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TIIVISTELMÄ 

Kerätyn datan määrä on kasvanut kun digitalisoituminen on edennyt. Itse data ei 
kuitenkaan ole arvokasta, vaan tavoitteena on käyttää dataa tiedon hankkimiseen ja 
uusissa sovelluksissa. Suurin haaste onkin menetelmäkehityksessä: miten voidaan 
kehittää koneita jotka osaavat käyttää dataa hyödyksi? Monien alojen yhtymäkohtaa 
onkin kutsuttu Datatieteeksi (Data Science). Sen tavoitteena on ymmärtää, miten 
tietoa voidaan systemaattisesti saada sekä strukturoiduista että strukturoimattomista 
datajoukoista. Koneoppiminen voidaan nähdä osana datatiedettä, kun tavoitteena on 
rakentaa ennustavia malleja automaattisesti datasta ns. yleiseen oppimisalgoritmiin 
perustuen ja menetelmän fokus on ennustustarkkuudessa.   

Monet käytännön ongelmat voidaan muotoilla kysymyksinä, jota kuvaamaan on 
kerätty dataa. Ratkaisu vaikuttaakin koneoppimisen kannalta helpolta: määritellään 
datajoukko syötteitä ja oikeita vastauksia, ja kun koneoppimista sovelletaan tähän 
datajoukkoon niin vastaus opitaan ennustamaan. Monissa käytännön ongelmissa 
oikeaa vastausta ei kuitenkaan ole täysin saatavilla, koska datan kerääminen voi 
kestää vuosia. Jos esimerkiksi halutaan ennustaa miten paljon rahaa eri asiakkaat 
kuluttavat elinkaarensa aikana, täytyisi periaatteessa odottaa kunnes yrityksen kaikki 
asiakkaat lopettavat ostosten tekemisen jotta nämä voidaan laskea yhteen lopullisen 
vastauksen saamiseksi. Kutsumme tämänkaltaista datajoukkoa ’sensuroiduksi’; 
oikeat vastaukset on havaittu vain osittain koska esimerkkien kerääminen syötteistä 
ja oikeista vastauksista voi kestää vuosia. 

Tämä väitös esittelee koneoppimisen uusia sovelluksia sensuroituihin 
datajoukkoihin, ja tavoitteena on vastata kaikkein tärkeimpään kysymykseen 
kussakin sovelluksessa. Sovelluksina ovat mm. digitaalinen markkinointi, 
vertaislainaus, työttömyys ja pelisuosittelu. Ratkaisu ottaa huomioon sensuroinnin, 
siinä missä edelliset ratkaisut ovat saaneet vääristyneitä tuloksia tai keskittyneet 
ratkaisemaan yksinkertaisempaa ongelmaa datajoukoissa, joissa sensurointi ei ole 
ongelma. Ehdottamamme ratkaisu perustuu kolmeen vaiheeseen jossa yhdistyy 
ongelman matemaattinen ymmärrys ja koneoppiminen: 1) ongelma dekonstruoidaan 
parittaisena datana 2) koneoppimista sovelletaan puuttuvien parien ennustamiseen 
3) oikea vastaus rekonstruoidaan ennustetuista pareista. Abstraktilla tasolla idea on 
kaikissa paperissa sama, mutta jokaisessa sovelluksessa hyödynnetään sitä varten 
suunniteltua koneoppimismenetelmää ja parittaista kuvausta.   

ASIASANAT: Koneoppiminen, parittainen data, sensurointi.  
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ABSTRACT 

The amount of data being gathered has increased tremendously as many aspects of 
our lives are becoming increasingly digital. Data alone is not useful, because the 
ultimate goal is to use the data to obtain new insights and create new applications. 
The largest challenge of computer science has been the largest on the algorithmic 
front: how can we create machines that help us do useful things with the data? To 
address this challenge, the field of data science has emerged as the systematic and 
interdisciplinary study of how knowledge can be extracted from both structed and 
unstructured data sets. Machine learning is a subfield of data science, where the task 
of building predictive models from data has been automated by a general learning 
algorithm and high prediction accuracy is the primary goal. 

Many practical problems can be formulated as questions and there is often data 
that describes the problem. The solution therefore seems simple: formulate a data set 
of inputs and outputs, and then apply machine learning to these examples in order to 
learn to predict the outputs. However, many practical problems are such that the 
correct outputs are not available because it takes years to collect them. For example, 
if one wants to predict the total amount of money spent by different customers, in 
principle one has to wait until all customers have decided to stop buying to add all 
of the purchases together to get the answers. We say that the data is ’censored’; the 
correct answers are only partially available because we cannot wait potentially years 
to collect a data set of historical inputs and outputs. 

This thesis presents new applications of machine learning to censored data sets, 
with the goal of answering the most relevant question in each application. These 
applications include digital marketing, peer-to-peer lending, unemployment, and 
game recommendation. Our solution takes into account the censoring in the data set, 
where previous applications have obtained biased results or used older data sets 
where censoring is not a problem. The solution is based on a three stage process that 
combines a mathematical description of the problem with machine learning: 1) 
deconstruct the problem as pairwise data, 2) apply machine learning to predict the 
missing pairs, 3) reconstruct the correct answer from these pairs. The abstract 
solution is similar in all domains, but the specific machine learning model and the 
pairwise description of the problem depends on the application. 

   

KEYWORDS: Machine Learning, Pairwise learning, Censoring   
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1 Introduction 

1.1 Understanding and predicting with data 

The amount of data in the world is growing exponentially. For example, a 2011 study 

in Science [1] estimated that the yearly growth rates are 58% for computing capacity, 

28% for bidirectional communication, and 23% for storage space. The ability to 

gather and access staggering amounts of data does not necessarily guarantee that one 

benefits from it. Many useful insights could potentially be obtained from the data if 

we only had the means to obtain them. While ubiquitous data sources undoubtedly 

offer greater opportunities to extract information, the primary challenge has been in 

the algorithmic front: how to make sense of it all? New approaches and algorithms 

are needed to transform the data deluge into a useful source of knowledge. 

Technological developments have made gathering and processing data feasible 

in many applications. Early approaches to data analysis concentrated on storing data 

into databases and using it to measure and automate business processes. Data mining 

gained recognition as a possible solution to problems where knowledge needs to be 

automatically extracted from large and unstructured data sets. However, there has 

been increasing recognition that some problems can be formulated as well-defined 

questions that need accurate answers. The problem is therefore to give answers based 

on the data set with the help of computers. When questions are made repeatedly in a 

systematic fashion and the data does not have direct answers in every instance, we 

can automate the process by constructing a predictive model.  

Research on predictive models has found that relatively simple models perform 

better than human experts in multiple fields, especially when the task requires to 

synthetize different sources of information into a prediction under uncertainty [2]. It 

is sometimes possible to outperform humans with simple rules even without explicit 

models [3]. However, there are many tasks where simple models have not had much 

success but predictive models based on machine learning have lead to substantial 

progress in the last two decades. These fields include computer vision, speech 

recognition, natural language processing, and robot control, to name a few [4].  The 

observation that data and predictive models can help in making more informed 

decisions has led to the concept of data driven decision making, where it is 

recognized that data is the ultimate arbiter of facts and business success [5]. Early 
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approaches have now developed into a systematic study sometimes called ’Data 

Science’, an umbrella term for the scientific approach of reasoning from data [6].  

A project that utilizes data science can be thought of as a process that consists of 

several stages. The data has to be recorded, stored, processed, and then modelled. 

The model has to answer the business problem that was proposed and the resulting 

model needs to be implemented in production with all relevant factors considered. 

Several process models have been described in the knowledge discovery and data 

mining (KDDM) field to manage the approach of extracting knowledge from data 

[7]. One example is the CRISP-DM process model, which proposes that a project 

has six major stages: 

1. Business understanding: The goal is to identify and understand a relevant 

business problem. It is then formulated as a data science problem.  

2. Data understanding: A data set is collected and it is investigated to gain 

better insight into the problem. 

3. Data preparation: The data set is processed for the purpose of modelling: 

this may include merging, cleaning, imputing missing values, scaling, 

standardizing, etc. 

4. Modelling: A model is selected and optimized to fit the data set. 

Additional models and different modelling choices may be investigated. 

5. Evaluation: The model performance is carefully evaluated in a setting that 

reflects the use case. We ask if the model answers the business problem. 

6. Deployment: The model is implemented as a business application, where 

monitoring and maintenance are also considered. 

The stages do not necessarily follow each other and the project may move back 

and forth between various stages. For example, it is quite typical that the project 

specification changes based on increased understanding of data and modelling 

results. One then goes back to the initial stages to refine the project for better results. 

Data science projects are often cyclical in this way. Solutions benefit from previous 

experiences and business understanding increases as the project moves forward. 

1.2 Machine learning and censored data 

Machine learning is a subfield of data science, where the goal is to develop 

algorithms that learn given a task from data without explicit instructions. Computers 

that learn can be very useful, because many problems have plenty of data available 

but it is difficult to invent a clear sequence of instructions to achieve the desired goal. 

Programming computers to perform complicated tasks with many steps that require 

explicit machine instructions can be too costly or even impossible. Machine learning 

is instead based on learning how to give the correct answer from the data itself. Given 

examples of inputs and correct outputs, we learn to predict an approximately correct 
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output for any future input. This task is achieved by a generic learning algorithm. 

The learning algorithm searches a space of candidate programs to find an optimal 

program, which is judged relative to some performance metric. The performance 

metric is based on the difference of predicted outputs from the correct outputs and 

guides the learning process. All machine learning methods are based on this 

paradigm, but they differ in the learning setting, the space of possible programs and 

the optimization method used to find the optimal program. 

 

Figure 1.  A simple example: each row describes a customer with their features (Age, Gender, 

Country, Platform) and the total amount of money spent. The task is to learn an 
unknown function f from this data set that predicts the total amount of money spent. 

To illustrate this with a simple example, consider the task of predicting customer 

lifetime values (LTV) in Figure 1. The data set is a table that consists of examples 

of inputs and outputs as rows. The inputs are customer features: age, gender, country, 

and platform. The output is the measured LTV. Formally, denote the data set  𝒟 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1,…,𝑛 of examples with customer features 𝑥𝑖 ∈ ℝ𝑑 and LTV 𝑦𝑖 ∈ ℝ. The 

LTV values 𝑦𝑖 = 𝑓(𝑥𝑖) are assumed to represent an unknown function 𝑓. The task 

is to learn a function 𝑓 that approximates the unknown function 𝑓 ≈ 𝑓. Machine 

learning considers accurate predictions as the most important problem and the 

function can be thought of as a black box: input goes in and output comes out. Having 

learned the function we can predict 𝑦 = 𝑓(𝑥) for any new input 𝑥, which means we 

can predict the LTV of new customers. For example, we could then choose to market 

only to customers where this value is higher than the cost of advertising to them. 

The data science project looks simple on the surface. Ask a relevant question and 

transform the data into examples so that a machine learning model can be applied to 

it: vectors of inputs and correct answers as outputs. We then get a function 𝑦 = 𝑓(𝑥) 

that answers our question. However, there are many real world situations where the 

correct answer is not available in data. Businesses often cannot afford to wait for 

years to collect a historical data set of examples for their current problem. Instead, 

data is recorded in real time and the problem is to model the phenomena with 
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increasing accuracy as new data arrives. Many problems therefore wish to model the 

eventual answer in a setting without examples of fully observed correct answers. 

For example, the task of LTV prediction in Figure 1 implicitly assumed that we 

have a historical data set spanning many years so that all customer purchases can be 

added together to get the correct LTVs. We only know the final values when the 

customers in the data have stopped purchasing altogether. However, a real business 

may not be able to wait for years to gather a data set that directly answers this 

question. In practise, we have a data set that looks like Figure 2, where we only 

know the purchases that have occurred so far. We are left wondering how this can 

be utilized to correctly calculate the LTV, so that machine learning can be used as a 

predictive model. In this study, we call all data sets where the correct answers are 

not fully observed as censored. 

Censored data is not a new occurrence. In fact, it is a central focus in the fields 

of survival analysis [8] and reliability engineering [9]. Their models consider time-

to-event data; the lifetime of a biological organism or time to equipment failure are 

classic examples. It has been shown that one needs to take into account censoring to 

obtain unbiased results. Additionally, it is often helpful to consider the special 

structure of the data to understand the event process that generated the data [10]. 

However, these fields analyse a special case of censored data because the outcome 

variable (time-to-event) is always positive and corresponds to the follow-up duration 

if censored. Some parts of our data sets are a direct instance of time-to-event data: 

for example the playtime of a player, the default time of a P2P loan, and a single 

unemployment spell length. In this thesis, the methods are often inspired by survival 

analysis and incorporate some aspects of their models, but they deal with more 

general questions. For example, we consider the lifetime value of a player, the profit 

of a P2P loan, and the lifetime unemployment of an individual.  

 

Figure 2.  A real data set may look like this: the total amount of money spent is not known, but 
we have a data base of purchases that have occurred so far. This means that the 
correct answers are not known due to a limited follow-up time (censored). 
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1.3 Research goal and methods 

We have an important prediction problem but cannot apply standard methods in 

supervised machine learning because the correct answers have been only partially 

observed. In this research, we develop new models for machine learning in censored 

data sets that attempt to answer the most relevant question in each application. The 

applications are multidisciplinary: we develop models in marketing of digital 

products, peer-to-peer lending, unemployment, and game recommendation. These 

problems were motivated by our involvement in different collaboration projects with 

the industry and governmental institutions. These problems are quite new, except for 

the study of unemployment, and there has been a limited amount of research in 

applying machine learning to these problems. The development of new methods was 

motivated by the fact that we thought a satisfactory solution had not been given to 

the more difficult problems that often involve censored data.   

In this thesis introduction, we discuss each method under an unified framework 

as pairwise data. We invented this abstraction afterwards to discuss every problem 

as an instance of a single problem, but it is not immediately obvious how a particular 

application is an instance of pairwise data. From a practical viewpoint, the models 

are more specialized than general machine learning models because they utilize the 

censored data in a special way. On a theoretical level, every solution is based on 

understanding the data set as pairs where some pairs are missing due to censoring. 

Machine learning can then be applied to the pairs and the final predictions are then 

constructed from the predictions for all of the pairs. For example, the LTV data can 

be understood as examples of purchases, where each purchase is associated with a 

given customer and time pair. The input is the customer features and time, the output 

is the purchase amount. Machine learning algorithms with a specific model 

formulation can then be applied to predict the purchase amounts at each customer 

and time pair. The final LTV prediction can be calculated by summing together the 

purchase amounts in these predicted pairs. The mathematical description of how we 

formulate the model and construct the final answer from these pairs depends on the 

domain, but the paradigm of understanding a censored data set as pairwise data to 

apply machine learning is shared between all of them. 

The idea of formulating censored data as pairwise data has implications for all 

of the stages in the data science project. First, the business understanding stage can 

consider questions where the answers are not fully known. The data understanding 

stage requires deep knowledge of the problem in order to formulate it as a pairwise 

problem. The data preparation stage then formats the data as pairwise observations. 

The modelling stage may need to consider the specifics of how predictions are 

formed for the pairs: different functions, optimization methods, or assumptions about 

how the observations are related. Finally, the evaluation stage needs to take into 

account that many of the examples come from the same customer or time, and the 
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data may not satisfy the standard independent and identically distributed (i.i.d) 

assumption that would be implicit in a straightforward train and test set split. 

In this thesis, we summarize the research objectives in the following questions:  

(Q1) How to formulate a specific mathematical description of the problem and 

the corresponding machine learning model to answer important business questions 

in censored data sets from various domains? Specifically, we consider the problem 

of measuring retention and monetization in digital products, predicting profits in P2P 

lending, predicting individual’s lifetime risk of unemployment, and recommending 

video games to players under different settings. 

(Q2) How to obtain unbiased evaluation of model accuracy in these applications, 

where the transformed data set has a pairwise structure and is therefore not 

independent and identically distributed, with different cross-validation strategies? 

How are different settings implied by pairwise data, for example predictions for new 

users or new time points, correctly taken into account in the validation? 

The research results obtained to the first question provide evidence that machine 

learning can be applied in censored data settings and present new solutions that can 

be used in these applications. The results suggest a general modelling process based 

on pairwise understanding of the data that could be considered in future applications. 

The results to the second question provide validation strategies for our models that 

take into account the not i.i.d. aspect of the data and obtain valid prediction accuracy 

estimates. The different validation strategies also consider how to correctly measure 

prediction accuracy under different generalization settings implied by pairwise data. 

1.4 Organization of the thesis 

This thesis consists of two separate parts. Part I is the introduction to the thesis 

and consists of Chapters 1-4. Part II consists of the original research publications 

that are included in the thesis. Chapter 1 gives a general introduction to the subject 

and motivates the research questions considered in this thesis. Chapter 2 presents the 

theoretical framework behind machine learning and the models considered in this 

thesis. Chapter 3 summarizes the publications and the author’s contributions. 

Chapter 4 concludes the thesis. 
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2 Theoretical foundation 

2.1 Machine Learning 

In many situations we do not have an explicit solution to a given prediction problem, 

but there is plenty of data to describe the problem. The data can be used to give an 

empirical solution. Often simple laws or generalizations are hypothesized to describe 

the phenomena to a high degree of accuracy and we verify whether the data follows 

them. This is the case in many fields of science and engineering [11]. These solutions 

often use some degree of expert knowledge, meaning knowledge about previous 

observations and established facts. However, many different problems can be 

thought of as instances of a single abstract problem: the process of constructing 

predictive models based on data. The systematic study of learning generic models 

from data is the domain of statistical and machine learning [12].  

There are different scenarios where it is possible to learn from data. The learning 

problem can be divided into three categories based on the data set [13]: supervised, 

reinforcement, and unsupervised learning. In supervised learning, the data contains 

examples of (input, output) pairs. For example, in loan default prediction we have a 

data set of past loans with borrower information as input and loan default as output. 

In reinforcement learning, correct outputs are not necessarily known and the data set 

contains (input, some output, score) triplets. For example, if we are developing an 

artificial intelligence for games we may not know the correct action at every situation 

but we can give a score to each action based on the result. Finally, in unsupervised 

learning we have only (input)-vectors and we seek to discover structure in the data. 

For example, we could cluster people into ’personality types’ based on their answers 

in a questionnaire. Supervised learning is the most common and well-understood 

machine learning problem. This thesis focuses on supervised learning. 

 A simple example of a learning problem was given previously, where the goal 

was to predict customer LTVs from different demographic characteristics. The 

learning problem is to relate the input (demographic characteristics) to the outputs 

(LTVs). We do not know how the output is generated from the input and the 

relationship is probably too complex to implement manually. Even if a human would 

be able to make good predictions, the automation of the task could bring greatly 

increased speed and cost-savings. We therefore wish to automate the process. In 
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machine learning, it is assumed that we have a data set of (input, output) examples. 

This data set then used to build a model of how the outputs relate to inputs, with the 

goal that outputs are predicted correctly for new inputs. It would be trivial to solve 

the problem for known examples by predicting the observed outputs for observed 

inputs. The crucial point is that machine learning has a focus on generalization, 

which means it seeks to optimize the accuracy of predictions for new inputs. In 

principle, any kind of black box algorithm could be considered; the primary measure 

of success is the predictive ability in new data [6]. 

We now formalize machine learning as an empirical risk minimization problem 

[14]. Denote an input 𝑥 ∈ 𝒳 and an output 𝑦 ∈ 𝒴. The inputs belong to the set 𝒳 

that is the possible information about each observation, which is often a real valued 

vector 𝒳 = ℝ𝑑  of dimension 𝑑. The outputs belong to the set 𝒴, for example 𝒴 =

ℝ in standard regression and 𝒴 = {−1,1} in binary classification. The data set 𝒟 =
((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)) is used to learn a function 𝑓: 𝒳 → 𝒴. For any given input 𝑥 ∈

𝒳, the function should predict an approximately correct response 𝑓(𝑥) ∈ 𝒴. For 

learning to be possible, the data set has to have something in common with new 

inputs. A standard assumption is that the examples (𝑥i, 𝑦i) are generated 

independently from each other based on the same underlying probability distribution 

𝑃(𝑥, 𝑦) on 𝒳 × 𝒴 [15]. To generate an example, we first sample the input 𝑥 ∈ 𝒳 

from the marginal distribution 𝑃(𝑥) and then the output 𝑦 ∈ 𝒴 from the conditional 

distribution 𝑃(𝑦|𝑥). This definition has two important charasterics of what we 

assume of the true relationship 𝑃(𝑦|𝑥). First, it may be stochastic so that it is 

impossible to predict the output perfectly. Second, there is no assumption of what 

the functional form of the distribution looks like, so the goal may be to learn an 

arbitrary function. To measure how well a function fits the data set, we define a loss 

function 𝐿: 𝒴 × 𝒴 → ℝ which assigns a real valued loss 𝐿(𝑦, 𝑓(𝑥)) based on the 

difference between true value 𝑦 and predicted value 𝑓(𝑥). The quality of predictions 

is measured by the expected loss: 

 ℛ𝐿,𝑃(𝑓) = ∫ 𝐿(𝑦, 𝑓(𝑥))𝑑𝑃(𝑥, 𝑦)
𝒳×𝒴

  

Because a function is defined to be better the smaller expected loss it has, the 

best approximation is provided by the function that minizes the expected loss: 

 ℛ𝐿,𝑃
∗ = inf

𝑓:𝒳→𝒴
ℛ𝐿,𝑃(𝑓)  

In the practical setting, based on the data 𝒟 we need to choose a function 𝑓𝐷: 𝒳 →

ℝ such that its loss is close to the minimum loss ℛ𝐿,𝑃
∗ . A learning method is an 

algorithm that assigns a function to any given data set. The learning method is said 

to be universally consistent if for any 𝑃 on 𝒳 × 𝒴 the learning algorithm produces 

𝑓𝐷  such that it approaches the best possible function as the sample size increases: 
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 ℛ𝐿,𝑃(𝑓𝐷) → ℛ𝐿,𝑃
∗  as 𝑛 → ∞  

Several learning algorithms in machine learning can be shown to be universally 

consistent [16]. This is an interesting theoretical result, because it shows that many 

machine learning methods can be guaranteed to deliver asymptotically optimal 

performance. 

