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ABSTRACT

A graph consists of vertices that are connected by edges. A resolving set of a graph
is a subset of its vertices that gives a unique combination of distances to every vertex
of the graph. We can use the distances we are given to locate a vertex within the
graph we are considering. Resolving sets were introduced by Slater in 1975 and in-
dependently by Harary and Melter in 1976. Robot navigation and network discovery
and verification are examples of applications that have been suggested for resolving
sets.

In this dissertation, we consider resolving sets and two of their generalisations
that can be used to locate subsets of vertices instead of individual vertices. We con-
sider how these generalisations are connected to other concepts such as locating-
dominating sets and the boundary of a graph. We place special emphasis on studying
the minimum cardinalities of resolving sets and the two generalisations. In addition
to proving general bounds to these minimum cardinalities, we consider their exact
values in some graph families. Natural decision problems arise from some of the
concepts that we consider and we study their algorithmic complexities.

We also investigate which vertices of a graph must be included in an optimal
resolving set or one of the two generalisations. For the resolving sets that can be
used to locate subsets of vertices, there exist vertices that are in all such resolving
sets. We call these vertices forced vertices of the graph. Such vertices do not exist
for regular resolving sets. However, for minimum resolving sets they can exist, and
we call them basis forced vertices of the graph. In this dissertation, we characterise
the forced vertices of a graph, and consider some extremal properties of graphs that
contain basis forced vertices.

Keywords: resolving set, metric dimension, forced vertex, algorithmic complexity.
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TIIVISTELMÄ

Väitöskirjassa tarkastellaan objektien paikantamista tunnistinverkoissa etäisyyksien
avulla. Verkko eli graafi koostuu viivoilla yhdistetyistä pisteistä ja paikannettavat
objektit sijaitsevat pisteissä. Etäisyyksien avulla paikantavaksi koodiksi (resolving
set) kutsutaan graafin pistejoukkoa, jonka alkiot antavat yksilöllisen yhdistelmän
etäisyyksiä jokaiselle graafin pisteelle. Näitä etäisyyksiä käyttämällä tarkasteltavasta
graafista voidaan paikantaa yksittäisiä pisteitä. Graafin pisteiden paikantamisen etäi-
syyksien avulla esittelivät toisistaan riippumatta sekä Slater vuonna 1975 että Harary
ja Melter vuonna 1976. Etäisyyksien avulla paikantavia koodeja on ehdotettu käytet-
täväksi esimerkiksi robottien ohjaamisessa ja tietoverkkojen rakenteen selvittämises-
sä.

Tässä väitöskirjassa tarkastellaan tavanomaisten etäisyyksien avulla paikantavien
koodien lisäksi niiden kahta yleistystä, joita käyttämällä graafista voidaan paikantaa
yksittäisten pisteiden sijaan pistejoukkoja. Nämä yleistykset ovat yhteydessä muihin
graafiteorian käsitteisiin, kuten paikantaviin peittokoodeihin (locating-dominating
sets) ja graafin rajajoukkoon (boundary of a graph). Väitöskirjassa kiinnitetään eri-
tyistä huomiota optimaalisiin koodeihin eli koodeihin, joiden koko on mahdollisim-
man pieni. Optimaalisten koodien alkioiden lukumäärille todistetaan ylä- ja alara-
joja, ja optimaalisia koodeja tarkastellaan tarkemmin monissa eri graafiperheissä.
Väitöskirjassa tutkitaan myös näiden käsitteiden algoritmista kompleksisuutta.

Jotkin graafin pisteet on pakko sisällyttää käsiteltäviin koodeihin. Tavanomaiselle
etäisyyksien avulla paikantavalle koodille tällaisia niin kutsuttuja pakotettuja pis-
teitä on olemassa vain kun koodi on optimaalinen. Tätä vastoin yleistetyille koo-
deille on olemassa pakotettuja pisteitä myös silloin kun koodi ei ole optimaalinen.
Tässä väitöskirjassa karakterisoidaan pakotetut pisteet yleistetyille koodeille ja tut-
kitaan, millaisia ominaisuuksia on graafeilla, joiden etäisyyksien avulla paikantaville
optimaalisille koodeille on olemassa pakotettuja pisteitä.

Asiasanat: etäisyyksien avulla paikantava koodi, metrinen dimensio, pakotettu piste,
algoritminen kompleksisuus.
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1 Introduction

Graphs consist of vertices that are connected to each other by edges. A graph can
be used as a model of many structures. The vertices of a graph may be thought to
be computers or routers in a network, friends or followers in social media, or even
rooms in a building, to name a few examples.

One widely studied problem in graph theory is to locate a vertex in a graph. One
solution to this problem is the resolving set of a graph. Resolving sets locate vertices
in a graph by giving the distances from its elements to the vertex that we are locating.
A resolving set gives a unique combination of distances to each vertex of the graph.
With these unique combinations, we can distinguish the vertices of a graph from one
another. Resolving sets were first introduced in [40] and independently in [19].

There are, of course, other solutions to the locating problem. For example,
locating-dominating sets (introduced in [36; 41; 42]) and identifying codes (intro-
duced in [28]) can also be used to locate a vertex in a graph. The method of locating
is different to resolving sets. Instead of distances, the information we have at our dis-
posal is which elements of the locating-dominating set or identifying code are in the
neighbourhood of the vertex we are locating. This set of elements is unique for all
vertices of the graph if the locator set is an identifying code. If it is sufficient to locate
only the vertices that are not in the locator set (sometimes called the non-codewords
of the graph), then we are considering a locating-dominating set.

The vertex set of a graph is always a resolving set of the graph. Thus, instead
of the existence of resolving sets, the objective of much of the research on resolving
sets is focused on finding the smallest possible resolving set. The cardinality of the
smallest resolving set of a graph is called the metric dimension of the graph. When
given a random graph, finding the metric dimension is generally computationally
difficult. Indeed, the decision problem whether the metric dimension of a graph is at
most a given integer k is NP-complete. This result was mentioned without proof in
[18]. Later in [31], the NP-completeness was shown by reducing the 3-satisfiability
problem to this problem.

The research on resolving sets and the metric dimension of a graph has been
very active in the last decades. Resolving sets have been connected to, for example,
network discovery and verification [5], robot navigation [31], chemistry [9; 32], the
coin weighing problem [8; 39] and the Mastermind game [8; 11].

