts over the calculated amounts. Take a look at the appendix B to
see the actual output from the processed example invoice in the appendix A. The chapter
5.3.1 will talk more about the extracted data from the example invoice.

Currently the following steps are left for the user to decide. The system does nothing
else in addition to showing the extracted information. If the system is at some point further
developed, the output could be directed to a file or into a database. Then the information
would be available for other processing or for storage purposes. But the scope of the

thesis ends here.



S5 Results

This chapter groups together results from the different parts of the application. Each sec-
tion in this chapter will refer to the chapter that the results belong to. The first section
5.1 shows how many PDF files were processed in total and how many of these files were
processed successfully. It shows what type of errors the processing faced. The chapter
will also show how much training data was successfully created from the PDF files. The
second section 5.2 shows the results from the k-fold cross-validation method, which is
used to measure the k-nearest neighbors model accuracy. It also shows how the prepro-
cessing affected the results. The last section 5.3 shows how well the goal of the thesis is
reached, i.e. how well the system classified documents into correct categories and how

well all desired data is extracted.

5.1 Extracting training samples from the PDF files

As described earlier in section 4.3.1, reading the content of PDF files is sometimes prob-
lematic. Some files don’t provide any content and some files provide only content that
cannot be processed. This may happen, for example, because of a faulty or unsupported
PDF file. This section describes how many of the available files were read and processed
successfully, and why some of the files failed. The results in this section are closely
related to the chapter 4.3.

This thesis utilized three different data sets of invoices and receipts. The first one

consists of 60 receipts, and the second one of 52 invoices from Eneroc Ltd. The third one
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Table 5.1: PDF file content reading success and failure rates.

Data set 1 Data set 2 Data set 3 Total

Amount of files 60 52 224 336

Successfully read | 30 (50 %) | 34 (65 %) | 165 (74 %) | 229 (68 %)

Empty text content | 28 (47 %) | 17 (33 %) |29 (13 %) |74 (22 %)

Invalid textcontent | 1 (2%) |0 (O%) |20 O %) |21 (6%)

Unabletoreadfile |1 Q%) |1 2% |1 0%) |3 (1 %)

is a mixture of 224 receipts and invoices from Eneroc Ltd. associates. This gives us the
total amount of 336 documents. The first two data sets were mainly used for testing and
validation, while the last data set was used for training and implementing the system.

The table 5.1 shows us the distribution of the amount of files and the amount of un-
successful files among all data sets. The data sets are presented on the columns and the
last column shows the total amount of all documents. We can see that the third data set is
clearly the largest set. Please note that the three bottom rows for unsuccessful files may
overlap with each other. Also, some files may have been skipped for various reasons, and
therefore the percentages might not add up to 100 %.

The table shows that there are many documents where text content could not be ex-
tracted at all — visible in the row "Empty text content". These numbers contain mainly
documents that have been scanned into the PDF file format, but haven’t been processed
with an OCR engine. The high numbers show us that good OCR solution is essential for
the final application. The row "Invalid text content" contains files that were read correctly,
but the extracted text content is unusable. The text contains for example unknown char-
acters. The last row "Unable to read file" contains files that could not be read or opened

at all. These files would require some special processing in the final application.
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5.1.1 The amount of training data samples

The amount of files alone doesn’t tell much about the amount of training data. Every
successfully read file contained multiple cropped areas that were extracted into text and
labeled. Each of these text and label pairs is one sample in the training data. The k-NN
model was trained on the data set 3, which contains 165 successfully read files. These

files produced the total amount of 15 783 training samples.

5.2 k-fold cross-validation results

This research used k-fold cross-validation to validate the trained k-NN model as described
in the section 4.4.2. The model was first validated before any preprocessing methods
had been implemented. And then it was validated again after the preprocessing methods
were implemented. The validation shows that preprocessing indeed helps to improve the
results. The k-fold cross-validation used all created data samples from the data set 3 —
15 783 samples.