In a real-world problem, we do not know the underlying probability distribution 

𝑃. The idea is to learn a model using the data set 𝒟, which we assume to be generated 

by this distribution. The expected loss of a given function can be approximated by 

the empirical loss in the data set: 

 ℛ𝐿,𝐷(𝑓) =
1

𝑛
∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))𝑛

𝑖=1   

By the law of large numbers [17], for a fixed function 𝑓, the empirical loss 

converges to the expected loss:  ℛ𝐿,𝐷(𝑓) → ℛ𝐿,𝑃(𝑓) as 𝑛 → ∞. Because we cannot 

direcly minimize the expected loss, it is tempting to choose a function that minimizes 

the empirical loss inf
𝑓:𝒳→𝒴

ℛ𝐿,𝐷(𝑓). However, the problem is not so simple. A function 

that predicts 𝑦𝑖 at every 𝑥𝑖 and 0 elsewhere achieves this goal. This is called 

overfitting: a smaller loss in the data set may not translate to a smaller loss outside 

the data set. To avoid overfitting, one can choose a smaller set of functions ℱ that 

contains a reasonably good approximation of the solution and minimize only over it: 

 ℛ𝐿,𝐷,ℱ
∗ = inf

𝑓∈ℱ
ℛ𝐿,𝐷(𝑓)  

This approach is called empirical risk minization [12] and it can be used to 

produce an approximate solution to the infinite sample counterpart: 

 ℛ𝐿,𝑃,ℱ
∗ = inf

𝑓∈ℱ
ℛ𝐿,𝑃(𝑓)  

The problem implicit in any learning method is to choose an appropriate function 

space ℱ. There are two fundamental and completing challenges in the selection. On 

one hand, we want to consider a limited function space ℱ so that we do not overfit 

the data and the loss on data is reflective of the true loss ℛ𝐿,𝐷,ℱ
∗ ≈ ℛ𝐿,𝑃,ℱ

∗ . If we have 

very complex functions the model may fit data very well but not generalize outside 

it. On the other hand, we want to consider an expressive function space ℱ so that it 

is possible obtain a small approximation error ℛ𝐿,𝑃,ℱ
∗ ≈ ℛ𝐿,𝑃

∗ . Limiting the choice of 

functions to simpler ℱ causes a loss if it does not contain a good approximation to 

the function that minimizes the expected loss. In practise, it is necessary to obtain a 

good balance between these two extremes.  

One popular approach is to use an expressive function space but have a constraint 

on the type of functions that are learned. These constraints can be relaxed with more 

data. In this approach, we define a non-negative functional Ω: ℱ → ℝ+ called the 

regularizer that penalizes the complexity Ω(𝑓) of each function 𝑓 by assigning larger 
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values to more complex functions. The solution minimizes the regularized empirical 

risk: inf
𝑓∈ℱ

ℛ𝐿,𝐷(𝑓) subject to Ω(𝑓) ≤ 𝐶, which is a subset of the original function 

space ℱ. An equivalent unconstrained problem is [18]: 

 inf
𝑓∈ℱ

ℛ𝐿,𝐷(𝑓) + 𝜆Ω(𝑓)  

Assume that we have chosen a function 𝑓 ∈ ℱ. How can we measure its expected 

risk if we do not know the underlying distribution 𝑃(𝑥, 𝑦)? The simplest approach 

is to divide the data set 𝒟 into training data 𝒟train and test data 𝒟test. The empirical 

risk in training data is used to find the optimal function 𝑓 ∈ ℱ. After the function 𝑓 

is chosen, its empirical risk in the test data is measured to estimate the risk outside 

the training set. Formally, we have a data set 𝒟 = ((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)). The data 

indices 𝐼 = {1,2, … , 𝑛} are divided into mutually disjoint index sets 𝐼train , 𝐼test ⊆ 𝐼 

such that  𝐼train ∩ 𝐼test = ∅ and 𝐼train ∪ 𝐼test = 𝐼. These define a training set 

𝒟train = ((𝑥𝑖 , 𝑦𝑖): 𝑖 ∈ 𝐼train) and test set 𝒟test = ((𝑥𝑖 , 𝑦𝑖): 𝑖 ∈ 𝐼test). The optimal 

function is found by minimizing the empirical risk in the training set 𝑓∗ =

inf
𝑓∈ℱ

ℛ𝐿,𝐷train
(𝑓). For the resulting function 𝑓∗, an unbiased estimate of the expected 

risk is ℛ𝐿,𝐷test
(𝑓∗). Since the function 𝑓∗ is fixed, the empirical loss in the test set 

converges to the expected loss ℛ𝐿,𝑃(𝑓∗) as |𝒟test| → ∞ by the law of large numbers. 

Machine learning methods provide practical choices of the function space ℱ. 

Different methods have different function spaces, and sometimes the definition does 

not explicitly state a function space. Parametric methods assume that the function 𝑓 

is defined by a vector of parameters 𝛼. Nonparametric methods do not necessarily 

make any assumptions about the functional form of 𝑓, but instead seek to estimate 

the function directly from data [19]. In this case, the number of parameters is implicit 

and variable, it can increase with the number of observations. The parametric 

approach has a potential problem, because the true function does not necessarily 

match the assumed parametric form. With nonparametric approaches it is possile to 

use more flexible function spaces that can describe a wider range, or even any, 

functions. However, more flexible functions can increase the problem of overfitting.   

Assume that a function 𝑦 = 𝑓(𝑥) has the output 𝑦 ∈ ℝ and the input 𝑥 ∈ ℝ𝑑 . 

We give two examples of practical function spaces that occupy opposite ends of the 

function complexity spectrum. The simplest model specifies that the output is a 

linear function of input in terms of parameters 𝛼 ∈ ℝ𝑑: 

 𝑓𝛼(𝑥) = 𝛼1𝑥1 + ⋯ + 𝛼𝑑𝑥𝑑  

To include a bias term, it is possible to concatenate a constant feature 𝑥1 = 1 to 

the input vector. This defines the function space ℱ = {𝑓𝛼(𝑥) ∶ 𝛼 ∈ ℝ𝑑}. We can add 

regularization to improve the predictive ability of the model. This reduces the effect 

of irrelevant features and can result in even simpler models. There are several 

popular choices for the penalty term Ω(𝑓𝛼) added to the empirical risk [20]: 
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Ω0(𝑓𝛼) = ∑ 𝕀(𝛼𝑖 ≠ 0)𝑑
𝑖=1  (nonzero cofficients)

Ω1(𝑓𝛼) = ∑ |𝛼𝑖|𝑑
𝑖=1  (least absolute shrinkage)

Ω2(𝑓𝛼) = ∑ ‖𝛼𝑖‖2𝑑
𝑖=1  (Tikhonov regularization)

  

On the other side of the spectrum, kernel methods in machine learning consider 

highly non-linear function spaces in a non-parametric way [21]. Assume we are 

given a symmetric and positive definite function 𝑘(𝑥, 𝑥′) over inputs, which is 

known as a kernel. The reproducing kernel Hilbert space ℱ associated to 𝑘 is a 

function space obtained as the completion of the following function space ℱ0: 

 ℱ0 = {∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑁
𝑖=1  : 𝑁 ∈ ℕ,  𝑥𝑖 ∈ 𝒳, 𝛼𝑖 ∈ ℝ}  

where the inner product in ℱ0 is defined as: 

 ⟨∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑁
𝑖=1 , ∑ 𝛼𝑗

′𝑘(𝑥𝑗
′, 𝑥)𝑀

𝑗=1 ⟩
ℱ0

= ∑ ∑ 𝛼𝑖𝛼𝑗
′𝑘(𝑥𝑖 , 𝑥𝑗

′)𝑀
𝑗=1

𝑁
𝑖=1   

The inner product defines the model complexity penalty Ω(𝑓) = ‖𝑓‖ℱ
2 = ⟨𝑓, 𝑓⟩ℱ 

used in regularized empirical risk minimization. While the kernel method is 

fundamentally non-parametric, the function 𝑓𝑎 that minimizes the empirical risk can 

be found with parametric optimization methods. This is based on the representer 

theorem [22], which implies that the function is a linear combination of kernel 

evaluations at data points 𝒟 = ((𝑥i, 𝑦i))
𝑖=1

𝑛
 where 𝛼 ∈ ℝ𝑛: 

 𝑓𝛼(𝑥) = ∑ 𝛼𝑖𝑘(𝑥𝑖 , 𝑥)𝑛
𝑖=1   

One choice of the kernel function is the Gaussian radial basis function (RBF), 

where 𝛾 > 0 is a fixed parameter known as the width of the kernel: 

 𝑘(𝑥, 𝑥′) = exp(−𝛾−2‖𝑥 − 𝑥′‖2)  

For the RBF kernel, the resulting function space ℱ implies universally consistent 

learning methods in many practical applications [23]. This means any function can 

be modelled asymptotically, as long as the choice of the regularization parameter 𝜆 

and kernel width 𝛾 are done in a data-dependent way.  

Model interpretability is one reason to prefer simpler models if different models 

competitive predictive accuracy [24]. The linear model is easily interpretable since 

each coefficient 𝛼𝑖 is the influence of that feature to the prediction. With feature 

selection or least absolute shrinkage regularization we can potentially discard some 

features, obtaining even simpler models. Extending the linear model makes for more 

complex, but in principle still interpretable models. The most flexible machine 

learning models have multiple parameters with nonlinear effects and are difficult to 

interpret. These include kernel methods, random forests and neural networks, for 

example. This is yet another tradeoff; between interpretability and model 

complexity.  
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Finally, there may be a technical complication in the choice of the loss function 

𝐿. Not every loss function that defines a empirical loss ℛ𝐿,𝐷 can be easily optimized. 

For example, it is NP-hard to minimize the empirical risk in terms of accuracy of 

‘incorrect’ (1) and ‘correct’ (0) classification [25].  Machine learning uses well-

behaved loss functions, meaning those that can be solved with standard optimization 

methods in a reasonable time. In terms of the actual empirical risk of interest, the 

loss used in the optimization stage can be seen as a surrogate loss function. Fitting 

the function is based on the assumption that the surrogate loss approximately 

minimizes the empirical risk of interest. Two popular loss functions are the ‘squared 

loss’ for regression (𝑦 ∈ ℝ) and ‘logistic loss’ for classification (𝑦 ∈ {−1,1}), which 

we later show to result in standard linear regression and logistic regression models: 

 𝐿squared(𝑦, 𝑓(𝑥)) = (𝑦 − 𝑓(𝑥))
2
  

 𝐿logistic(𝑦, 𝑓(𝑥)) = log[1 + exp(−𝑦𝑓(𝑥)]  

There are several possible optimization algorithms that find the optimal solution 

for the chosen loss function. If the loss function is smooth, in the sense that the matrix 

of second derivatives is continuous, it is possible to find the optimal function with 

Newton’s method, for example [26]. Assume that the function space is parametric. 

We then find the parameters 𝛼 = (𝛼1, … , 𝛼𝑑) that minimize the penalized empirical 

risk 𝐿(𝛼) = ℛ𝐿,𝐷(𝑓𝛼) + 𝜆Ω(𝑓𝛼). Denote the 𝑑 length gradient vector as 𝐿′(α) =

∂𝐿(𝛼)/𝜕𝛼 and the 𝑑 × 𝑑 Hessian matrix as 𝐿′′(α) = ∂𝐿(𝛼)/𝜕𝛼𝜕𝛼𝑇. The optimal 

parameters 𝛼̂ minimize the empirical risk, so the gradient is zero 𝐿′(𝛼̂) = 0 at the 

solution 𝛼̂. The Taylor series expansion of 𝐿′(𝛼) around initial guess 𝛼(0) is: 

𝐿′(𝛼) = 𝐿′(𝛼(0)) + (α − 𝛼(0))𝐿′′(𝛼(0)) + (α − 𝛼(0))
2

/2! 𝐿′′′(𝛼(0)) + ⋯ = 0 

If we approximate the function by keeping the first two terms of this expansion, 

we can solve for α to obtain an estimate of the solution given the initial guess 𝛼(0): 

 α ≈ 𝛼(0) − [𝐿′′(𝛼(0))]
−1

𝐿′(𝛼(0))  

Given the α thus obtained, this can be iterated to obtain increasinly accurate new 

estimates, which results in the multivariate Newton’s method: 

 α(𝑟) ≈ 𝛼(𝑟−1) − [𝐿′′(𝛼(𝑟−1))]
−1

𝐿′(𝛼(𝑟−1))  

2.2 Statistics 

We utilize arguments from both statistics and machine learning in this thesis. 

Statistics is related to machine learning. Both fit models to data but have a somewhat 

different emphasis [27] [28]. Statistics typically uses fully specified probabilistic 

models to explain the observed data as accurately as possible. The models are used 

to analyze the problem and interpret how different parameters affect the outcome. 
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This is in contrast to machine learning where the goal is predict as accurately as 

possible for new data. This perspective takes into account the phenomena of 

overfitting, and the model in fact can be seen as a black box used to give predictions. 

However, the most simple machine learning algorithms and standard regression 

methods in statistics are identical: least squares and logistic regression for example. 

 Denote the data set 𝒟 = ((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)), where each (𝑥𝑖 , 𝑦𝑖) is an 

observation with input 𝑥𝑖 and output 𝑦𝑖. In the statistical approach, we assume that 

the data set is sampled from a probabilistic model 𝑃(𝒟|α) where 𝛼 = (𝛼1, … , 𝛼𝑑) is 

a vector of model parameters [29]. Given this model, in maximum likelihood 

estimation (MLE) we seek parameters that maximize the probability mass or density 

function of the data. For this reason, define the likelihood function 𝐿(𝛼) = 𝑃(𝒟|α) 

that we seek to maximize. It is again assumed that the observations are generated 

i.i.d. from the underlying probability distribution, similar to empirical risk 

minimization, so the likelihood factorizes 𝐿(𝛼) = 𝑃(𝒟|α) = ∏ 𝑃(𝑦𝑖|𝑥𝑖 , 𝛼)𝑛
𝑖=1 . The 

maximum likelihood estimate is the parameter vector 𝛼̂ that maximizes the 

likelihood function 𝛼̂ = argmax
𝛼

𝐿(𝛼) [30].  

Practical algorithms typically use the log-likelihood 𝑙(𝛼) = log(𝐿(𝛼)), because 

as a monotonic function it has the same solution with better numercial properties. To 

fit a model, we first hypothesize a parametric probability model 𝑃(𝑦|𝑥, 𝛼) and then 

find the MLE estimate for the parameter vector 𝛼 = (𝛼1, … , 𝛼𝑑) by maximizing the 

log-likelihood 𝑙(𝛼). Denote the 𝑑 element gradient vector of the log-likelihood as 

𝑙′(α) = ∂𝑙(𝛼)/𝜕𝛼 and the 𝑑 × 𝑑 Hessian matrix as 𝑙′′(α) = ∂𝑙(𝛼)/𝜕𝛼𝜕𝛼𝑇 . Since 

the MLE parameters 𝛼̂ maximize the log-likelihood, the gradient is zero 𝑙′(𝛼̂) = 0 

at the solution 𝛼̂. We can again use the Newton’s method, for example. Given an 

initial guess 𝛼(0), repeat the iteration: α(𝑟) ≈ 𝛼(𝑟−1) − [𝑙′′(𝛼(𝑟−1))]
−1

𝑙′(𝛼(𝑟−1)) 

until convergence. This can be seen as a special case of empirical risk minimization, 

where the loss function is defined as the negative log-likelihood.  

Maximum likelihood estimation has important mathematical guarantees, and 

asymptotic results about the parameter estimates can be used to justify its widespread 

application. Assuming a correct probabilistic model for 𝑃(𝑦|𝑥, 𝛼), if 𝛼̂ is the MLE 

and 𝛼 is the true parameter vector that generated the data, as the sample size increases 

𝑛 → ∞ we have asymptotically [30]: 

1. The parameter estimates are consistent: they converge in probability to 

the true value 𝑃(‖𝛼̂ − 𝛼‖ > ϵ) → 0. 

2. The parameter estimates are functionally invariant: 𝑧(𝛼̂) is the MLE of 

𝑧(𝛼) for any function 𝑧. 

3. The parameter estimates are efficient: no consistent estimator has lower 

variance. 
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Statistics typically considers confidence intervals and p-values of the parameters. 

Parameter inference in straightforward in correctly specified models [31]. Define the 

observed information matrix as the negative Hessian of the log-likelihood: 𝐼(𝛼) =

−𝑙′′(α). The expected information matrix is the expectation ℐ(𝛼) = 𝔼[𝐼(𝛼)]. The 

MLE 𝛼̂ is asymptotically normally distributed with expected value 𝛼 and covariance 

matrix is the inverse of expected information: 

 𝛼̂ − 𝛼~𝑀𝑉𝑁(0, ℐ(𝛼)−1)  

For the purposes of statistical inference, 𝛼 is not known and ℐ(𝛼) can be replaced 

asymptotically by  ℐ(𝛼̂) or I(𝛼̂). This result is used to construct confidence intervals 

and p-values of the parameters, for example [32].  

We now present two simple models from both a statistical and machine learning 

perspective [33]. We derive the methods from the statistical perspective and show 

how they correspond to an empirical risk minimization problem in machine learning. 

We present least squares regression as a regression method and logistic regression 

as a classification method. The statistical approach is motivated by specifying a 

parametric model 𝑃(𝑦|𝑥, 𝛼) that describes a probability model of the data. From a 

statistical viewpoint, we find the model parameters 𝛼 as the maximum likelihood 

estimates. These are shown to equal empirical risk minimization problems in 

machine learning.  

Least squares regression is a standard approach to regression. A straightforward 

derivation from simple probabilistic assumptions results in the model. Assume that 

data consists of outputs 𝑦 ∈ ℝ and inputs 𝑥 ∈ ℝ𝑑 . The output 𝑦 = 𝑓𝛼(𝑥) is a function 

of input 𝑥, where the function 𝑓 is specified by a parameter vector 𝛼. We assume 

that the output also includes a stochastic noise term 𝜖~𝒩(0, 𝜎2) that has constant 

variance 𝜎2: 

 𝑦 = 𝑓𝛼(𝑥) + 𝜖  

Given input 𝑥 and noise 𝜖, this implies that the output has a Gaussian density: 

 𝑃(𝑦|𝑥, 𝛼) =
1

√2𝜋𝜎2
exp (−

(𝑦−𝑓𝛼(𝑥))
2

2𝜎2 )  

Assuming that the observations are independent: 

 𝑙(𝛼) = ∑ log[𝑃(𝑦𝑖|𝑥𝑖 , 𝛼)]𝑛
𝑖=1 = −

1

2
log(2𝜋𝜎2) −

1

2𝜎2
∑ (𝑦𝑖 − 𝑓𝛼(𝑥))2𝑛

𝑖=1   

From a statistical perspective we maximize the log-likelihood 𝛼̂ = argmax
𝛼

𝑙(𝛼) 

to find the parameters. We could equivalently minimize the negative log-likelihood 

𝛼̂ = argmin
𝛼

−𝑐𝑙(𝛼) multiplied by a constant. Taking 𝑐 = 1/𝑛 this corresponds to 

an empirical risk minimization with a squared loss 𝐿(𝑦𝑖 , 𝑓𝛼(𝑥𝑖)) = (𝑦𝑖 − 𝑓𝛼(𝑥𝑖))
2
: 
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 α̂ = argmin
𝛼∈ℝ𝑑

1

𝑛
∑ (𝑦𝑖 − 𝑓𝛼(𝑥))

2𝑛
𝑖=1   

In the training phase, we fit the model to the data set using this loss to find 𝛼̂. In 

the test phase, we predict values simply by 𝑦 = 𝑓𝛼̂(𝑥). 

Logistic regression is a standard approach to binary and multiclass classification. 

We show how simple assumptions result in the model . Assume that data consists of 

binary outputs 𝑦 ∈ {−1,1}  and inputs 𝑥 ∈ ℝ𝑑. Logistics regression models the log-

odds of the output 𝑦 as a function 𝑓𝛼(𝑥) of input 𝑥, where the function 𝑓 is specified 

by a parameter vector 𝛼: 

 log [
𝑃(𝑦=1|𝑥,𝛼)

1−𝑃(𝑦=1|𝑥,𝛼)
] = 𝑓𝛼(𝑥)  

This implies that the probability of the binary response 𝑦 is given by: 

 
𝑃(𝑦 = 1|𝑥, 𝛼) = 1/(1 + exp(−𝑓𝛼(𝑥))

𝑃(𝑦 = −1|𝑥, 𝛼) = 1/(1 + exp(𝑓𝛼(𝑥))
  

Assuming the observations are independent: 

 𝑙(𝛼) = ∑ log[𝑃(𝑦𝑖|𝑥𝑖 , 𝛼)]𝑛
𝑖=1 = − ∑ log[1 + exp(−𝑦𝑖𝑓𝛼(𝑥))]𝑛

𝑖=1   

From a statistical perspective we maximize the log-likelihood 𝛼̂ = argmax
𝛼

𝑙(𝛼). 

We can again minimize the negative log-likelihood 𝛼̂ = argmin
𝛼

−𝑐𝑙(𝛼) multiplied 

by a constant. Taking 𝑐 = 1/𝑛 this corresponds to an empirical risk minimization 

with a logistic loss 𝐿(𝑦𝑖 , 𝑓𝛼(𝑥𝑖)) = log[1 + exp(−𝑦𝑖𝑓𝛼(𝑥𝑖)]: 

 α̂ = argmin
𝛼∈ℝ𝑑

1

𝑛
∑ log[1 + exp(−𝑦𝑖𝑓𝛼(𝑥𝑖)]𝑛

𝑖=1   

In the training phase, we fit the model to the data set using this loss to find 𝛼̂. In 

the test phase, we predict the probability of the outcome simply by 𝑃(y = 1|x) =

1/(1 + exp(−𝑓𝛼̂(𝑥)). If predictions are required on a binary scale, we can convert 

these probabilities into −1 or 1 by using a threshold of 0.50, for example. 

The machine learning perspective does not require a full probabilistic model of 

the data, merely that we have defined an empirical risk that we use to fit an arbitrary 

function 𝑓𝛼(𝑥) to data. It is therefore not necessary to assume that the model is a 

correct probabilistic description of the phenomena in order to make predictions. For 

our goal, we fit the methods using these loss functions and say that the method is as 

good as the predictive ability on new samples. In addition, one can add regularization 

to further improve the predictive accuracy. 
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2.3 Overfitting example 

We now present a simple example of a learning problem to illustrate the function 

space complexity tradeoff [34]. Let the true function be a third degree polynomial 

𝑦 = −0.1 + 0.4𝑥 + 0.7𝑥2 − 0.2𝑥3 + 𝜖 which includes a noise term 𝜖 ~ 𝒩(0,0.5). 

The inputs are sampled uniformly 𝑃(𝑥) ~ Unif(−1,1). The loss function is the 

squared error 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = (𝑦𝑖 − 𝑓(𝑥𝑖))
2
, which is a standard least squares 

problem in empirical risk minimization: find a function 𝑓 such that ℛ𝐿,𝐷(𝑓) =
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1  is smallest. Because in this example we know the true function, 

it is possible to explicitly measure the expected loss ℛ𝐿,𝑃(𝑓) for different functions. 

Higher degree polynomials are known to be particularly prone to overfitting [35], 

even though increasing the order of the polynomial achieves better fits to the data 

set. Consider three simple function spaces: linear functions ℱ1, quadratic functions 

ℱ2, and 5’th degree polynomials ℱ5. The resulting best fits are displayed in Figure 

3. We see that the simplest function underfits the target (ℛ𝐿,𝐷(𝑓) = 0.17, ℛ𝐿,𝑃(𝑓) =

0.37). The quadratic funtion fits both data and target (ℛ𝐿,𝐷(𝑓) = 0.11, ℛ𝐿,𝑃(𝑓) =

0.27). The 5’th degree polynomial suffers from overfitting: it provides the best 

approximation to the data in terms of squared error, but has a larger error relative to 

the true target (ℛ𝐿,𝐷(𝑓) = 0.06, ℛ𝐿,𝑃(𝑓) = 0.35).  