Many new variants of resolving sets have been introduced and studied in the
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Introduction

literature. Let us discuss the possible motivation behind some of these variants and
their differences in an informal manner. Say, the elements of a resolving set are some
sort of sensors that we place in a network. The cost of placing a sensor in a certain
place can vary, perhaps due to a hard-to-reach location. In this situation, weighted
resolving sets [13] could be the answer. If we place the sensors by visiting vertices,
moving only between adjacent vertices, we can use a connected resolving set [14].
If we want to locate the edges of the graph instead of the vertices, then we can use
edge resolving sets [30]. If we wish to locate both the edges and the vertices of the
graph, then we can use mixed resolving sets [29]. Fault-tolerant resolving sets [21]
and k-resolving sets [1; 16] are designed to locate vertices successfully even when
one sensor fails. The functionality of the sensors may have some limitations. For
example, the sensor may not sense objects that are further away than some threshold
value. Then we may use resolving sets which use a bounded distance metric instead
of the usual graphical distance [15; 25]. If the sensor cannot sense itself, then we
may use strong total resolving sets [38]. There are many more variants of resolving
sets besides the ones mentioned here.

In addition to the regular resolving set introduced in [40] and [19], we consider
two other variants of resolving sets in this dissertation. These are generalisations of
the regular resolving set built to distinguish between sets of vertices, that is, instead
of locating one element at a time the goal is to locate multiple elements simulta-
neously. Similar generalisations of locating-dominating sets have been studied in
[23; 27; 35] and of identifying codes in [3; 17; 22; 35], for example.

This dissertation consists of a summary and individual original publications.
Chapters 2-4 summarise the results obtained in the four original publications or
manuscripts that this dissertation is based on. In Chapter 2, we formally introduce the
necessary concepts and discuss some of our results. More precisely, Section 2.1 is
dedicated to introducing the regular resolving sets, and presenting some basic results
and examples on the metric dimension of a graph. In Sections 2.2 and 2.3, similar
introductions are given to {`}-resolving sets and `-solid-resolving sets, respectively.
We then discuss the connection of {`}-resolving sets and `-solid-resolving sets in
Section 2.4. An important tool we use in researching resolving sets and their gener-
alisations is the concept of forced vertices. Everything pertaining to forced vertices
is gathered to Chapter 3. In Section 3.1, we consider the forced vertices of {`}-
resolving sets and `-solid-resolving sets. A concept similar to forced vertices can be
defined for resolving sets of minimum cardinality. This idea is explored in Section
3.2. Chapter 4 is a compact overview on the contents of the original publications,
which are included at the end of this dissertation.

13



2 Resolving Sets

We begin by giving the basic definitions of resolving sets and the metric dimension
of a graph. We go through some examples and present a couple well known results
regarding resolving sets. In Sections 2.2 and 2.3 we introduce the two variants of
resolving sets that can be used to locate multiple elements simultaneously. In Section
2.4, we discuss the connection of the concepts introduced in Sections 2.2 and 2.3, and
also consider results that are similar between them.

2.1 Resolving Sets and the Metric Dimension of a Graph
Let G be a simple, undirected and finite graph with the vertex set V (G) and the edge
set E(G). The distance between two vertices v, u ∈ V (G) is the number of edges
in a shortest path between v and u, and it is denoted by dG(v, u). If such a path
does not exist (which is possible if the graph is not connected), then we consider the
distance dG(v, u) to be infinite. If dG(v, u) = 1 for distinct vertices v, u ∈ V (G),
then v and u are adjacent and we say that v and u are neighbours of each other. The
open neighbourhood of v ∈ V (G) is the set NG(v) = {u ∈ V (G) | dG(v, u) = 1},
and the closed neighbourhood of v ∈ V (G) is the set NG[v] = NG(v) ∪ {v}. If the
graph we consider is clear from context, then we may omit the subscripts from these
notations. We refer to [46] for further definitions and terminology regarding graph
theory.

Let R = {r1, . . . , rk} ⊆ V (G). We consider the set R to be an ordered set. The
distance array of the vertex v ∈ V (G) with respect to the set R is

DR(v) = (d(r1, v), . . . , d(rk, v)).

Definition 1. The set R ⊆ V (G) is a resolving set of G if for all distinct vertices
v, u ∈ V (G) we have DR(v) 6= DR(u). The smallest possible cardinality of a
resolving set of G is the metric dimension of G, and it is denoted by β(G). A
resolving set of G of cardinality β(G) is called a metric basis of G.

We say that a vertex r ∈ V (G) resolves (or distinguishes) vertices v, u ∈ V (G)

if d(r, v) 6= d(r, u). Using this terminology, we can also define resolving sets as
follows: the set R ⊆ V (G) is a resolving set of the graph G if for any distinct
vertices v, u ∈ V (G) there exists an element r ∈ R that resolves v and u.

14
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v1,1

v1,6

v4,4

v6,2

Figure 1. The 8× 6 grid graph with a metric basis and an example case.

Over the years, varying terminology has been used when speaking of resolving
sets and the metric dimension of a graph. The terms resolving set and metric di-
mension were introduced by Harary and Melter in [19]. In Slater’s seminal work
[40], resolving sets are locating sets, the distance array of a vertex is the S-location
of a vertex, metric bases are reference sets and the metric dimension of a graph is
the location number of a graph. Resolving sets are also called metric generators in
[39; 47] for example, and the elements of a resolving set are called landmarks in
[31]. The distance array of a vertex is called the metric representation or simply
representation of a vertex in [9; 44].

The graph we consider in Example 2 is a 2-dimensional grid graph. The metric
dimension of such graphs was shown to be 2 in [34].

Example 2. Consider the 8 × 6 grid graph G illustrated in Figure 1. We denote the
vertices of this graph by vi,j , where i = 1, . . . , 8 and j = 1, . . . , 6. If a vertex is in
the corner of the graph, then it has only two neighbours. For example, the neighbours
of the vertex v1,1 are v2,1 and v1,2. The vertices at the frame of the graph have up to
three neighbours. For example, the neighbours of the vertex v1,2 are v1,3, v2,2 and
v1,1. If i 6= 1, 8 and j 6= 1, 6, then the vertex vi,j has four neighbours: vi+1,j , vi−1,j ,
vi,j+1 and vi,j−1. The distance between two vertices of the graph G can be easily
calculated; we have d(vi,j , vk,l) = |i−k|+ |j−l|. For example, the distance between
the vertices v1,6 and v4,4 is |1− 4|+ |6− 4| = 3 + 2 = 5.

