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Indoor positioning systems are increasingly commonplace in various environments and
produce large quantities of data. They are used in industrial applications, robotics,
asset and employee tracking just to name a few use cases. The growing amount of data
and the accelerating progress of machine learning opens up many new possibilities for
analyzing this data in ways that were not conceivable or relevant before. This paper
introduces connected concepts and implementations to answer question how this data
can be utilized. Data gathered in this thesis originates from an indoor positioning system
deployed in retail environment, but the discussed methods can be applied generally.

The issue will be approached by first introducing the concept of machine learning
and more generally, artificial intelligence, and how they work on a general level. A
deeper dive is done to subfields and algorithms that are relevant to the data mining task
at hand. Indoor positioning system basics are also shortly discussed to create a base un-
derstanding on the realistic capabilities and constraints that these kinds of systems encase.

These methods and previous knowledge from literature are put to test with the
freshly gathered data. An algorithm based on existing example from literature was tested
and improved upon with the new data. A novel method to cluster and classify movement
patterns was introduced, utilizing deep learning to create embedded representations of the
trajectories in a more complex learning pipeline. This type of learning is often referred
to as deep clustering.

The results are promising and both of the methods produce useful high level rep-
resentations of the complex dataset that can help a human operator to discern the
relevant patterns from raw data and to be used as an input for subsequent supervised and
unsupervised learning steps. Several factors related to optimizing the learning pipeline,
such as regularization were also researched and the results presented as visualizations.
The research found that pipeline consisting of CNN-autoencoder followed by a classic
clustering algorithm such as DBSCAN produces useful results in the form of trajectory
clusters. Regularization such as L1 regression improves this performance.

The research done in this paper presents useful algorithms for processing raw, noisy
localization data from indoor environments that can be used for further implementations
in both industrial applications and academia.
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Acronyms

AI artificial intelligence.

BLE Bluetooth low energy.

CNN convolutional neural network.

DBSCAN density based spatial clustering of applications with noise.

DL deep learning.

HDBSCAN hierarchical density based spatial clustering of applications with noise.

LOS line of sight.

LSTM long-short term memory.

MDS multidimensional scaling.

ML machine learning.

MLP multilayer perceptron.

NLOS no line of sight.

PCA principal component analysis.

ReLu rectified linear unit.



RNN recursive neural network.

RTLS real-time locating system.

T-SNE t-distributed stochastic neighbor embedding.

UWB ultra-wideband.

VAE variational autoencoder.



Glossary

artificial intelligence Computer system which attempts to perform an intellectual task.

autoencoder A neural network which learns a constrained internal representation (called

latent representation) of the input data and reconstructs its inputs.

backpropagation Method in which neural network’s layers’ partial derivatives with re-

spect to loss function are calculated recursively starting from output layer.

black box model An algorithm which is hard to interpret and its inner workings cannot

be explained in human understandable manner.

classification A machine learning task in which the output is a single or multiple discrete

values of known classes.

clustering Type of unsupervised learning task, in which data points similar to each other

are grouped, and often separated from noise.

curse of dimensionality An effect in which high dimensional space makes data points

appear sparser as the volume of the space increases fast, causing many numerical

methods including machine learning algorithms to perform poorer than in lower

dimensions.

data augmentation Techniques for artificially inflating the input dataset with new sam-

ples created from existing ones.



data mining The act of discovering patterns from raw data.

decision tree A hierarchical machine learning model which consists of a tree of ”ques-

tions” ending with a prediction in the leaf node. They are easy to interpret, which

makes them an important algorithm when the inner workings of the model must be

understood.

deep learning A subfield of machine learning in which multiple processing layers learn

increasingly abstract representations of the input data.

dimensionality reduction The act of removing dimensions (e.g. features) from the data

to remove irrelevant data to make some algorithms work better and to avoid noise

making learning task harder. Useful also for visualization.

discretization Converting continuous data to a domain in which samples are from pool

of discrete values (technically categories).

domain expert Human operator who has deep intellectual understanding of a task’s do-

main (i.e. law) and can transfer this knowledge to computer program through rule

sets or labelled data.

expert system Early type of machine learning program, which follows a large catalogue

of hardcoded if-then clauses, created by domain experts.

exploratory data analysis A subfield of data analytics in which the data is processed

with unsupervised methods to gain insights from it.

feature In machine learning, feature refers to a single property of the input data. Analo-

gous with column in tabular data.

heuristic A practical problem specific method that is often not optimal but works suffi-

ciently well and is often simple.



hierarchical model A clustering model which creates a hierarchy of clusters of increas-

ing or decreasing granularity.

hyperparameter A parameter that controls some aspect of a machine learning algorithm,

usually chosen by human. A parameter in model is something that is controlled by

the algorithm itself.

indoor positioning system Hardware and/or software system which finds the location

(and maybe orientation) of a target object in indoor environment.

information loss The loss of patterns in data that could be used to perform the task better,

usually resulting from transforming the data into another form.

label In machine learning tasks, especially classification the target ”value” of the sample.

For example the class of an image.

latent representation The form of the data inside autoencoder’s smallest layer. The con-

densed representation of the input data in fewer dimensions.

line of sight Direct line between two points unobstructed by anything but air.

localization The act of finding the location of an object. Also sometimes ”locating”.

machine learning Subfield of artificial intelligence, in which a program learns to per-

form a task using a dataset.

neural network A machine learning algorithm in which layer(s) of neurons are intercon-

nected and produce output based on weigth and bias of the connections from inputs

or previous layer.

nondeterministic The output of a method is not certain between the runs given the same

inputs.



offline When applied to data systems and machine learning, refers to processing utilizing

data gathered prior to current moment, usually in calibration phase of sorts.

online When applied to data systems and machine learning, refers to the fact that pro-

cessing happens in real time and based on only the current data, in contrast to offline

processing.

positioning The act of finding coordinates and orientation of target. However, the term

is used virtually inseparably from locating and not always including the orientation.

regression A machine learning task in which the output a continuous value and not one

of pre-existing classes.

regularization The act of restricting the training of a machine learning model by in-

troducing penalty terms or transformations which steer the model to learn better

generalizations and prevent overfitting.

representation learning The act of the machine learning algorithm learning patterns

from raw data on itself, instead of engineer aggregating the raw data into a more

suitable form beforehand i.e. learning the representation automatically, as opposed

to manual work.

supervised learning Machine learning task in which representations are learned from

existing data-label pairs.

technology stack Collection of technologies used together in a single solution.

tensor A generalization of vectors or scalars, which describes relations between tensors,

scalars or vectors. The ”dimensionality” of tensor is called rank. Vectors are tensors

of first rank.

trajectory Path traversed by an object from point a to point b.



unsupervised learning Machine learning task in which representations are learned au-

tomatically from data.

white box model An algorithm which is ”transparent” and easy to comprehend about.

Its inner workings can be investigated and reasoned about.



Chapter 1

Introduction

Indoor positioning systems are systems consisting of hardware and software that provide

(usually) the real time location of a device or person in an indoor environment. Indoor

environment can for example be a store, retirement home, hospital or a sports hall and has

properties that make using a common locating system like GPS non-ideal. [1]

Machine learning refers to algorithms and software systems which learn intrinsic pat-

terns from complex datasets, utilizing the vast amounts of cheap computing power that is

available today to mine datasets that also are larger and more accessible due to increasing

prevalence of sensors and connected devices in our environment. Despite this the history

of machine learning is almost as old as the history of computers, the first neural models

going back to the 1950s. The recent breakthrough of machine learning has been largely

due to the increasing amount of cheap processing power in the form of highly performant

CPUs and especially GPUs available to researchers and practitioners. [2]

This thesis looks into utilizing machine learning to mine high level representations from

data gathered by indoor positioning systems and the various ways those representations

can be utilized. This hasn’t been a popular topic in literature despite both indoor posi-

tioning and machine learning being popular topics today and new implementations and
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products being developed at an increasing pace. There is a significant gap and thus large

potential for making new innovations by combining the raw localization data with modern

machine learning innovations such as deep learning and other data mining techniques.

The central research question of this thesis is how can we find intrinsic patterns from

the kind of data that localization systems make available, how that data has to be pro-

cessed so the algorithms perform well and what kind of possibilities and insights does

this combination provide. The level of research in this thesis is general and not every

method will be thoroughly dissected to limit the scope of the thesis. This research will

open a large area for future reserach.

The hypothesis is that modern machine learning methods, especially those related to

image processing, provide many great high level insights to the raw data as the posi-

tional data can be trivially transformed into an image. Image processing is one of the

most popular fields of machine learning and has a large catalog of readily available re-

search and algorithms to almost directly apply to the current problem.

Chapter 2 contains an overview of indoor localization as a concept as well as the the-

oretical basics for such systems. This helps the reader to understand not only how these

systems work, but also why they can be challenging to work with as they have their own

limitations and considerations. Existing literature on the subject will be briefly enumer-

ated as there isn’t much material easily available on the subject.

Machine learning, and more generally artificial intelligence and relevant theory will then

be presented in chapters 3, 4 and 5. Several concepts and common algorithms in the field

relevant to the research are presented to help the reader to understand the basic principles

and how they can utilize the available data.
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Chapter 6 contains the experimental portion of this thesis, in which the gathered data

with applied preprocessing steps is presented and discussed. The algorithms that were

used to experiment with the data are presented as well as their results. The methodology

is to first apply methods found in the literature where applicable and to improve them

upon for this use case. When experimenting with completely novel implementations the

work relies on sources that are closely related to the problem, such as using image pro-

cessing theory to work on transformed representations of indoor trajectories.

These algorithms only scratch the surface of what is possible by combining the data

available in indoor positioning systems with the performance of modern machine learning

models and creates a ready foundation upon which many more domain specific systems

can be built.



Chapter 2

Background on indoor positioning

systems

Indoor positioning system refers to a technical system with the goal of locating objects in

indoor environment. These systems are often interchangeably referred to as indoor po-

sitioning systems or real-time locating systems (RTLS) as well, but there is a distinction

between locating and positioning something, as positioning also includes finding out the

orientation of the object which is often not done by systems dubbed RTLS. These terms

are however used so often to refer to the same thing that this distinction is often meaning-

less.

This chapter looks into literature on issues relevant to the research problem and pro-

vides background on positioning technologies. Central research problem of this thesis is

how to utilize raw traces acquired from indoor positioning system to discover higher level

features by data mining. The specific scope for the real system discussed in this thesis

is retail store environment. However, most of the discussion is relevant to all indoor en-

vironments and localization systems as the considerations are similar despite variance in

properties of the systems.
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There exists a very limited amount of existing literature on the subject of utilizing data

from indoor localization systems and at the time of writing none discussing retail environ-

ments were found. The research subject is very novel and references to previous research

is mostly relating to trajectory clustering and general machine learning technicalities.

There exists a large amount of literature on various technical solutions to locating objects

in indoor environment, such as those listed in [1] but most of this remains in theoretical

space and lab environments. Limited amount of documented deployed applications exists.

This section will introduce the central themes relating to the subject of this research and

a high level overview of the technical infrastructure that can be assumed to comprise

an RTLS system. The rest of this thesis will handle mostly the resulting raw data on a

much higher level but understanding where it comes from also helps to understand its

constraints and limitations as well. It also helps discover potential use cases other than

the ones mentioned here.

2.1 Overview of published research

One closely related system called InTraRoute presented by Prenton et. al. in 2014 [3] was

found to be very informative and relevant. Their findings are the best matching source

on trajectory clustering algorithms and serves as the technical basis for the implementa-

tion covered in section 6.2. InTraRoute system was used in the original paper to classify

common routes used by hospital employees in indoor environment. The traces were col-

lected using WiFi positioning with mean localization error of 15-30 meters. The system

presented in this paper will look into many more variables than just coarse location of

the customer and attempt to extract a more abstract representation of the person carrying

located device than the InTraRoute system, but the work provides a good base understand-
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ing for many of the central problems relating to trajectory data mining.

Survey of Indoor Localization Systems and Technologies [1] published in 2019 by Zafari

et. al. provided also a valuable higher level overview of various existing implementations

in both research and industry as well as an overview of the related low-level technologies.

It should be noted that the comparison tables provided in literature have limited appli-

cability in industry applications as they are often theoretical or obtained in controlled

laboratory settings which do not provide a realistic basis for comparing the real-world

effectiveness of various solutions. A further discussion on choosing the right technology

stack is provided later in this chapter.

2.2 Indoor vs. outdoor positioning

Most of the literature regarding route estimation handles routes and traces in outdoor en-

vironment. Outdoor position data is usually gathered with GPS and the predicted routes

are fixed and known prior, like from freeways down to pedestrian paths. It is easy to see

why large scale route estimation is more attractive problem for machine learning practi-

tioners, because the applications are usually economically profitable ones like navigation,

traffic control and fleet control all the way to navigating self-driving cars. The data in out-

door environments is abundant and cheap to get, because infrastructures are maintained

by public institutions and data is often open source. [3]

In addition to these enonomic aspects, indoor navigation and route estimation is - perhaps

surprisingly - a much harder problem stemming from at least three core aspects defined

in [3]:

Path-density vs. position accuracy refers to the issue that in indoor environments

routes commonly traversed paths exist significantly more densely than in outdoor envi-
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ronments, and the positioning accuracy is generally worse. This makes designing reliable

and well generalizing systems and algorithms a lot more complex problem. In outdoor

environment positioning accuracy might be few meters with GPS and the common routes

(roads, for example) separated by tens of meters, whereas in indoor environment routes

might be mere meters from each other and the accuracy of positioning varies greatly.

Flat path hierarchy refers to the fact that in indoor environment paths are equal to

each other, whereas in outdoor environment paths have a hierarchy from small local paths

to highways. Paths high in the hierarchy can often be assumed to be more important,

which reduces the total number of routes to consider and other properties, such as speed,

can also be used to approximate the path. In an indoor environment there is generally

no knowledge of which routes should be preferred, especially since there is often no

prior knowledge of the layout of the indoor environment. There is thus no trivial way to

prioritize hallway from a sidestep to a toilet, for example.

Cost-effective scalability refers to the issue that indoor positioning systems more often

than not require installation of custom hardware on site. This already is a large obstacle for

many implementers, but one has to consider future implementations of the system as well

and optimize system parameters like cost and accuracy around it, further complicating the

high level design of the system.

2.3 Technologies for indoor locating systems

Indoor localization is a wild west of numerous different competing technologies and ap-

proaches, all with their own upsides and downsides. There is a lack of common standards

and creating such standards would be hard as they could not cover many use-cases, be-

cause the demands of different systems vary a lot. When designing an indoor locating

system selecting the correct technology stack in an early stage is of utmost importance
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because it can make or break the whole product as changes down the line are expensive

to make, especially if the solution requires dedicated hardware. One major challenge in

such systems is the difficulty of prior evaluation. The environments are extremely diverse

and the system must be built to dynamically adapt to the needs of specific use-cases. The

specifications of various implementations often list median localization error and such

measures, but they can be misleading as the reported values are almost always idealized

and the performance in some environments can be significantly worse due to local factors.

Following enumerates just some of the major questions the engineers have to ask when

designing a localization system for indoor use.

1. What is the required locating accuracy and frequency of the business case?

2. How do walls and obstacles affect the signal?

3. What is the average environment in our business case like? Do we need to poten-

tially adapt to other environments with current stack as well?

4. What are the power constraints of the system?

5. What localization algorithm do we use and where is it run?

(a) Does the algorithm require offline training phase?

