
 Turun kauppakorkeakoulu •  Turku School of Economics 

 

 ABSTRACT 
 

 Bachelor’s thesis 

x Master’s thesis 

 Licentiate’s thesis 

 Doctoral dissertation 

 

Subject Accounting and Finance Date 17.11.2020 

Author Jarkko Määttä 
Student number 511052 

Number of pages 77 + appendices 

Title 
Stock market prediction with long short-term memory neural net-

works: Empirical study on Finnish stock market 1999–2020   

Supervisor Prof. Mika Vaihekoski 

 

Abstract 

 

In recent years, advanced machine learning techniques have outperformed previous bench-

marks in multiple disciplines, and these methods have also been increasingly applied to stock 

market prediction tasks. This research aims to fill the research gap in advanced machine learn-

ing applications on Finnish stock market by applying long short-term memory (LSTM) neural 

networks on a stock return movement prediction task for the period between 1999–2020.  

The performance of the LSTM network is benchmarked against a conventional recurrent 

neural network and a logistic regression classifier. Using two alternative sets of input features, 

the models are trained to produce weekly out-of-sample predictions on stock return movements 

between 2006 and 2020. Furthermore, these predictions are utilized to derive prediction-based 

investment portfolios. The best-performing multivariate LSTM model yields an annual return 

of 12.7% and delivers a Sharpe ratio of 0.459 before transaction costs, while a simple buy-and-

hold portfolio achieved an annual return of 8.6% and a Sharpe ratio of 0.338 during the same 

period. The relative edge of the LSTM-based portfolios holds after transaction costs are con-

sidered, but a subperiod analysis reveals that the outperformance is not that eminent during the 

latter half of the sample. 

By unveiling some common characteristics among the stocks selected for trading, the 

LSTMs are found to independently extract similar patterns to well-known capital market anom-

alies of short-term mean reversion and momentum. However, the high-level performance of 

LSTM models cannot be comprehensively explained by these abovementioned effects. The 

results indicate that the stock returns are partially driven by long-term signals, and that the 

LSTMs can independently extract this type of subtle information from noisy stock market data. 

Despite being relatively complex and having high computational costs, LSTM networks 

are shown to be suitable methods for stock return movement prediction tasks. Even though the 

theoretical performance might not fully materialize if the trading strategy is implemented in 

practice, LSTMs certainly have predictive properties that make them useful tools and comple-

ments for different investment purposes. 
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Tiivistelmä 

 

Viime vuosina koneoppimisen sovellutukset ovat osoittautuneet tehokkaiksi menetelmiksi 

useilla eri aloilla, ja näitä kehittyneitä menetelmiä on sovellettu yhä enemmän myös osake-

markkinoiden ennustamiseen. Tässä tutkimuksessa sovelletaan LSTM-neuroverkkoja osake-

tuottojen liikkeiden ennustamiseen Suomen osakemarkkinoilla vuosien 1999–2020 aikana. 

LSTM-neuroverkon suorituskykyä verrataan tavanomaiseen takaisinkytkeytyvään neuro-

verkkoon sekä logistiseen regressiomalliin. Kahdenlaisten eri syötteiden avulla mallit koulute-

taan ennustamaan osaketuottojen liikkeitä vuosina 2006–2020, ja näiden ennusteiden pohjalta 

rakennetaan yksinkertaistettu kaupankäyntistrategia. Parhaiten suoriutuva, useaa syötemuuttu-

jaa hyödyntävä LSTM-neuroverkko yltää 12,7%: n vuosittaiseen tuottoon ja saavuttaa Sharpe-

suhdeluvun 0,459 ennen transaktiokustannuksia, kun taas yksinkertainen osta ja pidä -salkku 

saavuttaa vuotuisen tuoton 8,6% ja Sharpe-suhdeluvun 0,338 samalla tarkastelujaksolla. 

LSTM-pohjaisten salkkujen suhteellinen etu säilyy transaktiokustannusten huomioon ottami-

sen jälkeenkin, mutta osittaisperiodikohtainen analyysi paljastaa, että suorituskyky ei ole mer-

kittävästi parempi enää tarkastelujakson loppupuoliskolla. 

Tutkimalla LSTM-neuroverkon kaupankäyntiin poimimien osakkeiden yhteisiä piirteitä, 

havaitaan mallin hyödyntävän samanlaisia kaavoja kuin tunnettuihin markkina-anomalioihin 

perustuvat strategiat. LSTM-mallien korkean tason suorituskykyä ei kuitenkaan voida selittää 

kattavasti ainoastaan momentum-teorian tai keskiarvoon palautumisen avulla. Tulokset osoit-

tavat, että osaketuotot ovat osittain pitkäkestoisten signaalien ohjaamia, ja että LSTM-

neuroverkot kykenevät itsenäisesti poimimaan tämänkaltaisia signaaleja paljon kohinaa sisäl-

tävästä markkinadatasta. 

Huolimatta LSTM-neuroverkkojen monimutkaisuudesta ja niiden laskennallisista kustan-

nuksista, tulokset osittavat niiden olevan hyödyllisiä menetelmiä osaketuottojen liikkeiden en-

nustamiseen. Vaikka teoreettinen suorituskyky ei täysimääräisesti olisi siirrettävissä käytän-

töön, LSTM-neuroverkot tarjoavat kuitenkin suotavia ominaisuuksia, jotka tekevät niistä hyö-

dyllisiä työkaluja käytettäväksi erilaisissa sijoitustarkoituksissa. 

Avainsanat Koneoppiminen, ennustaminen, osakemarkkinat 
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1 INTRODUCTION 

1.1 Background and motivation 

The stock market refers to the collection of markets and exchanges where investors and 

traders buy and sell stocks of companies on a public exchange. Stock market is closely 

linked with the world of economics and the price of an individual stock is a result of 

multiple factors such as the financial situation of a company, general economic condi-

tions, political events and investors’ sentiment. The ultimate goal of trading in the stock 

market is to make money by buying securities that are expected to rise in value. Devel-

oping efficient market trading strategies and making accurate predictions of stock price 

movements may therefore yield significant profits for investors. However, stock price 

modelling and prediction is regarded as one of the most challenging issues among time 

series analysis since the stock market is essentially a complex, dynamic and somewhat 

chaotic environment.  

True random walk is a stochastic process and does not carry any predictable patterns, 

and thus any attempts to model it would be pointless. However, there are vast amounts of 

evidence on different markets that stock returns are not a pure random walk process, and 

that financial time series may incorporate some sort of hidden patterns. Occasional and 

somewhat persistent pricing irregularities might occur, e.g., due to irrational investor be-

havior during high market turmoil (Malkiel 2003). In addition, stock market predictability 

is argued to be time-inconsistent and to differ considerably between different markets. 

Many of the methods introduced to exploit these sources of profitability rely on some 

well-known capital market anomalies, such as mean-reversion and momentum.  

Financial time series analysis provides a statistical framework for assessing the be-

havior of time series, such as asset prices, and the key feature that distinguishes financial 

time series analysis from other time series analysis is the element of uncertainty. Time 

series forecasting, in turn, can be generalized as a process that extracts useful information 

from previously observed values to determine future values. (Tsay 2005.) Traditional sta-

tistical methods such as linear regression and autoregressive integrated moving average 

(ARIMA) models are easy to interpret but they usually require strict assumptions regard-

ing the distributions and stationarity of time series. As the financial market data is known 

to have nonstationary and noisy characteristics, the forecasting performance of these tra-

ditional models is likely to be ineffective unless the exact properties of the time series are 
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known. Also, the inability of linear models to generalize the key features of the observed 

data if nonlinear dependencies exist between the variables is a problem since the real 

world is not linear. (Bao et al. 2017.) These shortcomings have increased interest in more 

advanced time series analyzing methods such as various applications of machine learning. 

For decades, machine learning techniques have been researched and applied in vari-

ous disciplines, but with the rapid increase in computing power, their potential has in-

creased considerably. In the past two decades advanced machine learning methods have 

outperformed previous benchmarks, e.g., in natural language processing, rational drug 

design, image classification and fraud detection. Much of the media attention has been 

focused on the achievements of deep learning, a subset of machine learning based on 

artificial neural networks, that provides a group of units for designing network structures 

according to specific tasks. Artificial neural networks are often considered as having 

black-box properties and therefore lacking interpretability. (Long et al. 2019.) 

Recurrent neural networks (RNN) are particularly useful for time series modelling 

because they include feedback loops, which enables them to retain information from pre-

vious time steps and further utilize this information to predict future targets. However, 

conventional RNNs have their own limitations, as models’ inherent ability to retain data 

diminishes as the time increases, referred to as the vanishing gradient problem. As a so-

lution to this problem, Hochreiter and Schmidhuber (1997) proposed the long short-term 

memory (LSTM) architecture which is specifically designed to learn and remember long-

term dependencies. Today, LSTM recurrent neural networks and their modifications are 

some of the leading techniques for sequence learning tasks (Fischer & Krauss 2018). 

One of the earliest studies that showed promising results on machine learning appli-

cations on stock market prediction tasks, was conducted by White (1988), who uses a 

simple neural network to detect nonlinear regularities in the daily return of the IBM stock. 

He fails to find evidence against the efficient market hypothesis as the proposed model is 

very prone to overfitting, but he shows that even simple neural networks are capable of 

rich dynamic behavior. In recent years, a growing number of studies have found support-

ing evidence that machine learning techniques are capable of identifying trading signals 

in stock market data (see, e.g., Atsalakis & Valavanis 2009, Bahrammirzaee 2010, Fischer 

& Krauss 2018, Krauss et al. 2017, Nelson et al. 2017).  

Krauss et al. (2017) show that a combination of deep neural networks, gradient-

boosted trees and random forests outperformed all the individual models, from which the 

deep neural networks, in fact, achieves the lowest performance. Their ensemble method 
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-based trading strategy generates a Sharpe ratio of 1.81, five times higher than that of the 

general market. Fischer and Krauss (2018) expand the recent work of Krauss et al. (2017) 

and apply a long short-term memory network for stock prediction task, which further 

improves the performance of the best model suggested by Krauss et al. (2017). Unlike the 

deep learning model by Krauss et al. (2017), their LSTM network clearly outperforms 

traditional machine learning and statistical models, also having generally lower exposure 

to common sources of systematic risks compared to the benchmark models. Both Krauss 

et al. (2017), as well as Fischer and Krauss (2018), find similar patterns of diminishing 

returns during the recent decades, but even though the advanced machine learning -based 

strategies might not show profitability during the recent years, they certainly have pre-

dictive properties that make them useful tools and complements for different trading strat-

egies and tasks. 

Despite the rapid development in the field of machine learning, academic work on 

financial time series prediction is fairly limited compared to many other disciplines. This 

is not particularly surprising given the complexity of financial markets. Varian (2014) 

also argues that overall, theoretical advances in the field have struggled to incorporate 

into practice. Financial predictive models, and the investment strategies derived from 

them, might fit well on historical data but are likely to fail the future. Lack of model 

interpretability, as well as incentives to maintain profitable methods as secrets, might also 

explain the lack of publications on this topic, but the promising results achieved in previ-

ous literature highlights the need for more extensive research. Also, most of the previous 

empirical work has been conducted on the U.S. and other foreign markets, and therefore 

this research aims to fill the research gap in advanced machine learning applications on 

Finnish stock market.  

 

1.2 Objectives and structure 

The main objective of this research is to examine the feasibility and performance of long 

short-term memory neural networks on the problem of stock market return movement 

prediction task. In addition, the empirical results will be analyzed with an objective to 

gain better understanding about the dynamics of the black-box machine learning methods 

and their implications. Moreover, this research examines how the predictive performance 

translates into real world performance when a simple trading strategy based on model 
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predictions is constructed and evaluated with and without transaction costs. Therefore, to 

some extent this research will contribute to the theory on market efficiency in Finland. 

For the empirical analysis, fifteen stocks with adequate liquidity and data availability 

from the Finnish stock market are selected, and the necessary data for each stock and for 

all the predictive variables are obtained from the Refinitiv Eikon Datastream. The data 

sample reaches from the 4th of January 1999 to the 8h of June 2020, a time span that 

provides a full data availability and a sufficiently large sample size. In this research, the 

predictions, portfolio construction and empirical analysis are conducted with a weekly 

observation frequency in order to save computational burden, avoid redundant noise and 

to capture longer-term dependencies in the data. 

The research questions are investigated through an empirical analysis as follows. 

First, a single predictive LSTM neural network model is constructed, and in order to val-

idate the complexity of the proposed model, a simple recurrent neural network model 

(RNN) and a standard logistic regression classifier (LOG) are built to use as benchmarks. 

The predictive models in this research are also compared by using two different sets of 

input patterns in order to analyze the importance of additional features to the predictive 

performance. In the first approach, called the univariate approach, only the historical re-

turn patterns are used as inputs for the models. In the second one, called the multivariate 

approach, the past return pattern is complemented with a set of predictive features that 

are chosen based on previous research on the predictability of stock market returns. The 

prediction phase is approached as a binary classification problem, as the models are first 

trained with the input data to generate a conditional probability that a stock will outper-

form the cross-sectional median return on the following week. The generated outperform-

ing probabilities are further used to construct a simple prediction-based long trading port-

folio and to adjust its weight accordingly each week. 

The different models are compared in terms of accuracy, profitability and stability to 

assess if the proposed LSTM network presents any improvements when compared to the 

benchmark models. Predictive accuracy is evaluated by using different measurements 

such as the classification accuracy and binary cross-entropy loss function. In addition, a 

statistical test proposed by Diebold and Mariano (1995) is implemented to evaluate if the 

model accuracies are statistically different from each other. The models are also validated 

regarding their financial performance by building a simple prediction-based long trading 

strategy and further comparing it with a simple buy-and-hold portfolio. The performance 

metrics used in the comparison of financial performance include, e.g., annualized mean 
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return, standard deviation, Sharpe ratio and maximum drawdown before transaction costs. 

Due to the implementational issues regarding liquidity, lending availability and the trans-

action costs they produce, short trading strategies are not considered in this research. The 

amount of direct transaction costs is assumed to be five basis points as suggested by 

Krauss et al. (2017) and Fischer and Krauss (2018). To gain better understanding about 

the dynamics of the black-box methods, the data is visualized and thoroughly analyzed in 

order to capture the quintessence of the patterns the LSTM acts upon for selecting the 

stocks for trading. 

The remainder of this paper is organized as follows. Section 2 focuses on the theo-

retical background of this research and introduces the basic concepts regarding the stock 

market predictability and financial time series analysis. Next, Section 3 covers artificial 

neural networks and introduces the basic structures and typical properties of different 

network architectures, from feedforward and recurrent networks to long short-term 

memory cells. In addition, an introduction to the network training process is provided, 

and main findings on previous literature are discussed. Section 4 presents the research 

methods and provides details about the data preprocessing, feature and target generation, 

model construction, network training, performance evaluation and portfolio construction. 

The experimental results are introduced in Section 5, with the main emphasis on the in-

terpretation and practical implementations of the predictions. Finally, Section 6 summa-

rizes the main findings of this research and discusses possible topics left for future re-

search. 

First parts of the data preparation and handling are conducted with Excel.1 Further 

data handling and examination is executed in Python 3.6.8.2 The deep learning RNN and 

LSTM networks are developed with Keras (Chollet 2015) on top of TensorFlow library 

(Abadi et al. 2015). Moreover, the logistic regression model is built using the Scikit-learn 

package (Pedregosa et al. 2011). Data visualization is implemented using RStudio.3 

 
1  Microsoft Corporation (2020) Microsoft Excel. <https://office.microsoft.com/excel> 
2  Python Software Foundation (2020) <https://docs.python.org/3.6/> 
3  RStudio Team (2020) <http://www.rstudio.com/> 
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2 THEORETICAL BACKGROUND 

2.1 Predictability of stock market returns 

2.1.1 Stock market efficiency 

Stock market is a set of exchanges where stocks of publicly listed companies are issued, 

bought and sold. The main objective of trading in the stock market is to generate profits 

by buying securities that are expected to rise in value. The field of stock market prediction 

focuses on developing well-defined trading strategies and prediction approaches in order 

to achieve high returns on investments. However, stock market is a complex and dynamic 

environment that is affected by numerous interacting political, social, environmental and 

economic events. The underlying relationships between these factors are not well known, 

and moreover, these relationships are dynamic and tend to change over time. Therefore, 

stock price modelling and prediction is considered a challenging issue and there is a large 

body of conflicting findings in the literature about whether some predictability exists in 

the stock market. 

Many stock market theories and principles are based on the assumption of rational 

investor behavior. One of the most quoted theories that aims to explain the investment 

decision-making and stock price behavior is the Efficient Market Hypothesis presented 

by Fama (1970). According to the theory, security prices at any point in time fully reflect 

all available information, and therefore consistently beating the market, i.e. generating 

risk-adjusted excess returns, is impossible. The theory suggests that it is pointless to uti-

lize fundamental or technical analysis to predict market trends or search for undervalued 

stocks, as stocks always trade at their fair value on the market and the potential for sur-

pluses is exploited as soon as they occur. Since new information occurs unpredictably 

and the market participants make use of all this information optimally, stock price varia-

tions are random in nature. Also, different interpretations of new information by investors 

do not make the market inefficient unless someone is able to systematically exceed mar-

ket returns with their investments. In an efficient market, the market prices of securities 

can significantly deviate from their real values, but the changes are unpredictable, i.e., 

follow a random walk (Malkiel 2003). 