No single vertex vi,j can be a resolving set of G, since there are multiple vertices
at the same distance from vi,j . For example, each vi,j has at least two neighbours,
and both of these neighbours are at distance 1 from vi,j . Thus, any resolving set of
G must contain at least two vertices, and we have β(G) ≥ 2.

The set R1 = {v1,1, v1,6} (illustrated as black vertices in Figure 1) is a metric
basis of G. The fact that R1 is a resolving set of G can be shown with a visual
argument. The vertices that are at the same distance from v1,1 form a diagonal in
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the illustration of the graph. For example, all vertices that are at distance 6 from
v1,1 are outlined with the dotted line in Figure 1. Similarly, the vertices that are at
the same distance from v1,6 form diagonal lines in the illustration of G. However,
these diagonals are perpendicular compared to those of v1,1. If the diagonals of v1,1
and v1,6 intersect, then there is only one element in the intersection. Thus, if two
vertices are at the same distance from v1,1, then they are at different distances from
v1,6, and vice versa. For example, the vertices v4,4 and v6,2 are both at distance 6
from v1,1, however, we have d(v1,6, v4,4) = 5 and d(v1,6, v6,2) = 9. Thus, the set R1

is a resolving set of G and β(G) = 2.

Every graph has at least one resolving set. For example, the set V (G) is always
a resolving set of G. Indeed, the position of the 0 in the distance array DV (G)(v)

implies which vertex v is. Similarly, the set V (G) \ {v} is also a resolving set of
G for any v ∈ V (G). The vertex v is the only vertex that does not have a 0 in its
distance array, and the distance array of any other vertex than v contains exactly one
0 given by the vertex itself. Thus, resolving sets exist for any graph G and we have

β(G) ≤ |V (G)| − 1.

The graphs that attain this upper bound were characterised in [9] as is stated in the
following theorem. We denote the complete graph with n vertices by Kn.

Theorem 3. [9] Let G be a connected graph with n ≥ 2 vertices. We have β(G) =

n− 1 if and only if G = Kn.

The connected graphs with n vertices and metric dimension n − 2 were also
characterised in [9]. Graphs with metric dimension n − 3 were characterised in
[26; 45].

On the opposite end we have graphs with very small metric dimensions. The
path with n ≥ 1 vertices is denoted by Pn. It is easy to see that β(Pn) = 1. Indeed,
either endpoint of the path gives a unique distance array to all vertices of Pn. The
following theorem is a well known result in the area of resolving sets.

Theorem 4. [9; 31; 40] Let G be a connected graph with n vertices. We have
β(G) = 1 if and only if G = Pn.

Let us then consider trees. A tree is a connected graph that does not contain any
cycles. The metric bases of trees have been studied extensively, see [9; 19; 31; 40],
for example.

Example 5. Consider the tree T in Figure 2. A leaf (or a pendant) is a vertex that
has only one neighbour. The leaves of T are labelled as the vertices li. Any tree
has several metric bases that contain only leaves of the tree [9]. The tree T has, for
example, the following metric bases: {l1, l2, l5}, {l1, l3, l6} and {l2, l3, l5}.
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l1

l3

l4l2

l5

l6

Figure 2. A tree with a metric basis illustrated as black vertices.

Due to the following remark, the graphs we consider in this dissertation are con-
nected graphs most of the time.

Remark 6. Let G be a graph that is not connected. Let G1 and G2 be connected
components of G. It is clear that no element of V (G1) resolves v and u when v, u ∈
V (G2). Let R ⊆ V (G) be a resolving set of G. The set R ∩ V (Gi) is a resolving
set of the connected component Gi when Gi 6= K1. If we have R∩ V (Gi) = ∅ for a
resolving setR and connected componentGi, thenGi = K1 andR∩V (Gj) 6= ∅ for
all j 6= i. Due to this, we focus our research on resolving sets on connected graphs
unless otherwise stated.

2.2 The {`}-Resolving Sets of a Graph
The resolving sets introduced in the previous section can be used to distinguish in-
dividual vertices from one another. In this section, we introduce a modification of
resolving sets that can distinguish sets of vertices from one another. The variant we
introduce in this section can locate multiple vertices simultaneously (i.e. it can locate
vertex sets instead of individual vertices).

We define the distance between a vertex v ∈ V (G) and a set of vertices X ⊆
V (G) as d(v,X) = min

x∈X
d(v, x). The distance array of the vertex set X with respect

to the set R = {r1, . . . , rk} ⊆ V (G) is

DR(X) = (d(r1, X), . . . , d(rk, X)).

Definition 7. Let ` be a positive integer. The set R ⊆ V (G) is an {`}-resolving
set (or `-set-resolving set) of G if we have DR(X) 6= DR(Y ) for all nonempty and
distinct sets X,Y ⊆ V (G) such that |X| ≤ ` and |Y | ≤ `. The smallest possible
cardinality of an {`}-resolving set of G is the {`}-metric dimension of G, and it is
denoted by β`(G). An {`}-resolving set of cardinality β`(G) is called an {`}-metric
basis of G.

The definition of a {1}-resolving set is exactly the same as Definition 1. Thus,
instead of {1}-resolving sets and {1}-metric bases we simply speak of (regular) re-
solving sets and metric bases, as we do in Definition 1.
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v4,2

v4,4

v3,3 v5,3

v1,1

v1,6

v8,1

...

...

v8,6

Figure 3. The 8× 6 square grid with a {2}-metric basis illustrated as black vertices and an
example case.

The concept of {`}-resolving sets was introduced in [33], where the {`}-metric
dimension of a graph is called the `-metric dimension of a graph. However, we have
adopted the notation {`}-metric dimension in an effort to prevent any confusion with
the k-metric dimension of a graph, which was introduced in [1] and independently in
[16]. Moreover, our notation emphasises the fact that {`}-resolving sets can be used
to resolve vertex sets instead of individual vertices.

The set V (G) is an {`}-resolving set of G for any `. Indeed, the positions of
the 0’s in the distance array DV (G)(X) indicate the elements of X . For every graph
G there exists an integer ` ≤ |V (G)| such that β`(G) = |V (G)|. If ` = |V (G)|,
then we certainly have β`(G) = |V (G)|. Indeed, the only vertex that can distinguish
the sets V (G) and V (G) \ {v} is v itself. Thus, we would need every vertex of G
in order to distinguish between all subsets of vertices. The smallest value of ` for
which β`(G) = |V (G)| depends on the structure of the graph G.