The left side of the table 5.2 shows the validation results without preprocessing and the
right side with preprocessing. The validation used 15 folds in both cases. The table shows
the mean accuracy, the variance and the standard deviation of the 15 fold accuracies. Both
cases used 5 nearest neighbors to determine the correct label. The accuracy is calculated
by the amount of correctly labeled texts among all classified texts.

The table 5.2 shows us that there is an improvement after the preprocessing was intro-
duced. The accuracy increased, while the variance and the standard deviation decreased.
The results didn’t improve much, but it shows us that preprocessing is useful. The results
indicate that implementing better preprocessing methods might improve the results even

more. Section 6.1.3 describes how the preprocessing could be further improved.
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Table 5.2: k-fold cross-validation accuracy results with and without preprocessing. The
tables show the mean (u), the variance (02) and the standard deviation () values of 15

fold accuracies.

Amount of folds 15 Amount of folds 15
Amount of neighbors 5 Amount of neighbors 5
Preprocessing No Preprocessing Yes

I 0.908558 I 0.917900
o? 0.001021 o? 0.000355
o 0.031956 o 0.018844

5.3 Data extraction results

This section describes how well the final solution of data extraction works. This means,
for example, how many documents were labeled correctly as an invoice or a receipt, or
how successful the system was on extracting the total amounts. The chapter 4.7 shows
how the extraction implementation works.

The model was trained with the data set 3 and then tested on the data sets 1 and 2.
The table 5.3 shows how well the system extracted the correct information from the data
sets 1 and 2. The first data set contains 30 files and the second one 34 files that were
successfully processed through the whole process of cropping, classifying crop areas and
extracting information from the classified texts.

It is safe to assume that all processed documents contain at least the following infor-
mation: "Sender", "Products", "Total amount", "Tax percentage" and "Type (invoice/re-
ceipt)". These information types are presented on the first 5 rows below the "Amount of
files" row. The three bottom rows present information that is found only on certain amount
of documents. Therefore, the percentages of these rows don’t represent the actual success
rates, since they are calculated from the total amount of files in that data set.

Inspecting the table, we can see that the process correctly classified 83 % of the doc-

uments. This indicates that the classification process is working, but it should be further
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Table 5.3: Data extraction proportions

Data set 1 Data set 2 Total
Amount of files 30 34 64
Correctly classified 21 (70%) |32 (94 %) | 53 (83 %)
Correct total amount 30 (100%) | 29 (85%) | 59 (92 %)
Correct tax percentage(s) 21 (70%) |28 (82%) |49 (77 %)

Partially correct tax percentage(s) |3 (10%) |1 (B %) |4 (6%)

All products found 2 (7T%) 10 29%) | 12 (19 %)
Products found partially 13 43%) |15 (44 %) | 28 (44 %)
Sender correctly 17 (87%) |31 (91%) |48 (75 %)
Receiver IBAN found 4 (13%) |27 (719 %) | 31 (48 %)
Due date correctly 2 (7T%) 21 (62 %) | 23 (36 %)
Used card found 6 20%) |1 @B |7 11 %)

improved. Currently the decision is based solely on the amount of receipt or invoice
related information found. If neither information is found, the decision cannot be made.
Perhaps the classification process should instead inspect the document as a whole to make
the decision.

The total amount percentage is rather good (92 %). It is one of the most important
pieces of information on the documents, so this is good. The results indicated that the
"<amount>" tagging should be further improved. For example, the system failed to find
the total amounts of "USD 4000" and "3 199,00 EUR". The first amount was not tagged
as an amount since it has no decimal separator. And on the second amount, the system
fails on the space character, and would tag this as "<number> <amount> EUR". The
incorrect tagging is probably one of the reasons why the total amount extraction failed in
some cases.

The tax percentage was found at least partially correctly in 83 % of the documents.
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The partially found percentages happen for documents that include more than one tax
percentage. The process found some correct percentages, but not all. It can also fail if the
percentage isn’t marked with a percent sign. For example, some documents have a table
where the header says "VAT (%)", but the actual percentage is marked much lower on the
table. The system fails to identify this as a tax percentage.

