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ABSTRACT 

T helper (Th) cell subsets with distinct functions are a critical component of the 
adaptive immune system. Th17 cells secrete interleukin 17 (IL-17) and provide host 
defense against pathogens. However, dysregulated Th17 response plays an essential 
role in the development of several autoimmune and inflammatory pathologies. 
Cancerous inhibitor of protein phosphatase 2A (CIP2A) modulates protein 
phosphatase 2A (PP2A) activity in cancer cells and neurological disorders. 
Accordingly, it is a promising target for therapy. However, to exploit the therapeutic 
potential of CIP2A, a better understanding of the physiological functions of CIP2A 
in immune cells is required. The doctoral thesis investigated CIP2A functions in 
regulating CD4+ T-cell activation and differentiation, particularly Th17 cells.  

The study showed that T-cell activation induces CIP2A, and its absence hampers 
T-cell activation. In Th17 cells, CIP2A depletion enhances IL17A expression and 
STAT3 phosphorylation. The transcriptome analysis showed CIP2A siRNA 
silencing upregulates many Th17-specific genes. The STAT3 interactome indicated 
CIP2A controls acylglycerol kinase (AGK) interaction with STAT3 and therefore 
modulates STAT3 phosphorylation and IL17A expression in Th17 cells. 
Furthermore, we performed the CIP2A protein interactome in Th17 cells. In addition 
to the CIP2A known interactor PP2A, we identified many novel protein interactions 
of CIP2A. For the first time, we identified CIP2A interaction with protein 
phosphatase PP1. Moreover, the study suggested the role of CIP2A in many 
pathways. Hence, this thesis provides an insight into CIP2A’s functions in immune 
cell regulation. 

KEYWORDS: Th17 cells, CIP2A, RNAi, RNA Seq., STAT3, interactome, mass 
spectrometry   
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TIIVISTELMÄ 

T-auttajasolujen (Th-solujen) alatyypit ovat keskeisiä adaptiivisen immuuni-
järjestelmän toiminnalle. Interleukiini-17-proteiinia (IL-17) tuottavat tyypin 17 
auttaja T-lymfosyytit (Th17-solut) suojaavat elimistöä patogeeneiltä. Th17-solujen 
toiminnan häiriöt vaikuttavat useiden autoimmuunisairauksien ja tulehduksellisten 
tautien kehittymiseen. CIP2A-proteiini säätelee PP2A-molekyylin aktiivisuutta 
syöpäsoluissa ja on potentiaalinen syöpäterapian kohde. CIP2A-proteiinin tera-
peuttisen potentiaalin hyödyntäminen edellyttää CIP2A:n fysiologisten funktioiden 
parempaa ymmärtämistä immuunipuolustuksen soluissa. Tässä väitöskirjassa 
tutkittiin miten CIP2A säätelee CD4+ T-solujen aktivaatiota ja erilaistumista, 
keskittyen erityisesti Th17-soluihin. 

Osoitimme, että CIP2A:n indusoituu T-soluissa aktivaation seurauksena ja sen 
puuttuminen johtaa heikentyneeseen T-solujen aktivaatioon ja lisääntyneeseen 
Th17-solujen erilaistumiseen. CIP2A-hiljennetyissä Th17-soluissa IL17A-geenin ja 
monen muun Th17-soluille spesifisen geenin ilmeneminen oli lisääntynyt ja Th17-
solujen erilaistumista ohjaava STAT3:n fosforylaatio oli pitkittynyt. 
Fosforyloituneen STAT3:n interaktomia tutkimalla paljastui, että CIP2A-
hiljennetyissä soluissa acylglycerol-kinaasin ja STAT3:n vuorovaikutus säätelee 
STAT3:n fosforylaatiota ja IL17A:n ilmenemistä Th17-soluissa. Identifioimme 
useita uusia CIP2A-proteiinin kanssa vuorovaikuttavia tekijöitä karakterisoimalla 
CIP2A-interaktomin. Yksi näistä on PP1-proteiinifosfataasi. Väitöskirja valottaa 
CIP2A:n merkitystä immuunisolujen säätelyssä.  

AVAINSANAT: Th17-solut, CIP2A, RNAi, RNA Seq., STAT3, massaspektometria 
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Abbreviations 

AGK acylglycerol kinase 
AP1 activator protein 1 
APC antigen presenting cell 
BATF basic leucine zipper ATF-like transcription factor 
BCL6 B-cell lymphoma 6 
CBP  CRE-binding protein 
cDNA complementary DNA 
CFSE carboxyfluorescein succinimidyl ester  
ChIP chromatin immunoprecipitation 
ChIP-seq chromatin immunoprecipitation (ChIP) with DNA sequencing  
CIP2A Cancerous inhibitor of protein phosphatase 2A 
CRE cAMP response element 
CREB cAMP response element–binding protein  
CREM cAMP response element modulator 
CRTH2 chemoattractant receptor homologous molecule on Th2 cells 
CSF2 colony stimulating factor 2 
DC Dendritic cell 
DNA deoxyribonucleic acid 
EAE experimental autoimmune encephalomyelitis 
EGFR epidermal growth factor receptor tyrosine kinase 
FDR false discovery rate 
FOXO1 forkhead box O1  
FOXP3 forkhead box P3  
GATA3 GATA binding protein 3 
GSEA gene set enrichment analysis  
HIF1α  hypoxia-inducible factor 1α  
IBD inflammatory bowel disease 
ICOS inducible T-cell co-stimulator 
IL interleukin 
ILC innate lymphoid cell 
IPA ingenuity pathways analysis  
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IRF interferon regulatory factor 
IRF4 interferon-regulatory factor 4  
LC-MS/MS liquid chromatography-tandem mass spectrometry 
LCMT1 leucine carboxyl methyl transferase 1 
miRNA micro RNA 
mRNA messenger RNA 
MS multiple sclerosis 
mTOR mammalian target of rapamycin 
NFAT nuclear factor of activated T cells  
PBMC peripheral blood mononuclear cell 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
pDC plasmacytoid dendritic cell 
PLA proximity ligation assay  
PME-1 protein methyl-esterase 1  
PRRs pattern recognition receptors  
PTM post-translational modifications   
PTPA phosphotyrosyl phosphatase activator 
RA rheumatoid arthritis  
RBPJ recombination signal binding protein for immunoglobulin κJ  
RNA ribonucleic acid 
RNAi RNA interference 
RNS reactive nitrogen species 
RORC RAR-related orphan receptor C 
ROS reactive oxygen species  
RPTOR regulatory associated protein of MTOR complex 1 
RT-qPCR reverse transcriptase quantitative polymerase chain reaction 
SAM s-adenosylmethionine  
siRNA  small interfering RNA 
SLE systemic lupus erythematosus 
SNP single nucleotide polymorphism  
SRM-MS selected reaction monitoring targeted mass spectrometry   
TCR T cell receptor 
TF transcription factor 
TFBS transcription factor binding sites  
Tfh T follicular helper cell 
TFs transcription factors 
TGF-β  transforming growth factor beta 
Th T helper cell 
TLR  toll-like receptor 
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TNBC triple-negative breast cancer  
TNF-α tumor necrosis factor alpha 
Treg T regulatory cell 
TSS transcription starting site 
β-ME beta mercaptoethanol 
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1 Introduction 

The human immune system protects against pathogens and transformed cancer cells 
through the coordinated action of immune cells and their ability to distinguish self 
from non-self (Owen et al. 2018). However, functional impairment of these cells can 
lead to autoimmune and inflammatory disorders, and therefore, a detailed molecular 
understanding of immune cells is of prime importance. The immune system is 
broadly classified into the innate and adaptive immune systems (Owen et al. 2018). 
The innate part detects the structures on foreign pathogens or transformed host cells 
and mounts quick destruction of the pathogen via the complement cascade, 
phagocytosis and more. However, the innate immune response is non-specific and 
transitional, but importantly, it also activates the adaptive immune response. The 
adaptive immune response is due to highly specialized immune cells. After the initial 
encounter with the specific pathogen, cells of the adaptive immune system create 
immunological memory for long-lasting and enhanced subsequent response to 
pathogens (Murphy et al. 2017; Owen et al. 2018).  

The antibody-secreting B lymphocytes and T lymphocytes, subdivided into 
CD4+ T helper (Th) cells and CD8+ cytotoxic killer T (Tc) cells, provide an adaptive 
immune response to foreign pathogens or self-altered cells (Murphy et al. 2017; 
Owen et al. 2018). Depending upon the nature of the antigen, activation, and the 
cytokine, the CD4+ Th precursor (Thp) cells differentiate into effector Th1, Th2, 
Th17, Th9, Th22, and regulatory T (Treg) cells (Basu et al. 2021; Zhu 2018). Each 
subset of Th cells is characterized by a specific transcription factor (TF) and 
signature cytokine (Basu et al. 2021; Zhu 2018). Interleukin 17 (IL-17)-producing 
Th17 cells provide protection against pathogens of bacterial and fungal origin, but 
they are also critical drivers of pathogenesis in various autoimmune and 
inflammatory diseases (Stockinger et al. 2017; Stassen et al. 2012). Accordingly, an 
understanding of the dichotomy of Th17 cells could help in the development of the 
strategies to mitigate excessive Th17 responses in inflammatory diseases 
(Stockinger et al. 2017).  