(b) Can the algorithm be run on the edge (i.e. on some/all of the devices)?

6. How does the system interfere with other signals? (e.g. Wi-Fi, Bluetooth on the

2.4GHz band)

7. Are there regulatory constraints for example for signal power or communication

bands?

8. Does the system require specialized hardware or can it use existing infrastructure?



CHAPTER 2. BACKGROUND ON INDOOR POSITIONING SYSTEMS 9

These outline just some of the constraints that have to be considered, but by no means

cover everything. The purpose is to show that there is currently virtually no ”general-

purpose” solution to create an RTLS as each business case has so individual requirements.

A change in battery life requirements for example can completely change the technology

stack and make some systems impossible to implement.

The main design and engineering problem is obviously the actual locating technology,

including the algorithmics, hardware and communication protocols which are discussed

later. The business case has a major impact on this, for example an inventory tracking

solution has a far less strict frequency and accuracy requirements than robot tracking so-

lution. Generally, the less strict the non-functional requirements for the system are, the

cheaper and more scalable it is.

A significant factor for the cost and ease of adoption is whether the system works with

existing infrastructure and common protocols, or does it require specialized hardware and

separate physical installation. Having to install and calibrate separate hardware on-site

quickly accelerates the cost of the system into intractable ranges. For niche cases that are

not critical or otherwise do not create much additional value, like proximity based ser-

vices such as directed advertising, utilizing existing infrastructure such as wireless access

points or customers’ mobile devices is a good choice.

2.3.1 Communication technologies used for localization

This section iterates some of the most relevant wireless communication technologies in

general use today that have good potential for indoor localization solutions.

Wi-Fi is a family of communication technologies generally used to provide wireless

network access through wireless local area network (WLAN). Hardware supporting these
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technologies can be found everywhere today, including but not limited to laptops, mobile

devices and remote peripherals such as printers. Access points are also rather ubiquitous

in public spaces and especially in retail sites such as shopping malls and establishments

such as hospitals. They are used to provide connectivity for guests, employees and de-

vices. Range varies, usually from tens of meters in indoor environment to hundreds of

meters with line of sight and capable equipment. Wi-Fi utilizes 2.4GHz and 5GHz ISM

bands and it tends to require line of sight between communicating devices and walls and

other obstacles can affect the signal strength significantly. For indoor localization pur-

poses this is not ideal, but this is countered by the ready availability of infrastructure

which makes Wi-Fi a potent platform for coarser locationing purposes. [1]

ZigBee is a protocol for low-rate wireless personal area network LR-WPAN commu-

nication for wireless sensor networks or point-to-point communication. It is generally

used for purposes such as home automation and other close distance low-powered appli-

cations. The specialized hardware, low range, data rate and adoption rate does not make

it a favorable protocol for indoor localization.

Bluetooth and especially the newer Bluetooth low energy (BLE) standard are specifi-

cations that are widely used in indoor localization as well as for many other purposes.

Classic Bluetooth was used mainly to connect personal appliances such as TVs, wireless

mouses and alike, but the newer BLE specification aims for low-powered wireless net-

works with a range similar to ”full” Bluetooth (up to 100 meters) with reduced bandwidth

and power usage. It is widely used in wireless devices. Indoor localization implementa-

tions using Bluetooth exists in industry as well as large number of literature concerning

the matter. It has been widely adopted and existing infrastructure is largely in place, as

almost all mobile phones have Bluetooth capabilities by default. One downside of Blue-

tooth is that it does not perform well if there is no line-of-sight between communicating

parties and walls and other obstacles do have a major impact on the signal quality. It
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is also prone to interference as it operates in same bands as Wi-Fi. One popular use of

Bluetooth is in proximity detection and both Apple and Google have published their own

standards for this. [1]

Ultra-wideband (UWB) is a technology for transmitting radio messages using short

pulses over large spectrum, exceeding 500MHz in width. It does not interfere with other

narrow band transmissions in the same ranges due to its modulation technique, which

is based on pulse-timing and various other methods. It has a high bandwidth and lower

power usage than Wi-Fi for example. It has good penetration, it is virtually immune to

multi-path fading (due to its modulation scheme) and it allows separating direct transmis-

sions from indirect ones with good efficiency. These points give it many ideal properties

for indoor use. Traditionally it was used for radar imaging but recently it has found us-

age in sensor networking and indoor localization. As a downside it does have moderate

power consumption compared to BLE and it requires specialized hardware, although re-

cently device manufacturers have started including UWB chips inside consumer mobile

devices. UWB based indoor localization exists in the market and alongside BLE it is the

most prominent choice when higher accuracy is needed. [1]

2.3.2 Algorithms for localization

When the actual physical infrastructure exists that enables tags to be communicated with

or detected remotely, these raw signals have to be converted to their approximate loca-

tions. Low signal power, high inherent noise and other adverse effects present in indoor

environments makes this algorithmic-wise more complex task than is obvious. In the fol-

lowing the most basic locating methods will be shortly explained. Usually a wide range of

heuristics are applied to improve the performance, but these are often not general purpose

solutions.
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Some implementations require a calibration phase in which data is gathered from the

environment. This is referred to as offline data gathering, in contrast to online phase later

in which this previously gathered data is used to aid in running the localization algorithms.

Fingerprinting

Fingerprinting is a method in which usually a large amount of data is gathered from the

environment in offline phase with associated manually entered labels. This data is used

to train a machine learning model that then later predicts the target label or coordinates of

the object based on raw data in online phase. In simpler terms, the model is trained with

the data from the environment to learn what different labels ”look like”, usually from

RF-data perspective. The system then tries to assign the new data to closest matching

class. Most often this is used to implement a localization system with a very coarse level

of accuracy. The task is commonly a classification task and the result is for example the

room or approximate part of building the device currently resides in. The amount of data

required for higher accuracy is large and mistakes in offline phase easily translate into

really confusing prediction errors in online phase. The dataset has to be representative

of the environment as the models cannot learn about peculiarities such as reflections and

obstacles that are not represented in the training data. One benefit of this method is that it

does not care about line-of-sight. Multi-path propagation and such noise that normally is

an issue can actually be beneficial in classification task as they are inherent properties of

the environment that can help distinguishing one class from another. [1]

Fingerprinting can work on its own but an offline calibration phase can also be used in

various ways to improve localization done with other methods. One example of this is

in [4] where the researchers gathered data from the environment to predict whether a re-

ceived signal was result of line-of-sight (LOS) or non-line-of-sight (NLOS) propagation

to aid traditional trilateration localization.
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Trilateration

This technology is most commonly known of being used in global positioning system

(GPS) but it is applied widely in indoor localization as well, both in 2D and 3D spaces.

Trilateration refers to methods utilizing travel time of signals between points, in this case

between beacons and tags. The speed of light is a well-known constant and thus when the

travel time of a message between two devices is known the distance between them can be

calculated. When two distances are known, the position of the tag can be approximated

figuratively by drawing two spheres with radii of the calculated distances. In two dimen-

sions, the two resulting intersection points are the candidates for the position of the tag.

If the previous position of the device is known the selection between candidates can be

made, but often this is not feasible in indoor environments. For this purpose, at least three

well-known reference points are needed to produce a single intersection point.

2.4 Utilizing indoor location data

Indoor localization has a plethora of use cases. Some of the most commonly mentioned

in literature are healthcare, indoor navigation and industrial environments. More specifi-

cally, indoor localization systems could be used for example to locate patients, machinery,

customers and many other objects at the sites. This can be used in real-time but the vast

amounts of data gathered from the environments can also be utilized for knowledge dis-

covery and optimization purposes after the fact. Path trajectories and their utilization rates

could be used to direct services where they are most likely needed, to prevent indoor traf-

fic and improve emergency plans, optimize site layouts and to find general insights with

business or other incentives from the subject behavior on the site. Aggregating data from

a large history of trajectories helps to discover patterns that would be impossible for any

human observer to find by themselves. This is the common theme in data mining.
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Retail environment, which is the context of the RTLS in this thesis, has many use cases for

data mining customer or object trajectories. This includes for example customer analytics

for sales boosting and congestion control. One example would be to optimize the layout

of a hypermarket based on customer flow.



Chapter 3

Primer on artificial intelligence and

deep learning

Artificial intelligence (AI) is a term often seen in today’s tech media, often closely related

with other adjacent terms machine learning (ML) and deep learning (DL). To make sense

of this paper’s topic it is important to give some context to these terms and explain how

they relate to each other. What makes these terms so hard is the fact that their definitions

are very fluid and it is hard to pinpoint what exactly falls under the terms because that

depends on the context, who we are speaking to and even the time period. Artificial in-

telligence is probably the hardest of these terms, because it can be defined for example as

an effort to automate intellectual tasks normally performed by humans. This can be used

to define almost any automated task as artificial intelligence, regardless of how simple it

is. Nowadays in the age of deep learning and self-driving cars we don’t usually refer to

long lists of if-else clauses as artificial intelligence, but that’s what it referred to in the

80’s, more generally known as symbolic AI. Nowadays in technological context artificial

intelligence refers usually to systems utilizing machine learning, but it is important to un-

derstand that it does not necessarily need to be the case. Machine learning is a subclass

of methods under the definition of artificial intelligence and deep learning falls under the
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definition of machine learning. These important topics will be discussed in more detail in

the following chapters.

3.1 Machine learning

A computer program is said to learn from experience E with respect to some

task T and some performance measure P, if its performance on T, as measured

by P, improves with experience E.

— Tom Mitchell, in Machine Learning (1997) [5]

The previous quote formalizes one description of machine learning quite nicely. Ar-

tificial intelligence refers to machines (computers) doing intelligent tasks usually per-

formed by humans. Machine learning is a subset of artificial intelligence, referring to

methods and algorithms which learn from data, as opposed to having the rules manually

programmed by a domain expert, as was done during the height of the expert systems

in the 80s. ML algorithms find the important patterns in the data by themselves, often

outperforming manually written algorithms in simple problems and enabling solutions to

complex problems like computer vision. [6]

The fundamental idea of machine learning algorithms is that they need just data and ar-

guments called hyperparameters. They do not need to be directed by a human expert,

but their learning can be optimized by tuning the input data and the previously mentioned

hyperparameters.

There exists a plethora of different algorithms that can learn from data by themselves,

the most important nowadays being the neural network which will be described in more

detail later in the thesis. Different algorithms are good for different kinds of tasks and

environments, there is no silver bullet, but neural network, especially combined with a
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technique called deep learning is especially relevant in modern implementations for per-

ceptive tasks, such as image processing and recognition.

In the following are described the most common classes of machine learning systems

and machine learning tasks relating to them.

Supervised learning refers to types of machine learning tasks in which the system

learns from pairs of feature-label points for which the correct output is known. A classic

example would be learning to categorize the type of animal in a picture given a large set

of animal pictures with the correct description of animal present in the image. This type

of learning is generally divided into two types of tasks, classification and regression. In

classification, there exists a finite number of discrete classes, for which the correct cat-

egory is predicted. Regression on the other hand refers to predicting a continuous value

from the solution space. This would be for example predicting the exact price of a house.

One can see example of this in table 3.1 in which LABEL column is the known target

value of that row. [6]

CRIM ZN CHAS AGE TAX PTRATIO LABEL

0.00632 18.0 0.0 65.2 296.0 15.3 24.0

0.02731 0.0 0.0 78.9 242.0 17.8 21.6

0.02729 0.0 0.0 61.1 242.0 17.8 34.7

0.03237 0.0 0.0 45.8 222.0 18.7 33.4

0.06905 0.0 0.0 54.2 222.0 18.7 36.2

0.02985 0.0 0.0 58.7 222.0 18.7 28.7

0.08829 12.5 0.0 66.6 311.0 15.2 22.9

Table 3.1: A small labeled sample from the widely used Boston Housing dataset
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Unsupervised learning refers to type of learning in which there are no labels avail-

able, only raw data from which the system tries to learn on its own. Classification and

regression are not possible because there is no prior information available, the algorithms

are rather used to learn new insights of the input data. Clustering is a task in which the

algorithm attempts to find groups of similar points from the data and is the most common

form of unsupervised learning. Dimensionality reduction means lowering the complexity

of the input data without losing too much information. This is done by automatically

learning what is informative in data and removing irrelevant noise. [6]

In most scenarios, indoor positioning data is not labeled so unsupervised learning is the

subtype of learning that has the largest focus in this thesis.

Semi-supervised learning is a combination of supervised and unsupervised learning.

In this kind of learning, the system emerges with patterns and insights on the input data

in an unsupervised manner but requires the help of a human director to continue learning.

It generally refers to kinds of machine learning tasks in which some input from external

operator is required to ”kickstart” or steer the learning [6]. One relevant example would

be to tag part of the indoor paths produced by a RTLS and use that to steer the training

process.

3.2 Deep learning

Deep learning allows computational models that are composed of multiple

processing layers to learn representations of data with multiple levels of ab-

straction [2]

The preceding quote summarizes the core idea of what deep learning is quite well. The

definition is used very liberally especially as it is such a trendy topic in artificial intelli-

gence, but the central ideas are quite intuitive and easy to understand. Deep learning refers
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to type of machine learning which consist of multiple layers of processing that each takes

as an input the output of the previous layer. The input to the first layer is the raw data,

and each layer extracts more and more abstract patterns from it. Thus the stack of layers

learns representations of increasing abstraction, from simple motifs to high level features

that can be used e.g., for classification or regression [2]. Some alternative names for deep

learning could be layered representations learning or hierarchical representations learn-

ing [7].

Classical example of getting a better grasp of how this works is to look at the type of

learning problem deep learning has excelled in recent years: image processing. The input

to first layer of processing is the raw image data and the first layers in the model extract

simpler representations of patterns in the data. This information is usually the different

kind of edges that appear in the image. From these simpler edges more and more complex

motifs are constructed in later layers, eventually becoming abstractions of actual objects

in the image such as an eye, an elephant, a car and so on [2]. This is a simplification of

what the networks might learn, but in reality the features might be more abstract, com-

plex and harder to comprehend. It is however a good way to understand the idea of deep

learning.

The type of learning in which the representations present in data are learned by the model

itself instead of constructed by hand with the help of domain expertise is called represen-

tation learning. It is one of the reasons deep learning is such a powerful breed of artificial

intelligence methods and which separates it from traditional machine learning models,

often referred to as shallow learning [7].

The type of machine learning model almost always associated with deep learning is the

previously discussed neural network, but deep learning as a subfield of machine learning
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methods does not include a notion of any specific algorithm. The ”layers of learning” in

the model can consist of any type of learners, but neural networks as an inherently layered

model, in which all of the layers can be simultaneously optimized using backpropagation,

is an exceptionally good fit for deep learning.

Deep learning is a very effective method and the recent results and technological ad-

vancements are impressive, but it should be kept in mind that deep learning is not a silver

bullet that is applicable to every problem. One key requirement for training deep neural

networks is a large amount of applicable data, which is not something that is always avail-

able. Deep learning is fit for problems in which the solution is constructed by stacking

up layers of increasingly higher levels of abstraction, ending with representation that is

fit for solving the research problem. Most common applications of deep learning under

this definition are perceptive problems like computer vision, audio processing and natural

language processing. Sometimes a smaller MLP works, but even these require relatively

large amount of data. If one is faced with a relatively simple problem with smallish

amount of data, traditional shallow algorithms like logistic regression, support vector ma-

chines and alike might be worth of consideration. They should be tried anyways as a

sanity check, as if neural network cannot beat the ”reference line” set by a trivial method,

one should aim for a simpler solution. [7]

3.3 Deep learning for sequence processing

Sequential data is any data in which the ordering of the data points is important. This

could be for example outdoor temperature during the day or the value of a market asset.