In his paper, Fama (1970) categorize tests of efficiency into weak form, semi-strong 

form, and strong form, in order to determine the level of information at which the hypoth-

esis is no longer valid. Weak form efficiency claims that securities prices reflect all 
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historical information, and there is no potential for outsized risk-adjusted returns through 

technical analysis. In a market that meets the semi-strong conditions, it is also not possible 

to obtain excess returns by utilizing fundamental analysis, as the prices of securities also 

include all publicly available information about the company. In a market operating under 

strong conditions, the prices of securities reflect not only historical and all publicly avail-

able information, but also all unpublished information about the company, i.e. insider 

information. There is considerable amount of evidence in the literature advocating that 

the weak form and semi-strong form of the theory holds in the stock market. For example, 

Malkiel (2003) argues that the generally poor performance of active mutual funds is an 

indicator of at least semi-strong market efficiency. 

The efficient market hypothesis has also received a lot of criticism from both inves-

tors and researchers, e.g. for its underlying assumptions, as the hypothesis does not con-

sider trading costs, taxes, and the resulting inefficiencies. In addition, all market partici-

pants should interpret new information in the same way, which in practice, never corre-

sponds to reality. Grossmann and Stiglitz (1980) argue that securities prices cannot effec-

tively reflect all available information because the acquisition and production of infor-

mation incurs costs. If the information were disclosed to all market participants according 

to the efficient market hypothesis, data collection would be worthless, and this would lead 

to a lack of incentives to trade. As a result, there is a persistent information imbalance in 

the market, with individuals acquiring information being compensated for their efforts. 

In addition to the compensation of information acquisition, Malkiel (2003) argues that 

irrational behavior of investors might result to occasional and somewhat persistent pricing 

irregularities, and thus predictable patterns in stock returns. This fights against the idea 

of rational investor behavior, and at the same time advocates the existence of various 

market anomalies. 

Stock market information is gradually becoming more easily available at an even 

lower cost, and intensified competition for customers between financial service providers 

has also reduced transaction costs considerably in the last decade. Due to wide and easy 

access to information, as well as large number of actors, stock market is often considered 

to be more efficient than many other markets. However, a market that completely meets 

the information efficiency requirements is still unlikely to exist. For example, several 

studies have shown that there is significant time variation in predictability, and that stock 

market in smaller countries tend to be less efficient compared to bigger markets such as 

in the U.S. (see, e.g., Farmer et al. 2019, Kara et al. 2011, Nelson et al. 2017). 
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2.1.2 Variables affecting stock returns 

In their comprehensive study, Welch and Goyal (2008) review the performance of pre-

dictive variables that have been previously suggested by earlier academic research to be 

prominent predictors of the equity premium. They perform a systematic examination on 

both in-sample and out-of- sample performance of different statistical methods using var-

ious predictors. The authors argue that the predictability of stock returns found in the 

previous literature is time-inconsistent and does not hold when new data is introduced. 

Most of the previously suggested variables with predictive properties failed to deliver 

consistent out-of-sample results, despite the possibly promising in-sample abilities. This 

supports the argument that a naive forecast based on the historical mean is as good as any 

other method for the prediction of the equity premium. Welch and Goyal (2008) also point 

out that even if a proposed model would be powerful in a research perspective, i.e., has 

good both in-sample and out-of-sample performance, great confidence on the model is 

required in order to use it for investing purposes in the long-term. 

Neely et al. (2014) present the opposite results to Welch and Goyal (2008) by report-

ing statistically and economically significant in-sample and out-of-sample predictability 

in the U.S. equity risk premium. They argue that the predictive power of technical indi-

cators is at least as good as that of macroeconomic variables, both of which detect differ-

ent information over the business cycle. More accurately, macroeconomic variables better 

capture the typical surges in the equity risk premium, whereas technical indicators better 

pick up the typical drops. They also show that combining technical indicators and mac-

roeconomic variables improves both in-sample and out-of-sample performance of the eq-

uity risk premium predictions. The most prominent macroeconomic variables in the re-

search included, e.g., dividend yield, book-to-market ratio and the Treasury bill rate. In 

addition, volume-based indicators were among the most influential technical indicators. 

The results of Neely et al. (2014) are in line with Blume et al. (1994), who show that 

volume provides important information that is not yet captured in the market price and is 

thus a useful tool when modelling the process of security returns. 

Several different macroeconomic factors have been suggested in the previous litera-

ture to be prominent features explaining stock returns. Some of the most examined factors 

include long- and short-term interest rates. Qi and Maddala (1999) forecast S&P 500 in-

dex returns and use the one-month Treasury bill rate as a predictive feature in their model. 

They show that interest rates have significant negative correlation with stock market 
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returns during 1954 –1992. In addition to the effects of macroeconomic factors on stock 

returns, they show that dividend yield has a positive relationship with excess returns. 

Brennan et al. (1998) study factors affecting the monthly returns of common stock 

companies in the Nasdaq index between 1966 and 1996. They argue that past returns, 

firm size and book-to-market ratio have strong relations on excess stock returns. In addi-

tion, similar to Neely et al. (2014) and Blume et al. (1994) they find the trading volume 

to have significant negative impact on the average returns.  

Er and Vuran (2013) implement a dynamic panel-data analysis to explain the main 

factors affecting stock returns of several manufacturing firms listed in the Istanbul Stock 

Exchange between 2003 and 2007. Their findings show that past returns, profitability 

ratios, firm size and financial activity all have significant effect on stock returns. In addi-

tion, macroeconomic factors such as economic growth, exchange rates and oil prices can 

also be used to explain stock returns. Similar to the findings of Qi and Maddala (1999), 

they also show that interest rates have significant negative impact on stock returns. More-

over, the exchange rate, firm size and profitability ratios have positive correlation with 

stock returns. The positive impact of exchange rates on stock returns is also shown by 

Niaki and Hoseinzade (2013) who utilize design of experiments to determine which fac-

tors among 27 financial and economic variables have significant influence on the daily 

direction of the S&P 500 index. They show that the exchange rates between the U.S. 

dollar and three main currencies to be among the most influential features. In contrast to 

Neely et al. (2014) and Blume et al. (1994), they argue that relative change in the trading 

volume does not have significant impact on the daily forecasts on the S&P 500 index. 

Gu et al. (2018) conduct a comparative analysis of different statistical learning meth-

ods on the task of stock return prediction. Their predictive dataset consists of over 900 

variables, including 94 stock-specific characteristics. They discover the subtle relation-

ships between the features and expected returns by examining each variable at a time and 

further controlling other variables at their means. Gu et al. (2018) show that variations in 

momentum, liquidity and volatility provide the most dominant predictive signals among 

all considered features. The most powerful predictors are also associated with recent price 

trends and exhibit characteristics of short-term reversal and momentum.  

In addition to the vast amount of predictive variables presented in the previous liter-

ature, several studies have shown that return predictability tends to shift across time and 

across different markets, with different factors having effect at different times (see, e.g., 

Farmer et al. 2019, Fischer & Krauss 2018, Krauss et al. 2017). 
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2.1.3 Predictability of return movement 

Instead of estimating the level of stock or index returns, another part of research focuses 

on the predictability of return movement. Given a sequence of movements of a stock over 

time, the goal is to predict whether returns outperform a certain threshold, e.g., zero or 

the cross-sectional mean of returns in the future. The empirical results of Leung et al. 

(2000) favor the use of classification models over level estimation models. They argue 

that classification models provide better results compared to level estimation models in 

terms of prediction accuracy, as well as in terms of trading profitability. In addition, trad-

ing strategies based on classification models more often outperform simple buy-and-hold 

strategies in terms of risk-adjusted profits.  

Mean reversion is a financial theory that suggests that asset prices and returns tend 

to revert to their long-term average level over time. The theory focuses on reversion from 

abnormal deviations from the long-term mean, as growth and small fluctuations are typi-

cal features for asset price development. Poterba and Summers (1988) investigated the 

mean-reverting behavior in stock prices and found that transitory price components ex-

plain significant amount of stock return variations. Their results show that stock returns 

show positive serial correlation over short periods and negative correlation over longer 

periods. This supports the existence of pricing irregularities and stock market predictabil-

ity, as investing to recently underperforming stocks would yield higher returns compared 

to recently overperforming stocks. 

The momentum effect is a market anomaly that refers to the tendency of asset prices 

to follow their recent trend. In other words, stocks with strong performance in the past 

will continue to perform well in the future. Momentum investing is a strategy exploiting 

the momentum effect by buying stocks with high recent returns, known as winners, and 

taking a short position on stocks with poor recent returns, known as losers. Different mo-

mentum strategies can use variety of methods to identify these winners and losers. (Daniel 

& Moskowitz 2016.) If the markets are truly efficient as the Efficient Market Hypothesis 

suggests, the momentum-based strategies should not help in pursuit of returns higher than 

the risk-adjusted market return. However, previous literature shows support to the profit-

ability of momentum investing.  

In one of the first studies on the momentum effect, Jegadeesh and Titman (1993) find 

evidence of U.S. stock prices exhibiting momentum during the time period of 1965–1989. 

They show that a momentum-based strategy of buying stocks with high returns in the 
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previous 3–12 months, and short-selling stocks with low returns during that period yields 

substantial abnormal returns over the study period. Jegadeesh and Titman (1993) argue 

that the profitability of momentum strategies does not derive from their exposure to sys-

tematic risk factors, but rather is a result of cognitive biases and irrational investor behav-

ior, at least to some extent. Hong et al. (2000) show that momentum investing returns are 

highest for small stocks with lower analyst coverage. The authors also note that due to 

short-sales constraints and manager incentives, stocks with low analyst coverage tend to 

react more quickly to good news than to bad news. According to Daniel and Moskowitz 

(2016), traditional momentum strategies are vulnerable to occasional, but persistent peri-

ods of negative returns that often occur during high market turmoil. Therefore, the aver-

age returns and Sharpe ratios of momentum strategies suffer, as it can take years to re-

cover from these infrequent crashes. 

 

2.2 Financial time series analysis 

Financial econometrics can be defined as the application of statistical techniques to quan-

titative problems arising from finance. These econometric techniques can be useful in, 

e.g. determining asset prices or returns, studying relationships between features, and fore-

casting future values of financial variables. (Brooks 2014.) Financial time series analysis 

is a part of financial econometrics, that revolves around the theory and practice of asset 

valuation over time, and it aims to extract meaningful information from the data in order 

to understand the dynamic dependence of financial phenomena. The key feature that dis-

tinguishes financial time series analysis from traditional time series analysis is the ele-

ment of uncertainty. Time series approach to forecasting, in turn, includes collecting and 

analyzing historical observations in order to determine future values by developing a 

model which aims to capture the underlying data-generating process. (Tsay 2005.) 

Time series analysis can help to understand the past, and if time series observations 

are assumed to contain information about the future development of a variable, some 

function 𝑓(∙) of the past observations can be found to make predictions one or multiple 

time steps ahead. Let 𝑦𝑡 denote the value of a variable at time 𝑡. A univariate, single time 

step 𝑡 + 1 ahead prediction made at the end of a period 𝑡 can therefore be expressed as 

 

�̂�𝑡+1 = 𝑓(𝑦𝑡, 𝑦𝑡−1, … , 𝑦𝑡−ℎ), 
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where ℎ denotes the distance to the earliest observation included in the prediction. In 

many applications, especially in financial time series analysis, the values of a variable are 

not only dependent on its past values, but also on the past values of several other variables. 

This additional information can be utilized to produce a multivariate forecast �̂�1,𝑡+1 as the 

function of a multiple time series expressed as 

 

�̂�1,𝑡+1 = 𝑓1(𝑦1,𝑡, 𝑦2,𝑡, … , 𝑦𝑘,𝑡, 𝑦1,𝑡−1, 𝑦2,𝑡−1, … , 𝑦𝑘,𝑡−ℎ), 

 

where 𝑦1, 𝑦2, … 𝑦𝑘 are the related variables. In contrast to a univariate time series data that 

contains only a single time-dependent variable, a multivariate time series data consists of 

multiple time-dependent variables. Multivariate time series analysis is typically used to 

model and explain interdependencies and co-movements among different variables, and 

to obtain useful predictions about their future development. (Lütkepohl 2005.) 

Traditional linear time series applications, such as linear regression or autoregressive 

moving average (ARMA) models, have dominated the field for decades mostly due to 

their simple structure and good interpretability. The vast majority of traditional financial 

analysis and prediction models rely on strict underlying assumptions, such as normality 

and stationarity of time series, which often do not apply in reality. Some methods require 

variables to be normally distributed in order to make accurate conclusions, but the viola-

tion of this assumption does not usually lead to significant inefficiency of the models. 

However, in most cases the data are required to be stationary, i.e. the statistical properties 

of the time series, such as mean and variance, should not change over time. Stationary 

processes are easier to analyze and predict, as the past statistical properties will remain 

the same in the future. A nonstationary time series is therefore often rendered through 

transformations to become approximately stationary. (Tsay 2005, Tsay & Chen 2019.)  

Traditional linear models are often preferred due to their simplicity, but they are lim-

ited in many respects. For example, conventional financial models are not able to account 

for nonlinearity that is common for real-world phenomena, such as in questions related 

to the stock market. Clements et al. (2004) argue that many financial time series indeed 

exhibit nonlinear behavior. They note that different types of nonlinearity exist, as some 

variables only have occasional predictive power, whereas others might show self-exciting 

or catastrophic behavior. As the financial market data is known to have nonstationary and 

noisy characteristics, the forecasting performance of traditional linear models is likely to 
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be ineffective unless the exact properties of the time series are known. (Rozenberg et al. 

2012.) In addition, issues such as collinearity and decreasing degrees of freedom prevent 

these traditional models from employing large input patterns for predictive tasks. Accord-

ing to Varian (2014), conventional linear econometric tools are often enough to make 

statistical inference in practice as they provide good approximations, but some phenom-

ena are unique to large datasets and alternative, more flexible tools are required. Tsay and 

Chen (2019) argue that many times nonlinear models are able to make significantly better 

contributions, particularly if large amount of data is available. Given the uncertain nature 

of stock market and the limitations of traditional econometric tools, there is room for more 

advanced models that better recover the underlying data-generating process and capture 

the nonlinear relationships in the data without prior knowledge of the statistical properties 

or nonlinearities in the input data. (Rozenberg et al. 2012.) 

Nonlinear methods of time series analysis take into account at least some degree of 

nonlinearity in the data, and thus allow modelling more complex phenomena where the 

dynamic dependencies between variables are not known beforehand. Despite its long his-

tory in the literature, the performance of nonlinear forecasting models was not that ad-

vantageous yet in the early 2000s (see, e.g., Clements et al. 2004, De Goojier & Kumar 

1992). According to Clements et al. (2004), the relatively poor performance of nonlinear 

models was mostly due to the inadequacy of the models, as well as linear models being 

reasonable approximators with less complexity. However, the sharp increase in compu-

tational power, along with the overall development in the field has expanded the usability 

of nonlinear models significantly.  

One of the most popular nonlinear methods are neural networks, that can be classified 

as semi-parametric statistical procedures, i.e. they can have both parametric and nonpar-

ametric components (Tsay 2005). Unlike most traditional statistical methods, neural net-

works do not require many restrictive assumptions on the underlying data-generating 

mechanism. For example, the stationarity of time series does not have an impact on the 

predictive power of neural networks. This feature makes neural networks less prone to 

model misspecification. Usually the underlying process is unknown, and therefore the 

ability of neural networks to learn from data is a valuable feature. Neural networks are 

also relatively robust to noise in the input data. (Brownlee 2018.) In contrast to traditional 

linear models that can by definition represent solely linear functions, one of the most 

powerful characteristics of neural networks is their ability to represent any function, 

known as the universal function approximation property. The theorem states that a 
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feedforward network with at least a single hidden layer containing a finite number of 

neurons can approximate any continuous function to an arbitrary degree of accuracy. This 

feature makes neural networks general and flexible tools especially for prediction tasks. 

(Goodfellow et al. 2016.)  

Despite all the favorable characteristics, neural networks have also received some 

criticism. Brooks (2014), among others, points out that the lack of diagnostics or specifi-

cation tests is one of the major disadvantages of neural networks. The parameter values 

and coefficients in neural networks do not have meaningful theoretical interpretations and 

therefore, there is no clear manner to evaluate the adequacy of the model. In other words, 

since there is no clear link between the model weights and the function 𝑓 being approxi-

mated, the approximation given by the network does not provide any insights to the form 

of that function. This is why neural networks are often described as black boxes. In addi-

tion, there is no theoretical basis to determine the optimal network architectures or hy-

perparameters, which might easily lead to overfitting or to otherwise non-optimal perfor-

mance. Neural networks are also data-driven models and their success is heavily depend-

ent on the patterns represented by the input variables, and also the analysis of which char-

acteristics in the input data are irrelevant also remains an open issue (Rozenberg et al. 

2012). 
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3 ARTIFICIAL NEURAL NETWORKS 

3.1 Feedforward networks 

The concept of artificial neural networks has drawn inspiration from simplified models 

of the brain and natural neural networks. However, the complex working principles of the 

brain differ significantly from the operations of computers, so detailed modeling is chal-

lenging. According to Goodfellow et al. (2016), brain function is simply not yet well 

enough known to be used as a comprehensive guide for the machine learning algorithms. 