Protein phosphorylation affects almost every aspect of cell biology, and 
therefore, regulation of the activities of kinases and phosphatases is essential for 
normal cell function (Ardito et al. 2017). Protein phosphatase 2A (PP2A) is one of 
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the major serine-threonine phosphatases and controls various cell signaling 
pathways (O’Connor et al. 2018; Kauko et al. 2018; Ohlmeyer et al. 2019). PP2A 
impairment due to inhibitory mechanisms has been observed in several diseases 
(Grech et al. 2016; Baldacchino et al. 2014; Velmurugan et al. 2018; Xing 2016; 
Janssens 2019; Shentu et al. 2018). The inhibition of PP2A in human cancer and 
neurodegenerative disorders results from the actions of cancerous inhibitor of protein 
phosphatase 2A (CIP2A) (Junttila et al. 2007; Shentu et al. 2018). Accordingly, 
CIP2A has been considered as a target for therapeutic development (Khanna et al. 
2013). However, the impact of its deletion on immune cells must also be considered 
before any therapy development. 

In the work presented in this thesis, the physiological functions of CIP2A in T-
cell activation (Publication I) and differentiation (Publication II) were investigated. 
These data revealed that CIP2A is important for T-cell activation but negatively 
regulates IL-17 expression and Th17 cells differentiation. In addition, the CIP2A 
protein interactome was characterized for the first time in Th17 cells (Publication 
III). Taken together, the findings presented in this thesis provide insight into the role 
of CIP2A in immune cells. 
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2 Review of the Literature 

2.1 Overview of the immune system 
An interactive network of lymphoid organs, cells, humoral factors, and cytokines, 
called the immune system, is essential for host defense in eradicating pathogens or 
altered cells (Marshall et al. 2018; McComb et al. 2019). The immune system 
protects from a multitude of pathogen intrusions and eliminates host-altered cancer-
causing cells. The most remarkable features of the immune system are its recognition 
and response. Recognition helps to discriminate host cells from foreign infection-
causing pathogens and self-altered cancer or apoptotic cells (Marshall et al. 2018; 
McComb et al. 2019; Owen et al. 2018). The immune response triggers effector cells 
to eliminate pathogen and tumor-promoting host cells. In addition, immune cells 
develop memory cells for subsequent quick immune response to detect and remove 
re-infections (Marshall et al. 2018; McComb et al. 2019; Owen et al. 2018). 
Hematopoietic stem cells (HSCs) are adult stem cells that can differentiate into all 
types of blood cells, including immune cells, by a process called hematopoiesis 
(Owen et al. 2018). The bone marrow is the primary lymphoid organ, where all the 
HSCs reside and give rise to immune cells (Figure 1). Most of the immune cells 
differentiate and mature in the bone marrow before traveling to peripheral organs via 
blood. However, T cells mature in the thymus (Owen et al. 2018).  

The immune system is broadly divided into the innate immune system and 
adaptive immune system (McComb et al. 2019; Owen et al. 2018). The innate 
immune system is the immediate first line of defense, highly conserved in nature, 
and eliminates infection directly by phagocytosis and the complement cascade or 
indirectly by activating the adaptive immune system (McComb et al. 2019; Owen et 
al. 2018). 
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Figure 1:  Self-renewing HSCs reside in the bone marrow and give rise to lymphoid and myeloid 

progenitor cells for the development of blood cells by a process called hematopoiesis 
(Owen et al. 2018). BioRender.com Illustration. 

The adaptive immune response is a hallmark of higher animals. It is antigen-specific, 
and provides long term immunological memory for response upon re-exposure to the 
pathogen (McComb et al. 2019; Owen et al. 2018; Murphy et al. 2017). 
Immunological memory is the ability of the immune cells to recognize previously 
encountered antigens and build a faster immune response to eliminate the same 
pathogen reinfection. 

2.1.1 Innate immune system 
Innate immune system is an essential first line of defense against disease-causing 
pathogens in vertebrates (Marshall et al. 2018). It comprises physical, chemical, and 
cellular components. The anatomical or physical barriers of the innate immune 
system (e.g., skin and mucous membranes) provide external protection against 
microbial invasion (Marshall et al. 2018; Owen et al. 2018). These also produce 
active biochemical substances for defense. For example, human skin produces the 
anti-microbial protein ‘psoriasin’, which has potent antimicrobial activity against 
Escherichia coli to prevent its colonization on human skin (Otto 2010; G. Wang 
2014; Marshall et al. 2018; Owen et al. 2018). The antimicrobial biochemical agents 
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produced by the skin are important to provide protection. However, breaks in the 
skin from scratches, wounds or other disruption of anatomical barriers, such as insect 
(e.g., mosquitoes, mites, ticks) bites, can introduce pathogenic organisms into the 
body (Owen et al. 2018). Innate immune cells, directly eliminate pathogens or 
apoptotic cells and also activate adaptive immune cells by a process of phagocytosis. 
Cells of the innate immune response express germline-encoded receptors called 
pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), to detect 
pathogen or altered host cells (Marshall et al. 2018; Owen et al. 2018). TLRs are 
transmembrane receptors on cells of the innate immune system (macrophages and 
dendritic cells) to sense conserved molecules on pathogens (Delneste et al. 2007). 
Upon activation, TLRs recruit adaptor proteins to orchestrate inflammatory 
responses and propagate antigen-induced signal transduction pathway by 
upregulation or suppression of genes and proteins (Murphy et al. 2017; Owen et al. 
2018). PRRs identify two classes of molecules that are pathogen-associated 
molecular patterns (PAMPs) on pathogens and damage-associated molecular 
patterns (DAMPs) to detect altered host cells (Murphy et al. 2017; Owen et al. 2018). 
PAMPS recognize structurally conserved specific molecules on microbes, such as 
carbohydrates (e.g., lipopolysaccharide, mannose), bacterial or viral nucleic acids 
(DNA or RNA), peptidoglycans and lipoteichoic acids, and fungal glucans. TLR2s 
detect peptidoglycans, and TLR4s sense the polysaccharides on the cell walls of 
Gram-positive bacteria (Sabroe et al. 2003). Innate immune cells recognize PAMPS 
on pathogens, but antibody or complement protein attachments to the pathogens 
improve subsequent phagocytosis (Takeda and Akira 2015; Medzhitov 2001; 
Janeway and Medzhitov 2002; Pasare and Medzhitov 2005; 2004). 

Neutrophils, macrophages, monocytes, natural killer cells and dendritic cells 
(DCs) are the key cells involved in innate immune reactions. They protect the host 
from pathogens by antimicrobial peptides, inflammation mediators and phagocytosis 
(Nathan 2006). Neutrophils are the first cells that migrate towards the site of 
infection and are essential for innate responses against bacteria and fungi (Nathan 
2006; Yoo et al. 2011; Owen et al. 2018; Marshall et al. 2018). Macrophages are 
subclassified as M1 and M2, promoting inflammation or suppressing inflammation 
and assisting tissue repair, respectively (Mills et al. 2012; Marshall et al. 2018). DCs 
and macrophages are also antigen-presenting cells (APC). They present antigens by 
specific glycoproteins on their cell membrane known as major histocompatibility 
complex (MHC) molecules, of which there are two types, MHC-I and MHC-II, that 
interact with Tc cells and Th cells, respectively. Immature APCs, recognize 
pathogens by a variety of PRRs, then undergo a maturation process (Schenten and 
Medzhitov 2011; Iwasaki and Medzhitov 2010; Dowling and Mansell 2016; Asami 
and Shimizu 2021; Janeway and Medzhitov 2002). Mature APCs then migrate to the 
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lymphoid tissue to activate Th and Tc cells and initiate an adaptive immune response 
(Charles A Janeway et al. 2001).  

Additionally, there are oxidative and nonoxidative pathways of defense in 
neutrophils, macrophages and DCs against pathogens (Owen et al. 2018; Murphy et 
al. 2017). They employ reactive oxygen species (ROS) and reactive nitrogen species 
(Fang 2004; Nathan and Ding 2010; Nathan and Cunningham-Bussel 2013). The 
enzyme NADPH oxidase (also called phagosome oxidase) generates ROS. 
Mechanistically, during phagocytosis, oxygen consumption of the cell increases 
several folds via a process called a respiratory burst, and the NADPH oxidase 
enzyme complex convert oxygen to superoxide (Owen et al. 2018). Also, during 
phagocytosis, the inducible nitric oxide synthase (iNOS) enzyme oxidizes L-arginine 
to make L-citrulline and nitric oxide (NO) (Fang 2004; Nathan and Cunningham-
Bussel 2013; Nathan and Ding 2010; Owen et al. 2018). NO has strong antimicrobial 
activity and combines with superoxide to produce more potent antimicrobial 
nitrogen and oxygen reactive species (Owen et al. 2018). Accordingly, patients with 
the chronic granulomatous disease due to defective NADPH oxidase enzyme have 
increased susceptibility to fungal and bacterial infections, thus illustrating the 
significance of this immune component for the host (Heyworth, Cross, and Curnutte 
2003; Owen et al. 2018). 