 

Figure 3.  1st, 2nd or 5th degree polynomials are fit to a random 3rd degree target, and it is 

clear that the 1st degree polynomial underfits and the 5th degree overfits. 

The trade off between complex and simple functions can be explained with the 

bias-variance tradeoff. In the special case of a squared loss and a noisy target 𝑦 =

𝑔(𝑥) + 𝜖, it can be analyzed analytically with a simple formula. In the example we 

used a single realization of the data set. Assume now that the data set 𝐷 is random 

and we use the learning algorithm to get a function 𝑓(𝐷) based on it. The average 
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function we learn is denoted by 𝑓(𝑥) = 𝔼𝒟[𝑓(𝒟)(𝑥)]. Then the expected loss 

ℛ𝐿,𝑃(𝑓(𝐷)) = 𝔼𝑥,𝑦 [(𝑦 − 𝑓(𝐷)(𝑥))
2

] can then be written over different realizations 

of the data as [36]: 

 𝔼𝒟[ℛ𝐿,𝑃(𝑓(𝑑))] = 𝔼𝑥[bias(𝑥)] + 𝔼𝑥[var(𝑥)] + var(𝜖)  

where bias(𝑥) = 𝔼𝑦 [(𝑔(𝑥) − 𝑓(𝑥))
2

] and var(𝑥) = 𝔼𝒟 [(𝑓(𝒟) − 𝑓(𝑥))
2

]. The 

bias term measures how well the average function approximates the true function, 

and we obtain a smaller bias if we use more complex functions that can approximate 

the true function better. The variance term measures how much the function would 

change if we used a different data set, and we obtain a smaller variance if we use 

more simple functions that do not vary too much with different realizations of the 

data. The noise term represents the stochastic noise implicit in the problem, and 

corresponds to the loss of the best possible function. We demonstrate the bias and 

the variance of the function spaces ℱ1, ℱ2, ℱ5 in Figure 4. It can be seen that function 

complexity decreases bias but increases variance. Because the final error is a sum of 

these terms, there exists a trade-off between optimal function complexity. 

 

Figure 4.  Relative to the true target (blue), over many iterations the 2nd degree polynomial 
has the best trade-off in bias (red line) and variance (shaded grey). 

Regularization is based on the idea of using a function space with more complex 

functions and constraining it based on the data. Define a function space of d’th 

degree polynomials in terms of Legendre basis ℱ(𝑑) = {∑ 𝛼𝑖𝐿𝑖(𝑥)𝑑
𝑖=0 : 𝑎 ∈ ℝ𝑑+1} 

where 𝐿𝑖 (𝑥) is the i’th Legendre polynomial. Examples of Legendre polynomials are 

shown in Figure 5, where it can be seen that the complexity of the learned function 

goes up with additional basis functions. The purpose of using Legendre polynomials 

is that the functions form an orthogonal basis. If we consider up to 5’th degree 

polynomials, any function can written as 𝑓(𝑥) = 𝛼0 + 𝛼1𝐿1(𝑥) + ⋯ + 𝛼5𝐿5(𝑥). 

Furthermore, if the complexity penalty is a standard L2 norm ‖𝑓‖2 = ∫ 𝑓(𝑥)2𝑑𝑥 
1

−1
, 
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the regularization term is simply Ω(𝑓) = 𝛼0
2 + 𝛼1

2 + ⋯ + 𝛼5
2. To obtain a simple 

function with a good generalization ability, we regularize this solution. 

 

Figure 5.  Visualization of the first five non-trivial Legendre.polynomial basis functions. 

Regularization constrains the solutions to simpler polynomials, where the 

coefficients are bounded. We now find the function 𝑓 that minimizes the regularized 

empirical risk ℛ𝐿,𝐷(𝑓) =
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1 + 𝜆Ω(𝑓). Results for different 

choices of 𝜆 are illustrated in Figure 6. It can be seen that the function space becomes 

simpler as the penalty increases: the solution starts at an unconstrained 5’th degree 

polynomial and eventually approaches a contant function. The expected loss for 𝜆 =

0.2 is similar to the second degree polynomial. For lower penalty the solution 

overfits, where as for larger penalties the solution is too simple. This means that it is 

not necessary to make a priori choice on the degree of the polynomials considered, 

if the regularization parameter is used to control the function complexity in a data-

dependent way. 

 

Figure 6.  Regularization can be used to constrain the complexity of the learned function: the 
optimal regularization parameter occurs in the neighbourhood of 0.20. 
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2.4 Machine Learning for censored data 

2.4.1 Definition as pairwise data 

Censoring has been studied especially in survival analysis, which is a field of 

statistics that models the time to an event that may be censored. The outcome is the 

lifetime of a subject, or the total follow-up time if censored. In a more general 

formulation we can have more than two states (“alive”, “dead”), which is known as 

life history analysis [37]. Life history analysis is a common mathematical framework 

to analyze censored data as a stochastic process, and has so far found applications in 

biostatistics, reliability engineering, actuarial science, demography, epidemiology, 

to name a few. Statistical analysis has usually focused on nonparametric methods for 

multiple subjects. There is a long history of methods for nonparametric survival 

curve analysis in the case of a single event [38] and nonparametric analysis of the 

cumulative intensity in the case of recurrent events [39]. Based on the underlying 

stochastic process, these methods have been extended to multiple event types [40] 

and transitions between different states [41]. Several statistical tests have been 

developed to assess treatment effects [42]. A popular regression model by Cox was 

developed to assess survival when subjects have covariates [43], which can also be 

generalized to recurrent events [44]. Reliability engineering in contrast has focused 

on parametric models, sometimes of a single process, as summarized in the review 

by Lawless [45]. This allows the prediction of future events in maintenance planning, 

for example. There has been increasing awareness that the data may not follow the 

simplifying stochastic process assumptions in probabilistic modelling, typically 

assuming that future events are independent of the past events to analytically model 

the data as a Poisson process, so simpler and more robust methods of analysis have 

been presented [46] [47]. Real-valued outcomes have been considered together with 

the stochastic process, for example in the analysis of medical costs [48] [49] [50]. 

Some of the nonparametric estimators in fact generalize directly to cumulative costs 

[51], and there are simple and robust ways to consider regression as well [52] [53]. 

Consider the previous example of a company that measures the LTV of 

customers. It is typically the case that some customers are relatively new and others 

have been with the company for some time. The new customers have had less time 

to make purchases, so they have smaller LTVs compared to older customers. This 

may not be because they are worse customers per se, just that they have not been 

followed for equally long. What the company really wants to find out is the LTV 

over time that results when the customer is followed until they eventually stop being 

customers of the company. The collected data set is censored with respect to the final 

LTV. This means we cannot directly use the measured LTVs, but need a smart way 

to take into account different follow-up times. 
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Figure 7.  Three stage solution to censoring: 1) deconstruct data as (customer, follow-up)-pairs  
2) predict for every pair 3) reconstruct LTV from predictions for the pairs. 

In this thesis, we present four application domains that have to deal with censored 

data. Every model is developed independently, but all models share a similar solution 

to censoring. The solution is based on reformulating the data set as pairwise data and 

consists of three stages: 1) deconstruct the problem as pairwise data 2) use machine 

learning to get predictions for every pair 3) reconstruct the solution from the pairwise 

predictions. The idea is illustrated in Figure 7 for the customer LTV problem in an 

abstract level. Instead of directly measuring the LTVs of customers by summing the 

purchases together, we can consider the purchase amount as at every followup time. 

The followup is the days that have passed since the customer was acquired. The data 

is then formulated as (‘customer’, ‘followup’)-pairs with ‘purchase’ as the output. 

The followups that were not observed yet are missing observations. For example, 

Customer ‘1’ makes their first 0.20€ purchase at followup 1, the second 0.20€ 

purchase at followup 399, etc., until the data was gathered at followup 852. This 

means we obtain the following (customer, followup) pairs: (1,1) with value 0.20€ , 

(1, 2) with value 0.00€, …, (1,852) with value 0.00€. We fit the model to this data 

set and then predict the purchase at every (customer, followup)-pair. To reconstruct 

the LTV, we add the predicted purchases at every customer and followup pair 

together to obtain the predicted LTV of the customer.  
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Formally, the problem is analyzed as follows. We say that the data set consists 

of individual and time pairs. Denote individual 𝑖 ∈ {1, … , 𝑛} and time 𝑡 ∈ {1, … , 𝑚}. 

Individuals have features 𝑥𝑖 ∈ 𝒳and time points have features 𝑧𝑡 ∈ 𝒵. If the data set 

was not censored, it would consists of input 𝑥𝑖,𝑡 = (𝑥𝑖 , 𝑧𝑡) ∈ 𝒳 × 𝒵 and output 𝑦𝑖,𝑡 ∈

𝒴 for every individual and time point pair. However, we may not have observed 

every pair. We therefore define observation indexes 𝑘 ∈ {1, … , 𝑁} and two 

mappings: 𝐼(𝑘) maps the observations index to individual index and 𝑇(𝑘) maps the 

observation index to time index. The data set is 𝒟 = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘))
𝑘=1

𝑁

. 

Pairwise data is an important field of machine learning research [54] and in this form 

it has been considered in longitudinal analysis in statistics [55]. In this thesis the 

pairwise data is an abstraction that is unifies the different models. Each of our models 

is designed specifically for each task is question. General machine learning models 

for pairwise data and parametric statistical models for longitudinal data can be quite 

different from our models.  

This pairwise abstraction is a special case of the empirical risk minimization 

framework presented earlier, where every input has a pairwise structure. The input 

space is now just a cartesian product 𝒳 × 𝒵  and the output space is 𝒴. The learning 

goal is to find a function 𝑓: 𝒳 × 𝒵 → 𝒴 that predicts the correct output of every pair. 

However, while the abstraction is just a special case of empirical risk minimization 

there are important practical differences that need to be taken into account when 

compared to the standard formulation. The special structure of pairwise data has 

three major implications that need to be considered in the applications: 

1. The model may need to be formulated in terms of pairwise data to model 

the phenomena correctly [56]. 

2. The validation needs to be designed for pairwise data where the 

observations are not independent [57]. 

3. The statistical theory needs to take into accont that the observations are 

not indepedent [55]. 

We go through each of these in the following subchapters. 
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2.4.2 Models for pairwise data 

 

Figure 8.  Each problem in this thesis can be formulated as a pairwise model applied to 
censored data with (user, time)-pairs, where we have user identifier (In) and features 
(X), time identifier (Im) and features (Z), and the outcome (Y) for the pair. 

Designing a model that is an accurate representation of data is very important. 

To describe the special structure in pairwise data we need either lots of data and very 

flexible models, or simple models designed for the particular task. We present many 

simple models that are designed specifically for pairwise data in the studies. We now 

recapitulate the models that will be presented in Section 3 and demonstrate that in 

the abstract level they can be seen as instances of a single problem 

We briefly illustrate the different models by defining them as special cases of an 

abstract model that considers individual and time pairs. We invented this abstraction 

for the purpose of this thesis introduction, but was not obvious at the time of writing 

the individual studies. Consider the following one-hot encoding of the categorical 

feature that corresponds to the particular user and time.  Let 𝑒𝑖 = (𝕀(individual =

1), … , 𝕀(individual = 𝑛)) denote a binary vector that indicates the individual and 

𝑒𝑡 = (𝕀(time = 1), … , 𝕀(time = 𝑚)) denote a binary vector that indicates the time. 

Again, let 𝑥𝑖 ∈ ℝ𝑟 denote the individual 𝑖  feature vector and 𝑧𝑡 ∈ ℝ𝑠 the time 𝑡 

feature vector. If individual features can change over time we denote them by 𝑥𝑖,𝑡. 

The outer product of feature vectors 𝑥𝑖 ∗ 𝑧𝑡 = (𝑥1𝑧1 , … , 𝑥1𝑧𝑠 , … , 𝑥𝑟𝑧1 , … , 𝑥𝑟𝑧𝑠) ∈

ℝ𝑟𝑠 denotes interactions of features in vectors 𝑥𝑖 and 𝑧𝑡 . The output for individual 𝑖 

and time 𝑡 is denoted by 𝑦𝑖,𝑡. The parameter vector is denoted by either 𝛼 or 𝛽, whose 

dimension is defined by the number of features in question. We illustrate the pairwise 

model paradigm in Figure 8: the user indicator is an identity matrix 𝐼𝑛 , the user 

features are a matrix 𝑋 ∈ ℝ𝑛×𝑟 , the time indicator is an identity matrix 𝐼𝑚, the time 

features are a matrix 𝑍 ∈ ℝ𝑚×𝑠, and finally the outputs are a matrix 𝑌 ∈ ℝ𝑛×𝑚  

where some entries can be missing. 
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In the first application, we predict the expected retention or monetization metrics. 

The model can be used for any censored metric which is calculated as a sum of 

observations that occur over time, and the observation 𝑦𝑖,𝑡 ∈ ℝ+ of individual i at 

time t is predicted by 𝜇𝑖,𝑡 = 𝔼[𝑦𝑖,𝑡] where the model is: 

 𝜇𝑖,𝑡 = exp((𝑒𝑡 𝑥𝑖) ∙ 𝛼)  

The second application considers the profit of peer-to-peer loans at the level of 

a single loan. Individual monthly payments are predicted to calculate profit with 

discounted cashflow (DCF) analysis. Two complementary models are used for this 

purpose together to predict the payments. The first model predicts the fixed monthly 

payments that are obtained according to the schedule, by modelling the default 

probability 𝑦𝑖,𝑡 ∈ {−1,1} of loan i at time t. The prediction 𝜇𝑖,𝑡 = 𝔼[𝑦𝑖,𝑡] =

𝑃(𝑦𝑖,𝑡 = 1) is known as the default rate. If a loan has defaulted, the second model 

predicts the monthly recovery payments 𝑦𝑖,𝑡
′ ∈ ℝ+ of loan i at time t as 𝜇𝑖,𝑡

′ = 𝔼[𝑦𝑖,𝑡
′ ]. 

These models are defined as: 

 
𝜇𝑖,𝑡/(1 − 𝜇𝑖,𝑡) = exp((𝑒𝑡 𝑥𝑖) ∙ 𝛼)

𝜇𝑖,𝑡
′ = exp((𝑒𝑡  𝑥𝑖) ∙ 𝛽)

  

The third application is a stochastic process model of individual’s unemployment 

history (𝑦𝑖,𝑡)
𝑡≥0

, where 𝑦𝑖,𝑡 ∈ {−1,1} is the unemployment status. We assume that 

individual’s unemployment status is a Markov chain with individual specific 

transition rates. These two transition rates are predicted. The first parameter is the 

probability to exit unemployment 𝜇𝑖,𝑡 = 𝑃(𝑦𝑖,𝑡 = −1|𝑦𝑖,𝑡 = 1) and the second 

parameter is the probability to enter unemployment 𝜇𝑖,𝑡
∗ = 𝑃(𝑦𝑖,𝑡 = 1|𝑦𝑖,𝑡 = −1). 

This is done with the following models: 

 
𝜇𝑖,𝑡/(1 − 𝜇𝑖,𝑡) = exp ((𝑒𝑖  𝑒𝑡  𝑥𝑖,𝑡) ∙ 𝛼)

𝜇𝑖,𝑡
∗ /(1 − 𝜇𝑖,𝑡

∗ ) = exp ((𝑒𝑖  𝑒𝑡  𝑥𝑖,𝑡) ∙ 𝛽)
  

The fourth application considers game likes 𝑦𝑖,𝑡 ∈ {−1,1} of user i and game t. 

The prediction is given as the expected like status 𝜇𝑖,𝑡 = 𝔼[𝑦𝑖,𝑡]. We tested four new 

models. The first model predicts the game likes without considering any features for 

the user or the game. This is based on the multivariate normal distribution (MVN) 

𝒩(𝜇, Σ) model for the vectors of game likes {(𝑦𝑖,1, … , 𝑦𝑖,𝑚)}
𝑖=1

𝑛
  for every user 𝑖. 

The model is fitted by computing mean 𝜇 and covariance Σ of the game like vector. 

The mean vector is given by 𝜇𝑡 =
1

𝑛
∑ 𝑦𝑖,𝑡

𝑛
𝑖=1  and the covariance matrix by Σ𝑡,𝑢 =

1

𝑛−1
∑ (𝑦𝑖,𝑡 − 𝜇𝑡)(𝑦𝑖,𝑢 − 𝜇𝑢)𝑛

𝑖=1 . Assume the game likes are binary 𝑦𝑖,𝑡 ∈ {0,1} and 

denote the liked games ℒ𝑖 = {𝑡: 𝑦𝑖,𝑡 = 1} We predict the ranking of not yet liked 

games by the conditional expectation given the liked games:  
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 𝜇𝑖,𝑡 = 𝔼 [𝑦𝑖,𝑡|{𝑦𝑖,𝑡}
𝑡∈ℒ𝑖

, 𝜇, Σ]  

 Three remaining models use game features, user features, or both game and user 

features to predict the game likes: 

 

𝜇𝑖,𝑡 = (𝑒𝑖 ∗ 𝑧𝑡) ∙ 𝛼

𝜇𝑖,𝑡 = (𝑥𝑖 ∗ 𝑒𝑡) ∙ 𝛼

𝜇𝑖,𝑡 = (𝑥𝑖 ∗ 𝑧𝑡) ∙ 𝛼
  

There is no fundamental restriction why the models for censored data would have 

to be linear or log-linear, as was defined in the above models. The modelling stage 

could consider non-linear models in the same framework, but the linear models had 

a good accuracy and were easier to interpret from a statistical perspective. This can 

be very important in some applications [58]. These simple models include a type of 

nonparametric estimate, because the influence of time is never assumed to take a 

particular functional form since we estimate separate intercepts at each time point. 

2.4.3 Validation for pairwise data 

Standard validation procedures of machine learning models are based on the 

assumption that observations are generated independently and identically from the 

same distribution. This assumption is probably not valid for pairwise data, because 

there can be correlation within observations that belong to the same individual or 

time. For example, if one customer has been observed to make larger purchases at 

one point, they are probably more likely to make larger purchases at the following 

time points. Similarly, it is typical that customers make purchases and they then 

slowly churn out, so that the initial time points have some purchases and the later 

ones no purchases for a given customer.  

Machine learning can be used to learn models from a pairwise data set, in the 

simplest case by ignoring the pairwise structure, but the validation has to be more 

complicated. The validation needs to take into account that many observations come 

from the same individual or time point, or otherwise the correlations may lead to 

positive bias in how well the model performs. When the model is implemented in 

the real world setting, it may have no data about a given individual or time point. 

The validation needs to reflect this fact. For example, if we predict the price of a 

stock tomorrow, but know the price both today and two days later, it can be quite 

easy to give a correct answers. The validation that corresponds to correct evaluation 

for the stock price time series data is not a simple train test set split, but a split where 

all future observations belong to the test set. 

We use a similar idea in this thesis, where we design validation methods that aim 

to measure the true prediction accuracy in different prediction settings: for example 
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we could measure how well the model predicts for new individuals or new time 

points, or both simultaneously. For example, in P2P loan prediction we can predict 

the profit in a new loan that we are thinking of investing in, or we can predict the 

future profit in an existing loan which someone is offering to sell to us. We do not 

assume a particular probabilistic model for the data, but instead formulate a way to 

define a test set that provides an unbiased performance estimate in each setting for 

any model [57]. For this reason, we define a total of four different test settings: 

1. Setting 1: predict for observed individuals and observed times 

2. Setting 2: predict for observed individuals and new times. 

3. Setting 3: predict for new individuals and known times. 

4. Setting 4: predict for new individuals and new times. 

In Setting 1, we split the data set into training and test sets as before. The 

observation indices 𝑘 ∈ {1, … , 𝑛} = 𝐼 are split into mutually disjoint sets 

𝐼train , 𝐼test ⊆ 𝐼, which define a training set and test set  

 

𝒟train = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝑘 ∈ 𝐼train))
𝑘=1,…,𝑁

𝒟test = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝑘 ∈ 𝐼test))
𝑘=1,…,𝑁

  

In setting 2, we split the time indices 𝑡 ∈ {1, … , 𝑠} = 𝑇 into mutually disjoint 

index sets 𝑇train , 𝑇test ⊆ 𝑇, which define a training set and test set  

 

𝒟train = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝑇(𝑘) ∈ 𝑇train))
𝑘=1,…,𝑁

𝒟test = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝑇(𝑘) ∈ 𝑇test))
𝑘=1,…,𝑁

  

In setting 3, we in turn split the individual indices 𝑖 ∈ {1, … , 𝑟} = 𝑈 into 

mutually disjoint index sets 𝑈train, 𝑈test ⊆ 𝑈, which define a training and test set  

 

𝒟train = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝐼(𝑘) ∈ 𝑈train))
𝑘=1,…,𝑁

𝒟test = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝐼(𝑘) ∈ 𝑈test))
𝑘=1,…,𝑁

  

In setting 4, we split both the time indices 𝑡 ∈ {1, … , 𝑠} = 𝑇 into mutually 

disjoint index sets 𝑇train , 𝑇test ⊆ 𝑇 and the individual indices 𝑖 ∈ {1, … , 𝑟} = 𝑈 into 

mutually disjoint index sets 𝑈train, 𝑈test ⊆ 𝑈, which define a training and test set 
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𝒟train = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝐼(𝑘) ∈ 𝑈train, 𝑇(𝑘) ∈ 𝑇train))
𝑘=1,…,𝑁

𝒟test = (((𝑥𝐼(𝑘), 𝑧𝑇(𝑘)),  𝑦𝑘: 𝐼(𝑘) ∈ 𝑈test, 𝑇(𝑘) ∈ 𝑇test))
𝑘=1,…,𝑁

  

2.4.4 Statistical inference for pairwise data 

Parameter inference in the standard statistical paradigm assumes that the 

observations are generated independently from a probability density or mass 

function 𝑃(𝑦|𝑥, 𝛼). This implied the factorization of the likelihood 𝐿(𝛼) =

𝑃(𝒟|α) = ∏ 𝑃(𝑦𝑖|𝑥𝑖 , 𝛼)𝑛
𝑖=1 . However, the probability model 𝑃(𝑦|𝑥, 𝛼) may not be 

correct. In fact, if many observations belong to the same individual or time there is 

probably correlation and the observations are not independent. There are two 

solutions to this problem: either define a more complicated model that explicitly 

specifies how the observations are correlated, or fit a simpler model and aim to do 

inference even though the model does not claim to represent the probability 

distribution of the data set. We focus on the second case, and then the function 

𝑙(𝛼) = log(𝐿(𝛼)) is not a true log-likelihood function. However, even if the 

probability model is misspecified it still defines a function to maximize, or a 

corresponding empirical risk to minimize. We again seek parameters 𝛼̂ that 

maximize the function 𝑙(𝛼), at which point the gradient is zero 𝑙′(𝛼̂) = 0. Such 

functions are called estimating equations, since they provide estimates of model 

parameters but are not necessarily based on a likelihood [59].  