The following two examples consider the {`}-metric dimensions of the graphs
already familiar from Examples 2 and 5.

Example 8. Let us consider again the 8 × 6 grid graph G as we did in Example 2.
The {2}-metric dimension of an n×m grid graph was determined in [33]. According
to [33], the set R2 = {v1,1, v1,6} ∪ {v8,i | i = 1, . . . , 6} (illustrated as black vertices
in Figure 3) is a {2}-metric basis of G.

Let us consider an example case and compare the set R2 and the metric ba-
sis R1 = {v1,1, v1,6} introduced in Example 2. Let X = {v4,2, v4,4} and Y =

{v3,3, v5,3}. The elements of X and Y are illustrated as cyan and orange vertices
in Figure 3. As we saw in Example 2, the set R1 is a metric basis of G. How-
ever, it cannot distinguish the sets X and Y . Indeed, we have DR1

(X) = (4, 5) =

DR1
(Y ). Distinguishing the sets X and Y poses no difficulty to the set R2; we have

d(v8,3, X) = 5 and d(v8,3, Y ) = 3. As it turns out in [33], the most difficult two
element sets to distinguish from one another in the graphG are sets that form a cross-
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(a) ` = 2. (b) ` = 3. (c) ` = 4.

Figure 4. The unique {`}-metric bases of the tree T for 2 ≤ ` ≤ 4.

or a diamond-like shape – just like the sets X and Y do.
According to [33], the only {`}-metric basis of G is the set V (G) when ` ≥ 3.

The degree of a vertex v ∈ V (G) is defined as degG(v) = |N(v)|.

Example 9. We consider the {`}-metric dimensions of trees in Publication I, which
is one of the original publications included later on in this dissertation. We show that
the unique {`}-metric basis of a tree T is the set {v ∈ V (T ) | deg(v) < `}. Let
us consider the tree T familiar from Example 5. The {`}-metric bases of the tree T ,
when 2 ≤ ` ≤ 4, are illustrated in Figure 4. When ` ≥ 5, we have β`(T ) = |V (T )|.

In our original publications, we consider the {`}-metric dimensions of some spe-
cific graphs and graph families. For example, we consider finite king grids in addition
to trees in Publication I. We determine the {`}-metric dimensions of king grids for all
`. The exact value of the metric dimension of a king grid was conjectured in [37] and
later proved in [4]. In Publication I, we give a new proof for the metric dimension of
a king grid. In Publication III, we consider the metric dimensions of Rook’s graphs
and flower snarks. As it turns out, the {2}-metric bases of Rook’s graphs have an
intriguing connection to combinatorial designs. In our original publications, we also
show general results concerning {`}-resolving sets, which we will discuss later in
Sections 2.4 and 3.

2.3 The `-Solid-Resolving Sets of a Graph
The idea behind `-solid-resolving sets is to locate up to ` elements – just like with an
{`}-resolving set – but also detect if there are more than ` elements in a vertex set.
In other words, `-solid-resolving sets are designed to do the same as {`}-resolving
sets but with the additional property that no vertex set with more than ` elements has
the same distance array as a vertex set with up to ` elements.

We introduce 1-solid-resolving sets in Publication II, and the following, more
general, definition of `-solid-resolving sets and the `-solid-metric dimension of a
graph in Publication III.

Definition 10. Let ` be a positive integer. The set R ⊆ V (G) is an `-solid-resolving
set of G if DR(X) 6= DR(Y ) for all nonempty and distinct sets X,Y ⊆ V (G) such
that |X| ≤ `. The smallest possible cardinality of an `-solid-resolving set of G is the
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`-solid-metric dimension of G, and it is denoted by βs` (G). An `-solid-resolving set
of cardinality βs` (G) is called an `-solid-metric basis of G.

The difference between Definitions 7 and 10 is that the latter definition does not
have the restriction |Y | ≤ ` that the former definition has. However, this seem-
ingly small difference can lead to a very large difference between the `-solid-metric
dimension and {`}-metric dimension of a graph. By Definitions 7 and 10, an `-solid-
resolving set of a graph G is an {`}-resolving set of G for a fixed `. However, the
converse is not true. We will consider the connection of `-solid-resolving sets and
{`}-resolving sets more closely in Section 2.4.

The following theorem provides an easy way to prove that a vertex set is an
`-solid-resolving set. Theorem 11 is in Publication III as Theorem 3.

Theorem 11. Let ` be a positive integer. The set R ⊆ V (G) is an `-solid-resolving
set of G if and only if for all x ∈ V (G) and nonempty Y ⊆ V (G) such that x /∈ Y
and |Y | ≤ ` there exists an element r ∈ R such that d(r, x) < d(r, Y ).

When ` = 1, Theorem 11 takes on a very simple form; the set R ⊆ V (G) is a
1-solid-resolving set of G if and only if for all distinct x, y ∈ V (G) there exists an
element r ∈ R such that d(r, x) < d(r, y). We demonstrate the use of Theorem 11
for 1-resolving sets in the following example.

Example 12. Let us consider the 8× 6 grid graph G familiar from Examples 2 and
8. As we saw in Example 2, the set R1 = {v1,1, v1,6} is a metric basis of G. It is not,
however, a 1-solid-resolving set of G. This can be seen by considering the vertex
v2,4 and the set Y = {v4,6, v5,1}, for example. See Figure 5 for an illustration. We
have DR1

(v2,4) = (4, 3) and DR1
(Y ) = (4, 3), and thus the set R1 is not a 1-solid-

resolving set of G according to Definition 10. The same conclusion can be reached
using Theorem 11. Let x = v5,1 and Y = {v2,4}. We have d(v1,1, x) = d(v1,1, Y )

and d(v1,6, x) > d(v1,6, Y ). Thus, there does not exist an element r ∈ R1 such that
d(r, x) < d(r, Y ) and the set R1 is not a 1-solid-resolving set of G according to
Theorem 11.