To gain insights from the dataset and to train machine learning models to predict the value

of time-dependent variable in the future, it is important to include the notion of time in

the data. This has traditionally been a challenging task for machine learning algorithms,
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as most of the shallow learning methods don’t have any obvious way to include ordering

to data. One method is to aggregate data over certain timespan into singlular scalar val-

ues, like mean, standard deviantion or absolute change over given time. Even traditional

feed-forward multilayer perceptrons (simple neural networks) are not good at this task,

as they neither have a notion of time embedded in their architecture. Flattening a time

series into a single input vector also is a very brittle method for more or less the same rea-

sons as learning local patterns in images doesn’t work well with feed-forward networks.

Network can learn to find a pattern at certain point of time or a motif in a given point in

input image, but it does not recognize it when it appears in unknown context. For image

processing convolutional neural networks are obvious choice over simple networks and

for sequence processing there exists a type of network than excels in handling time-series

data: recurrent neural network. Sequence processing is however not a relevant subject

for this thesis’ research problem so it will not be further discussed here. The location

data does have a notion of time in it, but it is handled in different way by embedding this

information in the input tensor.



Chapter 4

Important algorithms and subtypes of

machine learning

The following chapter goes over some of the major machine learning algorithms that are

thought relevant for the thesis’ research. However, the field of machine learning is so

wide and constantly evolving that all popular algorithms or families of algorithms cannot

be enumerated here. The chapter is limited to introduce some of the major algorithms

especially related to clustering.

4.1 Neural networks

Neural networks are a very old and very popular category of machine learning algorithms.

Implementations have been around since the introduction of the perceptron algorithm in

1958, but have been limited by the lack of large amounts of computing power and train-

ing data required by the algorithm. Neural networks were largely overshadowed by other

algorithms in state-of-the-art implementations until recent times. [7]

A neural network is a directed graph of neurons which are organized in layers. The

network starts from an input layer, which receives the input data row by row or in small
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batches, goes through varying amount of hidden layers and ends up in output layer whose

structure is directed by the problem definition. A regression task ends with one output

neuron, producing a continuous value, or a statistical distribution of probabilities for dif-

ferent classes in the case of classification. A wide variety of different tasks aside from

the aforementioned can be achieved with neural networks and there exists a wide variety

of different architectures and topologies many of which will be discussed in this and the

upcoming chapters.

So how does a neural network work on a low level? A single neuron is a unit of pro-

cessing which receives as its input the outputs of the previous layer weighted by a tensor

called weights of the neuron and optionally summed with a bias. The output of a single

neuron is the weighted sum of the input values passed through a nonlinearity called ac-

tivation function. A scalar called bias is optionally added to the value before passing it

to activation function. Together with an actication function like ReLu, which sets values

below a given treshold to 0, this can be used to inhibit neurons with small values from

affecting the output and thus helping to avoid overfitting.

Output of a layer in multilayer perceptron (MLP) is described by the following formula,

where fa is the activation function like rectified linear unit (ReLu),W is the weight matrix

and b is the bias scalar. Dot refers to tensor product of weight matrix and the input tensor,

multiplying input vectors by each neuron’s weight vector.

Output = fa(dot(W, input) + b)

The purpose of the activation function is to introduce a nonlinearity into the process. Mul-

tiple layers each performing some nonlinear transformation on the data is what enables



CHAPTER 4. IMPORTANT ALGORITHMS AND SUBTYPES OF MACHINE
LEARNING 24

the network to extract the complex non-linear patterns in the dataset. Without activa-

tion functions the entire network would reduce into a large linear transformation and the

beneficial properties of neural networks would go largely unused. There exists a large

catalogue of activation functions used in various cases, but a few have proven to be the

”strong defaults” used by almost all modern networks. [7]

By far the most popular activation function used in hidden layers today is rectified lin-

ear unit (ReLu). It is formulated in the following.

f(x) = max(0, x)

As can be seen it is extremely simple and computationally efficient. It is simply the posi-

tive part of the argument. ReLu is the most commonly used activation function, but some

others such as tanh and leaky ReLu are seen, the latter being a variation of ReLu which

doesn’t drop to exactly zero, avoiding issues such as dead nodes. [8]

Selecting activation function for hidden layers is, like many other issues in machine

learning, more of an art than a science. This is however not the case for selecting the

final layer’s activation. It is dictated solely by the problem definition and there exists well

known rules on how it should be selected. In regression tasks, activation function is gen-

erally omitted (a single node in the final layer outputs the continuous value), in multi-class

classification it is softmax and in binary classification the sigmoid function. [7]

A very simple neural network might consist only of a single layer of neurons, but more

commonly there are multiple hidden layers (layers that are not inputs or outputs) fol-

lowing each other. A simplified structure of such multi-layered network, referred to as

multilayer perceptron (MLP) is shown in figure 4.1.
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Training a neural network (i.e. tweaking the weights and biases so the predictions gener-

alize well on unseen data) works generally as follows:

1. Weights are initialized to small positive values, biases usually to zero.

2. A forward pass (output of network given inputs) is calculated either using

(a) A single sample (stochastic gradient descent)

(b) A group of samples (mini-batch gradient descent)

(c) Entire training data (batch gradient descent)

3. Predictions are compared to expected values and average loss is calculated using

the selected function.

4. The gradient, which is a collection of partial derivatives of the network’s free pa-

rameters relative to loss value is calculated.

5. Optimizer algorithm updates the free parameters to lower the loss value of previous

forward pass. It can be simply applying the gradients multiplied with learning rate

but it can also apply additional dampening features.

6. The process continues from point 2 until a termination condition is met.

The previous points give a very high level overview of the process which has many

parameters to choose and hyperparameters to tweak. Loss function, optimizer, stopping

conditions and performance metrics are left for the engineer to choose and can affect both

the training of the network as well as performance of the final model. Loss function is

often very simple to choose, as different problem definitions have usually only a handful

of metrics to choose from and usually one or two ”industry standards” [7]. For example

binary classification utilizes most often binary crossentropy as its loss function. Other

properties of the training process and network architecture are often harder to choose and

optimize properly. Often creating the model devolves into trying everything and seeing
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what works best, although a good understanding of the problem and relevant algorithms

helps to choose a good first guess.

Figure 4.1: Simplified visualization of a fully connected MLP network with three input
neurons (three features), two hidden layers with five hidden units each and a single output
neuron. This could be a network for regression task with a single continuous output value.

4.2 Convolutional neural networks

Convolutional neural networks are a central neural architecture that was introduced in

early 90’s, but has only risen in popularity during the last decade after it demonstrated

exceptional performance in image processing and other computer vision tasks. Several

efficient implementations running on GPU had been developed during the 2000’s, but

convolutional neural networks became more widely known after publishing of AlexNet

in 2012 in the paper ”ImageNet Classification with Deep Convolutional Neural Networks”

[9]. The network demonstrated high performance in ImageNet classification task. Cur-

rently CNNs are the dominating architecture in computer vision tasks, but it performs

well in many other classes of tasks, such as sequence processing [7].
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Convolutional neural networks are formed of stages, or layers, as any other deep neu-

ral network architecture. These layers extract each a representation on a higher level of

abstraction from the outputs of the previous layer. Convolutional layer contains a set of

filters called a filter bank. Each of these filters is an N-rank tensor of values that each

are trained to look for certain features in the input data. The input data, which is a tensor

of rank one or higher is fed into the layer. This data is processed with each of the filters

separately using convolution operation, creating a new output channel for each filter.

Figuratively, thinking CNN operating on image data, each filter in a layer is a weight

matrix which is multiplied with the input matrix in many different positions. The filter,

which has smaller dimensionality than the input image, is multiplied with the image at ev-

ery position, moving one or more pixels at a time. The filter output is a tensor with values

of larger magnitude in positions that matched the filter’s significant values (i.e. matched

the image feature the filter was looking for). This process is clarified in equation 4.1 in

which the first matrix is the input, the second the filter weights and the third the output

of the convolution. This result is passed through a nonlinear function and processed the

same as in other types of neural networks. The output tensor is by default smaller than the

input, but this can be mitigated by adding padding around the input so that the size stays

constant in the network. [2]



0 0 0 0 0 0 0

0 1 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0



∗


0 0 1

1 0 0

0 1 1

 =



0 1 0 0 0

0 1 1 1 0

1 0 1 2 1

1 4 2 1 0

0 0 1 2 1


(4.1)
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Thus, if a layer has, say, 32 filters, it will output 32 channels, each of which represents

the presence of a certain feature in the input data. Understanding CNN becomes more

concrete when we think the operation as looking for local features in the image. Each

layer of the network represents different layer of abstraction. One can think of an image

processing CNN as starting with small local features like edges, then looking for the com-

binations of those motifs, gradually leading up to more abstract motifs like ears, eyes or

letters. The final level of abstraction is usually on the level of entire objects, like humans,

dogs and so on [7]. The convolutional part of a network usually consists of repeating sets

of convolutional layers and pooling layers. These pooling layers perform a sort of dimen-

sionality reduction operation, using some operation like mean of spatially local groups of

given size to output a tensor of reduced size, in which the values represent the general

values of a given area, on a higher level. This is useful because the convolution oper-

ation does not reduce the size of the input tensor, but increases the number of channels

and keeps the other dimensions the same (there are exceptions to this). As succeeding

convolutional layers represent higher levels of abstraction which also cover larger areas

in the original data, it makes sense to reduce the size of the representation. An elephant

is (usually) present in far larger areas in input image than a single pixel, and an economic

recession is present in large timespans of stock market data, not just a single value. They

are general repeating themes, or motifs that the convolutional neural network is excep-

tionally good at finding.

To put it in a nutshell, convolutional neural networks are good at finding repeating lo-

cal patterns in input data, and construct and learn higher levels of representation from

combinations of these. The gist of using convolutional kernels is that they find the same

pattern in any spot in the input data. This is the thing that makes them far superior to
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traditional deep learning models which receive flattened input data and learn meaningful

values present in certain neurons. When CNN learns some pattern, it can find it in other

locations as well, even if it had not seen it there before. Convolutional layers are trans-

lation invariant (or by derivation - time invariant in sequence processing tasks), however

other operations used in CNN such as pooling layers are not to the same degree. Relative

invariance to translations is what makes it the model of choice for signal processing tasks,

like computer vision, audio processing and sequence processing. [2]

4.3 Decision Trees

Large neural networks dominate today’s machine learning landscape. In applications such

as machine vision and natural language processing the networks can grow huge, having

millions or even billions of parameters. It is a rather intractable task to decode the inner

workings of such networks, even simpler networks usually learn such complex patterns

and relationships that translating the decision making processes to human audience is vir-

tually impossible. However, there exists numerous technical and non-technical reasons

for understanding the decision making processes of the models, which we will iterate

later in this thesis. There exists various methods of interpreting neural networks and other

complex models such as gradient boosters which we will also touch later, but there exists

also many simpler models that are interpretable by themselves. One such model is called

a decision tree which we will overview in this section. Models which are not interpretable

are generally referred to as black box models. Such models include neural networks and

random forests to name a few. Interpretable models, i.e. models whose inner workings

are comprehensible to humans are called white box models. This classification includes

for example linear regression and decision trees.

Decision trees are a series of connected nodes, starting from a single root node and ending
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in a leaf node which contains the predicted output. A node ”asks” a single question about

a feature in the input row. A binary tree contains two connected nodes for non-leaf nodes

and thus the answer has a boolean value. Trees with multiple answers per node exists

but are not as commonly used, because popular algorithms such as CART (Classification

and regression tree) produce binary trees and multiple answers can be split into multiple

binary questions. The tree is followed into the next node based on the answer and the

chain of questions continues until a leaf node is reached. The value of the prediction is

then the most probable class in that node. [6]

The ”goodness” of the split is evaluated by some metric to find the optimal split in the

current subset of training instances. Two of the most common metrics are gini impurity

and entropy impurity of the split [6]. These measure the impurity of the resulting subsets,

a pure subset containing mostly instances of one class. The algorithm thus targets to find

splits that result in a good split into different classes. One downside of decision trees are

the they are greedy algorithms i.e. they only consider optimizing the current split and

don’t care how it effects the future splits. There exists various variations of the algorithms

to train and optimize the trees. Some, such as the popular CART are stochastic which

means that every run might not result in similar tree. This can be mitigated by running

the algorithm many times and taking the mode of the results.

If training is left unconstrained the decision tree will overfit the data and result in leaf

nodes containing only a single sample in them and perfect accuracy in training data. This

will obviously scale really badly and decision trees are either pruned afterwards or regu-

larized while training. Pruning means removing the leaf nodes using a set of rules such

as the statistical significance of the information gain [6] until the tree matches the rules.

Popular constraints for regularization while training include setting the max depth of the

tree or max samples per leaf node to stop the training when constraint boundaries are met.
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Another downside of decision trees is that the decisions boundaries they make are very

orthogonal in the feature space, meaning that the don’t perform well if the information is

laid in a rotated manifold. Decision trees generally don’t need any kind of pre-processing

but in this case applying manifold learning can help to unroll these complex manifolds.

This however does lead into reduced interpretability and in such case other model might

be a better choice. [6]

The main advantage of decision trees is obviously their simple interpretation. The models

can be laid out as a chain of simple rules that can be easily followed by a human observer

and thus decision trees can be used as data mining tool to find simplified relationships

between inputs and labels. This is later important when distillation is introduced. Infer-

ence of decision trees is also extremely fast and scales well as the chain of rules can be

reduced into a chain of if-clauses in code. Decision trees can be thus used to create an

optimized version of a more complex model for use on constrained environments, such as

IoT devices or mobile applications.

Decision trees as well as many other classical machine learning models cannot compete

with deep neural networks in representation learning in extremely complex problems such

as audio processing or machine vision but they do still have their own use cases. Gaining

insights to the predictions by creating white box models is one and the relevant one for

the purposes of this thesis. Another case is when the training dataset is very small. Many

real world problems do not have a large enough dataset to allow training complex models

without overfitting and data augmentation may not be a feasible solution. In this case

simpler model might do just fine as they require vastly fewer training instances to find

patterns that generalize well.
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An example of constrained decision tree can be seen in figure 4.2 in which a decision

tree with max depth of 3 is fitted on popular Boston Housing Data dataset. Limiting the

tree to be this small reduces the predictive power of the model but it makes the main pat-

terns legible for human readers (for example, high crime rate (CRIM) and air pollution

(NOX) correlate with low housing prices). Decision trees can be utilized in this way to

interpret and explain more complex models.

Figure 4.2: Decision tree

4.4 Clustering

4.4.1 General on clustering

Clustering is a central task in exploratory data mining in which points are grouped to-

gether using some distance metric. A cluster should consist of data points that are similar

to each other, and specifically more similar to each other than points in other clusters or

outside any cluster (noise) [10]. It has a myriad of use cases, but most common are knowl-

edge discovery in high-dimensional space, or visualization in lower dimensions, both of
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which will be very relevant later in this thesis.

Clustering has a lot of practical applications in industry and science and has thus been

an important research topic for a long time. The introduction of deep learning has also

given boost to many classical clustering algorithms (for example by incorporating them

as part of more complex model) as well as introduced many new ones by utilizing the rep-

resentational power of neural networks [11]. Classical examples of clustering would be

classifying images by their categories, novels by their genre, customers and even images

of tissue samples. Clustering provides an invaluable aid in finding patterns in seemingly

chaotic and high dimensional data and can do this either automatically or aid a domain

expert in exploring the data visually.

