
Novel Parallelization Techniques for
Computer Graphics Applications

Master of Science Thesis
University of Turku
Department of Future Technologies
Cadmatic
2021
Diego Sanz Villafruela

Supervisors:
Dr Mohammad-Hashem Haghbayan
Prof Juha Plosila

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

Diego Sanz Villafruela: Novel Parallelization Techniques for Computer
Graphics Applications

Master of Science Thesis, 75 p.
Cadmatic
March 2021

Increasingly complex and data-intensive algorithms in computer graphics applications
require software engineers to find ways of improving performance and scalability to satisfy
the requirements of customers and users. Parallelizing and tailoring each algorithm of each
specific application is a time-consuming task and its implementation is domain-specific
because it can not be reused outside the specific problem in which the algorithm is
defined. Identifying reusable parallelization patterns that can be extrapolated and applied
to other different algorithms is an essential task needed in order to provide consistent
parallelization improvements and reduce the development time of evolving a sequential
algorithm into a parallel one.

This thesis focuses on defining general and efficient parallelization techniques and
approaches that can be followed in order to parallelize complex 3D graphic algorithms.
These parallelization patterns can be easily applied in order to convert most kinds of
sequential complex and data-intensive algorithms to parallel ones obtaining consistent
optimization results.

The main idea in the thesis is to use multi-threading techniques to improve the
parallelization and core utilization of 3D algorithms. Most of the 3D algorithms apply
similar repetitive independent operations on a vast amount of 3D data. These application
characteristics bring the opportunity of applying multi-thread parallelization techniques
on such applications. The efficiency of the proposed idea is tested on two common com-
puter graphics algorithms: hidden-line removal and collision detection. Both algorithms
are data-intensive algorithms, whose conversions from a sequential to a multithread
implementation introduce challenges, due to their complexities and the fact that elements
in their data have different sizes and complexities, producing work-load imbalances and
asymmetries between processing elements.

The results show that the proposed principles and patterns can be easily applied
to both algorithms, transforming their sequential to multithread implementations, ob-
taining consistent optimization results proportional to the number of processing elements.
From the work done in this thesis, it is concluded that the suggested parallelization
warrants further study and development in order to extend its usage to heterogeneous
platforms such as a Graphical Processing Unit (GPU). OpenCL is the most feasible
framework to explore in the future due to its interoperability among different platforms.

Keywords: hidden-line removal, collision detection, parallelism, computer graphics, Cad-
matic, multi-threading

Contents

1 Introduction 1

1.1 Aim and objectives of the study . 4

2 Theoretical Background 6

2.1 Cadmatic . 6

2.2 Multi-threading . 8

2.3 Hidden-line removal . 9

2.3.1 Existing sequential algorithms 11

2.3.2 Parallel algorithms . 11

2.4 Collision detection in computer graphics 12

2.4.1 Bounding volumes . 13

2.4.2 Basic primitive tests . 14

2.4.2.1 Closest-point computations 14

2.4.2.2 Testing Primitives 15

2.4.3 Bounding Volume Hierarchies 17

2.4.4 Spatial partitioning . 17

2.4.4.1 Octrees and Quadtrees 18

i

3 Methodology 19

3.1 Parallelization techniques and patterns 20

3.1.1 Thread-safe patterns . 20

3.1.2 Optimization patterns . 27

3.2 Hidden-line removal . 34

3.2.1 Bucketing acceleration . 36

3.2.2 Local hidden-line removal . 37

3.2.2.1 Multi-threading local hidden-line removal 39

3.2.3 Global hidden-line removal . 47

3.2.3.1 Multi-threading global hidden-line removal 48

3.3 Collision detection . 56

3.3.1 Optimization . 58

3.3.1.1 Determining detailed collision object pairs 58

3.3.1.2 Performing detailed collision detection 62

4 Results 67

4.1 Hidden-line removal . 68

4.2 Collision Detection . 70

5 Discussion 72

6 Conclusion and Future Work 74

References 76

ii

List of Figures

2.1 Ship designed using Cadmatic. 6

2.2 Plant industry designed using Cadmatic. 7

2.3 The first image represents a set of plant model objects contained in
a view in which the hidden lines have not been removed. 10

2.4 The second image represents the same view than the first image, after
applying hidden-line removal algorithm. 10

2.5 Examples of a collision, contact and clearance violation between two
different objects. 12

2.6 Most common types of bounding volumes 14

2.7 Illustration of the hyperplane separation theorem 15

2.8 Ray casting example. 16

2.9 An example of a bounding volume hierarchy using rectangles as bound-
ing volumes. 17

2.10 Recursive subdivision of a cube into octants and its octree.
Source: https://en.wikipedia.org/wiki/Octree 18

3.1 Example of the importance of the const keyword 21

3.2 Example of a drawing in Cadmatic with four wire-frame views. 35

3.3 Bucket acceleration. 36

iii

https://en.wikipedia.org/wiki/Octree

3.4 Cube whose occluded-lines are still visible. Local hidden-line removal
has not been yet applied to this cube and it is possible to observe all
occluded edges. 37

3.5 Cube whose hidden-lines are not visible 39

3.6 Cards representing over and under segments. 48

3.7 Space subdivision by collision detection.
Source: https://en.wikipedia.org/wiki/Octree 57

4.1 This chart shows the speedup obtained when applying the parallel
version of local hidden-line removal on 13 different views using
4+ threads. The average speedup value is 2.226 and the standard
deviation is 1.035, having a minimum speedup value of 0.836 and a
maximum speedup value of 3.891. 68

4.2 This chart shows the speedup obtained when applying the parallel
version of global hidden-line removal on 13 different views using
4+ threads. The average speedup value is 2.859 and the standard
deviation is 0.784, having a minimum speedup value of 1.774 and a
maximum speedup value of 4.568. 69

4.3 This chart shows the speedup obtained when executing the paral-
lel version of collision detection on four different models using 4+
threads. The average speedup value is 2.911 and the standard de-
viation is 0.727, having a minimum speedup value of 2.179 and a
maximum speedup value of 3.63. 70

iv

https://en.wikipedia.org/wiki/Octree

Abbreviations

API Application Programming Interface

BVH Bounding Volume Hierarchy

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CD Collision Detection

CPU central processing unit

CREW Concurrent Read Exclusive Write

CUDA Compute Unified Device Architecture

FPGAs Field-Programmable Gate Array

GPU Graphical Processing Unit

HLR Hidden-Line Removal

OpenCL Open Computing Language

PLPP Pattern Language for Parallel Programming

POSIX Portable Operating System Interface

PRAM Parallel Random-Access Machine

1

1 Introduction

Increasingly complex and data-intensive algorithms require software engineers to find
ways of improving performance and scalability to satisfy requirements of customers
and users in accordance to Lehman’s first law of software evolution [1], in which a
software application must constantly change or become more useful. In addition to
that, Moore’s law is not longer applicable due to thermal limitations with respect
the number of transistors that could be fit on a chip [2], stagnating the exponential
progress in processor performance prognosticated by Moore. In order to make sus-
tainable these increasing rates of performance, it is necessary to evolve sequential
algorithms into parallel algorithms by taking advantage of hardware acceleration
techniques, such as multi-core processors or other parallel platforms [3].

Evolving sequential to parallel code is not a simple task, as Massingill [4] explains:
“Creating parallel software is difficult, time-consuming and error-prone”. Moreover,
parallel software is often specifically tailored for each specific algorithm, preventing
its solution to be applied to other algorithms. Additionally, there are some other
challenges [5] when evolving sequential to parallel because parallel code is not as
intuitive as sequential code, and many programmers are not properly trained in this
field. In addition, programmers may not fully understand the algorithm they are
trying to parallelize, as well as the data dependencies that are present in the code.
These issues could lead to incorrect results when evolving a sequential to parallel
algorithm. Even if the parallelization of an algorithm is successfully developed, its
solution is not reusable because it can not be utilized outside the specific problem
in which an algorithm is defined.

Identifying reusable parallelization solutions for commonly occurring optimiza-
tion problems is essential in order to provide general high-performance computation
techniques. This thesis focuses on defining general and efficient parallelization tech-

CHAPTER 1. INTRODUCTION 2

niques and approaches that can be followed in order to improve the performance of
3D design applications when evolving sequential to parallel algorithms.

Computer graphics is the field that describes any use of computers to create and
manipulate images [6]. Computer graphics involves numerous diverse areas such
as modeling, rendering and animation. It also includes other minor areas such as
user interaction, virtual reality, visualization, image processing, 3D scanning, etc.
It is also present in many important applications such as video games, cartoons,
Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) appli-
cations, medical imaging, etc [6].

This thesis is focuses on CAD/CAM applications, such as Cadmatic. CAD/-
CAM applications are used to design parts and products on the computer and then,
using these virtual designs, to guide the manufacturing process [6]. The usage of
computer-aided design and computer-aided manufacturing tools is widely extended
in many engineering fields such as marine and plant industries.

There are some studies and literature [4] about methodologies for parallel pro-
grammers collected in a set of patterns, such as the “Pattern Language for Parallel
Programming (PLPP)”. However, most of the methodologies described in those stud-
ies do not consider many aspects, such as data asymmetry, that causes imbalances
among different threads due to the fact that elements have different complexities and
sizes requiring different execution times. For these kind of problems, those method-
ologies are not suitable for a specific environment such as Computer Graphics, in
which many algorithms deal with data asymmetry and other secondary issues.

Two kinds of complex algorithms that are investigated in this thesis to prove
the efficiency of the proposed optimization techniques are: Hidden-Line Removal
(HLR) and Collision Detection (CD). Both algorithms CD and HLR are widely
used in CAD software applications, such as Cadmatic. Cadmatic is a 3D design tool
for marine and plant industries. Cadmatic provides the framework and environment
in which these two algorithms are run. Cadmatic is the commissioner of this thesis
and has taken part actively in development of this master’s thesis.

Nowadays it is possible to apply several parallelization techniques as most of
the computers have multiple processor cores [7]. There is usually a highly parallel
central processing unit (CPU) that possesses several physical and virtual cores, in
addition to a GPU which has many small processing elements.

CHAPTER 1. INTRODUCTION 3

A normal CPU is an electronic circuitry design to carry out general tasks by ex-
ecuting instructions in a sequential order. CPUs are suitable for general computing
tasks such as logic-arithmetic tasks, memory management, working with memory
addresses and register, and for interacting with peripherals. CPUs’ manufactures
affront technical issues with higher clock frequencies, for this reason CPUs’ perfor-
mance is mostly currently improved by adding extra cores.

A GPU can also be used as a hardware acceleration technique. A GPU is an
electronic circuitry designed to perform rapid mathematical calculations, primarily
for the purpose of rendering images. GPUs have also evolved from fixed function
rendering devices into programmable parallel processors.

A GPU is a very complicated system with many characteristic, and it can easily
outperform a common CPU in processing of float numbers [8]. However, a CPU
offers many additional features that GPU cannot give [9], such as virtual memory,
preemption, interruption, controllable switch context, and I/O interaction. An ad-
ditional difference between CPUs and GPUs is the way data that is handled. In the
case of GPU the focus is data independence.

Advances on GPUs brought the possibility of executing small programs called
kernels, allowing programmers to take full advantage of most of GPUs’ hardware
resources. Among the most important GPU frameworks are Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL).

CUDA was created by NVIDIA to provide an easy way to use GPU features in
non-graphic problems. CUDA is based on a SIMD architecture in which the same
piece of code is executed into many processing elements. CUDA was rapidly dis-
carded for this work because of its lack of heterogeneity with non-NVIDIA hardware
architectures.

OpenCL is a general purpose parallel programming framework for heterogeneous
architectures [7] such CPUs, GPUs, Field-Programmable Gate Array (FPGAs), etc.
OpenCL provides portable and efficient code to access these different types of pro-
cessing hardware elements.

This master’s thesis takes as case of study complex 3D-graphic algorithms:
hidden-line removal and collision detection, these algorithms have data dependencies
and include third party software that can not be loaded directly into a GPU.

CHAPTER 1. INTRODUCTION 4

Multi-threading, using several processing elements of a CPU, is the approach that
will be followed in this thesis in order to provide general approaches and techniques
of improving non-parallel complex algorithms. Achieving parallelism, in an optimal
way, avoiding waiting synchronization mechanism such as mutexes requires a deep
understanding of concurrency and parallelism techniques, that will be covered in
this thesis.

1.1 Aim and objectives of the study

The aim of this master’s thesis is to develop a methodology that could be used to
evolve sequential into parallel algorithms in a reusable way, in order that the ap-
plied techniques could be extrapolated to other algorithms obtaining consistent per-
formance improvements. This methodology focuses on complex and data-intensive
algorithms in the field of computer graphics algorithms.

The primary objective of the thesis was to assess the proposed methodology of
evolving sequential into parallel algorithms. In order to test the proposed methodol-
ogy two common computer graphics algorithms were taken as case of study: hidden-
line removal and collision detection.

In order to achieve the set objective of the study, the following work was carried:

1. Defining a methodology to support the evolution of algorithms from a se-
quential to a parallel implementation.

2. Implementing a multi-thread version of hidden-line removal and collision
detection.

3. Evaluating the performance of the new parallel implementations.

4. Assessing the proposed methodology.

CHAPTER 1. INTRODUCTION 5

The structure of this thesis is divided into the following sections.

• Chapter 1 is the introduction.

• Chapter 2 introduces the theoretical background. In this chapter, there is
a detailed description of hidden-line removal and collision detection. Cad-
matic is also introduced in this section as the environment in which these two
algorithms are executed and analyzed.

• Chapter 3 describes the methodology and parallelization techniques followed
in order to evolve sequential algorithms into parallel ones. It also explains how
these techniques could be extrapolated to other algorithms. Moreover, Cad-
matic hidden-line removal and collision detection algorithms are transformed
to their parallel implementations.

• Chapter 4 describes the obtained performance results in the two study cases
of hidden-line removal and collision detection.

• Chapter 5 discusses the obtained results, making an interpretation. The
validity of the proposed parallelization framework is also discussed.

• Chapter 6 corresponds to the conclusions of this master’s thesis, and future
work that needs to be considered.

2 Theoretical Background

2.1 Cadmatic

Cadmatic is a 3D design tool [10] for the marine and plant industries. Cadmatic
helps designers and engineers through the whole shipbuilding phases: initial design,
preliminary design, basic design, and detailed design. In addition to that, Cad-
matic is used in other later stages such as operation and maintenance, giving ship
production information and support.

Figure 2.1: Ship designed using Cadmatic.

Cadmatic also possess a plant design software aimed to be used by engineers and
designers to create 3D models of complete industrial projects. It provides outfitting
functionalities such as piping, instrumentation diagrams and generation of isometric
drawings.

CHAPTER 2. THEORETICAL BACKGROUND 7

Figure 2.2: Plant industry designed using Cadmatic.

Performance and scalability are important factors for Cadmatic in order to satisfy
growing needs and demands of users and customers. Most Cadmatic algorithms are
memory efficient, specially optimized to reduce their memory usage. Cadmatic soft-
ware was created in the 80s when memory was a scarce resource in many computers.
Nowadays, memory is an abundant resource and it is possible to increase memory
consumption in order to reduce the amount of computation by using memorization
techniques or dynamic programming [11].

Cadmatic software is written mostly in C and C++. These programming lan-
guages generate machine code, providing less overhead than other programming
languages such as Python or Java.

Most parts of Cadmatic software can only run on a single processing element.
Cadmatic software was designed in the 80s when concurrency did not exist or was not
important because most computers had a CPU with only a single processing element
(core in a multi-core processor). Nowadays most computers are conformed by several
different kinds or same kind but redundant processing elements [7]. It is not unusual
to find several processing elements in a CPU and a graphical processing unit. This
brings new possibilities to Cadmatic to boost performance of some complex and

CHAPTER 2. THEORETICAL BACKGROUND 8

data-intensive algorithms, such as hidden line removal and collision detection, whose
sequential execution times are taking considerable long times.

Hidden-line removal [12] is the method of computing which edges are visible by
the faces of parts for a specified view. Collision detection [13] is the computational
problem of detecting the intersection of two or more objects.