They point out that today, the research and development of neural networks differs con-

siderably from neurobiology and computational neuroscience. The structure of artificial 

neural networks can still be described in very same terminology as natural neural net-

works. 

A neural network is an interconnected set of computational units called neurons or 

nodes, that uses a specific training or learning approach to identify the fundamental func-

tional relationships or patterns in a set of data. Warren McCulloch and Walter Pitts pre-

sented a simple definition of an artificial neuron back in 1943, and it has been used as the 

basis for later neural network structures. The following introduction to model of a neuron 

follows the description of Haykin (2009). A nonlinear model of a neuron can be defined 

as an information-processing unit that produces a linear mapping of the input data and 

further defines the output through a nonlinear activation function. This type of neuron can 

be expressed by the following equation 

 

𝒚 = 𝜑(𝑾𝑥𝑦𝒙 + 𝒃𝑦),  

 

where 𝒚 is the output vector, 𝜑(∙) is an elementwise nonlinear activation function, 𝑾𝑥𝑦 

is a weight matrix between the input and output layers, 𝒙 is the input vector, and 𝒃𝑦 is an 

output bias vector. When the sum of the neuron inputs equals to zero, the bias vector 

allows the neuron output signal to deviate from zero. 

The activation function 𝜑(∙) limits the neuron output signal to the desired value range 

depending on the function used, and further transfers the weighted activation from one 

layer to another. The choice of an appropriate activation function depends on the nature 

of the problem to be solved and the need to describe the nonlinearity of the underlying 

phenomenon. The function can be, for example, a logistic sigmoid activation function 
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 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥, (1) 

 

that squashes the values to the open interval (0, 1), drawing close to zero when 𝑥 becomes 

very negative, and close to one when 𝑥 becomes very positive. Another commonly used 

activation function is a hyperbolic tangent activation function 

 

 tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥, (2) 

 

that is bound to the range (−1, 1). However, the activation function must be of a nonlinear 

type for the model to be able to approximate any continuous function with arbitrary ac-

curacy, i.e., have the universal approximation capability. (Goodfellow et al. 2016.) 

One of the quintessential examples of neural network structures is the feedforward 

network or multilayer perceptron (MLP), which consists of one or more hidden layers in 

addition to the input and output layers. It can be defined as a mathematical function that 

is formed by composing multiple simpler functions to map some set of inputs to outputs. 

In a feedforward neural network, the neurons are arranged in layers and the connections 

extend only from the previous layer to the next, so that the neurons in the same layer are 

never interconnected. As a result, the network structure is static, i.e., it has no so-called 

memory and its output depends only on the values of the inputs. Traditional feedforward 

neural networks are particularly suitable to problems where mainly the relationship be-

tween input data and targets is examined, but they cannot make use of sequential infor-

mation very well.  

The structure of a two-layer MLP, i.e., a feedforward network with one hidden layer 

and a linear output layer, is illustrated in Figure 1, where 𝑥𝑖 are the input features, ℎ𝑛 are 

the nodes in the hidden layer and 𝑦 is the network output. The arrows signify the direction 

of information flow and represent the weighted connections between the layers. Here, the 

information goes through the inputs to hidden nodes and further to the output, so that the 

information flow is one-directional and there is no feedback included in the model. 

(Goodfellow et al. 2016.) 
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Figure 1. Two-layer multilayer perceptron (MLP) 

 

A neural network with no hidden layers and only a single output layer using a logistic 

sigmoid activation function, is essentially the same as a logistic regression model. How-

ever, the addition of a single layer of hidden units converts the model into a two-layer 

MLP. (Goodfellow et al. 2016.) The two-layer MLP that is presented in Figure 1, can be 

written by the following equations 

 

 𝒉 =  𝜑(𝑾𝑥ℎ𝒙 + 𝒃ℎ)  (3) 

𝒚 = 𝑾ℎ𝑦𝒉 + 𝒃𝑦, 

 

where 𝒉 is a vector representing the activations of the hidden layer, 𝜑(∙) is an elementwise 

nonlinear activation function, 𝑾 terms denote the weight matrices, 𝒙 is the input vector, 𝒃 

terms are bias vectors and 𝒚 is the output vector. In this example the output vector is a 

linear combination of the weighted hidden activations and the output bias.  

To some extent, MLPs can be used for sequence prediction problems, but they suffer 

some key limitations that highlight the need for more adequate models for time series 

analysis tasks. They require, e.g., that the temporal dependencies between variables are 

specified beforehand in the design of the model, and that the sequences are set to be of 

fixed length. (Brownlee 2018). 
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3.2 Recurrent networks 

Unlike the feedforward networks, recurrent neural networks or RNNs contain at least one 

feedback loop, whereby each node transmits its output back to all other nodes. These 

feedback loops allow the models to store data and process long sequences of input values, 

and thus make them more useful tools for time series analysis. One of the fundamental 

features of RNNs is parameter sharing, which enables them to process data with various 

lengths and generalize across them. The structure of a recurrent network makes it possible 

to use the same transition function with same parameters at every time step. Since the 

same weights and parameters are shared for multiple time steps, RNNs can learn a single 

model that can also be applied to sequence lengths that were not used during the training 

process. (Goodfellow et al. 2016.) 

The following description of the structure of a standard recurrent network is based 

on the work of Graves et al. (2013). Using an input vector sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑇) 

and iterating through time from 𝑡 = 1 to 𝑇, the model computes the vector sequence for 

the hidden state 𝒉 = (ℎ1, ℎ2, … , ℎ𝑇) and vector sequence for the output 𝒚 =

(𝑦1, 𝑦2, … , 𝑦𝑇) by the following equations 

 

 𝒉𝑡 = 𝜑(𝑾𝑥ℎ𝒙𝑡 + 𝑾ℎℎ𝒉𝑡−1 + 𝒃ℎ)  (4) 

𝑦𝑡 = 𝑾ℎ𝑦𝒉𝑡 + 𝒃𝑦 , 

 

where 𝒉𝑡 is the hidden vector at time 𝑡, 𝜑(∙) is an elementwise nonlinear activation func-

tion, 𝑾 terms denote the weight matrices, 𝒙𝑡 is the input vector at time 𝑡, 𝒃 terms are bias 

vectors and 𝒚 is the output vector. The structure of a standard recurrent network is also 

presented in Figure 2, where the arrows represents the weight matrices and biases between 

layers. On the left side of Figure 2, the network is presented as a circuit diagram where 

the black square indicates a delay of a single time step. The same network is also pre-

sented as an unfolded computational graph on the right side of Figure 2, where each node 

of the network is associated with an individual time step. The information is processed 

from the input 𝒙 by incorporating it into the hidden state 𝒉, from where it is passed for-

ward through time and given as an output 𝒚 at each time step 𝑡. 
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Figure 2. Recurrent neural network 

 

Standard recurrent neural network is essentially a set of recurrently connected computa-

tional units that have some sort of simple structure, like a single sigmoid or tanh activation 

function. The structure of RNN is therefore very similar to MLP, as can be observed by 

comparing Equation 3 and Equation 4, the recurrent connections making the essential 

distinction. The recurrent layer repeatedly applies the same operation at each time step, 

and the layer output is copied and returned to the network as input. Therefore, in the 

hidden state equation of RNN, in addition to the current input 𝑾𝑥ℎ𝒙, also the previous 

output 𝑾ℎℎ𝒉𝑡−1 is analyzed in each round of learning. The repeated application of same 

function with the same parameters leads to certain difficulties, such as the problem of 

vanishing and exploding gradients (Goodfellow et al. 2016). Although standard RNNs 

can handle time series better than feedforward networks, due to the vanishing or explod-

ing gradients they fail to capture dependencies spanning more than ten discrete time steps 

(Gers et al. 2000). 

The problem of vanishing and exploding gradients refers to a shortcoming in the 

training of neural networks, where the backpropagated error signal, i.e., the influence of 

a given input, either vanishes exponentially or blows up to infinity while it cycles through 

the recurrent connections. The nature of this problem depends on the choice of the acti-

vation function. Vanishing gradient problem might arise with activation functions that 

squash the input space into a small output range, while exploding gradients might occur 

when the derivatives can take on larger values. Vanishing gradients make the learning 

process more difficult, since adjusting parameters to the correct direction becomes in-

creasingly challenging and eventually the weight updates are so small as to have no effect. 
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In the worst case, the vanishing gradients might completely block the model from further 

training. This problem becomes worse as the number of hidden layers and number of time 

steps in the model increases. Exploding gradients, on the other hand, make the learning 

process more unstable as the weight updates become larger, and this can make the model 

effectively unable to learn from the training data. (Brownlee 2018, Goodfellow et al. 

2016.) 

 

3.3 Long short-term memory cells 

Long short-term memory is regarded as one of the most successful recurrent neural net-

work architectures. It was first introduced by Hochreiter and Schmidhuber (1997) as a 

solution to the problem of vanishing and exploding gradients. The computational unit of 

the LSTM is commonly referred to as a memory cell, and it is specifically designed to 

learn and remember long-term dependencies. Instead of a single layer in the computa-

tional unit, LSTMs are typically composed of three multiplicative layers or gates that 

regulate the information flow through the memory cell: an input gate, a forget gate and 

an output gate. These gates are weighted functions that have ability to add or remove 

information from the memory cell state. 

The following introduction to LSTM networks follows the descriptions of Graves et 

al. (2013) and Goodfellow et al. (2016). Instead of units that compute only a nonlinear 

transformation of inputs and recurrent units, each LSTM cell includes an internal recur-

rence in addition to the step-to-step recurrence of RNN. To apply LSTM cells into a re-

current network, the activation function 𝜑(∙) in Equation 4 is now replaced by the fol-

lowing composite function 

 

𝒇𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝑥𝑓𝒙𝑡 + 𝑾ℎ𝑓𝒉𝑡−1 + 𝒃𝑓) 

𝒊𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝑥𝑖𝒙𝑡 + 𝑾ℎ𝑖𝒉𝑡−1 + 𝒃𝑖) 

�̃�𝑡 = tanh (𝑾𝑥𝑐̃𝒙𝑡 + 𝑾ℎ𝑐̃𝒉𝑡−1 + 𝒃𝑐̃) 

𝒐𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝑥𝑜𝒙𝑡 + 𝑾ℎ𝑜𝒉𝑡−1 + 𝒃𝑜) 

𝒄𝑡 = 𝒇𝑡𝒄𝑡−1 + 𝒊𝑡�̃�𝑡 

𝒉𝑡 = 𝒐𝑡tanh(𝐜t), 

 

where 𝒇, 𝒊, 𝒐, 𝒄 and 𝒉 are respectively the forget gate, input gate, output gate, cell state 

and hidden state vectors, and �̃� denotes the candidate values to be potentially added to the 

cell states. All the weight matrices 𝑾 from the cell to gate are diagonal. The structure of 



27 

 

 

 

the LSTM cell in a recurrent network is also illustrated in Figure 3, where  and  denote 

pointwise operations. All three gating units use the nonlinear sigmoid activation function, 

but the candidate unit can have any nonlinear squashing activation function, e.g., a hy-

perbolic tangent activation function. 

 

 

Figure 3. Long short-term memory cell in a recurrent network 

 

The gates in the LSTM cell control the information flow through the network. The input 

gate defines which information from the input vector and previous output is important 

and is let through the model by adding it to the memory cell state. Gers et al. (2000) 

presented the forget gate that learns to reset the LSTM cell state and discard information 

that seems irrelevant for determining the nature of inputs. While the input gate and the 

forget gate are used to update the internal state, the output gate is the final limiter for the 

memory cell state. It defines the relevant information from the memory cell that is further 

used as output and pushed to the next time step calculations (Brownlee 2018). The pur-

pose of the cell state vector is to store the internal values of the network to be carried for 

the subsequent time steps.  

The input features are presented timestep by timestep to the LSTM network, and the 

final output will be returned after the last element of the input sequence has been pro-

cessed. The modifications in the structure of LSTMs compared to standard RNNs enables 

them to overcome the problem of vanishing and exploding gradients, and to predict time 

series when time steps with arbitrary size are included. (Fischer & Krauss 2018.) 
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3.4 Neural network training 

Deep learning algorithms can be roughly divided into three major paradigms, that are 

supervised learning, unsupervised learning and reinforcement learning, of which the latter 

two are out of the scope of this research. Supervised learning refers to a task of learning 

a function that maps a set of inputs to outputs using paired input-output examples. The 

model is provided with a desired output in order to adjust model parameters according to 

the difference between the target and the actual response given by the model, i.e., accord-

ing to the error signal. The term supervised learning refers to the presence of an external 

instructor guiding the learning process. (Goodfellow et al. 2016, Haykin 2009.) 

Typically, the performance of neural network models during the training process is 

measured by some sort of error or fitness function, such as MSE, SSE or MAPE. The 

choice of the error or fitness function has significant impact on the results, and good re-

sults with one performance measure might not repeat with some other measure. (Rozen-

berg et al. 2012.) In the case of a binary classification problem, the final layer of the 

network should end with a sigmoid activation function in Equation 1, and thus give a 

probability value between 0 and 1 as an output. Binary classification problem with a sig-

moid output should be combined with a binary cross-entropy loss function, that can be 

defined for a single target-output pair by the following equation 

 

 𝐵𝐶𝐸(𝑦𝑡, �̂�𝑡) = −(𝑦𝑡 × log(�̂�𝑡) + (1 − 𝑦𝑡) × log(1 − �̂�𝑡)),  (5) 

 

where 𝑦𝑡 denotes the target label, and �̂�𝑡 the conditional probability given as an output by 

the model at time 𝑡. The binary cross-entropy loss function computes the cross-entropy 

loss between true labels and predicted labels, and thus not only measures correct predic-

tions, but also penalizes for the difference between the predicted probability and the true 

label. (Chollet 2018.)   

The goal of the training process in supervised learning problem is to approximate a 

true data-generation function by learning the error-minimizing parameter values of the 

input-output mapping. In order to optimize the parameter values, the common choice is 

to apply backpropagation through time (BPTT) algorithm, which is a gradient descent 

procedure. The idea behind the BPTT is to allow the information from the selected loss 

function to flow backwards through the network in order to calculate the parameter-spe-

cific gradients. The computed gradients are further used to update each parameter with 
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gradient descent, and the operation is repeated until satisfactory level of error is achieved, 

or until the parameters are converged. The BPTT applies several multiplications and is 

therefore sensitive to the activation values in the network. In some cases, this might lead 

to the abovementioned problems of vanishing and exploding gradients. (Goodfellow et 

al. 2016, Tsay & Chen 2019.) 

The training process of neural networks involves training epochs, where the weights 

and biases are driven iteratively towards the lowest cost in the validation set. After the 

whole training sample has been fed through the training loop, one epoch of training has 

been performed. The number of epochs is therefore the number of times that the full 

training dataset is fed into the network. (Bengio 2012, Goodfellow et al. 2016.) The pa-

rameter optimization process is illustrated in Figure 4, where the model performance is 

visualized by comparing the training loss and validation loss curves. The loss curves tend 

to start from high values but start decreasing after each epoch, as the model begins to 

enable a better fit by learning the meaningful relationships in the data. Given enough 

modelling capacity, the training error is reducing steadily when the number of epochs 

increase, but the error in the validation set starts rising. In other words, eventually the 

model tends to start memorizing the training data when the number of epochs increases, 

which leads to increasing validation error, and thus decreased prediction accuracy. The 

training process can be haltered after predetermined number of epochs if the validation 

error continues to rise. The model parameters that minimize the validation error can later 

be retrieved from the optimum point in the training process.  

 

 

Figure 4. Training and validation loss curves during neural network training 
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Bias is an error of an estimator that occurs from the expected deviation between the pre-

dictions and true values. Variance, in turn, measures the error generated from the devia-

tion between expected predictions and real predictions. Variance can be interpreted as the 

sensitivity of a model to small changes in the input data. The bias-variance tradeoff is a 

fundamental concept in machine learning and refers to the conflict in minimizing these 

sources of error simultaneously. In general, a simple model with low modelling capacity 

bear to have high bias and low variance, which often results to underfitting. Underfitting 

refers to a situation where the model is not able to sufficiently learn the relationships 

between dependent and independent variables within the training dataset. A complex 

model with high modelling capacity easily starts to overfitting the data, and thus will 

contain a small bias and high variance. Overfitting refers to a situation when the model 

begins memorizing, i.e., modelling the random noise in the training data and thus starts 

to lose its out-of-sample generalization ability. Underfitting and overfitting are one of the 

biggest challenges faced in practical applications of machine learning, and more particu-

larly in the training process of neural networks. There are no universal rules on how to 

set up the configuration of a neural network, and thus these issues occur regularly. In 

order to avoid these issues, for example different regularization methods have been intro-

duced in the literature. (Goodfellow et al. 2016, James et al. 2013, Tsay & Chen 2019.) 

 

3.5 Neural networks in financial market prediction 

In the late 1980s the attitude towards neural networks and their potential for stock market 

prediction was still very pessimistic. The level of technology was still far from present 

and the computational complexity of neural network models limited their potential.  Neu-

ral networks had already been successfully applied in other disciplines, but White (1988) 

was among the first to give an indication of their potential also in the stock market. In his 

research, he shoots for evidence against the efficient market hypothesis by using a simple 

neural network to detect nonlinear regularities in the daily return of the IBM stock. He 

argues that the results based on training data were overly optimistic as even simple neural 

networks were really prone to overfitting. 