Define the estimating equation 𝑈𝑖 for observation 𝑖 and 𝑑 model parameters: 

 𝑈𝑖(𝑦𝑖, 𝑥𝑖|𝛼) = (𝑈𝑖1(𝑦𝑖 , 𝑥𝑖|𝛼), … , 𝑈𝑖𝑑(𝑦𝑖 , 𝑥𝑖|𝛼))  

The parameter estimates 𝛼 are obtained by solving the following: 

 𝑈(𝛼) = ∑ 𝑈𝑖(𝑦𝑖 , 𝑥𝑖|𝛼)𝑛
𝑖=1 = 0  

Assume that the observations in 𝒟 are generated independently according to the 

true distribution 𝐺(𝑦|𝑥, 𝛼), and there is a unique parameter vector 𝛼∗ for which the 

expected value of the estimating equation is zero 𝔼𝐺 [𝑈(𝑦𝑖 , 𝑥𝑖|𝛼∗)] = 0. Under 

certain regularity conditions, it can be shown that the estimating equation yields 

consistent and asymptotically normal estimates 𝛼̂ of 𝛼∗. To state this result, we 

define the following matrices: 𝐴𝑛(𝛼) = −
1

𝑛

𝜕𝑈(𝛼)

𝜕α𝑇 , 𝐴(𝛼) = lim
𝑛→∞

𝔼𝐺[𝐴𝑛(𝛼)], 

𝐵𝑛(𝛼) = −
1

𝑛
∑ 𝑈𝑖(𝛼)𝑈𝑖(𝛼)𝑇𝑛

𝑖=1 , and 𝐵(𝛼) = lim
𝑛→∞

𝔼𝐺 [𝐵𝑛(𝛼)]. The matrix 𝐶𝑛(𝛼) =

𝐴𝑛(𝛼)−1𝐵𝑛(𝛼)𝐴𝑛(𝛼)−1 has the limit 𝐶(𝛼) = 𝐴(𝛼)−1𝐵(𝛼)𝐴(𝛼) as 𝑛 → ∞, and: 

 𝑛
1

2(𝛼̂ − 𝛼∗)~𝑀𝑉𝑁(0, 𝐶(𝛼∗))  
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If in fact the model is based on a true likelihood 𝐺(𝑦|𝑥, 𝛼) = 𝑃(𝑦|𝑥, 𝛼), so that 

𝑈𝑖(𝑦𝑖, 𝑥𝑖|𝛼) = 𝜕 log(𝑃(𝑦𝑖|𝑥𝑖, 𝛼)) /𝜕𝛼, we have same results as before. The 

estimating equation gives the maximum likelihood estimate 𝛼, is unbiased 

𝔼[𝑈(𝑦𝑖 , 𝑥𝑖|𝛼∗)] = 0 for true parameters 𝛼∗ and 𝐴(𝛼) = 𝐵(𝛼) =
1

𝑛
ℐ(𝛼) ⟹ 𝐶(𝛼) =

𝑚ℐ−1(𝛼) where ℐ(𝛼) = 𝔼[−𝑙′′(𝛼)] = 𝔼[𝑙′(𝛼)𝑙′(𝛼)𝑇] is the expected information. 

An important special case is a model which is not based on a true log-likelihood 

because there is pairwise structure in the data. Assume that the 𝑛 = ∑ 𝑛𝑖
𝑠
𝑖=1  

observations can be divided into clusters of individual 𝑖 with 𝑛𝑖 observations each. 

In terms of the data set in 𝒟, the individuals 𝑖 = 1, … , s are independent of each other 

but the observations 𝑗 = 1, … , 𝑛𝑖  within the individual are not independent. The 

variance of the estimating equation can then be estimated via the cluster robust 

variance [60]: 

 𝐵𝑛(𝛼) =
1

𝑛
∑ [∑ 𝑈𝑖,𝑗(𝛼)𝑛𝑖

𝑗=1 ] [∑ 𝑈𝑖,𝑗(𝛼)𝑛𝑖
𝑗=1 ]

𝑇
𝑚
𝑖=1   

Longitudinal analysis is a field of statistics that deals with data that is clustered 

as (individual, time)-points. It considers many different partially or fully specified 

probability models for longitudinally clustered data. The generalized estimating 

equation (GEE) approach uses a standard regression model, such as least squares or 

logistic regression, and may include an explicit specification of how the observations 

are related or assumes them independent for fitting purposes. The latter is also called 

an independence working covariance structure. After fitting the model, the estimated 

variance the parameters is corrected for the correlation. Our approach that uses linear 

or logistic regression and corrects the variance of parameters corresponds to a GEE 

model with cluster robust confidence intervals [55]. 

 

3 Applications to censored data 

In this chapter, we describe the new models proposed in this thesis. Each section 

describes a new model and how it can be used to analyse data in each application: 

3.1 Retention and monetization, 3.2 Peer-to-Peer lending, 3.3 Unemployment, 3.4 

Game recommendation. Individual papers that utilize these models are summarized 

in the next chapter “4. Research studies and results”. 
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3.1 Retention and monetization 

3.1.1 Introduction 

 The foundation of any business is acquiring customers for a smaller cost than 

the profits they generate. It is often possible to measure the profits acquired from a 

single customer and the cost of acquiring them through marketing. If this difference 

is found to be positive, we should invest in marketing and the business model is 

viable. Sometimes the mechanisms of how a digital product brings in money, known 

as monetization, are not yet implemented or optimized. In this case the total amount 

of product use, known as retention, is often used as a proxy how much potential there 

is for monetization. For example, if a digital product shows advertisements, the 

amount of product use is in fact directly proportional to how much money is 

generated. This reality is reflected in a fundamental shift in how marketing can be 

approached as data science makes it an increasingly quantitative discipline.  

 

Figure 9.  Example of three different business models: in each case we summarize the total 

purchases and deduct the acquisition cost to arrive at the profit per customer. The 
problem is how to estimate the expected purchase amount in each case.  

Typically the user acquisition cost is known, so the problem is to estimate the 

’profits acquired from a customer’. There are many different types of business 

models [61]. The following three are common in digital products and they are 

illustrated in Figure 9: 

1. Single purchase: a single product is sold to a customer for a known price. 

2. Recurrent purchases: a customer repeats purchases of variable amounts 

until they are no longer a customer (churn). 

3. Subscription: a customer pays a fixed amount each month until they 

decide to cancel the subscription. 

When a customer makes a single purchase for a known price, we directly have 

the total purchase amount. The problem is more difficult when customers repeat 

recurrent purchases of variable amounts until they decide to stop buying. This model 

probably describes most businesses, assuming that we can identify the customers. 

Single purchase

Subscription

 ecurrent purchases  cquisition cost

Time

 rofit  

              Total
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The freemium model also falls under this category and is the most popular business 

model in digital products, especially games [62]. A freemium product is offered for 

free to attract as many customers as possible, and the product displays 

advertisements or additional content which is bought with real money [63]. The 

profit then depends on how actively and for long customers use the product or the 

paid extras, with the additional problem that we typically do not know if they have 

stopped using the product. When users stop using the product or stop being 

customers, we call this ’churn’.  Calculating profit in the case of recurrent purchases 

of variable sizes, and unknown churn times, is the most difficult case and our 

methods focus on solving this problem. The subscription model can be seen as a 

special case. The purchases occur monthly for a fixed amount until the subscription 

is cancelled. We know when the customer cancels their subscription, so the problem 

is to simply model the time until cancellation. Even though the data is censored in 

the sense that not all customers have cancelled their subscription, standard methods 

in survival analysis can be used in this special case. 

Player retention and churn have been analysed extensively in the game analytics 

literature. Academic literature understands ”retention” as an umbrella term that can 

refer to different engagement metrics, for example various measurements of player 

activity [64] [65] [66] [67] [68], session time [69], total sessions [70], total purchases 

[71], gates cleared [72], days active [73], playtime [74] [75], etc. Studies have not 

only measured retention and churn, but also predicted with Linear [70] [71], Logistic 

[69] [76] [77] [78], Cox [73] [74] [79] regression, and Hidden Markov models [80] 

[81]. A recent competition featured many advanced techniques for predicting churn 

and survival [82]. These metrics based on player totals could be modelled with 

standard survival analysis [83], but the problem is that player churn is in many cases 

unknown. This problem has been addressed by assuming that all players have 

churned [75] or defining a window of inactivity that defines the players as churned 

[77] [78] [80]. In contrast, industry understands retention as a specific ”retention 

rate” metric [85] that can be calculated as new data comes in. The retention rate 

calculates how many players return to the game every day from the day they started 

to play the game. The industry probably prefers this metric because it means that 

analytics can be used in real time game development scenarios, which are more time 

sensitive than academic studies that can analyse historical data sets. In these studies, 

we aimed to develop a new method that could be used to analyse the expected value 

of any metric in a similar fashion: lifetime value, playtime, total sessions, total 

purchases, etc. 
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3.1.2 Simulated data set 

We need data to estimate the monetization or retention of customers. In this brief 

introduction, we use a simple simulated data set visualized in Figure 10 and measure 

monetization as the expected number of purchases. This simulation can be used to 

verify that the method works. The studies use data sets from a real mobile game 

called ’Hipster Sheep’, which is a free-to-play mobile game developed by a local 

game developer called Tribeflame Ltd. The simulated data has 100 customers that 

were followed for a maximum of 30 time units. The follow-ups vary by customer 

from 0 to 30 time units, based on arriving that many time units before the current 

time. Each customer makes purchase events, which occur seemingly random before 

the customer quits (churn). The churn times are typically unknown.  

 

Figure 10.  A simple simulated data set of purchases (left) and the estimated expected number 
of purchases calculated with our method contrasted to the true number of purchases  
based on the underlying process (right). 

We now briefly explain how the data set was generated. To generate data for a 

single customer, we randomly sample a churn time, purchase times and a censoring 

time. The churn time is a random variable 𝑇 and the purchase times are random 

variables 𝑇1, 𝑇2 , … , 𝑇𝑛 where the number of purchases 𝑛 is also random. The total 

number of purchases at time 𝑡 is a random variable 𝑁(𝑡). Denote the number of 

purchases in a small interval (𝑡, 𝑡 + ∆𝑡] by ∆𝑁(𝑡) = 𝑁(𝑡 + ∆𝑡) − 𝑁(𝑡). Since no 

purchases occur after the churn time, we have ∆𝑁(𝑡) = 0 for 𝑡 > 𝑇. The process is 

then defined by two rates that we assume to be constant when we generate the 

simulated data: the churn rate 𝜇 and the purchase rate 𝜆: 

 
𝜇 = lim

∆𝑡→0
𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡)/∆𝑡

𝜆 = lim
∆𝑡→0

𝑃(∆𝑁(𝑡) = 1|𝑇 > 𝑡)/∆𝑡
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This implies that the churn time is 𝑇~ Exponential(𝜇) with a survival function 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = exp(−𝜇𝑡). The time between two purchases at 𝑇𝑘 and 𝑇𝑘+1  is 

denoted ∆𝑇𝑘 = 𝑇𝑘+1 − 𝑇𝑘, and this is also  ∆𝑇𝑘~ Exponential(𝜆) with a survival 

function 𝑆(𝑡) = 𝑃(∆𝑇𝑘 > 𝑡) = exp(−𝜆𝑡).  

The number of customers with a purchase in a small time interval is defined by 

𝛾(𝑡) = lim
∆𝑡→0

𝑃(∆𝑁(𝑡) = 1)/∆𝑡, and is known as the marginal purchase rate. The 

expected number of purchases at time t is given by its integral:  

 𝔼[𝑁(𝑡)] = ∫ 𝛾(𝑡)
𝑡

0
𝑑𝑡 

Interesting mathematical results can be derived in this particular event process: 

many important aggregate statistics have a closed form. The marginal purchase rate 

can be expressed as 𝛾(𝑡) = lim
∆𝑡→0

𝑃(∆𝑁(𝑡) = 1|𝑇 > 𝑡)𝑃(𝑇 > 𝑡)/∆𝑡 = 𝜆 exp(−𝜇𝑡). 

The expected number of purchases at time 𝑡 is then: 

 𝔼[𝑁(𝑡)] = ∫ 𝛾(𝑡)
𝑡

0
𝑑𝑡 =

𝜆

𝜇
(1 − exp(−𝜇𝑡))  

The expected total number of purchases per customer is lim
𝑡→∞

𝔼[𝑁(𝑡)] = 𝜆/𝜇 as 

𝑡 → ∞. The probability distribution for the total number of purchases per customer 

has a Geometric distribution Geom(𝜇/(𝜆 + 𝜇)): 

𝑃[𝑁(∞) = 𝑛] = ∫ 𝑃(𝑁(𝑡) = 𝑛|𝑇 = 𝑡)𝑃(𝑇 = 𝑡)
∞

0

𝑑𝑡 

= ∫
(𝜆𝑡)𝑛

𝑛!
exp(−𝜆𝑡) 𝜇 exp(−𝜇𝑡)

∞

0

𝑑𝑡 =
𝜇

𝜆 + 𝜇
(

𝜇

𝜆 + 𝜇
)

𝑛

 

We use the following procedure to generate the data.  Each customer 𝑖 is defined 

by a churn time 𝑡𝑖, purchase times 𝑡𝑖,𝑗  for 𝑗 = 1, … , 𝑛𝑖, and censoring time 𝜏𝑖. First, 

sample a churn time 𝑡𝑖~ Exponential(𝜇). Then, obtain the purchase times by 

sampling the time to next purchase ∆𝑡𝑖,𝑗~ Exponential(𝜆). Initially 𝑡𝑖,0 = 0 and the 

next purchase time is: 𝑡𝑖,𝑗 = 𝑡𝑖,𝑗−𝑖 + ∆𝑡𝑖,𝑗. Iterate while the new purchase time 

𝑡𝑖,𝑗  remains smaller than the churn time 𝑡𝑖. To generate the variable follow-up times, 

we sampled a censoring time 𝜏𝑖~ Unif(0, 𝑡max). Instead of the original data set, we 

then have the censoring time and only those purchases and churns that occurred 

before the censoring time. To generate the data, we used the churn rate 𝜇 = 0.1 and 

the purchase rate 𝜆 = 0.2.  

3.1.3 Retention and monetization model 

There are several retention and monetization metrics that game developers are 

interested in [86]. Often we wish to estimate the amount of product use or money 

spent by a customer over time. These could be the number of sessions of purchases, 

for example. We do not know the underlying process 𝑁(𝑡), but wish to calculate an 
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estimate 𝔼̂[𝑁(𝑡)] of 𝔼[𝑁(𝑡)] at time t. The data set in Figure 10 was generated based 

on a constant churn rate and purchase rate, but in other data sets these rates could be 

customer specific or change over time. Because there is no guarantee that this 

particular parametric probabilistic model fits all data sets, it would be ideal to use a 

non-parametric method. In the papers (II&III), we introduced a statistical framework 

around a non-parametric method called the mean cumulative function (MCF) [87]. 

The MCF provides such an estimate of 𝔼̂[𝑁(𝑡)] and generalizes to real valued ’costs’ 

𝔼̂[𝐶(𝑡)] where 𝐶(𝑡) ∈ ℝ. The ’cost’ could be the total amount of product use in 

hours or purchase amounts in euros, for example. 

We briefly present the central idea with the above data. Define the following for 

every customer i: ∆𝑛𝑖(𝑡) is the number of sessions at time t and 𝑦𝑖(𝑡) = 𝕀(𝑡 ≤ 𝜏𝑖) is 

an indicator of whether they are observable. We also define the aggregate values 

over all customers: ∆𝑛(𝑡) = ∑ ∆𝑛𝑖(𝑡)𝑛
𝑖=1  is the total number of sessions at time t and 

𝑦(𝑡) = ∑ 𝑦𝑖(𝑡)𝑛
𝑖=1  is the total number of observable customers. Denote the distinct 

and ordered session times by 𝑡(𝑘), meaning that 𝑡(1) < 𝑡(2) < 𝑡(3) < ⋯ and 𝑡(𝑘) ∈

{𝑡𝑖,𝑗}. The following cumulative sum takes into account the number of observable 

customers and is unbiased estimator of the expected number of sessions at time t: 

 𝔼̂[𝑁(𝑡)] = ∑
∆𝑛(𝑡(𝑘))

𝑦(𝑡(𝑘))𝑘:𝑡(𝑘)≤𝑡   

We characterize the customer 𝑖 at the time 𝑡 using the covariate vector 𝑥𝑖(𝑡) =
(𝑥𝑖,1(𝑡), … , 𝑥𝑖,𝑑(𝑡)). For example, one could measure how the platform, country, 

age, product version, marketing campaign etc. affect retention or monetization. To 

model individual specific rates, one often makes the proportional rate assumption 

𝛾𝑖(𝑡) = 𝛾0(𝑡) exp(𝛽𝑇𝑥𝑖(𝑡)), where 𝛾0(𝑡) is a baseline rate and the covariates 

exp(𝛽𝑇𝑥𝑖(𝑡)) affect it by porpotional changes. An estimate of the expected number 

of sessions is a cumulative sum that takes into account the observable customers and 

covariates [31]: 

 𝔼̂[𝑁𝑖(𝑡)] = ∑
∆𝑛(𝑡(𝑘))

∑ 𝑦𝑗(𝑡(𝑘)) exp(𝛽𝑇𝑥𝑗(𝑡(𝑘)))𝑛
𝑗=1

𝑘:𝑡(𝑘)≤𝑡 exp (𝛽𝑇𝑥𝑖(𝑡(𝑘)))  

The model is sometimes called semi-parametric because the baseline number of 

sessions is nonparametric and the covariates are described by a parameter vector 𝛽. 

To find an estimate 𝛽̂ of the parameter vector 𝛽, one can solve the estimating 

equation 𝑈(𝛽) = 0, which can be derived from a Poisson process likelihood [31]: 

 𝑈(𝛽) = ∑ ∑ 𝑦𝑖(𝑡(𝑘))𝑥𝑖(𝑡(𝑘)) [∆𝑛𝑖(𝑡(𝑘)) −𝑘:𝑡(𝑘)≤𝑡
𝑛
𝑖=1

∆𝑛(𝑡(𝑘))

∑ 𝑦𝑗(𝑡(𝑘)) exp(𝛽𝑇𝑥𝑗(𝑡(𝑘)))𝑛
𝑗=1

exp (𝛽𝑇𝑥𝑖(𝑡(𝑘)))]  
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These equations can be motivated as maximum likelihood estimates of a Poisson 

process likelihood and they give valid estimates of the marginal rate functions. One 

is interested to know the variance of parameter estimates in statistics; to construct 

confidence intervals, perform significance tests, etc. Confidence intervals based on 

a Poisson process assumption are not valid in this case, and so called robust variance 

estimates are required. We go into details how these are calculated in Paper III. 

The framework looks complicated because of technical details involved with a 

continuous time domain. However, it is possible to formulate the model in a standard 

regression setting if the time domain is discrete. Suppose we have customers 𝑖 =

1, … , 𝑛 and time points 𝑡 = 1, … , 𝑚. We define a month specific intercept vector 

𝑒𝑡 = (𝕀(𝑡 = 1), … , 𝕀(𝑡 = 𝑚))
𝑇
 with parameters 𝛼 ∈ ℝ𝑚  and a customer covariate 

vector 𝑥𝑖,𝑡 ∈ ℝ𝑑  at time 𝑡 with parameters 𝛽 ∈ ℝ𝑑. The outcome 𝑦𝑖,𝑡 ∈ ℝ for 

customer 𝑖 at time 𝑡 is defined if the customer was observable, i.e. not censored, 

before that time. The data set consists of triplets {(𝑒𝑡, 𝑥𝑖,𝑡 , 𝑦𝑖,𝑡)}
𝑖=1,…,𝑛,𝑡=1,…,𝜏𝑖

. The 

outcome can be modelled with least squares regression: 

 𝔼[𝑦𝑖,𝑡] = exp(𝛼𝑇𝑒𝑡 + 𝛽𝑇𝑥𝑖,𝑡)  

The model includes non-parametric baseline estimates exp(𝛼1) , … , exp(𝛼𝑚) of 

increments at times 𝑡 = 1, … , 𝑚, and the individual specific factor exp(𝛽𝑇𝑥𝑖,𝑡) that 

affects the baseline proportionally. One can estimate just the increments by including 

only the baseline 𝛼𝑇𝑒𝑡 without any covariates. It is possible to stratify the baseline 

by a cohort by adding an interaction between the cohorts and the intercepts, i.e. by 

including separate intercepts 𝛼1
𝑇𝑧1,𝑡 , … , 𝛼𝑅

𝑇𝑧𝑅,𝑡 at every point for the 𝑅 cohorts. 

There are many outcomes 𝑦𝑖,𝑡 for customer 𝑖 at time 𝑡 that we can model: a binary 

activity status, the total number of sessions, the total number of purchases, the total 

product use time, the purchase amounts, etc. For example, in the previous problem 

we would model the total number of purchases in an interval 𝑦𝑖,𝑡 = 𝔼[∆𝑁𝑖(𝑡)]. To 

get the expected number of purchases at time t, we first predict all of the increments 

𝑦𝑖,1, … , 𝑦𝑖,𝑡  and then calculate the cumulative sum: 

 𝑁𝑖(𝑡) = ∑ 𝑦𝑖,𝑘
𝑡
𝑘=1   

Suppose the underlying data is continuous so that all of the purchase times are 

unique. As the number of time intervals goes to infinity, such that there is a unique 

time 𝑡 for every purchase 𝑦𝑖,𝑡 > 0 and 𝑦𝑖,𝑥 = 0 elsewhere, this asymptotically 

approaches the previous model. The confidence intervals of 𝛼 and 𝛽 need to use the 

cluster robust sandwich estimate presented earlier.  
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3.1.4 Studies 

 

Figure 11.  Example data set: metrics can be estimated 1.) ’hor  o      ’ which has a problem 
with censoring but standard method are applicable, or 2). ’v r  c    ’ which is the 
idea underlying our new method. 

In three studies (I, III, III) involving player retention and monetization, the 

methods that we investigated generalized standard retention metrics to continuous 

time, continuous values and even different follow-up lengths. Because discrete data 

is a special case of the continuous case, one can consider only the continuous case. 

We illustrate two views in Figure 11, where different metrics are obtained if the data 

is analysed ’horizontally’ or ’vertically’.  

In the first study (Publication I), we investigated standard methods that have been 

developed for censored data in the field of Survival analysis [8]. We model metrics 

that have a value for every player {𝑥𝑖}𝑖=1,…,𝑁, such as total playtime, sessions, level 

progression, time active, etc. This is illustrated in Figure 11, where we obtain total 

sessions per player ’summing horizontally’. However, the problem is that censoring 

means something different in this context. For players who have quit we know the 

final value of the metric. A value is said to be censored if it is larger than observed 

so far, i.e. if players have not yet quit we obtain more sessions. The problem is that 

we do not know who has quit and who has not. There are ad hoc solutions, such as 

defining a player who has played within the last 5 days as not having quit, making 

their total session count censored. Because these rules add bias to the data set, they 
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do not fully solve the problem. In the figure, we for example see that the ’Survival’ 

estimate has a significant positive bias. 

In the second and third studies (Publication II & III), we introduced a new non-

parametric methods that solve the problem of censoring. The idea is to interpret the 

data set as recurrent events and associated values. For example, in Figure 11 we 

display sessions and purchases, which have session lengths and purchase amounts. 