The cases in which clustering is utilized can be very different. In some cases the do-

main is well known and even the base truth (the expected number of clusters) is known

prior, which has a major influence on the choice of algorithm and many other aspects as

well. In many cases however, the underlying groups and patterns are mostly unknown as

is the case in this thesis. The uncertainty about the results also makes evaluating the clus-

ters almost as hard as the clustering itself. The act of exploring the data to gain insights

from it is referred to as exploratory data analysis and is mostly done with unsupervised

algorithms.

The choice of distance metric is vital for clustering task. This metric is usually chosen in

a task-specific manner and must be a good fit to measure distances in the task’s domain.

A classic example of distance metric would be euclidean distance which is often used in

spatial space. Less common tasks usually require some hand-crafted distance metric.

Many clustering algorithms make strong assumptions about the data (like Gaussian distri-
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bution) and are sensitive to noise and variance from these assumptions. Clustering often

suffers from the complexity of the data and phenomena such as curse of dimensionality

which refers to data appearing sparser in larger space [6]. Significant preprocessing is

often needed, such as learning better representations from raw data before the data is in-

put into clustering algorithm. This will be discussed in more detail later alongside deep

clustering.

Clustering algorithms can be divided using many characteristics. Examples would be

the parameters they require, the assumptions about the data they make or if they allow

noise in the data or not. A good classification measure is the type of the cluster model, i.e.

which kind of properties does a notion of ”cluster” have in some specific algorithm. The

following describes briefly some of the most common cluster model families and some

representative algorithms from them. These partitions are not universal and often have

different names assigned to them.

4.4.2 Connectivity based models

Models of this class are also often called hierarchical models. They build a hierarchy

of clusters of increasing or lowering densities. The largest cluster usually includes every

data point in the data set and smallest data points consist of a single individual. If the

clustering starts from one single cluster and starts breaking it down into smaller clusters

it is called divisive. If it starts from every data point being its own cluster it is called

agglomerative. Generally hierarchical clustering methods are slow even though there

exists many implementations that optimize the process. [12]

Agglomerative hierarchical clustering is a common type of connectivity based clus-

tering algorithm. It starts with every data point being its own cluster. Distance between

every cluster is calculated for example using the distance between closest points or the
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average distance between every point and two closest clusters are combined at every step

until all clusters have merged together. This algorithm requires the user to select the num-

ber of clusters manually, for example through visual inspection of all possible stages. The

process is usually visualized using a dendrogram as demonstrated in figure 4.3.

Figure 4.3: Dendrogram resulting from agglomerative clustering. One can observe the
different clusters as dense regions of connectivity. How ”low” the lines connect represents
how close they are to each other.

4.4.3 Distribution based models

These models usually make some general assumptions about the statistical structure of

clusters and attempt to find parameters for distributions which generated the clusters.

They are often sensitive to noise.
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Gaussian mixture model makes the assumption that every cluster in the data was gen-

erated by a gaussian distribution and attempts to find the parameters (mean, standard

deviation) for the distributions using expectation maximization algorithm. It has the ad-

vantage that clusters can have varying shapes and properties (different densities etc.), but

the central assumption about the Gaussian distributions is very restrictive one and often

does not work in real world scenarios. Most implementations also require the selection of

cluster count manually. [10]

Figure 4.4 displays a randomly generated dataset with GMM applied to it.

Figure 4.4: Gaussian mixture model fit on artificial dataset with four clusters and noise.
The number of clusters had to be provided manually. Also, every data point is included
in some cluster. The clusters were spherical which is an ideal condition for GMM (the
distributions are gaussian).
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4.4.4 Centroid based models

This is a very popular family of clustering algorithms based on the concept of central

vector defining the cluster. Points are grouped together in the cluster whose centroid is

closest to them by some metric. They are computationally very efficient and simple which

makes them popular when handling large amounts of data. They also scale well with the

amount of data and can be distributed with relative ease as clustering is affected only by

the neighborhood of the data point.

K-means clustering is one of the most popular examples from this category. A fixed

predetermined number of cluster centers are positioned randomly in the data space and

all data points are grouped under the closest centroid. Cluster centers are then moved to

the mean of the points assigned to it and process repeated iteratively until the centroids

stop moving and thus termination condition is met. Different runs can result in different

groupings which makes the method nondeterministic. This can be mitigated by running

the algorithm multiple times and selecting the most common result (i.e. mode). K-means

splits the data space into Voronoi diagram, classifying every data point to some group,

which means this algorithm is not a good fit when data contains noise. The number of

clusters has to be also known in prior, which restricts the use of this method in many

applications, including this thesis’ problem. It is however extremely simple which is why

it’s usually the first clustering algorithm people are taught about. [10]

4.4.5 Density based models

This class includes many of the most popular algorithms used in real-world applications.

They are based on the assumption that clusters are defined by changes in densities in the

data space, clusters being areas of similar higher density while the lower density data

outside clusters is noise. Real world data is often very noisy which makes these models

very effective in practical applications. Density based clustering algorithms also have
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other good properties that often make them a prefereable choice in non-toy applications,

like the previously mentioned fact that they are robust to noise, and even more importantly,

they do not require the user to define the number of clusters in prior.

Mean-shift clustering is a hill-climbing algorithm in which randomly selected clus-

ter centroids shift towards higher densities of data, resembling K-means clustering in

many ways. Instead of shifting towards the mean of the group’s points the centroid shifts

towards direction of higher density. This algorithm is non-parametric and does not re-

quire user to define the number of clusters as it includes a processing step which removes

”worse” (less dense) candidates for clusters. [13]

DBSCAN which stands for density based spatial clustering of applications with noise is

perhaps most commonly used clustering algorithm in general and the most relevant algo-

rithm in the clustering tasks of this paper. It has two parameters, ε (epsilon) and minpoints

which control the clustering process. It works by starting from a random unvisited point

and finds the neighborhood points using some distance metric. If there are at least min-

points unlabeled neighbors in distance equal or less than ε the point and its neighbors start

a new cluster. When the cluster does not grow anymore a new unvisited point is selected.

This process continues until all points have been visited. Points which were not included

in any cluster are labeled as noise. This algorithm works very well in many scenarios, but

choosing the parameters can be hard and must be done carefully. The clustering might

also not work ideally if the clusters have different densities, but there exists many opti-

mized derivative implementations like OPTICS [14] that assess these issues. Figure 4.5

shows a fake dataset similar to figure 4.4 processed with DBSCAN. The main difference

is that sparse points outside clusters are labeled as noise, unlike some other algorithms

which put every single point under some cluster. [13]



CHAPTER 4. IMPORTANT ALGORITHMS AND SUBTYPES OF MACHINE
LEARNING 39

Figure 4.5: DBSCAN run on artificial dataset with noise. With manually adjusting the
parameters the algorithm can differentiate clusters from noise (black color).

Hierarchical Density-Based Spatial Clustering of Applications with Noise or HDB-

SCAN in short is a more advanced algorithm derived from DBSCAN. HDBSCAN extends

DBSCAN into a hierarchical clustering algorithm. It performs DBSCAN with varying ε

values and then uses hierarchical clustering to find the most stable clustering. One of its

strengths is that it can handle varying density clusters which is something DBSCAN falls

short in. Secondly, it gets rid of the aforementioned epsilon parameter which is central

to DBSCAN and retains minimum cluster size as its only required parameter. It is thus

easier to use and more robust to varying densities of data, but also more computationally

demanding than its parent algorithm. It is also harder to tweak if it does not produce satis-

fying results, due to the lack of hyperparameters. Figure 4.6 shows HDBSCAN applied to

a fake dataset, demonstrating its ability to find clusters of different densities. The cluster
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in top left has lower density than the two other large clusters, but it is still found with high

fidelity. A fourth cluster was created from noise in the bottom left, but this could be fixed

by increasing the cluster minimum size hyperparameter. [15]

Figure 4.6: HDBSCAN run on similar dataset as in previous figure. The clusters have
different densities but the algorithm still finds three clusters even with the noise (dark
purple color).

4.5 Deep autoencoder

Autoencoders are a type of neural network that learn an identity mapping of the inputs.

This means that the input and correct output are same and the training of the network

means minimizing the reconstruction error. This error is usually the l2-norm between

the output and input, although different loss function might be used based on the task.

Deep in deep autoencoder refers networks which have more than a single hidden layer
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and is not a well defined term. The same prefix is also used for different types of neural

networks with multiple hidden layers. [16]

Identity mapping is a trivial task, but autoencoders introduce strong regularization in the

form of dimensionality reduction by using narrower layers in the middle of the network.

Autoencoder consists of two parts: encoder and decoder. Encoder consists of hidden

layers with decreasing number of hidden units, which causes the representations to be

compressed into a low-dimensional representation. The dimensionality of this encoded

representation can be controlled by choosing the number of hidden units to use in the

encoded layer. The second part of the network is called the decoder and does the oppo-

site action to encoder, reconstructing the original input from the encoded representation.

The sub-networks are usually identical, mirrored copies of each other but this does not

necessarily need to be the case. Decoder architecture can be drastically different from the

encoder as long as it is able reconstruct the original input. An example of autoencoder

network is seen in figure 4.7. [16]

Autoencoder can be expressed with the following notation:

X = D(E(X))

where X is the output of the autoencoder, D is the decoder, E is the encoder and X is

the original input to the network. Training autoencoder is finding optimal weights that

minimize the difference between X and X.
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Figure 4.7: An example of autoencoder network architecture, showing the full net-
work. Encoder consists of layers dense 1, dense 2 and dense 3 while decoder is dense 4,
dense 5 and dense 6.

Autoencoders are trained using the same data as both inputs to the network and the

expected outputs. After the training has converged and the performance of resulting full

network is acceptable, the weights can be used to split encoder and decoder into their own

neural network models, encoder acting as a dimensionality reducing model outputting

low-dimensional representations and decoder recreating the original representations. Fig-

ure 4.9 shows the latent representations and reconstructed images from a simple autoen-

coder network. The latent representation is a single vector but for visualization purposes

it is on two columns.

Autoencoders have numerous use cases. Some of them are described next.

Dimensionality reduction is an obvious use case of autoencoders, because that’s what

every autoencoder is doing implicitly. Ignoring the decoder part of the trained full net-

work, encoder can be used to transform high dimensional input data into low dimensional

representation. This low dimensional derivative can then be used for further analysis, for
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example in visualizing the high dimensional data or using it as a new dataset for cluster-

ing. [16]

Data compression is essentially the same implementation as previously mentioned di-

mensionality reduction, but used for different purposes. Autoencoders can be used as

lossy data compression method by compressing data with encoder and later inflating

it with the decoder. As of writing this thesis, autoencoders are generally not used for

this purpose because they don’t perform better than arithmetic compression methods like

JPEG and generalize worse, because autoencoder can not work with patterns it has never

seen before. [7]

Noise reduction is a less obvious use for autoencoders, but when one considers what

autoencoders learns it becomes clear that autoencoders are great fit for it. To reconstruct

the original representation from compact representation the network has to learn infor-

mative features from the data it is trained on. Noise and artifacts are obviously irrelevant

to the actual representations, and thus the network ignores them. The network has to be

trained on clear data without noise and the network can then receive noisy data and output

the data with noise removed or at least reduced. In real world, however, clean data is not

always available in great enough numbers, but there exists advanced variants like Robust

Deep Autoencoders which can learn to remove noise even without clean training data.

[17]

Outlier/anomaly detection refers to finding data points significantly differing from

”normal”. Data from normal execution of a system can be fed into autoencoder which

finds the usual patterns present in the system. When something out of ordinary happens

in the system, the deviation can be detected from the hidden representation. Autoen-

coders have been successfully used for example in detecting anomalies in supercomputer

execution [16] and intrusion detection in cybersecurity applications. Autoencoders are
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applied to trajectory data outlier detection in section 6.3.6. There are various ways of

detecting outliers and anomalies, depending on the structure of the data and the nature

of the anomalies. In simple cases, in which the dataset has a single feature outliers can

be detected with a boxplot. In this case outlier is usually considered to be value outside

1.5∗IQR range, IQR being interquantile rangeQ3−Q1 of the values. Another way of of

detecting outliers could be simply picking value a number of standard deviations away or

farther from mean or median of the distribution. Both of these methods can be integrated

with more complicated autoencoder networks by using autoencoder’s reconstruction er-

ror as the error value, and labeling values with high enough error as outliers. This works

because with large enough quantity of data autoencoder learns the structure of common

values better than uncommon ones, resulting in higher error for samples deviating from

the norm. Reconstruction error can be for example mean absolute error (MAE) or mean

squared error (MSE). [16]

Regularization refers to applying constraints to the learning process to make it ”harder”

for the model by applying some forms of penalties or transformations to some of the

model’s properties. This is done to force the model to learn more general representations

and thus prevent overfitting the training data. A common method of regularization is in-

troducing dropout by randomly making outputs of some neurons 0. This would prevent

the model from making decisions based only on a few activations and thus overfitting.

[18]

In autoencoders a common form of regularization is known as Lasso regression or l1-

regularization. It adds a penalty term to loss function, defined in equation 4.2 [8]. λ is the

learning rate, signifying the magnitude of the regularization.
∑p

j=1 |βj| means that the

magnitude of activation at every neuron is summed together. In practice this means that

the more neurons have high nonzero values, the higher the penalty will be.
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λ

p∑
j=1

|βj| (4.2)

This penalizes cases in which many neurons would be activated and steers the encoder-

decoder network find parameters which represent the inputs with as few neurons as pos-

sible, acting as a form of feature selection for the encoded representation. Without this

regularization, autoencoder approximates principal component analysis (PCA) [6]. From

input-output viewpoint it seems that l1-constraint would just ”smudge” the output result-

ing in lossier compression, but the regularization actually forces the network to find more

concise and informative latent representations which means that the output is represented

with fewer bits in encoded form. This can be a desirable property in some applications.

[6]

L2-regularization, also known as ridge regression has also been used in some implemen-

tations and is a common type of regularization in other types of neural networks. It penal-

izes the magnitude of each neuron, steering the network to have small positive activation.

These are often combined together. In this thesis l1 norm will be used extensively in later

experimental sections. [11].

Another common method of increasing the robustness of an autoencoder is to introduce

noise into the inputs. The reconstruction loss is still computed according to the original

image without noise. This forces the network to learn better latent representations that

ignore the noise and results in better learned features, but has also the practical applica-

tion of being used in denoising applications for example for images and audio. Example

image with added noise is visualized in figure 4.8. [19]
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Figure 4.8: An image drawn from CIFAR-10 dataset with added noise on the right.

Figure 4.9: Data at different layers in autoencoder. Images from MNIST dataset on the
left, encoded representation in the middle and matching reconstructed image on the right.
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4.6 Variational autoencoders

Variational autoencoder (VAE) is a different kind of, more advanced autoencoder net-

work that has found much success in image processing and data generation. Instead of

traditional type of autoencoders which find (hopefully) well-structured subspaces repre-

senting the original data in a more compact way, VAE finds latent distributions which

generate/reconstruct the original data with maximal accuracy. In other words, it finds the

distributions of the properties that create the data of the input space. VAE consist of en-

coder and decoder parts, which are not directly connected in the same way as they are

in regular autoencoders. The encoder part has at least two outputs which instead of the

direct low-dimensional representation output the properties of the underlying distribution,

for example in the case of Gaussian distribution this would be the mean and variance of

every parameter. The decoder would then sample from these distributions and decode

the randomly generated samples back to original shape. The network is trained with re-

construction error and usually additional regularization on the latent distributions. The

network thus learns a number of well-formed latent distributions which generate the orig-

inal data space with optimal accuracy. Variational autoencoders are a very promising type

of network that provides more interesting and often better latent representation, but have

the underlying assumption that the data is generated from a number of distributions. They

are often used in image processing and have found many useful applications in that field.