Atsalakis and Valavanis (2009) review more than one hundred articles that focused 

on the utilization of neural networks in financial market prediction tasks. Most of the 

surveyed papers use reasonably simple input data, such as the opening and closing prices 

of stocks. In their study, Atsalakis and Valavanis (2009) conclude that neural networks 
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are suitable methods for stock market prediction tasks as they are often able to capture 

complex and nonlinear relationships in stock market data. The neural network models in 

the reviewed studies mostly outperformed the benchmark methods in both predictive and 

financial performance. They also note that one of the most powerful characteristics of 

neural networks is that they do not require prior knowledge about the underlying data-

generating mechanism. Bahrammirzaee (2010) comes to a similar conclusion in his study 

by reviewing previous scientific publications on the application of neural networks in the 

financial sector. He finds that neural networks often yield much more accurate results 

than traditional statistical models, especially when the research problems are nonlinear in 

nature. However, Bahrammirzaee (2010) also notes that some studies present contrasting 

results, where neural networks are outperformed by traditional statistical methods and 

thus the superiority of neural networks in forecasting tasks cannot be concluded.  

Chen et al. (2003) apply a probabilistic neural network to predict the daily directions 

of index returns of the Taiwan Stock Exchange. Their results show that neural networks 

are useful tools for predicting directional movements of index returns, as the network 

predictions are more accurate compared to pure random walk prediction models. In addi-

tion, their neural network -based investment strategy achieves higher returns than a sim-

ple buy-and-hold strategy. However, the sharp downturn in the Taiwanese financial sector 

during the testing period partly explains the poor performance of the simple buy-and-hold 

strategy.  

Another study on a smaller market was conducted by Kara et al. (2011), who examine 

the predictability of daily stock price index movement in the Istanbul Stock Exchange 

and compare the performance between artificial neural networks and support vector ma-

chines. Using a set of ten technical indicators, between 1997 and 2007 their ANN model 

achieves an average classification accuracy of 75.74%, compared to the 71.52% of the 

support vector machine. The lowest predictive accuracy is achieved in 2001, when Turkey 

was suffering from a severe economic crisis and the Istanbul Stock Exchange eventually 

lost 30% of its value. 

Krauss et al. (2017) compare deep neural networks, random forests, gradient-boosted 

trees, and different configurations of these models on stock movement prediction task of 

the S&P 500 constituents from 1992 to 2015. In contrast to the studies of Chen et al. 

(2003) and Kara et al. (2011), models are trained to predict the stocks that outperform the 

general market, rather than predict pure directional movements of each stock. Further-

more, each of the models are trained with the past three years of lagged returns of all S&P 
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500 constituents. They find that deep neural networks do not individually outperform 

traditional methods as they reach daily returns of 0.33 percent prior to transaction cost, 

compared to the 0.37 percent by gradient-boosted trees and 0.43 percent by random for-

ests. However, their best performing model is an ensemble method that combines all the 

three individual techniques and receives daily returns of 0.45 percent prior to transaction 

costs. A long-short portfolio constructed based on the ensemble method predictions gen-

erates a Sharpe ratio of 1.81 after transaction costs, compared to 0.35 of the S&P 500 

during the sample period. When examining the sources of profitability, Krauss et al. 

(2017) find that the model primarily utilizes the returns from the past 12-month and one-

week periods when selecting stocks for trading. They note that the returns start to decline 

soon after 2001 and argue that this might be due to the rapid increase in computing power 

and extensive application of machine learning in the stock market. In addition, the per-

formance of all models starts to cripple even more when entering to the 2010s.  

The work of Krauss et al. (2017) is expanded by Fischer and Krauss (2018), who 

deploy a long short-term memory network to predict daily out-of-sample directional 

movements for the constituents of the S&P 500 index from 1992 to 2015. Similar to 

Krauss et al. (2017) their models are trained to predict which stocks outperform the cross-

sectional median on the following day. They use the past 240 one-day returns of each 

stock as input features. The benchmark methods are random forest, standard deep neural 

net and a simple logistic regression classifier. They find that the LSTM network reaches 

statistically and economically significant daily returns of 0.46 percent, and a Sharpe ratio 

of 5.8 prior to transaction cost, outperforming all memory-free benchmark methods. 

However, their results show similar patterns as the ones of Krauss et al. (2017), since after 

2010 the profitability of the LSTM strategy fluctuates around zero after transaction costs, 

so the high-level performance seems to be arbitraged away. More interestingly, they find 

that stocks selected for trading by the model share similar characteristics; below-mean 

momentum, high volatility prior to trading and a tendency for mean-reversion. By per-

forming regression analyses on systematic risk factors, they also find that their LSTM 

portfolio has generally lower exposure to well known risk factors than the baseline meth-

ods, also similar to the results of Krauss et al. (2017). 

Long et al (2019) introduce a multi-filters neural network that utilizes convolutional 

and recurrent neurons and apply it on a daily stock price movement prediction task on the 

Chinese stock market index CSI 300. They find that advanced deep learning models 

clearly outperform statistical models, but also more traditional machine learning models, 
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such as single-structure RNNs or LSTMs in terms of accuracy and profitability. Further-

more, they find that deep learning methods are well capable of identifying trading signals 

from historical market data. However, the proposed multi-filters network does not pro-

vide greatest stability among all models, as the proposed single-structure RNN achieved 

a significant Sharpe ratio of 6.42. 

Some of the academic papers on the topic focus on frequencies of less than one trad-

ing day. Nelson et al. (2017) use a LSTM classification model to predict short-term trends 

of stock prices for the IBovespa index constituents from the BM&F Bovespa stock ex-

change, with a data span from 2008 until 2015. They utilize stock price candlesticks and 

a wide set of technical indicators as model inputs and achieve promising results with their 

LSTM network. Their model outperforms the benchmark methods by having an average 

of 55.9% directional accuracy. However, they conclude that even though the prediction 

accuracy was satisfactory, the model variance could be lower, and an even more stable 

model could thus be constructed. In addition to the predictive accuracy, they compare 

different methods in terms of their financial performance, e.g., by computing the maxi-

mum drawdown of a portfolio, and conclude that the LSTM-based trading strategy in-

volves less risk compared to the baseline methods. The lower risk exposure of their LSTM 

portfolio is in line with the results of Krauss et al. (2017) and Fischer and Krauss (2018). 

Makridakis et al. (2018) evaluate the performance of different machine learning mod-

els and statistical methods on univariate time series prediction tasks. Their extensive study 

includes over a thousand monthly economic and financial time series, and the predictions 

are made with multiple horizons. They show that that traditional statistical models out-

perform the machine learning models on all accuracy measures and examined forecasting 

horizons. They argue that the additional complexity and required computational power of 

the machine learning models is not convenient when univariate time series are modelled. 

In addition, they show that LSTM network is not able to outperform a simple MLP struc-

ture in terms of forecasting accuracy, even though LSTMs are practically designed for 

sequence prediction tasks. The results of Makridakis et al. (2018) indicate that univariate 

time series do not include any complex patterns that only more sophisticated methods 

could be able to capture. However, the results are inconsistent with the ones of Fischer 

and Krauss (2018), who show that LSTM network outperforms all benchmark methods 

in a univariate time series prediction task. 

There is no clear consensus on the literature as to whether machine learning models 

are better than traditional models in predicting stock market developments. The black-
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box properties and lack of universal optimization rules might partly explain the conflict-

ing findings, since simpler models might provide greater confidence, at least if the pre-

dictions are used for investment purposes. Another possible explanation is that stock mar-

ket information that has been collected from multiple sources and has been processed by 

some complex methods, may be comparable to insider information to some extent. The 

information is valuable to its holder as long as it stays private or is known only by a very 

small group of people. When the information leaks or becomes public, its usability in the 

pursuit of excess returns begin to vanish as it slowly starts to reflect in stock prices. There-

fore, that might partly explain why the advancements on the field might not fully materi-

alize in the literature.  

Different data preprocessing methods, model architectures, model hyperparameters, 

parameter initialization and the stochasticity of the training process all have a great influ-

ence on the performance of different models and therefore make clear interpretation of 

the results difficult. Furthermore, the results even on the same dataset might significantly 

differ between studies using similar models. However, advanced machine learning mod-

els have proved to have several desirable attributes and thus highlight the need to fill the 

research gap in machine learning applications on stock market prediction tasks on differ-

ent markets. 
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4 RESEARCH METHODS 

4.1 Data 

Fifteen stocks from the Finnish stock market are selected for the research: Nokia, Sampo 

A, Fortum, UPM-Kymmene, TietoEVRY, Huhtamäki, Kemira, Kesko B, Neles, Wärtsilä, 

Outokumpu A, Atria A, Bittium, Finnair, and Uponor. All the selected stocks provide 

adequate liquidity and full data availability for the selected time period, also covering a 

wide range of industries. The selected stock universe is not survivorship bias free, since 

the selected stocks are also current ones, and companies that went bankrupt or were del-

isted during the research window are ignored. Providing a survivorship bias free stock 

universe would unnecessarily increase the complexity of the research, without brining 

considerable additional value considering the objectives of the research.  

The data for the empirical analysis are gathered from the Refinitiv Eikon Datastream. 

The full research sample covers the period from the 11th of January 1999 to the 8th of June 

2020, as the selected data span provides full data availability and sufficiently large sample 

size. In this research, the predictions, portfolio construction and empirical analysis are 

conducted with a weekly observation frequency in order to avoid excessive noise and to 

capture longer-term dependencies in the data. The decision to use weekly observations 

instead of daily observations also significantly reduces computational burden. All of the 

obtained time series contain a total of 1118 weekly observations, where the day of the 

week of each observation is Monday. 

For the historical return pattern construction, weekly total return indices are used 

since they are the most adequate metric for return computations, taking dividends and all 

relevant corporate actions into account (Fischer & Krauss 2018). Total return index shows 

a theoretical growth in value of a stock holding over a period, assuming that dividends 

are re-invested. The price of an individual stock 𝑠 at time 𝑡 is acquired from the corre-

sponding total return index and is represented as 𝑃𝑡
𝑠. A simple return 𝑅 for a stock over 

𝑚 periods can thus be expressed by the following equation 

 

𝑅𝑡
𝑠[𝑚] =

𝑃𝑡
𝑠 − 𝑃𝑡−𝑚

𝑠

𝑃𝑡−𝑚
𝑠  . 
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The summary statistics of the stock returns for the full sample period are presented in 

Table 1. All the stock returns are leptokurtic and on average have high excess kurtosis, 

which is a typical characteristic in the stock market since the returns tend to center toward 

the mean and have fat-tailed distributions. 

 

Table 1. Summary statistics of the stock returns 1999–2020 

The table reports weekly mean, standard deviation, skewness and excess kurtosis of the returns for selected 

stocks from the 11th of January 1999 to the 8th of June 2020. Weekly mean returns and standard deviations 

are denoted in percent. 

 

Stock RIC Mean St. dev.  Skewness Kurtosis 

Nokia NOKIA 0.150 6.406 0.096 3.371 

Sampo A SAMPO 0.347 3.959 -0.285 4.808 

Fortum FORTUM 0.310 3.679 -0.378 3.213 

UPM-Kymmene UPM 0.281 4.715 0.090 1.692 

TietoEVRY TIETO 0.198 5.737 0.769 8.145 

Huhtamäki HUH1V 0.283 4.202 0.248 4.271 

Kemira KEMIRA 0.301 4.549 0.118 7.849 

Kesko B KESKOB 0.332 3.835 -0.048 3.640 

Neles NELES 0.357 5.545 -0.095 2.612 

Wärtsilä WRT1V 0.387 4.988 0.157 3.838 

Outokumpu A OUT1V 0.138 7.022 0.618 3.585 

Atria A ATRAV 0.220 4.015 0.475 6.493 

Bittium BITTI 0.285 7.294 0.773 6.614 

Finnair FIA1S 0.139 4.585 0.477 4.078 

Uponor UPONOR 0.268 4.947 -0.177 2.718 

 

In addition to the historical returns, additional predictive variables, hereinafter referred as 

features, are considered in order to analyze the importance of supplemental variables to 

the predictive performance. The selection of the additional features is based on the theory 

of stock return predictability, as well as on previous studies on the topic. Data availability 

and computational complexity were also taken into account in the feature selection pro-

cess. To evaluate the incremental value added by the additional features, two sets of input 

patterns are used with each proposed model. In the univariate approach, hereinafter de-

noted as (R), only the historical return patterns of each individual stock are used as inputs. 

In the multivariate approach, hereinafter denoted as (All), the stock return patterns are 

complemented with a set of four stock-specific, and four common features. Aggregate 

variables, such as moving averages or momentum factors, are not considered since LSTM 

networks should be able to pick up these patterns from the data (Fischer & Krauss 2018).  
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The first stock-specific feature is turnover by volume (VO), that displays the number 

of shares traded for a stock over a particular week. The volume figures are expressed in 

thousands, adjusted for capital events and the default volumes are taken from the primary 

exchange of a country. Volume data is frequently employed together with past prices in 

order to identify market trends and is commonly used as a predictive feature (see, e.g., 

Blume et al. 1994, Neely et al. 2014). Second stock-specific feature is market value (MV), 

that is the stock price multiplied by the number of ordinary shares in issue. The market 

value figures are also adjusted for capital events and the amount in issue is updated when-

ever new tranches of stock are issued. However, for companies with multiple classes of 

equity capital, the market value is expressed only according to the individual issue. Price-

to-book value (PB) is the third stock-specific feature in the multivariate approach and is 

calculated as the share price divided by the book value per share. The final stock-specific 

feature is the dividend yield (DY), that expresses the dividend per share as a percentage 

of the share price. The calculation of the underlying dividend is based on an anticipated 

annual dividend and excludes special or once-off dividends. Dividend yield is calculated 

on gross dividends, also including tax credits. According to Er and Vuran (2013), market 

value, dividend yield and price-to-book ratio have been found to be variables significantly 

affecting the stock returns. Brennan et al. (1998) also show that stock returns are strongly 

related to volume, firm size and book-to-market ratios. 

The set of four common features include the VSTOXX index (V2TX), three-month 

Euribor rate (EB3M), the euro versus U.S. dollar reference exchange rate (EUSD), and 

the weekly total return of the OMX Helsinki stock index (OMXH). The VSTOXX index 

is an EU volatility index designed to reflect market expectations of near- to long-term 

volatility. It is based on EURO STOXX 50 real time options prices and measures the 

square root of the implied variance across all options at certain point in time. The Euribor 

interest rates are the most important European interbank interest rates, and the three-

month Euribor is for loans that have a maturity of three months. The euro versus U.S. 

dollar reference exchange rate used in this research is published by the European Central 

Bank. Although Kara et al. (2011) only use technical indicators as inputs in their predic-

tive models, they suggest considering exchange rates and interest rates as features. Er and 

Vuran (2013), as well as Zhong and Enke (2017), show that exchange and interest rates 

are among the most significant variables affecting stock returns. 
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4.2 Training, validation and prediction sets 

The raw data is split into study periods, composed of training samples of 390 weeks for 

in-sample training, and prediction samples of 52 weeks for out-of-sample predictions. For 

the neural network models, each training sample will be further divided into training and 

validation sets in order to provide an unbiased evaluation of the model fit while tuning 

model parameters and hyperparameters. The prediction set is used to evaluate the perfor-

mance of the models with unseen data, and thus it yields an estimate of their generaliza-

tion capacity. Typically, the training-validation ratio is recommended to be approximately 

80-20 when training neural networks (see, e.g., Brownlee 2018, Fischer & Krauss 2018, 

Murphy 2012). Therefore, six years (312 weeks) of data are used as a training set, whereas 

the preceding one and a half years (78 weeks) of data are used as a validation set. The last 

fourteen years (728 weeks) of data are used for out-of-sample predictions with fourteen 

non-overlapping, 52 weeks long prediction periods reaching from the 3rd of July 2006 

until the 8th of June 2020. In other words, a rolling estimation window is used, and the 

whole system will always be rolled forward by the length of a prediction set. The model 

parameters, e.g., the connection weights, are estimated using the training and validation 

sets, and next, the models predict weekly out-of-sample directional movements for the 

selected stocks in the prediction period. The networks are regenerated on a yearly basis, 

and each year the training sample only includes the previous 390 weeks. Rolling estima-

tion window excludes data that is far in the past and thus allows the networks to be trained 

according to changing conditions. Re-training the model in an annual frequency also re-

duces computational costs. The lookback period, i.e., the length of a single feature set, is 

set to be 60 weeks in order to capture dependencies almost up to 14 months. In other 

words, the models will utilize information from the preceding 60 weeks to produce an 

out-of-sample prediction for the following week. 

 

4.3 Feature and target generation 

The feature and the target generation processes follow the approach in Fischer and Krauss 

(2018). For all the proposed models, simple one-week (𝑚 = 1) returns 𝑅𝑡
1,𝑠 

 for each 

week 𝑡 and each stock 𝑠 are calculated and stored to feature matrix 𝒓 of dimension 𝑛𝑠 × 𝑇, 

where 𝑛𝑠 denotes the total number of stocks and 𝑇 is the total number of weeks in the 

dataset. Next, these simple returns are standardized by subtracting the training set mean 
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return 𝜇𝑡𝑟𝑎𝑖𝑛
𝑚 , and further dividing the result by the standard deviation 𝜎𝑡𝑟𝑎𝑖𝑛

𝑚  obtained 

from the same training set. The mean and standard deviation is calculated separately for 

each training set in rolling fashion and are further used to standardize the returns in the 

corresponding validation and prediction sets in order to avoid look-ahead bias. Therefore, 

a single feature is the standardized one-week return �̃� expressed as  

 

�̃�𝑡
𝑚,𝑠 =

𝑅𝑡
𝑚,𝑠 −  𝜇𝑡𝑟𝑎𝑖𝑛

𝑚

𝜎𝑡𝑟𝑎𝑖𝑛
𝑚 . 