Let us then consider the set Rs = {v1,1, v1,6, v8,1, v8,6} (illustrated as black ver-
tices in Figure 5). The set Rs is a 1-solid-resolving set of G. This can be seen by
using Theorem 11 and the same visual argument we used in Example 2. Moreover,
we show in Publication II that the set Rs is a 1-solid-metric basis of G. However,
the set Rs is not a {2}-resolving set. For example, the sets X = {v2,4, v7,3} and
Y = {v4,6, v5,1} have the same distance array.

Let then G be a finite 2-dimensional rectangular grid graph of any width and
height. We show in Publication II that βs1(G) = 4 for any such grid graph G. How-
ever, the {2}-metric dimension of G is dependent on the width and height of G, as
was shown in [33] and discussed in Example 8. Thus, in the case of grid graphs,
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v1,1

v1,6

v8,1

v8,6

v2,4

v4,6

v5,1

v7,3

Figure 5. The 8× 6 grid graph with a 1-solid-metric basis and an example case.

1-solid-resolving sets provide us a way to use some of the functionality of a {2}-
resolving set without having to use the significantly larger {2}-resolving sets.

The grid graph of Example 12 is an example of a graph where the 1-solid- and
{2}-metric dimensions do not coincide. However, it is possible for the `-solid- and
{`}-metric dimensions of a graph to be the same for some `. For example, as we
point out in Publication III, the `-solid-metric dimension of a tree is the same as the
{` + 1}-metric dimension of the tree for all `. However, we show in Publication II
that a metric basis (that is, a {1}-metric basis) of a graph is never a 1-solid-resolving
set of the graph. Therefore, we have β(G) < βs1(G) for any graphG. The connection
between `-solid-resolving sets and {`}-resolving sets is discussed further in Section
2.4.

In Publication II, we consider the connection of 1-solid-resolving sets to other
concepts. These concepts include the boundary of a graph (see [10; 20], for exam-
ple), self-locating-dominating sets [27] and the Dilworth number of a graph [12]. We
also prove that the decision problem whether βs1(G) ≤ k for a positive integer k is
NP-complete.

2.4 The Connection of {`}-Resolving Sets and `-Solid-
Resolving Sets of a Graph

As we stated before in Section 2.3, an `-solid-resolving set is an {`}-resolving set
by definition. In Publication III, we show that an {`+ 1}-resolving set is an `-solid-
resolving set, and thus we have the following theorem.

Theorem 13. Let R ⊆ V (G) and ` be a positive integer.

(i) If R is an `-solid-resolving set of G, then it is an {`}-resolving set of G.

21



Anni Hakanen

(ii) If R is an {`+ 1}-resolving set of G, then it is an `-solid-resolving set of G.

Due to Theorem 13 (i), we have βs` (G) ≥ β`(G) for all ` and graphsG. Similarly,
due to Theorem 13 (ii), we have β`+1(G) ≥ βs` (G) for all ` and graphsG. Moreover,
we have β(G) < βs1(G) for all G as we show in Publication II.

Recall that β(G) = 1 if and only if G = Pn, as was stated in Theorem 4. This
can be interpreted as the characterisation of the graphs that attain the obvious lower
bound β(G) ≥ 1. The following theorem states similar lower bounds for the `-
solid- and {`}-metric dimensions of a graph. We consider these lower bounds in
Publications I-III.

Theorem 14. Let G be a connected graph, and let ` ≥ 1 be an integer. We have
β`(G) ≥ ` and βs` (G) ≥ `+ 1.

Let G be a graph with n vertices. Now, according to Theorem 14, we have
βsn−1(G) = βn(G) = βsn(G) = n. Due to this and what we discussed above, we
have

β(G) < βs1(G) ≤ β2(G) ≤ βs2(G) ≤ β3(G) ≤ . . . ≤ βn−1(G) ≤ βsn−1(G) = n

for any graph G with n vertices.
The characterisations of the graphs that attain the lower bounds in Theorem 14

are collated in the following theorem. We prove these characterisations in Publica-
tions I-III.

We denote the complete bipartite graph by Km,n. The graph K1,n is called the
star graph.

Theorem 15. Let G be a connected graph, and let ` ≥ 1 be an integer. We have

(i) βs1(G) = 2 if and only if G = Pn for some n ≥ 2,

(ii) β2(G) = 2 if and only if G = Pn for some n ≥ 2,

(iii) for ` ≥ 2, we have βs` (G) = ` + 1 if and only if either |V (G)| = ` + 1 or
G = K1,`+1,

(iv) for ` ≥ 3, we have β`(G) = ` if and only if either |V (G)| = ` or G = K1,`.

Consider then a graph G with an infinite vertex set. The definitions of `-solid-
and {`}-resolving sets generalise to infinite graph in a natural manner. We show in
Publication III that the 1-solid-metric dimension of an infinite graph cannot be finite.
Thus, βs` (G) = ∞ for all ` and β`(G) = ∞ for all ` ≥ 2. However, the metric
dimension of an infinite graph may be finite or infinite [7]. The metric dimensions
of infinite graphs have also been studied in [24; 43].
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3 Forced Vertices

One way we can try to determine the `-solid- or {`}-metric dimension of a graph is
to find the vertices of the graph that must be in every such resolving set. In Section
3.1, we consider vertices that are in every `-solid- or {`}-resolving set. In Section
3.2, we consider metric bases of graphs. We study vertices that are in every metric
basis and their opposite; vertices that are in no metric basis.

3.1 Forced Vertices of `-Solid- and {`}-Resolving sets
We begin by giving the definition for the forced vertices of `-solid- and {`}-resolving
sets of graphs.

Definition 16. Let ` be a positive integer. A vertex v ∈ V (G) is a forced vertex of an
{`}-resolving set (resp. `-solid-resolving set) of G if every {`}-resolving set (resp.
`-solid-resolving set) of G contains v.

As we stated before in Section 2.1, the set V (G) \ {v} is a resolving set of G for
any v ∈ V (G). Thus, no forced vertices of a resolving set exist. However, later in
Section 3.2, we consider basis forced vertices – a concept similar to forced vertices,
but with respect to metric bases instead of resolving sets. For the rest of this section
we consider forced vertices of {`}-resolving sets for ` ≥ 2 and `-solid-resolving sets
for all `.

In Publication I, we show that a vertex v ∈ V (G) with deg(v) ≤ ` − 1 is a
forced vertex of an {`}-resolving set of G. Indeed, if the vertex v is not in the set
R ⊆ V (G), then the sets N(v) and N [v] have the same distance arrays with respect
to R. Due to this, the vertex v is also a forced vertex of an (` − 1)-solid-resolving
set.