Natural killer (NK) cells constitute 5-10% of lymphocytes in human peripheral 
blood. The NK cells do not depend on recombination-activating gene proteins and 
genomic recombination-based receptors but as in innate immune cells, antigenic 
diversity is due to germline-encoded receptors (O’Leary et al. 2006; Paust, Senman, 
and Von Andrian 2010; Owen et al. 2018; Murphy et al. 2017). They do not have 
antigen specific receptors and are characterized based on the NK 1.1 surface marker 
and the presence of cytotoxic granules (also called large granular lymphocytes). 
They provide defense against viral infections and transformed tumor cells. The 
downregulation of MHC class I on virus infected and tumor cells are detected by NK 
cells (Murphy et al. 2017; Owen et al. 2018). NK cells act through two types of 
receptors: activating (lectin like) receptors to initiate killing of virus infected or 
transformed cells, and inhibitory (killer cell immunoglobin-like receptors or KIRs) 
receptors that abort the NK cell killer function (Owen et al. 2018; Marshall et al. 
2018). These receptors determine the cytotoxic activity of NK cells. A deficiency of 
activating events results in tumor development or viral infection, and a defective 
inhibitory receptor promotes NK-mediated killing of the host cell. The ligands on 
the target cell are still not known for most of the activating receptors, but the ligands 
for the inhibitory NK cell KIR receptor are well studied as the allelic forms of class 
I MHC molecules (Owen et al. 2018). Thus, NK cells remove cells without MHC-I 
expression. Also, since both KIR and MHC-I are variable and diverse in nature, their 
combination sometimes fails and causes enhanced NK cell mediated killing, such as 
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those associated with autoimmune disease conditions in type 1 diabetes and psoriatic 
arthritis (Owen et al. 2018). However, NK cells also express receptors for 
immunoglobulins and can detect pathogens or their proteins on infected cells 
independent of MHC-I expression. Once these targets are detected, NK cells release 
granules to induce cell death. They produce immunoregulatory cytokines such as 
IFN-γ and tumor necrosis factor alpha (TNF-α), which can stimulate the maturation 
of the DCs (Owen et al. 2018; Murphy et al. 2017). The IFN-γ produced by NK cells 
also activates macrophages for their phagocytic and microbicidal activities and is an 
important regulator of Th1 vs Th2 commitment of Th cell populations. IFN-γ 
stimulates Th1 development as it induces IL12 production by DCs (Owen et al. 2018; 
Murphy et al. 2017). Some lymphoid cells share characteristics of both T 
lymphocytes and NK cells called NKT Cells. Like T cells, they have a T-cell receptor 
(TCR), which recognizes specific lipids presented by the MHC-related molecule 
CD1. They also have NK cell receptors and cytotoxic granules for target cell killing 
(Owen et al. 2018). 

2.1.2 Adaptive immune system 
The adaptive immune system is also referred to as the acquired immune system. It 
consists of specialized cells and supports the innate immune cells in removing the 
invading pathogens. The adaptive immune system is characterized by 
immunological memory, which develops as a result of the primary encounter with a 
pathogen (Owen et al. 2018; Marshall et al. 2018; McComb et al. 2019). Importantly, 
this leads to an enhanced response to future encounters with the pathogen. Adaptive 
immune responses are carried out by B and T lymphocytes, which are much more 
diverse than innate immune cells in their ability to recognize the pathogens. Genomic 
recombination hones their antigen receptor. 

In mammals, B cells are produced and mature in the bone marrow. The mature 
cells synthesize and display a membrane-bound immunoglobulin (antibody) 
molecule as B-cell receptor (BCR) for antigen binding (Owen et al. 2018). Through 
the process of somatic hypermutation, rearrangements of the BCR immunoglobulin 
heavy and light chains genes improve pathogen detection and binding. In addition, 
class switching in B cells generates many classes of functional antibodies to 
inactivate and degrade pathogens and antigens. Once activated (by antigen 
encounter), B cells form either plasma cells, for continuous antibody secretion, or 
memory cells, for rapid response to future infections (Palm and Henry 2019). 
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2.2 T helper (Th) cells 
T cells are subdivided into CD4+ Th and CD8+ Tc cells. T lymphocytes only detect 
antigens that are loaded onto the MHCs on APCs, such as DCs (Basu et al. 2021; 
Marshall et al. 2018). Pathogens are broken down to peptides and loaded to MHC I 
and MHC II molecules for TCR ligation, resulting in the activation of CD8+T cells 
and CD4+T cells, respectively (Basu et al. 2021). In this way, T cells detect both 
intracellular and extracellular pathogens. Similar to BCR, the TCR is developed by 
random gene recombination of α and β chain led to the formation of αβTCR 
repertoire (Owen et al. 2018; Marshall et al. 2018). In a minority of T cells, 
rearrangements in γ and δ chains resulted in the development of γδT cells (Owen et 
al. 2018; Marshall et al. 2018).  

Upon TCR activation, naive CD4+ T cells differentiate and expand into various 
subsets of Th cells. Many factors play significant roles for T-cell activation and Th 
cell lineage commitment (Figure 2). Depending upon the type of APC, the strength 
of the antigen recognition induced signaling, presence of cytokines, and co-
stimulatory signals, Th cells develop into one of the various subsets and promote the 
eradication of the disease-causing microbe or other intruding factors (Bevington et 
al. 2017). The nature of the antigen also influences the activation and differentiation 
of the various Th cell subsets (Bevington et al. 2017; Davis et al. 2003; Pennock et 
al. 2013). In addition, the activation of T cells by signaling events is also essential 
for cell proliferation, survival, cytokine production, and differentiation. TCR 
stimulation upon detection of antigen on MHC, and signaling from costimulatory 
molecule CD28, as well as cytokines, are required for T-cell activation (Bevington 
et al. 2017; Marshall et al. 2018; Basu et al. 2021; Riley et al. 2002; Diehn et al. 
2002). TCR signaling starts with the cytosolic component of immunoreceptor 
tyrosine-based activation motifs (ITAMs) phosphorylation by protein tyrosine 
kinases Lck and Fyn, followed by recruitment of zeta-chain-associated protein 
kinase (Zap-70) at ITAMs (Wang et al. 2010). The Zap-70 kinase phosphorylates 
SH2-domain-containing leukocyte phosphoprotein of 76 (SLP-76) (Liu et al. 2010; 
Wardenburg et al. 1996) and linker for activation of T cells (LAT) to initiate 
downstream signaling (Wang et al. 2010; W. Zhang et al. 1998). T-cell activation of 
involves the essential phosphorylation of several key proteins. Phosphorylation of 
phospholipase Cγ1 (PLCγ1) by inducible T-cell kinase (Itk) results in the generation 
of secondary messengers’ diacylglycerol (DAG) and inositol trisphosphate (IP3). 
The DAG activation of serine/threonine-protein kinase C (PKCθ) promotes 
phosphorylation of CARMA1 (Eitelhuber et al. 2011). The activation of adaptor 
protein CARMA1 promotes the recruitment of BCL10 and MALT1 and initiates 
signaling of TF nuclear factor-κΒ (NF-κB) (Eitelhuber et al. 2011). The binding of 
IP3 to calcium channels on the endoplasmic reticulum initiates the Ca2+ release. The 
Ca2+ forms a complex with the calcium-binding protein calmodulin and activates 
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the serine/threonine phosphatase calcineurin. The latter activates TF NFAT (nuclear 
factor of activated T cells) to induce Il2 for T-cell survival and proliferation (Choi et 
al. 2018). In addition, TCR–CD3 and CD28 co-stimulation results in the induction 
of several TFs essential for T-cell activation and differentiation. The co-stimulatory 
molecule CD28 signaling promotes recruitment of phosphatidylinositol 3-kinase 
(PI3K), which plays a role in T-cell proliferation (Choi et al. 2018). Signaling due to 
cytokine receptor binding is required for chromatin remodeling and TF activation, 
both of which are essential for the transcription of the genes needed to mediate T-
cell differentiation and effector functions (Bevington et al. 2017).  

Signal transducer and activator of transcription (STAT) proteins play an essential 
role in transmitting signals from the cytokine receptor and regulating gene 
expression during the differentiation of the different Th cell subsets (O’Shea et al. 
2011; Seif et al. 2017). There are seven STAT proteins (i.e., STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b, and STAT6), and their impact on the 
differentiation of Th cell subsets (Figure 2) has been firmly established from next-
generation sequencing analyses such as chromatin immunoprecipitation followed by 
sequencing (ChIP-Seq) and RNA-Sequencing (RNA-Seq) etc. of gene knock out 
animals (O’Shea et al. 2011; Seif et al. 2017). 

 
Figure 2:  Upon activation by an APC, naive CD4+ T cells differentiate to different Th subsets, 

characterized by lineage-specific transcription factors, cytokine secretion, and the 
immune response. Illustration created with BioRender.com 
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2.2.1 Th1, Th2, and Th9 cells 
The role of adaptive immune cells in the pathogenesis of autoimmune diseases was 
first proposed in the work of Bob Coffman and Tim Mossman (Mosmann et al. 1986; 
Cherwinski et al. 1987). Three decades ago, they suggested the existence of two 
subsets of immune cells, Th1 and Th2 cells, based on the cytokine’s profiles 
(Mosmann et al. 1986). They classified CD4+ T cells into IFN-γ producing Th1 and 
IL4 producing Th2 cells to explain the cellular and humoral effector immune 
response, respectively (Mosmann et al. 1986; Cherwinski et al. 1987).  

The Th type 1 (Th1) cells secrete IFNγ and are characterized by the expression 
of Tbet (TBX21 in humans) as the lineage-specific TF (Iwata et al. 2017). Th1 cells 
provide cell-mediated immune responses by activating macrophages, cytotoxic T 
lymphocytes and producing NO for the phagocytosis of cells infected with 
intracellular viral and bacterial pathogens (Suzuki et al. 1988; Sallusto 2016). 
Patients with defective Th1 responses are especially susceptible to Salmonella and 
mycobacterial infections (Sallusto 2016; Santos et al. 2006; Jong et al. 1998; Altare 
et al. 1998). The surface expression of C-X-C chemokine receptor CXCR3 is specific 
to Th1 cells (Yamamoto et al. 2000; Sallusto et al. 1998; Sallusto 2016; Langenkamp 
et al. 2003) and helps Th1 cell recruitment to inflammation sites by recognizing the 
chemokine ligands CXCL9, CXCL10, and CXCL11(Groom et al. 2012; Groom and 
Luster 2011). In addition to the clearance of intracellular pathogens, Th1 cells have 
also been implicated in the development of many autoimmune diseases, including 
multiple sclerosis, rheumatoid arthritis, type 1 diabetes, and inflammatory bowel 
disease (Dardalhon et al. 2008; Germann et al. 1996; James et al. 2014; Kamali et al. 
2019; Sallusto 2016). 