The idea is to estimate the expected value that has accumulated up to every follow-

up time, by thinking of ’vertically summing’ the data set in a way that accounts for 

censoring. In the papers, we develop a comprehensive statistical framework for 

estimating the metric, confidence intervals, AB-tests, and regression. For example, 

in the bottom figure we estimated the average number of sessions for each follow-

up time and see that 30 days seems sufficient to guess the final value to be around 

two sessions per player. Because we generated the data set with the churn rate 𝜇 =

0.1 and the session rate 𝜆 = 0.2, the expected value is 𝔼[𝑥𝑖(𝑡)] =
𝜆

𝜇
(1 − exp(−𝜇𝑡)) 

at time 𝑡. We should therefore eventually obtain lim
𝑡→∞

𝔼[𝑥𝑖(𝑡)] =
𝜆

𝜇
= 2 sessions. We 

in fact obtain the correct answer in the simulated data set. 

3.2 Peer-To-Peer Lending 

3.2.1 Introduction 

Peer-to-peer (P2P) lending is a financing solution where online platforms act as 

intermediaries between individuals who seek to borrow money or invest by lending 

money [88]. Many different platforms offer this service. There are some differences 

between how the loans are handled, but all platforms are based on the same idea. 

Borrowers apply for a loan with their financial and demographic information that 

could include income, existing loans, purpose of the loan, age, country, education, 

etc. Lenders review the loan applications and choose the loans to invest in based on 

interest rates and risk in the loans [89].  

Investors are attracted to the platforms by high interest rates. However, most 

loans have no collateral and defaults are quite common. If a loan defaults, an investor 

may lose some or all of the loan principal. This means that the loans have credit risk 

which needs to be compensated by setting interest rates high enough to cover the 

losses that occur. Most investors in peer-to-peer lending are not professionals, and 

setting the correct interest rate can be a challenging problem [90]. Almost every 

platform helps by providing credit ratings that indicate whether a loan has a high 

default risk, but ultimately the investors would like to estimate the profit in these 

loans. The credit risk, understood as the probability of loan default, has been 

analysed extensively with survival analysis based approaches [92] [93] [94] [95], 

and in a simplified form also with different machine learning models [96]. The 
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profits have been analysed in a limited case where the data set only includes matured 

loans, i.e. historical loans that have now all either been repaid or defaulted [95]. 

If the payments in a loan are known, one can use discounted cashflow (DCF) 

analysis to calculate the profit. However, building a predictive model for the profits 

is difficult for real world data sets because the payments are censored. Many of the 

loans have several years of duration, and because the loans were issued recently we 

do not know all of their payments. It is clear that peer-to-peer lending platforms have 

this problem, but they try to provide some estimates nevertheless. Seemingly simple 

solutions lead to biased estimates of the profit: assuming that the future payments 

are made in full or not at all clearly results in overoptimistic or pessimistic results.  

Excluding on-going loans results in estimating lower profits than the reality, because 

loans that are more likely to survive are excluded more. An unbiased solution is to 

use an old data set where loans were issued so many years ago that we do not obtain 

any payments from them: all of the loans are either repaid or declared as lost 

principal. However, even if such a data set was available there is no guarantee that 

this data set accurately models current loans. In our papers, we developed a model 

to predict profits accurately despite the fact that some of the loan payments are not 

known. Our model predicts the expected monthly payments in censored data, and it 

incorporates the loan scheme so that investors can analyse the impact of different 

interest rates, default rates, and losses given defaults. 

3.2.2 Bondora data set 

Our two studies (Publication V & Publication IV) used a public peer-to-peer 

lending data provided by Bondora1, which is a popular platform providing loans in 

Estonia, Finland, Spain and Slovakia. At the time of writing, the data set contained 

144 031 loans with 113 columns. The columns include current loan status, borrower 

information and Bondora’s own predictions about the loan. Censoring is a problem: 

a significant fraction of the loans that were made even years ago remain censored.  

We briefly use the mean cumulative function (MCF) developed in the previous 

section to estimate the aggregate profitability of loans in each year. In Figure 12, we 

assumed that an investor invested 1€ in each loan in the platform. We see that years 

2010-2012 had shorter and profitable loans. A shift occurred in 2013 and 2014, with 

the platform making longer and possibly less profitable loans. In the loans from 2015 

it appears that investors will recover the investment but have modest profits. The 

MCF is a reliable tool for estimating the aggregate payments in a portfolio of loans, 

 

 
1 https://www.bondora.com/fi/public-reports 
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but the regression model based on the MCF cannot be used for individual loans 

because cumulative payment curves of individual loans are not proportional. 

 

Figure 12.  1000 example loans in Bondora data and cumulative payments calculated with the 
MCF method by the loan year. It can be seen that the new loans have changed. 

This fact is due to two underlying reasons illustrated in Figure 13. First, the 

cumulative payment curves look very different depending on the duration of the loan. 

Most loans make payments within schedule and some recovery payments are 

obtained thereafter. As the loan duration is increased, the payments are not shifted 

proportionally up or down as assumed by the MCF regression model, but extended 

over a longer duration. Second, even in loans of same duration, the cumulative 

payments are not proportional because defaults decrease the scheduled payments and 

increase the recovery payments. This means the initial part of the curve is shifted 

down and the second part is shifted up, which contradicts the proportionality 

assumption. For this reason, we develop a specialized model that includes knowledge 

about the loan schedule. The model has two parts: one for defaults and another for 

recoveries. 
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Figure 13.  The cumulative payments are not proportional for two reasons: they have different 

duration and credit rating affects them non-proportionally. The regression framework 
around MCF cannot therefore be applied. 

3.2.3 Default and recovery models 

Peer-to-peer loans in Bondora are scheduled to have equal monthly payments for 

the duration of the loan. Each loan i is defined by three variables: the loan duration 

ni, the interest rate Ii, and the loan amount Mi. From these variables, we calculate the 

monthly payments with the annuity formula pi = Mi Ii (1 + Ii)
n/((1 + Ii)

n − 1) [98]. In 

theory, the borrower should make a total of ni monthly payments for the duration of 

the loan, resulting in a sequence of payments pi, pi, …, pi, 0, 0, …. However, the 

borrowers may not make all of their scheduled monthly payments as agreed upon. A 

loan default occurs when a borrower is lacking a total amount of two consecutive 

monthly payments. This is a common threshold, since borrowers sometimes forget 

they had to make a monthly payment but do so after they are reminded. Once two 

payments are missed, it is likely that they stopped paying the loan. After this event, 

the lender aims to recover as much money as possible by getting the borrower to 

make some payments and eventually going through the courts to get a payment order. 

These payments rarely follow the loan schedule: sometimes a new schedule is set 

up, a part of loan is paid back, or the borrower is decleared unable to make payments. 

We therefore denote the actual monthly payments as pi,1, pi,2, pi,3,…. 
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Figure 14.  Example loan payments in 100 randomly selected loans of 36 month scheduled 
duration. Many loans make payments on schedule, but there are also significant 
recovery payments after loans have defaulted long to the future. The DCF analysis 
of the average payment corresponds to the profit in this portfolio. 

 

An example of 100 random loans of 36 month duration is illustrated in Figure 

14. We assume that one euro was invested in every loan, and illustrate their monthly 

payment amounts with the size of the dots. About half of the loans have either been 

paid on schedule or repaid early. The other half has defaulted, and we see that while 

some loans stop paying altogether, there are many recovery payments and some even 

recover the loan principal. Some of the loans have been rescheduled, but most of the 

loans either follow the original schedule until the loan is repaid or it defaults. In the 

bottom figure, we have illustrated the average monthly payment that investors would 

obtain if they invested one euro in a portfolio of these loans. 

We can calculate the profit of a loan using discounted cashflow analysis (DCF), 

which is the standard approach in finance and takes into account the time value of 

money [98]. The monthly payments pi,1, pi,2, pi,3,…are discounted by the investors 

monthly profit requirement, known as the discount rate r, to arrive at the present 

value of the payments. The present value is the amount that the investor should pay 

for this loan to obtain the corresponding profit. The implicit profit requirement is the 

discount rate r that makes the present value equal to the loan amount: 

 𝑀𝑖 = ∑
𝑝𝑖,𝑡

(1+𝑟)𝑡
∞
𝑡=1   

However, the future payments in a new loan are initially unknown and our profit 

will be different depending on whether the loan defaults or not. For this reason, it is 
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useful to think of the loan’s monthly payments pi,1, pi,2, pi,3,… as realizations of 

random variables Pi,1, Pi,2, Pi,3,… We then take the present value of the expected 

monthly payments, which is estimated by the average payment in Figure 14. The 

expected profit corresponds to the discount rate r of a portfolio of infinitely many 

loans with the same characteristics: 

 𝑀𝑖 = ∑
𝔼[𝑃𝑖,𝑡]

(1+𝑟)𝑡
∞
𝑡=1   

Our goal is to predict the expected monthly payments E[Pi,1],E[Pi,2],E[Pi,3],… in 

a loan and solve the discount rate r which makes these payments equal to the loan 

amount. This is the predicted profit. Instead of predicting profits directly, we seek to 

predict the monthly payments from which the profit is calculated. A model based on 

predicting the monthly payments pi,t has an important benefit: it can be used with 

censored data. Because the training set consists of monthly payment observations, 

some payments can be censored in the sense that they are missing from the data. The 

model learns to predict all of the payments in a loan, as long as there are some loans 

that provide examples of later payments.  

However, it is difficult to develop an accurate model for the monthly payments 

directly. Even without default uncertainty, the loan duration and interest rate would 

change the monthly payments in a complicated but completely deterministic way. 

We therefore add knowledge about how the monthly payments are calculated and 

model how they change based on loan features. We therefore developed two models: 

a default model for loan defaults and a loss given default model for recoveries after 

the default. The predictions from these two models imply the monthly payments. 

 

Figure 15.  The data set is split into two complementary parts: the defaults can be described by 
the monthly default rate and the recoveries by the monthly recovery rate. 
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The models are based on splitting the data set into two as illustrated in Figure 

15: one for payments on schedule and another for recovery payments. The second 

figure is the ’default part’ of the model. Every loan ether survives (False) or defaults 

(True) in every monthly interval, where the aggregate default rate is the proportion 

of observable loans that defaulted in that interval. The third figure is the ’recovery 

part’ of the model. Every loan that has defaulted makes recovery payments that total 

zero or above in every monthly interval up to their follow up time. The aggregate 

recovery rate is the average of recoveries in loans that are observable that interval. 

The default model is based on predicting the number of monthly payments before 

a default occurs. We define that a loan defaulted on the monthly interval t = 1,2,… 

if it fell back a total of two scheduled monthly payments thereafter. Each monthly 

interval is a binary trial Yi,t of loan survival, where Yi,t = 0 if the loan survives and 

Yi,t = 1 if the loan defaults in the interval. Every loan therefore is a binary sequence 

yi,1, yi,2, …, yi,Ti, for example 0,0,0,1 or 0,0,0,0,0,0. The last observation is 1 if the loan 

defaulted and 0 if the loan was repaid or reached the follow-up limit. When Yi,Ti = 1 

we say Ti is the default time, otherwise the default time is not known. The monthly 

default probability μi,t = E[Yi,t ] = P[Yi,t = 1] in loans that survive to that interval is 

also known as the default rate. It does not matter than the loans are censored, because 

every binary trial is defined in terms of loans that are observed that month. We use 

logistic regression for loan specific default rates. Define the loan covariate vector as 

xi, the corresponding parameter vector as 𝛽, and the month specific intercept as ηt. 

This is a discrete time analogue of the Cox proportional hazards model popular in 

survival analysis [99]: 

 
𝜇𝑖,𝑡

1−𝜇𝑖,𝑡
= exp(𝜂𝑡 + 𝛽𝑇𝑥𝑖)  

The loss given default model is based on predicting values of monthly recovery 

payments after a default has occurred. We consider monthly recovery payments as a 

percentage of remaining principal, known as exposure at default. The payments in a 

month are summed together to obtain recovery payments following a default within 

monthly intervals t = 1,2,….  The goal is to predict the recoveries Ri,t in each monthly 

interval. The monthly recovery Ri,t is a real valued random variable. Each loan is 

therefore defined by a sequence of recoveries Ri,1, Ri,2 ,…, Ri,Ci from the first month 

after a default up to the last interval Ci before the loan follow-up ended. Note that 

we have no observations if the loan did not default. The expected monthly recovery 

γi,t = E[Ri,t] is the recovery rate. Again it does not matter than the loans are censored, 

because every recovery is defined in terms of loans that are observable that month 

after a default. We use least squares regression to model loan specific recovery rates. 

Define the loan covariate vector xi, the parameter vector α, and the month specific 

intercept θt. We use a logarithmic link function to restrict the model to predict only 

positive values: 
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 𝛾𝑖,𝑡 = exp(𝜃𝑡 + 𝛼𝑇𝑥𝑖) 

 

Calculating payments from default and recovery rates 

After we train these two models, we can predict both the monthly default rates 

μi,1, μi,2, … and the monthly recovery rates γi,1, γi,2, … for any loan i. To calculate the 

expected monthly payments E[Pi,1], E[Pi,2], … we proceed as follows. First, define 

the probabilities fi,t = P[Ti = t] of a default at month t and si,t = P[Ti > t] of surviving 

month t. A loan of duration ni either defaults in a monthly interval t = 1,…,ni  or 

survives all of the monthly intervals. From the monthly default rates we can directly 

calculate the proportions of loans that default in each monthly interval: 

fi,1 = μi,1 

fi,2 = (1- μi,1)μi,2 

fi,3 = (1-μi,1)(1-μi,2)μi,,3 

… 

fi,ni = (1-μi,1)(1-μi,2)…(1- μi,n(i-1))μi,ni  

si,ni = (1-μi,1)(1-μi,2)…(1- μi,n(i-1))(1- μi,ni)  

For a loan with default time t we obtain scheduled payments pi,1, …, pi,t = pi up 

to the default time and recoveries bi,1γi,1, bi,1γi,2, … thereafter. Note that the recoveries 

are calculated as the recovery rates γi,1, γi,2, …  multiplied by the remaining principal 

bi,t at time t. For a loan that does not default, we obtain the scheduled payments pi. 

To calculate the predicted monthly payments, simply calculate these payments for 

every default time T = 1,2,…,ni, and the possibility of surviving T > ni . These are 

illustrated as rows in the following table.  

 

Ti P(Ti=t) Pi,1 Pi,2 Pi,3 … Pi,n-1 P i,n P i,n+1 … 

1 fi,1 bi,1γi,1 bi,1γi,2 bi,1γi,3 … bi,1γi,n-1 bi,1γi,n bi,1γi,n+1 … 

2 fi,2 pi bi,2γi,1 bi,2γi,2 … bi,2γi,n-2 bi,2γi,n-1 bi,2γi,n … 

3 fi,3 pi pi bi,3γi,1 … bi,3γi,n-3 bi,3γi,n-2 bi,3γi,n-1 … 

… … … … … … … … … … 

ni fi,ni pi pi pi … pi bi,niγi,1 bi,niγi,2 … 

 si,ni pi pi pi … pi pi 0 … 

∑ 1 E[Pi,1] E[Pi,2] E[Pi,2] … E[Pi,n-1] E[Pi,n] E[Pi,n+1] … 

 

To obtain the expected monthly payments, we sum the monthly payments in each 

row (Ti) weighted by the proportion of loans in each row (P(Ti=t)). This implies the 

following formula, with expected cashflows calculated from the scheduled payments 

and recoveries as: 
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𝐸[𝑃𝑖,𝑡] = 𝕀(𝑡 ≤ 𝑛𝑖)𝑠𝑡𝑝𝑖 + ∑ 𝛾𝑖,𝑘𝑏𝑡+1−𝑘𝑓𝑡+1−𝑘

𝑡

𝑘=1

 

Constant default rate and loss given default 

It is possible to derive interesting mathematical results in the case that a loan has 

a constant default rate h over time and the present value of payments after default is 

a constant value D. To calculate the present value of payments after default for a 

given discount rate r, we use the DCF analysis: 

 𝑃𝑉(𝛾𝑖,1, 𝛾𝑖,2, … |𝑟) = ∑
𝛾𝑖,𝑡

(1+𝑟)𝑡𝑡=1 .  

The loss given default (LGD) is the difference between exposure at default 

(EAD), which is the loan balance remaining in the interval, and the present value: 

 𝐷 = 𝑃𝑉(𝛾𝑖,1, 𝛾𝑖,2, … |𝑟) − 1.  

where D is constant if the model for the recoveries does not include features such 

as the remaining loan balance, default time, default year, etc. Platforms deal with 

defaults differently, but in many of these cases it can be assumed that the LGD is 

time-invariant. Some platforms sell the defaulted loans to collection agencies for a 

percentage of principal remaining and D is simply the discount. Others offer buyback 

guarantees under some conditions, and then D is the probability that the platform 

itself defaults on these promises. In Bondora, we can estimate the LGD as the present 

value of the recovery payments, which we could calculate by assuming that investors 

in the platform have a 10% profit requirement, for example. 

Claim: Define profit as the discount rate r such that the present value of expected 

payments is equal to the loan amount. Given a constant default rate h, loss given 

default D, and interest rate I, the profit independent of loan schedule and is given by: 

 𝑟 = ℎ𝐷 + (1 − ℎ)𝐼  

Proof: The proof is by induction from the last payment to the first. It is helpful 

to consider the Figure 16. The loan schedule is defined by the initial balance B0, 

which is the loan amount. Then at months t = 1,…,n either of two things happen to 

the loan balance Bt. The loan defaults with probability h and the present value is 

(1+D)Bt  at time t+1. Or, the loan survives with probability 1-h and we compound 

the balance by the interest rate and divide it into payment Pt+1 and new balance Bt+1. 

In the later case Pt+1 + Bt+1 = (1+I)Bt. The loan schedule is any sequence of payments 

P1, …, Pn such that the loan eventually becomes repaid, i.e. Bn = 0.  
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Figure 16.  Illustration of the proof: going reverse from the last payment by induction. 

Denote the present value of expected future payments for discount rate r at time 

t as PVt(r). We have the following recursive equation: 

 𝑃𝑉𝑡−1(𝑟) = [ℎ(1 + 𝐷)𝐵𝑡−1 + (1 − ℎ)(𝑃𝑉𝑡(𝑟) + 𝑃𝑡)]/(1 + 𝑟)  

Now, we claim that in this scheme the present value of future payments at time 

t = 0 is equal to the loan amount B0 when the discount rate is r = hD + (1-h)I: 

 𝑃𝑉0(ℎ𝐷 + (1 − ℎ)𝐼) = 𝐵0  

To show this, consider the last nonzero balance Bn-1. Because there are no future 

payments we have PVn(r) = 0 and Pn = (1+I)Bn-1 therefore: 

 𝑃𝑉𝑛−1(𝑟) = [ℎ(1 + 𝐷)𝐵𝑛−1 + (1 − ℎ)(0 + 𝑃𝑛)]/(1 + 𝑟) = [ℎ(1 + 𝐷) +
(1 − ℎ)(1 + 𝐼)]𝐵𝑛−1/(1 + 𝑟)  

Using the fact that r = hD + (1-h)I  ↔  1+r = h(1+D) + (1-h)(1+I), we have: 

 𝑃𝑉𝑛−1(ℎ𝐷 + (1 − ℎ)𝐼) = 𝐵𝑛−1  

This establishes the initial induction step, for some future time t. Using the 

recursive formula above, the expected present value at time t - 1 can now be derived 

 𝑃𝑉𝑡−1(ℎ𝐷 + (1 − ℎ)𝐼) =
ℎ(1+𝐷)𝐵𝑡−1+(1−ℎ)(𝐵𝑡+𝑃𝑡)

ℎ(1+𝐷)+(1−ℎ)(1+𝐼)
=

ℎ(1+𝐷)𝐵𝑡−1+(1−ℎ)(1+𝐼)𝐵𝑡−1

ℎ(1+𝐷)+(1−ℎ)(1+𝐼)
=

𝐵𝑡−1  

The present value at time t = 0 is therefore B0. 
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3.2.4 Studies 

In the first study (Publication 4), we developed a special case of the model with 

a constant default rate and assumed that the loss given default is a known constant. 

We predicted the default time T in censored data with survival analysis, assuming a 

parametric model S(t) = P[T > t] = exp(-λt) for the survival time. The idea is to fit 

the Cox regression model to measure the hazard λ for each loan from censored data. 

This leads to a default rate h = 1 – exp(-λ), which is the probability of default in each 

interval. The loss given default D is Bondora’s estimate of a percentage of remaining 

principal lost in the event of default, taking into account the time value of money. 

Given an interest rate I, we then have the simple formula i = (1-h)I + hD for the 

profit i. If the default rate is in fact constant, it is possible to estimate the true profit 

in a censored loan from a single interval: a loan profit is I if it survives and D if it 

defaults on this interval. The mean value in many such loans is the expected profit 

in a similar loan. We compared three approaches to detect the most profitable loans: 

Bondora’s rating, the hazard estimate λ, and the profit estimate i. Picking the top 

10% of loans with the profit estimate had the largest profit (8 vs. 10 vs. 20%). 

In the second study (Publication 5), we generalized the model to a time-varying 

default rates and developed a model to estimate the loss given default in censored 

data. This is the complete model for censored loans. We modelled the default time T 

directly with a discrete time analogue of a nonparametric Cox proportional hazards 

model. The probability of defaulting in each interval μi,t is predicted directly by the 

model. To model the loss given default, we used nonlinear least squares to predict 

the percentage of principal recovered γi,t in each interval after the default. The 

expected cashflows in a loan can be calculated from μi,t and γi,t, after which profit is 

the discount rate that makes the cashflows equal to the loan amount. Since the loss 

given default model was a major generalization, we compared three approaches to 

selecting the defaulted loans with the lowest loss: the LGD estimate D, Bondora’s 

LGD estimate, and Bondora’s rating. We found that our model produced accurate 

estimates and the other models were not better than random.  

3.3 Unemployment 

3.3.1 Introduction 

Unemployment is an important research topic with implications for individuals 

and governments alike [100]. Goverments and other institutions periodically produce 

macroeconometric labour market statistics, such as the population unemployment 

rate. Population level statistics do not consider that individuals experience different 

amounts of unemployment. Microeconometric studies have been performed at the 
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individual level to assess the impact of government policies and individual’s 

characteristics on unemployment [101]. For example, it is often found that health, 

age, gender, unemployment benefits, etc. affect the probability of unemployment 

[102]. Most studies use a regression model to assess the effect of a characteristic on 

the length of unemployment spells. However, the unemployment experience can be 

analysed from many perspectives; the risk of exiting unemployment, the risk of 

becoming unemployed, the risk of being unemployed, etc. In the end, the most 

important measure is probably the total amount of unemployment an individual 

experiences. 

Machine learning methods focus on the predictive ability of the model on an 

independent test set. Unemployment seems like a natural application of machine 

learning: there are well-formulated prediction tasks that require accurate answers. 