 

The input features need to be presented as sequences in the training of the neural network 

models (Goodfellow et al. 2016). Therefore, the single standardized one-week returns are 

stacked into overlapping input sequences with a length corresponding to the selected 

lookback period of 60 weeks. As a result, each study period includes a total of (252 +

78 + 52) = 382 consecutive sequences of these standardized one-week returns in the 

form of {�̃�𝑡−59
1,𝑠 , �̃�𝑡−58

1,𝑠 , … , �̃�𝑡
1,𝑠 } for each stock 𝑠 and each 𝑡 ≥ 60 within the study period. 

These return sequences are used as the sole input in the univariate approach, and as a part 

of the input set in the multivariate approach. The same sequence construction procedure 

is also later applied to all the additional features. 

Neural networks do not require stationary data, but in order to provide a more stable 

learning process, detrending can still be applied to some time-series containing a strong 

trend. The detrending can be carried out in e.g. by taking first difference of the series. 

(Rozenberg et al. 2012.) In this research, first differencing is applied to all additional 

features used in the multivariate approach. Since neural networks are able to deal with 

nonstationary data, stationarity tests are not implemented in this study. None of the time 

series include missing values and thus interpolation is not required.  

Data for sequence prediction and classification problems is typically standardized in 

the way that was presented with the simple returns, or alternately scaled within the range 

of 0 and 1 (Bengio 2012). Rozenberg et al. (2012) note that there is some controversy 

about the necessity and impact of data normalization, as networks should be able to cap-

ture all the underlying patterns without any data preprocessing. However, data scaling is 

typically conducted in order to prevent large inputs from slowing down the training pro-

cess of a deep learning network. A popular method for normalization is to use min-max 

scaling, where the data is scaled using the smallest and highest values in the dataset. This 

method is vulnerable to outliers as the future data might cross the scaling boundaries if 
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the scaling parameters are not adjusted. (Brownlee 2018.) In order to speed up the learn-

ing process, in this research all the additional features all scaled within the range of 0 and 

1 by using the MinMaxScaler function from the Scikit-learn package (Pedregosa et al. 

2011). In order to avoid look-ahead bias, the scaler is fit within each training set, and the 

minimum value 𝑥𝑡𝑚𝑖𝑛 and maximum value 𝑥𝑡𝑚𝑎𝑥 of the training sets are further applied 

to scale the values 𝑥 in the corresponding validation and prediction sets. Therefore, the 

common min-max scaling equation can be expressed as 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑡𝑚𝑖𝑛

𝑥𝑡𝑚𝑎𝑥 − 𝑥𝑡𝑚𝑖𝑛
. 

 

The response or target labels are binary variables displaying whether an individual 

stock outperforms the cross-sectional median return at 𝑡. If the one-week return 𝑅𝑡
1,𝑠 

of a 

stock 𝑠 is less than the cross-sectional median return in the same week, the stock is clas-

sified as underperforming and denoted by class 0. Furthermore, if the one-week return of 

a stock is greater or equal to the cross-sectional median, the stock is classified as over-

performing and denoted by class 1. The target labels can thus be written as  

 

𝑦𝑡
𝑠 = {

1, 𝑖𝑓𝑅𝑡
1,𝑠 ≥ 𝑚𝑡

0, 𝑖𝑓𝑅𝑡
1,𝑠 < 𝑚𝑡

 , 

 

where 𝑚𝑡 is the cross-sectional median of the returns at time 𝑡. The prediction phase is 

approached as a binary classification problem where the proposed models first predict the 

conditional probability �̂�𝑡+1|𝑡
𝑆  for a stock 𝑠 to outperform the median return at 𝑡 + 1 by 

utilizing information only until 𝑡. The conditional probabilities are further converted to 

binary class outputs �̂�𝑡
𝑠 determined by the equation 

 

�̂�𝑡
𝑠 = {

1, 𝑖𝑓 �̂�𝑡
𝑠 > 0.5

0, 𝑖𝑓 �̂�𝑡
𝑠 ≤ 0.5

 . 
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4.4 LSTM networks 

In order to capture stock-specific patterns in the data, all models are trained separately for 

each stock. This also lowers the number of input features per model and thus reduces the 

computational burden. Since there are three model classes and two sets of input patterns, 

the number of individual models investigated is 3 × 2 × 15 = 90. However, the model 

configurations are set equal within model classes utilizing same input data. 

Hyperparameters are configurations that cannot be estimated from the data and are 

thus manually specified by the user (Brownlee 2018). In this research, the model archi-

tectures and hyperparameters of the LSTM networks are selected by conducting multiple 

trial and error -based experiments. More specifically, these experiments are implemented 

on the first validation set by examining the predictive performance with several different 

model configurations while controlling a single hyperparameter at a time. Since the first 

validation set is not used as part of the out-of-sample prediction periods, all predictions 

are made on unseen data and there is no look-ahead bias. Summary of the selected hy-

perparameters is presented in Table 2. The process of tuning hyperparameters is time-

consuming due to the number of tunable hyperparameters and the computational re-

sources required. In addition, the results of the experimental process might be misleading 

and lead to uncertainty about the true generalization capacity, as the selected configura-

tion is presumably non-optimal (Bengio 2012). 

 

Table 2. Hyperparameters of LSTM networks 

This table reports the selected configurations of the proposed LSTM networks. The univariate LSTM net-

work utilizing only the past return pattern is denoted with (R), whereas the multivariate network utilizing 

the full input feature set is denoted with (All). 

 

 LSTM (R) LSTM (All) 

Number of layers 1 2 

Hidden units (layer 1) 3 9 

Hidden units (layer 2) - 9 

Dropout ratio 0.30 0.30 

Batch size 52 52 

Epochs 1000 1000 

Activation function sigmoid sigmoid 

Optimizer RMSprop RMSprop 
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According to Rozenberg et al. (2012), the selection of the number of hidden layers is 

important, but several studies on the subject show that the performance of neural networks 

is not very sensitive to this number. Therefore, in most cases using a single hidden layer 

should provide adequate results with less computational capacity required. In contrast, in 

their large survey about stock market forecasting techniques, Atsalakis and Valavanis 

(2009) found out that in studies that utilize neural networks, on average two hidden layers 

are used in the models. The authors note that additional hidden layers would increase the 

modelling capacity but also the computational complexity, while one hidden layer might 

not uncover all relevant patterns in the dataset. According to Goodfellow et al. (2016), a 

more complex problem demands a more complex model, and chaining multiple hidden 

layers together can have a significant influence on the results. Several studies also support 

the use of larger architectures with proper regularization (Bengio 2012, Graves et al. 

2013, Goodfellow et al. 2016). Based on these findings and the experiments on the first 

validation set, a single hidden layer is deployed with the univariate model, while two 

hidden layers are deployed with the multivariate model. 

The selection of the number of hidden units in the hidden layers follow the same idea, 

where shallow architectures are considered less prone to overfitting and more stable in 

terms of predictive performance. The experiments show that in the univariate approach, 

shallow architectures perform better compared to more complex structures. Overall, three 

hidden units in the single hidden layer provides the most stable performance, and thus it 

is applied with the univariate model. Due to the additional complexity in the multivariate 

approach, also the initial number of hidden units is set to be higher compared to the uni-

variate approach. As suggested by Bengio (2012), the number of hidden units is set to be 

equal in both hidden layers. The most stable performance was achieved with nine units 

within both hidden layers, and thus those are applied with the multivariate approach. 

Number of weights and bias terms to be trained in a single LSTM layer is calculated as 

4(ℎ(𝑖 + 1) + ℎ2), where ℎ denotes the number of hidden units in the hidden layer and 𝑖 

is the total number of input features fed into the network. Therefore, the number of train-

able parameters in LSTM (R) network is 4(3(1 + 1) + 32) = 60, and 2 × 4(9(9 + 1) +

92) = 1368 in the multivariate approach. The size and type of the output layer in the 

network is determined depending on the nature of the problem. In contrast to the study of 

Fischer and Krauss (2018), who use a softmax activation function with two output nodes, 

in this research one output node with a sigmoid activation function in Equation 1 is de-

ployed to generate the conditional outperforming probabilities for each stock. 
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Dropout is a computationally cheap regularization method for reducing overfitting, 

first introduced by Srivastava et al. (2014), and as suggested by Goodfellow et al. (2016), 

it is used within the recurrent layers of LSTM networks. The objective of dropout regu-

larization is to improve the generalization capacity, and thus the out-of-sample perfor-

mance of the network by dropping out a defined portion of the layer outputs during train-

ing process. The best performance in both the univariate and the multivariate approach 

was achieved with 0.30 dropout ratio. On average, higher or lower dropout ratios resulted 

to a decline in performance in both approaches.  

In addition to dropout regularization, early stopping method is used in order to reduce 

the risk of overfitting. According to Goodfellow et al. (2016), early stopping is one of the 

most common forms of regularization and should be adopted almost without exception 

when training neural networks. The early stopping method allows the model to halt the 

training process after the validation loss has stopped decreasing from its lowest point 

during a selected number of epochs. The early stopping threshold in this research is set to 

abort the training process when there is no improvement in model performance during 

the last thirty epochs, as this should provide enough buffer in the case that validation error 

increases only temporarily and soon starts decreasing again. After the training process is 

terminated, the weights and parameters are retrieved from the point with the lowest vali-

dation error using the ModelCheckpoint callback (Chollet 2015).  

The batch size is the number of examples fed through the training loop each time 

before adjusting the weights. A batch size of one means feeding the data through the 

network one example at a time. According to Bengio (2012) the batch size is mostly used 

to control the speed of learning, not so much the performance. However, in the hyperpa-

rameter experiments, smaller batch sizes resulted in an increasing training loss and bad 

overall performance. The most stable performance was achieved with a batch size of 52, 

which is applied for all models.  

Similar to Fischer and Krauss (2018), RMSprop optimization algorithm is utilized in 

the training of the LSTM network. In contrast to a conventional gradient descent that 

exploits a fixed learning rate, RMSprop utilizes mini-batches and uses a decay rate along 

with a global learning rate. Due to this type of adaptive learning rate, no other configura-

tions to the learning rate is required (Hinton 2012). RMSprop is considered an adequate 

optimization algorithm when training deep neural networks, regardless of the problem in 

question (see, e.g., Chollet 2018, Goodfellow et al. 2016). 
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4.5 Benchmark models 

4.5.1 Conventional RNN 

A conventional recurrent neural network is applied to show the relative advantage of the 

introduction of long short-term memory cells to the network structure. In principle, the 

LSTM network should be able to capture the long-term dependencies better than the sim-

ple RNN network, and therefore the superior performance of the LSTM model would 

indicate that these types of relationships exist in the data. Instead of the LSTM cells in 

the hidden layers of the network, hyperbolic tangent activation function in Equation 2 is 

deployed using the SimpleRNN layer in Keras (Chollet 2015). The RNN (R) and RNN 

(All) architectures and hyperparameters are set to be similar with the corresponding 

LSTM networks. Therefore, any additional optimization to the RNN configurations is not 

deployed in order to reduce computational costs and to provide a more equal comparison 

between the models. Number of trainable weight and biases in a single RNN layer is 

calculated as ℎ(𝑖 + 1) + ℎ2, making it one fourth of those to the corresponding LSTM 

networks.  

 

4.5.2 Logistic regression 

Logistic regression is a commonly used statistical model for classification problems due 

to its interpretability and simplicity. It can also be classified as a simple neural network 

with one output neuron, as in the simplest terms, adding hidden units to a logistic regres-

sion model converts it into a multilayer perceptron (Goodfellow et al. 2016). Logistic 

regression is highly suitable for modeling binary dependent variables, and therefore acts 

as a good baseline method in this research. However, the performance of this standard 

classification model is more dependent on the data representation, i.e., the features of the 

model and thus using the same lookback period as with the LSTM and RNN models is 

not reasonable.  

As suggested by Varian (2014), the lookback period is selected by running a 10-fold 

cross-validation procedure for both logistic regression models LOG(R) and LOG(All), 

with lag lengths from 1 to 60. Using the last seven or eight observations of each variable 

as inputs provided the most stable results across all stocks with the univariate models, 

whereas lag length of eight provided the best results with the multivariate model. There-

fore, the selected lookback period of the logistic regression is set to be eight, thus 
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including observations approximately from the past two months. Unlike in the paper of 

Niaki and Hoseinzade (2013), who include the validation set to fit the logistic regression 

model, the validation set is excluded in order to ensure an equal starting point for all 

models. The default options, L2 regularization and L-BFGS solver, are used and maxi-

mum number of iterations is restricted to 1000. The logistic regression model is built 

using the Scikit-learn package by Pedregosa et al. (2011). 

 

4.6 Performance evaluation 

Several different measures are used to compare the predictive performance of the pro-

posed models. These include classification accuracy, precision, recall and F1 score. Clas-

sification accuracy measures the percentage of correct classifications out of all classifica-

tions. Precision tells what fraction of the positive predictions (class = 1) were true posi-

tives, while recall is the fraction of true positives that were correctly classified. The F1 

score can be interpreted as the harmonic mean between precision and recall and is calcu-

lated as follows 

 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 . 

 

As suggested by Gu et al. (2018) as well as by Fischer and Krauss (2018), the Diebold-

Mariano test is deployed in order to evaluate if the out-of-sample performance of the 

LSTM models are truly different compared to the benchmark models. The null hypothesis 

in the Diebold-Mariano test assumes that the prediction accuracies of two models are 

equal, and the test statistic can be expressed as 

 

𝐷𝑀12 =
�̅�

√[𝛾0 + 2 ∑ 𝛾𝑘]/𝑇ℎ−1
𝑘=1

, 

 

where 𝛾𝑘 are the autocovariances and 

 

�̅�12 =
1

𝑇𝐾
∑ 𝑑12, 
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where 𝑇 is the number of time steps and 𝐾 is the number of stocks, and further 

 

𝑑12 = |�̂�1| − |�̂�2|, 

 

where �̂�𝑖 are the residuals of the forecasts. In addition to the Diebold-Mariano test, a sta-

tistical estimate is provided to assess whether the models achieved the total accuracies 

randomly. The number of correct predictions in a pure chance model could be presented 

with a binomial distribution 

 

𝑿 ∼ Βin(𝑛 = 𝑇𝐾, 𝑝 = 0.5, 𝑞 = 0.5), 

 

where 𝑇 is the number of time steps and 𝐾 is the number of stocks. For a such large 

number of observations, a normal distribution can be used as an approximation to the 

binomial distribution 

 

𝑿 ~ N(𝜇 = 𝑛𝑝, 𝜎 = √𝑛𝑝𝑞). 

 

Consequently, the probability of achieving the realized accuracy if the true model accu-

racy is 50 percent, can be computed. 

Unlike most traditional prediction models, neural network algorithms are stochastic 

and thus make different predictions each time the constructed model is trained on the 

same dataset (Brownlee 2018). This can be taken into account by running the networks 

several times and taking the averages of the results. However, in this research the exact 

model predictions are needed for the portfolio construction phase and thus using the av-

erage of results is not possible. Therefore, the model predictions and other statistics for 

the performance evaluation are taken from the first run of each model after the models 

have been constructed. Furthermore, in order to get a better overview on the generaliza-

tion capacity of the neural network models, the robustness is later evaluated by comparing 

the predictive accuracies across several runs. 
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4.7 Portfolio construction 

The proposed predictive models produce the conditional probabilities for each stock 𝑠 to 

outperform the cross-sectional median return at 𝑡 + 1 by utilizing information only until 

step 𝑡. These probabilities are further used as the base for the portfolio construction phase, 

where a simple prediction-based long trading strategy is implemented, and each model is 

compared in terms of profitability of the constructed portfolios. Due to the implementa-

tional issues regarding liquidity, lending availability and the transaction costs they pro-

duce, short trading strategies are not considered in this study. 

All stocks are ranked in descending order of these probabilities �̂�𝑡
𝑠 for each week, 

and these cross-sectional rankings are used to update the positions in a long portfolio. The 

portfolio construction is based on a simple heuristic approach where 𝑘 number of stocks 

are bought at a closing price at the end of each week and portfolio is adjusted accordingly. 

The 𝑘 number of stocks selected are the ones with the highest predicted outperforming 

probabilities. The portfolio value 𝑉 at each week 𝑡 can be expressed by the following 

equation 

 

𝑉𝑡 = 𝑉𝑡−1 × [1 + ∑(𝑤𝑡−1,𝑘 × 𝑟𝑡,𝑘)

𝐾

𝑘=0

], 

 

where 𝑤𝑡−1,𝑘 denotes the weight of stock 𝑘 in the portfolio at the previous week and 𝑟𝑡,𝑘 

is the return of a stock from 𝑡 − 1 to 𝑡. Instead of using equal weights within the portfolio, 

bet sizing is implemented to consider the differences in the certainty of the predictions 

and thus possibly increasing profitability of the strategies (López de Prado 2018). The bet 

sizing is implemented as follows. First, the conditional probabilities are standardized sep-

arately for each week 𝑡 and next, the 𝑘 stocks with the highest probabilities are selected. 