Th2 cells secrete the cytokines IL-4, IL-5, and IL-13 (Cherwinski et al. 1987; 
Lewis et al. 1988; Mosmann et al. 1986; Wierenga et al. 1990; 1991). Th2 cells 
provide host protection against helminths (Katona et al. 1988; Mohrs et al. 2003; 
Vignali et al. 1989; Basu et al. 2021; Sallusto 2016). Dysregulated Th2 responses, 
however, are responsible for the pathogenesis of allergic reactions, such as asthma 
(Kotsimbos et al. 1997; Georas et al. 2005; Fallon et al. 2007; Bosnjak et al. 2011). 
The cytokine IL-4 controls the priming and clonal expansion of Th2 cells and 
induces class switching of immunoglobulin (Ig) to IgE in B cells (Nelms et al. 1999; 
A. Basu et al. 2021; Marshall et al. 2018). The IgE cross-linking on mast cells or 
cells with an Fcε receptor results in the degranulation of inflammatory mediators for 
parasite removal (Gould et al. 2003). The C-C chemokine receptor (CCR) 4 
(Bonecchi et al. 1998; Langenkamp et al. 2003; Sallusto et al. 1998) and 
chemoattractant G-protein-coupled receptor for chemoattractant receptor 
homologous molecule expressed on Th2 are both expressed on the surface of Th2 
cells, with the latter used as a marker for human Th2 cells (Fanis et al. 2007; Georas 
et al. 2005; Nagata et al. 1999). IL-4-induced activation of STAT6 and GATA3 
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expression results in downstream activation of target genes necessary for 
transcriptional regulation of Th2 cell differentiation (Zheng and Flavell 1997; 
Takeda et al. 1996; Swain et al. 1990; Shimoda et al. 1996; Ouyang et al. 1998; Gros 
et al. 1990; Kaplan et al. 1996; A. Basu et al. 2021). 

T helper 9 (Th9) cells are named according to their secretion of IL-9 as a 
signature cytokine. Similarly to Th2, Th9 cells are responsible for the elimination of 
extracellular pathogens, such as the helminth, Trichuris muris (Veldhoen et al. 2008; 
Darlan, Rozi, and Yulfi 2021; Bouchery et al. 2014). Dysregulation of Th9 cells is 
responsible for pathogenic allergic reactions, such as asthma and atopy (Wierenga et 
al. 1991; Wenzel 2012; Temann et al. 1998; Staudt et al. 2010; Stassen et al. 2012; 
Robinson et al. 1992; Bouchery et al. 2014; Hirahara et al. 2016). However, there 
has been some controversy concerning the existence of Th9 cells. In a study to 
identify which cells secrete cytokine IL-9, using the IL9 fate reporter mouse strain 
during papain-induced lung inflammation indicated the in vivo production of IL-9 is 
mainly from the innate lymphoid cells (ILC). Only a minor contribution of CD4+T 
cells was found during fate mapping of cellular sources of IL-9 (Wilhelm et al. 2011), 
questioning the existence of Th9 cells (Wilhelm et al. 2012). But the bias for non-
Th9-mediated inflammation in the experimental setting could be the reason for ILC-
specific IL9 expression (Wilhelm et al. 2011; 2012).  

2.2.2 Tfh cells 
T follicular helper (Tfh) cells are a recently characterized subset of CD4+ T cells 
mainly localized in secondary lymphoid tissues, such as the lymph node, spleen, and 
payer patches, and are responsible for T-cell-dependent humoral immune responses 
(Hirahara et al. 2016; Basu et al. 2021). B-cell CCL/lymphoma 6 (BCL6) is the 
lineage-determining TF for Tfh cells. Tfh cells are required for B-cell differentiation 
into plasma cells for high-affinity antibody production against pathogens and 
immunological memory B cells for quick immune response against encountered 
antigens (Kräutler et al. 2017).  

Tfh cell differentiation starts upon CD4+ T-cell interaction with myeloid APCs, 
such as DCs in lymphoid tissues. The Tfh cell’s primary function is to help the B 
cells. Thus, they predominately localized in lymphoid tissue, whereas non-Tfh cells, 
such as Th1, Th2, and Th17 cells, leave the lymphoid tissues and traffic to the sites 
of infection and inflammation. In mice, differentiation of Tfh cells is programmed 
by IL-6 and costimulatory molecule inducible T-cell co-stimulator (Vinuesa et al. 
2016; Linterman et al. 2009; Crotty 2014). IL2-R signaling and IL-2 are strong 
inhibitors of Tfh differentiation, through induction of BLIMP-1 and STAT5 
(Johnston et al. 2012; Ditoro et al. 2018; Ballesteros-Tato et al. 2012). DC priming 
is essential but not sufficient for Tfh differentiation (Crotty 2014). Complete Tfh 
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differentiation is multistage and multifactorial and requires APCs DC and B cells 
(Crotty 2014). Tfh differentiation requires DC priming, but B-cell interaction is 
indispensable for Tfh-GC maturation. DC priming of CD4+ T cells results in the 
upregulation of BCL6, chemokine receptor CXCR5, and repression of CCR7 to 
allow Tfh migration and interaction with B cells. Therefore, BCL6 and BLIMP1 are 
antagonists in Tfh differentiation (Vinuesa et al. 2016; Crotty 2014; Johnston et al. 
2009).  

The gene expression profiles, BCL6 expression, and surface protein receptors 
are similar between human and mouse GC-Tfh cells, suggesting evolutionary 
conservation of Tfh biology. However, the cytokines that induce Tfh differentiation 
are markedly different in the two species. Tfh differentiation is characterized by IL-
21 expression and is induced by IL-6 in naive murine CD4+ T cells (Crotty 2014), 
but by IL-12 with additional factors, such as transforming growth factor beta (TGF-
β) and STAT proteins, in naive human CD4+ T cells (Crotty 2014; Schmitt et al. 
2014). Human in vitro Tfh differentiation is optimized by coculturing IL-12+TGF-β 
or IL-12+ activin A (Schmitt et al. 2014; Locci et al. 2016) and accomplished by 
blocking IL-2, a known inhibitor of murine Tfh differentiation (Locci et al. 2016). 

The primary function of Tfh cells is to facilitate the antibody-mediated protection 
against pathogens of viral, fungal, bacterial origin, and parasitic infections. As an 
example, in the absence of Tfh, the immune response to vaccinia virus infection is 
reduced (Xiao et al. 2014). Both in humans and mice, Tfh cell associations have been 
observed in a wide range of autoimmune disorders. These include type 1 diabetes, 
systemic lupus erythematosus (SLE) (Gensous et al. 2018; Linterman et al. 2009), 
rheumatoid arthritis, and experimental autoimmune encephalomyelitis (EAE; an 
animal model for multiple sclerosis)(Quinn et al. 2018). In humans, the role of Tfh 
in SLE is clear, and a low IL-2 dose has been considered for the treatments for SLE 
due to the potent inhibition of Tfh cells by IL-2 (He et al. 2016). 

2.2.3 Treg cells 
Treg cells are a subclass of CD4+ T cells that are characterized by the expression of 
TF FOXP3 and suppression of immune cells. Therefore, Treg are responsible for the 
homeostasis of the immune cells and prevention of autoimmunity. The Foxp3+ Treg 
cells depletion causes severe autoimmunity, allergy, and immunopathology in 
animals (Bennett et al., 2001; Fontenot et al., 2003). In line with this, reconstituting 
Treg cells prevents disease development (Sakaguchi et al. 1995). Treg cells can be 
classified as thymic Treg (tTreg), peripheral Treg (pTreg), and induced Treg (iTreg) 
cells. In the thymus, T cells that recognize the self-antigens are removed by negative 
selection. However, a minority of T cells with a TCR repertoire for self-antigen 
escape and become tTreg cells (Jordan et al. 2001; Hsieh et al. 2006; Wing et al. 
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2019). The TF Aire, expressed in thymic cells, is necessary for the development of 
tTreg cells (Shevach and Thornton 2014). CD4+ T cells that gain stable FOXP3 
expression in the small intestine, and lamina propria of the colon is called as pTreg 
cells (Shevach and Thornton 2014; A. Basu et al. 2021). CD4+ T cells differentiated 
in vitro in the presence of IL-2, TGFβ, and retinoic acid are defined as iTreg cells. 
Although iTregs have been extensively used in the study of the Treg lineage, they 
are unstable and lack the full repertoire of Treg epigenetic gene expression (Wing et 
al. 2019).  