Products were correctly found only in 19 % of the documents and partially found in
44 %. The product extraction is something that should definitely be improved. In addition
to the low percentages, the product information contains a lot of unnecessary information.
However, this shows that the product extraction is working in the right direction, even
though it was paid little attention to. To improve the percentages, a lot of training data
would be required in order to correctly identify the products. Also, the location on the
document should be used in the training phrase, since most product information is usually
located in the middle section of invoices and receipts. Proper lemmatisation and stemming
methods should also be introduced in all supported languages to improve the product
percentages.

The sender information extraction has same problems as the product information ex-
traction. The information can contain pretty much any text, and thus the class texts con-
tain a lot of unnecessary information — even when the correct information is also present.
The current email tagging implementation is good for sender email recognition, but this
is not enough. To find the actual sender company or person name, some Named-entity
recognition (NER) method should be used. This is a method of finding named entities
in the text, for example a company name. Then it could be tagged as "<company>".
This would greatly assist the machine learning algorithms to mark this correctly as sender
information.

The last three rows on the table 5.3 show information that is present only in a part
of the documents, but is still essential. The data set 1 contains mainly receipts and the

data set 2 mainly invoices. The table shows us that the data set 1 contains more payment
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cards than the second data set — common for receipts. Also, the second data set contains
more IBANSs and due dates than the first data set — common for invoices. This implies that
these classes are working correctly, even though the total percentages are less than 50 %.

Implementing better date tagger would greatly benefit the due date extraction.

5.3.1 Data extracted from the example invoice

The appendix A presents an example of a real invoice used in the making of this thesis.
It also lists all information from the invoice that is relevant for the user. This is the
information that should be extracted from the invoice. The appendix B, on the other hand,
shows the output of the data extraction for the example invoice. This is the output that is
printed to the user after the extraction process. User then has to decide what to do with
the output.

The output tells that the document was correctly labeled as an invoice. The script
also found the sender information rather well, but we can see that the sender informa-
tion contains excessive lines as well. For example, the lines "O T" and "R I" should be
removed from the output. The script has also marked the receiver post area incorrectly
as sender information ("33101 TAMPERE"). This happened because the extraction script
was provided with a different post area as the receiver post area. The product category
successfully found all product related information. But this category also contains multi-
ple excessive lines of text.

Taxing information was correctly marked for this document. We can also see that the
currency is marked correctly ("(EUR)"). The script has also marked all amounts with the
label "(found)", which means that all these amounts were found in the document. The
other possible label is "(calculated)", which is shown for calculated amounts. The taxing
information contains also the total amount that the tax percentage belongs to. We can see
that the amount matches with the next category "TOTAL".

The additional information contains information typical for invoices. The due date
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and the receiver IBAN were successfully found in the process. This information together
was enough to determine that the document is an invoice. The script failed to find the

reference number of the invoice.



6 Discussion and future

The need for the implemented system originated from the business world. My workplace,
Eneroc Ltd., wanted to reduce the amount of working hours wasted on browsing through
received invoices and receipts. They implemented an automated system for the task. The
system, however, is a rather straightforward text-based system, so they were looking for
a more sophisticated approach.

The goal for this thesis was to show that machine learning could be used to improve
the results over the previous system. Even though the results look promising, the new
system has many parts that could be even further improved. And the current system,
as is, isn’t yet ready to be used in production. This chapter will go through some steps
that should be done in order to improve the results. And it will also tell how the final

application could work and where it could be used in addition to the original purpose.

6.1 Improvements on the current system

The current system has a few pieces that should be improved or implemented. Most of
them aren’t yet finished because they have little impact on the outcome of the application,
or they fall out of the scope of this thesis. This section goes through those steps that

should be completed in the next stage of this research.
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6.1.1 From k-NN to machine learning

One of the key improvements that should be done on the product, is changing the k-nearest
neighbors algorithm into an actual machine learning algorithm. k-NN is a good method
to prove that the use of a machine learning approach is profitable. But k-NN itself isn’t a
machine learning algorithm, as we learned in the section 3.3.2.