If the location data is converted into an image processing task, which it is later in the

thesis, VAEs could also be experimented with. [7] [20]

4.7 Deep clustering

While modern advances in neural networks and deep learning have given significant boost

to tasks such as object detection, classification and generative tasks such as speech syn-

thesis, most prominent clustering algorithms are still those that have been in use for years,
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even decades. One fundamental reason for the massive boost in neural network’s perfor-

mance is that they lend themselves well for efficient GPU implementations [21]. Neural

networks by themselves however can’t really do clustering tasks. Their capability to dis-

cover good underlying representations in massive amounts of high dimensional data how-

ever is a property that can be used as part of clustering framework (or ”pipeline”, rather),

as a separate phase or as a joint task along with cluster creation. This task of leveraging

deep learning for clustering is generally referred to as deep clustering [19]. The following

section gives an overview of how deep learning is integrated into clustering tasks and the

common properties of these implementations. The following chapter further discusses a

certain neural network architecture in more detail, called the autoencoder.

Clustering is a relatively easy task in low dimensions and small datasets with little noise.

Seeing how K-means algorithm separates groups in toy datasets like iris gives a good

and important intuition on how these algorithms work and different groups are found. In

real implementations however, even more so when dealing with so called big data appli-

cations, the datasets can be massive and very high dimensional. Clustering algorithms

can be sensitive to these kinds of datasets and generally work better in lower dimensions

[19]. Most algorithms in clustering are also parametric and require hand-picking some or

multiple hyperparameters in prior such as ε in DBSCAN which has a major impact on the

end results. Picking these parameters can be hard even with simple tasks, and it becomes

even harder the more complicated and harder to reason about the dataset is. Most deep

clustering frameworks leverage the really attractive property of neural networks, that is

their ability to learn good representations on their own. A common paradigm in deep

clustering is to perform feature extraction with a neural network as the first step before

the lower dimensional representation is fed into some another clustering algorithm [19].

A naive way of boosting clustering would be to first perform dimensionality reduction/fea-
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ture extraction with a network such as autoencoder or pre-trained convolutional neural

network and then as a second step use the representations of the inner layers as input to

clustering. This works, but there exists better ways as well such as training the model for

two objectives jointly. These objectives are called the network loss Ln, which is the loss

function for learning the representations, and clustering loss Lc which is some clustering

algorithm specific way of measuring the quality of the clustering. These can be joined to

a joint loss function which optimizes both objectives at the same time. [19]

The joint loss is presented in equation 4.3. The equation includes a hype parameter

λ (hype, not hyperparameter) which specifies the impact of one objective in the total.

When λ = 0 the objective would be optimized completely based on clustering loss and

could lead to corrupted representations [19]. A common selection of the parameter is 0.5

which would divide the loss equally, but there exists variety of scheduling strategies which

change the loss function parameters progressively. One common strategy is to pre-train

the representation learning by training only with the network loss at first and then with

both losses.

Lt = λLn + (1− λ)Lc (4.3)

There exists a variety of different architectures for deep clustering and a large catalog of

different loss functions and other properties to choose from. A taxonomy of deep clus-

tering algorithms and related losses is presented at [11] as a means to help selecting the

proper components.

Most popular deep clustering architectures are based on the autoencoder network. Au-

toencoder based pipelines will also be the main focus in this thesis. Autoencoder is a

two-part neural network which first compresses the input into low dimensional represen-
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tation and then tries to reconstruct the original input from the lower dimensional repre-

sentation. This constraint forces the network to learn good representation that enable it

to recreate the original input with as little loss of information as possible. The ”middle”

layer or the output of the encoder network can then act as a new representation of the

original input data which can be used for clustering. The network loss in autoencoders

is completely separate from clustering loss and is called the reconstruction loss. It is the

difference between inputs and predicted outputs. A remarkable clustering architecture

utilizing autoencoders is Deep Clustering Network which jointly optimizes the network

and a k-means clustering loss. [19]

Not all deep clustering applications are based on the autoencoder. Clustering deep neu-

ral networks are regular, often pre-trained multilayer perceptrons or convolutional neural

networks which are trained with only the clustering loss. They however often learn bad

representations due to the lack of network loss. [11]

Generative models like generative adversial networks and variational autoencoders can

also be used in conjunction with clustering. Their central property is that they don’t just

learn the arbitrary structure of the data space, they learn the statistical distributions of

the input space and can create new samples from them, leading to their common use in

generating new inputs.

Generative models or CDNNs are good candidates to explore when researching deep clus-

tering, but autoencoders are easy to implement and work in almost every domain while

other architectures require extensive handcrafting of the architecture and creating losses

specific to the given task. The experiments of this thesis focus on autoencoder based

implementations.
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4.8 Data augmentation

4.8.1 General on data augmentation

Machine learning models require vast amounts of training data to dig out the underlying

abstract patterns that are present in the data space. Depending on the task training data

might or might not be readily available. Gathering proper dataset is one of the hardest

tasks in a machine learning project. Selecting a model is usually relatively easy task and

training the model requires only processing time. Gathering data can be expensive and

challenging task, especially if the data is real-world data that cannot be scraped from the

internet or bought from some vendor. The quality of the training data also more or less

determines how well the end product will generalize to new data. Machine learning mod-

els can only be taught to find patterns that are present in the set that is fed into them, they

cannot learn patterns that they have never seen. It is thus imperative that the input domain

is understood so well so that a representative dataset can be created. [7]

There exists a class of techniques for artificially inflating the dataset. This is generally

referred to as data augmentation. In data augmentation, a domain expert introduces real-

istic noise to the dataset, generating new inputs from existing ones. These transformations

must preserve the label, i.e. they can mangle the input data in ways that can be found in

”nature” but must not change the informative content of the sample, ending up with bogus

data that negatively impacts the model. When data augmentation is done correctly, it does

not just duplicate the input, but creates a completely new input which contains the same

patterns as the original one but with differing raw representation. A concrete example is

rotating an image: a rotated image of an elephant still represents an elephant but the raw

pixel values have changed in most locations.

Data augmentation can make the model more robust and help it differentiate the actual
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informative patterns from noise. Selecting the methods of introducing noise to the input

is not an easy task and requires a level of domain expertise. The data engineer perform-

ing the transformations must think of the data and the input domain and realize data that

could have been found in the domain. There are no thumb rules as how this is done, as it is

completely task specific, but it is most commonly found in literature regarding computer

vision and easiest to understand in that domain. [22]

4.8.2 Data augmentation in computer vision

In computer vision the inputs are images, usually from either two-dimensional or three-

dimensional world. Noise present in those domains is relatively easy to think about.

An image of car represents a car even if it was stretched, mirrored, in different color

scheme or zoomed in or out. Image usually represents the same target even if it is from

different angle or a reflection in a window. Performing these kinds of transformations is

a relatively common task and popular toolsets are readily available. In figure 4.10 five

input images from CIFAR-10 dataset are mangled with various transformations including

shearing, rotating and zooming. The figures are very different from each other but still

clearly represent the same type of object. Augmenting the training dataset with these

kinds of images forces the model to ignore irrelevant noise present in these images and

learn the patterns that actually relate to the label of the image.
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Figure 4.10: Augmented images generated from CIFAR-10 image dataset

4.8.3 Augmenting trajectory data

Real-world images have a rather well understood structure and augmenting transforma-

tions, but what about trajectories/paths and other indoor behavior that is of interest in this

thesis? A path in building cannot be mirrored or zoomed out as that would completely

change the path and just create bogus data. One possibility would be to cut paths into

pieces and combine these into paths that could have been traversed, but this can be very

complex and it would destroy the information about which paths are actually traversed.

Another common method would be to introduce jitter to the raw paths. It means mov-

ing some of the path’s points randomly. This noise can be drawn for example from a

Gaussian distribution with some probability p for each point in the path. If the path is

binned rather than the absolute coordinates, this jitter could be implemented by moving
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the bin/cell by 1 location randomly. This would create paths that traverse more or less

the same route but the coordinates have a variation that could be present naturally if the

target made small sidesteps or there were inaccuracies in the locationing method which

are both very possible scenarios. For the purposes of the research in this paper, jitter is

the best and perhaps one of the only viable methods to augment path data. If the path is

considered as an image, adding random Gaussian or uniform noise could also be a viable

alternative.



Chapter 5

Interpretable machine learning

It is a relatively easy task to treat predictors as black box machines that take in some

data and output results they are trained to predict. Sometimes this is enough, but it can

be beneficial to understand at least on some level how model ends up with the output it

does. Reverse engineering the model can help to understand the inner workings and thus

help in optimizing the architecture. The rise of artificial intelligence and its fast adoption

in numerous industries also brings up many ethical questions, especially if the models

are dealing with decisions that have an impact in peoples’ lives, through employment,

validity for mortgage or insurance and alike. The models should not make predictions

for example based on people’s ethnicity or gender and such qualities, even if it would

result in good looking accuracy from pure input-output viewpoint. These kinds of errors

are surprisingly easy to make accidentally if the engineer does not understand the model

well. The reasons to gain deeper understanding in the model’s inner representations and

how they relate to predicted outputs are thus many, even if it was just for pure curiosity

and validation. In data mining interpreting the models is also a central problem as the

goal is to gain useful insights to the patterns present in data, not just successfully fitting

the model.

This chapter presents a general overview of various methods of interpreting deep neu-
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ral networks, namely through visualization and knowledge transfer.

5.1 Knowledge transfer

Different types of machine learning models learn patterns and represent them in different

ways. Some models like neural networks can learn very complex and non-linear represen-

tations of the input data while some shallow models like decision trees learn hierarchical

representations that are easy to reason about. Different models have their own strengths

and weaknesses. Some are simple and fast but fail to meet expectations when the under-

lying patterns are complex or the data is high dimensional. Some, like neural networks

excel in high dimensional and complex data but end up being hard to interpret. Learned

representations can be transferred from more complex model into a simpler one, possibly

leading into superior performance than if it was trained normally. Varying terminology is

used to refer to this process, some sources coin it as distillation [23] but it is not a well

established term. A simpler model trained based on a more complex one is referred to as

that model’s surrogate [24].

5.1.1 Global surrogate

A global surrogate is a simple, or at least simpler model that is trained with the outputs

of a more complex model. The simple model uses the outputs of the complex one as its

target values, as opposed to the actual labels from data. The idea behind this is that the

complex model does not learn to output just the label, but also outputs a distributions of

predictions. This distribution itself contains learned information about the raw data and

can be useful for improving the performance of the simple model. In digit classification,

it is informative to know if a 3 looks more like a 7 or 8, for example. A simple model such

as decision tree could be used to output this same distribution for the same inputs, with the

hopes that this would drive it to learn better rules which could then be used to ”interpret”
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the black box model. Even wrong classifications should be fed into the surrogate as the

fact that certain samples were classified incorrectly could contain useful hidden informa-

tion. This is a useful technique especially for optimizing complex and computationally

heavy models for simpler systems and improving the performance of simpler models.

Regarding interpretation it should be noted that the actual hidden representations are not

necessarily transferred from the complex model to the simple one. This can happen, but

there’s no guarantee for it as the surrogate model is trained with just the outputs. This

technique cannot be thus used to say for certain why or how a black box model does what

it does. [24]

5.1.2 Distillation

Distillation is a knowledge transfer model closely related to global surrogate, introduced

by the Google Brain team in 2015 [25]. The paper separates the output of the classifier

into two scenarios, a hard target classification and soft target classification which sepa-

rates it from ”usual” global surrogate method.

Distillation works by first training a cumbersome, large model that can actually be an

ensemble of models without concerning the resource usage. In neural networks, output

layer activation function for multi-class classification problem is usually softmax which

is formalized as follows.

qi =
exp zi/T∑
j exp zj/T

In which qi is the class probability, zi is the class logit and zj the logits of other classes.

T is the temperature parameter which in normal case is 1. Hard targets refers to phase

in which model is optimized to minimize the loss between correct labels (class) and the

predicted output. When training to create soft targets however, temperature parameter is

increased so the output entropy is higher and the predictions ”softer”.
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After this model is trained, a simpler model which does not need to be a neural network is

trained to predict the same statistical distribution of outputs the cumbersome model pro-

duces instead of the correct labels. Distilled model uses same temperature parameter as

was used to create the target distribution. The distilled model does not need to ever see the

correct labels, but the soft targets can be mixed with the actual hard targets for improved

performance. The results presented by Google are promising, with distilled models show-

ing significant improvement over same models trained with raw data. Practically this is

the same process as the previously discussed global surrogate, but with the addition of the

temperature parameters. [25]

An interesting application of distillation regarding the research problem was presented in

2017 by partly the same team from Google Brain. In this approach, hierarchical features

learned by neural network are distilled into hierarchical decisions in a rather shallow soft

decision tree for the sole purpose of demystifying the learned patterns and providing clear

”thought flow” of the network to make sense how it ends up with the output distributions

it does. The soft decision tree contains distributions of probabilities in its nodes, instead

of hard if-else clauses. With distillation as well it must be noted that the surrogate and the

complex model are independently trained so it is not a silver bullet for demystifying the

inner workings of a neural network. [23]

5.2 Visualization

Visualization is one of the most important and intuitive ways to interpret the outputs and

inner workings of machine learning models. Artificial intelligence systems, even ones

utilizing machine learning are not ”intelligent” in the sense that they do not have same

kind of deeper reasoning about the underlying problem that a human has. They only un-

derstand the patterns in the data domain they have been trained with, and whether that
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understanding is of any use, and how it is used, is on the discretion of a human operator.

Most of the machine learning models in use are not autonomous systems but act as a tool

to help human operators do their intelligent task more efficiently. This is especially true

in unsupervised learning and data mining in which the algorithm can’t possibly even have

any way of evaluating its results in the same way as in supervised learning with labeled

data. The result of an unsupervised learning task are the patterns in data. A human is

needed to transform these results into knowledge.

Visualizing data is a technique way older than the age of computer. Plotting on paper

with a pen being one example. As computers have evolved in computing power so have

visualization methods and algorithms. Humans have the inherent flaw that they cannot

comprehend data in high dimensions, trying to comprehend data with more than three di-

mensions is already an almost impossible task for a human. Thus, to visualize structured

high-dimensional data it has to be projected down to one, two or three dimensions so it

can be presented in various graphical forms. Some methods to handle high dimensional

data are presented in the following.

Multidimensional scaling (MDS) is a form of dimensionality reduction which is use-

ful in visualizing data from which a distance matrix can be formed in a meaningful way.

MDS is a family of algorithms which try to preserve the distances between pairs of data

points in low dimensional representation. MDS is an optimization algorithm which tries

to minimize a loss function, which in a common implementation is called a strain. For

MDS to work, a distance function between two data points must be defined and it must

describe the distance of two points in a meaningful way for the output to make any sense.

An example is shown in figure 5.1. In this example, the original space is two-dimensional

so MDS is used just to improve the visualization, but the original domain could be high di-

mensional. Euclidean distance, or some other power of Minkowski distance, is a common

choice of distance metric when the inputs are spatial points. A custom distance function
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can be crafted for more complex domains. Distance between indoor paths could be visu-

alized using MDS, using some distance metric which measures the distance between two

trajectories. [26]

Figure 5.1: US cities plotted using MDS with Euclidean distance as the distance metric.
The labels are abbreviations of their respective states.