Using a GPU to accelerate those algorithms seems to be the right option, but
GPU software integration on Cadmatic is not an easy task. It is worth of mentioning
that Cadmatic uses OpenGL API to render 2D and 3D vector graphics. Using GPU
programming frameworks such as OpenCL or CUDA could affect the rendering
performance of Cadmatic software because of memory context switches between
different kernels, being a real issue that needs to be studied. Moreover, as it was
mentioned previously, hidden-line removal and collision detection algorithms have
data dependencies and include third party software that can not be loaded directly
into a GPU.

Multi-threading, using several processing elements of a CPU, is the approach
followed in this thesis in order to define the methodology of evolving sequential
to parallel algorithms. It is difficult to compare performance obtained by applying
parallelism using multi-threading or a GPU, due to the fact that both are application
specific. Even though a CPU has less parallelization capabilities than a GPU, a CPU
could provide a better solution for coarse-grain granularities. In addition to that,
multi-threading can be easily applied to an existing sequential algorithm without
many modifications.

2.2 Multi-threading

Most modern CPUs have several processing units, exploiting parallelism across
threads to improve performance [14]. A thread contains a set of instructions that are
executed in a processing element in sequence. In modern operating systems, there
is almost no limitation to the number of threads that can be created. However,
the number of threads that can be concurrently executed at a specific moment is
determined by the hardware. It is not possible to have more active threads than
processing elements. In addition to that, there are other factors that determine the

CHAPTER 2. THEORETICAL BACKGROUND 9

performance of multi-threading [15] such as the thread granularity, the workload
distribution among threads, and the number and cost of context switches. Thread
granularity is determined by the number of instructions per thread. Three are
three basic kinds of granularities: fine-grain (tens of instructions), medium-grain
(hundreds or more), and coarse-grain threads (thousands or more). The workload
distribution [15] makes reference to how data is distributed among each thread. It
is not a good performance solution to have threads that are doing most of the work
whereas other threads are already finished or idle, being their processing elements
free. This problem is present specially in algorithms in which there is big processing
time asymmetries between different elements, e.g., fault simulation algorithms [16].
In addition to that, using threads can yield bad performance results when threads
are interrupted, having to store their state for resuming their execution later on.
These context switches are often caused by other threads or processes that are
running concurrently [17]. However, when a thread needs to access a shared re-
source in an exclusive way, it needs to lock it, blocking other threads to access it.
A blocked thread has to do a context switch, and it will resume its execution when
the shared resource is again available. Reducing data dependencies is an essential
task that needs to be carried out when parallelizing an algorithm in order to obtain
satisfactory performance results.

The standard C++ multi-threading library is used in this thesis. This standard
library contains most of the features that are available in other libraries such as
Portable Operating System Interface (POSIX) Threads or p-threads libraries.

2.3 Hidden-line removal

Hidden-line removal is a computer graphics algorithm [18] used to determine which
object parts (line segments) in a wire-frame view (includes lines and vertices) are
not visible when occluded by other objects. Wire-frame views are important in
order to create 2D drawings. Even though most of the design is done with 3D mod-
els, 2D drawings are required for manufacturing. Manufacturers produce designed
components by taking these 2D drawings as reference.

In a three-dimensional computer graphics image display, it is often desirable [19]
to remove lines which are obscured or hidden from a viewer by an object which is

CHAPTER 2. THEORETICAL BACKGROUND 10

closer to the surface of the display screen. Hidden-line removal algorithm is specially
important in engineering when working with drawings.

Figure 2.3 and 2.4 show a Cadmatic drawing illustrating the behavior of hidden-
line removal:

Figure 2.3: The first image represents a set of plant model objects contained in a
view in which the hidden lines have not been removed.

Figure 2.4: The second image represents the same view than the first image, after
applying hidden-line removal algorithm.

CHAPTER 2. THEORETICAL BACKGROUND 11

2.3.1 Existing sequential algorithms

Hidden-line removal was an important research area in the 1970-1980s. In this
decade, many hidden-line removal algorithms were developed. Every year a new
algorithm was published improving the previous one. This iteration culminated
with the best sequential algorithm published by Dévai in 1986 [20]. The first group
of algorithms published before 1984 were based on the idea of dividing edges into line
segments by the intersection points of their images taking O(n3) in the worst-case
scenario.

Appel was the first researcher to give a general and easy solution for the problem
of hidden-line removal [21]. However, Appel’s solution was very inefficient resulting
in very long running times caused by applying a brute force approach, since all lines
of a surface are quantized into points and each point is tested independently to check
whether or not it is hidden by other parts of that previous surface [19]. Galiimberti
and Montanari improved Appel’s algorithm by computing only the set of faces which
hide an edge point, discarding the rest of them [12]. Hornung, combined Appel’s
idea of contour points with the notion of quantitative invisibility, to compute by
intersection, only the points in which there are changes in the visibility, testing edge
intersection of all edges against only all contour edges [22].

2.3.2 Parallel algorithms

In the early 80s there were not much research done about parallel algorithms for
hidden-line removal. In those times in which these sequential hidden-line removal
algorithms were developed, parallelism was not a priority because most personal
computers had only a single processing element. Sequential hidden-line removal
algorithms previously mentioned, are difficult to parallelize due to their complexity
and dependencies [23]. Dévai was the first one to propose a parallel algorithm for
hidden-line removal whose time complexity is O(log(n)) when n2 processors are
used. Although, the algorithm was not optimal, he proved that the hidden-line
removal problem can be solved in polylogarithmic time on a parallel computer with
a polynomial number of processors. Reif and Sandeep Sen implemented a new
algorithm for hidden-surface removal in 1988 modifying the algorithm to work for
hidden-line removal [24]. Hidden-surface removal is an algorithm used to determine

CHAPTER 2. THEORETICAL BACKGROUND 12

which surfaces should not be visible to the user. In the hidden-surface removal
surfaces are the main point of concern, however in hidden-line removal, visibility
of the edges is the focus of interest. The parallel version of the algorithm has a
time complexity of O(log4(n+ k)) when using O((n+ k)/log(n)) Concurrent Read
Exclusive Write (CREW) Parallel Random-Access Machine (PRAM) processors,
being n the input size, and being k the total number of the intersection points. In
2011, Dévai parallelized the already optimal sequential algorithm that he developed
back in the 80s [20], being this parallel algorithm work-optimal, having a time-
processor product of O(n2). Having a time complexity of O(log(n)) when using
n2/log(n) CREW PRAM processors, these kind of processors can read concurrently
the same memory address but only one can modify it at a specific time.

2.4 Collision detection in computer graphics

Collision detection is the problem of determining whether two given objects defined
by their own geometry (meshes) intersect or not with each other. One of the main
problems in 3D design is to detect collisions, contacts and clearance violations be-
tween objects inside a model e.g. cruise ship. A collision between two objects is
produced when they intersect with each other. A contact is produced when both
objects are touching each other but without intersecting. Clearance violations are
produced when the distance between two objects is less than a specific user-defined
value.

(a) collision (b) contact (c) clearance violation(10 mm)

Figure 2.5: Examples of a collision, contact and clearance violation between two
different objects.

CHAPTER 2. THEORETICAL BACKGROUND 13

In computer graphics, collision detection has been an interesting field of research
for many years [13]. It has been used in many diverse areas such as computer graph-
ics, computer games, computer simulations, robotics and computational physics [25].

Big engineering projects, such as an ultra complex model of a cruise ship are
typically composed of thousands or millions of 3D objects. Collision detection is
becoming a bottleneck due to increasingly complex geometries and amount of object
in which collisions needs to be determined [26]. Performance of collision detection
could be improved by evolving the algorithm to a parallel version. It is important to
mention that it is complicated to evaluate and compare collision detection algorithms
[27]. They are sensitive to factors such as the complexity of the objects, the positions
where they are situated to each other, the distance, etc.

The naive and simplest approach to detect collisions between two sets of objects
is to compare all primitives of each object against all primitives of the rest of the ob-
jects. It is important to mention that objects are composed by simple shapes called
primitives. These common primitives can be 0-dimensional (points), 1-dimensional
(lines and curves), 2-dimensional (polygons and triangles) and 3-dimensional (cube,
cylinder, sphere, cone, pyramid and torus). Directly testing collisions between two
objects by considering their geometries is often computationally expensive, due to
the fact that objects can be composed of hundreds or even thousands of primitives
(e.g. polygons). In order to achieve an efficient collision detection it is necessary to
carry out some fast intersection tests between pairs of objects to discard collisions
such as bounding volumes or other basic primitive tests.

2.4.1 Bounding volumes

Object bounding volumes offer a great opportunity to minimize the cost of calculat-
ing collisions between two objects. A bounding volume [28] is a single simple shape
encapsulating one or more 3D objects whose geometries are more complex than the
bounding volume. Testing collisions between these simple bounding volumes such
as boxes or spheres is less computationally expensive than testing in detail their en-
capsulated complex objects. Bounding volumes rapidly allow to discard objects that
do not overlap, avoiding carrying out more complex, detailed and computationally
expensive collision tests.

CHAPTER 2. THEORETICAL BACKGROUND 14

When objects are overlapping and their bounding volumes are intersecting, this
additional test results in an increase in computational time [13]. However, in most
situations compared objects are not close enough to overlap, and consequently using
bounding volumes usually results in a remarkable performance boost.

Figure 2.6: Most common types of bounding volumes

Bounding volumes are typically computed in a pre-processing step rather than
at run time [28], not causing performance issues.

2.4.2 Basic primitive tests

In the case that two objects’ bounding boxes are overlapping it is necessary to carry
out more computationally expensive tests, in order to check that their geometries
are intercepting.

2.4.2.1 Closest-point computations

The closest points between two objects is obtained and used in order to calculate
the distance between both objects. If this minimum distance between two objects
is less than the combined maximum movement of both objects, then a collision can
be discarded [28]. A hierarchical representation can be created using these closest-

CHAPTER 2. THEORETICAL BACKGROUND 15

point computations in order to prune parts of the hierarchy that will never come
close enough to collide.

2.4.2.2 Testing Primitives

Checking collisions between two objects by testing theirs primitives is more spe-
cific than the computation of distance between both objects. These primitive tests
will only indicate that both objects’ primitives are intersecting without entering into
details about where or the way that they are intersecting [28], and hence these inter-
section tests are considerably faster than other tests that provide extra information.

Separating-axis Test This collision test is based on the hyperplane separation
theorem.

Theorem 1. Given two convex sets A and B, either the two sets are intersecting

or there exists a separating hyperplane P such that A is on one side of P and B is

on the other.

Figure 2.7: Illustration of the hyperplane separation theorem

Thus, two non-intersecting objects always have a gap between them, in which a
plane that separates both objects can be placed.

CHAPTER 2. THEORETICAL BACKGROUND 16

Intersecting Lines, Rays, and (Directed) Segments
These kind of tests involve lines, rays or segments. They are cast from one object
and it is checked if they hit the other object. Using different directions and senses
it is possible to know if the object is colliding or not.

Figure 2.8: Ray casting example.

Additional Tests
There are some additional low level geometry tests:

• Testing Point in Polygon.

• Testing Point in Triangle.

• Testing Point in Polyhedron.

• Intersection of Two Planes.

• Intersection of Three Planes.

The previous image was created by the author of this thesis to illustrate how ray
casting works in a visual way.

CHAPTER 2. THEORETICAL BACKGROUND 17

2.4.3 Bounding Volume Hierarchies

As it was explained previously, wrapping objects in bounding volumes and testing
collisions was faster than testing geometries of both objects. Even though, it is con-
siderable faster, the asymptotic time remains the same. By grouping the bounding
volumes into a tree hierarchy known as Bounding Volume Hierarchy (BVH), the
time complexity can be improved to logarithmic [28] considering the total number
of tests performed.

In a bounding volume hierarchy [28], the leafs of the tree are formed by the
original objects. Larger bounding volumes are created on top by grouping and
enclosing previous small sets, in a recursive fashion. At the end, it results in a tree
structure with a single bounding volume at the root node.

Figure 2.9: An example of a bounding volume hierarchy using rectangles as bounding
volumes.

2.4.4 Spatial partitioning

Spatial partitioning techniques are used to divide an Euclidean space into two or
more non-overlapping regions [28], testing if objects overlap a same region in the
partitioned space. The number of pairwise tests decreases because two objects can
only collide if they are in the same region.

In this section only Octrees/Quadtrees are explained. Other spatial partitioning
techniques [28] such as uniforms and hierarchical grids,... are not considered.

CHAPTER 2. THEORETICAL BACKGROUND 18

2.4.4.1 Octrees and Quadtrees

An octree and a quadtrees are tree data structures with eight and four children
respectively [28]. Octrees are used to partition a three-dimensional region by simul-
taneously dividing the cube in half along each of the x, y, and z axes. On the other
hand, quadtrees subdivide a rectangle or square along the x and y axes. Child nodes
are recursively subdivided in the same way. Typically, the criteria for stopping the
recursion is when the tree reaches a maximum depth or the size of each subdivision
(e.g cubes in the case of an octree) is sufficiently small or a user-defined threshold
is reached.

Figure 2.10: Recursive subdivision of a cube into octants and its octree.
Source: https://en.wikipedia.org/wiki/Octree

https://en.wikipedia.org/wiki/Octree

3 Methodology

To obtain the results required in the thesis, it is necessary to define the principles
and techniques that are going to be used to evolve sequential code into parallel
code in the context of complex and data-intensive algorithms. In addition to the
environment and the cases of studies in which these "methodologies" will be tested.

For the purpose of this thesis, it was decided to use Cadmatic software as the
environment in which the parallelization will be applied, and the Cadmatic hidden-
line removal and collision detection as the two cases of study. Due to the fact that
Cadmatic software is written in C/C++, most of the examples and code snippets
that are written in this thesis are also written in C/C++. Pseudo-code is also used
to illustrate some general ideas. The hardware acceleration technique used in this
thesis is multi-threading. Running code in a GPU is not a reasonable option due to
the software modules that are used and the existence of dependencies in the code.

The first part of this section consists of defining the "framework" containing
the principles, techniques and ideas used in order to evolve sequential code into
parallel code. This part contains two different patterns about how to make the code
thread-safe and how to improve the performance of the existing multi-thread code.

After the parallelization methodologies are defined, it is time to apply them to
two Cadmatic data-intensive algorithms (hidden-line removal and collision detec-
tion) to test how performance is improved. Both algorithms are frequently used by
Cadmatic users. The sequential implementation of hidden-line removal and collision
detection are explained and compared against their multi-thread versions. Paral-
lelization issues such as asymmetries of their inputs and solutions are explained in
detail.

The data generated by new multi-thread versions of hidden-line removal and

CHAPTER 3. METHODOLOGY 20

collision detection is recorded in order to check that matches the older versions of
both algorithms. At the same time, information about execution times is recorded in
order to be able of comparing the performance results and speedup. These results
could be used to evaluate the impact and effect of the suggested parallelization
principles and techniques.

3.1 Parallelization techniques and patterns

This section describes common principles and techniques that can be applied to
a wide range of data-intensive sequential algorithms in order to automatize their
parallelization, obtaining common ranges of performance improvements.

These generic sequential-parallel conversion patterns provide consistent perfor-
mance improvement results that can be easily applied to most kinds of sequential
algorithms in order to obtain their multi-thread versions, yielding acceptable opti-
mization results.

This section is divided into two parts:

1. Thread-safe patterns: how to make the code thread-safe, so it can be run
concurrently without causing race conditions, deadlocks, livelocks ...

2. Optimization patterns: it describes patterns that try to improve the speedup
of the parallelization of an algorithm.

3.1.1 Thread-safe patterns

This section describes steps and patterns used to make thread-safe code.

Identifying the critical sections: The first and one of the most important steps
to follow in order to generate thread-safe code is to identify the number of critical
sections and the places in the code where they are located. It is important to
notice that complex algorithms such as hidden-line removal or collision detection
can become a difficult task.

CHAPTER 3. METHODOLOGY 21

A critical section or critical region is a shared resource or part of a program
that is accessed concurrently by several threads [29]. Critical sections need to be
protected in order to avoid race conditions. Race conditions [30] occurs when two
or more threads access shared memory without proper synchronization, causing the
program to behave unexpectedly. Identifying these critical sections is an essential
task. Otherwise, the parallelization of a sequential algorithm can not be obtained.