The next steps in turning this system into a machine learning system would be testing
different machine learning approaches to see which model performs best on our data.
The current approach uses only accuracy as the performance measurement. Testing the
machine learning models should use other, more sophisticated testing methods in addition

to accuracy, in order to find out which model performs best.

6.1.2 Error handling

Error handling was included in multiple places when creating the application. But it could
still be improved. PDF files are rather complex files to read and handle. Even libraries
that are intended for PDF file reading some times fail to read the content. The current
error handling mainly focuses on handling these situations so that the program doesn’t
crash.

The error handling should be improved so that the failing files are reprocessed with
some other method. The other method might succeed where the first one failed. For
example, if the file content cannot be read with one library, another library should be
tested instead. Or if the content contains multiple unknown characters, perhaps another
encoding method should be tested.

Unfortunately, there are also files that cannot be read properly. Some files are for
example encrypted so that they cannot be read. The system should however be able to
handle these files as well. As a last resort, the system could convert these documents into
images. Then the images would be processed with an OCR system to extract the text

content.
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6.1.3 Improving the training phase
Text location in the document

Training the machine learning model has also sections that could be further improved —
starting from the creation of the training data. The current approach reads the texts from
each cropped area and classifies the text, but the text location on the document is lost in
the process. This is a rather serious flaw on the data creation process.

Imagine yourself reading through an invoice, searching for the total amount to pay.
You would most likely focus your eyes on the bottom right section of the document —
this is a very common location for the total amount. The invoice information, like the
receiver IBAN, would most likely be located on the bottom section as well. The invoice
items would be listed in the middle section of the invoice. And the sender and receiver
information would most likely be located at the top section of the document. Therefore,
the location of the information is very essential on finding the desired information. And
in addition to the text location on the document, the page number and number of pages is

also essential.

Preprocessing improvements

The current system is designed specifically for the training data it uses. This means, the
system supports only languages and currencies found in the training data. For example,
lemmatisation is supported only for English language. Support for other languages should
be added in the preprocessing. And in addition to lemmatisation, stemming should also
be introduced into the system. Stemming is the process of turning all conjugated words
to their base form.

The current tagging approach should also be improved. Especially the date tag-
ging. The current implementation supports only "D.M.Y" format — e.g. "16.3.2019" or
"16.03.19". Instead, some date formatting library should be used here to correctly tag

dates with the tag "<date>". Also the Business Identifier Code (BIC) tagging should be
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improved. Currently it supports only Finnish BICs listed in a predefined array.

6.1.4 Data extraction improvements

The current data extraction implementation works by extracting the wanted data from a
group of classified texts. The extraction works well for simple information — like the
total amount and the tax percentage — but struggles with more complex information — like
the product list and the sender information. These areas are something that should be
improved in the future. The section 5.3 goes through the different data groups and shows
how well the data extraction worked. This section also describes many improvements that
would help on the extraction.

Another improvement on the data extraction is the final output of the extracted data.
The current output is just a plain text output, printed on the console. Take a look at the
appendix B to see an actual output of the extraction script. Currently the user has to
decide what to do with the output. In the future, the output should instead be exported in
a machine readable format. The output could then be printed in a user friendly interface

or be directed into a database.

6.2 The final application

6.2.1 Deploying the system

The current system is hosted on a private Gitlab repository, and requires installing multiple
Python libraries in order to work — this isn’t very convenient. Instead, it should require
minimal effort from the user to start using the system. As the system is implemented
specifically for the use of Eneroc Ltd., the simplest deployment method would be to host
it on a company server.

Hosting the system on a server means that users could just upload files for processing,

and then the server would return the results. The user wouldn’t have to install anything or



CHAPTER 6. DISCUSSION AND FUTURE 54

know how the system works. The user interface could be a website, for example.
Another great thing about server hosted system is that the classification model is also
stored on the server. User doesn’t have to train anything nor download any model on his
device. This guarantees similar results on every device since the used model is always
the same. Hosting the system on a server also makes it easier to do modification on the

system or the model.