Finally, the weights of the selected stocks in the portfolio are calculated by re-scaling the 

standardized probabilities so that the weights sum up to one. 

Most academic papers on the topic trade day-to-day or week-to-week on adjusted 

closing prices and only accounting for the direct transaction costs, usually assumed to be 

around five basis points (Fischer & Krauss 2018, Krauss et al. 2017). The level of direct 

transaction costs per trade in this research is thus also set to be five basis points, and no 

other transaction costs are considered in the calculations. The portfolio value after direct 

transaction costs can be expressed as  
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𝑉𝑡 = 𝑉𝑡−1 × [1 + ∑(𝑤𝑡−1,𝑘 × (𝑟𝑡,𝑘 − 𝑥 × 𝑝𝑡.𝑘))

𝐾

𝑘=0

],  

 

where 𝑥 denotes the amount of direct cost of a single transaction and 𝑝𝑡,𝑘 is a variable 

that indicates the number of transactions applied for stock 𝑘 at week 𝑡. The number of 

transactions equals two in a situation where a stock is held in the portfolio only for a 

single week. Cumulative compounded returns of the portfolios are calculated at the end 

of the trading process, and the profitability of the proposed models are evaluated with and 

without transaction costs. The portfolio values are indexed to 100 with the 3rd of July 

2006 as the base date. Other performance metrics used in the comparison of financial 

performance include, i.e., annualized mean return, annualized standard deviation, skew-

ness, excess kurtosis, maximum drawdown and annualized Sharpe ratio prior to transac-

tion costs. The prediction-based trading strategies are further compared in terms of their 

financial performance with a simple buy-and-hold strategy, where all fifteen stocks are 

bought in the beginning of the trading window and held until the final date. 
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5 RESULTS 

5.1 Predictive performance 

Throughout this section, the univariate and multivariate models are separated with nota-

tions (R) and (All), respectively. The univariate models include only the historical return 

patterns as features, whereas the multivariate models also include the VO, MV, PB, DY, 

OMXH, V2TX, EB3M and EUSD features. Moreover, the out-of-sample predictions cover 

the period from the 3rd of July 2006 until the 8th of June 2020. A common choice in the 

literature is to use the average of the three-month Euribor rate during the sample period 

as the risk-free rate. However, due to current market conditions and monetary policy de-

cisions, the average three-month Euribor rate is negative during the prediction sample and 

therefore, the risk-free rate in this research is set to zero and no further risk-adjustments 

are made in the calculations. 

The predictive performance of the proposed models during the full prediction sample 

is provided in Table 3. The total classification accuracy, binary cross-entropy loss (BCE), 

precision, recall and F1 score are reported separately for each model. The binary cross-

entropy loss is computed as in Equation 5, but instead of a single target-output pair, the 

loss is calculated for the full sample. Classification accuracy is the rate of correct classi-

fications, whereas precision is the rate of correct positive predictions out of all positive 

predictions. Recall measures the robustness of the model and tells the fraction of correctly 

classified true positives. Furthermore, F1 score can be interpreted as the harmonic mean 

between precision and recall. Finally, the bottom row of the table displays the probabili-

ties that the predictive accuracies would have been achieved by random guess. 

 

Table 3. Predictive performance of the proposed models 2006–2020 

The table reports the total classification accuracy, binary cross-entropy loss (BCE), precision, recall and F1 

score of each model during the full prediction sample from the 3rd of July 2006 until the 8th of June 2020. 

Bottom row displays the probabilities that models in the column label achieved the accuracy by chance. 

 

 LSTM (R) RNN (R) LOG (R) LSTM (All) RNN (All) LOG (All) 

Accuracy 0.528 

 

0.517 0.514 0.530 0.521 0.517 

BCE 0.694 0.703 0.714 0.700 0.712 0.738 

Precision 0.542 0.536 0.536 0.546 0.541 0.540 

Recall 0.738 0.691 0.660 0.708 0.666 0.631 

F1 score 0.625 0.604 0.591 0.617 0.597 0.582 

Prob. (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) 
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Probability that the realized accuracy is achieved if the true accuracy of the model is 50 

percent is practically zero for all models, except for the LOG (R) model, where the prob-

ability is 0.2 percent. In other words, all the proposed models delivered accuracies that 

are statistically significantly different from a random guess. The LSTM (All) delivers the 

highest classification accuracy of 53.0%, with the LSTM (R) coming in second with a 

52.8% accuracy. In fact, the LSTMs outperform their benchmarks in every single perfor-

mance measure. Each multivariate model outperforms the corresponding univariate 

model in terms of classification accuracy. In addition, the logistic regression models are 

outperformed by the RNNs, that in turn, are outperformed by the LSTMs. Therefore, the 

results imply that the additional complexity of the models also provide additional value 

in terms of predictive performance. These findings are in line with Fischer and Krauss 

(2018) and Kara et al. (2011) who also show that additional complexity comes with a 

higher classification accuracy. In contrast, Krauss et al. (2017) find deep neural nets de-

livering worse classification accuracy compared to individual benchmark methods or 

their proposed ensemble model.  

Despite having a lower classification accuracy, the LSTM (R) outperforms the LSTM 

(All) in terms of binary cross-entropy loss, recall and F1 score. Binary cross-entropy loss 

is the only measure that should be minimized, as it penalizes for the difference between 

the predicted probabilities and true outcomes. Thus, the lower BCE indicates that the 

certainty of the predictions given by the LSTM (R) are more on point compared to other 

methods, including the multivariate LSTM. High recall rate and F1 score also support the 

notion that the LSTM (R) certainly has some desirable properties, as it is able to correctly 

classify a substantial part of the true positives using only historical returns as inputs. 

Statistical test proposed by Diebold and Mariano (1995) evaluates the significance 

of differences in the out-of-sample predictions among the models, and the p-values of the 

test are reported in Table 4. The test makes pairwise comparisons of the true model accu-

racies, and p-values lower than 0.05 mean that the forecasts of a method in the row label 

are superior to the forecasts of the method in the column label at 95% confidence level. 

The results from the Diebold-Mariano test are consistent with the findings of Fischer and 

Krauss (2018) as both LSTMs provide statistically significant improvement over the 

benchmark methods at least with a 95% confidence level, with the exception that LSTM 

(R) outperforms RNN (All) only at a 90% confidence level. In addition, both RNNs pro-

vide improvements over the LOG models, but the differences are statistically significant 

only between the RNN (All) and the LOG (R) model with a p-value of 0.062. 
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Table 4. Diebold-Mariano pairwise comparisons of model accuracies 

The table reports the p-values of the Diebold-Mariano test with null hypothesis that the predictions of two 

models are equal. The alternative hypothesis states that the predictions of a method in the row label are 

superior to the predictions of the method in the column label. The predictions are made on the period from 

3rd of July 2006 until 8th of June 2020. 

 

 LSTM (R) RNN (R) LOG (R) LSTM (All) RNN (All) LOG (All) 

LSTM (R) - 0.010 0.002 0.688 0.077 0.018 

RNN (R) 0.990 - 0.282 0.995 0.788 0.506 

LOG (R) 0.998 0.718 - 0.999 0.938 0.757 

LSTM (All) 0.312 0.005 0.001 - 0.041 0.008 

RNN (All) 0.923 0.212 0.062 0.959 - 0.168 

LOG (All) 0.982 0.494 0.243 0.992 0.832 - 

 

The introduction of LSTM cells in the network structure produces greater improvement 

in performance against the benchmark model classes among the univariate models, than 

with the models utilizing the full set of input features. In other words, the properties of 

the LSTM networks are relatively more valuable when only a single input feature is uti-

lized. Furthermore, none of the multivariate models delivers statistically significant im-

provements over the univariate models within the same model class. 

The results from the Diebold-Mariano test indicate that the LSTMs are able to cap-

ture complex relationships in the data that cannot be extracted by any of the benchmark 

methods. Furthermore, the relative importance of the introduced additional features is not 

that significant, even though they improve the results marginally. However, this does not 

rule out the relevancy of the additional features, as a different sample size or different 

model configurations could turn the results in favor of the multivariate models. In addi-

tion, even though the improvement over the corresponding univariate models is only mar-

ginal, all multivariate neural network models deliver major improvements over both lo-

gistic regression models. It is also to be noted that even though the difference between 

the classification accuracies of univariate and multivariate models is not statistically sig-

nificant, it might be significant in an economic sense when the predictive performance is 

translated into a prediction-based investment strategy. 

In addition to addressing overall accuracies, stock-specific classification accuracies 

of the proposed models for the full prediction sample are reported in Table 5. In addition, 

average accuracies on each stock across all models are presented. The accuracies fluctuate 

considerably between stocks, and regarding some of the stocks, the accuracies are on a 

notably similar level between different models. 
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Table 5. Stock-specific classification accuracies 2006–2020 

This table reports the stock-specific classification accuracies of the proposed models during the full predic-

tion sample from the 3rd of July 2006 until the 8th of June 2020. The final row provides the total classification 

accuracy across all stocks for a model in the column label. The final column reports the average accuracy 

across all models on a stock in the row label.  

 

Stock LSTM(R) RNN(R) LOG(R) LSTM(All) RNN(All) LOG(All)  Avg. 

Nokia 0.507 0.529 0.492 0.507 0.538 0.519 0.515 

Sampo A 0.596 0.565 0.567 0.587 0.574 0.555 0.574 

Fortum 0.549 0.518 0.523 0.548 0.508 0.527 0.529 

UPM-Kymmene 0.532 0.493 0.525 0.545 0.516 0.508 0.520 

TietoEVRY 0.525 0.518 0.515 0.525 0.527 0.516 0.521 

Huhtamäki 0.504 0.484 0.508 0.523 0.522 0.521 0.510 

Kemira 0.541 0.563 0.563 0.559 0.556 0.560 0.557 

Kesko B 0.547 0.554 0.541 0.522 0.527 0.503 0.532 

Neles 0.536 0.526 0.515 0.540 0.504 0.519 0.523 

Wärtsilä 0.560 0.549 0.496 0.552 0.534 0.527 0.537 

Outokumpu A 0.512 0.508 0.478 0.508 0.496 0.484 0.498 

Atria A 0.493 0.474 0.486 0.492 0.510 0.518 0.495 

Bittium 0.510 0.503 0.495 0.514 0.492 0.497 0.502 

Finnair 0.486 0.482 0.475 0.482 0.500 0.479 0.484 

Uponor 0.525 0.485 0.525 0.554 0.508 0.516 0.519 

Total 0.528 0.517 0.514 0.530 0.521 0.517 0.521 

 

The classification performance of all models is relatively poor regarding Outokumpu A, 

Atria A and Finnair stocks, with the average accuracies falling below the 50 percent mark. 

More interestingly, regarding Finnair only one model, RNN (All), achieved 50% accuracy, 

and that just barely. Since all models are trained for each stock separately, these findings 

indicate that the models had difficulties learning any predictable patterns regarding these 

abovementioned stocks. Each of these companies operate within different industries, and 

thus no clear linkage to the weak performance can be drawn in that sense. In contrast, 

Sampo A and Kemira are stocks with the highest stock-specific accuracies, with average 

accuracies of 57.4% and 55.7%, respectively. The high-level performance regarding these 

stocks is constant across all models, including all univariate models, indicating that some 

powerful predictable patterns exists in the past returns. 

Huhtamäki is the only stock where the introduction of additional predictive features 

notably improved the performance of all model classes. Otherwise the additional features 

improved the performance in around half of the cases, so no significant patterns can be 



53 

 

 

 

observed in that regard. As the results from the Diebold-Mariano test suggest, the addi-

tional features do not provide statistically significant improvements on the predictive per-

formance. However, the importance seems to be stock-specific as the additional features 

have more effect on the predictability of some stocks than on others. 

LSTM (R) and LSTM (All) models are the two top performing classifiers regarding 

more than half of the stocks, more specifically regarding Sampo A, Fortum, UPM-

Kymmene, Neles, Wärtsilä, Outokumpu A, Bittium and Uponor. In contrast, regarding 

Nokia, the LSTMs only beat the LOG (R) model while being outperformed by the other 

benchmark methods. Overall, the LSTMs deliver the most stable and promising predic-

tive performance out of all models. 

Predictive performance of the proposed models is shown to vary between different 

stocks, and in order to explore also the possible time-variation, 26-week rolling classifi-

cation accuracies are presented in Figure 5. Time series of accuracies alone are too vola-

tile to be analyzed and thus rolling accuracies are used. Performance of the univariate 

models is displayed in one figure, and performance of the multivariate models in another. 

The sample covers the period from the 1st of January 2007 until the 8th of June 2020. 

 

 

Figure 5. Time series of 26-week rolling classification accuracies 

The top (bottom) figure displays the time series of 26-week rolling classification accuracies of the univari-

ate (multivariate) models. The sample of the 26-week rolling accuracies covers the period from the 1st of 

January 2007 until the 8th of June 2020. 
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Substantial co-movement can be observed in the rolling accuracies of different models, 

within both the univariate and the multivariate models. Similarities in the time varying 

accuracies between models indicate that there is significant time variation in the predict-

ability of stock returns. There is a large body of evidence in the literature suggesting that 

stock return predictability varies over time and tends to be higher during market turmoil, 

such as during the global financial crisis or the European debt crisis. In addition, different 

variables are shown to have varying predictive power over different periods during the 

business cycle. (see, e.g., Daniel & Moskowitz 2016, Farmer et al. 2019, Fischer & 

Krauss 2018, Neely et al. 2014.) 

All of the proposed models face a steep decline in accuracy somewhere between the 

end of 2008 and the latter half of 2009. The decline is more long-lasting among the bench-

mark methods, whereas the performance of both LSTMs starts improving around the early 

stages of 2009. Furthermore, there are other notable downturns in predictability, e.g., 

around 2012–2013 and in 2016.  

Three periods with moderately higher predictability can be identified. During the pe-

riod between 2010 and 2012, most of the models regularly achieved an accuracy over 50 

percent, and the same occurred around 2014–2015 and 2018–2019. However, there are 

also periods where some models deliver divergent performance, and periods where nota-

ble slumps and surges occur with various delays. Without a few exceptions, the accuracies 

of all three univariate models exhibit similar movements throughout the sample and the 

co-movement is more apparent towards the end of 2010s. On the other hand, there are 

slightly more differences in the accuracies between the multivariate models. 

To evaluate the difference between univariate and multivariate models, Figure 6 dis-

plays the time series of the difference between the 26-week rolling classification accura-

cies of LSTM (All) and LSTM (R) models. The difference is computed by deducting the 

26-week rolling accuracy of the LSTM (R) from the 26-week rolling accuracy of LSTM 

(All). The difference fluctuates on both sides during the sample period, the most signifi-

cant difference coming around 2019 in the favor of LSTM (All). However, there are also 

several occasions when the univariate LSTM outperforms the multivariate LSTM, most 

notably during 2012, 2014 and 2017. The LSTM (All) seems to outperform the LSTM (R) 

mostly during times when the average prediction accuracies are on a higher level and 

vice-versa. These findings suggest that during periods with higher predictability the mul-

tivariate model benefits from the supplementary information provided by the additional 

features. 
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Figure 6. LSTM (All) – LSTM (R) 26-week rolling classification accuracy 

The figure displays the difference between the 26-week rolling classification accuracies of the LSTM (All) 

and LSTM (R) models. The sample covers the period from the 1st of January 2007 until the 8th of June 2020 

 

According to Bahrammirzaee (2010), one detail that needs to be noted when predicting 

with neural networks is that some patterns can be present in the prediction set of a network 

that have not been present in the training set, especially during events such as the global 

financial crisis. This might lead to decreasing accuracy as the models rely on the learned 

dependencies and cannot react to new and unique events quickly enough. In other words, 

even though the network learns the meaningful dependencies in the training set and gen-

eralizes well on the validation set, the performance on the prediction set suffers due to 

constantly changing market conditions. All models in this research are re-trained in an 

annual frequency, which makes them even more vulnerable to such circumstances.  

 

5.2 Investment strategy performance 

The results of Fischer and Krauss (2018) show that reducing the number of stocks held 

in a portfolio increases the profitability of the prediction-based trading strategies signifi-

cantly. However, the S&P 500 index includes five hundred stocks as opposed to the fif-

teen stocks available in this research. Therefore, in order to take advantage of the certainty 

of different predictions, but also keeping the number of stocks in the portfolio high 

enough, the 𝑘 number of stocks kept in a portfolio each week is set to be five and no other 

variations are considered.  

The summary statistics for the prediction-based portfolios and the simple buy-and-

hold portfolio prior to transaction costs are presented in Table 6. The buy-and-hold port-

folio is constructed by acquiring all fifteen stocks in the beginning of the trading window 

and keeping them in the portfolio until the final date. The full trading window covers the 

period from the 3rd of July until the 8th of June 2020. 
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Table 6. Portfolio summary statistics prior to transaction costs 2006–2020 

The table reports annualized mean return, standard deviation, and Sharpe ratio of the constructed portfolios 

with a weekly observation frequency. In addition, the skewness, excess kurtosis, maximum drawdown 

(MDD) and sample 95% Value-at-Risk of the portfolio returns are reported. The buy-and-hold portfolio 

includes all the presented fifteen stocks, whereas the prediction-based portfolios include five stocks with 

the highest outperforming probabilities each week within the prediction sample. The sample covers the 

period from the 3rd of July 2006 until the 8th of June 2020.  