Principal component analysis (PCA) is a popular method for doing dimensionality

reduction based on mapping high dimensional input space into lower dimensional space

while attempting to preserve as much of the variance in the data as possible. A dataset

with high dimensions probably has less informative features and correlated features which

mostly add just noise and make interpreting the data harder. The output of the transforma-

tion is a set of variables called the principal components. They are uncorrelated to each

other (orthogonal) and the result of a linear combination of the original features. The fea-

tures are ordered in a way that the first principal component encodes most of the variation
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in the data, i.e. is the most informative. One then chooses a cut-off point and retains all of

the principal components below. Like with other visualization methods mentioned here,

there are many ways to do PCA, for example using the Singular Value Decomposition

method which results in a matrix with all of the principal components. [6]

PCA has a plethora of good applications both as a visualization tool in exploratory data

analysis and also as a preprocessing tool for many other algorithms. PCA can be used

as a feature selection tool by preserving only some of the principal components while

discarding less important ones. This loses some information but makes sense if we can

get rid of many useless features while preserving a good portion (>95% or so) of the

variation. PCA can also be used for plotting a high dimensional dataset by selecting one,

two or three of the most important principal components and drawing a plot using those

transformed variables. It is of importance to note that principal components are their own

features and cannot be directly used to reason about the original features. In figure 5.2

there is a 30-dimensional artificial dataset projected down to two dimensions and plotted

as a two dimensional scatter plot.

Figure 5.2: Scatter plot of 30 dimensional artificial data with six clusters projected to two
dimensions using Principal Component Analysis (PCA).
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T-distributed stochastic neighbor embedding (T-SNE) is another algorithm that projects

high-dimensional data to fewer dimensions. T-SNE performs a nonlinear transformation

by fitting a probability distribution over data point pairs in high dimensions and in low-

dimensions and then minimizing the Kullback-Leibler divergence of the two distributions

using gradient descent. This means that data points close to each other using chosen

distance metric in high dimensions are also ideally close to each other in the new repre-

sentation. The transformation is not linear unlike in PCA, rather the two projections are

completely different representations of the same points but with similar distances between

point pairs. T-SNE can be of significant aid in exploratory data science in which clusters

are expected or searched for as it seems to automatically cluster similar data points into

usually well-defined clusters. These clusters however are not necessary meaningful and

thus must be manually inspected to gain insights about them. Different runs of the algo-

rithm can result in different results as a result of optimization algorithm finding different

local minima. An example of T-SNE output can be found in figure 5.3. The input data is

similar as in figure 5.2 but the clusters are here clearly more distinct even in two dimen-

sions. [27]

Figure 5.3: Scatter plot of 30 dimensional original data projected to two dimensions using
T-SNE.
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5.3 Inherently interpretable models

Some simple models have an advantage that due to their simplicity they are inherently

interpretable in their raw form, in the sense that humans can use their trained form in full

or simplified form to gain insights about the data patterns without external methods or a

surrogate model. There are two major classes of ML models that have this characteristic

(although it is subjective what is interpretable), linear models and hierarchical models.

Examples from the first category include linear regression, logistic regression and gener-

alized linear model (GLM). Most prominent example of the latter is decision tree which

is already discussed in length. More complex models such as random forests can be uti-

lized for example to explain feature importance, but these models quickly become very

complex. Decision tree height can be restricted to a rather shallow tree for simplified ex-

planations while giving up some expressive power. There also exists some models created

specifically for interpretability, such as Rulefit which combines decision trees and linear

models to create a linear model of features derived with decision trees. Models that are

transparent and interpretable are referred to as white box models as opposed to opaque,

hard to penetrate models which are referred to as black box models. [24]



Chapter 6

Experiments

This chapter introduces the experiments that were carried out while aiming to answer

the research questions of this thesis. The main goal of the experimental part was to use

machine learning to uncover patterns from indoor localization data. The initial goal was

to cluster the paths and to create a predictive model which would predict the class (e.g.

cluster label) of a moving object as it is active on the site, but due to the complexity of the

task the scope was reduced to exploring trajectory clustering.

The data used in these experiments was gathered from the database of a large scale indoor

localization system used for various purposes, including customer analytics, loss preven-

tion and other custom use cases. The located objects are here referred to as tags, short for

smart tag. These tags were located using a system based on ultra-wideband (UWB) com-

munications protocol, approximating the location based on distances measured from a set

of fixed beacons. The tags were located only when they were awake, i.e. on the move.

During other periods they were in standby mode, preserving the battery. The boundaries

of these sleep periods form a logical starting and ending points for their trajectories, al-

though additional logic had to be applied.

First, in section 6.1 the available data is described as well as the preprocessing steps
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that were common to all tasks. Then in section 6.2 a ”classical” type of trajectory clus-

tering algorithm based on the InTraRoute discussed in section 2.1 and introduced in [3] is

presented. A more complex framework based on deep clustering discussed in section 4.7

is then described in section 6.3.

The practical work was carried out using a toolset including tensor processing library Ten-

sorflow 2, deep learning library Keras, Python language libraries Matplotlib, Numpy,

Pandas, Scikit-Learn, Scipy and many other minor libraries.

6.1 Data and preprocessing

This section will go over the datasets that were used in the experiments, how they were

gathered and what kind of steps were taken to preprocess and refine the data before it was

used as input for machine learning algorithms.

6.1.1 Datasets

Two large datasets were used to produce the results and figures presented in this thesis.

The initial data was the raw approximate locations of the located objects (smart tags)

stored in the database of an indoor locationing system. The data was recorded at 1Hz and

accuracy can be assumed to vary between less than a meter at best to around 5 meters at

worst, including some infrequent outliers from locationing errors. The data was queried

directly using SQL. This data also includes details about the state of the tag such as the

quality of the measurements and whether the tag is going to standby, which were essential

to filter out some outliers and to group the samples under trajectories.

The two main datasets are described in the following table.
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Name Environment N Preprocessed N Time span Rows / day

DS 1 Sports store 3435646 395791 ∼1.5 years ∼7000

DS 2 Hypermarket 4351549 3678699 7 days ∼620 000

The differences between the two dataset are quite evident. The latter dataset is from

a significantly more active environment. The preprocessing steps which were the same

(with manually adjusted parameters) also shaved off around 15% of the data in DS 2 while

removing nearly 88% of the data in DS 1. The main reason for this is that majority of the

data in the sports store dataset was insignificant short paths caused by the temporally

short-lived movements of the tags. The differences in the datasets are also explained by

the objects the tags were attached to. First dataset had the tags attached to hand-picked

selection of products while in the hypermarket scenario the tags were tracking movement

of shopping baskets. From this fact already it is obvious that DS 2 has way higher po-

tential to produce interesting insights about the customer behavior in retail environment,

because they track the entire customer trajectory in the store and target a more represen-

tative portion of the customers. DS 1 was retained and experimented with because it’s a

much simpler environment and provided a good proving ground for ideas. It was simpler

to adjust the algorithms for example due to tighter path hierarchy in the smaller environ-

ment.

A small sample of the data is provided in table 6.1. Extra columns are removed from

this sample and the timestamp is in human readable format instead of Unix timestamp.
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X Y Timestamp GoingToSleep

38244 -40960 08:30.7 False

38244 -40960 08:30.7 False

38237 -40885 08:30.7 False

36606 -40080 08:33.7 False

37054 -40226 08:35.7 False

37349 -40404 08:36.7 False

37199 -40342 08:37.7 False

37371 -40422 08:38.7 False

37251 -40374 08:39.7 True

Table 6.1: Example of what the data could look like.

6.1.2 Preprocessing and cleaning

The raw dataset consists of a flat table of timestamped tag locations. This data has the

approximate coordinates (relative to arbitrary origo on the site) as well as tag’s state.

This data has to be aggregated into well-defined trajectories for further processing. The

location data is also highly variable in quality, even within a single trajectory and thus

some significant aggregation and cleaning steps are necessary before the data is fed into

any machine learning model. The most significant issue to tackle with preprocessing is

to filter out noise i.e. irrelevant trajectories, which in this case does not refer to actual

locationing noise but to paths that are not interesting and can skew the dataset and make

gaining insights harder and distort the training of ML models.

Creating trajectories

The data was grouped into trajectories with a well-defined starting and ending point. The

starting point was chosen to be the first location after previous sleep period or after a sig-
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nificant time period has passed since last message from the tag (as is in the case when tag

has moved out of the range of the beacons). The subsequent locations are then appended

to the trajectory until the tag informs that it will go to sleep due to inactivity and all of the

optional ending conditions have been met. In DS 1 there were no additional conditions,

but due to its sheer size in DS 2 the tags were additionally required to be within the speci-

fied zone around the checkouts. Due to the tags being attached to shopping baskets this is

a very reasonable condition since the tags will end in that area at the end of their trajectory

unless they are abandoned somewhere within the store (in which case the entire path was

filtered out). Without this additional step, a large portion of the trajectories would have

ended prematurely, as the basket left alone for a moment causes the tag to go to sleep.

Filtering noise

To improve the quality of the dataset, many heuristic conditions were used to filter the

dataset after the trajectories were created. These conditions aim to remove short paths

(tags waking up and going back to sleep, or maybe moving just a few meters), invalid

paths and otherwise suspicious paths based on prior expert knowledge.

Some of the used filters are listed in the following. Not all were necessarily used si-

multaneously.

• Filter out paths with fewer than N unique points

• Filter out paths which end very near where they started from

• Filter out paths which have alarmingly large jumps (in temporal or spatial space)

• Filter out paths which start or end in invalid regions (such as backrooms)

Different environments required different values for the filters which were manually

chosen based on examination of the dataset. Heavy handed filtering meant that a large

amount of data was thrown away but due to its ready availability this could be afforded.
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Creating new data

Some algorithms discussed in this paper, namely autoencoders discussed in 4.5, can ben-

efit from added noise and all algorithms benefit from additional training data. For this

reason several ways of augmenting the dataset were experimented with. Common image

transformations like translation, skewing and rotation could not be used in this case since

it would change the informational content of the data. The only trivial way of inflating

the dataset was found to be adding random Gaussian or uniform noise to the location data

(numeric coordinates), or directly to the trajectory image (intensity in a given area). This

was done by drawing a sample from a Gaussian distribution with standard distribution

(σ) controlling the intensity of the noise. To add noise directly to the image, the absolute

of value was then multiplied with a Bernoulli distribution with probability p controlling

the probability of noise at given coordinate to only pick some noise samples. This ma-

trix was then added to the original image data. When the input data was converted into

binary form, the noise was also binary (0 or 1) with probability p, and it was xored into

the input data. An example of created noisy sample can be seen in figure 6.1. It should

be noted that the previously described method could only be used with the later discussed

deep clustering method, the InTraRoute based method could not work with such noise.

Creating new paths by modifying coordinates could be used for the ”shallow” method but

this is questionable as the model does not attempt to learn any patterns from the data but

directly clusters the input and adding fake data to this mix could hurt the clustering. An-

other way of adding noise by breaking trajectories to subpaths was experimented with but

found to be exceedingly complex and it was abandoned for now to limit the thesis’ scope.

As discussed in 4.8, the intensity of randomness should be within realistic boundaries.

The amount of noise within the locationing system is not constant and there doesn’t exists

any trivial method to select it automatically, so the parameters were chosen by hand for

the spefific environment.
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Figure 6.1: From left to right: All filtered trajectories from DS 2 combined into single
heatmap, a single trajectory from DS2, and rightmost the same trajectory with added
noise

Converting the data into an image

The initial form of the location data described previously is tabular. A single sample

represents the location and the state of a tag at given moment. The data is temporal in

nature, which means the single trajectory, which is considered to be the meaningful unit

of our research, consists of multiple samples on a temporal axis. Data like this could be

used directly as an input for a model that can handle such data, the canonical choice for

this would be recursive neural network (RNN) or long-short term memory (LSTM) based

neural network. Working with time-series data is complicated, but with a simple trick we

can convert the trajectory into a single sample and leverage all of the powerful tools avail-

able for image processing. This can be achieved by converting multiple rows of location

data into a two-dimensional image. The gist of this trick is easy to understand if we imag-

ine the observer (model) looking at the trajectory from bird-eye view. Additional data,
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such as ordering or tag’s state can also be trivially added into this image by adding new

layers, making it technically a 3D image. Working with images is far easier from both

algorithmic and human perspective; image processing is a wildly popular subfield in ML

and observing the results and debugging issues is easy when the state is a visualization by

itself!

Discretization is the process of turning continuous data into discrete data, that is giv-

ing it a discrete value. The nature of the data at hand, namely it’s variably inaccurate

nature means that putting the data into bins doesn’t lose much information and makes

the data a lot easier to handle. In this case we do this by splitting the site’s dimensions

into Gw x Gh grid of bins/cells and assign each sample the coordinate of the cell it falls

under. The coordinate system was cropped to match the site’s blueprint. Samples that are

outside of the grid can either be ignored or be given the coordinate of the closest cell, in

this research we did the latter. After the location data has been converted into this new

coordinate system, each trajectory can be trivially converted into a single tensor of shape

Gw ∗Gh ∗1 which can then be used as an input for a convolutional neural network (CNN)

as will be done later. The values in cells can either be binary or the sum of the samples

that fell into that cell. The latter actually becomes a heatmap of the trajectory and a useful

visualization. Both of these options were experimented with and the latter was found to

be generally more useful.

In figure 6.1 there can be seen a combined heatmap of all trajectories in DS 2 and a

single trajectory created with the previously described method. This is the basic form of

data that was used as an input for the deep clustering pipeline.
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6.2 Improved shallow clustering framework

Being almost the only pre-existing framework for clustering indoor trajectories the In-

TraRoute framework discussed in 2.1 was used as the starting point when beginning the

experiments on trajectory clustering. It was found to work to a some degree without

customization, but the methods presented in the original paper were found to not scale

well into a more accurate and higher density path environment as used in system at hand.

Several improvements were made to make path clustering work better in this use case

and these improvements are presented in this chapter. This algorithm, or rather a set of

algorithms is referred here to as improved shallow clustering framework due to being

an improvement upon InTraRoute and being based on shallow, or ”classical” methods

instead of deep models such as neural network.

6.2.1 Data and preprocessing

The data was such as discussed in 6.1.1 and was preprocessed using the steps in 6.1.2.

The raw locations were also converted from the original ”absolute” coordinate space into

the aggregated grid space as described in 6.1.2 but not converted into an image tensor,

rather the data with new coordinates were retained in the tabular form. This is the form of

data that was used as input in this algorithm.

Trajectories were further processed to remove duplicates i.e. sequential points that fell

into the same cell. These were removed because even though they do provide information

about how long the target stays at one point, they affect similarity measures negatively and

do not provide interesting information regarding the path traversals. Trajectories typically

contain many identical locations at the beginning and the end of the trajectory and remov-

ing these was found to be essential in making the clustering algorithm work well. The

algorithm described in this chapter was also found to be very sensitive to the processing
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steps and the quality of the data, way more so than the neural network based implemen-

tation described later in this thesis.