Example 17. Consider the tree T and its {`}-metric bases introduced in Example 9.
Notice that all elements of the {`}-metric bases for 2 ≤ ` ≤ 4 are forced vertices.
When ` ≥ 5, all vertices of T are forced vertices of an {`}-resolving set. Let us
then consider `-solid-resolving sets. All vertices v ∈ V (T ) such that deg(v) ≤ `

are forced vertices of an `-solid-resolving set of T . Thus, the leaves of the tree T
are forced vertices of a 1-solid-resolving set of T . Notice that the set of all leaves
of T is a {2}-resolving set of T . Thus, it is also a 1-solid-resolving set of T due
to Theorem 13 (ii). The same holds for other `. Namely, the forced vertices of an
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`-solid-resolving set form an {` + 1}-resolving set of T , and thus also an `-solid-
resolving set.

In general, whether a vertex is a forced vertex is not solely dependent on the
cardinality of its neighbourhood. In Publication III, we show the following two char-
acterisations for forced vertices of `-solid- and {`}-resolving sets of graphs. We
denote N [U ] =

⋃
u∈U N [u].

Theorem 18. Let ` ≥ 1. A vertex v ∈ V (G) is a forced vertex of an `-solid-resolving
set of G if and only if there exists a set U ⊆ V (G) such that v /∈ U , |U | ≤ ` and
N(v) ⊆ N [U ].

Theorem 19. Let ` ≥ 2. A vertex v ∈ V (G) is a forced vertex of an {`}-resolving
set of G if and only if there exists a set U ⊆ V (G) such that v /∈ U , |U | ≤ `− 1 and
N(v) ⊆ N [U ].

If a vertex v is a forced vertex of an `-solid-resolving set of G, then it is also a
forced vertex of an (` + 1)-solid-resolving set of G. The same holds also for {`}-
resolving sets. Moreover, the forced vertices of `-solid-resolving sets are exactly the
same as those of {`+ 1}-resolving sets.

Example 20. Consider the 8× 6 grid graph G from Example 2. The corner vertices
v1,1, v1,6, v8,1, v8,6 are forced vertices of 1-solid-resolving sets and {2}-resolving
sets of G; we have, for example, N(v1,1) = {v2,1, v1,2} ⊆ N [v2,2] (see Figure 6).

Let us then consider the forced vertices of 2-solid-resolving sets. In addition to
the vertices at the corners, the vertices at the frame of the graph (that is, vertices
with at most three neighbours) are forced vertices. For example, we have N(v6,1) =

{v5,1, v6,2, v7,1} ⊆ N [{v5,2, v7,2}] (see Figure 6). The vertices in the middle of the
graph are also forced vertices of 2-solid-resolving sets of G. We have N(vi,j) =

{vi+1,j , vi−1,j , vi,j+1, vi,j−1} ⊆ N [{vi+1,j+1, vi−1,j−1}] for all i 6= 1, 8 and j 6=
1, 6. For example, we have N(v4,5) ⊆ N [{v5,6, v3,4}] (see Figure 6). In conclusion,
all vertices of G are forced vertices of 2-solid-resolving sets of G. Consequently, we
have βs2(G) = |V (G)| = 48 and βs` (G) = β`(G) = 48 for all ` ≥ 3.

Let ∆(G) be the maximum degree of the graph G. If ` ≥ ∆(G), then every
vertex of the graph G is a forced vertex of an `-solid- or {` + 1}-resolving set of
G. Consequently, βs` (G) = β`+1(G) = |V (G)|. All vertices of a graph can be
forced vertices even when ` is much smaller than ∆(G). For example, all vertices
of the complete graph Kn are forced vertices of a 1-solid-resolving set of Kn, and
∆(Kn) = n− 1. There exist graphs for which β`(G) 6= |V (G)| and ` = ∆(G)− 1.
For example, consider the star graphK1,n with n+1 vertices. We have ∆(K1,n) = n

and βn(K1,n) = n according to Theorem 15 (iv). The leaves of K1,n are forced
vertices for all `-solid- and {`}-resolving sets (except {1}-resolving sets). However,
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N(v1,1) N(v6,1)

N(v4,5)

Figure 6. The open neighbourhoods of the black vertices are outlined with the dotted line. The
closed neighbourhoods of the gray vertices cover the open neighbourhoods of the black vertices.

the center vertex of K1,n is not a forced vertex even for {n}-resolving sets. Notice
that the star graph K1,n is also an example of a graph whose {`}-metric dimension
is not equal to |V (K1,n)| = n + 1 for very large values of `. Indeed, we have
β`(K1,n) 6= n+ 1 for all ` ≤ n

Although forced vertices are very helpful in providing lower bounds on the `-
solid- and {`}-metric dimensions of some graphs, different approaches are some-
times required. For example, we consider the `-solid- and {`}-metric dimensions
of flower snarks in Publication III. Flower snarks do not have any forced vertices of
`1-solid- and {`2}-resolving sets where `1 ≤ 2 and `2 ≤ 3. Thus, these `1-solid- and
{`2}-metric dimensions must be determined entirely by other means. For all other
`-solid- and {`}-resolving sets, all vertices are forced vertices, since flower snarks
are 3-regular graphs.

3.2 Basis Forced and Void Vertices
In this section, we consider only regular metric bases of graphs. As we have stated
before, forced vertices as they were defined in the previous section do not exist for
resolving sets. However, although there are no vertices that are in every resolving
set, there exist vertices that are in every metric basis of a graph.

Definition 21. A vertex v ∈ V (G) is a basis forced vertex of the graph G if it is
contained in every metric basis of G.

Basis forced vertices have been studied in [6], although basis forced vertices
were not defined or drawn much attention to there. It was shown in [6] that for all
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a1

f1b1

e1c1
d1

e2c2

d2

f2b2

Figure 7. A graph that has a unique metric basis.

integers k ≥ 2 and r ≥ 0 such that r ≤ k, there exists a graph with r basis forced
vertices and metric dimension k.

The opposite of a basis forced vertex is a vertex that is in no metric basis of a
graph. Such vertices are defined in the following definition.

Definition 22. A vertex v ∈ V (G) is a void vertex of the graph G if it is in no metric
basis of G.