Machine learning has been applied in the individual level to classify individuals as 

Long-Term Unemployed (LTU), see for example the references to many studies in 

[103]. We developed a predictive model in (Publication VI) for the full sequence of 

individual’s labour market states. We model the unemployment status of an 

individual as a Markov chain with individual specific unemployment entry and exit 

probabilities. Similar models have been considered before in a statistical context 

[102]. The unemployment status is then implied by the transition probabilities of the 

Markov chain. The steady state probabilities imply that every individual has a 

lifetime unemployment prevalence that occurs in the long run. The model can be 

used to understand and predict different dynamics of unemployment, we evaluate 

how well the model is able to predict who exits unemployment, becomes 

unemployed, and is unemployed at a given time. 

3.3.2 Registry data set 

We obtained a research permission to an anonymized data set of unemployed 

people, which was collected by the ELY-centre (Centre for Economic Development, 

Transport and the Environment) in the Varsinais-Suomi economic area. The data set 

records all jobsekeers at the end of each month who are registered in the local 

unemployment agencies. This data set had not been used before in an unemployment 

study, but past studies have considered data obtained from unemployment registries. 

Every registry entry includes the time of collection, individual’s anonymized 

identification code, jobseeker status, and personal information. Unemployed persons 

are required to register in order to receive unemployment benefits, so practically all 

unemployed people belong to the registry. A major advantage is that registry data is 

not biased by sample selection and subjective reporting; the registry is the population 

of all people who have been unemployed in Varsinais-Suomi during the follow-up.  
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The registry was collected from the beginning of 2013 to the end of 2017, which 

results in 60 monthly collections over the 5 years of follow-up. Our study used a 

random sample of 20 000 persons in the registry. We required the month to have 

been observed and the age to be 18-64 years for the observation to be included, 

otherwise the unemployment status is censored. The person is unemployed when 

their jobseeker status is recorded as ’unemployed’ or ’laid off’, and not unemployed 

when they have another jobseeker status or they are missing from the registry. The 

person information is included in every registry entry and it may change over time. 

We used the following features in the study to avoid identifying individuals: gender, 

work experience, age in 5 year buckets, level of education, and generic field of 

education. 

3.3.3 Markov Chain model 

Consider the data set visualization in Figure 17. Every individual experiences a 

sequence of labour market states over the follow-up period and different individuals 

have different amounts of unemployment. The population level perspective looks at 

the total number of people in each state, whereas the individual perspective 

investigates how different individuals contribute to these statistics. Our goal is to 

develop a model to predict the labour market status at the individual level, which for 

simplicity we consider to be unemployed or not. The model aims to explain the full 

individual labour market experience is as a binary sequence.  

 

Figure 17.    d v d   ’  unemployment seems to consist of recurrent unemployment spells, 
where the individual transitions into and out of unemployment. It seems useful to 
model this process, which determines the unemployment status at any given time 

The unemployment status of individual i at time t is denoted 𝑥𝑖,𝑡 ∈ {0,1}, and the 

censoring indicator 𝑐𝑖,𝑡 ∈ {0,1} denotes whether the individual i was observable (not 

censored) at time t. Formally, we model each individual as a stochastic process. We 
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consider the unemployment status 𝑥𝑖,𝑡 to be a realization of a random variable 𝑋𝑖,𝑡 ∈
{0,1} in a stochastic process {𝑋𝑖,𝑡 , 𝑡 ≥ 0}. Our goal is develop a probabilistic model 

for the individual unemployment sequence  and predict the probability relevant 

unemployment events. The full model defines the probability of each unemployment 

sequence: 

 𝑃({𝑋𝑖,𝑡 , 𝑡 ≥ 0}) = 𝑃(𝑋𝑖,𝑡 , 𝑋𝑖,𝑡−1, … , 𝑋𝑖,0)  

We define two other important metrics: the probability of being unemployed at 

each time and the probability of transitioning in and out of unemployment, The state 

probability vector is the probability of each state at time t: 

 𝑃𝑖,𝑡 = (𝑃(𝑋𝑖,𝑡 = 0), 𝑃(𝑋𝑖,𝑡 = 1))  

The transition probability matrix is the probability of transition from time s to t: 

 ℙ𝑖,𝑠→𝑡 = (
𝑃(𝑋𝑖,𝑡 = 0|𝑋𝑖,𝑠 = 0) 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑠 = 0)

𝑃(𝑋𝑖,𝑡 = 0|𝑋𝑖,𝑠 = 1) 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑠 = 1)
)  

Looking at the Figure 17, it seems that individual labour market status consists 

of recurrent spells of unemployment, where it appears that different individuals have 

shorter or longer spells. We hypothesize that unemployment is a state which person 

exits and enters with some probability, and these transitions explain the observed 

data. This hypothesis defines the data through a simple generative process called the 

Markov Chain [105]. The Markov property states that the probability of being 

unemployed depends only on whether the previous observation was unemployed: 

 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑡−1 , … , 𝑋𝑖,0) = 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑡−1)  

This condition implies that the process is defined in terms of two parameters: the 

probability of exiting and entering unemployment. This can be seen by expressing 

the probability of an unemployment sequence with the chain rule: 

 𝑃(𝑋𝑖,𝑡 , 𝑋𝑖,𝑡−1, … , 𝑋𝑖,0) =

𝑃(𝑋𝑖,𝑡|𝑋𝑖,𝑡−1 , … , 𝑋𝑖,0)𝑃(𝑋𝑖,𝑡−1|𝑋𝑖,𝑡−2, … , 𝑋𝑖,0) … 𝑃(𝑋𝑖,1|𝑋𝑖,0)𝑃(𝑋𝑖,0) =

 𝑃(𝑋𝑖,𝑡|𝑋𝑖,𝑡−1)𝑃(𝑋𝑖,𝑡−1|𝑋𝑖,𝑡−2) … 𝑃(𝑋𝑖,1|𝑋𝑖,0)𝑃(𝑋𝑖,0)  

These transition probabilities are the entries in a one-step transition matrix: 

 ℙ𝑖,𝑡−1→𝑡 = (
1 − 𝑝𝑖,𝑡 𝑝𝑖,𝑡

𝑞𝑖,𝑡 1 − 𝑞𝑖,𝑡
)  where 

𝑝𝑖,𝑡 = 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑡−1 = 0)

𝑞𝑖,𝑡 = 𝑃(𝑋𝑖,𝑡 = 0|𝑋𝑖,𝑡−1 = 1)
  

In a Markov Chain, the transition probability matrix can then be expressed as the 

product of one-step transition matrices: 

 ℙ𝑖,𝑠→𝑡 = ∏ ℙ𝑖,𝑘−1→𝑘
𝑡
𝑘=𝑠+1   
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An important special case is when the unemployment exit and entry rates are 

constant over time, i.e. 𝑞𝑖,𝑡 = 𝑞𝑖 and 𝑝𝑖,𝑡 = 𝑝𝑖. It makes sense to consider the rates 

as constant if we have a long term prespective and wish to ignore the effect of the 

economic cycle. We also have to use constant rates for future predictions, because it 

is impossible to know future changes in the baseline unemployment. As a benefit to 

this restriction, there are then well-known results about how the process evolves. In 

the case of time-constant rates, we have the following expression for the transition 

probability matrix k time steps forward [106]:  

 ℙ𝑖,𝑠→𝑠+𝑘 =
1

𝑞𝑖+𝑝𝑖
(

𝑞𝑖 𝑝𝑖

𝑞𝑖 𝑝𝑖
) +

(1−𝑞𝑖−𝑝𝑖)𝑘

𝑞𝑖+𝑝𝑖
(

𝑝𝑖 −𝑝𝑖

−𝑞𝑖 𝑞𝑖
)  

The process converges to what are called the steady state probabilities: 

 lim
𝑡→∞

𝑃𝑖,𝑡 = (
𝑞𝑖

𝑞𝑖+𝑝𝑖
,

𝑝𝑖

𝑞𝑖+𝑝𝑖
)  

This means that in the long run, an individual with probabilities 𝑞𝑖 and 𝑝𝑖 can be 

predicted to spend 𝑝𝑖/(𝑞𝑖 + 𝑝𝑖) of time in unemployment. If we have no knowledge 

of past unemployment states, it also makes sense to predict these probabilities. The 

probability of being unemployed is therefore determined by the probability of exiting 

and entering unemployment, and is influenced by both of them. 

Individuals are either in or out of unemployment every month and they transition 

between these two states. Unemployment is considered as a negative for the society. 

We are therefore interested in predicting the individuals who are at the highest risk 

to be unemployed, to remain unemployed, and to become unemployed. We consider 

three prediction tasks for individual i at time t: the unemployment probability 𝑠𝑖,𝑡, 

the unemployment exit probability 𝑞𝑖,𝑡  and the unemployment entry probability 𝑝𝑖,𝑡. 

These are defined for the stochastic process 𝑋𝑖,𝑡  as follows: 

 

𝑠𝑖,𝑡 = 𝑃(𝑋𝑖,𝑡 = 1)

𝑞𝑖,𝑡 = 𝑃(𝑋𝑖,𝑡 = 0|𝑋𝑖,𝑡−1 = 1)

𝑝𝑖,𝑡 = 𝑃(𝑋𝑖,𝑡 = 1|𝑋𝑖,𝑡−1 = 0)

  

Predictions for new persons or future time points (Setting 2 & Setting 4 in chapter 

2.3.4) are made using the constant transition probabilities. Given the unemployment 

status xi,t and the exit and entry probabilities 𝑞𝑖,𝑡 and 𝑝𝑖,𝑡 at the last observed time t, 

we make the future forward prediction of k steps: 

 

𝑠𝑖,𝑡+𝑘 =
𝑝𝑖,𝑡

𝑞𝑖,𝑡+𝑝𝑖,𝑡
−

𝑝𝑖,𝑡

𝑞𝑖,𝑡+𝑝𝑖,𝑡
(1 − 𝑞𝑖,𝑡 − 𝑝𝑖,𝑡)

𝑘
 if 𝑥𝑖,𝑡 = 0

𝑠𝑖,𝑡+𝑘 =
𝑝𝑖,𝑡

𝑞𝑖,𝑡+𝑝𝑖,𝑡
+

𝑞𝑖,𝑡

𝑞𝑖,𝑡+𝑝𝑖,𝑡
(1 − 𝑞𝑖,𝑡 − 𝑝𝑖,𝑡)

𝑘
 if 𝑥𝑖,𝑡 = 1

  

If we wish to predict lifetime unemployment or haven’t observed any previous 

unemployment states (Setting 3), we predict the steady state probability 
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 𝑠𝑖,∞ =
𝑝𝑖,𝑡

𝑞𝑖,𝑡+𝑝𝑖,𝑡
  

We now explain how to fit the model to the data set. We model individual 

features age, gender, work experience, level and field of education with time-varying 

feature vectors 𝑧𝑖,𝑡 ∈ ℝ𝑑. This is the registry information about person i at time t. 

We add a time-specific intercept to estimate the effect of the economic cycle during 

the training period. We add an individual-specific intercept to estimate differences 

between persons that are not explained by the covariates in the training period. 

In the exit model, we have the following model parameters: coefficient vector 

𝛼 ∈ ℝ𝑑, time intercept vector 𝑎 ∈ ℝ𝑡, and individual intercept vector 𝑢 ∈ ℝ𝑛 . In the 

entry model, we have the coefficient vector 𝛽 ∈ ℝ𝑑 , time intercept vector 𝑏 ∈ ℝ𝑡, 

and individual intercept vector 𝑣 ∈ ℝ𝑛 . We use the logistic regression model: 

 

𝑞𝑖,𝑡

1−𝑞𝑖,𝑡
= exp(𝛼

𝑇
𝑧𝑖,𝑡 + 𝑎𝑡 + 𝑢𝑖)

𝑝𝑖,𝑡

1−𝑝𝑖,𝑡
= exp (𝛽

𝑇
𝑧𝑖,𝑡 + 𝑏𝑡 + 𝑣𝑖)

  

First define the following index sets of times that are observable and relevant to 

each transition. The set ℕ𝑖,1 indexes the times relevant to unemployment exits: 

ℕ𝑖,1 = {𝑡 ∈ ℕ: 𝑐𝑖,𝑡−1 = 1, 𝑐𝑖,𝑡 = 1, 𝑥𝑖,𝑡−1 = 1}. The index set ℕ𝑖,0 is the times 

relevant to unemployment entries: ℕ𝑖,0 = {𝑡 ∈ ℕ: 𝑐𝑖,𝑡−1 = 1, 𝑐𝑖,𝑡 = 1, 𝑥𝑖,𝑡−1 = 0}. 

The individual’s likelihood in the machine learning model that considers the exit and 

entry rates independent then factorizes into two separate models, as shown in the 

example in Figure 17: 

 

𝐿
𝛼,𝑎,𝑢,𝛽,𝑏,𝑣

(𝑥𝑖,𝑡) = 𝐿𝛼,𝑎,𝑢(𝑥𝑖,𝑡)𝐿
𝛽,𝑏,𝑣

(𝑥𝑖,𝑡)

𝐿𝛼,𝑎,𝑢(𝑥𝑖,𝑡) = ∏ (1 − 𝑞𝑖,𝑘)
𝕀(𝑥𝑖,𝑘=1)

𝑞
𝑖,𝑘

𝕀(𝑥𝑖,𝑘=0)
𝑘∈ℕ𝑖,1

𝐿
𝛽,𝑏,𝑣

(𝑥𝑖,𝑡) = ∏ (1 − 𝑝𝑖,𝑘)
𝕀(𝑥𝑖,𝑘=0)

𝑝
𝑖,𝑘

𝕀(𝑥𝑖,𝑘=1)
𝑘∈ℕ𝑖,1

  

We use logistic regression where the coefficients are Tikhonov regularized by 

adding a squared coefficient penalty term for every coefficient vector. This means 

the solution is found through minimizing the penalized negative log likelihood: 

 argmin
𝛼∈ℝ𝑑,𝛽∈ℝ𝑑,𝑎∈ℝ𝑡,𝑏∈ℝ𝑡,𝑢∈ℝ𝑛,𝑣∈ℝ𝑛

[− log (∏ 𝐿
𝛼,𝑎,𝑢,𝛽,𝑏,𝑣

(𝑥𝑖,𝑡)𝑖=1…𝑛  ) + 𝜆(‖𝛼‖2 +

‖𝛽‖2 + ‖𝑎‖2 + ‖𝑏‖2 + ‖𝑢‖2 + ‖𝑣‖2)]  
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3.4 Game recommendation 

3.4.1 Introduction 

 

Game recommendation is a natural application of recommender systems. Many 

platforms have gathered large datasets that describe how players have interacted with 

games and they have the problem of recommending interesting new games to play. 

A standard approach in such setting is collaborative filtering, which can recommend 

games based on similar player and game interactions. In games, recommender 

systems have been proposed based on collaborative filtering [107] [108], game 

content [109] [110], and different combinations of the two [109] [112]. While 

collaborative filtering has been found to produce the most accurate recommendations 

in many applications, it suffers from the cold-start problem [113]. If predictions are 

required for new players or new games without any interactions, it cannot make any 

predictions. This setting occurs in the real world, since new games are released all 

the time and platforms acquire new players that have not played any of their games. 

For this reason, we investigated a new collaborative filtering algorithm and three 

new content based models in (Publication VII) that rely on game features, player 

features, or both. These methods are designed to predict as accurately as possible in 

four different settings: 1) predictions for known players and known games 2) 

predictions for new games 3) predictions for new players 4) predictions for new 

players and new games simultaneously. We develop a new collaborative filtering 

model for complete data based on multivariate normal distribution (MVN), a model 

based on game features (Tags), a model based on player features (Questions), and a 

cold-start model based on the interaction of game and player features (Tags X 

Questions). All models are simple, easy to interpret, and have mathematical shortcuts 

that allow fast training. 
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3.4.2 Data set and validation settings 

 

Figure 18.  The training set (gray) consists of observed game likes and the different test sets 

(blue, yellow, green, red) correspond to different settings. For every player, the task 
is to predict a ranked list of games the player has not yet liked in the training set. 

We define the problem as follows. Assume we have a total of n players and m 

games. Denote the player index i ∈ {1,…,n} and game index j ∈ {1,…,m}. The game 

likes are a n x m binary game like matrix 𝑌 ∈ ℝ𝑛×𝑚 illustrated in Figure 18: 

𝑌𝑖,𝑗 = 𝕀(player 𝑖 likes game 𝑗) 

We obtained a permission to use a data set of game likes collected by the Centre 

for Collaborative Research at Turku School of Economics. The data set has 15894 

players and 6465 games with a total of 80916 game likes. Every player has 

mentioned their favourite games and the rest of the games are not their favourites. 

The data set is complete, which means the matrix has no missing entries. Complete 

data sets are typically investigated in the field of implicit recommendation [114]. It 

would be possible to create implicit game likes from game ownership, for example.  

We have two sources of features: players and games. Player features are stored 

in a n x s matrix of player features 𝑋player ∈ ℝ𝑛×𝑠 and game features in a m x r matrix 

of game features 𝑋game ∈ ℝ𝑚×𝑟. Player features were created by asking the player a 

randomized set from 61 questions of gaming preferences (’Exploring the gameworld 

and its secrets’, ’Commanding units or troops’, ’ Breeding, training and taking care 

of pets’, …). The answers were on a Likert scale: strongly dislike (-2), dislike (-1), 

no preference (0), like (1), strongly like (2). We filled the missing value by 0 when 

a question was not asked, implying no stated preference. Game features were created 

by mining the Steam and Internet Games DataBase (IGDB) platforms game tags. 
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This resulted in a binary vector of length 379, where each element (0,1) indicates the 

presence or absence of each game tag.  

The task is to predict a list of game recommendations for every player. Formally, 

the player has a game like vector 𝑌𝑖,: and the goal is to predict a real-valued score 

vector 𝑌𝑖,:
∗  of also length m. The ranking of elements in 𝑌𝑖,:

∗  is the order of games 

recommended. Denote the indices that sort the predictions in descending order as 

𝑅𝑖,:
∗ . For example, if we have five games and player i likes games 𝑌𝑖,: = (0,1,0,0,1), 

the predicted scores 𝑌𝑖,:
∗ = (0.1,1.1,0.8,0.7,2.1) imply a recommendation list 𝑅𝑖,:

∗ =
(5,2,3,4,1) which correctly ranks the liked games (1,1,0,0,0). The predictions for all 

players and games are a n x m score matrix 𝑌∗ ∈ ℝ𝑛×𝑚, where the ranking of each 

row in 𝑅∗ ∈ ℝ𝑛×𝑚 is the recommendation list for each player. Recommendation lists 

typically include only top k games, which is called Top-N recommendation [114]. In 

this case, accuracy is measured by ranking metrics, and we considered the 

Precision@k and nDCG@k metrics in the study. The games liked in the training set 

are excluded from the recommendation list 𝑅𝑖,:
∗  in the evaluation. 

It is possible to consider four different tasks as illustrated in Figure 18. Denote 

all the training set players as P ⊆ {1,…,n} and games as G ⊆ {1,…,m}. We require 

predictions for player i and game j in four different settings 

1. Setting 1: Standard setting (i ∈ P and j ∈ G). 

2. Setting 2: Prediction for new games (i ∈ P and j ∉ G).  

3. Setting 3: Prediction for new players (i ∉ P and j ∈ G).  

4. Setting 4: Prediction for new players and games (i ∉ P and j ∉ G).  

To evaluate performance in each setting, we divided players and games into four 

different validation sets. We sampled 25% of players into ’test players’ (new players) 

and 25% of games into ’test games’ (new games). Setting 1 validation set has 20% 

of ’training players’ that have more than 3 game likes.   random selection of 3 games 

is then the seed that belongs to the training set for these players, and the training set 

also includes all games of the remaining 80% of players. The missing game likes of 

the 20% subset are the Setting 1 validation set. Setting 2 validation set is the game 

like submatrix with ’training players’ and ’test games’. Setting 3 validation set is the 

game like submatrix with ’test players’ and ’training games’. Setting 4 validation set 

is the submatrix with ’test players’ and ’test games’. 

3.4.3 Game recommendation models 

We now present the three content based methods and motivate them through the 

baseline collaborative filtering algorithm called the singular value decomposition 

(SVD). We call them the Tags, Questions and Tags X Questions models. Content 
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based methods were the main focus of the paper, since these allow generalization 

into new games (Setting 2), new players (Setting 3) or new games and players 

simultaneously (Setting 4). 

3.4.3.1 SVD 

 

Figure 19.  Collaborative filtering model based on SVD generalizes to Setting 1. 

SVD is a standard collaborative filtering method that has been found to perform 

well in many recommendation problems [115], and we also use it as a baseline. As 

illustrated in Figure 19, the method does not use any game or player features. 

Instead, the model assumes that player i is described by d latent factors ai1 , ai2, …, 

aid, and game j is described by d latent factors bj1 , bj2, …, bij. The prediction for 

player i and game j is the product of these latent factors: 

 𝑦𝑖,𝑗 = 𝑎𝑖,1𝑏𝑗,1 + 𝑎𝑖,2𝑏𝑗,2 + ⋯ + 𝑎𝑖,𝑑𝑏𝑗,𝑑  

Even though the model is linear, there rarely is a straightforward interpretation 

for the latent factors. The latent factors are initially unknown and we take them as 

model parameters. Denote the player factors as rows of the matrix 𝐴 ∈ ℝ𝑛×𝑑 and the 

game factors as the rows of the matrix 𝐵 ∈ ℝ𝑚×𝑑. Then the predicted scores are a 

matrix 𝑌∗ = 𝐴𝐵𝑇, which is visualized in Figure 19. To find the optimal latent factors 

𝐴̂ and 𝐵̂ we minimize the regularized least squares: 

 𝐴̂, 𝐵̂ = argmin
A∈ℝ𝑛×𝑑,B∈ℝ𝑚×𝑑

‖𝑌 − 𝐴𝐵𝑇‖𝐹
2 + 𝜆‖𝐴‖𝐹

2 + 𝜆‖𝐵‖𝐹
2   

One approach to find the optimal parameters is alternating least squares (ALS), 

which is an iterative optimization method designed for this particular task [113]. 

Denote 𝐴(𝑡) and 𝐵(𝑡) as the parameter estimates at time t. Initialize 𝐵(0) with random 

values. Now assume that 𝐵(𝑡−1) is fixed, and find the linear least squares solution 

for 𝐴(𝑡). Then assume that the resulting 𝐴(𝑡) is fixed and and find the least squares 
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solution for 𝐵(𝑡). Repeat these iteratively for t = 1, 2, … until the estimates converge 

or the maximum number of iterations is reached: 

 
𝐴(𝑡) = (𝐵(𝑡−1)

𝑇 𝐵(𝑡−1) + 𝜆𝐼)
−1

𝐵(𝑡−1)
𝑇 𝑌𝑇

𝐵(𝑡) = (𝐴(𝑡)
𝑇 𝐴(𝑡) + 𝜆𝐼)

−1
𝐴(𝑡)

𝑇 𝑌
  

Because both 𝐴 and 𝐵 are parameters, the model has a large degree of flexibility 

to fit the data set and often achieves high accuracy. However, predictions can be 

made only for players and games that have likes in the training set, because the latent 

representations can be learned only for them.  

3.4.3.2 Tags 

 

Figure 20.  Content model based on game features (Tags) generalizes.to Setting 1&2. 

As illustrated in Figure 20, the first content model is based on game features. 