InTraRoute paper mentioned that it removed loops from the trajectory to reduce noise

that could prevent two otherwise similar paths from being clustered together. Implemen-

tation details however were not provided, so it was implemented independently here using

Algorithm 1.
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Algorithm 1 Removing Loops from path
function REMOVELOOPS(P)

Input: P is a path represented as a list of coordinates

Output: Path P with loops removed

prev ← null

graph← graph()

for x, y in P do
node← (x, y)

if HasNode(graph, node) then
if prev <> node then

loop← ShortestPath(graph, node, prev)

loop← loop+ node

prevLoopNode← null

removeNodes← array()

for loopNode in loop do
if prevLoopNode <> null and loopNode <> node then

RemoveEdge(graph, prevLoopNode, loopNode)

end if
if loopNode <> node then

removeNodes← removeNodes+ loopNode

end if
prevLoopNode = loopNode

end for
RemoveNodes(removeNodes)

end if
else

AddNode(node)

if prev <> null then
AddEdge(graph, prev, node)

end if
end if
prev ← node

end for
return graph

end function
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Figure 6.2: Several paths binned with grid size Wc = 15, brighter color indicates more
points inside the respective cell

6.2.2 Trajectory clustering

After preprocessing the trajectories in tabular form are clustered together using the fol-

lowing algorithm. This is done using mostly the same procedure as described originally in

[3] with some changes, primarily the change of distance metric. The clustering algorithm

goes through all of the trajectories, indexed by the trajectory ID created as described in

6.1.2. The order of iteration does not matter but the algorithm is undeterministic so a

different order might result in slightly different clusters. The clustering algorithm works

as follows.

1. If there are no clusters, the first trajectory starts the first cluster

2. Distances between a trajectory and cluster representative trajectories of clusters are

calculated using a chosen distance metric f(x, y)
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3. The trajectory is added to the cluster if the distance is below selected treshold value

4. An updated cluster representative trajectory is calculated when a new path is added

to it

5. If the trajectory is not added to any existing cluster, it starts a new cluster

When all of the paths are clustered, the clusters with too few members in it can be

filtered out, considered to be outliers. These clusters generally are not interesting and add

noise, but it depends on context.

A cluster of paths is represented by a cluster representative trajectory which can be un-

derstood as the average route taken by tags traversing that path. The representative route

is calculated by creating a graph out of the paths in the cluster. In this graph nodes are

cell coordinates and edges represent traversals between two cells. These edges have asso-

ciated weight with them which is the inverse square 1
x2 of the count of times this traversal

happens within this cluster. Practically, this means the more often a traversal between two

cells happens, the smaller the weight or ”cost” this edge has.

Clusters also have a well defined start and end point. All of the start and end points

in original coordinate space of cluster’s paths are averaged and the cell that average point

falls into becomes the cluster’s start and end point respectively. The shortest path from

this start node into the end node is calculated using Djikstra’s algorithm with the weights

calculated as previously described. The representative path can be retrieved from the cell

coordinates of nodes belonging to this shortest path. To calculate the path in original co-

ordinate space a mean or median of every point in the cells of the representative path are

used. In figure 6.3 one can see the raw paths that were clustered together (in grey) and the

representative path for the cluster (in red). The representative path traverses through cells

selected for the representative, black crosses are the median of all raw path points inside
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those cells forming the path.

Figure 6.3: Raw paths (in grey) and their cluster representative path (in red)

6.2.3 Distance metrics

Distance metric is an essential component of the clustering algorithm, deciding whether

a trajectory becomes a part of a cluster or not. The choice of the metric affects not only

the outcomes but the choice of other parameters as well.

There exists a wide variety of distance metrics for estimating the similarity between two

curves or trajectories. Most of them however are not suitable for this scenario for one

reason or another, usually because they make such assumptions about the curves that do
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not fit indoor trajectories. Many of them are described more thoroughly in [3] and [28].

The simplest way of measuring the distance between two trajectories would be to se-

quentially calculate the Euclidean distance
√
(px1 − px2)2 + ...+ (pn1 − pn2)2 (in which

n is the dimensionality of the coordinate system) of each matching point pair between the

paths. This is however very brittle as it assumes the trajectories would proceed at the same

pace and breaks instantly if the traversals happen at different speeds so it is not a viable

alternative here. Other interesting possible measures not further discussed here include

dynamic time warping and Hausdorff distance [28].

Jaccard distance also known as Jaccard index and Jaccard similarity coefficient is pre-

sented in [3] as the distance measure they used to cluster paths in a hospital environment.

It is a rather simple measure and can be described verbally as intersection over union. It

operates with sets so the paths have to be transformed into sets of discrete coordinates.

Thus, the function measures the relative similarity between two unordered sets of coordi-

nates or any arbitrary values and gives a similarity value to them. Each XY cell coordinate

represents its own unique value but they have no other relation to each other. To test this

distance measure, cell’s XY coordinates were transformed from tuple into a string and

then stored in a set. The function is defined formally in 6.1, in which S1 is the set of first

path’s coordinates and S2 the set for the second path.

J(S1, S2) =
|S1

⋂
S2|

|S1

⋃
S2|

(6.1)

This was tested with real-world data and it demonstrated moderate performance, but it

has inherent drawbacks that prevent it from being the distance measure for our improved

framework. Firstly, it considers the trajectories unordered bags of arbitrary values and

thus all information about traversal direction is lost. This is not good as it would cluster

together two similar looking paths that would run in the exact opposite directions. In some
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cases this could be okay but generally we would want to consider them as being different

paths. Secondly, and even more importantly the coordinates lose their relative distances.

This means that every point right next to cluster’s representative path is considered to bear

no relation as the unique coordinates do not intersect. This makes the choice of grid size

very essential for clustering. A large grid size means that paths clustered together most

likely are very similar, but many obviously similar paths are not considered to be in the

same cluster. Too small grid size makes it easier to cluster similar paths together as they

are more likely to traverse through same cells, but it might also include paths that have

clearly different behavior than other paths in the same cluster.

Jaccard index was the initial choice of distance measure for clustering as it was used

in the existing implementation described [3]. The InTraRoute system considered paths

on a very high level and on a large scale (positioning accuracy was ∼ 20 meters in the

paper). In this kind of environment Jaccard index might perform better, but with the finely

grained locations in this thesis a different distance metric should be used.

Discrete Frechet Distance was found to be the best way for measuring distance be-

tween two indoor trajectories. It takes into account the ordering and is very robust against

small to modest variations between the paths. The algorithm is an easily computable vari-

ation of the continuous Frechet distance introduced by a French mathematician Maurice

Fréchet in 1906 [29]. The discrete version approximates the Frechet distance of ”real”

curves by using a series of points (polygonal curves). This happens to be exactly what we

have in our dataset so it is a very natural fit for the current problem.

Intuitively Frechet distance can be defined as follows (taken from [29]): ”A man is walk-

ing a dog on a leash: the man can move on one curve, the dog on the other; both may

vary their speed, but backtracking is not allowed. What is the length of the shortest leash

that is sufficient for traversing both curves?” Algorithm 2 gives a more formal definition
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of the algorithm introduced by Eiter et. al.

Algorithm 2 Discrete Frechet Distance [29]
d is a distance metric, usually Euclidean distance

function DISCRETEFRECHET(P, Q)

Input: Polygonal curves P (u1, ... up) and Q (v1, ... vp)

Output: Distance between curves P and Q

ca← array[1...p, 1...p]

for i = 1 to p do
for j = 1 to q do

ca(i, j) = −1.0
end for

end for
return c(p, q)

end function

function C(i, j)

if ca(i, j) > −1 then return ca(i, j)

else if i = 1 and j = 1 then
ca(i, j) = d(u1, v1)

else if i > 1 and j = 1 then
ca(i, j) = max( c(i− 1, 1), d(ui, v1) )

else if i = 1 and j > 1 then
ca(i, j) = max( c(1, j − 1), d(u1, vj) )

else if i > 1 and j > 1 then
ca(i, j) = max(min( c(i− 1, j), c(i− 1, j − 1), c(i, j − 1)), d(u1, vj))

else
ca(i, j) =∞

end if
return ca(i, j)

end function

6.2.4 Insights

We took the existing algorithm first described in [3] and modified it to work in our use

case. Specifically, the very coarse original clustering algorithm was modified to work in

environments with a much higher localization accuracy and higher path density. This set
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of algorithms provides a framework which can be modified to fit different use cases, and

improved upon in any way that a specific use case calls for. The distance metric especially

is a component that is easy to switch. The algorithm can also include much more finely

grained logic relating to how clusters are formed or how these clusters are converted into

actual trajectories. The loop removal algorithm can also be considered optional, as it adds

quite a bit of complexity and was in practice found to not affect the result in a significant

way.

The framework has many parameters that all have trade-offs regarding the outcome. There

exists no general thumb rule how they should be chosen as it depends on the requirements

of the use case. Some of the (hyper)parameters of the framework are listed in the follow-

ing.

• Size of the grid Gw ∗Gh

• Limits of the grid in continuous coordinates (area to be binned) 1

• Minimum start-end cell distance

• Minimum unique cells covered

• Distance metric f(P1, P2)

• Clustering treshold T

• Minimum number of paths in a cluster

Needless to say, that’s a lot of parameters to choose from, especially since each one of

them requires some level of deeper understanding of the algorithm and the data. The pre-

sented algorithm nevertheless presents a viable framework for clustering a large number

1In our experiments created from blueprint bounds
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of raw trajectories and has the potential of being used as a basis for many implementa-

tions. It has many advantages, including its computational effectiveness and simplicity

(easy to understand, easy to debug). It is a good choice for simpler environments, the best

results were recieved when working with DS 1. As the environment gets more complex,

so does the configuration of the framework.

Figure 6.4 demonstrates two clusters created from a large amount of raw trajectories (non-

clustered paths not visible) with different treshold values. It demonstrates how a choice

of the treshold parameter affects the resulting clusters.

Figure 6.4: Same path clusters with different treshold values. Clusters on the right side
have smaller (tighter) treshold. One can observe how tighter treshold filters out some less
similar paths.
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6.3 Deep learning approach

This chapter introduces an alternative, more advanced and more complex approach to the

trajectory clustering problem. This chapter’s solution is based on deep clustering method

discussed in 4.7, relevant theory can also be found in sections relating to neural networks

(4.1), autoencoders (4.5), DBSCAN and HDBSCAN (4.4.5) and T-SNE (5.2).

Chronologically, work on this section’s implementation began after the previous section

was complete. The goal was to find a new approach to the clustering problem based on

neural networks. The work began by researching neural network based clustering meth-

ods found in literature as there was no specimen to use as a direct example. Sources such

as [19], [30] and [11] provided good starting points and most of the practical work after

that was just pure experimentation. The demonstrated implementation follows roughly

the simplest model defined in [19], which consists of separate representation learner and

clustering stages.

The overall collection of algorithms and parameters is referred here as both framework

and a pipeline because it’s really both. The framework consists of a pipeline of algo-

rithms in which the output of the first part (representation learner) is used as the input

for the second stage. Both of these parts can have different algorithms plugged into their

place and they have many configurable parameters themselves.

6.3.1 Data and preprocessing

The input data was as described in 6.1.1 and was cleaned and preprocessed as described

in 6.1.2. The significant preprocessing step that is different from previous chapter’s algo-

rithm is the conversion of tabular data into third rank tensors as described in 6.1.2. In a

nutshell, this meant converting the list of samples which define the tag’s location at dif-
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ferent points of time into a two-dimensional matrix. The third dimension is required for

convolutional neural network (CNN) which will be used. The third dimension contains

different properties of the trajectory in spatial space. In this thesis’ implementation there

is only a single property (and thus the third dimension is always of size 1), the presence of

the tag in the given area, or intensity. Practically, the input to the model is the heatmap of

the trajectory. In more advanced models, the input tensor could also encode other proper-

ties such as speed, order etc. but to limit the scope of the thesis only the simplest form is

discussed here. The model should require little to no changes as these additional proper-

ties are added, due to the neural network’s ability to learn the representations intrinsically

as shortly described in 3.2 making the model extremely dynamic and scalable.

Figures 6.1 and 6.2 display this data visually, with the dummy third dimension removed.

6.3.2 Architecture

The pipeline consists of two main parts, representation learner and clusterer. This ar-

chitecture got inspiration from many of the examples described in [11] but is created

from ground up for current use case and did not follow any specific example. One aspect

separating the developed implementation from many of those in the literature is that the

favourite clustering method in existing examples seems to be k-means or similar algo-

rithm that requires the knowledge of the number of clusters in prior. One constraint that

dictated the choice of algorithms in our use case was that there is no knowledge of the

cluster count or other such properties in prior, which prevented us from first experiment-

ing with known implementations before creating our own.

The representation learner’s task is to transform the complex raw input data into a more

concise and simple form that can be used as an input for the ”shallow” clustering algo-

rithm. Most of the clustering algorithms available would not work at all with the type of
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data we have at hand, thus requiring significant preprocessing. The main transformation

that has to be done is reducing the input dimensions into a single vector. This could be

done manually, by crafting features such as presence in given area or time spent in given

area, but the aim of deep clustering is to use neural network’s properties to discover good

features automatically. This minimizes information loss as the algorithm gets to learn

what actually is informative and what is not. The exact architecture for the representation

learner was an autoencoder network consisting of convolutional layers, or convolutional

autoencoder for short. The working principles of an autoencoder are described in section

4.5. The first and last layer have the shape of the input data and the network is in double

”funnel” shape. Each of the convolutional layers is succeeded by a max pooling layer

which reduces the size of the data and a batch normalization layer which acts as regular-

ization. The middle layer is preceded by a flattening layer which transforms the 3D data

into single dimension, i.e. a vector. The middle layer’s size decides the size of the latent

representation, or the number of features the input data is converted into and is thus one

of the major hyperparameters of the model. L2-regularization was used in convolutional

layers and L1-regularization in the middle layer. The effect of this regularization is de-

scribed later.

The representation learner transforms the input image into a relatively small one-

dimensional representation which is then used as the input for the subsequent clustering

phase. There exists some implementations which do both the representation learning and

clustering in the same algorithm, usually the neural network outputting cluster properties

directly. Some of these are described in [11] but they are more complex and introduce

constraints, such as fixed cluster count, so they were not included in this thesis. The clus-

tering algorithm works independently from the first step and finds clusters from the latent

representations, so being part of the pipeline does not introduce any additional concerns

in the simplest case. The clustering task in this architecture is straightforward: first train
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the autoencoder, and then create clusters with the clustering algorithm. The clustering al-

gorithms of choice in this implementation were DBSCAN and HDBSCAN, both discussed

in section 4.4.5, due to their ability to handle noise and not requiring a fixed cluster count.

The method presented previously is the simplest and most straightforward way to do deep

clustering, but still works remarkably well and above all, is easy to develop further and

adjust manually. In literature, for example in [19] this architecture is referred to as deep

embedding network. There exists a plethora of various constraints, losses, architectures

and additional training methods to improve upon this, many of which are covered in [11]

and [19]. A large number of different variations could be tried but they are out of scope

for this thesis. Reader is advised to refer to the cited papers for deeper dive to optimizing

deep clustering. A simple way to improve upon the presented architecture is by combin-

ing the neural network reconstruction loss with clustering algorithm’s clustering loss into

a single joint loss function as discussed in section 4.7. This is discussed in more detail

in the referred theoretical section, but the main gist is that this makes the autoencoder

learn features based on clustering performance instead of reconstruction performance. In

the current model, the autoencoder is trained in such a way that makes the output of the

decoder (latter) part as close to the original input as possible, which is not really inter-

esting here. Some time was spent on this, but it was found that including the clustering

loss in gradient descent requires the clustering algorithm to be differentiable which is not

the case for most of the algorithms. There exists some differentiable implementations of

popular clustering algorithms like k-means, but as continuing in this direction would have

quickly become exceedingly complex, it was left out of this thesis’ scope. An alternative

direction would be to replace gradient descent with an optimizer that does not require

calculating the gradient of the loss function, for example by utilizing genetic algorithms

as described in [31]. Creating a joint loss function provides a clear point to continue the

research and would be a subject of its own research paper.
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6.3.3 Autoencoder network

The following listing provides one example of an autoencoder network used during the

experimentation, as outputted by Keras’ summary() method. It should be noted that this

is by no means the ground truth or the suggested model, just one architecture that worked.