6.2.2 Using the system

Once the system is up and running, users would probably use it via some website. On the
website, users should be allowed to upload a file — or a group of files — of any supported
file format (PDF, image or XML) to the server. The server then processes the file and
returns the results in a similar format regardless of the original file format. The web page
would then show these results for the user. The web page should also allow exporting this
information or storing it in a database.

In case the system fails to extract some information or classifies something incorrectly,
the user should have the opportunity to correct these mistakes. These errors could be

uploaded to the server as well, and then they could be used to train the model more.

6.2.3 Who uses the system?

The system is designed to be used at Eneroc Ltd., where it would be used by someone
who handles the incoming receipts and invoices. But even though this system is designed
for such a specific use, it could be extended for other users as well.

After the system is working, access to it could be easily allowed to other companies
as well. Since the system runs on a server, the other companies could use via the same
website. In this case, security matter should be taken into account.

Individual users could also benefit from a system like this. It could be used to track

money usage or simply to store receipt and invoice information. If the system proves to
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work correctly, it could be extended for individual users as well.



7 Conclusion

The goal of this research was to find out if a machine learning based approach could be
used to replace an old text based approach in a document classification task. The task is
to classify documents into invoices and receipts. And in addition, some key information
from the documents should be collected in the process.

The implemented k-NN based application correctly classified most of the new doc-
uments in a validation data set. It also collected the key information rather well. This
confirms that machine learning based application would perform well on the given task.

The following section goes through the whole process that was carried out in the
research. It summarizes the main sections of the research and shows where these sections

are better described in this document.

7.1 Summary

The research began with roughly 300 invoice and receipt documents, which were better
described in the section 2.2. The first task was to create suitable training data, so that a
machine learning model could learn from the data. An application was created to man-
ually classify document areas into predefined categories. The categories were presented
in the section 3.4 and the application in the section 4.3. These categories represent dif-
ferent key information that should be collected from the document — for example, one of
the categories is for the total amount related information. Training data was successfully

created from 165 documents, which resulted in 15 783 training samples.
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Instead of jumping directly to heavy machine learning models, a simpler k-nearest
neighbors method was implemented to see if the use of a machine learning model would
be beneficial. This implementation was described in the section 4.4.1. Some prepro-
cessing was also introduced in the training process to improve the results, as described
in the section 4.5. The trained k-NN model was validated with k-fold cross-validation
— described in the section 4.4.2. With preprocessing implemented, the average accuracy
of 15 folds was 0.9179. This shows that the k-NN model is working correctly, and ma-
chine learning approach ought to be implemented in the future. The k-NN results were
presented in the section 5.2.

In order to use the trained k-NN model to classify completely new documents, another
application was created, as described in the section 4.6. This application classifies docu-
ment areas into the predefined categories with the k-NN model. Then it groups all texts
from one class together to make further processing easier. These groups of text lines are
then run through a script that extracts needed information from the classes. This extrac-
tion script was described in the section 4.7. The extraction works rather good on simpler
information like the document type, the total amount and the tax percentage, but strug-
gles a bit with the more complex information like the product list. The extraction results
can be found in the section 5.3. Additional preprocessing, machine learning model and
greater amount of training data should improve the results. Future improvements were

represented deeper in the section 6.1.
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Appendix A Example invoice

The following page contains an image (A.1) of an actual invoice used in this thesis. The

invoice is provided by Eneroc Ltd. Some of the fields are blurred for privacy reasons,

but the implementation uses an uncensored version. The invoice is in Finnish language,

which is typical for the invoices used in the research. Some key information from the

invoice is listed here:

Type

Sender

Total amount
Tax percentage

Product

Sender IBAN
Due date (DD.MM.YYYY)

Reference number

Invoice

Telia Finland Oyj

PL 0400 15101 LAHTI

34,89 €

24 %

Telia Yhteys kotiin, Telia TV ja lisdpalvelut
Kuukausimaksut 16.07.18 - 15.08.18

FI33 8000 1601 0166 95

17.09.2018

censored



APPENDIX A. EXAMPLE INVOICE

A-2

Telia Finland Oyj
PL 0400
15101 LAHTI

@ Telia

ENEROC OY
PL 555
33101 TAMPERE

LASKU

Sivu 1 (2)