Spotting critical sections is not a trivial task, especially if an algorithm is using
several software modules. For this reason, it is indispensable to pay attention if the
const keyword is present when functions and methods are called in the algorithm.
The const keyword guarantees that the contents of variables are not modified inside
that function. It is worth spending time on adding const keywords to functions,
methods and variables that actually do not modify that variable.

It is possible to rapidly find parts of the code that are thread-safe by paying
attention to the const keyword. This is immensely useful when working with complex
algorithms because these algorithms have many calls in the call stack.

Observing the diagram in figure 3.1, it is possible to rapidly discard parts of the
code in which a variable is not modified, considering the const keyword.

function a (int* array)

function b (int* array)

function d (int* array) function f (const int* array)

function i (const int* array) function j (const int* array)

function c (const int* array)

function g (const int* array)

Figure 3.1: Example of the importance of the const keyword

Looking at the tree generated from an algorithm call stack, it is possible to
rapidly observe where the critical sections might be located. Notice that this method
does not guarantee that global and static variables are not accessed in those func-
tions.

Once all critical sections are identified, it is the time of getting rid of them or
making them thread-safe.

CHAPTER 3. METHODOLOGY 22

Converting global variables to local variables: Replacing global and static
variables (accessed by several threads) by local variables (accessed by each thread
independently) eliminates many of the conflicts existing between threads.

This process should be relatively easy to do when the variables are not accessed
directly by threads. However, there are situations in which each thread needs to
access these variables independently from other threads. It is necessary to provide a
context to each thread containing the variables that are going to be accessed during
the lifespan of a thread.

Encapsulating thread-access variables into a context structure: Keeping
track of all variables that are modified by a single thread is a complicated task.
These variables are local-thread variables or shared-thread variables. These local-
thread variables are only accessible by the current thread and other threads can
not access those. The shared variables are variables commonly shared with other
threads and they require access by mutual exclusion in order to avoid conflicts.

Algoritm 1 Encapsulating thread-access variables into a context structure
struct {

struct {
// only variables accessible by the current thread
...
thread_local_var;

} local_variables;
struct {

// accessible by all threads
...
mutex; // used to get mutual exclusion

} shared_variables;
} ThreadContext;

ThreadContext threadContext1;
ThreadContext threadContext2;

// Initializes contexts with the local and shared variables
ThreadContext set_local_values(threadContext1, threadContext2);
ThreadContext set_shared_values(threadContext1, threadContext2);

Thread thread1(threadContext1);
Thread thread1(threadContext2);

CHAPTER 3. METHODOLOGY 23

Pseudo-code 1 illustrates how variables used in an algorithm can be encapsulated
in order to be used by several threads simultaneously.

Combining thread-results: Frequently, threads require accessing variables that
are modified concurrently by several threads. In these kinds of situations, it is
possible to avoid accessing the result critical section by using thread-local variables
to store each thread partial result, combining the results afterward. These partial
thread-results are stored in a common array accessible by each thread during its
execution. Each thread uses its own thread ID as an index in that array.

Consider a problem of determining the minimum bounding box enclosing dif-
ferent objects. Each object requires to update the resulting bounding box if the
current object’s bounding box is not contained in it.

1 in t get_minimum_bounding_box (const std : : vector<Object> &objec t s , Mbb &r e s u l t)

2 {

3 i f (ob j e c t s . empty ())

4 return −1;

5

6 r e s u l t = ob j e c t s [0] . mbb; // minimum bounding box

7

8 f o r (s i ze_t i = 1 ; i < ob j e c t s . s i z e () ; ++i)

9 mbb_combine(r e su l t , ob j e c t s [i] . mbb) ;

10

11 return 0 ;

12 }

The sequential code mentioned above can be transformed by creating a thread-
local result for each thread. These partial results can be later combined obtaining
the final result.

CHAPTER 3. METHODOLOGY 24

1 in t get_minimum_bounding_box (const std : : vector<Object> &objec t s , Mbb &r e s u l t)

2 {

3 i f (ob j e c t s . empty ())

4 return −1;

5

6 const s i ze_t processor_count = std : : max(std : : std : : thread : : hardware_concurrency () , 1) ;

7 s i ze_t num_threads = std : : min (ob j e c t s . s i z e () , processor_count) ;

8

9 ThreadPool threadPool (num_threads) ;

10 std : : vector<Mbb> threadResu l t s (num_threads) ;

11

12 // Each thread c a l c u l a t e s i t s own p a r t i a l r e s u l t .

13 threadPool−>pa r a l l e l F o r ([& objec t s , threadResu l t s] (std : : s i ze_t fromIndex , std : : s i ze_t toIndex ,

std : : s i ze_t threadIndex) {

14

15 Mbb &thread_resu l t = r e s u l t s [threadIndex] ;

16 thread_resu l t = ob j e c t s [i] . mbb;

17

18 f o r (s i ze_t i = fromIndex + 1 ; i < toIndex ; ++i) {

19 mbb_combine(thread_result , ob j e c t s [i] . mbb) ;

20 }

21 } , ob j e c t s . s i z e ()) ;

22

23

24 // Combining the r e s u l t s obtained by each thread

25 r e s u l t = ob j e c t s [0] . mbb;

26 f o r (const Mbb &thread_resu l t : threadResu l t s)

27 mbb_combine(r e su l t , thread_resu l t) ;

28

29 return 0 ;

30 }

Mutex - Mutual exclusion: The easiest approach to achieve mutual exclusion
of a critical section is to use a mutex. A mutex is a mutual exclusion object that
synchronizes access to a critical region in a way that only one thread can be in the
critical section. It is important to mention that when a thread locks a critical section,
the rest of the threads will have to wait to access that resource. For that reason,
minimizing the number of critical sections and the time spent on each critical section
is essential to achieve suitable optimization results when transforming a sequential
algorithm to a multi-thread version.

Algoritm 2 Example of a Mutex
std::mutex mtx;

mtx.lock();
// Access to the critical section
mtx.unlock();

CHAPTER 3. METHODOLOGY 25

Notice that C++ implement wrappers for owning a mutex for the duration of a
scoped block. This code is the same as above:

Algoritm 3 Example of a Mutex
std::mutex mtx;
{

std::lock_guard<std::mutex> lock(mtx); // Locks
// Access to the critical section

} // unlocks when object is destroyed

Pre-computation: There are situations in which critical sections are instantiated
only once during the execution of an algorithm. For instance, some geometry calcu-
lations need to be computed only once during the whole execution of an algorithm.
The instantiation of these critical sections is done lazily, on-demand, at any point
during its execution. In some situations, they even might not be instantiated at all
if they are not needed. Consider the following example in which elements firstly
need to be computed and their results stored in an array data structure:

1 double ge t_resu l t (i n t index) {

2 i f (! Cache) { /∗ c r i t i c a l s e c t i on ∗/

3 Cache = (double ∗) mal loc (s i z e o f (double) ∗ CACHE_MAX_SIZE)

4 f o r (s i ze_t i = 0 ; i < CACHE_MAX_SIZE; ++i) {

5 mem[i] = compute_result (i) ;

6 }

7 }

8

9 double value = cache [index] ;

10 double r e s u l t = do_stuf f (value) /∗ some ope ra t i ons ∗/

11

12 return r e s u l t ;

13 }

If several threads instantiate the cache data structure at the same time it would
produce race conditions. In order to avoid race conditions, a pre-computation tech-
nique could be followed, avoiding using mutexes. In this technique, elements inside
the critical sections are pre-computed before starting the execution of the algorithm.

CHAPTER 3. METHODOLOGY 26

1 in i t_cache (Cache) ; /∗ ea r l y i n i t i a l i z a t i o n avo ids race cond i t i on s ∗/

2

3 threadPool−>pa r a l l e l F o r ([&Cache] (std : : s i ze_t fromIndex , std : : s i ze_t toIndex , std : : s i ze_t

threadIndex) {

4 f o r (s i ze_t i = fromIndex ; i < toIndex ; ++i) {

5 element = elements [i] ;

6

7 ge t_resu l t (element) ; /∗ o r i g i n a l func t i on in the c r i t i c a l s e c t i on i s i n s t an t i a t e d i f i t

i s nu l l ∗/

8 }

9 } , CACHE_MAX_SIZE) ;

It is important to mention that race conditions can not appear afterward because
instantiations and initializations were already carried out at the beginning.

Avoid dynamic memory reallocation: Inserting elements into a dynamic data
structure is not a thread-safe operation due to the fact a dynamic data structure
might reallocate memory in order to shrink or grow. This is problematic in the case
that several threads are modifying the same dynamic data structure.

The easiest solution to this problem is to allocate the necessary memory before-
hand, so threads can modify elements into that dynamic structure knowing that it
is not going to grow or shrink.

1 s i ze_t n_elements = 50 ;

2 std : : vector<int> elements (n_elements) ;

3

4 std : : atomic_int atomic_index (−1) ;

5 threadPool−>pa r a l l e l F o r ([& elements , &n_elements , &atomic_index] (std : : s i ze_t threadIndex) {

6 in t loca l_index ;

7 whi le ((loca l_index = ++atomic_index) < n_elements) {

8 elements [loca l_index] = threadIndex ;

9 /∗ . . . ∗/

10 }

11 } , n_elements) ;

Recursive Mutexes: A recursive mutex [31] is a particular type of mutual ex-
clusion object that allows the same thread to lock the same mutex several times
without producing a deadlock. The same thread also needs to unlock the mutex the
same number of times that it was locked. Otherwise, no other thread can obtain
the mutex.

There are some situations in which using a recursive mutex is significantly useful.

CHAPTER 3. METHODOLOGY 27

Consider a situation in which there is an algorithm that is using several functions
that need to be executed on mutual exclusion and at the same time they have
conditional references or calls to each other:

Algoritm 4 Example of a Recursive Mutex
function1(ThreadContext &context)
{

context.mtx.lock();
// Access to the critical section
context.mtx.unlock();

}

function2(ThreadContext &context)
{

context.mtx.lock();
// critical section
...
function1(contex); // refers to function 1
...
// end - critical section
context.mtx.unlock();

}

Using a recursive mutex solves the problem. Typically, a recursive mutex has a
counter that is incremented every time the mutex is locked. The counter is decre-
mented every time the mutex is released. The thread that acquires the mutex must
be the same one that releases it. No deadlock is produced.

3.1.2 Optimization patterns

This section describes techniques that could be applied in order to obtain better
optimization results when converting a sequential algorithm to a parallel one.

Thread pool: A thread pool is a common and reusable solution for achieving
concurrency of execution [32]. A thread pool consists of a fixed number of threads,
usually the same number as the number of cores, waiting for jobs to be assigned to
them for being concurrently executed. Threads are light-weight processes that are
able of executing different jobs in parallel. The main difference between a thread

CHAPTER 3. METHODOLOGY 28

and a process is that a thread shares a common address space with other threads
whereas a process has its own address space.

Creating threads dynamically is a slow process [29] that requires allocating mem-
ory within the process (address space) in order to allocate stacks for these newly
created threads. In addition to that, the creation of a thread introduces latency to
the execution of a task because of the extra time required to create a thread. By
creating a thread pool, whose threads are reused constantly for different tasks, per-
formance is improved and all latency issues associated with the creation of threads
are eliminated.

The number of threads in a pool of threads is an important factor to take into
consideration. In the case of using a fixed amount of threads, it is convenient to
set it to the number of CPU cores. Using the standard thread library of C++, it is
possible to obtain the maximum number of concurrent threads supported, typically
the number of cores by using std::thread::hardware_concurrency.

It is convenient to check that the number of cores is not zero when using
std::thread::hardware_concurrency. Otherwise, some data structures would not be
initialized correctly.

A thread pool can dynamically alter the number of threads during the course of
a program based on the number of waiting jobs.

Having an excessive number of threads increases the resource usage of an appli-
cation, and not having enough introduces some latency issues. If the thread pool
creates too many threads, and they are active, then it can create performance issues
because of context switches. A context switch stores the state of a thread, so it can
be later restored and resume execution. Setting priorities to different threads helps
to manage this situation.

If threads are inactive, destroying them helps to avoid wasting computer re-
sources. However, destroying too many threads requires more time later when cre-
ating them again. On the other hand, if there are not enough threads, it increases
long wait times and latency to tasks that are waiting to be executed.

In this case of study of this thesis, only thread pools with a fixed amount of
threads matching the number of cores are used.

CHAPTER 3. METHODOLOGY 29

Workload Distribution between Threads: Matching data distribution to work-
load distribution is an important process in order to improve the performance of
distributed-memory multiprocessors [14]. Every thread taking part in the paral-
lelization of an algorithm should be assigned a workload similar to other threads.
Otherwise, some threads will finish their tasks much sooner than others, causing
performance imbalances.

Asymmetries of the work distribution between different threads can produce
inefficient optimization results, even worse than the non-parallel solution. For this
reason, achieving an equal workload between threads is an essential task.

Equal Indices-Range Distribution of Data This approach is used to assign
equal workload between different threads by splitting the number of elements into
ranges of indices and assign each unique range to a thread.

Each thread can use its own range of indices to access elements from the data
structure in which elements are stored. Each element is only accessed by one thread
using its given range of indices, it is impossible to have race conditions between
threads.

The code below represents how a pool of threads uses this approach in order to
split the elements of an array among different threads:

1 threadPool−>pa r a l l e l F o r ([& elements] (std : : s i ze_t fromIndex , std : : s i ze_t toIndex , std : : s i ze_t

threadIndex) {

2 f o r (s i ze_t i = fromIndex ; i < toIndex ; ++i) {

3 auto element = elements [i] ;

4

5 execute (element) ;

6 }

7 } , n_elements) ;

Notice that the parallelFor method receives a lambda function as an argument.
This lambda function is given to the threads of the thread pool.

Even though each thread computes the same number of elements, the execu-
tion time required by each thread is different because of data asymmetry between
different elements.

CHAPTER 3. METHODOLOGY 30

Thread 6 -> Elapsed time: 0.234790s

Thread 4 -> Elapsed time: 0.735534s

Thread 5 -> Elapsed time: 1.449923s

Thread 3 -> Elapsed time: 2.011944s

Thread 2 -> Elapsed time: 4.654341s

Thread 1 -> Elapsed time: 7.526702s

Thread 0 -> Elapsed time: 19.264020s

Total Elapsed time: 22.632818s

It is important to notice that this approach does not perform well when there is
an asymmetry in the time required to process different elements.

The reason why Thread 0 requires more time than the other threads is because
this thread computed the most complex element. This is a recurrent problem in
many complex computer-intensive algorithms in which each element has different
complexity.

In order to get rid of this problem, it is necessary to carry out a more competitive
approach.

Competitive Work-Load Distribution of Data: In a complex data-intensive
algorithm, each element has different complexities and sizes. One element can be
easily computed whereas another one can take several times longer.

In a competitive work-load distribution each thread is competing against each
other for the next index in the array of the element to compute:

1 std : : atomic_int atomic_index (−1) ;

2 threadPool−>pa r a l l e l F o r ([& elements , &n_elements , &atomic_index] (std : : s i ze_t threadIndex) {

3 in t loca l_index ;

4 whi le ((loca l_index = ++atomic_index) < n_elements) {

5 auto element = elements [loca l_index] ;

6

7 execute (element) ;

8 }

9 } , n_elements) ;

CHAPTER 3. METHODOLOGY 31

Notice that an atomic variable is used to store the last index of the element
that was assigned to a thread that won the competition because this thread was
available and it was the first to increment the atomic variables. Accordingly to
C++ language documentation, atomic types are types that encapsulate a value
whose access is guaranteed to not cause data races and can be used to synchronize
memory accesses among different threads. It is important to mention that using
atomic variables instead of mutexes accomplishes better performance results and
less overload.