In general, a graph may have three types of vertices; basis forced vertices, void
vertices, and vertices that are in some metric bases but not all. The path Pn has n−2

void vertices and two vertices that are in some metric bases but not all. The complete
graph Kn, however, has neither basis forced vertices nor void vertices. Each vertex
v ∈ V (Kn) is in multiple metric bases of Kn, but the set V (G) \ {v} is a metric
basis of Kn for any v ∈ V (G). If each vertex of the graph G is either a basis forced
vertex or a void vertex, then the graphG has exactly one metric basis; the set of basis
forced vertices. Graphs with unique metric bases have been studied in [2; 6].

Example 23. Let us consider the graph G in Figure 7. We will show that the graph
G has a unique metric basis, namely, {b2, f2}. Consequently, the vertices b2 and f2
are basis forced vertices of G, and the rest of the vertices are void vertices of G. For
the purposes of this proof, let us divide the vertex set of G into pairs. We say that
the vertices b1 and b2 are a pair, and similarly the vertices ci, di, ei and fi (where
i = 1, 2) form pairs. The only vertex with no pair is a1. However, to simplify the
language we use we think that a1 forms a pair on its own.

Since the graph G is not a path, we have β(G) > 1 (due to Theorem 4, although
it is quite clear that no one vertex can resolve the graph G). It is easy to check that
the set {b2, f2} is a resolving set of G. Thus, β(G) = 2.

Let R be a metric basis of G. Then |R| = 2. The two elements of R cannot be in
antipodal (or opposite) pairs, because then we cannot resolve even the vertices of the
cycle a1b1 · · · f1a1. Indeed, if the set R consists of, say, the vertices b1 and e2, then
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DR(a1) = DR(c1), for example. Similarly, the elements of R cannot be in the same
pair, since then we cannot resolve the vertices of the cycle.

There exist three consecutive pairs that do not contain elements of R. However,
there cannot be four consecutive pairs that do not contain elements of R. Suppose
to the contrary that none of the elements a1, bi, ci and di, where i = 1, 2, are in
R (the cases for the other pairs go similarly). Now, we have DR(c1) = DR(d2),
since for any element of R there exist shortest paths to c1 and d2 that go through
d1. Regardless of what the four consecutive pairs are, there always exist vertices
positioned similarly to c1 and d2 that share the same distance array. Thus, the set R
is not a resolving set of G, a contradiction.

So far, we have shown that there exist three consecutive pairs with no elements
of R, and that the two elements of R are not in neighbouring pairs. Suppose that
R = {bi, dj} for some i, j ∈ {1, 2}. Then the vertices c2 and f1 are not resolved,
since DR(c2) = DR(f1). Similarly, if R = {ci, ej} for some i, j ∈ {1, 2}, then
DR(d2) = DR(a1). The same happens for all other such sets except {bi, fj} (since
there does not exist a vertex a2 that would get mixed up with d1). Therefore, we have
R = {bi, fj} for some i, j ∈ {1, 2}.

Finally, since the vertex b1 does not resolve b2 and c1, and neither do the vertices
f1 and f2, we have b2 ∈ R. Similarly, the vertices f1 and b2 do not resolve the
vertices f2 and e1, and thus f2 ∈ R. In conclusion, we have R = {b2, f2} and no
other metric bases of G exist.

In Publication IV, we show that cut-vertices are not basis forced vertices, and
most of them are in fact void vertices. We also consider pendants, and show that
pendants attached to a tree-like structure (like the vertices vi of the graph in Figure
8a) are not basis forced vertices. However, some pendants are basis forced vertices,
for example, the vertices b2 and f2 of the graph in Figure 7 are basis forced vertices.

We also consider sparse and dense graphs. Trees do not have basis forced ver-
tices, while some unicyclic graphs do have basis forced vertices. However, unicyclic

u

v2

v3

v1

(a)

v u

(b)

Figure 8. (a) A graph whose metric bases are of the form {u, vi, vj}, where i 6= j. The vertex u is
a basis forced vertex, whereas the white vertices are void vertices. (b) A graph with the unique
metric basis {v, u}. The white vertices are void vertices, and the vertices v and u are, naturally,
basis forced vertices.
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graphs cannot have three or more basis forced vertices. In Figures 7 and 8a, we have
two unicyclic graphs; the former has two basis forced vertices and the latter has one
basis forced vertex. The densest graphs that have basis forced vertices have at most
n(n−1)

2 − 2k edges, where n = |V (G)| and k is the number of basis forced vertices
the graph has. The graph in Figure 8b attains this bound for k = 2 and n = 6. In
general, this bound is attained for all even k.

In Publication IV, we also show that deciding whether a vertex is a basis forced
vertex is co-NP-hard, whereas deciding whether a vertex is a void vertex is NP-hard.
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4 Overview of Original Publications

To conclude this summary, we give an overview of the results obtained in the original
publications this work is based on.

In Publication I, we consider {`}-resolving sets of graphs. We take our first steps
toward defining and characterising the forced vertices of {`}-resolving sets. We
prove the lower bound β`(G) ≥ `, and characterise the graphs that attain this bound.
In Theorem 2.6, we determine the {`}-metric dimensions of trees for all ` ≥ 2. We
do this by giving a somewhat algorithmic proof of how we can uniquely determine
the elements of X when we are given the distance arrayDR(X). In addition to trees,
we consider the {`}-metric dimension of the king grid Pm � Pn, where � denotes
the strong product of two graphs. The exact value of the regular metric dimension
of a rectangular king grid was conjectured to be dm+n−2

n−1 e in [37]. The conjecture
was later proved in [4]. We give another proof for this conjecture, and also show
that β2(Pm � Pn) = 2m + 2n − 4 and β`(Pm � Pn) = mn for all ` ≥ 3. The
basic idea behind the proofs for the lower bounds β2(Pm �Pn) ≥ 2m+ 2n− 4 and
β`(Pm � Pn) ≥ mn when ` ≥ 3 is to use the characterisation of forced vertices.
However, the proofs are not written in such a way, since the characterisation of the
forced vertices of {`}-resolving sets did not yet exist.