 

 Return Std. dev. Sharpe Skewness Kurtosis MDD VaR 95% 

LSTM (R) 0.112 0.253 0.441 -0.346 4.322 0.624 0.304 

RNN (R) 0.092 0.262 0.353 -0.378 4.879 0.592 0.338 

LOG (R) 0.037 0.268 0.136 -0.198 4.356 0.690 0.404 

LSTM (All) 0.127 0.277 0.459 -0.153 6.912 0.700 0.328 

RNN (All) 0.100 0.274 0.366 -0.174 4.769 0.682 0.350 

LOG (All) 0.066 0.266 0.246 -0.210 2.927 0.651 0.372 

Buy-and-hold 0.082 0.242 0.338 -0.264 3.913 0.642 0.316 

 

The annualized returns of the LSTM (R) portfolio prior to transaction costs are 11.2% 

compared to 9.2% for the RNN (R) and 3.7% for the LOG (R). Furthermore, the annual-

ized returns of the multivariate models are 12.7 % for the LSTM (All), 10.0% for the RNN 

(All) and 6.6% for the LOG (All). The simple buy-and-hold strategy achieves an annual 

return of 8.2% during the sample period from the 3rd of July 2006 until the 8th of June 

2020. Logistic regression models generate substantially lower annual returns even com-

pared to the buy-and-hold portfolio, whereas the LSTMs clearly outperform all bench-

mark portfolios with RNNs falling somewhere between the LSTMs and buy-and-hold 

portfolio. With respect to standard deviation, the LSTM (R) portfolio is less volatile com-

pared to the other prediction-based models with 25.3%, only falling behind to the simple 

buy-and-hold portfolio that has the lowest annualized standard deviation of 24.2%. On 

the other hand, the LSTM (All) portfolio delivers the highest annualized standard devia-

tion of 27.7%.  

All the weekly portfolio returns are negatively skewed with LSTM (All) having the 

least negative skewness of -0.153. Furthermore, all portfolio returns have excess kurtosis 

with LSTM (All) exhibiting significantly higher excess kurtosis compared to any other 

portfolio. The excess kurtosis of LSTM (All) returns is 6.912, compared to 3.913 of the 

buy-and-hold returns. These findings are similar to findings of Fischer and Krauss (2018) 

and Krauss et al. (2017) who report significantly higher excess kurtosis for their machine 

learning -based portfolios compared to those of benchmark portfolios. However, the 

LSTM (All) is the only portfolio that stands out in that regard. 
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The Sharpe ratio measures the return of a portfolio in relation to its risk, and it can 

be interpreted as the signal-to-noise ratio. Even though the LSTM (All) portfolio bears the 

highest standard deviation of all portfolios, it also delivers the highest annualized Sharpe 

ratio of 0.459, thus compensating the higher risk with higher returns. Furthermore, the 

LSTM (R) portfolio also has relatively high Sharpe ratio of 0.441, compared to 0.366 of 

the RNN (All), 0.353 of the RNN (R), 0.338 of the buy-and-hold portfolio, 0.246 of the 

LOG (All) and 0.136 of the LOG (R). Even the highest Sharpe ratio does not reach the 

same levels as the best performing portfolios in Fischer and Krauss (2018), Krauss et al 

(2017) and Long et al. (2019). However, all those studies are conducted with a daily ob-

servation frequency and on different markets and thus the results are not directly compa-

rable.  

Maximum drawdown measures the highest observed loss from a historical peak to a 

trough of a portfolio. Value-at-Risk, in turn, quantifies the level of risk exposure in a 

portfolio by demonstrating the degree and frequency of potential losses. The annual 95% 

Value-at-Risk measures the maximum percentage loss in a year at a 95% confidence 

level. Both, the maximum drawdown and the Value-at-Risk measure the downside risk 

of a portfolio over time. Among the prediction-based portfolios the LSTM (R) and LSTM 

(All) deliver the lowest Value-at-Risk with 30.4% and 32.8%, respectively. The former 

has even less downside risk than the buy-and-hold portfolio that has 31.6% Value-at-

Risk. The LSTM (R) portfolio shows desirable risk characteristics having the lowest an-

nual Value-at-Risk and also the second lowest annual maximum drawdown of -62.4%. 

The lower risk exposure of machine learning -based portfolios is also supported by the 

findings of Fischer and Krauss (2018), Krauss et al. (2017) and Nelson et al. (2017). 

 The maximum drawdowns of the portfolios range from 59.2% to 70.0%, but the 

main driver for those values is the global financial crisis and its aftermath around 2009. 

In order to visualize the portfolio returns over time, the cumulative compounded portfolio 

returns prior to transaction costs for the full sample period are displayed in Figure 7. From 

the plotted time series, another steep dive in the portfolio values can be observed during 

the COVID-19 outbreak in the early 2020, when all portfolios faced a sharp decline in 

value. The cumulative return figures display how radical the collapse is during the first 

months of 2020. Looking at the cumulative returns of the full sample in Figure 7, the 

LSTM portfolios seem to start gaining their edge around 2010. In addition, around 2019 

all portfolios face a slump in cumulative returns, except for the LSTM (All) portfolio that 

continues with a strong trend until the early 2020. 
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Figure 7. Cumulative compounded returns prior to transaction costs 2006–2020 

The top (bottom) figure displays time series of the cumulative compounded portfolio returns of the univari-

ate (multivariate) models and a buy-and-hold method prior to transaction costs. The time series are dis-

played with a weekly observation frequency. The full sample covers the period from the 3rd of July 2006 

until the 8th of June 2020. 

 

The assumed fixed trading costs of five basis points underestimate the total transaction 

costs and might give an overly positive view on the gained profits. The actual bid-ask 

spread accounts for a substantial part of the total transaction costs and would most likely 

reduce the profitability of the trading strategies if implemented in practice. The bid-ask 

spread also tends to rise during high market turmoil, which would potentially cut the 

gained profits even more. In addition, the implemented bet sizing produces additional 

costs, as even though a single stock would not be bought or sold during a particular week, 

adjusting its weight in the portfolio incurs costs. However, this is not accounted separately 

in the calculations of the transaction costs but is rather included in the relatively high cost 

of five basis points per a single buy or sell trade. Evaluating the profitability of an invest-

ment strategy after transaction costs is always difficult, as the accounted transaction costs 

are, at best, only estimates. 

Table 7 provides insights to the portfolio performance after transactions are consid-

ered. Similar to the summary prior to transaction costs, annualized mean return, standard 

deviation and Sharpe ratio are presented. In addition, the total number of transactions and 

the percentage cutback of profits caused by the transaction costs are reported. 
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Table 7. Portfolio summary statistics after transaction costs 2006–2020 

The table reports annualized mean return, standard deviation, and Sharpe ratio of the constructed portfolios 

with a weekly observation frequency. In addition, the total number of transactions and the percentage cut-

back caused by the transaction costs are reported. The sample covers the period from the 3rd of July 2006 

until the 8th of June 2020. 

 

 Return Std. dev. Sharpe ratio Transactions Cutback 

LSTM (R) 0.094 0.253 0.373 10 620 -0.198 

RNN (R) 0.070 0.262 0.268 10 806 -0.249 

LOG (R) 0.015 0.268 0.058 10 976 -0.250 

LSTM (All) 0.111 0.277 0.402 10 362 -0.181 

RNN (All) 0.078 0.274 0.285 11 102 -0.250 

LOG(All) 0.042 0.266 0.159 11 279 -0.266 

 

Even after transaction costs are considered, the LSTM (All) portfolio delivers annualized 

mean return of 11.1% and a Sharpe ratio of 0.402. The LSTM (R) places second in both 

measures. More interestingly, both LSTM portfolios have considerably less transactions 

made during the sample period from the 3rd of July 2006 until the 8th of June 2020. The 

number of transactions in the LSTM (All) portfolio is 10 362, compared to the 10 620 in 

the LSTM (R) portfolio and 10 806 in the RNN (R) portfolio. Due to smaller amount of 

transactions, the transactions also cut less out of the portfolio profits than with the bench-

mark portfolios. The transaction costs cut out 18.1% of the LSTM (All) profits and 19.8% 

of the LSTM (R) profits, whereas on average the benchmark method portfolios suffer a 

profit loss of approximately 25% after transaction costs are considered. The LSTM port-

folios thus provide more stability, possibly due to the predictions being based on longer-

term patterns in comparison to the other models.  

The weak form efficiency conditions of the Efficient Market Hypothesis claim that 

securities prices reflect all historical information, and there is no potential for outsized 

risk-adjusted returns through technical analysis (Fama 1970). The high-level performance 

of the LSTM (R) model suggests that Finnish stock market does not satisfy these condi-

tions, as the model is able to outperform a simple buy-and-hold strategy after transaction 

costs utilizing only lagged stock returns in the predictions. 

The cumulative compounded portfolio returns after transaction costs are displayed in 

Figure 8 with a weekly observation frequency. Time series of the buy-and-hold portfolio 

returns is also displayed along with other portfolios in order to assess whether the predic-

tion-based portfolios maintain their edge when transaction costs are considered. The full 

prediction sample covers the period from the 3rd of July 2006 until the 8th of June 2020. 
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Figure 8. Cumulative compounded returns after transaction costs 2006–2020 

The top (bottom) figure displays time series of the cumulative compounded portfolio returns of the uni-

variate (multivariate) models and a buy-and-hold method after transaction costs. The time series are dis-

played with a weekly observation frequency. The full sample covers the period from the 3rd of July 2006 

until the 8th of June 2020. 

 

Only the LSTM portfolios are able to outperform the buy-and-hold portfolio when trans-

action costs are taken into account, and from those the LSTM (R) only barely maintains 

its edge. Figure 8 demonstrates how most of the excess profits of the LSTM (All) portfolio 

develop after the second quarter of 2018. Therefore, the subperiod from the beginning of 

2018 until the first month of 2020 is taken under further review. 

 

5.3 Subperiod analysis 

The performance of LSTM portfolios is evaluated within different subperiods in order to 

provide more detail about the predictive performance and risk-profile of the portfolios 

over time. Subperiod analysis is performed in two steps. First, the prediction sample is 

divided into two split-periods, the first ranging from the 3rd of July 2006 until the 31st of 

December 2012, and the second from the 7th of January 2013 until the 8th of July 2020. 

Next, the period from the 1st of January 2018 until the 27th of January 2020 is analyzed to 

gain better understanding about the performance of LSTM (All) portfolio during that pe-

riod. Table 8 reports the summary statistics of portfolios within the two split-periods. 
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Table 8. Portfolio summary statistics 2006–2012 and 2013–2020 

The table reports annualized mean return, standard deviation, and Sharpe ratio of the buy-and-hold (BAH) 

and both LSTM portfolios with a weekly observation frequency. In addition, the skewness, excess kurtosis, 

maximum drawdown (MDD) and sample 95% value-at-risk of the portfolio returns are reported. The first 

split-period ranges from the 3rd of July 2006 until the 31st of December 2012, and the second from the 7th 

of January 2013 until the 8th of July 2020. 

  

 

 

2006–2012 2013–2020 

  LSTM (All)   LSTM (R)   BAH  LSTM (All)    LSTM (R)  BAH 

Return 0.045 0.047 0.006 0.073 0.057 0.067 

Std. dev. 0.331 0.296 0.203 0.220 0.208 0.203 

Sharpe 0.135 0.159 0.029 0.332 0.273 0.332 

Skewness 0.233 0.034 -1.213 -1.246 -1.268 -1.213 

Kurtosis 4.742 2.103 7.552 9.627 8.917 7.552 

MDD 0.700 0.624 0.642 0.440 0.395 0.405 

VaR 95% 0.499 0.440 0.328 0.289 0.285 0.266 

 

During the first split-period between 2006 and 2012, the simple buy-and-hold generates 

annual returns of only 0.6%, whereas in comparison the LSTM (All) and LSTM (R) port-

folios deliver annualized returns of 4.5% and 4.7%, respectively. Furthermore, the LSTM 

(R) returns are less volatile compared to LSTM (All) and have the lowest maximum draw-

down among all portfolios. The returns in the buy-and-hold portfolio have high negative 

skewness, whereas the returns of both LSTM portfolios are positively skewed. The uni-

variate LSTM delivers the best overall performance during the first split-period that also 

includes the time of the global financial crisis. 

During the first split-period the buy-and-hold portfolio delivers poor performance, 

but during the second split-sample the buy-and-hold portfolio is on level with the best 

performing LSTM (All) portfolio in terms of Sharpe ratio, and comes close on annual 

returns, while also outperforming the LSTM (R) portfolio in both measures. The buy-and-

hold portfolio also delivers lower downside risk compared to the multivariate portfolio. 

Furthermore, the multivariate LSTM performs better than the univariate LSTM during 

the second split-period, unlike in the first split-period where the situation is the opposite.  

Fischer and Krauss (2018), and Krauss et al. (2018) show that the profitability of 

their trading strategies starts to diminish during the 2010s. For example, Fisher and 

Krauss (2018) find that during the 2010s, the profitability of their strategy fluctuates 

around zero after transaction costs are considered. Similar pattern can be observed from 

the results of the subsample analysis in Table 8, as from 2013 onwards, the buy-and-hold 
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portfolio is on par with the best performing LSTM (All) portfolio prior to transaction costs. 

Moreover, adding transaction costs to the results would cut out the last bit of edge that 

the LSTM (All) portfolio might have. Despite generating annual returns of 7.3%, the mul-

tivariate LSTM portfolio fails to compensate the higher risks with additional returns, 

when put into comparison with the buy-and-hold portfolio.  

Even though the LSTM portfolios deliver higher annual returns and Sharpe ratios 

during the second split-period than during the first split-period, their performance in re-

lation to the benchmark buy-and-hold portfolio is significantly better during the first split-

period. Chen et al. (2003) argue that one of the main reasons that their neural network -

based investment strategy manages to outperform a simple buy-and-hold strategy is that 

the Taiwanese financial sector faced a sharp plunge during the test period. The economic 

crisis led to poor performance of the buy-and-hold portfolio but did not have that large 

effect on the neural network portfolio returns. The findings of Chen et al. (2003) are sim-

ilar to the ones in this subperiod analysis, as the relative performance of the buy-and-hold 

portfolio is substantially worse during the period including the global financial crisis. 

During the full trading window, the LSTM (All) portfolio delivers the highest annual 

mean return and Sharpe ratio out of all constructed portfolios with and without transaction 

costs. Looking at the cumulative compounded returns in Figure 7 and Figure 8, a substan-

tial part of this outperformance can be attributed to the last two years of the prediction 

sample. In order to evaluate the sources of this profitability, another, alternate subperiod 

review is conducted starting from the 1st of January 2018. The cumulative compounded 

returns in Figure 7 and Figure 8 display how the COVID-19 outbreak, among other pos-

sible factors, caused a steep decline in all portfolio values during the first months of 2020. 

Consequently, this period of declining returns is excluded from this subperiod analysis 

and the analysis focuses on the period until the 27th of January 2020, right before all the 

portfolio returns start plummeting.  

The second subperiod review is carried out by looking into stock-specific predictive 

performance and the structure of the LSTM (All) portfolio during the period ranging from 

the 1st of January 2018 until the 27th of January 2020, a period of 109 weeks. For this 

subsample, the cumulative compounded returns of all portfolios prior to transaction are 

displayed in Figure 9, where the return time series are displayed with a weekly observa-

tion frequency. Time series of the univariate portfolios are plotted separately in one figure 

and time series of the multivariate portfolios on another. Performance of the buy-and-

hold portfolio is plotted on both figures for the ease of comparison. 
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Figure 9. Cumulative compounded returns prior to transaction costs (2018–2020) 

The top (bottom) figure displays time series of the cumulative compounded portfolio returns of the univari-

ate (multivariate) models and a buy-and-hold method prior to transaction costs. The time series are dis-

played with a weekly observation frequency. The subsample covers the period from the 1st of January 2018 

until the 27th of January 2020. 

 

Due to the relatively small number of stocks available, all portfolios exhibit substantial 

co-movement throughout the years. However, in around the latter half of 2019, all port-

folios face a notable decline in cumulative returns, except for the LSTM (All) portfolio 

that continues with a strong trend until the early 2020. This finding suggest that the mul-

tivariate LSTM model is able to capture some information from the data that other models 

completely miss out. In order to gain better understanding behind this outperformance, a 

stock-specific analysis of the LSTM (All) portfolio is presented in Table 9. 

Total cumulative returns of each stock during the subperiod are presented in the first 

column of Table 9. During the 109 weeks in the subperiod, Outokumpu A and Finnair 

lost over half of their value, and just over a third of Wärtsilä’s value got depleted. The 

LSTM (All) model correctly classifies these stocks over 50 percent of the time and man-

ages to mostly avoid investing in these plummeting stocks. In fact, Outokumpu A is not 

selected a single time in the portfolio during these 109 weeks, while Finnair is selected 

only four times and Wärtsilä just 17 times. Overall, investments on stocks with negative 

cumulative returns over the subperiod is relatively low, except regarding Uponor, which 

is selected 50 times and has a total cumulative return of -20.1% during the subperiod. 
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Table 9. Stock-specific analysis of the LSTM (All) portfolio 2018–2020 

The table provides stock-specific analysis of LSTM (All) portfolio during the subperiod from the 1st of 

January 2018 until the 27th of January 2020, a total of 109 weeks. The first column reports the cumulative 

compounded return of a stock in the row label. The second column reports stock-specific prediction accu-

racies of the LSTM (All) model. Third column reports the number of weeks that a stock in the row label is 

held in the LSTM (All) portfolio during the subperiod. The final column reports, in percentage, the average 

weekly return gained from investments on the stock in the column label during the subperiod.  