As it can be observed in the following figure, the obtained load-work distribution
is almost symmetric:

Thread 3 -> Elapsed time: 6.779115s

Thread 2 -> Elapsed time: 6.779133s

Thread 5 -> Elapsed time: 6.779178s

Thread 1 -> Elapsed time: 6.779193s

Thread 0 -> Elapsed time: 6.779231s

Thread 4 -> Elapsed time: 6.870100s

Thread 6 -> Elapsed time: 8.937288s

Total Elapsed time: 9.223558s

Avoiding busy-waiting or time-wait statements: In busy-waiting, busy-looping
or spinning a thread is constantly checking that a specified condition is true. Con-
sider the typical producer-consumer problem in which busy-waiting is applied:

CHAPTER 3. METHODOLOGY 32

1

2 #de f i n e MAX_ITEMS 1000

3

4 s t a t i c void producer (ThreadData &commonData)

5 {

6 in t loca l_index ;

7 whi le ((loca l_index = ++commonData . atomic_input_index) < commonData . inputs . s i z e ()) {

8 i f (commonData . i tem_indices . s i z e () >= MAX_ITEMS) {

9 wait (10) ; // waits 10 ms i f number o f items are more than max

10 }

11

12 const Input &input = commonData . inputs [loca l_index] ;

13 commonData . items [loca l_index] = create_item (input) ; // Produces an item

14

15 commonData . queue_indeces_mtx . l ock () ;

16 commonData . i tem_indices . push (item_index) ;

17 commonData . queue_indeces_mtx . unlock () ;

18 }

19 }

20

21 s t a t i c void consumer (ThreadData &commonData)

22 {

23 s i ze_t total_process_data_num = inputs . s i z e () ;

24

25 whi le (commonData . atomic_processed_data_num < total_process_data_num) {

26 whi le (i tem_indices . empty ()) {

27 // Busy wait ing : u n t i l the re i s a new created item

28 }

29

30 // Gets produced item

31 commonData . queue_indeces_mtx . l ock () ;

32 i n t item_index = commonData . i tem_indices . f r on t () ;

33 commonData . i tem_indices . pop () ;

34 commonData . queue_indeces_mtx . unlock () ;

35

36 // Consumes an item

37 Item &item = commonData . items [item_index]

38 consume_item (item) ;

39 ++commonData . atomic_processed_data_num ;

40 }

41 }

By using condition variables, it is possible to block a thread (or several threads)
until another thread modifies a condition variable, notifying the blocked threads to
resume their execution. In this case, two condition variables can be used to block
producers in order to stop producing when a maximum value is reached. Readers
can be blocked if there are no items to consume.

CHAPTER 3. METHODOLOGY 33

1 #de f i n e MAX_ITEMS 1000

2

3 s t a t i c void producer (ThreadData &commonData)

4 {

5 in t loca l_index ;

6 whi le ((loca l_index = commonData . atomic_input_index++) < commonData . inputs . s i z e ()) {

7 std : : unique_lock<std : : mutex> queue_lock (commonData . queue_indeces_mtx) ;

8 {

9 // Block producers i f they have reach a thre sho ld

10 commonData . consumed_item_condition . wait (queue_lock , [&commonData] {

11 return commonData . i tem_indices . s i z e () < MAX_ITEMS

12 | | commonData . completed_consumer_num == commonData . consumer_num ;

13 }) ; } // automat i ca l ly r e l e a s e s lock

14

15 const Input &input = commonData . inputs [loca l_index] ;

16 commonData . items [loca l_index] = create_item (input) ; // Produces an item

17

18 commonData . queue_indeces_mtx . l ock () ;

19 commonData . i tem_indices . push (item_index) ;

20 commonData . queue_indeces_mtx . unlock () ;

21

22 commonData . added_item_condition . noti fy_once () ; // No t i f i e s that one item was created

23 }

24

25 ++commonData . completed_producer_num ;

26 commonData . added_item_condition . no t i f y_a l l () ; // No t i f i e s a l l consumers

27 }

28

29 s t a t i c void consumer (ThreadData &commonData)

30 {

31 s i ze_t total_process_data_num = inputs . s i z e () ;

32

33 whi le (commonData . atomic_processed_data_num < total_process_data_num) {

34

35 std : : unique_lock<std : : mutex> queue_lock (commonData . queue_indeces_mtx) ;

36 {

37 // Wait i f the re are no items to consume

38 commonData . added_item_condition . wait (queue_lock , [&commonData , &producer_num] {

39 return ! commonData . i tem_indices . empty ()

40 | | commonData . completed_producer_num == producer_num ;

41 }) ; } // automat i ca l l y r e l e a s e s lock

42

43 i f (commonData . p r o c e s s ed Inpu tF i l e s I nd i c e s . empty ())

44 return ; /∗ There are no producers in execut ion or items to consume ∗/

45

46 // Gets produced item

47 commonData . queue_indeces_mtx . l ock () ;

48 i n t item_index = commonData . i tem_indices . f r on t () ;

49 commonData . i tem_indices . pop () ;

50 commonData . queue_indeces_mtx . unlock () ;

51

52 // Consumes an item

53 Item &item = commonData . items [item_index]

54 consume_item (item) ;

55 ++commonData . atomic_processed_data_num ;

56 commonData . consumed_item_condition . noti fy_once () ;

57 }

58 ++commonData . completed_consumer_num ;

59 commonData . consumed_item_condition . no t i f y_a l l () ;

60 }

CHAPTER 3. METHODOLOGY 34

Reducing lock conflicts: When mutual exclusion is needed, it is important to
use atomic variables instead of mutexes due to the fact that atomic variables
yield better results than mutexes. In cases in which it is necessary to use mutexes to
achieve mutual exclusion, it is important to minimize the time a critical section
is blocked in order to let other threads access that resource.

3.2 Hidden-line removal

Cadmatic hidden-line removal algorithm was developed in the 1980s to remove oc-
cluded lines from wireframe views (only includes lines and vertices) and 2D drawings.
It was developed considering several approaches and ideas of the published scientific
papers of that decade. Although the Cadmatic algorithm for hidden-line removal
is based on those publications, it was implemented and tailored following the most
convenient and beneficial ways for Cadmatic.

Cadmatic applies hidden-line removal to wireframe views in order to remove
occluded lines. These wireframe views are visual representations of 3D objects
using only "wires" (lines and vertices). Cadmatic users can create custom views
by specifying view properties such as viewpoint, view direction, up vector, and view
limits. In addition to that, the user can select specific objects or parts of the model
(e.g. decks in a ship) to visualize them in these wire-frame views. After that, these
wire-frame views can be used to create user-defined 2D drawings. 2D drawings are
required for the manufacturing process of designed 3D components.

CHAPTER 3. METHODOLOGY 35

Figure 3.2: Example of a drawing in Cadmatic with four wire-frame views.

Cadmatic hidden-line removal is an edge intersection algorithm that deter-
mines edge visibility changes by finding intersection points between different lines
(polylines or edges), or between a line and an object plane. A polyline is a single
object composed of a connected sequence of line segments.

Cadmatic hidden-line removal algorithm has two main parts: local hidden-
line removal and global hidden-line removal. Both local and global hidden-
line removal work in a similar way by determining intersection points between lines,
and between lines and planes. From these intersection points visibility changes are
computed.

The main difference between local and global hidden-line removal resides in the
objects that are considered to calculate visibility changes. Local hidden-line re-
moval computes visibility changes on each object independently. On the other hand,
global hidden-line removal computes visibility changes considering how other ob-
jects occlude the current object. Notice that Cadmatic uses some specific tolerance
or epsilon values needed for computing visibility changes in both local and global
hidden-line removal algorithms.

CHAPTER 3. METHODOLOGY 36

3.2.1 Bucketing acceleration

This technique was already implemented by Cadmatic several years ago in order to
reduce the time required to compute both local and global hidden-line removal for
complex objects that contain numerous numbers of faces and edges. Using bucketing
acceleration allows to avoid comparing all planes of over objects against unnecessary
planes of their corresponding under objects when calculating visibility changes on
edges between two planes. Over objects are located on top of under objects and
they partially or totally occlude them. It exclusively compares a plane against those
planes whose buckets are intersecting that reference plane, reducing the number of
planes that need to be compared.

For each complex object, a grid of buckets is created, being this grid a matrix
of buckets. The width and height of this grid are determined by the bounding box
of that complex object. Each bucket in this grid has similar dimensions and it
corresponds to a specific part of that object.

Figure 3.3: Bucket acceleration.

Each bucket in this grid contains intersecting planes of all objects. Therefore, it
is only necessary to test a plane against those planes contained in the intersecting
buckets of that object, discarding visibility tests against non-intersecting planes.

It is important to mention that using bucketing optimization provides better
execution times than normal hidden-line removal without bucketing. However, it is
theoretically possible to obtain worse execution times in the case of having drawings
in which most of the objects are overlapping, testing the same redundant visibility

CHAPTER 3. METHODOLOGY 37

tests.

For this reason, it is important to properly tailor the number of buckets used in
the application. A higher number of buckets yields better results when most objects
are scattered. A lower number of buckets yields better results when objects are
closer or intersecting.

A dynamic bucketing approach that determines the number of buckets on execu-
tion would probably yield better results than a static bucketing approach. Cadmatic
could benefit from this dynamic approach, whose current bucketing approach for
complex objects is statically determined.

Even thought bucketing acceleration was a great improvement in the performance
of the Cadmatic hidden-line removal, it was decided not to disclose its implemen-
tation due to the fact that the work done in this thesis did not modify the original
Cadmatic implementation.

3.2.2 Local hidden-line removal

Local hidden-line removal is applied independently to each object in the wire-frame
view. Typically an object is composed of several planes (faces), and those planes
are composed at the same time of edges. In local hidden-line removal, only planes
and edges of an object are considered.

The input of the local hidden-line removal algorithm is a set of model objects.
Consider a cube, formed by six faces of the same size. Figure 3.4 below represents
a cube whose occluded edges have not been yet removed:

Figure 3.4: Cube whose occluded-lines are still visible. Local hidden-line removal
has not been yet applied to this cube and it is possible to observe all occluded edges.

Local hidden-line removal algorithm requires iterating independently through all

CHAPTER 3. METHODOLOGY 38

objects in a view, loading each object information into memory. An object has
several faces and edges assigned to it. It is required to reset the visibility of those
lines (edges and polylines) at the beginning of the algorithm.

Once an object is loaded and its visibility is reset, it is time to iterate through
all faces of that object, calculating how each face hides edges of the rest of the faces
of that specific object. The same process is repeated with polylines.

In the specific case of checking the visibility between a plane and any kind of
line, it is possible that a plane totally occludes or excludes a line, marking the line
as invisible or invisible respectively and its calculation trivial. However, there are
situations in which a plane occludes a line but only partially. Comparing an edge of
the plane of an object against another line segment (edge or polyline), or an object
polyline with the rest of polylines, is done by using a line-segment intersection
algorithm approach. In this approach, all the intersecting points between these
two line segments are located, storing the visibility information of the generated
line parts.

From these generated line parts, a graph can be generated containing these
interception points (nodes) and visibility values (edges). Although the algorithm
only stores the distances between points and not the Cartesian coordinates (x, y), it
is still possible to obtain them afterward by using the “equation of a straight line”:
y = mx+ n.

It is important to remark that Cadmatic local hidden-line removal algorithm
does not use any graph to store the intersecting points, it only stores distances from
points and visibility information.

When the local visibility of an object is determined, it is necessary to create
line segments containing this information. Hidden parts of edges are permanently
invisible, being only necessary to create new line segments for visible parts using the
coordinates of the interception points and the visibility information.

After applying local hidden-line removal, occluded edges are completely removed.

CHAPTER 3. METHODOLOGY 39

Figure 3.5: Cube whose hidden-lines are not visible

In most cases, local hidden-line removal is only computed once, and after that,
the visibility results are stored so it is not necessary to compute them again.

3.2.2.1 Multi-threading local hidden-line removal

Multi-threading local hidden-line removal by applying data parallelism, splitting the
workload among different threads symmetrically, is not a trivial task. In order to
be able to parallelize local hidden-line removal, it is necessary to compute visibility
changes on different objects on parallel without race conditions or conflicts among
threads.

Removing static and global variables In local hidden-line removal, there are
numerous global variables that are accessed by many methods all around the code
in order to compute local hidden-line removal. Each object in a wire-frame view,
also mentioned in this thesis as segment is loaded from disk and saved into these
global variables. The loaded information of a segment is stored in different kinds of
variables:

1. Variables that define the number of entries allocated for arrays holding data
of segment that is being built (active segment).

2. Variables that point to allocated arrays holding data of segment that is being
built (active segment).

3. Variables that define the current minimum bounding box of a segment that is
being built (active segment).

4. Variables holding control data related to the active segment.

CHAPTER 3. METHODOLOGY 40

5. Variables used as buffers to store temporal results, avoiding reallocating mem-
ory.

The existence of static and global variables represents a big problem, due to
the fact that the whole Application Programming Interface (API) for hidden-line
removal is not thread-safe because most of its methods are accessing global variables.
When the original code was implemented, this did not suppose a problem because
most computers only had a single CPU, and were only able to run a thread or
process at a specific time.

In order to make the code thread-safe, it was necessary to encapsulate these
global variables referring to segments inside a struct, creating a segment context
that contains all the information referring to a single active segment that is in the
process of being computed. This way, it is possible to determine visibility changes
between segments on parallel, by each thread assigning a different segment con-
text, being each thread able to compute a different segment independently without
conflicting with other threads.

After encapsulating these previously refereed global variables into a struct called
HGR_sgm_ctx, there is some additional information relative to a segment, such as
the status of the index of the 2D object (segment) in its wireframe view, and extra
synchronization information used by each thread in order to protect the view data
structure.

1 /∗ Active segment ∗/

2 s t r u c t HGR_A_Sgm {

3 HGR_INT sgm_ix = −1; // a c t i v e segment index

4 HGR_sgm_ctx sgm_ctx ; // encapsu la t e s in format ion r e l a t i v e to a segment

5 HGR_INT sta tu s = 1 ;

6

7 std : : recursive_mutex∗ view_mutex = NULL; // p ro t e c t s the view

8 bool reset_view = true ; // f a l s e i f s e v e r a l a c t i v e segments are used s imul taneous ly .

9 } ;

Once all global variables related to a segment are encapsulated, it is necessary to
provide that segment context to each method that requires it, replacing old static
and global references with this HGR_A_Sgm context from these methods.

In many of the functions used by the hidden-line removal algorithm exist accesses
to common variables such as the active view and files, that need to be executed in
mutual exclusion in order to avoid race conditions. view_mutex allows each thread

CHAPTER 3. METHODOLOGY 41

to block the rest of the threads in order to protect the common wireframe view to
all segments. It is important to remember that it is indispensable to reduce the time
a resource is blocked, in order to avoid making other threads wait unnecessarily.

Recursive mutexes Accessing mutex-protected methods multiple times by a sin-
gle thread produces a deadlock. This is a problem in hidden-line removal because
some protected methods have conditional calls to other protected methods that also
require mutual exclusion. The safest approach to deal with this issue is to use a
recursive mutex. This way, it is guaranteed the algorithm will not suffer deadlocks.

Granularity When following a data parallelism strategy it is essential to define
the thread granularity. It is possible to make each thread work with more complex
data or with simpler data. A thread processing complex data is coarser than another
thread that processes simpler data. In most cases, data granularities can be easily
detected by looking at the block of code where there are loops that iterate through
different elements.

At the time of analyzing the part of the code to parallelize using multi-threading
in local hidden-line removal, there were several granularity levels to take into con-
sideration.

1. Segment granularity: 2D objects in a wire-frame view.

2. Reference plane granularity: A segment can have several faces. These
faces are used to see how they occlude other faces and polylines of that object.

3. Line and plane visibility granularity: Planes and polylines of objects
whose visibility is computed by considering a reference plane.

Here is the pseudo-code of the for loops that could be parallelized:

CHAPTER 3. METHODOLOGY 42

Algoritm 5 Loops in Local Hidden-Line Removal - Pseudo-code
1: for each segment ∈ Segments do
2: for each planereference ∈ segment.planes do
3: for each planetest ∈ segment.planes do
4: visibility_of_plane_edges(segment, planereference, planetest);
5: end for
6: for each line ∈ segment.lines do
7: visibility_of_line(segment, planereference, line);
8: end for
9: end for

10: end for

Parallelizing local hidden-line removal by splittings segments among several threads
seems to be the most intuitive approach, due to the fact that each segment can be
computed independently from the rest because local hidden-line removal only indi-
vidually considers faces and edges of a single segment to compute visibility changes.