Foxp3 is indispensable for Treg function (Khattri et al. 2017; Hori at al. 2017; 
Fontenot et al. 2003). Foxp3 controls the gene expression profile of Treg cells (Gavin 
et al. 2007; Hill et al. 2007; Morikawa et al. 2014) by exploiting the pre-existing 
enhancer landscape and Treg transcription factors (Kitagawa and Sakaguchi 2017; 
Morikawa et al. 2014; Samstein et al. 2012). Treg suppression of effector T cells by 
promoting constitutive expression of CTLA4 is one of the most important 
downstream function of FOXP3. However, CD4+ T-cell precursors with 
CD25+Foxp3- in the thymus differentiated into the Treg lineage, and therefore, 
FOXP3 is not the initiating factor for Treg development (Lio and Hsieh 2008; Lin et 
al. 2007; Gavin et al. 2007). Also, iTreg cells with high FOXP3 expression lack 
Treg-specific DNA hypomethylation, and CD25+CD4+ T cells from scurfy mice 
display demethylation of Treg specific genes, including Foxp3 (Ohkura et al. 2012; 
Floess et al. 2007; Polansky et al. 2008). The TF and global chromatin organizer 
SATB1, together with additional factors, bind enhancer regions of Treg-specific 
genes, including Foxp3, to provide the epigenomic environment necessary for Treg 
differentiation (Kitagawa and Sakaguchi 2017). Maintenance of the stable Treg 
phenotype and function requires DNA demethylation of Treg-specific genes 
(Polansky et al. 2008; Morikawa et al. 2014; Ohkura et al. 2012), most importantly 
within the Treg-specific demethylation region (TSDR) of the Foxp3 enhancer CNS2, 
as its deletion reduced the Foxp3 in Treg cells (Y. Zheng et al. 2010; Yue et al. 2016; 
Feng et al. 2014; X. Li et al. 2014). The TSDR in other Treg markers, such as CD25, 
CTLA-4, and Helios, in addition to Foxp3, explain their high constitutive expression 
in Treg cells, compared to reduced expression in activated T cells, and are therefore 
instrumental in defining functional Treg cells (Baron et al. 2007; Ohkura et al. 2012).  

A fundamental feature of FOXP3+ Treg cells is the high expression of the 
interleukin-2 (IL-2) receptor and the co-inhibitory molecule CTLA-4 (Takahashi et 
al. 2000; Salomon et al. 2000; S Sakaguchi et al. 1995; Read, Malmström, and 
Powrie 2000). The IL-2 receptor on Treg cells quickly senses and consumes IL-2 
produced by activated T cells. This helps to expand Treg cells but also acts as 
negative feedback to suppress reactive T cells and prevent autoimmunity (Shimon 
Sakaguchi et al. 2006; Takahashi et al. 1998; J. M. Kim, Rasmussen, and Rudensky 
2007; O’Gorman et al. 2009; Zhiduo Liu et al. 2015). On the other hand, CTLA-4 
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acts in an extrinsic manner by binding to its ligands CD80 and CD86 on APCs and 
makes them unavailable for conventional T cells and leads to their apoptosis (Walker 
and Sansom 2011; Wing et al. 2008; Onishi et al. 2008; Sakaguchi et al. 2006). 

Proinflammatory environments use ubiquitination as the mode of Foxp3 
regulation to destabilize the regulatory cells. Proinflammatory cytokines upregulate 
the E3 ubiquitin ligase, Stub1, which interacts with and promotes FOXP3 
degradation (Chen et al. 2013). Overexpression of Stub1 leads to inactivation of Treg 
cell-mediated suppression of inflammatory response (Chen et al. 2013). On the other 
hand, deubiquitinase (DUB), USP7 upregulation prevents ubiquitination and 
degradation of Foxp3 in Treg cells (vanLoosdregt et al. 2013).  

2.2.4 Th17 cells 

2.2.4.1 Identification and Th17 cell differentiation 

Th17 cells secrete IL-17 and are primarily associated with the development of 
autoimmunity and inflammation. However, they also provide immunity to pathogens 
of bacterial and fungal origins. Th17 cells were initially identified as a separate 
subset of Th cells after the discovery of IL-23, an IL-12 cytokine family member 
(Cua et al. 2003; Murphy et al. 2003). Of note, the IL-12 receptor is a heterodimer 
composed of p40 and p35 subunits. Mice deficient in the IL-12 receptor p40 subunit 
gene were resistant to EAE and collagen-induced arthritis (CIA) disease (Rangachari 
and Kuchroo 2013). Therefore, enhanced Th1 responses were considered 
responsible for the development of animal models of autoimmunity, EAE and CIA 
(Rangachari and Kuchroo 2013). The role of Th1 cells in murine models of 
autoimmunity was questioned after the discovery of IL-23. The IL-23 receptor shares 
the p40 subunit of the IL-12 receptor but contains additional subunit p19. Seminal 
studies were conducted to show that, in addition to IL-12/IL-23p40, IL-23p19 gene 
knockout and not IL-12p35 causes resistance against EAE and CIA in animals (Cua 
et al. 2003; C. A. Murphy et al. 2003). This led to the identification of a role for the 
IL-23 cytokine in autoimmunity. Later, Th17 cells were identified and characterized 
(Romagnani 2008; Nakae et al. 2003; Stockinger and Omenetti 2017). In addition, 
before identification of Th17 cells, the existence of IL-17 producing cells was known 
in various autoimmune diseases (Harrington et al. 2005).  

Although IL-23 is required to amplify and stabilize the Th17 phenotype, it is not 
needed for Th17 commitment. Instead, TGF-β, IL-6, and IL-1β are needed to initiate 
Th17 differentiation (Veldhoen et al. 2006; Mangan et al. 2006; Bettelli et al. 2006; 
Chung et al. 2009). IL6-deficient animals are resistant to EAE (Samoilova et al. 
1998) and CIA (Alonzi et al. 1998). IL-6 signaling activates STAT3 (Yang et al. 
2007), which drives the transcription of Th17-specific genes RAR-related orphan 
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receptor C (RORC), IL17, and IL23r (Durant et al. 2010) and suppresses TGF-β-
induced FOXP3 expression. IL-6 inhibits the development of Treg cells to promote 
Th17 differentiation (Bettelli et al. 2006). 

IL-1β is also crucial for the initial phase of Th17 differentiation, and therefore, 
IL1r-deficient animals are resistant to EAE (Sutton et al. 2006). IL-1R signaling 
promotes interferon regulatory factor (IRF4) to reinforce RORγt (Chung et al. 2009) 
and activates mammalian target of rapamycin (mTOR) to enhance the metabolic 
fitness of Th17 cells (Gulen et al. 2010). In addition, intestinal IL-1 suppresses 
retinoic acid induction of FOXP3 but activates STAT3, which competes with STAT5 
and promotes Th17 cell vs iTreg fate (R. Basu et al. 2015). The role of TGF-β is 
more complex as it also stimulates FOXP3+ Treg cell development. However, 
mutually exclusive Th17 and Treg development from naive precursors by TGF-β has 
been reported (Das et al. 2009). In addition, TGF-β promotes Th17 differentiation 
indirectly by inhibiting alternative IFN-γ- and IL‑4-producing cell fates (Das et al. 
2009). The TGF-β knock-out animals are characterized by excessive IFN-γ and IL‑4 
production. In cells lacking Tbet and STAT6 in the absence of TGFβ, IL-6 alone can 
drive Th17 differentiation, suggesting TGFβ promotes Th17 differentiation by 
repressing alternative Th1 and Th2 cell fates (Das et al. 2009). Therefore, both IL-
1β and TGF-β are essential for Th17 differentiation. However, TGF-β also promotes 
the development of Treg cells. 

Over the past decade, several laboratories independently studied the 
transcriptome of Th17 cells to understand their regulation at the transcriptional level. 
But the studies used in vitro cultures, restricted by the inherent limitations of 
incomplete differentiation and heterogeneity of the cell populations (Stockinger and 
Omenetti 2017; Gaffen et al. 2014). Nevertheless, these studies led to the discovery 
of genes crucial for Th17 differentiation. A significant difference in the 
transcriptomes from human and mouse Th17 cells was identified (Tuomela et al. 
2016). The results of this comparison indicated that, overall, only the core elements 
were conserved between human and mice cells. Therefore, the relevance of any 
novel genes should be first verified in human Th17 cells before further studies using 
the animal model (Stockinger and Omenetti 2017). Interestingly, the recent use of 
single-cell RNA-sequencing (scRNA Seq.) for ex vivo Th17 cells used to describe 
the Th17 signature genes involved in EAE development (Gaublomme et al. 2015; 
Wang et al. 2015). Thus, Th17 cells are a recently identified subset of Th cells, and 
the factors that develop Th17 cells are characterized. 

2.2.4.2 STAT3 transcriptional control of Th17 cells 

The critical event in the lineage specification of Th17 cells is the activation of TF 
STAT3 by IL-6 or IL-23. The relevance of the role of STAT3 in IL17 signaling is 
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highly apparent in the human disease autosomal dominant hyper-IgE syndrome 
(AD‑HIES; also known as Job’s syndrome). The recurrent Aspergillus, Candida and 
Staphylococcus infections are due to STAT3 mutations and reduced numbers of 
IL17-producing T cells (Holland et al. 2007; Minegishi et al. 2007; Milner et al. 
2008). Studies in human and mice cells indicated that STAT3 directly binds to the 
specific TFs (e.g., Rorc, Batf and Irf4), cytokines, and their receptor genes (e.g., 
Il17a, Il17f, and, Il23r), and thus plays a crucial role in Th17 cell differentiation 
(Durant et al. 2010; Tripathi et al. 2017).  