In Publication II, we introduce and study 1-solid-resolving sets. In addition to
defining 1-solid-resolving sets, we provide an equivalent characterisation to 1-solid-
resolving sets, which is easier to use than the definition. In Theorem 2.2, we char-
acterise the forced vertices of a 1-solid-resolving set of a graph. We compare 1-
solid-resolving sets to other close concepts such as self-locating-dominating sets, the
boundary and the Dilworth number of a graph. From Theorems 3.1 and 3.3, it fol-
lows that β(G) ≤ |∂(G)| − 1, where ∂(G) is the boundary of the graph G. This
bound is sharp and an improvement of the bound β(G) ≤ |∂(G)| obtained in [20].
In addition to showing general results, we consider the 1-solid-metric dimension of
cycles, hypercubes, and Cartesian and strong product graphs. We consider the forced
vertices of these product graphs and give bounds on the 1-solid-metric dimension of
a product graph utilising the 1-solid-metric dimensions of the components of the
graph product. In Theorems 7.2 and 7.4, we give upper bounds for the maximum
degree and clique number of a graph when the 1-solid-metric dimension of the graph
is known. Finally, we prove that deciding whether βs1(G) ≤ k for an integer k is an
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NP-complete problem.

In Publication III, we introduce `-solid-resolving sets, which are generalisations
of 1-solid-resolving sets just like {`}-resolving sets are generalisations of the classi-
cal resolving sets. In Theorem 3, we give `-solid-resolving sets an equivalent char-
acterisation, which is a generalisation of the characterisation we gave to 1-solid-
resolving sets in Publication II. In Section 2.2, we give full characterisations to the
forced vertices of `-solid- and {`}-resolving sets of graphs. We prove the lower
bound βs` (G) ≥ ` + 1 and characterise the graphs that attain this bound for ` ≥ 2

(the case where ` = 1 is considered in Publication II). In addition to these general re-
sults, we give bounds on the `-solid- and {`}-metric dimension of Cartesian product
graphs. In particular, we consider the {2}-metric dimension of Rook’s graphs, and
find an interesting connection to combinatorial designs. We also consider the `-solid-
and {`}-metric dimensions of flower snarks. The {2}-metric dimension and 1-solid-
metric dimension of flower snarks are small constants, whereas the 2-solid-metric
dimension and {3}-metric dimension are dependent on the size of the graph.

In Publication IV, we introduce the concepts of basis forced and void vertices for
metric bases of graphs. We show that cut-vertices are void vertices in most cases, and
even when a cut-vertex is not a void vertex, it is not a basis forced vertex. In addition
to cut-vertices, we also consider pendants and show that in most cases pendants are
not basis forced vertices. In Section 3.1, we provide a way to construct graphs with
basis forced vertices from graphs that may not have basis forced vertices. Much
of Publication IV is dedicated to studying basis forced vertices in sparse and dense
graphs. We show that trees do not have basis forced vertices and give examples
of unicyclic graphs that have basis forced vertices. Furthermore, we show that a
unicyclic graph can have at most two basis forced vertices and that this bound is
sharp. The densest graph that has basis forced vertices has n(n−1)

2 − 4 edges, where
n is the number of vertices of the graph. We show that if G is a graph with n vertices
and k > 0 basis forced vertices, then k ≤ n− β(G)− 1 and |E(G)| ≤ n(n−1)

2 − 2k.
The former bound does not seem to be attainable, while the latter bound is attained
for all even k. Lastly, we show that deciding whether a vertex is a basis forced vertex
is co-NP-hard and deciding whether a vertex is a void vertex of a metric basis of a
graph is NP-hard. Thus, both problems are algorithmically difficult.
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[11] V. Chvátal. Mastermind. Comb., 3:325–329, 1983. doi: 10.1007/BF02579188.
[12] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. of Math. (2), 51(1):161–

166, 1950.
[13] L. Epstein, A. Levin, and G. J. Woeginger. The (weighted) metric dimension of graphs: Hard and

easy cases. Algorithmica, 72(4):1130–1171, 2015. doi: 10.1007/s00453-014-9896-2.
[14] L. Eroh, C. X. Kang, and E. Yi. The connected metric dimension at a vertex of a graph. Theor.

Comput. Sci., 806:53–69, 2020. doi: 10.1016/j.tcs.2018.11.002.
[15] A. Estrada-Moreno, Y. Ramı́rez-Cruz, and J. A. Rodrı́guez-Velázquez. On the adja-

cency dimension of graphs. Appl. Anal. Discrete Math., 10(1):102–127, 2016. doi:
10.2298/AADM151109022E.

[16] A. Estrada-Moreno, J. A. Rodrı́guez-Velázquez, and I. G. Yero. The k-metric dimension of a
graph. Appl. Math. Inf. Sci., 9(6):2829–2840, 2015. doi: 10.12785/amis/090609.

[17] F. Foucaud, T. Laihonen, and A. Parreau. An improved lower bound for (1,≤ 2)-identifying codes
in the king grid. Adv. in Math. of Comm., 8(1):35–52, 2014. doi: 10.3934/amc.2014.8.35.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[19] F. Harary and R. Melter. On the metric dimension of a graph. Ars Comb., 2:191–195, 1976.

31



Anni Hakanen

[20] M. C. Hernando, M. Mora, I. M. Pelayo, and C. Seara. Some structural, metric and convex
properties of the boundary of a graph. Ars Comb., 109:267–283, 2013.

[21] M. C. Hernando, M. Mora, P. Slater, and D. Wood. Fault-tolerant metric dimension of graphs.
Convexity in Discrete Structures, 5:81–85, 01 2008.

[22] I. Honkala and T. Laihonen. On a new class of identifying codes in graphs. Inform. Process. Lett.,
102(2-3):92–98, 2007. doi: 10.1016/j.ipl.2006.11.007.

[23] I. Honkala, T. Laihonen, and S. Ranto. On locating-dominating codes in binary Hamming spaces.
Discrete Math. Theor. Comput. Sci., 6(2):265–281, 2004.

[24] M. Imran. On dimensions of some infinite regular graphs generated by infinite hexagonal grid.
Utilitas Math., 92:3–15, 2013.

[25] M. Jannesari and B. Omoomi. The metric dimension of the lexicographic product of graphs.
Discrete Math., 312(22):3349–3356, 2012. doi: 10.1016/j.disc.2012.07.025.

[26] M. Jannesari and B. Omoomi. Characterization of n-vertex graphs with metric dimension n− 3.
Mathematica Bohemica, 139(1):1–23, 2014.

[27] V. Junnila, T. Laihonen, and T. Lehtilä. On regular and new types of codes
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