The reference plane granularity and the line-plane granularity were rapidly dis-
carded due to numerous simultaneous accesses to the same segment variables, mak-
ing their parallelization inefficient because of the large number of blocks of code
that required mutual exclusion. In addition, it is not possible to use a line-plane
granularity due to the existence of a feedback loop in which each plane’s visibility
depends on the visibility of the previous one.

As a general rule of thumb, it is crucial to remark that the fewer critical sections
and mutexes an algorithm has, the better its parallelization (speedup) is going to
be. Additionally, the balance of the workload among threads is an important factor
to consider. It is not desirable to have some processing elements idle whereas others
are carrying out all work.

Applying parallelism Once the granularity level is specified, it is time to divide
the data among threads.

This code below represents a simplification of the original algorithm.

CHAPTER 3. METHODOLOGY 43

1 void remove_local_hl ines ()

2 {

3 const i n t s t o r e_to_f i l e = 1 ;

4 i n t rm_local_hlines = 1 ;

5

6 HGR_e_shdl ∗ segment_header = Hgr_Shdl [I_view] ; // a view has segments as s i gned to i t .

7 f o r (HGR_INT i =0; i < H_view−>s_shdl ; i++, p_s++) {

8 i f (segment_header−>st_s i z e <= 0) cont inue ; // empty s l o t

9 i f (! (segment_header−>hl_s ize & HGR_MASK_RM_LOCALHL)) cont inue ;

10

11 hgr_reopen_sgm(I_view , i) ; // Loads segment in format ion

12

13 // Performs l o c a l hidden−l i n e removal

14 hgr_close_segment (s tore_to_f i l e , rm_local_hlines) ;

15 }

16 }

As it can be observed, the loop iterates through all segments in the view, checking
their header information in order to know if they are in used or if hidden-line removal
has been already applied. If not, they are loaded from the file of the view and local
hidden-line removal is performed afterward.

Efficient thread-competitive approach The following code represents an
efficient thread parallelization of the code mentioned above. It has a lambda function
hidden_line_removal_task that makes threads efficiently compete against each
other in order to compute local hidden-line removal on the next available segment.
This competitive approach yields a symmetric workload among threads.

Each thread increments an atomic variable atomic_segment that represents the
index of the segment that is about to be computed. This incremented atomic index
++atomic_segment is stored locally, in order to avoid losing the value when other
threads increment it. Remember that operations variable++ and ++variable are
not the same, this last one does not create an extra copy.

CHAPTER 3. METHODOLOGY 44

1 void remove_local_hl ines (p a r a l l e l : : WorkExecutor ∗ threadPool)

2 {

3 const s i ze_t sgm_no = H_view−>s_shdl ;

4 const i n t s t o r e_to_f i l e = 1 , m_local_hlines = 1 ;

5

6 std : : atomic_int atomic_segment (−1) ;

7 HGR_A_Sgm ∗active_sgms = NULL; // each thread has i t s own HGR_A_Sgm

8

9 auto hidden_line_removal_task = [&active_sgms , &sgm_no , &u s e_v i s i b i l i t y_cu l l i n g , &

store_to_f i l e , &atomic_segment] (s i ze_t thread_ix) {

10 const HGR_e_shdl ∗ segment_header = Hgr_Shdl [I_view] ;

11

12 HGR_A_Sgm& active_sgm = active_sgms [thread_ix] ;

13 i n t segment ;

14 whi le ((segment = ++atomic_segment) < sgm_no) {

15 i f (segment_header [segment] . s t_s i z e <= 0) cont inue ; // empty s l o t

16 i f (! (segment_header [segment] . h l_s i ze & HGR_MASK_RM_LOCALHL)) cont inue ;

17

18 hgr_reopen_sgm(I_view , segment , active_sgm) ; // Loads segment in format ion

19

20 hgr_close_segment (s tore_to_f i l e , rm_local_hlines , active_sgm) ; // Local HLR

21 }

22 } ;

23 . . .

24 }

Notice that before calling the lambda function, it is necessary to set the active
segments and grid of buckets (bucketing acceleration) that are going to be used
inside the lambda function. Each thread will access those variables by using their
unique thread index, which is given as a parameter by the lambda function.

The lambda function described above hidden_line_removal_task can be used
either by a single thread or several threads. When using a single thread it is impos-
sible to have race conditions, so the lambda function can be called directly. On the
other hand, when there are several threads it is necessary to copy, prepare and split
data among each thread. It is necessary to create an active segment for each thread,
so threads can work in parallel without conflicting with each other. In addition
to that, it is necessary to to combine the partial thread results at the end of the
execution.

CHAPTER 3. METHODOLOGY 45

1 . . .

2 i f (threadPool == NULL) { // A s i n g l e thread

3 active_sgms = &Hgr_A_sgm;

4

5 hidden_line_removal_task (0) ; // Thread index i s 0

6 }

7 e l s e { // Severa l threads

8 s i ze_t n_active_sgms = std : : min (threadPool−>getNumThreads () , sgm_no) ;

9

10 // Creat ion and i n i t i a l i z a t i o n o f a c t i v e segments

11 std : : recursive_mutex view_mutex ;

12 std : : vector<HGR_A_Sgm> active_sgms_vector (n_active_sgms) ;

13 prepare_active_sgms (active_sgms_vector , view_mutex) ;

14

15 active_sgms = active_sgms_vector . data () ;

16 threadPool−>pa r a l l e l F o r (hidden_line_removal_task , n_active_sgms) ;

17

18 . . . // Combining o f a l l thread r e s u l t s

19 }

20

21 . . .

22 } // End o f move_local_hlines

Notice in the code how the parameters of the lambda function are configured
depending if we are using a single thread or a multi-thread version. In the single
thread version of local hidden-line removal, the active_sgms variable points to a
single variable, whereas if a pool of threads is used active_sgms variable points to
the row pointer of an std::vector.

Conflicts in local hidden-line removal In the case of most global and static
variables, the concurrency issues were solved by encapsulating all global and static
segment-referring variables in a segment context and creating and assigning each seg-
ment context to each thread. So each thread can work with its own variables without
conflicting with other threads. However, there are cases inside the hgr_reopen_sgm

and hgr_close_segment in which there are critical sections that need to be pro-
tected in order to avoid race conditions.

Inside the hgr_reopen_sgm function there are numerous functions that need to
be executed in mutual exclusion, such as:

1. Hgr_lda_sgm: It loads a segment from disk to the current view.

2. hgr_delete_sgm: It removes a segment from the current view.

3. hgr_create_sgm: It creates a segment and adds it to the view.

CHAPTER 3. METHODOLOGY 46

In addition to that, it is necessary to protect the view structure when applying
local-hidden-line removal to a single segment (hgr_close_segment) because results
are ultimately stored in the view data structure for being used afterward for global
hidden-line removal. It is important to mention that only small parts of code in
those functions are executed in mutual exclusion in order to avoid blocking other
threads for longer than necessary.

Showing all the code of local hidden-line removal is not possible due to its ex-
tension and Cadmatic copyrights. The pseudo-code of the algorithm was explained
previously at Algorithm 5.

Mutexes are wrapped in the class parallel::MutexWrapper that overrides most
of their methods so when the non-multithread version of local hidden-line removal
is executed the wrapped mutex is not locked.

1 {

2 p a r a l l e l : : MutexWrapper<std : : recursive_mutex> view_mutex (active_sgm . view_mutex , t rue) ;

3

4 Hgr_set_sgbox (Hgr_A_view , active_sgm . sgm_ix , a_sgm , active_sgm . view_mutex) ;

5

6 // Set up min/max bounding box o f the view .

7 a_view−>x_max = std : : max(s ta t i c_cas t <HGR_FLT>(sgm_ctx .max_x) , a_view−>x_max) ;

8 a_view−>x_min = std : : min (s ta t i c_cas t <HGR_FLT>(sgm_ctx .min_x) , a_view−>x_min) ;

9 a_view−>y_max = std : : max(s ta t i c_cas t <HGR_FLT>(sgm_ctx .max_y) , a_view−>y_max) ;

10 a_view−>y_min = std : : min (s ta t i c_cas t <HGR_FLT>(sgm_ctx .min_y) , a_view−>y_min) ;

11 a_view−>z_max = std : : max(s ta t i c_cas t <HGR_FLT>(sgm_ctx .max_z) , a_view−>z_max) ;

12 a_view−>z_min = std : : min (s ta t i c_cas t <HGR_FLT>(sgm_ctx . min_z) , a_view−>z_min) ;

13 }

Functions such as Hgr_hide_data, use a stack memory allocation in order to
avoid doing heap allocations at run time. Even though it yields good results in
sequential algorithms, it entangles and complicates the parallelization of the algo-
rithm:

Algoritm 6 Memory stack allocation issues - Pseudo-code
1: temp_memory ← global_temp_memory[HGR_NUM_ITEMS];
2: if old_num_items + new_num_items >= HGR_NUM_ITEMS then
3: temp_memory = malloc((old_num_items + new_num_items) *

sizeof(∗temp_memory));
4: end if

As it was previously mentioned, the problem is easily fixed by removing the
global variable, and providing a stack memory allocation to each thread, providing

CHAPTER 3. METHODOLOGY 47

this memory variable as an argument to the function, so they can work independently
from each other.

3.2.3 Global hidden-line removal

Once local hidden-line removal is carried out, obtaining line segments from locally
visible parts, it is time to apply global hidden-line removal to compute how each
object affects the visibility of other objects. Global hidden-line removal is differ-
ent from local hidden-line removal, in the local hidden-line removal only visibility
changes in one object at each time were considered, other objects were not consid-
ered. In global hidden-line removal, other objects can cause visibility changes to the
current object in the case it is occluded by others.

The first step to carry out in global hidden-line removal is to load the visibility
information obtained in the previous step (local hidden-line removal). After that,
objects are sorted by their depth (z-index). Objects closer to the screen are processed
first to discard visibility comparison against other objects that are already occluded.
Sorting by depth should cover lines as soon as possible, avoiding computing hidden
lines that would be later covered by a less distant object.

Global hidden-line removal compares all over objects (closer to the screen) against
all possible under objects, objects that can be occluded and which have more depth
than the over object. It computes how over objects occlude under objects. Under
objects that are not occluded by over objects do not change their visibility.

In order to understand the meaning of over objects (segments) and under objects
(segments), a deck of cards can be used as an analogy. In a deck of cards, some
cards are over some other cards and under other cards.

CHAPTER 3. METHODOLOGY 48

Figure 3.6: Cards representing over and under segments.

As it can be observed in the image, the Q and J of spades are over the 10
of spades. If two threads are storing simultaneously visibility results to the 10 of
spades, it produces race conditions.

As in local hidden-line removal algorithm, global hidden-line removal is a line-
segment intersectional algorithm, finding intersection points between line seg-
ments but this time visibility changes are calculated comparing edges and polylines
of over segments against edges and polylines of under objects, modifying always the
visibility of the under objects. The pseudo-code of global hidden-line removal is
illustrated in the algorithm 7.

Local visibility results from the previous step (local hidden-line removal) are
updated using these new visibility changes, obtaining a wireframe representation of
all objects in that particular view without occluded lines.

3.2.3.1 Multi-threading global hidden-line removal

Multi-threading global hidden-line removal is easier to achieve than multi-threading
local hidden-line removal because there are fewer critical sections. However, its
parallelization is still challenging due to the numerous global and static variables
that need to be removed and the asymmetry of the data itself that causes work
imbalances among threads.

This section describes all strategies followed in order to optimize global hidden-
line removal and how it was made thread-safe.

CHAPTER 3. METHODOLOGY 49

Granularity As it was mention previously, the first step is to analyze all the dif-
ferent granularity levels in the global hidden-line removal in which loops or recursive
functions are located.

In the case of global hidden-line removal, it has a similar loop structure (gran-
ularity levels) as local hidden-line removal. However, it has one extra granularity
level due to the fact that global hidden-line removal additionally considers other seg-
ments at the time of computing visibility changes. The different granularity levels
of global hidden-line removal are:

1. Over Segment granularity: 2D objects that are located on top of other 2D
objects.

2. Planes of over segments granularity: Each over segment can have faces
(planes).

3. Under Segment granularity: 2D objects that are located under other 2D
objects.

4. Planes and polylines of under segments granularity: Each under seg-
ment can have faces (planes) and polylines.

This pseudo-code represents a very simplified structure of the different granular-
ity levels of Cadmatic global hidden-line removal:

Algoritm 7 Loops in Global Hidden-Line Removal - Pseudo-code
1: for each segmentover ∈ Segments do
2: Segmentsunder ← get_possible_under_segments(segmentover)
3: for each planeover ∈ segmentover do
4: for each segmentunder ∈ Segmentsunder do
5: for each planeunder ∈ segmentunder do
6: visibility_of_plane_edges(segmentunder, planeover, planeunder)
7: end for
8: visibility_of_lines(planeover, segmentunder);
9: end for

10: end for
11: end for

Using a plane granularity Segmentsunder or planeunder for parallelization is not
possible due to the fact that these for loops are feedback loops in which the current
result dependents on the previous iteration.

CHAPTER 3. METHODOLOGY 50

Even though the segmentunder granularity is a possible good candidate, it was
decided to parallelize the first loop of segmentover, choosing the over segment
granularity, due to the fact that in each iteration, it is necessary to calculate all
Segmentsunder of each segmentover. In addition to that, asymmetry in complex
hierarchical data causes bigger workload imbalances when working with more fine-
grained elements than with coarse-grained ones [14], when other elements can not
be processed until the current one is complete by all threads. Imagine a situation
in which each thread computes different parts of an object, they would have to wait
until the last thread ends before starting computing parts of other objects. However,
if an object is chosen as granularity, the waiting times become lower.

Applying parallelism Once the granularity level is specified, it is time to split
the data among threads. Notice that global hidden-line removal uses the visibility
information saved into a view during local hidden-line removal. When removing
hidden-lines from a new view, both local and global hidden-line removal are applied.
However, when removing hidden-lines from an existing view in which hidden-line
removal was already applied successfully, only global hidden-line removal is executed
due to the fact that the local hidden-line removal algorithm already recorded the
visibility information into the view itself. In the case that a view is modified by
adding objects to it, local hidden-line removal algorithm needs to be executed again.

The first step done in global hidden-line removal is to load visibility information
of all objects existing in a view. This contains the output produced by local hidden-
line removal. Secondly, after loading this visibility information, it is necessary to
compute the visibility changes of global hidden-line removal. Thirdly, if there were
no errors, this information is stored in the view.

Algoritm 8 Main Parts in Global Hidden-Line Removal
1: if load_segments(view) != OK then
2: return error
3: end if
4: if remove_hidden_lines(view, threadPool) != OK then
5: return error
6: end if
7: if store_segments(view) != OK then
8: return error
9: end if

10: return success

CHAPTER 3. METHODOLOGY 51

The first and third function respectively load_segments and store_segments

can not be parallelized due to the fact that they are reading and saving content into
the same view. However, the remove_hidden_lines can be easily parallelized.

Inside this global hidden-line removal function remove_hidden_lines, the first
thing the algorithm does is to sort the segments by depth using their z-index:

1 HGR_INT sgm_list = (HGR_INT ∗) sys_malloc (s i z e) ;

2

3 /∗ s o r t segment i n d i c e s by z_max o f r e f e r en c ed segment ∗/

4 qso r t ((void ∗) sgm_list , sgm_no , s i z e o f (∗ sgm_list) , [] (const void ∗ c , const void ∗ d) {

5 in t cc = ∗((i n t ∗) c) ;

6 i n t dd = ∗((i n t ∗)d) ;

7

8 i f (Sgm_hed [cc]−>z_max >= Sgm_hed [dd]−>z_max) return (−1) ;

9

10 return (1) ;

11 }) ;

Sorting segments by their depth is an important step in order to speed up the
process of computing visibility changes. A segment on top of many will rapidly
discard visibility changes of its under segments.

After this, the segment header information and data information are initialized.
In addition, the visibility information is reset.