The gene for RORC (RAR-related orphan receptor C) encodes isoforms RORγ 
and RORγt by alternative promoter selection (Eberl and Littman 2003; Medvedev et 
al. 1997; Villey, De Chasseval, and De Villartay 1999; Y. W. He et al. 1998). RORγt 
is considered the master regulator of Th17 differentiation, as it induces essential 
genes for Th17 differentiation, and mice lacking Rorc are resistant to the 
autoimmune EAE disease (Ivanov et al. 2006). However, RORγt expression is not 
sufficient for complete Th17 differentiation. Notably, factors such as BATF and 
IRF4 govern chromatin accessibility for recruitment and binding of Rorc and are 
crucial for Th17 specification (Li et al. 2012; Ciofani et al. 2012). Interestingly, 
RORγt protein levels increase during the late phase of differentiation of Th17 cells 
(Yosef et al. 2013b), but Th17 cells cannot maintain the RORγt levels if BATF 
(Schraml et al. 2009) or IRF4 are deficient (Brüstle et al. 2007). However, RORγt 
overexpression rescues Th17 cells with BATF and IRF4 deficiency. The activator 
protein 1 (AP1) family TF BATF is upregulated during TCR activation and is 
essential for Th17 cell development. Mice lacking Batf are resistant to EAE 
development and have defects in Th17 differentiation (Schraml et al. 2009). BATF 
forms dimers with JUNB to bind on the promoter of the genes (Il17a, Il17f, Il21) 
critical for Th17 differentiation (Schraml et al. 2009). The TF IRF4 is essential for 
the development of both Th2 (Lohoff et al. 2002) and Th17 cells (Brüstle et al. 2007). 
Th17 differentiation is impaired in Irf4-deficient mice and fails to develop EAE 
(Brüstle et al. 2007). BATF and IRF4 form a complex and positively regulate each 
other’s binding to target genes (Li et al. 2012; Ciofani et al. 2012). Due to their 
functional cooperation, chromatin remodeling makes the promoters accessible for 
RORγt in Th17 cells ( Li et al. 2012; Ciofani et al. 2012). Gene promoter co-
occupancy by BATF and IRF4 has also been found in TCR-activated cells, 
suggesting BATF and IRF4 are pioneer factors that make the chromatin accessible 
for lineage-specific TFs (P. Li et al. 2012; Ciofani et al. 2012). Therefore, RORγt 
fine tunes and completes the differentiation of Th17 cells, initiated by STAT3 
(Ciofani et al. 2012; Yosef et al. 2013a; Li et al. 2012).  

In addition, the TF hypoxia-inducible factor 1α (HIF-1α) is induced by TCR 
activation, and its expression is further upregulated by IL-6-STAT3 signaling and 
under hypoxia conditions. HIF-1α directly binds to and induces Rorc and forms a 
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complex with RORγt to induce the expression of IL-17 (Dang et al. 2011). 
Intriguingly, HIF-1α interacts with Foxp3 and target Foxp3 proteasomal degradation 
(Dang et al. 2011). HIF1α deficiency in mice causes diminished EAE disease and is 
associated with a defect in Th17 cell differentiation and enhanced Treg development 
(Dang et al. 2011). Therefore, the metabolic pathways regulate Th17 and Treg cell 
differentiation, and environmental conditions, such as hypoxia, promote Th17 cell 
differentiation.  

2.2.4.3 Pro-inflammatory and protective Th17 cells 

Th17 cells are potent inflammatory cells that are responsible for the pathogenesis of 
many autoimmune diseases, namely psoriasis, Sjogren’s syndrome, inflammatory 
bowel disease, rheumatoid arthritis, and multiple sclerosis (Stockinger and Omenetti 
2017; Littman and Rudensky 2010). However, at steady-state, Th17 cells are crucial 
for the endowment of host immunity against pathogens, such as Candida albicans 
and Staphylococcus aureus (Romani et al. 2011; Otto 2010; Stockinger and Omenetti 
2017).  

The criteria for pathogenic Th17 cells are the use of different cytokine 
combinations for Th17 differentiation and EAE disease development in animals after 
adoptive transfer. Initially, the pathogenic and nonpathogenic subsets of Th17 cells 
were identified by culturing undifferentiated T cells with different combinations of 
cytokines (Ghoreschi et al. 2010; McGeachy et al. 2007; Veldhoen et al. 2006). In 
the presence of IL-6 and TGF-β1, naive cells seemed to give rise to Th17 cells that 
that could not induce the disease after adoptive transfer. However, cells cultured with 
IL-6, IL-1β, and IL-23 or TGF-β3 were identified as Th17 cells responsible for EAE 
(Lee et al. 2012; Ghoreschi et al. 2010). Surprisingly, TGF-β3-induced Th17 cells 
were different from those generated with TGF-β1 and were highly pathogenic in 
disease development (Lee et al. 2012). Recently, a study showed that a CD11b+ 
Sirpα+ DC is essential for the generation of pathogenic Th17 cells and the 
encephalitogenic priming of T cells for EAE (Heink et al. 2017). The CD11b+Sirpα+ 

DC-derived IL-6 activates STAT3 designated as “IL‑6 cluster signaling” for 
pathogenic Th17 cells differentiation, while sources of IL-6 other than DC are 
important for suppression of Foxp3+ Treg cells (Heink et al. 2017).  

Thus, IL-23 is indispensable in the regulation of inflammatory Th17 cells and 
the development of EAE in animals. Interestingly, IL‑23R (IL-23 receptor) 
expression is regulated by Notch signaling and protein C receptor (PROCR) 
important for pathogenic Th17 cell differentiation (Horste et al. 2016; Kishi et al. 
2016). In Notch signaling, recombination signal binding protein for immunoglobulin 
κJ binds and transactivates the Il23r promoter, which is essential for pathogenic 
Th17 cells (Horste et al. 2016). However, PROCR negatively regulates IL-23R 
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expression and pathogenic Th17 cells by an as-yet undefined mechanism (Kishi et 
al. 2016).  

MicroRNAs (miRNAs) are small RNAs that regulate the gene expression by 
direct binding to the untranslated regions of messenger RNA (mRNA), and there are 
studies reporting their roles in regulating Th17 differentiation and autoimmunity. 
The miRNA miR‑183‑96‑182 cluster (miR-183C) promotes differentiation of 
pathogenic Th17 by TF forkhead box O1 (FOXO1) gene repression (Ichiyama et al. 
2016). Here, miR-183C prevents the inhibition of IL-1R1 by FOXO1 and, therefore, 
promotes inflammatory cytokine production by Th17 cells. Similarly, miR‑326 and 
miR‑155 cause repression of certain gene expressions of Th17 cells. They are 
negative regulators ETS1 (Du et al. 2009) and JARID2 (Escobar et al. 2014), 
respectively, promoting Th17 cell expansion and EAE disease development (Du et 
al. 2009). Also, mice lacking miR-21 develop EAE and display defective Th17 
differentiation. Mechanistically, miR-21 enhances TGF-β signaling and represses 
IL-2-inhibitory Th17 effects (Murugaiyan et al. 2015). Therefore, Th17 cells play a 
significant role in autoimmune disease development but also provide immunity 
against the pathogen. Understanding of the dichotomy of Th17 cells in the regulation 
of autoimmune disease and immunity to infections is essential.  

2.3 Protein phosphatase 2A 
Protein phosphorylation is a reversible post-translational modification (PTM) that is 
an essential component of the regulatory mechanisms in cell signaling. It functions 
as a molecular switch since it can alter protein charge, global conformation, 
subcellular localization, activity, and protein interactions essential for protein 
function. Therefore, a precise balance between kinase and phosphatases that 
phosphorylate and dephosphorylate proteins, respectively, is required to maintain 
cell homeostasis. However, the kinases in a cell outnumber phosphatases, with more 
than 500 vs. less than 200, respectively.  

Initially, phosphorylation was considered specific and dephosphorylation non-
specific and (therefore) less interesting. This is still reflected by the 10-fold more 
studies related to kinases than to phosphatases (Clark and Ohlmeyer 2019). The 
misconception arose as phosphorylation requires energy in the form of ATP 
consumption, and therefore, researchers considered that kinase activity was specific 
to conserve energy. However, recent studies have observed inhibition of phosphatase 
activity as a common signature for the development of many diseases, including 
cancers, neurological diseases, and autoimmune disorders (Clark and Ohlmeyer 
2019). Also, due to the inherent complexity of the diverse regulatory subunits that 
provide substrate specificity, an increasing number of studies now indicate that the 
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number of phosphatases is much higher. Therefore, an understanding of phosphatase 
regulation, in addition to kinases, is now considered equally important.  

The phosphatases are classified into four categories: (1) protein tyrosine 
phosphatases (PTPs), (2) protein serine/threonine phosphatases (PSTPs), (3) dual 
specificity phosphatases, and (4) histidine phosphatases (Kaur and Westermarck 
2016). The protein phosphatase 2A (PP2A) and phosphatases PP1, PP2B, PP2C, 
PP4, PP5, and PP6 are the major PSTP in the eukaryotic cells (O’Connor et al. 2018; 
Janssens and Goris 2001; Shi 2009).  

Phosphatase PP2A is a heterotrimeric holoenzyme. An active PP2A enzyme 
contains a 65-KDa scaffolding subunit “A”, a 36-KDa catalytic subunit “C” and a 
substrate-specific regulatory subunit “B” of variable size (Clark and Ohlmeyer 2019; 
O’Connor et al. 2018; Lambrecht et al. 2013; Kauko and Westermarck 2018). The 
scaffolding structural A subunit and catalytic C subunit form a dimer of the core 
enzyme, to which one of the B subunits binds (Xu et al. 2006; Cho and Xu 2007). 
The association of B subunits to the core enzyme is mutually exclusive. Only one B 
subunit can interact with core enzyme at a time (Mayer-Jaekel and Hemmings 1994; 
Janssens and Goris 2001) (Figure 3). 