MAAILMALLA
KAIKKI

ON SUURTA.
PAITSI LASKU.

telia.fi/roaming

Laskun numero Paivays 31.08.2018

Asiakasnumero Erapaiva 17.09.2018

Yksilointitieto

Ajalta Hinta Verot Yhteensa €

Telia Yhteys kotiin, Telia TV ja lisdpalvelut
Kuukausimaksut 16.07.18 - 15.08.18 28,14 6,75 34,89
Yhteensa 34,89
Maksut yhteensa 34,89
Yhteensa €
MAKSETTAVA € 34,89
Veroerittely Hinta Alv Yhteensa
Verollinen myynti, alv 24 % 28,14 6,75 34,89

Huomautukset laskusta on tehtava ennen erapaivaa.

telia.fi'yhteydenotto
Puh. 020 693 693
Ma—pe klo 8-16.30

IBAN: FI3380001601016695
BIC: DABAFIHH

Perintakulut saatavien perinnasta annetun lain
mukaisesti.
Viivastyskorko korkolain mukaan.

Telia Finland Oyj, Teollisuuskatu 15, 00510 HELSINKI. Kotipaikka: Helsinki. Puh. 020 401. Y-tunnus: 1475607-9, Alv rek. FI14756079

IBAN BIC
Saajan|  F|33 8000 1601 0166 95 DABAFIHH
tilinumero
Saaja
Telia Finland Oyj
1 ?‘akialft“ ENEROC OY

° nimi ja osecite PL 555
E 33101 TAMPERE
a
=
=

Allekirjoitus Viltenro

il nvo Bpival 47 09.2018 e 34,89

Maksu vélitetaan saajalle vain Suomessa Kolimaan
maksujenvalityksen yleisten ehtojen mukaisesti ja vain
maksajan ilmaittaman tilinumeron perusteella.

m PANKKI

Figure A.1: An example image of an actual invoice used in the research.



Appendix B Data extracted from the

example invoice

This appendix shows the extracted data from the example invoice in appendix A. The
following code is the output of the data extraction script. Some parts of the output are

slightly modified to make sure all data is clear and visible on the page.

FILE:
../Automatic_classification/output_text/3102_2018_08_31

Telia nettilasku toimisto.txt

RECEIPT OR INVOICE:

Invoice

SENDER:

Telia Finland Oy

0400 15101 LAHTI

PL 555

33101 TAMPERE

Teollisuuskatu 15, 00510 HELSINKI. Kotipaikka: Helsinki.
Puh. 020 401. Y-tunnus: 1475607-9, Alv rek. FI14756079

Saaja



APPENDIX B. DATA EXTRACTED FROM THE EXAMPLE INVOICE

B-2

Maksajan nimi Jja osoite
o T
R I

Padkayttdjatunnus eneroc—1/ENEROC OY

PRODUCTS:

Telia Yhteys kotiin, TV ja lisdpalvelut
Kuukausimaksut

16.07.18 - 15.08.18

28,14

6,75 34,89

Yhteensa

17.09.2018

31.08.2018

ASENNUSOSOITE KOUSANKATU 1, 20610 TURKU
KUUKAUSIMAKSUT

kotiin XL Kaapeli 80-200M

Etuhinta EUR/kk, Hinnastohinta 39,90 EUR/kk 16.07.

15.08. 1

TAX:

32,18

Mddrdaikainen sopimus voimassa 26.10.2019 astix

Percentage (%) Amount of tax (EUR)
24.0 6.75 (found)
Total without tax (EUR) Total (EUR)

28.14 (found) 34.89 (found)



APPENDIX B. DATA EXTRACTED FROM THE EXAMPLE INVOICE B-3

TOTAL:

34.89 EUR (found)

ADDITIONAL INFORMATION:
Due date: 17.09.2018

Receiver IBAN: FI33 8000 1601 0166 95
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