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) (None, 44, 24, 1) 0

e1 (Conv2D) (None, 44, 24, 32) 320

e2 (BatchNormalization) (None, 44, 24, 32) 128

e3 (MaxPooling2D) (None, 22, 12, 32) 0

e4 (Conv2D) (None, 22, 12, 32) 9248

e5 (BatchNormalization) (None, 22, 12, 32) 128

e6 (MaxPooling2D) (None, 11, 6, 32) 0

e7 (Flatten) (None, 2112) 0

e8 (Dense) (None, 256) 540928

e9 (BatchNormalization) (None, 256) 1024

encoded (Dense) (None, 16) 4112

d1 (Dense) (None, 2112) 35904

d2 (Reshape) (None, 11, 6, 32) 0

d3 (UpSampling2D) (None, 22, 12, 32) 0

d4 (Conv2D) (None, 22, 12, 32) 9248

d5 (BatchNormalization) (None, 22, 12, 32) 128

d6 (UpSampling2D) (None, 44, 24, 32) 0

d7 (Conv2D) (None, 44, 24, 32) 9248

d8 (BatchNormalization) (None, 44, 24, 32) 128

decoded (Conv2D) (None, 44, 24, 1) 289

=================================================================

Total params: 610,833

Trainable params: 610,065

Non-trainable params: 768

The network most likely could be a lot shallower and have less parameters than the ex-

ample considering the relative simplicity of the data. The layers starting with e belong to

the encoder subnetwork and the ones starting with d correspondingly to the decoder part.

The layer called encoded is the smallest layer in the middle and the one that outputs the
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encoded representations. In this instance it has 16 neurons and would consequently create

a 16-wide representation of the original 44*24 matrix.

The convolution layers used here are regular ”3D” convolutions implemented by Keras’

Conv2D layer. Depth-wise separable convolutional layers, implemented by Separable-

Conv2D in Keras were also successfully used. They perform the convolution in two

steps, first depth-wise running a 2D convolution kernel for each layer separately, then

combining them using a 1x1 depth-wise kernel. This is computationally significantly

more efficient than ”regular” convolution and a good choice for use cases in which the

depth-wise interactions do not carry any significant information, like this one. It can even

help the learning as it ignores these interactions, which would add nothing but noise. The

depth-wise separable convolution is notably successfully used in constrained networks for

mobile applications, such as MobileNet. To learn more about this operation and under-

stand why it fits some use cases well, reader should refer to [32].

This network is trained like any other autoencoder network, by using noisy training data

as inputs and clean data as outputs. After training, full dataset is converted into latent

representations using a separate model created by taking all layers from first layer to the

encoded layer. This model is referred to as encoder here. A decoder model is also created

from the encoded layer to the decoded layer, but its only use is validating and debugging

the results as it does nothing for the clustering.

Various constraints were used as regularization when training the network. Noisy in-

put data created using the method described in 6.1.2 was used to predict the clean input.

Augmenting the training data with said noisy transformations was used. The network’s

layers were regularized with batch normalization (BatchNormalization layers in the list-

ing).
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The embedding layer was heavily regularized with L1-regression (Lasso regression) to

steer the network to learn a sparse representation of the data, i.e. rather than learning

the trajectories as a combination of many features the network was constrained to rather

learn sparse, more representative features. Autoencoder using this type of regularization is

sometimes referred to as sparse autoencoder [19]. This type of regularization is discussed

in more detail in section 4.5. One can see the effect of L1-regression best via inspecting

the output of the regularized layer with different regularization values. This is done in

figure 6.5 in which there are the outputs of latent layer given three random samples with

different values for L1 activity regularization. The samples are in different columns and

values for L1 are in different rows. The lowest factor is on the top, a reasonable middle

value in the middle and high regularization on the bottom row. One can easily see the

effect of Lasso regression from top to bottom as the number of positive neuron activations

decline which is exactly what this type of regularization penalizes.

By choosing a reasonable hand-picked value for L1 regularization the network can be

steered to learn more representative singular features and ignore less important features

which can be beneficial for clustering. This is reflected also as declining accuracy of the

reproduced input which can be seen in figure 6.6a. The original input is in the leftmost

column and the following columns go from low L1 value to very high L1 regulariza-

tion. The difference between low regularization and a reasonable middle value isn’t that

obvious but the highly regularized outputs represented by sparse activation in figure 6.5

have smudgier reconstructions, but still have some features reproduced with recognizable

quality. The highly regularized network has very informative and discriminating features,

which can mean that they fit well for clustering in the follow-up phase. The fact that the re-

constructions of the unregularized and somewhat highly regularized networks are almost

the same, but the features are far more sparse in the latter one, means that adding some
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level of regularization to the latent space is almost certainly beneficial for clustering tasks.

Autoencoder network can also be constrained by reducing the width of its latent layer.

Figuratively, we make the ”waist” of the network smaller and force the input space to be

constrained into smaller representation, again forcing the network to learn more informa-

tive representations and ignore noise. This could also be thought as a form of regulariza-

tion although it’s inherent to how autoencoders work. Figure 6.6b shows the reconstructed

input with different widths of the latent layer. Again as with the L1 values, the difference

between the widest and middle one is not that clear but the smallest network with only 8

neurons has started to lose significantly more information in the reproduction. It must be

noted that this is not a proper way to evaluate the final result of deep clustering pipeline

as even though information is lost, the learned representations might be better fitted for

clustering.

Figure 6.5: Output of latent layer on some randomly sampled inputs with different L1
factors
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(a) Reconstructed inputs (DS2) with various L1

regularization values for latent layer output

(b) Reconstructed inputs (DS2) with different la-

tent space sizes

Figure 6.6

6.3.4 Clustering

After the representation learning step has been completed and the original dataset is trans-

formed into a lower dimensional representation the data can be fed into the clustering

algorithm. This ended up being significantly easier and straight-forward than the rep-

resentation learning phase. The clustering algorithm can be any that can work with the

vector of continuous values and matches all other criteria dictated by the task. Here, DB-

SCAN and HDBSCAN were tested. All of the same considerations that were discussed

with said methods in section 4.4.5 apply here. The main difference between the two is

that DBSCAN has more parameters, of which the most important is ε which decides the

size of the ”neigborhood” considered for each point. HDBSCAN does not have this pa-

rameter, but when the algorithm failed there was less parameters to adjust, meaning that
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DBSCAN ended up being the algorithm of choice although both demonstrated mostly

good performance.

Figures 6.7 and 6.8 show clusters found with DBSCAN and HDBSCAN in dataset DS

1, respectively. The number indicates the number of trajectories in that cluster. The clus-

ters look visually good and reasonable. Both results have a single cluster that includes

most of the trajectories, but knowing the source data this cluster seems reasonable as

well.

Figure 6.7: Clusters created with DBSCAN
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Figure 6.8: Clusters created with HDBSCAN

Preprocessing with T-SNE (discussed in section 5.2) was found to be a very useful

preprocessing step for the embedded representations before clustering. By the best of

our knowledge, T-SNE is not found in relevant literature being used for such a purpose,

rather T-SNE is often ignored as a preprocessing step and used rather for visualization for

manual inspection purposes. It was found that giving the embedded representations di-

rectly to a clustering algorithm such as DBSCAN resulted in poorer clustering in complex

environments (especially in DS 2) and the parameters for the model were hard to adjust.

This is probably mostly due to many clustering algorithms performing poorly in high di-

mensions. Increasing the width of the latent layer would also increase the dimensionality

of the input data, meaning that without additional dimensionality reduction we may be

forced to use undesirably small latent layer in the network, limiting the configuratibility

of the model.

T-SNE was employed initially in this work for visualizing the embedded representations,

but it was found that algorithms such as DBSCAN and HDBSCAN performed well with-

out extensive manual adjustment using this data as input and resulted in better looking
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clusters and less trajectories marked as noise. The latent dimension width could be in-

creased to numbers such as 16, 32 or more from the original and T-SNE was used to

project this representation down to just a few dimensions (2, 3 or 4) before clustering it.

It is assumed that this works well especially for clustering tasks because T-SNE strives

to preserve the distance of data points close to each other in the lower dimensional repre-

sentation, thus acting as a sort of locality preserving transformation. It performs a kind of

preliminary clustering before the actual clustering, creating ”islands” of similar data. It

must be noted however that this results in some loss of information, but in turn makes the

model adjustment significantly easier.

Figure 6.9 shows the T-SNE representation space with cluster assignments. It is obvi-

ous why clustering is easier to make from low-dimensional representation like this. Two

dimensions are good for visualization, but actual clustering could and should be done in

higher dimensions, in three or more to avoid losing too much discriminating information.

Figure 6.9: T-SNE output in 2 dimensions with cluster assignments from DBSCAN in
different colors. Blue points separate from clusters are data marked as noise.
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6.3.5 High level insights

After the clustering has been completed in a satisfactory way, the resulting clusters can

be used to find high level insights about the underlying data and turn it into useful knowl-

edge. This is another very wide subject and there exists a plethora of methods to continue

the analysis, some which have already been presented in previous chapters. This section

will discuss a few examples.

Clusters can be visualized in various ways. An easy and informative way is to create

an intensity heatmap of all paths belonging to a cluster, this can be seen utilized in figures

6.6 and 6.11. This is achieved trivially by just calculating the sum of the 2D matrices

resulting in a single matrix in which the number represents the intensity of activity in the

area represented by that grid cell. The clusters can be plotted on the original blueprint

or the transformed grid space, all at once (with different color per cluster) or one by one,

whichever results in the best image. Most often in experiments done for this thesis this

type of visualization resulted in clusters with the ”main trajectory” more illuminated and

the dimmer auxiliary trajectories around it. This gives a good idea of the cluster at a

glance, the way how the tags inside it acted and also how much variance there is inside

the cluster.

T-SNE can be employed to visualize the embedding space. This helps to assess the quality

of the representations, whether they create divisive enough features and such. This can

also be used as an effective preprocessing step as described in the previous section. It also

gives a high level visualization of the entire dataset in a way that can not be achieved in

the original data space, comparable to the multidimensional scaling result in figure 5.1.

This can be used in many ways in subsequent analysis. In figure 6.9 trajectories from DS2

are transformed by the encoder down to 32 dimensions. This is then projected down to

2 dimensions for visualization using T-SNE. One can see the embedded representations
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are good and result in good discrimination between different clusters. Colors represent

cluster assignments made using HDBSCAN.

Another way to assess the properties of the clusters is to inspect the latent representa-

tion of samples belonging to a single cluster. This can be seen in figure 6.11, with the

mean neuron activation of a cluster with matching mean trajectory embedded in the same

subplot. This gives a very visual way to assess the quality of the embedding space and

to investigate the similarity of clusters. One can observe in the figure that clusters are

generally dominated by one or a few neurons. These features represent the characteris-

tic behavior of that cluster. It can also be observed that clusters having similar features

(partly sharing same trajectories) do have high activation in the same neurons. The same

could also be observed on a wider scale in data not included in this figure. Figure 6.10

shows the mean activation for trajectories labelled as noise by the clustering algorithm.

This has clearly a more even distribution, meaning that it does not represent any distinct

features, which sounds reasonable.

Figure 6.10: Mean latent layer output for cluster marked as noise from HDBSCAN (DS2,
HDBSCAN).
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Figure 6.11: Cluster’s trajectories’ mean intensity with respective mean output of latent
layer (DS2, HDBSCAN).

Using this clustering as a starting point, a wide array of further steps not in this thesis’

scope could be taken. This could include for example projecting the clustering into a

hierarchical model using the distillation/global surrogate process discussed in 5.1.1 and

5.1.2. The clusters could also be used to create predictive models that predict the class of

the target while it is still on the trajectory. This could have many practical use cases.

6.3.6 Anomaly detection

Alongside the main clustering task, the autoencoder network was also experimentally

used for anomaly detection, a task which is shortly described in section 4.5. As the neural

network learns the dataset’s intrinsic patterns the reconstruction error of the model can

be used as a score that determines how ”common” the sample is in the dataset. Figure

6.13 displays some of the trajectories from the dataset with their respective reconstruction

errors (using mean absolute error (MAE)). Figure 6.12 displays the distribution of recon-

struction errors. It can be observed that majority of the dataset (DS 1, here) consists of

very short paths and the more complex and longer the trajectory gets, the higher its error

value is. This is very dependent on the dataset though and has nothing to do with the
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length of the trajectory. The most common trajectories will have the lowest error values.

This error value can be utilized in various ways. One way would be in preprocessing

to filter out the most common, and thus maybe uninteresting paths. This requires manu-

ally finding a good cutoff treshold value, below which the paths would be removed from

the dataset. If the dataset is very skewed towards the common case, this could prove a

useful step, but no further reserach was done in this direction. This method can of course

be trivially used to discover common behavior in the environment if that’s important.

Figure 6.12: Distribution of reconstruction errors in DS 1
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Figure 6.13: Some trajectories from DS 1 with their respective reconstruction errors



Chapter 7

Conclusions

This thesis explored the world of machine learning in the context of indoor localization,

focusing on the problem of clustering trajectories from an indoor localization system. In

the first chapters of the thesis indoor localization and machine learning were presented

as concepts and their basic technological components were concisely introduced. Later

chapters went into more detail in exploring various machine learning and data analysis

technologies relevant to the research problem, later put into action to develop two new

clustering frameworks.

The main research problem was to bundle indoor trajectories demonstrating similarity

together, a task more widely referred to as clustering. Indoor localization systems pro-

duce very large amounts of data of variable quality and thus such processing steps are

needed to transform the raw data into usable form. This kind of analysis has many direct

use cases including floor layout planning, congestion control and customer analytics to

name a few prominent ones. The growing popularity and utilization of indoor localiza-

tion systems calls for advanced methods of analysing the data they produce, creating a

strong business case for continued research on the subject.

There is a good amount of existing literature on machine learning and indoor localization
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but not on utilizing machine learning on indoor localization data. Most of the existing

literature was research-oriented and practical experiments were very idealized and had

limited applicability in real world scenarios. This thesis introduced novel algorithms de-

veloped based on data from a widely deployed real indoor localization system and is thus

validated on real business case from the beginning.

Two different new frameworks for trajectory clustering were developed in the context

of this thesis and described in detail in the text. First, based on a framework described

in source literature, improved upon this system by introducing new distance metrics and

tackling many issues that were left open or did not translate from the original system to

more complex scenarios. Second, a neural network based deep clustering system was de-

veloped for more complex use cases. This included many innovations, including the use

of T-SNE as an intermediary processing step. Both of these approaches resulted in sys-

tems that group similar trajectories together by their properties with good efficiency. The

output allowed the operator to gain insights on the general movement patterns present in

the site through visualizing the results. These systems already demonstrated good perfor-

mance but they also act as ready-to-use platforms for continued research and applications.

Many potential research directions and improvements were discussed and provide a good

starting point to develop more advanced systems.
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