The A subunit is characterized by 15 repeats of antiparallel alpha-helices of a 
structural motif with 39 amino acids, known as the HEAT (huntingtin, elongation 
factor, the A subunit of PP2A, and target of rapamycin) domain. The stacking of 
antiparallel alpha helices of the HEAT domain is flexible due to a hinge region 
between HEATS 12 and 13 and a hydrophobic inner ridge that creates a hook-like 
structure for B and C subunit binding to A subunit (O’Connor et al. 2018; Xu et al. 
2006; Groves et al. 1999; Cho and Xu 2007). The A and C subunits each have two 
isoforms, α and β, subdivided into PPP2R1A or PPP2R1B, also called PP2A Aα or 
PP2A Aβ and PPP2CA or PPP2CB, also called PP2A Cα or PP2A Cβ, respectively. 
The two isoforms of PP2A catalytic C subunit, α (alpha) and β (beta) share around 
97% homology in their primary sequence, but the gene promoter for PP2ACA is 7–
10-fold stronger than the gene promoter of PP2ACB, and thus, PP2A Cα is about 10 
times more abundant than the PP2A Cβ (Khew-Goodall and Hemmings 1988; V. 
Janssens and Goris 2001; O’Connor et al. 2018). The structure of the catalytic 
subunit of PP2A has remained remarkably constant throughout evolution. 

The regulatory subunit B, encoded by different genes in humans, interacts with 
the core enzyme of PP2A. The B subunit is further subdivided into four groups: B 
(PPP2R2A, PPP2R2B, PPP2R2C, and PPP2R2D), B′ (PPP2R5A, PPP2R5B, 
PPP2R5C, PPP2R5D, and PPP2R5E), B″ (PPP2R3A, PPP2R3B, and PPP2R3C), 
and B″′ (STRN, striatin family) (Kauko and Westermarck 2018; O’Connor et al. 
2018; Clark and Ohlmeyer 2019). The alternate names of the various subunits of 
PP2A are shown in Table 1 and Figure 3, taken from Kauko et al. 2018; Clark and 
Ohlmeyer 2019.  
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Table 1:  Systematic and alternative names of PP2A subunits taken from Kauko and 
Westermarck, 2018; Clark and Ohlmeyer, 2019. The part of the systematic and alternate 
names is bold to give an overview of the nomenclature. 

 

The B subunits are distinguished by their diversity and complete lack of sequence 
similarity, even though they interact with the same PP2A A subunits. The A and C 
subunits ubiquitously expressed, but the expression levels and cellular localization 
of the B subunits vary, depending upon the cell types. Therefore, the complexity and 
diversity of the PP2A holoenzymes are due to the regulatory B subunits, as these 
provide substrate specificity and subcellular localization of PP2A heterotrimers 
(Lambrecht et al. 2013; Haesen et al. 2014; Clark and Ohlmeyer 2019). Notably, 
diverse PP2A functions result from specific PP2A complexes directed by B subunits 
(Slupe A.M, et al., 2011; Kauko and Westermarck 2018). In mammalian cells, PP2A 
subunits exist as AC dimers (called core dimers), or ABC trimers (called 
holoenzyme).  
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Figure 3:  PP2A subunit composition and regulation of PP2A holoenzyme by PTM. Illustration 

created with BioRender.com. 

2.3.1 Regulation of PP2A function 
As PP2A has a strong influence on cell biology, it is tightly regulated at several levels 
to avoid the formation of an active enzyme with impaired substrate specificity 
(Lambrecht et al. 2013; Haesen et al. 2014; Kauko and Westermarck 2018; 
O’Connor et al. 2018; Clark and Ohlmeyer 2019). The following mechanism 
operates in cells to regulate and control the activity of PP2A. 

2.3.1.1 Post-translational modifications 

The hotspot for PP2A PTMs is on the carboxy terminus of the catalytic C subunit. 
Modifications there control B-subunit binding and the enzymatic activity of PP2A 
(Cho and Xu 2007; Xing et al. 2008; Janssens et al. 2008). Through biochemical and 
mass spectrometric analysis, three modification sites have been identified that 
include methylation on the carboxy-terminal leucine 309 (L309) residue, and 
phosphorylation at the tyrosine 307 (Y307) residue and the threonine 304 (T304) 
residues to regulate PP2A enzymatic function, substrate specificity and composition 
(Figure 3). 
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PP2A Methylation: One of the best-known PP2A PTMs is methylation of the 
L309 residue, which is required for the enzyme’s activity (Yu et al. 2001; Longin et 
al. 2007; Kaur and Westermarck 2016). The crystal structural analysis of PP2A 
heterodimers showed that the negatively charged carboxyl group on the non-methyl 
L309 prevents the interaction between the subunits. Therefore, methylation of the 
PP2A L309 residue regulates the interaction of the PP2A core dimer and one of the 
B-subunits (e.g., the interaction of PPP2R2A (B55α) with PP2A-A-C dimer). Hence, 
methylation of the L309 residue of the catalytic C subunit is an regulatory 
modification that determines the holoenzyme composition necessary for PP2A 
enzymatic functions (Cho and Xu 2007). In other words, the methylation site of the 
L309 residue of PP2A highlights the importance of PTM regulation in PP2A 
functions.  

Protein methyl-esterase 1 (PME-1) is responsible for demethylation of the L309 
residue. In addition, PME-1 directly interacts with PP2Ac and sequesters manganese 
ions essential for the activity of the PP2Ac catalytic site (Xing et al. 2008). Analysis 
of the crystal structure of the PME-1-PP2Ac complex, together with mutational 
analysis, has shown that the R369 site on PME-1 is involved in binding to the 
catalytic site of PP2Ac (Pokharel et al. 2015; Xing et al. 2008). PME-1 activity is 
regulated by leucine carboxyl methyl transferase 1 (LCMT1), which adds a methyl 
group to the free carboxyl group on the L309 residue by utilizing S-
adenosylmethionine as the substrate (Kaur and Westermarck 2016; De Baere et al. 
1999). The knockdown of LCMT1 also promotes cell transformation, further 
implicating its association with the tumor-suppressive function of PP2A.  

PP2A Phosphorylation: Biochemical assays have shown that tyrosine 307 
(Y307) phosphorylation of the PP2A catalytic C subunit inactivates PP2A (Neviani 
et al. 2013; Rincón et al. 2015; Neviani et al. 2005; Cristóbal et al. 2014). The 
catalytic subunit C phosphorylation site at T304, however, is not well characterized. 
Mutational analysis showed that it regulates the association between the regulatory 
subunit B55 and the catalytic subunit (Longin et al. 2007). The CDK1 is the kinase 
that phosphorylate this site during mitosis (Schmitz et al. 2010). Importantly, the 
specificity of the antibodies used for PP2Ac phosphorylation detection has been 
challenged by various studies. 

Free but inactive and stable PP2A catalytic C’ subunits have also been reported 
to interact with proteins PME-1 and α4 (Kremmer et al. 1997; Kaur and Westermarck 
2016; Kong et al. 2009). The free catalytic C subunit is either subjected to 
proteasomal degradation or stabilized and inactivated by interaction with protein α4 
or PME-1 (Kremmer et al. 1997; Kaur et al. 2016; Kong et al. 2009). In addition, 
phosphotyrosyl phosphatase activator and binding of Mn2+ ions govern the catalytic 
activity of catalytic C subunit due to the structural isomer formation (Guo et al. 2014; 
Xu et al. 2006; Cho and Xu 2007; O’Connor et al. 2018).  
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2.3.2 PP2A inhibitors 
Initially, two endogenous PP2A inhibitors, isolated from the bovine kidney, were 
characterized. These are acidic nuclear phosphoprotein 32A (ANP32A) and SET, 
also known as PP2A inhibitor 1 (I1PP2A) and PP2A inhibitor 2 (I2PP2A), 
respectively (Li et al. 1995; Li et al. 1996). The ANP32A and SET were identified 
as members of the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain. SET 
binding inactivates PP2A and its dysregulation has been implicated in leukemia and 
several other cancers (Apostolidis et al. 2016; O’Connor et al. 2018). CIP2A is 
another endogenous PP2A inhibitor (Junttila et al. 2007). CIP2A directly interacts 
with PP2A and inhibits its activity towards oncoprotein c-Myc (Junttila et al. 2007). 
The c-Myc dephosphorylation by PP2A results in degradation of oncoprotein c-Myc 
and prevent cell transformation. Overexpression of CIP2A have been reported in 
several types of cancer (Junttila et al. 2007; Kauko and Westermarck 2018; Khanna 
and Pimanda 2016). Proteins PME-1 and α4 are also considered as PP2A inhibitors 
as they impede the heterotrimeric conformations of the phosphatase. Enhanced 
PME-1 activity and expression has been observed in several cancers and is 
associated with disease progression (Kaur and Westermarck 2016; Wandzioch et al. 
2014; Puustinen et al. 2009). PME-1 inhibition promotes PP2A activity in cancer 
cells. Okadaic acid is a naturally occurring small molecule that can penetrate cells 
for broad-spectrum phosphatase inhibitor activity, including PP2A. Okadaic acid is 
a polyether fatty acid synthesized by the marine dinoflagellates and causes shellfish 
poisoning (Bialojan and Takai 1988). 