 

Stock   Total return Prediction accuracy Weeks in portfolio  Avg. Return 

Nokia -0.021 0.560 5 -0.027 

Sampo A 0.017 0.578 58 -0.013 

Fortum 0.565 0.596 43 0.096 

UPM-

Kymmene 

0.182 0.560 58 0.003 

TietoEVRY 0.231 0.569 22 0.059 

Huhtamäki 0.197 0.468 71 0.203 

Kemira 0.283 0.569 46 0.193 

Kesko B 0.460 0.633 84 0.498 

Neles 0.280 0.450 34 0.253 

Wärtsilä -0.348 0.505 17 -0.017 

Outokumpu A -0.569 0.523 0 0.000 

Atria A -0.118 0.550 6 0.148 

Bittium 0.281 0.523 47 0.160 

Finnair -0.549 0.514 4 -0.057 

Uponor -0.201 0.606 50 0.029 

 

The LSTM (All) model achieved some impressive prediction accuracies during the sub-

period with, e.g., 63.3% for Kesko B, 60.6% for Uponor, 59.6% for Fortum and 57.8% 

for Sampo A. On the other hand, the model achieves an accuracy lower than 50 percent 

regarding Huhtamäki and Neles but still manages to achieve average weekly returns of 

over 0.2 percent with both stocks. Substantial part of the investments is made on stocks 

with an upward trend during the subperiod. In addition, even though Uponor lost 20.1% 

of its value during the subperiod, on average the LSTM (All) model received positive 

weekly returns for investments on that stock. 

The exceptional performance of the LSTM (All) portfolio during the period from the 

1st of January 2018 until the 27th of January 2020 is therefore mainly driven by the fact 

that most of the time it avoids investing in plunging stocks. During the subperiod the 

model provides high classification accuracies regarding most of the stocks and is thus 

able to time the investments well, like in the case regarding Uponor. 
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5.4 Common patterns and sources of profitability 

Machine learning models have been proven to be capable of extracting subtle patterns 

from the data without any prior knowledge about them. Fischer and Krauss (2018) find 

that stocks selected for trading by their LSTM model shared similar characteristics; be-

low-mean momentum, high volatility prior to trading and a tendency for mean-reversion. 

Furthermore, Krauss et al. (2017) examine the sources of profitability of their ensemble 

method -based portfolio and find that the model primarily utilizes the returns from the 

past 12-month and one-week periods when selecting stocks for trading. In other words, 

both Fischer and Krauss (2018) and Krauss et al. (2017) show that machine learning mod-

els can independently pick up patterns that are typical for some well-known market anom-

alies, such as momentum and short-term reversal. 

Based on the findings of Fischer and Krauss (2018) and Krauss et al. (2018), a similar 

analysis is conducted in order to examine the patterns that the stocks exhibit during the 

last year prior trading. The analysis is executed separately for each portfolio as follows. 

First, for each week and each top-5 stock in the portfolio, the weekly returns from the 

past 52 weeks prior trading are collected in a vector 𝒎 of dimension 52 × 5𝑇, where 𝑇 

is the number time steps in the trading window. Next, these one-week returns are averaged 

separately for each week from 𝑡 − 52 until 𝑡 − 1. Finally, these averaged one-week re-

turns are accumulated by indexing the starting level of 0 on the day 𝑡 − 52 in order to 

generate a time series of the average accumulated returns prior to the selection for trading. 

These averaged time series are depicted in Figure 10 and are contrasted to the mean return 

of the buy-and-hold portfolio. 

The top-5 stocks that are selected in the portfolio by the LSTM (R), LSTM (All) and 

RNN (R) models exhibit declining cumulative returns approximately two months prior 

trading. Moreover, the cumulative returns eventually fall below the mean level during the 

last two weeks before being picked up in the portfolio. Fischer and Krauss (2018) find 

similar patterns as their LSTM network go long on stocks that start losing value at an 

accelerating pace during the last nine days prior selection. The findings of Fisher and 

Krauss (2018) are more evident, as during those nine days, the stocks lose around 50 

percent of the gains from the past year. In this research a weekly observation frequency 

is used, and thus the results cannot be directly compared. However, these characteristics 

are fairly similar, since the nine-day period of declining returns in Fischer and Krauss 

(2018) corresponds to the two-week period of declining returns in this research. 
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Figure 10. Average accumulated stock returns prior to selection for trading 

The figure displays average accumulated stock returns from the past 52 days prior to selection for trading 

at day 𝑡. The x-axis displays the distance to the trading day 𝑡, while the y-axis displays the level of cumu-

lative returns. The return indices are formed from a sample period from the 4th of July 2005 until the 8th of 

June 2020. 

 

It is not a big of a surprise that the memory-free logistic regression models are not able 

to pick up these types of patterns from the data. However, the fact that the RNN (All) 

failed to capture these patterns is unanticipated in the sense that RNN (R) was successful 

on the same task. One possible explanation for that is that unlike with LSTM networks 

that converged well during the training process, the RNN (All) model was very prone to 

overfitting.4 This might be explained by the large amount of input features combined with 

a complex model architecture. Network hyperparameters in this research are optimized 

for the LSTM models, and those same hyperparameters are also applied to corresponding 

RNN models. Therefore, even though the RNN (All) show slightly better performance 

compared to the RNN (R) model and it outperforms both logistic regression models in 

almost every measure, the performance seems to be non-optimal and the model might get 

distracted by the additional complexity introduced in the multivariate approach.  

 
4  See appendices for the visualization of the LSTMs training process during the final study period 
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In addition to the accumulated return indices visualized in Figure 10, mean stock 

returns within various periods prior trading are computed. In Table 10, mean stock returns 

are reported for the past one-week, 6-month and 12-month periods prior to trading. 

 

Table 10. Mean stock returns within different periods prior to trading 

The table reports mean stock returns within different periods depicted in the row label, for the stocks picked 

by a model in the column label. The predictions and portfolio asset allocations are made at time 𝑡. The 

returns are denoted in percent. 

 

 LSTM (R) RNN (R) LOG (R) LSTM (All) RNN (All) LOG (All) 

[𝑡–1, t] 

 

-0.106 -0.183 -0.082 0.025 -0.147 0.041 

[𝑡–26, 𝑡] 0.207 0.156 0.195 0.217 0.188 0.179 

[𝑡–52, 𝑡] 

 

0.235 0.201 0.207 0.253 0.212 0.204 

 

The top-5 stocks selected for trading exhibit significant negative returns one week prior 

to the prediction, except for the LOG (All) and LSTM (All) models. Even though the mean 

one-week returns are positive for the LSTM (All), they are still significantly lower com-

pared to the mean returns during the past 6-month and 12-month periods. Moreover, the 

LSTM (All) models shows divergent behavior by selecting stocks that have high average 

returns during the past 12-month period. These findings suggest that the multivariate 

LSTM model relies more on longer-term patterns in comparison to the other models. 

Krauss et al. (2017) also find that the past one-week and 12-month returns are the most 

prominent features in making one-day ahead predictions of stock return movements.  

Leveraging these findings, a one-week mean-reversion portfolio (MR1), and a 12-

month momentum portfolio (MOM12) are constructed in order to capture the quintes-

sence of the patterns that the models exhibit when picking up stocks for trading. The MR1 

portfolio is constructed by selecting each week the top-5 stocks with the most negative 

one-week returns prior to the week of selection. Moreover, the MOM12 portfolio is con-

structed by selecting each week the top-5 stocks with the highest average returns from the 

past 12-month period. The annualized mean return, standard deviation and Sharpe ratio 

for the MR1 and MOM12 portfolios are depicted in Table 11, both with and without trans-

action costs. The portfolios that account for transaction costs are denoted with (T) after 

the name of the portfolio. Moreover, the total number of transactions and the percentage 

cutback caused by the transaction costs are reported. The full trading window covers the 

period from the 3rd of July 2006 until the 8th of June 2020. 
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Table 11. Mean-reversion and momentum portfolios 2006–2020 

The table reports annualized mean return, standard deviation, and Sharpe ratio of the mean-reversion (MR1) 

and momentum (MOM12) portfolios with a weekly observation frequency. In addition, the total number of 

transactions and the percentage cutback caused by the transaction costs are reported. Portfolios with trans-

action costs are also reported and denoted with (T) after the name of the portfolio. The sample covers the 

period from the 3rd of July 2006 until the 8th of June 2020. 

 

 Return Std. dev. Sharpe ratio Transactions Cutback 

MR1 0.121 0.281 0.432 - - 

MR1 (T) 0.096 0.281 0.342 11 303 -0.376 

MOM12 0.085 0.254 0.335 - - 

MOM12 (T) 0.069 0.254 0.273 10 561 -0.228 

 

The MR1 portfolio delivers an annual return of 12.1%, outperforming all but the LSTM 

(All) portfolio before transaction costs are considered. However, due to the relatively 

higher standard deviation of 28.1%, the MR1 portfolio also takes more risk, delivering a 

Sharpe ratio of 0.432. Therefore, in terms of risk-return profile it falls behind the LSTM 

(All) and the LSTM (R), that generate Sharpe ratios of 0.459 and 0.441, respectively. 

When transaction costs are taken into account, the total profits in the MR1 (T) portfolio 

drop by 37.6%. In comparison, the transaction costs only cut under 20 percent off from 

the LSTM portfolios, since both LSTMs performed substantially lower amount of trans-

actions during the trading window. The mean-reversion -based trading strategy barely 

manages to outperform the buy-and-hold portfolio after transaction costs are considered. 

The MOM12 portfolio does not reach anywhere the same level of performance with 

the mean-reversion portfolio, as it delivers an annual return of 8.5% prior to transaction 

costs, and just 6.9% when transaction costs are considered. The percentage cutback 

caused by the transaction costs is 22.8%, which is less compared to the MR1 (T) portfolio 

but higher compared to both LSTM portfolios. The number of transactions is considerably 

less than with the MR1 (T), which is natural since the 12-month momentum portfolio 

relies on longer-term signals compared to the one-week mean-reversion portfolio. How-

ever, the number of transactions in the LSTM (All) portfolio is even lower (10 362) than 

in the MOM12 (T) portfolio. Both LSTM portfolios maintain their edge in terms of prof-

itability much better compared to all benchmark models, as well as compared to the pro-

posed mean-reversion and momentum portfolios when transactions are considered. This 

mostly attributes to the substantially lower number of transactions made. 

These findings support the existence of pricing irregularities and stock market pre-

dictability, as a strategy investing to the underperforming stocks of the past week yields 
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substantially higher returns compared to a simple buy-and-hold portfolio. On the other 

hand, the momentum-based investment strategy shows relatively poor performance. Ac-

cording to Daniel and Moskowitz (2016), traditional momentum strategies are vulnerable 

to occasional, but persistent periods of negative returns that often occur during high mar-

ket turmoil, which might partially explain the poor performance of the MOM12 portfolio. 

Even though the simplified mean-reversion strategy yields annual returns almost as 

high as the LSTM (All) portfolio, it has less desirable risk-return profile. Both portfolios 

also utilize different type of predictive signals, with the multivariate LSTM portfolio re-

lying on longer-term predictive signals in the sense that it performs the least transactions 

among all portfolios and picks up stocks with high average returns during the past 12-

month period. Thus, a simplified mean-reversion behavior does not completely explain 

the reasoning behind the patterns the LSTM (All) model utilizes to select stocks for trad-

ing. Therefore, some subtle patterns must exist that only the more advanced model is able 

to extract from the noisy stock market data. 

The LSTM networks partly rely on the same patterns with well-known capital market 

anomalies without any prior knowledge of these patterns. More interestingly, also the 

LSTM (R) and RNN (R) networks are capable of identifying some of these patterns using 

only the past 60-week standardized returns as input features. The capability of LSTM 

networks to pick up these patterns independently is also shown by Fischer and Krauss 

(2018).  

 

5.5 Robustness analysis 

As stated before, unlike most statistical models, neural networks are stochastic and thus 

make different predictions each time the constructed model is trained on the same dataset. 

According to López de Prado (2018), one should be careful when evaluating the true 

power of machine learning models, as some of them might provide good results just by 

chance. However, these credibility issues can be tackled by performing different tests on 

model robustness. A machine learning model is to large extent a summation of the model 

configuration, training procedure and the quality of the data. Machine learning models 

should be evaluated on case-by-case basis as each model is different, and usually con-

structed on that specific task. Reliable evaluation of different models is also difficult in 

the sense that two completely different models can achieve exact same results. 
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In order to get a better overview on the generalization capacity of the proposed LSTM 

networks, their robustness is evaluated by comparing the classification accuracies across 

several runs. Table 12 provides the results of a robustness check, where each LSTM net-

work was run 20 times and the minimum, maximum and average classification accuracies 

across those runs were computed.  

 

Table 12. LSTM network classification accuracies across 20 runs 

The table reports the minimum, maximum and average classification accuracies of the proposed LSTM 

networks across 20 runs. The accuracies are denoted in percent. 

 

Accuracy LSTM (R) LSTM (All) 

Minimum 

 

52.26 52.71 

Maximum 53.04 53.36 

Average 

 

52.77 53.13 

 

Both LSTMs show good robustness in the sense that the classification accuracies do not 

drop below 52 percent a single time. In fact, both of the LSTMs constantly deliver higher 

classification accuracies than any of the benchmark models. The average classification 

accuracy of the LSTM (R) model matches the accuracy obtained in the first run, whereas 

the average accuracy of LSTM (All) model is in fact higher than the 53.0% obtained in 

the first run. In other words, the performance of the LSTM (All) model should, in theory, 

be even better than the results in this research would indicate. However, Welch and Goyal 

(2008) point out that even if a predictive model would be powerful in a research perspec-

tive, i.e., has good both in-sample and out-of-sample performance, great confidence on 

the model is required in order to use it for investing purposes in the long-term. 
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6 CONCLUSIONS 

This research focused on investigating whether long short-term memory (LSTM) neural 

networks are suitable candidates for predicting stock return movements in the Finnish 

stock market. Two alternative sets of input features were analyzed, and the LSTMs were 

benchmarked against conventional recurrent networks and logistic regression classifiers. 

Performance of the proposed models were evaluated by producing weekly out-of-sample 

predictions for the period between 2006–2020, and by further utilizing these predictions 

to derive prediction-based investment portfolios. Moreover, the performance of LSTM 

networks within different subperiods were analyzed. 

In terms of classification accuracy, the LSTMs delivered robust performance and 

clearly outperformed all benchmark methods even after running the networks multiple 

times. The best performing LSTM model utilized a set of nine input features, including 

lagged returns, four stock-specific features and four general features. The additional input 

features were not found to be statistically significant in terms of predictability, but they 

were shown to provide additional value in an economic sense. The multivariate LSTM 

model delivered an annual return of 12.7% and a Sharpe ratio of 0.459 before transaction 

costs, also providing the most desirable risk-return profile among all portfolios. A uni-

variate LSTM model utilizing only lagged returns as inputs delivered an annual return of 

11.2% and a Sharpe ratio of 0.441, while a buy-and-hold portfolio yielded an 8.6% annual 

return and a Sharpe ratio of 0.338 within the same sample period.  

Both LSTM models were able to maintain their edge during the full sample even after 

implementing transaction costs, but a subperiod analysis revealed that the profitability 

mostly attributes to the first half of the sample. However, the performance of the multi-

variate LSTM network stood out from other models during the period between 2018–

2020, since the model managed to avoid investing in steeply declining stocks. 

By unveiling some common characteristics among the stocks selected for trading, the 

LSTMs were found to independently extract similar patterns to well-known capital mar-

ket anomalies of short-term mean reversion and momentum. A mean-reversion portfolio 

constructed based on these findings achieved nearly similar profitability prior to transac-

tion costs but had a less satisfactory risk-return profile. Therefore, the high-level perfor-

mance of LSTM models could be partially, but not completely explained by short-term 

reversal effects. 
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The results show that the proposed LSTMs are able to recognize profitable price pat-

terns from the data, and these patterns cannot be unequivocally attributed to any specific 

characteristics. This would indicate that the stock returns are partly driven by longer-term 

signals, and that the proposed LSTM networks can extract this type of subtle information 

from noisy stock market data. These finding also posit a challenge to the theory of market 

efficiency in Finland, as there are periods within the sample when the market exhibits a 

higher level of predictability. 

Despite incorporating high computational costs and abundant complexity, LSTM 

network was shown to be a suitable method for stock return movement prediction task. 

Even though the theoretical performance might not fully materialize if implemented in 

practice, LSTMs certainly have predictive properties that make them useful tools and 

complements for different investment strategies. 

In terms of the investment strategies, especially in the current market turmoil it could 

be beneficial to introduce a probability threshold in order to avoid investing in a declining 

market. Instead of predicting which stocks outperform the cross-sectional median, one 

could make predictions about the actual sign of the movements, or alternately use a com-

bination of these methods. Since the field of machine learning and its applications on 

finance is developing rapidly, more advanced models and their combinations could be 

considered in future research. 
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APPENDICES 

Appendix 1. LSTM (R) training history of the final study period 
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Appendix 2. LSTM (All) training history of the final study period 
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