Assume that the game j is described by features xj,1, xj,2, …, xj,r. In our case, these 

features are binary indicators of game tags and we call this the ’Tags’ model. The 

player i has an interaction with each game feature described by parameters ai,1 , ai,2, 

…, ai,r, The prediction for player i and game j is the sum: 

 𝑦𝑖,𝑗 = 𝑎𝑖,1𝑥𝑗,1 + 𝑎𝑖,2𝑥𝑗,2 + ⋯ + 𝑎𝑖,𝑟𝑥𝑗,𝑟   

This corresponds to a linear model where players have separate coefficients that 

predict how each player interacts with the game tags. Each coefficient is the response 

to that particular tag, based on the games that the player has played. Denote the 

player interactions as rows of the matrix 𝐴 ∈ ℝ𝑛×𝑟  and the game features as rows of 

the matrix 𝑋game ∈ ℝ𝑚×𝑟. Then the predicted scores are a matrix 𝑌∗ = 𝐴𝑋game
𝑇 , 

    
    

 
  
 
 
 

           

 
 
 

          

 

  
    

 

      
         

        
                        

                            

                            

                            

                           

                            

                            

                             

 



Markus Viljanen 

 66 

visualized in Figure 20. To find the optimal parameters 𝐴̂ we again minimize the 

regularized least squares: 

 𝐴̂ = argmin
A∈ℝ𝑛×𝑟

‖𝑌 − 𝐴𝑋game
𝑇 ‖

𝐹

2
+ 𝜆‖𝐴‖𝐹

2   

The parameter matrix can be found directly with the least squares solution: 

 𝐴̂𝑇 = (𝑋game
𝑇 𝑋game + 𝜆𝐼)

−1
𝑋game

𝑇 𝑌𝑇  

 

The factorization 𝑌∗ = 𝐴𝑋game
𝑇  shows how the model can be thought of as a 

special case of the SVD where the latent game features are fixed to 𝑋game. Because 

the model has less flexibility than the SVD, one would expect it to predict less 

accurately. However, the major advantage of using provided features is that 

predictions can be made for new games that have these features. 

3.4.3.3 Questions 

 

Figure 21.  Content model based on player features (Questions) generalizes to Setting 1&3. 

As illustrated in Figure 21, the second content model is based on player features. 

Assume that player i is described by features xi,1, xi,2, …, xi,s. In our case, these 

features are questionnaire answers of gaming preferences and we call this the 

’Questions’ model. The game j has an interaction with each player feature described 

by parameters aj,1 , aj,2, …, aj,s, The prediction for player i and game j is the sum: 

 𝑦𝑖,𝑗 = 𝑥𝑖,1𝑎𝑗,1 + 𝑥𝑖,2𝑎𝑗,2 + ⋯ + 𝑥𝑖,𝑠𝑎𝑗,𝑠  

This corresponds to a linear model where games have separate coefficients that 

predict how each game interacts with the player preferences. Each coefficient is the 

reponse to that particular preference, based on the players that have played the game. 

Denote the player features as rows of the matrix 𝑋player ∈ ℝ𝑛×𝑠 and the game 
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interactions as rows of the matrix 𝐴 ∈ ℝ𝑚×𝑠. Then the predicted scores are a matrix 

𝑌∗ = 𝑋player𝐴𝑇 , visualized in Figure 21. To find the optimal parameters 𝐴̂ we again 

minimize the regularized least squares: 

 𝐴̂ = argmin
A∈ℝ𝑚×𝑠

‖𝑌 − 𝑋player𝐴𝑇‖
𝐹

2
+ 𝜆‖𝐴‖𝐹

2   

The parameter matrix can be found directly with the least squares solution: 

 𝐴̂𝑇 = (𝑋player
𝑇 𝑋player + 𝜆𝐼)

−1
𝑋player

𝑇 𝑌  

The factorization 𝑌∗ = 𝑋player𝐴𝑇  shows how the model can be thought of as a 

special case of the SVD where the latent player features are fixed to 𝑋player. Again, 

because the model has less flexibility than the SVD one would expect it to predict 

less accurately. However, the major advantage of using provided features is that 

predictions can be made for new players that have these features. 

3.4.3.4 Tags x Questions 

 

Figure 22.  Content model based on both game features (Puzzle, Real-Time, Strategy, Dating 
     …  and player features    k   E   or     h       or d   d       cr     …  
learns their interaction and generalizes to Setting 1&2&3&4. 

As illustrated in Figure 22, the third content model is based on both player and 

game features. Assume the player i is described by features ui,1, ui,2, …, ui,s and the 

game j is described by features vi,1, vi,2, …, vi,r. In our case, these were the 

questionnaire answers of gaming preferences and the binary indicators of game tags. 

To predict yi,j for every player i and game j, we define a feature vector every pair as 

the interaction between every player feature and game feature: ui,1vi,1, ui,1vi,2, …, 

ui,1vi,r, …, ui,svi,1, ui,svi,2, …, ui,svi,r. These features are the interactions between 

questionnaire answers and game tags. The strength of each interaction is described 
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by parameters a1,1, …, a1,r, …, as,1, …, as,r.  The prediction for player i and game j is 

the sum of all interactions: 

 𝑦𝑖,𝑗 = ∑ ∑ 𝑎𝑘,𝑙
𝑠
𝑙=1

𝑟
𝑘=1 𝑢𝑗,𝑘𝑣𝑗,𝑙  

This is a linear model where each player preference and game tag has a separate 

coefficient that predicts how strongly they interact. Each coefficient is the strength 

of that interaction, based on the player preferences and game tags that occur together 

when a player likes a game. Denote the player features as rows of the matrix 𝑋player ∈

ℝ𝑛×𝑠 and the game features as rows of the matrix 𝑋game ∈ ℝ𝑚×𝑟. The feature matrix 

of every pair is then the Kronecker product 𝑋pair = 𝑋player ⊗ 𝑋game ∈ ℝ𝑛𝑚×𝑠𝑟. 

Denote the matrix of parameters as 𝐴 ∈ ℝ𝑠×𝑟 and the vectorizing operation of 

stacking the columns as vec(𝐴) ∈ ℝ𝑠𝑟×1. Then the predicted scores are a matrix 

vec(𝑌∗) = 𝑋pair vec(𝐴). The parameters are found by the regularized least squares: 

 𝐴 = argmin
A∈ℝ𝑠×𝑟

‖vec(𝑌) − 𝑋pair vec(𝐴)‖
𝐹

2
+ 𝜆‖vec(𝐴)‖𝐹

2   

The parameter matrix can be found directly with the least squares solution: 

 vec(𝐴) = (𝑋pair
𝑇 𝑋pair + 𝜆𝐼)

−1
𝑋pair

𝑇 vec(𝑌)  

The factorization 𝑌∗ = 𝑋pair vec(𝐴) shows the model is a standard regression 

model that predicts with the interaction of player and game features. The model 

where both feature matrices are given has even less flexibility than the models where 

either was fixed. However, the major advantage of using both features is that 

predictions can be made for both new players and new games.  

 

 

4 Research Studies and Results 

This chapter presents a brief summary of each publication included in the thesis. 

The following table gives a short description of each study: whether the modelling 

focus is on statistics or machine learning (Focus), what the feature vector is based 

on (Features), the machine learning model used for the pairwise data (Based on), and 

which new models are described based on a novel mathematical formulation as a 

pairwise problem (New Models). 
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Paper Focus Features Based on New Models 

Playtime measurement with 

survival analysis. IEEE 

Transactions on Games 

Stats Player Survival 

Analysis 

 

A/B-test of retention and 

monetization using the Cox 

model. 

Stats Player Survival 

Analysis 

MCF 

(regression) 

Measuring player retention and 

monetization using the mean 

cumulative function 

Stats Player Linear 

regression 

(log) 

MCF 

Predicting Expected Profit in 

Ongoing Peer-to-Peer Loans 

with Survival Analysis Based 

Profit Scoring. 

ML, 

Stats 

Loan Survival 

Analysis 

Default 

(constant)  

Predicting profitability of peer-

to-peer loans with recovery 

models for censored data. 

ML, 

Stats 

Loan Linear 

(log), 

Logistic 

regression 

Default 

Recovery 

Predicting Unemployment with 

Machine Learning Based on 

Registry Data. 

ML, 

Stats 

Person Regularized 

and mixed 

effects 

logistic 

regression 

Entry 

Exit 

Prevalence 

Content Based Player and 

Game Interaction Model for 

Game Recommendation in the 

Cold Start setting. 

ML Player, 

Game 

Linear 

regression 

MVN 

Questions 

Tags 

QuestionsXTags 

 

 

4.1 Research publications 

4.1.1 Retention and monetization 

4.1.1.1 Playtime measurement with survival analysis 

Motivation: Game developers routinely use game analytics to obtain insights 

into data gathered from players. Analytics in games has focused on player retention 
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and churn in particular. Retention means that players are engaged with the game, and 

churn means that players quit the game, either momentarily or definitely. These are 

complementary and opposite concepts, and many ways have been devised to 

measure them. However, measurement presents unique challenges in games. Game 

developers typically wish to perform analytics before every player has churned from 

the game. For example, consider a game that is being developed or successful games 

that have long playtimes.  Because not all users have churned, their retention is not 

yet known and we call the data censored. In this study, we investigated how methods 

in survival analysis can be used to analyse player retention and churn in a timely and 

effective manner in censored data.  

Data and methods: We analyse how survival analysis contributes to the 

measurement, visualization and comparison of playtime. We use data from the 

Hipster Sheep, previously named Hipster Maze, mobile game with 3753 players in 

versions 1.11, 1.15, and 1.18. We also illustrate the methods with a random sample 

of 10 players. Survival analysis is a field of statistics that can be used to analyse 

censored data when player retention is defined as a duration variable. Our focus is 

on playtime for clarity, but any player specific positive value could be used: session 

length, number of sessions, level progression or total subscription time, etc. Survival 

analysis is well-suited for the metrics in gaming, because it is developed for positive, 

non-normal and possibly censored data. It does not require parametric approaches, 

which may not match complex phenomena. While survival analysis solves the 

censoring problem, there is a complication with the fact that we may not know the 

censoring status of a player: players do not notify us whether they have churned or 

not. Various rules and churn prediction models have been used to impute churn 

status, and we assume that such a method has been used before analysis. 

The survival curve is a funnel type estimate of how many percentage of players 

remain in in the game as a function of playtime. The hazard, which is the churn rate 

in the case of playtime, estimates the rate at which players churn from the game at 

different time points, Sudden increases from the trend could signify game design 

flaws and decreases point to content that players find engaging. The mean value 

aggregates the survival curve to a clear and unambiguous metric. Because many free-

to-play games have a small segment of long term players, it is also useful investigate 

the quantiles. The 50% quantile known as the median can be thought of as a typical 

player. Finally, the log-rank test provides an AB-test by comparing the survival 

curves of different groups: it tests the null hypothesis that the survival curves are 

equal and can be used to see if the difference is statistically significant. 

Results: Player churn seems to be initially high in free-to-play games as players 

try out the game and find it does not interest them, but decreases slowly over time. 

For example, in the version 1.18 we initially had 0.6 churns/h, halved to 0.3 churns/h 

during the first 4 hours, then stabilized to 0.2 churns/h from 10 hours onwards. We 
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see that later versions managed to decrease initial churn, and the latest version may 

have just slightly better long term retention. There is a large difference in median 

and mean playtime, for example in the 1.18 version mean playtime was 2.41 hours 

and median 0.77 hours. A statistically significant improvement can be found from 

version 1.11, but no significant difference exists between versions 1.15 and 1.18. 

Parametric approaches are more powerful if the specified model is correct, in the 

sense that they require less data and can be extrapolated to predict outside observed 

playtimes. However, the results can be significantly wrong if the assumed formula 

does not hold. The Weibull distribution is a reasonable but not perfect approximation 

of playtime in our data. Nonparametric approaches are considered as more robust, 

because they do not depend on specifying a correct model and instead base 

inferences on the data itself. Confidence intervals for these estimates are informative 

in data constrained industry applications. For example, a limited budget for user 

acquisition implies a limited sample size. One may wish to assess statistical 

significance before committing resources to big changes. 

A     ’        b     : The author was responsible for the study. Remaining 

authors provided comments on a draft of the paper and acted as supervisors. 

4.1.1.2 A/B-test of retention and monetization using the Cox model 

Motivation: Many app developers use an iterative development model based on 

AB-testing. Different versions of an in-development app are provided to users, and 

a test is then done to determine which version performs best. Targeted advertising 

has also become common, because developers have a degree of freedom in choosing 

the users they wish to market to. In both of these cases, we would like to know which 

app version or user cohort is the best choice. There are several challenges of doing a 

test on the data: 1) user acquisition costs money so the sample size may be small 2) 

analysis needs to be performed during development, so there may be limited follow-

up times, and often they differ between users 3) many users have not yet churned 

and we may not know who have or haven’t, so we do not know final values of many 

metrics 4) in different user cohorts there may also be differences between platforms, 

countries, etc. which can bias analysis if not accounted for. We considered two 

important metrics: the retention rate and the purchase rate. Our goal is to develop an 

AB-test allows to estimate these metrics in censored data and test if the differences 

between groups are statistically significant.  

Data and methods: We use data from an in-development mobile game, which 

was previously called Hipster Maze, but renamed to Hipster Sheep later. The game 

has used paid marketing to acquire users during development in order to track 

development progress and evaluate alternative designs in terms of user engagement 

and monetization. Users have been followed for limited time periods and acquired 
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at different times, so their follow-up times are limited and may differ. We refer to 

this as data censoring.  

The single event Cox model has been used to analyse player churn, but it has 

limited applicability because it requires knowing which players have churned. We 

propose using recurrent event Cox model, which makes it possible to analyse the 

retetion rate and the purchase rate without the churn problem. However, the fact that 

players churn implies that we need to use robust confidence intervals instead of the 

default ones based on a Poisson process assumption. The Cox model does not assume 

any parametric form for the metrics, but does assume that they are proportional in 

different groups. The model provides estimates of effect sizes and confidence 

intervals relative to the baseline group, implying how much better or worse the other 

choices are.  The model is in fact a full regression model: we can take into account 

cofounding variables and get the effect of independent variables. We evaluate the 

proposed method in three real world game development scenarios: 1) we test how 

game progression speed affects player retention by randomly assigning players into 

normal/faster/fasters cohorts 2) we evaluate development progress in terms of 

retention and monetization by comparing successive game versions 3) we find the 

best user cohorts by estimating the effect of platform, country, and game version. 

Results: The comparison of different game progression speeds implies that the 

’faster’ cohort has the best retention. In this cohort the retention rate was about 18% 

higher, with no difference between ’normal’ and ’fastest’, but the differences are not 

yet statistically significant at the 95% confidence level. The comparison of different 

game development versions suggest that retention rate improved in versions 1.11, 

1.15, 1.18, 1.2x and remained relatively stable in versions 1.31, 1.32, 1.33, 1.35. 

However, it seems that developers successfully focused on monetization, because 

the purchase rates were significantly improved in 1.31, 1.32, 1.33, 1.35. Android and 

ios have very different retention and purchase rates and were compared separately. 

We include the following independent variables in the analysis of marketing to 

different user groups: platform (ios/android), country (US/GB/AU/NL) and game 

version (1.31, 1.32, 1.33, 1.35). We found very large differences in the platforms: 

the ios platform had half the retention but quadruple monetization. There were no 

practical differences in retention rates between countries, but there was a very large 

difference in purchase rates: United Kingdom and Australia had quadruple but 

Netherlands only half the purchase rates. There is such a large variance between 

player session counts and so few purchases that it was difficult to establish statistical 

significance even with these sample sizes. This suggests game developers should 

exercise caution in interpreting the results from any AB-test. 

A     ’        b     : The author was responsible for the study. Remaining 

authors provided comments on a draft of the paper and acted as supervisors. 
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4.1.1.3 Measuring Player Retention and Monetization using the Mean 

Cumulative Function 

Motivation: Products and services sold digitally have become an important 

source of revenue for many companies. Games in particular account for a majority 

of revenue in the app stores, and the field of game analytics investigates how their 

data can be analyse. The expected playtime and lifetime value are two very important 

metrics. Expected playtime can be used to measure how a game retains players and 

provides opportunities for monetization. Longer playtimes imply more friend 

invites, advertisements and premium content that could be purchased. Expected 

lifetime value (LTV) is a direct measure of profitability, because the investment 

return is the difference of the LTV and the acquisition cost of a user. Analytics used 

in the industry places high time-demand on the metrics. For example, app developers 

can estimate the profitability of an app by acquiring a group of users through paid 

marketing. They then follow the users for a time and record their purchases. They 

want to estimate the profitability from the data, but it is likely that many users still 

continue using the product. If they were acquired at different times they also have 

different follow-up lengths. We say that the data is censored, and we cannot calculate 

the metrics from it without bias. In practise, the developers would like to have a 

simple and robust method to estimates the expected value accumulated up to a given 

follow-up time, which is what we propose. Our method works for any expected 

value, so it can be used on a variety of metrics. 

Data and methods: We use two data sources to evaluate the applicability of the 

method. The first data set is based on real game development scenarios in the mobile 

game Hipster Sheep. We use 10 000 players in an iOS beta test, 1800 players in 1.18 

progression speed test, and 3200 players in 1.15 vs 1.18 version upgrade test. The 

second is based on the public 2016 ACM Internet Measurement Conference Steam 

data set. We processed the daily snapshot data to simulate a game launch scenario, 

by including only games that had a release date within the daily sampling window 

and players who started to play during that time. This resulted in 8 games with 240 

to 1896 players per game. 

Our method is based on defining the data set as recurrent events and associated 

costs, which have been investigated in reliability engineering and biostatistics. This 

definition corresponds to a problem in the field of recurrent event survival analysis. 

We further show that the so called robust nonparametric methods developed there 

can be applied to games, where the players do not fill parametric assumptions and 

their churn status is unknown. As a result of our search, we present and evaluate the 

following tools for game analytics.  The mean cumulative function (MCF) can be 

used to estimate the expected value at time T, for example the expected LTV 

accumulated at each follow-up time. The robust variance formula provides 

confidence intervals for the MCF. The pointwise comparison can be used to calculate 
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the difference of MCFs, for example compare players in different countries to find 

the country with the best monetization. Finally, the equality test is a straightforward 

test of the null hypothesis that the MCFs are equal, which can be used to verify if the 

differences found are statistically significant. The MCF is a generalization of 

standard statistical methods and current metrics used in the industry. Our methods 

are equal to performing the analysis with standard statistical methods when all 

players share the same censoring time. Furthermore, the MCF corresponds to the 

retention rate statistic if we estimate the expected number of distinct days played at. 

Results: We have four different experiments to evaluate the proposed method. 

In the first experiment, we show that the MCF is a better tool for censored data than 

two simple approaches: exclude data to obtain a subset with a shared censoring time 

or ignore the problem altogether and assume missing data as zeros. Compared to our 

approach, the first approach is also unbiased but has larger variance, and the second 

approach is biased but has similar variance. The MCF comparison test is better than 

the standard test used on a subset of data, because it allows the entire data set to be 

used. In the second experiment, we compared the retention rate and our method. We 

found that in the 1.18 progression speed test, the retention rate was very noisy 

compared to our method, because the results depended on the day we picked whereas 

our method always identified the best version. In the 1.15 vs 1.18 version test, we 

found that results may differ whether we use short term or long term retention, 

whereas our method provided an unambiguous answer of what these retentions imply 

in total. In the third experiment, we used the MCF to calculate the expected lifetime 

value to evaluate whether there are benefits to generalizing the standard metrics. We 

found a large difference in LTVs, whereas the standard retention measurements did 

not differ. Fourth, we investigated how well these findings generalize to other games. 

We calculated the expected playtime in 8 different games with 31 days of follow-up 

using the MCF, and compared the estimates to SteamSpy data that gives the true 

playtimes. With one exception, a mobile game with few players and a very long tail, 

our results predict the final playtimes well. Our method is useful for a large variety 

of game genres and can quickly determine the relative order of the games. However, 

the usefulness may depend on the characteristics of the data set. Greater variance in 

playtimes implies that one needs to use larger sample sizes, and lower churn rates 

imply that one needs longer follow-ups, to estimate the final playtime. 

A     ’        b     : The author was responsible for the study. Anne-Maarit 

suggested a structure for an earlier draft of the paper. Remaining authors provided 

comments on a draft of the paper and acted as supervisors. 
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4.1.2 Peer-to-Peer lending 

4.1.2.1 Predicting expected profit in on-going peer-to-peer loans with 

survival analysis based profit scoring 

Motivation: P2P lending is a modern financing solution where an online 

platform connects individual borrowers and lenders. The borrowers make a loan 

application with their information and the lenders can choose the loans they invest 

in based on their investment criteria. The loans typically have a high default risk and 

high interest rates without any collateral. Past approaches have been based on 

analyzing credit risk, where the goal is to classify loans into different categories 

based on the risk of default. However, the high interest rates may or may not in fact 

compensate for the defaults, so selecting loans based on the classification does not 

necessarily answer the question. Investors ultimately wish to know the expected 

profit, which depends on both default risk and the interest rate. However, there is a 

problem with censored loans, because most loans are recent and have been scheduled 

to be repaid over many years. The full payment history of many loans has not been 

observed, so how can we calculate the profit in these loans? Our study develops a 

model that predicts the expected profit in the loans using survival analysis, which 

allows the analyst to use all loans in the modelling process, no matter how recent.  

Data and methods: We use a public data set of 65675 loans and 112 features 

from the Bondora P2P Lending platform. The data set was filtered to include loans 

from January 2013 to October 2018, because Bondora’s rating was implemented in 

this period and we compare our approach to it. The data describes demographic and 

financial information of the borrowers, the current state of the loans, and their 

payment behavior. The status of each loan is either current, repaid or default, where 

a loan is said to be in default if it is over 60 days late from last scheduled payment. 

Our data consisted of 36.5% of defaulted loans, 41.8% current loans, and 21.7% of 

repaid loans, which indicates that the loans are high risk and censoring is a significant 

problem. The interest rates have gone down from 25% in 2013 to 12% in 2018, which 

suggests that recent loans are different from the historical ones. 

Our method has two stages: First, we predict monthly default probabilities using 

survival analysis. Then we use the predicted default probabilities, a loss given default 

estimate and the interest rate to predict the loan profit using a discounted cash flow 

(DCF) analysis of the expected monthly payments. If a loan defaults, depending on 

the platform we may either lose our money, obtain a percentage of principal as it is 

sold to a collection agency, or have to estimate the loss. For a constant default rate, 

we in fact have a simple formula i = (1-h)I + hD, where h is the monthly default 

probability, I is the interest rate, and D is the loss given default. In this study, we 

assume a constant default rate and use Bondora’s estimate for the loss given default. 
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Results: We divided the data into 20% test set and 80% training set. We measure 

the mean squared error (MSE) and area under the ROC curve (AUC) of monthly 

default and profit predictions, compared to what actually happened in the intervals. 