1 f o r (s i ze_t i = 0 ; i < H_view−>s_shdl ; i++) {

2 i f (Sgm_hed [i] == NULL)

3 cont inue ;

4

5 sgm_H_hed = Sgm_hed [i] ; // segment header i n f o

6 sgm_H_h = &Sgm_h[i] ; // segment data

7

8 in i t i a l i z e_segment_ in fo (sgm_H_hed , sgm_H_h) ;

9

10 i f (global_hlr_was_applied_before) {

11 r e s e t _ v i s i v i l i t y (sgm_H_hed , sgm_H_h) ;

12 }

13 }

Time spent at these sorting and initialization steps is marginal, and their paral-
lelization does not improve performance.

Before starting explaining the parallelization of global hidden-line removal, it is
important to describe all the most important parts of the previous implementation
of global hidden-line removal:

CHAPTER 3. METHODOLOGY 52

Algoritm 9 Loops in Global Hidden-Line Removal - Pseudo-code
1: free_mem[HGR_FREE_MEM];
2: pln_h_alloc, dpln_h← init(pln_h_alloc, dpln);
3:
4: for segmentindex = 0; segmentindex < segment_num; + + segmentindex do
5: sgm_over ← sgm_list[segmentindex];
6: sgm_hed_over ← Sgm_hed[sgm_over];
7:
8: if segmentover.inten == transparent then
9: continue;

10: end if
11:
12: sgm_und← ∅;
13: sgm← 0;
14: for underindex = 0;underindex < segment_num; + + underindex do
15: sgm_hed_under = Sgm_hed[sgm_list[underindex]];
16: if not is_under_segment(sgm_hed_over, sgm_hed_under) then
17: continue;
18: end if
19: sgm_und[sgm++]← sgm_list[underindex];
20: end for
21:
22: if sgm == 0 then
23: continue;
24: end if
25:
26: sgm_h_over = Sgm_h[sgm_over];
27: sum_of_p_counts← 0;
28: for planeindex = 0; planeindex < segmentover.numplanes; + + planeindex do
29: if init_plane_data_global(sgm_hed_over, sgm_h_over, pln_h,

pln_no, sum_of_p_counts, pln, pln_h_alloc,dpln_h) < 0 then
30: continue;
31: end if
32: determine_under_segment_visibilities(sgm, sgm_und, pln_no, pln_h,

free_mem);
33: end for
34: end for

Once all segment information and other variables have been allocated and set
it is time to start global hidden line removal. The first step is to determine under
segments of each over segment. After that, for each plane of each over segment,
it is necessary to calculate how this planeover hides each segmentunder by calling
determine_under_segment_visibilities.

CHAPTER 3. METHODOLOGY 53

Once it was decided that the parallelization would be applied to the over seg-
ments, it is time to represent the basic structure of the multithread version of global
hidden-line removal. The code that is concurrently executed by several threads can
be encapsulated in a lambda function global_hidden_line_removal_task. Us-
ing this approach, global_hidden_line_removal_task can be easily executed by
a pool of threads or by a single thread (calling the lambda function by the main
thread).

1 in t ∗ thread_rts ;

2 std : : atomic_int atomic_segment (−1) ;

3 std : : atomic_bool stop_computing_hidden_lines = f a l s e ;

4 std : : vector<std : : atomic_int> under_sgm_confl icts (threadPool ? sgm_num : 0) ;

5

6 auto global_hidden_line_removal_task = [&] (s i ze_t thread_ix) {

7 . . .

8 }

In order to make the lambda function compatible with a single or several threads,
it is necessary to provide several arguments to the capture clause of the lambda
function. These arguments are:

• thread_rts: an array, in which each thread will write on a specific position
using its thread index, the result of its execution.

• atomic_segment: an atomic counter that is atomically incremented by each
thread to get access to the next segment to compute.

• stop_computing_hidden_lines: if one thread reports an error, the rest of
the threads will stop their execution.

• under_sgm_conflicts: vector of atomic indices needed to protect common
accesses to same under segment by several threads.

Those arguments of the capture clause need to be properly configured, depending
on the number of threads (single or several threads).

CHAPTER 3. METHODOLOGY 54

1 in t r t = 0 ;

2 i f (threadPool == NULL) { // S ing l e thread

3 thread_rts = &rt ;

4 global_hidden_line_removal_task (0) ; // Global hidden l i n e removal

5 }

6 e l s e { // Pool o f Threads

7 s i ze_t max_nro_threads = std : : min (threadPool−>getNumThreads () , sgm_no) ;

8 std : : vector<int> thread_rts_vector (max_nro_threads , 0) ;

9

10 thread_rts = thread_rts_vector . data () ;

11 threadPool−>pa r a l l e l F o r (global_hidden_line_removal_task , max_nro_threads) ; // Global hidden

l i n e removal

12

13 /∗ checks threads f i n i s h e d t h e i r jobs c o r r e c t l y . ∗/

14 f o r (const i n t& thread_rt : thread_rts_vector) {

15 i f (thread_rt < 0) {

16 c c s_ f c l o s e (fp) ;

17 r t = thread_rt ;

18 break ;

19 }

20 }

21 }

In the case that there are several threads it is necessary to combine the partial results
into a single one.

The basic structure of the lambda function global_hidden_line_removal_task

is the following one:

CHAPTER 3. METHODOLOGY 55

1 auto global_hidden_line_removal_task = [&] (s i ze_t thread_ix) {

2 // Memory a l l o c a t i o n s

3 HGR_INT∗ sgm_und = (HGR_INT ∗) sys_malloc (H_view−>s_shdl ∗ s i z e o f (∗ sgm_list)) ;

4

5 #de f i n e PLN_H_ALLOC 30

6 HGR_c_pln_str dpln_h [PLN_H_ALLOC] ;

7 HGR_c_pln_str∗ pln_h = dpln_h ;

8 HGR_INT pln_h_alloc = PLN_H_ALLOC;

9

10 HGR_DBL free_mem [(HGR_FREE_MEM) / s i z e o f (HGR_DBL)] ;

11 HGR_d_point_str pln_h_vec_mem[(4096) / s i z e o f (HGR_d_point_str)] ;

12 . . .

13 // scan through segments in order o f z_max , s t a r t c l o s e to viewer

14 HGR_INT segment_to_compute ;

15 whi le ((segment_to_compute = ++atomic_segment) < sgm_no && ! stop_computing_hidden_lines) {

16 . . .

17 sgm_over = sgm_list [segment_to_compute] ; /∗ so r t ed indexes ∗/

18 sgm_hed_over = Sgm_hed [sgm_over] ;

19

20 sgm_und = get_under_segments (. . .) ;

21 . . .

22 // loop through a l l "under" segments

23 f o r (HGR_INT pln = 0 , pln_no = 0 , sum_of_p_counts = 0 ; pln < sgm ; pln++) {

24 // I n i t i a l i z e plane data f o r the proces sed plane o f the h id ing segment

25 i f (init_plane_data_global (sgm_hed_over , sgm_h_over , pln_h , pln_no , sum_of_p_counts ,

pln , pln_h_alloc , dpln_h) < 0)

26 cont inue ;

27 // Compute how the setup plane h ides edges and l i n e s in under segments .

28 determine_under_segment_vis ib i l i t i e s (sgm , sgm_und , pln_no , pln_h , (HGR_CHR∗) free_mem

, &under_sgm_confl icts) ;

29 }

30 . . .

31 }

32 . . .

33 }

In the multithread version of global hidden-line removal, there are situations in
which different threads are computing visibility changes of different over segments
applied to same under segments. Even though this situation does not happen often,
it can cause conflicts among threads, in the case that several threads try to edit the
same common under segment at the same time. It is important to notice at the time
of parallelizing over segments that there can exist conflicts between under segments.
This is the reason why read and write operations applied to under segments need
to be protected in order to avoid read–write or write–write conflicts.

The time an under segment is locked is very limited and it only happens a
couple of times per execution. For these reasons, it is suitable to use busy waiting
by checking a flag atomic variable that informs if an under segment is currently
being processed.

CHAPTER 3. METHODOLOGY 56

1 in t determine_under_segment_vis ib i l i t i e s (. . . , s td : : vector<std : : atomic_int> ∗under_sgm_confl icts)

2 {

3 // loop through a l l "under" segments

4 f o r (i n t j = 0 ; j < sgm ; j++) {

5 bool check_for_con f l i t c s = under_sgm_confl icts !=NULL && sgm_under<under_sgm_conflicts−>

s i z e () ;

6

7 // Seve ra l over segments can compute concur r ent ly the same under segment .

8 i f (check_for_con f l i t c s) {

9 std : : atomic_int& con f l i c t s_nro = under_sgm_conflicts−>at (sgm_under) ;

10 whi le (++con f l i c t s_nro > 1) {

11 whi le (c on f l i c t s_nro > 1) {

12 std : : th is_thread : : y i e l d () ;

13 }

14 }

15 }

16 . . .

17 i f (check_for_con f l i t c s) (∗ under_sgm_confl icts) [sgm_under] = 0 ;

18 }

19 }

In order to avoid mutexes it was decided to use busy waiting and an array
of atomic integers std::vector<std::atomic_int> under_sgm_conflicts that is
incremented by each thread before accessing an under segment.

The reason why busy waiting is used instead of other approaches is due to the
fact that the time required by a thread to access and modify an under segment is
small, and threads are usually processing different under segments making it unlikely
to have two threads computing the same under segment simultaneously.

Other modifications and optimizations applied to global hidden-line removal are
not shown in this thesis due to Cadmatic copyrights.

3.3 Collision detection

The Cadmatic implementation of the collision detection algorithm to detect colli-
sions between two different sets of static objects was developed in the 90s following
the scientific literature of the time. Cadmatic collision detection implementation
was tailored specifically for the needs of Cadmatic.

Cadmatic collision detection is implemented following a sphere partitioning ap-
proach. This algorithm implementation is detailed in the following steps:

CHAPTER 3. METHODOLOGY 57

1. Select two sets of static objects, in which the user wants to check if there are
collisions.

2. Prepare the pairs of objects in which collisions, contacts or clearances can
appear. Every object has a bounding box, that wraps the object in a 3D
space. These object bounding boxes can be used to discard collisions between
objects rapidly.

3. Once all pairs of objects in which possible collisions can occur are determined,
it is time to check collisions between object A and object B in each pair of
objects. It is important to notice that every object is formed by many simple
shapes (primitives) being necessary to check collisions between all primitives
of the first object against all the primitives of the second object.

4. For each primitive of each object:

(a) Bounding boxes of both primitives are compared to check possible colli-
sions, contacts and clearances.

(b) A sphere test is run for every primitive pair in which a collision/contac-
t/clearance is possible to occur:

i. The sphere test is based on the idea of space division, in which the
intersection bounding box of both objects is set as the original test
space and it is recursively subdivided into two halves, dividing re-
cursively the intersected bounding box of these two primitives by the
biggest axis of the test space.

The sphere test provides very good times when the objects are intersecting or
the distance between them is not very close. However, when the objects are almost
touching each other, the sphere test gets stuck in recursive space subdivision calls.

Figure 3.7: Space subdivision by collision detection.
Source: https://en.wikipedia.org/wiki/Octree

https://en.wikipedia.org/wiki/Octree

CHAPTER 3. METHODOLOGY 58

When spatially two large objects are close to each other but are not colliding
and the box test does not recognize that, then the recursion needs to do a lot of
work to figure out that there are no collisions.

3.3.1 Optimization

This section applies the optimization techniques described previously in this thesis
in order to parallelize and improve the performance of collision detection.

The Cadmatic collision detection algorithm is divided into two main parts:

1. The first part is to determine which objects require detailed collision detection
processing, based on bounding box tests.

2. The second part checks collisions, contacts and clearance violations in detail
by using several collision tests such as a sphere partitioning approach.

Both parts are worth parallelizing, even though most performance improvement
is obtained by parallelizing the second step.

3.3.1.1 Determining detailed collision object pairs

The first part of the algorithm takes two sets of objects testing each bounding box
against each other and then checks the pairs of objects to check collisions are not
excluded in the test. This function also caches detailed geometry data for every
object that enters into detailed collision detection. As one object may be tested
against multiple other objects, geometry creation and conversion routines need to
be executed only once due to caching.

Below is the old implementation of this first part of the algorithm:

CHAPTER 3. METHODOLOGY 59

1 s t a t i c i n t prepare_data_for_deta i l ed_co l l i s i on_detect ion (const i n t nr_models , const i n t nr_A,

const i n t nr_B , const i n t ∗set_A , const i n t ∗set_B , const ModelFlags ∗model_flags , const

coarse_test_in fo ∗ coarse_info , const GMD_mbb ∗primitive_bounding_boxes , const

SearchControlParameters ∗parameters , const char ∗geometry_data_path , co l l_tes t_t ∗ ctc , std : :

vector<CachedPrimit iveInfo> &primit ive_cache , std : : vector<TestPair> &pa i r s_fo r_tes t ing)

2 {

3 std : : vector<bool> al lowed_contacts (nr_models , f a l s e) ; // true f o r cav i ty p lanes t e s t s

4 std : : vector<bool> compute_GMD_fast_info (nr_models , f a l s e) ; // true f o r d e t a i l e d CD

5 f l o a t t o l e r an c e = std : : max(1 . 0 f , parameters−>getClearance ()) ;

6

7 f o r (i n t i = 0 ; i < nr_A ; i++) {

8 in t mod_A = set_A [i] ;

9 f o r (i n t j = 0 ; j < nr_B ; j++) {

10 in t mod_B = set_B [j] ;

11

12 // Don ' t t e s t the model aga in s t i t s e l f

13 i f (mod_A == mod_B)

14 cont inue ;

15

16 // i f the two models are pre sent in both s e t s t e s t s only (A, B) but not (B, A)

17 i f (! (context−>is InSetB (mod_A) && context−>isInSetA (mod_B) && (mod_A > mod_B)) {

18 i f (coarse_in fo [mod_A] . unit_group >= 0 && coarse_in fo [mod_A] . unit_group ==

coarse_in fo [mod_B] . unit_group)

19 cont inue ;

20

21 // Perform a f a s t box t e s t aga in s t boxes o f the whole ob j e c t

22 i f (! boxtest_with_bboxes_no_hit(&coarse_in fo [mod_A] . mbb, &coarse_in fo [mod_B] . mbb,

t o l e r an c e)) {

23

24 i f (need_to_test_pair (ctc , mod_A, mod_B)) {

25 // Check whether an al lowed contact e x i s t s between t h i s pa i r

26 const MMT_allowed_contact_t ∗p_allowed =

find_allowed_contact_between_objects (ctc , mod_A, mod_B) ;

27 i f (p_allowed != NULL)

28 al lowed_contacts [mod_A] = al lowed_contacts [mod_B] = true ;

29

30 pa i r s_fo r_te s t ing . emplace_back (mod_A, mod_B, p_allowed) ;

31

32 compute_GMD_fast_info [mod_A] = compute_GMD_fast_info [mod_B] = true ;

33 }

34 \ item Object pa i r g r anu l a r i t y : each thread computes c o l l i s i o n t e s t s between two ob j e c t s o f two

d i f f e r e n t s e t s .

35 }

36 }

37 }

38

39 /∗ Compute and cache GMD_fast_info f o r every ob j e c t that r e qu i r e s d e t a i l e d c o l l i s i o n

de t e c t i on computations . Also compute vertex data f o r ob j e c t s that ente r in to cav i ty plane

t e s t s , i f the ob j e c t s do not a l ready have bsv i n f o computed . ∗/

40 . . .

41 return 0 ;

42 }

CHAPTER 3. METHODOLOGY 60

Multi-thread version Object pair granularity is the only granularity that can be
used in this first part of the algorithm. In this granularity, each thread computes if
two objects from two different sets need to be tested in detail or not. It was decided
to use an equal indices-range distribution of data to split the data among threads
due to the fact that it takes a similar time to carry out fast bounding box tests on
different pairs of objects.