We have very low MSEs in the test set, 0.029 for default and 0.017 for profit, which 

are due to the fact that the actual quantities are very small to begin with. The AUC 

of predicting whether a loan defaults or not each month is 0.71, suggesting that the 

model does significantly better than random. We next analysed how interest rates, 

default rates, and predicted profits correlate. While most interest rates are between 

25 and 35%, most of the predicted profits are between 5 and 15%, and there are many 

loans with an expected loss. This means a significant amount of the interest goes into 

covering the defaults. There is a strong correlation between the predicted monthly 

default rate and the interest rate, but the results suggest that it may be possible to 

choose more profitable loans where the interest more than compensates the expected 

defaults. Finally, we tested the model’s ability to select more profitable loans by 

dividing the loan data into 10 portfolios from the best to worst loans. We can use 

different criteria to choose the best portfolio, and we had an average profit of 20% 

based on selecting the most profitable loans, 12% based on lowest credit risk in terms 

of predicted monthly default probabilities, and 10% based on the Bondora credit 

rating. The experiment suggests that our approach outperforms other approaches in 

predicting the expected profit.  

 A     ’        b     : Ajay was responsible for experiments and the author 

of this thesis came up with the profit calculation idea. The paper was written in 

collaboration. 

4.1.2.2 Predicting profitability of peer-to-peer loans with recovery 

models for censored data 

Motivation: Peer-to-peer (P2P) lending is the practice of lending money 

between individuals through an online platform. The borrowers apply for a loan with 

their financial information and the lenders bid for the loans by offering an interest 

rate. The lenders use the available information to decide who to offer loans to and at 

what price. The interest rates are ultimately based on the supply and demand of loans, 

but implicit in them is an assumption about the default risk and the loss given default. 

Setting an appropriate interest rate can be a challenging problem. The platforms 

attempt to help by providing statistics about past loans and often provide a rating 

model that categorizes low and high risk loans. However, an investor wants to 

ultimately know the expected profit of a loan. The profit can be calculated with 

discounted cashflow (DCF) analysis if one knows all of the payments in a loan. This 

is not possible because many loans are censored, meaning that are still ongoing and 

we do not know the future payments. How can we train a model when we do not 
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know the profits in the training set? Simple solutions are problematic. Excluding on-

going loans creates bias because it removes loans more likely to survive. Assuming 

future payments are made in full or not at all creates an optimistic or pessimistic bias. 

Limiting the analysis to old loans that have had the possibility to be observed in full 

may not accurately predict profits in recent loans. In this study we therefore develop 

a model that uses censored loans to predict the expected future payments in any loan.  

Data and methods: We use a public data set of P2P loans from the Bondora 

platform. At the time of writing, we had 119341 loans with 112 features. We limit 

the analysis to loans issued after 2013. The features describe borrower information, 

current loan status, loan payment history, and Bondora’s own predictions about the 

loan. Each loan is said to be either repaid, current or late. A loan defaults if it is 60 

days past its due payment. We extend the previous study by providing two models: 

a new default model that does not assume constant monthly default rates and a new 

loss given default (LGD) model that predicts the monthly recoveries thereafter in 

censored data. With these two models, we can calculate the expected monthly 

payments and the resulting profit. The default model is based on predicting whether 

a loan defaults in each monthly interval with logistic regression. The loss given 

default model is based on predicting the recovery payments as a percentage of 

principal in each monthly interval with least squares regression. We calculate the 

profit using DCF analysis, where profit is the required rate of return which makes 

the present value of the predicted monthly payments equal to the loan amount. 

Results: Both models we presented are linear models: logistic regression for 

defaults and least squares regression for recoveries. We interpreted the coefficients 

of the models and found intuitive results: smaller default rate and higher recovery 

rate is predicted by earlier loan issuance year, better country and credit rating, high 

education, home ownership, stable job, lower debt load, existing customer, etc. We 

then compared our loss given default predictions to Bondora’s. We calculated the 

the loss given default with DCF analysis assuming a 10% profit requirement. There 

is some correlation to Bondora’s estimates, but we have smooth LGDs with 0.75 

average compared to Bondora’s discrete values with 0.55 average. We found a strong 

correlation between the interest rate, predicted default rate, and the predicted loss 

given default. This correlation means that individuals attempt to set the interest rate 

higher to compensate for a higher default probability or higher loss given default. 

However, these correlations are not perfectly aligned with the predicted profit, 

implying that there may be loans with higher or lower profits. We measured the 

prediction accuracy of the recovery model with mean error (ME) and mean squared 

error (MSE) by dividing the loans into 25% test set and 75% training set. The model 

is unbiased, meaning that ME is consistently zero, and the MSE is very low also. 

Finally, we compared our model to Bondora’s LGD model and rating model by 

dividing the test set loans into 8 different portfolios based on LGD or rating values. 
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Our model correctly orders the portfolios and in fact predicts the actual LGDs very 

well, whereas the other two approaches do not perform better than random.  

A     ’        b     : The author was responsible for the study. Ajay wrote 

the related work section. Tapio acted as a supervisor. 

4.1.3 Unemployment 

4.1.3.1 Predicting Unemployment with Machine Learning Based on 

Registry Data 

Motivation: Unemployment is a significant issue for societies and individuals 

alike. To understand how an individual experiences unemployment, we need to 

consider the full labour market history of each person. This history consists of spells 

unemployment that alternate between spells of non-unemployment. One generally 

views the event of exiting unemployment as a positive event and entering 

unemployment as a negative event, where a major interest is to reduce the total 

amount of unemployment. The total time in unemployment is determined by both. 

The person spends less time in unemployment if the unemployment spells are short 

or the non-unemployment spells are long. In the study, we model the full labour 

market history of individuals and evaluate the predictive ability of the model in three 

separate tasks. These tasks are to predict the probability of exiting unemployment, 

entering unemployment and being unemployed at a given time. 

Data and methods: Our data set was collected in the ELY Centre of Southwest 

Finland using the official unemployment registry. Individuals need register in order 

to receive unemployment benefits, so the registry can be considered to contain every 

unemployed individual. The unemployment registry was sampled at the end of the 

month during 2013-2017 to record individuals who were in the registry. The entries 

were processed into a data set where each observation has the unemployment status 

(in registry, not in registry, censored) with the person’s information (gender, age, 

work experience, general level and field of education). From the 60 month follow-

up and 128 937 persons, we took a random sample of 20 000 persons.  

We model the unemployment status of a person as a discrete time Markov chain. 

The model is defined by the transition rates of unemployment exit and entry, which 

are assumed to be person specific. If the transition rates are constant, the probability 

of being unemployed converges over time to a steady state probability. This is the 

predicted lifetime unemployment of an individual. The transition rates can be learned 

based on two sources: person information and their labour market histories. The 

unemployment entries and exits are then influenced by the observed information, 

latent information inferred from the unemployment history, and randomness in 

finding or exiting a job. We compare three models for unemployment prediction. 
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The linear model (LM) includes only the covariates but not the subject specific 

intercepts. The linear mixed effects (LME) model includes the covariates and subject 

specific intercepts as random effects sampled from multivariate normal distribution. 

The linear machine learning (LML) model includes the covariates and subject 

specific intercepts as model parameters which are made well-conditioned by 

regularization. 

Results: We evaluate the models on three different prediction tasks: predict the 

risk of unemployment exit (Exit), risk of unemployment entry (Entry) and the 

unemployment status (Prevalence). The unemployment status can be predicted as the 

long-run unemployment prevalence, or the transition probability in the Markov chain 

given an initial state. We evaluate the time-stratified AUC of three different models, 

measured separately in two tests sets. The training set (Train) consists of 10000 

persons in years 2013-2016. The first test set (Test) consists of same persons in 2017, 

and the cold start test set (Cold) contains 10000 different persons in 2013-2017. 

We make several interesting findings. Cold start prediction performance is the 

same for all three models, because the LME and LML models cannot learn person 

specific intercepts for persons who are not in training data. Performance based on 

only observed features is modest but better than random. Test set performance for 

future prediction of same persons are significantly improved in the LME and LML 

models, which indicates there are significant unobserved features that can be learned 

from labour market histories using the person specific rates assumption. Training set 

performance is overoptimistic in the LME and LML models, because they have a 

high degree of flexibility to fit the data. The Markov Chain assumption significantly 

improves prediction performance in the prevalence model: the closer the previous 

known state is in time, the more accurately we can predict the current state. Over 

time these converge to the lifetime unemployment prevalence prediction. The 

statistical model and the machine learning model result in very similar predictions. 

The covariates have intuitive effects that are consistent with previous findings, but 

there is still considerable variation between individuals that can be used to improve 

predictions by considering their past unemployment histories. 

A     ’        b     : Author was responsible for the study. Tapio acted as a 

supervisor. 

4.1.4 Game recommendation 

4.1.4.1 Content Based Player and Game Interaction Model for Game 

Recommendation in the Cold Start setting 

Motivation: Many different digital platforms sell games to players and they have 

the problem of recommending interesting new games to play. The platforms are 
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interested in accurate recommendations because they can increase sales and player 

retention. From an analytics perspective, game developers and publishers are both 

interested in knowing the reasons why players like certain games in the platform. To 

solve this problem, game recommendation is a natural application of recommender 

systems. Recommender system models can be divided into collaborative filtering 

(CF) or content based (CB). The platforms have large databases of past player and 

game interactions, which the CF methods utilize. They also store information about 

players and the game content, which can be used as features in CB methods. Game 

information can be tags, genres, description, screenshots, etc. and player information 

could be based on implicit behaviour or asking players explicit questions about their 

preferences. These two approaches are complementary, and hybrid recommenders 

can be used to utilize both sources of information or combine the predictions. 

Collaborative filtering is typically better in terms of predictive accuracy, unless 

predictions are required for players or games with few interactions. The case of no 

interactions is called the cold start setting and collaborative filtering cannot predict 

at all. While most research has considered historical data sets of observed player and 

game interactions, new games and players appear all the time and we need to be able 

to predict for them before we observe interactions. We therefore define four different 

settings and investigate new models in each setting: past games and past players with 

interactions (Setting 1), new games without players (Setting 2), new players without 

games (Setting  3), and both new games and new players simultaneously (Setting 4). 

Data and methods: We use a private data set based on questionnaire answers of 

favourite games and playing motivations. The data set contains 15894 players and 

6465 games with a total of 80916 game likes. Player features are obtained by asking 

a randomized set from 61 questions that describe playing motivations (’Engaging in 

battle’, ’Exploding and Destroying’, …) on a Likert scale of 1 to 5. Game features 

are obtained by mining the Steam and IGBD platforms for 379 game tags as a binary 

vector. The rating matrix Ri,j contains a value 0 or 1 for every player and game pair 

depending on whether player liked the game.  

We investigate the task of Top-N recommendation, which means that a score is 

predicted for every pair and N games with the top score are recommended to the 

player. This is a ranking task, so we evaluate the methods with two ranking metrics. 

Precision@k counts the fraction of played games and nDCG@k penalizes the ranks 

of played games based on where they appear in the recommendation list of length k. 

We use kNN and SVD as baseline collaborative filtering methods. We present a new 

collaborative filtering method based on the multivariate normal distribution and 

three content based methods Tags, Questions, Tags X Questions. The content based 

methods can be seen as a special case of the SVD, where latent feature vectors have 

been restricted to use the provided features. In the Tags model, game tags are used 

as features and we learn a tag interaction vector for every player. In the Questions 
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model, player questionnaire answers are used as features and we learn a question 

response vector for every game. In the Tags X Questions model, we use both features 

and learn the interactions between game tags and player questionnaire answers. All 

three models are linear models and we present computational shortcuts to train them 

in a reasonable time. 

Results: Setting 1 and Setting 3 have the highest accuracy of predictions, Setting 

2 appears more difficult, and Setting 4 is the most difficult. In Setting 1, collaborative 

filtering outperforms content based models and the MVN model delivers the highest 

accuracy. In Setting 2, only the Tags and Tags X Questions models are able to 

generalize to new games, and the more flexible Tags model has higher accuracy. In 

Setting 3, only the Questions and Tags X Questions models are able to generalize to 

new players, and the more flexible Questions model has higher accuracy. In Setting 

4, only the Tags X Questions is able to generalize to new games and players 

simultaneously. The results indicate an important trade-off between generalization 

ability and higher accuracy: it is better for generalization to use the provided features, 

but higher accuracy can be obtained with latent features if they can be learned from 

the setting.  

We also interpreted the MVN correlation matrix and the interaction coefficients 

of the three content based linear models. We found that the correlations were very 

intuitive and specific: very similar games are recommended. Player responses to 

game tags and game response to player preferences are logical. The Tags model 

learns to recommend games that have similar tags to the games the player has played, 

and the Questions model learns to recommend games to players that have similar 

preferences to those players who played the game. The Tags x Questions models 

model learns an interaction matrix by matching game preferences and game tags that 

are similar. However, the game preferences are asked with very generic questions 

and the quality of recommendations is therefore generic as well. Popularity bias was 

visible in recommendations, but it could be easily removed. This results in worse 

accuracy but better subjective quality. Each model performed the best and was the 

most useful in the setting for which it was designed, and therefore all of the models 

can be useful in different prediction tasks. 

A     ’        b     : Author was responsible for the study. Aki and Jukka 

provided the data set and commented the results, and Tapio acted as a supervisor. 

4.2 Research results 

This section summarizes the research questions and discusses the main findings.  
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4.2.1 (RQ1): How to use machine learning and 
mathematical models to answer important business 
questions in censored data sets? 

The first research question asked if it was possible to develop models that can be 

applied to censored data sets in different domains. The data sources included mobile 

game logs, public peer-to-peer lending histories, local unemployment registry, and 

player questionnaire. These data sources have a similar problem; they are censored 

in the sense that some of the data is missing. We investigated models that were 

specifically designed for every application and considered the fact that the data was 

censored in their formulation. The main benefit is that these models can be applied 

immediately when the data is being gathered instead of waiting for years to gather 

complete data sets. 

The solutions are based on modelling the problem in three stages: 1) deconstruct 

the data set to pairwise data 2) train machine learning on the pairwise data and predict 

the missing values 3) reconstruct the answer from the pairwise predictions. This 

approach combines a mathematical formulation of the problem and specialized 

machine learning models: a mathematical understanding of the problem is required 

to implement the stages 1) and 3), and a machine learning model is needed for the 

stage 2). The different machine learning models can be seen as instances of a single 

problem where the data set consists of user and time pairs. However, the practical 

models use specialized problem specific formulations of how the intercepts and 

features are defined for the user and time pairs. 

The first model solved the problem of measuring retention and monetization in 

data sets where customers can have different follow-up times. For example, we 

measured total playtime and lifetime value in mobile games. The new method 

broadened the application of analytics, since it is possible measure in real-time the 

expected value of any metric in any data set. The second model solved the problem 

of predicting profitability of peer-to-peer loans, where many loans in the data set are 

still on-going and we do not know their full payment histories. Previous approaches 

have either used historical data sets from years ago or answered simpler questions. 

Predicting loan profit accurately is the most important questions investors have and 

the new method means that is is possible even in current data sets. The third model 

describes an individual’s unemployment status as a Markov chain. The model makes 

it possible to model all aspects of the unemployment experience and predict future 

unemployment from demographic features or past unemployment. The fourth model 

investigated a game recommendation problem, where some player and game like 

pairs are given and the task is rank the remaining games for every player.  We 

investigated different models that would make it possible to recommend games in 

four different settings when predictions are required for known players and games, 

new games, new players, or both simultaneously. 
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The results indicate that it is possible to develop accurate models for censored 

data. It is not necessary to limit the analysis to historical data sets where we have 

collected fully observed answers, or analyse only time-to-event outcomes that are 

considered in standard survival analysis, for example. These models can describe the 

underlying problem and censoring does not bias the results. The answers are more 

accurate when censoring is taken into account. On the other hand, in depth domain 

knowledge and mathematical understanding is required to deconstruct and 

reconstruct the problem as pairwise data, and then formulate an appropriate model 

for such data. 

 

4.2.2 (RQ2) How to obtain unbiased model evaluation when 
the data is not independent and identically distributed? 

The primary goal of machine learning is to give accurate predictions. A machine 

learning method can be seen as a black box that produces an output for a given input, 

and we evaluate the method based on how well it predicts for new data. It is therefore 

important to obtain accurate estimates of how well the model predicts in reality. In 

the standard setting we can split the data set into training and test sets: the model is 

fitted on the training set and evaluated on the test set. However, this relies on the 

assumption that the observations are independent and identically distributed (i.i.d.), 

which is not necessarily valid for pairwise data when many observations belong to 

the same user or time point.  

Consider a pairwise data set that consists of user and time pairs. The prediction 

task was divided into four different settings, where predictions can be required for: 

1) known users and known times, 2) new times, 3) new users, 4) new users and new 

times. The standard training and test set split measures the model performance in the 

first setting, and the correlations between observations can result in more accurate 

predictions than would occur for new users or new times. We explained how four 

different types of training and test set splits can be created to accurately measure the 

performance in each setting, which is the answer to the research question. 

The overall prediction performance was reasonably good in our applications. It 

was significantly better than random but there was a large amount of random 

variation in the output that could not be explained by the features in every problem. 

We found that the prediction performance was very different in different settings. It 

is typically considerably more difficult to predict outside setting 1, where setting 4 

was the most difficult. In the retention and monetization problem, the goal was more 

to measure the profitability of a given acquisition method than predict for individual 

customers. In peer-to-peer lending, we obtained considerably better profits by 

picking the most profitable loans as predicted by our model. In the unemployment 
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problem, we were able to predict the future unemployment status of known persons 

reasonably well. In games, all four settings are generally valid based on the 

recommendation problem. The predictions were quantitatively and qualitatively very 

good in the first setting, but not so good in other settings. 

It should be noted that predictive accuracy is not always straightforward or only 

measure of real-world utility of the method. We give a couple of examples. The goal 

can be to measure the profitability of acquiring different customer groups rather than 

to predict for individual customers, because we may not be able to pick the customers 

individually even if we know that some of them have larger purchases. Similarly, the 

unemployment office can prioritize services to unemployed people based on their 

risk of exiting unemployment; the fact that we cannot predict perfectly of who exists 

doesn’t mean the method is not useful. There is a lot of random variation that 

probably cannot be modelled, and the absolute performance is not a direct measure 

of the utility of the method. In the game recommendation task, the accuracy of the 

recommendations may not correlate how useful players find the recommendations. 

It is often possible to get a good accuracy by recommending the most popular games 

to everyone, even though players typically want to see games that are closely related 

to the games they like and they have not heard about.
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5 Conclusions 

5.1 Summary of the thesis 

Machine learning is a field of data science that develops algorithms for problems 

where there is a clear predictive task and accuracy of the methods is a primary 

concern. However, practical applications sometimes cannot afford to wait for years 

of follow-up gather a data set of correct answers. In this case, the correct output is 

not fully observed, i.e. it is censored, and the problem needs to be formulated in a 

new way. The goal of this thesis was to investigate how machine learning can be 

applied to censored data sets in different applications to answer the most relevant 

business question. 

Chapter 1 motivated the research goal. A simple example of LTV prediction was 

used to illustrate a censored data set. We discussed the basic steps in a data science 

project and how models for censored data impact the different stages. Chapter 2 

formulated machine learning as an instance of empirical risk minimization and gave 

a mathematical definition of the learning problem. The relationship to statistics was 

briefly discussed. Machine learning for censored data was claimed to represent a 

pairwise learning problem, and various special aspects of pairwise prediction were 

discussed. Finally, four different practical applications of machine learning that 

implement the framework were presented. Chapter 3 briefly summarized the studies: 

motivation, data, methods, and study results. Finally, the research questions were 

revisited and results discussed in Chapter 4. 

Earlier chapters discussed how machine learning can be used to give accurate 

predictions in different practical applications that have censored data. Models that 

can be applied to censored data can be used for real-time predictions and do not 

required long follow-up periods, which can be a major practical benefit. We 

reformulated each data set as a pairwise learning problem and defined a simple 

machine learning model for the pairwise data in each application. The models had a 

good predictive performance, which was typically somewhere in the middle from 

random predictions to perfect accuracy. It was not necessary to give perfect answers 

in these applications and any incremental benefit to random answers or simple 

baselines can be seen as beneficial. The validation methods for pairwise data needed 

to take into account the fact that every observation is a user and time pair: real world 
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prediction tasks may require predictions for new users or new times. Indeed, the 

accuracy in these tasks was found to be significantly different, which implies that 

validation steps need to consider pairwise structure of the data. 

To summarize, the thesis presented models in four different applications:  

1. Retention and monetization: Many companies use analytics to track the 

success of their product with different metrics. The model measures how 

the expected value of any metric, such as lifetime value or total product 

use, accumulates as a function of follow-up length in censored data. The 

model can be used to implement real-time analytics. 

2. Peer-to-peer lending: Investors make decisions on which loans to invest 

in based on their interest rate and credit rating, but ultimately they wish 

to know the profit. The model estimates the profit in censored data sets 

using DCF through two complementary models that incorporate the loan 

schedule: a default rate and a recovery rate model. 

3. Unemployment: Understanding the dynamics of unemployment is an 

important research topic. The model describes the unemployment status 

of individuals in censored registry data as Markov Chains. The model 

predicts the probability of exiting, entering and being in unemployment. 

A lifetime individual unemployment prevalence is implied by the model. 

4. Game recommendation: Games are recommended to players through 

many different channels, where some (player, game)-likes are known 

and used for recommending new (player, game)-likes. We investigated 

how four different models can make optimal recommendations in four 

different settings: collaborative filtering, new games, new players, and 

new players and games. 

The experiments show that these models produce accurate predictions of the 

censored prediction targets. Simpler methods are limited on the type of questions 

they can consider; applied directly to censored data they produce inaccurate and less 

reliable results. We found interesting implications in many real world applications: 

the overall success of games in terms of playtime could be estimated very quickly 

when the game is launched, the profits in peer-to-peer lending may not be as high as 

though, that individual’s lifetime unemployment is affected by both how fast they 

exit unemployment and how quickly they return to unemployment, and game 

recommendation is possible in every setting with different degrees of accuracy. 
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5.2 Future work 

There are many possibilities for future work. We considered linear models, but 

more complicated models could be applied after the problem has been formulated as 

pairwise data. In particular, machine learning considers several non-linear models 

that have better performance for complex prediction tasks: kernel methods, random 

forests, neural networks, etc. The data sets in our problems consists of few high-level 

variables, so simple linear models are quite competitive. The linear models were 

formulated in a particular way in each task, and it would be possible to extend these 

models without considering general all-purpose models. For example, there could be 

second order interactions between the features or the effect of features could change 

over time.  

Many other applications have the same problem, and it would be possible to 

apply the presented models to more data sets. While the pairwise formulation works 

in any similar task, there is no guarantee that the machine learning model is able to 

predict well in other tasks. Only studies that investigate a particular application can 

prove that the method works to predict in that task. Of course, the models can have 

important practical implications in the domain if they come to different conclusions 

when censored data is correctly modelled. For example, it was found that many new 

peer-to-peer loans might not be as profitable as the fully observed old loans many 

investors have trained their models with. 
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Montoya Perez, Jussi Toivonen, Pekka Naula, Anne-Maarit Majanoja, and Riikka 

Numminen. If I forgot someone from the list, don’t worry you were the most 

important. Research would not be the same without you all! 

 

   

5.5.2021 

Markus Viljanen 
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