The first optimization approach that was followed was to transform the two loops
in the function into a single one. The first loop goes through the objects contained
in the first set, and the second loop iterates through the elements of the second set.
This loop transformation is done by applying an index to matrix indices conversion.
After this conversion, each thread obtains a unique mod_A and mod_B from sets A and
B respectively. Both values are used to store the results at allowed_contacts and
compute_GMD_fast_info_data results, these two results need to be atomic because
they are written by several threads simultaneously.

1 prepare_data_for_deta i l ed_co l l i s i on_detect ion (. . .)

2 {

3 std : : vector<std : : atomic_bool> al lowed_contacts (nr_models) ;

4 std : : vector<std : : atomic_bool> compute_GMD_fast_info_data (nr_models) ;

5

6 f o r (s i ze_t index = 0 ; index < nr_models ; ++index) {

7 al lowed_contacts [index] = f a l s e ;

8 compute_GMD_fast_info_data [index] = f a l s e ;

9 }

10 . .

11

12 auto work = [&] (s i ze_t from , s i ze_t to , s i ze_t thread_ix) {

13 s i ze_t i , j ;

14 f o r (s i ze_t index = from ; index < to ; index++) {

15 i = index / nr_B ;

16 j = index % nr_B ;

17 in t mod_A = set_A [i] ;

18 i n t mod_B = set_B [j] ;

19

20 . . .

21 }

22 i f (threadPool == NULL) {

23 work (0 , nr_A ∗ nr_B , 0) ;

24 }

25 e l s e {

26 threadPool−>pa r a l l e l F o r (work , nr_A ∗ nr_B) ;

27 }

28 }

There are some situations in which the loops can not be removed. It is necessary
to choose which loop should be parallelized in order to obtain the best performance.

CHAPTER 3. METHODOLOGY 61

If the first loop is parallelized it might produce performance issues due to the fact
that the other loop can have more elements than the first loop or vice versa. There-
fore, it is necessary to conditionally parallelize the iteration through the biggest set
of elements in order to obtain the best performance.

1 prepare_data_for_deta i l ed_co l l i s i on_detect ion (. . .)

2 {

3 std : : vector<std : : atomic_bool> al lowed_contacts (nr_models) ;

4 std : : vector<std : : atomic_bool> compute_GMD_fast_info_data (nr_models) ;

5

6 f o r (s i ze_t index = 0 ; index < nr_models ; ++index) {

7 al lowed_contacts [index] = f a l s e ;

8 compute_GMD_fast_info_data [index] = f a l s e ;

9 }

10

11 std : : atomic_int atomic_i (−1) ;

12 auto work = [&] (s i ze_t thread_ix) {

13

14 bool invert_A_B = (nr_B > nr_A) ; /∗ p a r a l l e l i z e s the s e t with more number o f e lements . ∗/

15 i n t local_nr_1 = (invert_A_B) ? nr_B : nr_A ;

16 in t local_nr_2 = (invert_A_B) ? nr_A : nr_B ;

17

18 in t i , j ;

19

20 i n t mod_A = −1, mod_B = −1;

21 whi le ((i = ++atomic_i) < local_nr_1) {

22

23 i f (invert_A_B) {

24 mod_B = set_B [i] ;

25 }

26 e l s e {

27 mod_A = set_A [i] ;

28 }

29

30 f o r (j = 0 ; j < local_nr_2 ; j++) {

31 i f (invert_A_B) {

32 mod_A = set_A [j] ;

33 }

34 e l s e {

35 mod_B = set_B [j] ;

36 }

37 . . .

38 }

39 }

40 }

41

42 i f (threadPool == NULL) {

43 work (0) ;

44 }

45 e l s e {

46 threadPool−>pa r a l l e l F o r (work , std : : max(nr_A, nr_B)) ;

47 }

48 . . .

49 }

CHAPTER 3. METHODOLOGY 62

The new version of the algorithm uses more memory than the old existing version
due to the fact that each thread needs to have its own stack buffer to store its
variables and results. In addition to that, once all threads have calculated all their
results it is necessary to combine them:

1 /∗∗

2 ∗ Moves a l l t e s t pa i r s e lements to the f i r s t vec tor o f mul t ip l e_pa i r s_for_test ing .

3 ∗

4 ∗ @param mult ip l e_pa i r s_for_test ing [in] vec tor o f t e s t pa i r s e lements

5 ∗/

6 s t a t i c void combine_pair_for_testing (std : : vector<std : : vector<TestPair>> &

mult ip l e_pa i r s_for_test ing)

7 {

8 i f (mul t ip l e_pa i r s_for_test ing . s i z e () < 2)

9 return ;

10

11 s i ze_t nr_pairs = 0 ;

12 f o r (s i ze_t i = 0 ; i < mult ip l e_pa i r s_for_test ing . s i z e () ; ++i)

13 nr_pairs += mult ip l e_pa i r s_for_test ing [i] . s i z e () ;

14

15 std : : vector<TestPair>& pa i r s_for_te s t ing = mult ip l e_pa i r s_for_test ing [0] ;

16

17 i f (nr_pairs − pa i r s_for_te s t ing . s i z e () > 0) {

18 pa i r s_fo r_te s t ing . r e s e r v e (nr_pairs) ;

19

20 f o r (s i ze_t index = 1 ; index < mult ip l e_pa i r s_for_test ing . s i z e () ; ++index)

21 f o r (const TestPair& t e s tPa i r : mul t ip l e_pa i r s_for_test ing [index])

22 pa i r s_fo r_tes t ing . push_back (t e s tPa i r) ;

23 }

24 }

25

26 co l l_det2 (. . .)

27 {

28 std : : vector<std : : vector<TestPair>> mult ip l e_pa i r s_for_test ing (num_threads) ;

29

30 r = prepare_data_for_deta i l ed_co l l i s i on_detect ion (nr_models , nr_A, nr_B , set_A , set_B , &

model_flags , coarse_info , primitive_bounding_boxes , ¶meters ,

31 geometry_data_path , &ctc , pr imit ive_cache , mult ip le_pairs_f or_test ing . data () , threadPool

) ;

32

33 combine_pair_for_testing (mult ip l e_pa i r s_for_test ing) ;

34 const std : : vector<TestPair> &pa i r s_fo r_te s t ing = mult ip l e_pa i r s_for_test ing [0] ;

35 }

3.3.1.2 Performing detailed collision detection

After parallelizing the determination of collision object pairs, it is necessary to par-
allelize the detailed collision detection tests for each object pair that survived from
prepare_data_for_detailed_collision_detection function.

CHAPTER 3. METHODOLOGY 63

Detailed collision detection uses the full object geometry, and it is only computed
for those objects whose primitive bounding boxes intersect or are inside clearance
violation distance.

Here is the original implementation of the detailed collision detection:

1 Col lHi tPo int r e s u l t s ; // Hit coo rd ina t e s and d i s tance

2 f o r (auto &tes t_pa i r : pa i r s_fo r_te s t ing) {

3 in t mod_A = test_pa i r .m_modA;

4 in t mod_B = test_pa i r .m_modB;

5

6 // Prepare to dea l with an al lowed contact between t h i s pa i r .

7 const MMT_allowed_contact_t ∗p_allowed = tes t_pa i r . m_pAllowed ;

8 i f (p_allowed)

9 ctc . nr_sent_with_allowed_contact++;

10

11 auto r e s u l t = c o l l i d e 2 (mod_A, mod_B, p_allowed , ¶meters , pr imit ive_cache , &r e s u l t s) ;

12

13 repor t (r e su l t , &coarse_in fo [mod_A] , &coarse_in fo [mod_B] , &r e su l t s , o_fp) ; // output f i l e

14

15 i f (toCuber_fp) // log f i l e

16 report_pairs_sent_to_cuber(&coarse_in fo [mod_A] , &coarse_in fo [mod_B] , p_allowed != NULL,

convertToMacro (r e s u l t) , toCuber_fp) ;

17 }

For each test_pair two indices are obtained representing two objects in both
sets. In the function collide2 drives the spatial partitioning subdivision for one
pair of objects returning a collision result (NO_HIT, CLEARANCE_VIOLATION,
CONTACT, HIT). These collision results are logged and stored in two separate files.
Implementation of collide2 is hidden due to Cadmatic copyrights.

Multi-thread version In the case of this second part of the Cadmatic detection
algorithm, there are two granularities that can be used to parallelize the algorithm.

1. Object pair granularity: each thread computes collision tests between two
objects of two different sets.

2. Primitive pair granularity: each thread computes collision tests between two
primitives of two different objects.

It was decided to use the object pair granularity because of its simplicity and
fewer number of critical sections. A competitive work-load distribution was used to

CHAPTER 3. METHODOLOGY 64

split the data among threads due to the fact that computation times for detailed
collision tests between two objects are extremely asymmetric.

The first step that is necessary to do in order to parallelize this function is re-
moving the common accesses to critical regions. Threads write collision information
into the output file and the log files. The easiest option is to write the collision
results on the file only once all results have been calculated. Another option that
has not been implemented would be to use many producers (threads) that generate
the collision results and a single producer that stores the results in the file. In this
case, the time spent saving the collision results on the file is negligible compared to
the time required to determine collisions between two sets of objects.

In addition to this, it is also necessary to use atomic variables in order to avoid
race conditions when several threads are incriminating the same counter several
times e.g. nr_sent_with_allowed_contact_atomic.

In addition to that, the function collide2 is not thread-safe because it uses
geometry functions in which the geometry information of primitives such as edges,
normals and points of faces, and contours can be computed at run time in the case
this information is missing.

1 GMD_dir ∗gmd_bsv_face_normal (GMD_bsv_info ∗exp_bsv , i n t face_inx)

2 {

3 GMD_edge_dir_and_length ∗gmd_bsv_edge_info (GMD_bsv_info ∗exp_bsv)

4 {

5 i f (exp_bsv−>edges == NULL) {

6 exp_bsv−>edges = sys_malloc (exp_bsv−>bsv−>nedg ∗ s i z e o f (GMD_edge_dir_and_length)) ;

7

8 f o r (i n t i = 0 ; i < exp_bsv−>bsv−>nedg ; i++) {

9 GMD_bspnt ∗p_one = &exp_bsv−>pnt_tbl [exp_bsv−>edg_tbl [i] . pnt1] ;

10 GMD_bspnt ∗p_two = &exp_bsv−>pnt_tbl [exp_bsv−>edg_tbl [i] . pnt2] ;

11 D3_pnt ∗ d i r = &exp_bsv−>edges [i] . d i r ;

12

13 dir−>x = p_two−>p_x − p_one−>p_x ;

14 dir−>y = p_two−>p_y − p_one−>p_y ;

15 dir−>z = p_two−>p_z − p_one−>p_z ;

16

17 exp_bsv−>edges [i] . l en2 = dir−>x ∗ dir−>x + dir−>y ∗ dir−>y + dir−>z ∗ dir−>z ;

18 }

19 }

20

21 return exp_bsv−>edges ;

22 }

In order to get rid of this problem and avoid using mutexes, it is necessary to

CHAPTER 3. METHODOLOGY 65

pre-compute all primitives of each object, so when the collision module is asking for
geometry information of a primitive, no initialization occurs.

Taking all these factors into account, the previous implementation of the detailed
collision detection function was replaced by the following multi-thread version:

1 const s i ze_t col l_test_pair_nr = pa i r s_fo r_te s t ing . s i z e () ;

2

3 std : : vector<Co l l i s i onRe su l t > c o l l_ r e s u l t s (col l_test_pair_nr , Co l l i s i o nRe su l t : : NO_HIT) ;

4 std : : vector<Col lHitPoint> h i t_r e su l t s (co l l_test_pair_nr) ; // Hit coo rd ina t e s and d i s t anc e s

5

6 std : : atomic_int atomic_col l_test_pair_ix (−1) ;

7 std : : atomic_int nr_sent_with_allowed_contact_atomic (0) ;

8

9 auto tes t_co l l_pa i r s_task = ([&] (s i ze_t) {

10

11 Co l l i s i o nRe su l t c o l l_ r e s u l t ;

12 i n t co l l_test_pai r_ix ;

13 whi le ((co l l_test_pai r_ix = ++atomic_col l_test_pair_ix) < col l_test_pair_nr) {

14 const TestPair& tes t_pa i r = pa i r s_fo r_tes t ing [co l l_test_pai r_ix] ;

15 const i n t& mod_A = test_pa i r .m_modA;

16 const i n t& mod_B = tes t_pa i r .m_modB;

17

18 // Prepare to dea l with an al lowed contact between t h i s pa i r .

19 const MMT_allowed_contact_t∗ p_allowed = tes t_pa i r . m_pAllowed ;

20 i f (p_allowed)

21 ++nr_sent_with_allowed_contact_atomic ;

22

23 c o l l_ r e s u l t = c o l l i d e 2 (mod_A, mod_B, p_allowed , ¶meters , pr imit ive_cache , &

h i t_r e su l t s [co l l_test_pai r_ix]) ;

24 c o l l_ r e s u l t s [co l l_test_pai r_ix] = c o l l_ r e s u l t ;

25 }

26 }) ;

27

28 i f (threadPool == NULL) {

29 tes t_co l l_pa i r s_task (0) ;

30 }

31 e l s e {

32 s i ze_t required_threads = std : : min<size_t >(threadPool−>getNumThreads () , pa i r s_fo r_tes t ing .

s i z e ()) ;

33

34 i f (required_threads > 1) {

35 // precomputes data f o r BSV pr im i t i v e s − avoids us ing mutexes

36 precompute_data_bsv_primitives (pa i r s_for_test ing , pr imit ive_cache , threadPool) ;

37 }

38 threadPool−>pa r a l l e l F o r (test_col l_pairs_task , required_threads) ;

39 }

40

41 ctc . nr_sent_with_allowed_contact = nr_sent_with_allowed_contact_atomic ;

42

43 // r epo r t s c o l l i s i o n r e s u l t s

44 r = save_co l l_re su l t s (pa i r s_for_test ing , c o l l_ r e su l t s , h i t_re su l t s , coarse_info , output_f i l e) ;

CHAPTER 3. METHODOLOGY 66

It was noticed when calculating collisions between two primitives inside collide2,
that there are some cases in which there are many recursive calls in the space par-
titioning of the test space, slowing down the computation. In some extreme cases,
it can take dozens of seconds to test collisions between primitives of two objects.

When spatially two large objects are close to each other but are not colliding
and the box test does not recognize that, then the recursion needs to do a lot of
work to figure out that there are no collisions.

4 Results

Cadmatic hidden-line removal and collision detection are two important algorithms
whose results have important implications in CAD and CAM. Collision detection
takes an important role in CAD, allowing engineers and designers to detect flaws and
mistakes in their designs. Hidden-line removal affects 2D drawings, and 2D drawings
are required for manufacturing. Manufacturers produce designed components by
taking these 2D drawings as reference.

Due to the importance of the results produced by hidden-line removal and colli-
sion detection, it is essential to assure that the parallelization of these two algorithms
provides the same consistent results. In addition to that, it is important to measure
their performance in different scenarios and using data of different complexities.

The testing of both algorithms was done using real Cadmatic projects in which
customers were experiencing performance issues when working with hidden-line re-
moval or collision detection. Due to confidentiality reasons, these testing environ-
ments are not shown in this thesis. Obtained results were recorded in order to check
that they were consistent with their previous implementation, and their execution
times were measured before and after the parallelization in order to estimate their
parallelization speedup.

The testing machine used for measuring the execution times of both algorithms is
a Dell Precision M7510 Core i7 16GB. Its processor is an Intel Core i7-6820HQ with
4 physical cores and 4 virtual cores, with a total of 8 threads. The base frequency
of the processor is 2.7GHz.

CHAPTER 4. RESULTS 68

4.1 Hidden-line removal

Execution times of the hidden-line removal algorithm vary accordingly to the number
of objects in the selected view. Views with more objects require more time than
smaller ones in order to compute hidden-line removal. For this reason, it was decided
to apply hidden-line removal on different views that have different sizes.

One big cruise ship project with many drawings was selected as the environment
in which the parallel version of hidden-line removal was tested. Only 13 views of
different sizes from several drawings were tested because of the time required for
measuring their execution times and checking the consistency of their results. It
was necessary to publish each drawing and carry out a pixel comparison between
newer publications and older publications in order to check that the results of the
new parallel version are the same as the original ones.

As it was mentioned previously, hidden-line removal has two main parts: local
and global hidden-line removal. Optimization results obtained in local and global
hidden-line removal were measured independently in order to know more in detail
the speedup of each one.

The obtained speedup results for local hidden-line removal are illustrated in
the figure 4.1:

Figure 4.1: This chart shows the speedup obtained when applying the parallel ver-
sion of local hidden-line removal on 13 different views using 4+ threads. The
average speedup value is 2.226 and the standard deviation is 1.035, having a mini-
mum speedup value of 0.836 and a maximum speedup value of 3.891.

CHAPTER 4. RESULTS 69

The obtained speedup results for global hidden-line removal are illustrated
in the figure 4.2:

Figure 4.2: This chart shows the speedup obtained when applying the parallel ver-
sion of global hidden-line removal on 13 different views using 4+ threads. The
average speedup value is 2.859 and the standard deviation is 0.784, having a mini-
mum speedup value of 1.774 and a maximum speedup value of 4.568.

The speedup of each element in these charts (figures 4.1 and 4.2) was obtained
by calculating the ratio between the execution time of the original version and
the execution time of the parallel version. A speedup of one means that the new
execution time is equal to the old execution time.

Optimization results obtained in local and global hidden-line removal were sat-
isfactory, on average 2.226 and 2.859 times faster on tested drawings than the non-
multi-thread method implementation of local and global hidden-line removal respec-
tively. It is important to mention that in local and global hidden-line removal there
were big deviations between samples due to the fact that views have different num-
bers of objects and complexities. Hidden-line removal is also affected by the way
objects overlap with each other.

In addition to that, the results obtained in global hidden-line removal were better
than the ones obtained in local hidden-line removal because of a higher level of
granularity, in which over and under segments are compared. It is important to
know that local hidden-line removal is computed only once, and it is not carried out
until the view is totally regenerated. Achieving less performance in local hidden-line
removal in some odd cases would not cause any notice by Cadmatic users.

CHAPTER 4. RESULTS 70

It is important to point out that there are some cases in which removing hidden-
lines for one single object takes a notably longer time when compared with other
objects. These problematic objects contain an unnecessary amount of details that
make the computation more complex and longer. Typically these objects are im-
ported into Cadmatic from other CAD tools such as AutoCAD.

4.2 Collision Detection

Execution times of the collision detection algorithm vary accordingly to the number
of objects that are going to be considered, their complexity and their position. For
testing the performance of collision detection, four big cruise ship projects were
considered. Each of these projects has more than one million objects, that were
tested for collisions against each other. The obtained speedup results are illustrated
in the figure 4.3:

Figure 4.3: This chart shows the speedup obtained when executing the parallel
version of collision detection on four different models using 4+ threads. The average
speedup value is 2.911 and the standard deviation is 0.727, having a minimum
speedup value of 2.179 and a maximum speedup value of 3.63.

The speedup of each element in this chart (figure 4.3) was obtained by calculating
the ratio between the execution time of the original version and the execution time
of the parallel version. A speedup of one means that the new execution time is equal
to the old execution time.

CHAPTER 4. RESULTS 71

Collision detection optimization results were satisfactory, obtaining an increase
in performance of an order of 2.911, almost three times faster when compared to the
original single thread version. In addition to that, the new collision data matches the
original one, suggesting the multi-thread implementation provides the same output
results as before.

It is important to point out that there are some special cases in which the time
required by a thread to compute a collision between two primitives can be extremely
large. It seems to appear when spatially two large objects are close to each other but
are not colliding and the box test does not recognize that, then the recursion needs
to do a lot of work to figure out that there are no collisions. That could explain the
deviation in the data.

5 Discussion

The results obtained in the two study cases (hidden-line removal and collision de-
tection) seem to validate the guidelines and approaches described in this thesis in
order to optimize and parallelize complex and data-intensive algorithms.

Hidden-line removal and collision detection algorithms suffer from data asym-
metry, making their parallelization more challenging due to work-load imbalances
among threads. The suggested techniques in this thesis such as the "competitive
work-load distribution of data" seem to mitigate the problem. However, the speedup
obtained in the parallel version of local hidden-line removal is slightly distant from
the ideal one. Even though results at local hidden-line removal are not ideal, they
are still better than the previous implementation. In addition to that, local hidden-
line removal is executed only once, and after that, it is not necessary to compute
it again. The results obtained in global hidden-line removal are closer to the ideal
ones than the ones obtained in local hidden-line removal because global hidden-line
removal has fewer mutexes and a higher level of granularity than local hidden-line
removal.

In the case of collision detection, the results are also satisfactory and the ob-
tained speedup is better than the one obtained in hidden-line removal. However,
the Cadmatic collision detection has some corner cases when spatially two large ob-
jects are close to each other but are not colliding and the box test does not recognize
that, then the recursion needs to do a lot of work to figure out that there are no
collisions.

It seems that spheres collision tests are behind this problem, providing fast col-
lision results when primitives are distant but requiring extra time when primitives
are close to each other.

CHAPTER 5. DISCUSSION 73

One of the side effects of using multi-threading to speed up hidden-line removal
and collision detection is an increase in the total memory required by both algo-
rithms. Each thread needs to have its own local variables and temporal buffers
to store its computations. In the case of both algorithms memory is not typically
a problem, so an increment in the use of memory proportional to the number of
threads and a constant factor of the input size does not represent an issue.

6 Conclusion and Future Work

The parallelization of complex and data-intensive algorithms is an arduous task
prone to errors. In addition to that, parallelizing and tailoring each algorithm of
each specific application is a time-consuming task and its implementation is domain-
specific because it can not be reused outside the specific problem in which the
algorithm is defined.

General and efficient parallelization techniques and approaches were defined in
this thesis in order to provide reusable parallelization patterns that can be extrap-
olated and applied to other different algorithms in order to evolve sequential code
into multi-thread code in an efficient and consistent way.

Hidden-line removal and collision detection algorithms were used as examples
in which these parallelization techniques could be applied. It is important to point
out that both algorithms are difficult to parallelize due to the asymmetry of their
data. In the case of hidden-line removal, different objects (segments) have different
complexities, requiring shorter or longer time than others in order to remove hidden
lines. In the case of collision detection, comparisons between primitives using spheres
in the collision test yield bad performance results when spatially two large objects
are close to each other but are not colliding and the box test does not recognize
that. A competitive approach, in which threads compete which each other for the
next element to compute was applied, minimizing data asymmetry and obtaining
better performance and work-load distribution between threads.

The obtained results showed that the proposed principles and patterns can be
easily applied to both algorithms, transforming their sequential to multithread im-
plementations, obtaining consistent optimization results proportional to the number
of processing elements.

CHAPTER 6. CONCLUSION AND FUTURE WORK 75

From the work done in this thesis, it is concluded that the suggested paralleliza-
tion patterns warrant further study and development in order to extend their usage
to heterogeneous platforms such as a GPU. OpenCL is the most feasible framework
to explore in the future due to its interoperability among different platforms.

References

[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution”, Pro-

ceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980. doi: 10.1109/PROC.

1980.11805.

[2] B. Catanzaro and K. Keutzer, “Parallel computing with patterns and frame-

works”, XRDS, vol. 17, no. 1, pp. 22–27, Sep. 2010, issn: 1528-4972. doi:

10.1145/1836543.1836552. [Online]. Available: https://doi.org/10.1145/

1836543.1836552.

[3] L. Coyle, M. Hinchey, B. Nuseibeh, and J. Fiadeiro, “Guest editors’ intro-

duction: Evolving critical systems”, IEEE Computer, vol. 43, pp. 28–33, May

2010. doi: 10.1109/MC.2010.139.

[4] B. Massingill, T. Mattson, and B. Sanders, “Reengineering for parallelism: An

entry point into plpp for legacy applications”, Concurrency and Computation:

Practice and Experience, vol. 19, pp. 503–529, Mar. 2007. doi: 10.1002/cpe.

1147.

[5] A. Meade, J. Buckley, and J. Collins, “Challenges of evolving sequential to

parallel code: An exploratory review”, Sep. 2011, pp. 1–5. doi: 10.1145/

2024445.2024447.

[6] S. Marschner and P. Shirley, Fundamentals of Computer Graphics. 2008, p. 242,

isbn: 9788170088547.

https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1145/1836543.1836552
https://doi.org/10.1145/1836543.1836552
https://doi.org/10.1145/1836543.1836552
https://doi.org/10.1109/MC.2010.139
https://doi.org/10.1002/cpe.1147
https://doi.org/10.1002/cpe.1147
https://doi.org/10.1145/2024445.2024447
https://doi.org/10.1145/2024445.2024447

REFERENCES 77

[7] A. Munshi, “OpenCL 1.2 Specification”, Version 1.2, p. 380, 2012. [Online].

Available: http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=

Search%7B%5C&%7Dq=intitle:The+opencl+specification%7B%5C#%7D0.

[8] R. S. D. Melo, “A study of replacing CUDA by OpenCL”, 2014.

[9] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph: GPU

scheduling for real-time multi-tasking environments”, Proceedings of the 2011

USENIX Annual Technical Conference, USENIX ATC 2011, pp. 17–30, 2019.

[10] Cadmatic, Cadmatic Marine and Plant Industries, 2021. [Online]. Available:

https://www.cadmatic.com.

[11] A. Lew and H. Mauch, Dynamic Programming: A Computational Tool. Jan.

2006.

[12] R. Galimberti, “An algorithm for hidden line elimination”, Communications

of the ACM, vol. 12, no. 4, pp. 206–211, 1969, issn: 15577317. doi: 10.1145/

362912.362921.

[13] P. Jiménez, F. Thomas, and C. Torras, “3D collision detection: A survey”,

Computers and Graphics (Pergamon), vol. 25, no. 2, pp. 269–285, 2001, issn:

00978493. doi: 10.1016/S0097-8493(00)00130-8.

[14] A. Sohn, M. Sato, N. Yoo, and J. L. Gaudiot, “Data and workload distribution

in a multithreaded architecture”, Journal of Parallel and Distributed Comput-

ing, vol. 40, no. 2, pp. 256–264, 1997, issn: 07437315. doi: 10.1006/jpdc.

1996.1262.

[15] A. Fallis, C++ Concurrency in Action, 9. 2013, vol. 53, pp. 1689–1699, isbn:

9788578110796. doi: 10.1017/CBO9781107415324.004. arXiv: arXiv:1011.

1669v3.

http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:The+opencl+specification%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:The+opencl+specification%7B%5C#%7D0
https://www.cadmatic.com
https://doi.org/10.1145/362912.362921
https://doi.org/10.1145/362912.362921
https://doi.org/10.1016/S0097-8493(00)00130-8
https://doi.org/10.1006/jpdc.1996.1262
https://doi.org/10.1006/jpdc.1996.1262
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3

REFERENCES 78

[16] M. Haghbayan, S. Teräväinen, A. Rahmani, P. Liljeberg, and H. Tenhunen,

“Adaptive fault simulation on many-core microprocessor systems”, in In Proc

of International Symposium on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems (DFTS), 2015, pp. 151–154.

[17] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with explicit mul-

tithreading”, ACM Comput. Surv., vol. 35, no. 1, pp. 29–63, Mar. 2003, issn:

0360-0300. doi: 10.1145/641865.641867. [Online]. Available: https://doi.

org/10.1145/641865.641867.

[18] G. Glaeser, “Hidden-line removal”, in Fast Algorithms for 3D-Graphics. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1994, pp. 185–200, isbn: 978-3-662-

25798-2. doi: 10.1007/978-3-662-25798-2_7. [Online]. Available: https:

//doi.org/10.1007/978-3-662-25798-2_7.

[19] P. P. Loutrel, “A Solution to the Hidden-Line Problem for Computer-Drawn

Polyhedra”, vol. C, no. 3, pp. 407–415, 1970.

[20] F. Dévai, “QUADRATIC BOUNDS FOR HIDDEN-LINE ELIMINATION”,

2nd Symposium on Computational Geometry 1986: Yorktown Heights, NY,

USA, pp. 269–275, 1986.

[21] A. Appel, “The notion of quantitative invisibility and the machine rendering

of solids”, pp. 387–393, 1967. doi: 10.1145/800196.806007.

[22] C. Hornung, “An approach to a calculation-minimized hidden line algorithm”,

Computers and Graphics, vol. 6, no. 3, pp. 121–126, 1982, issn: 00978493. doi:

10.1016/0097-8493(82)90005-X.

[23] F. Dévai, An O (log N) Parallel Time Exact Hidden-Line Algorithm. 1988,

pp. 65–73.

https://doi.org/10.1145/641865.641867
https://doi.org/10.1145/641865.641867
https://doi.org/10.1145/641865.641867
https://doi.org/10.1007/978-3-662-25798-2_7
https://doi.org/10.1007/978-3-662-25798-2_7
https://doi.org/10.1007/978-3-662-25798-2_7
https://doi.org/10.1145/800196.806007
https://doi.org/10.1016/0097-8493(82)90005-X

REFERENCES 79

[24] John H. Reif and Sandeep Sen, “An efficient output-sensitive hidden-surface

removal algorithm and its parallelization”, Proceedings of the 4th Annual Sym-

posium on Computational Geometry, pp. 193–200, 1988.

[25] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A.

Fuhrman, M.-p. Cani, N. Magnenat-thalmann, W. Strasser, and L. Raghu-,

“Collision Detection for Deformable Objects”, Eurographics 2004, pp. 119–135,

2009.

[26] A. P. del Pobil, M. Perez, and B. Martinez, “Practical approach to collision

detection between general objects”, Proceedings - IEEE International Confer-

ence on Robotics and Automation, vol. 1, no. April, pp. 779–784, 1996, issn:

10504729. doi: 10.1109/robot.1996.503868.

[27] S. Trenkel, R. Weller, and G. Zachmann, “A benchmarking suite for static colli-

sion detection algorithms”, 15th International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision 2007, WSCG’2007 -

In Co-operation with EUROGRAPHICS, Full Papers ProceedingsWSCG Pro-

ceedings, pp. 265–270, 2007.

[28] C. Ericson, Real-Time Collision Detection. 2004, isbn: 1558607323.

[29] M. Raynal, Concurrent Programming : Algorithms , Principles , and Founda-

tions. Springer Science & Business Media, 2013, isbn: 9783642320262.

[30] R. H. B. Netzer and B. P. Miller, “What are race conditions? some issues and

formalizations”, ACM Lett. Program. Lang. Syst., vol. 1, no. 1, pp. 74–88, Mar.

1992, issn: 1057-4514. doi: 10.1145/130616.130623. [Online]. Available:

https://doi.org/10.1145/130616.130623.

[31] M. Walmsley, “Multi-threaded programming in c++”, Jan. 2000. doi: 10.

1007/978-1-4471-0725-5.

https://doi.org/10.1109/robot.1996.503868
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/130616.130623
https://doi.org/10.1007/978-1-4471-0725-5
https://doi.org/10.1007/978-1-4471-0725-5

REFERENCES 80

[32] Y. Ling, T. Mullen, and X. Lin, “Analysis of optimal thread pool size.”, Oper-

ating Systems Review, vol. 34, pp. 42–55, Apr. 2000. doi: 10.1145/346152.

346320.

https://doi.org/10.1145/346152.346320
https://doi.org/10.1145/346152.346320

	Introduction
	Aim and objectives of the study

	Theoretical Background
	Cadmatic
	Multi-threading
	Hidden-line removal
	Existing sequential algorithms
	Parallel algorithms

	Collision detection in computer graphics
	Bounding volumes
	Basic primitive tests
	Closest-point computations
	Testing Primitives

	Bounding Volume Hierarchies
	Spatial partitioning
	Octrees and Quadtrees

	Methodology
	Parallelization techniques and patterns
	Thread-safe patterns
	Optimization patterns

	Hidden-line removal
	Bucketing acceleration
	Local hidden-line removal
	Multi-threading local hidden-line removal

	Global hidden-line removal
	Multi-threading global hidden-line removal

	Collision detection
	Optimization
	Determining detailed collision object pairs
	Performing detailed collision detection

	Results
	Hidden-line removal
	Collision Detection

	Discussion
	Conclusion and Future Work
	References