2.3.3 PP2A dysregulation in cancer cells 
PP2A is a tumor suppressor, and inhibition of its activity in several human cancers 
is well known (O’Connor et al. 2018; Westermarck and Hahn 2008; Janssens and 
Rebollo 2012; Haesen et al. 2014; Grech et al. 2016; Carratù et al. 2016). In addition, 
dysregulated phosphorylation of the PP2A substrates is a hallmark of cancer cells. 
In line with this, activation of PP2A results in inhibition of cancer cell proliferation 
and apoptosis. The mechanisms of PP2A inhibition and cell transformation in cancer 
include: (1) Enhanced expression of PP2A endogenous inhibitors, such as CIP2A 
and SET (Hung and Chen 2017; Soofiyani, Hejazi, and Baradaran 2017; Kauko and 
Westermarck 2018). (2) Decreased expression of the positive regulator PPP2R4 of 
PP2A (Sents et al. 2017). (3) The somatic mutations of PP2A scaffolding subunit 
PPP2R1A and the associated impact on the recruitment of B subunits (Ruediger, 
Ruiz, and Walter 2011; Haesen et al. 2016). (4) PP2A function impairment by the 
dysregulated oncogenic kinases (Zonta et al. 2015; J. Chen, Parsons, and Brautigan 
1994). (5) DNA tumor virus, SV40, is characterized, based on proteins small and 
middle T antigens that inhibit PP2A and other tumor suppressor genes promote cell 
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transformation (Sablina and Hahn 2008; Chen et al. 2007; Cho et al. 2007; Guergnon 
et al. 2011). (6) Chromosomal deletion, epigenetic and micro-RNA mediated 
decrease in expression of specific B subunits results in impaired PP2A activity 
(Ruvolo 2015). Therefore, PP2A inhibition is well-established in cancer cells. 
Recently, reports about PP2A inhibition is also observed in other diseases, such as 
Alzheimer’s disease (AD) (Sontag and Sontag 2014; Shentu et al. 2018). Thus, PP2A 
activation in disease conditions could have therapeutic relevance. 

2.3.4 PP2A activation 
PP2A activation in the cell is observed either by indirectly inhibiting PP2A inhibitor 
or directly with compounds that interact and activate PP2A (O’Connor et al. 2018). 
Induction of methylation on catalytic subunit by xylulose-5-phosphate and 
chloroethyl nitrosourea activates PP2A. In addition, inhibition of PME-1 by 
azalactam and sulfonyl acrylonitrile enhances PP2A activity in cells (Kaur and 
Westermarck 2016; O’Connor et al. 2018). Also, compounds, such as bortezomib 
and celastrol, activate PP2A by inhibiting CIP2A. Vitamin E analogs 
(e.g., α‑tocopherol succinate, forskolin, and carnosic acid) activate PP2A (O’Connor 
et al. 2018). Off-target effects of anti-psychotic phenothiazine drugs 
(e.g., chlorpromazine) also activate PP2A (Clark and Ohlmeyer 2019). 
Phenothiazines activation of PP2A led to enhanced FOXO1 dephosphorylation and 
nuclear localization (Kau et al. 2003; L. Yan et al. 2008; Gutierrez et al. 2014). 
Further processing of phenothiazines led to the development of tricyclic sulfonamide 
compounds called small-molecule activator of PP2A, such as DBK- 1154, DT-061, 
or iHAPs (improved heterocyclic activators of PP2A). These interact and activate 
PP2A by acting as an adhesive for PP2A heterotrimeric holoenzyme assembly 
(Kastrinsky et al. 2015; Morita et al. 2020; Leonard et al. 2020). 

Sphingolipid ceramide activates PP2A in many cell types, including cancer cells 
and T cells. Mechanistically, ceramide binding to the PP2A inhibitor SET causes de-
repression of PP2A activity (Mukhopadhyay et al. 2009; Clark and Ohlmeyer 2019). 
Metabolism of ceramide by ceramidase enzyme produces sphingosine. Fingolimod 
(FTY720; 2-amino-2-[2-(4-octylphenyl) ethyl] propane-1,3-diol), a metabolite of 
fungus Isaria sinclairii, is a sphingosine analogue. FTY720, similar to ceramide, 
functions as a PP2A activator by direct binding to SET and disruption of latter 
inhibitory interaction to promote PP2A activation. The PP2A activation by FTY720 
treatment is promising in anti-tumor effects in pre-clinical cancer models.  

When phosphorylated by sphingosine kinases 1 or 2 (Sphk1 and Sphk2), 
sphingosine becomes sphingosine-1-phosphate (S1P). The latter is well known for 
its immune cell-related functions. Once S1P is transported out of the cell by the 
transporter Spinster 2, it binds to its receptor, S1PR, by inside-out signaling. The 
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regulation of leukocyte traffic by S1P-S1PR signaling is of particular importance. 
The S1P gradient drive lymphocyte migration from lymphoid tissues, in which it has 
a lower concentration than the comparatively high S1P concentration in circulating 
blood/lymph (Spiegel and Milstien 2011; Clark and Ohlmeyer 2019). In multiple 
sclerosis, autoreactive lymphocytes egress from the lymphoid tissues due to an S1P 
gradient and move to the central nervous system to cause disease (Chun and Hartung 
2010). The auto-aggressive lymphocytes responsible for multiple sclerosis include 
proinflammatory IL17-producing Th17 cells (Tzartos et al. 2008). Th17 cell 
enrichment in the active multiple sclerosis lesions implicated in the pathogenesis of 
multiple sclerosis (Tzartos et al. 2008; Mehling et al. 2010). In in vitro models, Th17 
cells migrate across the blood-brain barrier and promote inflammation and 
destruction of neurons by producing IL17 and pro-apoptotic granzyme B, 
respectively (Kebir et al. 2007).  

FTY720 is a commonly used immunosuppressive compound and approved for 
multiple sclerosis treatment. It binds on S1PR on lymphocytes and results in S1PR 
internalization and degradation. FTY720 treatments prevent EAE disease 
development in animals (Chun and Hartung 2010), and the underlining mechanism 
is due to the lymphocyte’s impaired migration and their confinement within the 
lymph nodes. The immunosuppressive role is due to its phosphorylation. Derivatives 
of FTY720, AAL(s), MP07-66, OSU-2S, P053, and aza-cyclic were developed by 
the substitution of the FTY720 phosphorylation site (Kubiniok et al. 2019; 
McCracken et al. 2017; Kim et al. 2016; Turner et al. 2018; Kiuchi et al. 1998; Omar 
et al. 2011). These derivatives bind SET and activate PP2A for antitumor properties. 
However, AAL(s), MP07-66 and OSU-2S, cannot bind the sphingosine receptor for 
immunosuppressive functions (Mani et al. 2015; Mani et al. 2017; Omar et al. 2016; 
Roberts et al. 2010; Smith et al. 2016). In addition, AAL(s) treatments failed to 
reduce EAE symptom severity in animals (Brinkmann et al. 2002), arguing for a 
significant role of PP2A activation in FTY720 treatment. However, fingolimod 
treatment also reduced IL17+ Th17 cells and generated more suppressive T cells 
than untreated patients (Chun and Hartung 2010; Villar et al. 2019). In addition, 
AAL treatments reduce the disease in an experimental model of rheumatoid arthritis 
(Ross et al. 2017). Therefore, one cannot rule PP2A activation as a mechanism by 
which FTY720 modulates autoimmune disease treatment. 

2.3.5 PP2A in autoimmune diseases 
SLE is an autoimmune disease, which affects the joints, kidneys, skin, brain, lungs, 
and blood vessels. As in other autoimmune disorders, tissue damage in SLE is caused 
by widespread inflammation and immune reactions (Trentin et al. 2021; Aringer and 
Schneider 2021; Aringer and Dörner 2018). Interestingly, as a result of SLE, T cells 
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are characterized by reduced IL-2 expression and enhanced catalytic PP2Ac subunit 
expression (Katsiari et al. 2005). 

The IL2 promoter is occupied by the TFs NF-κB, AP-1, and NFAT. An 
additional regulatory mechanism that controls IL-2 production in T cells involves 
the competitive binding of transcription activator CREB and CREM at the -180 site 
of IL2 the promoter (Jain et al. 1995; Rothenberg and Ward 1996). The PKA kinase 
phosphorylates CREB at the Ser133 residue to initiate interaction with transcription 
coactivators CREB and p300, and promote IL-2 production (Jain et al. 1995; 
Rothenberg and Ward 1996). However, T-cell activation upregulates CREM and 
replaces pCREB at the –180 site, and represses IL2 production (Mayr and Montminy 
2001). Interestingly, the phosphatase PP2A is the primary enzyme to 
dephosphorylate pCREB (Mayr and Montminy 2001; Wheat et al. 1994; Choe et al. 
2004; Wadzinski et al. 1993; Katsiari et al. 2005) and negatively regulates IL2 
production in T cells (Wheat et al. 1994; Choe et al. 2004; Chuang et al. 2000; Falk 
et al. 1994; Katsiari et al. 2005).  

Genetic and epigenetic mechanisms are associated with the enhanced expression 
of PP2A catalytic subunit PP2Ac in SLE (Figure 4). A CpG motif regulates the 
transcription of PP2Ac, and a single nucleotide polymorphism (SNP) identified 
during genome-wide association study on the PP2Ac proximal promoter was linked 
to susceptibility to SLE (Sunahori et al. 2011; Tan et al. 2011). Notably, the 
transcriptional repressor Ikaros recruits histone deacetylase 1 to suppress PP2A 
transcription. But SLE is characterized by limited Ikaros repression due to an SNP 
on the Ikaros binding sites and upregulation of PP2Ac transcription (Nagpal et al. 
2014; Tan et al. 2011; Sunahori et al. 2011). However, significantly reduced IKZF1 
(Ikaros) mRNA expression in the peripheral blood mononuclear cells of SLE patients 
was also observed in a study with 60 SLE patients and 60 healthy controls (Hu et al. 
2011). Therefore, multiple factors in addition to the genetic regulation of PP2Ac are 
likely to be associated with SLE. In SLE, hypomethylation of the CRE motif on the 
PP2Ac gene promoter was observed. Enhanced CREB binding due to 
hypomethylation of the promoter led to transcriptional upregulation of PP2Ac 
(Sunahori et al. 2011) regardless of the SLE disease state and was considered to be 
an abnormality of the disease (Katsiari et al. 2005). 

Several mechanisms explain how the enhanced catalytic subunit of PP2A 
expression is responsible for hampered IL-2 production and SLE disease 
development. The enhanced PP2Ac activity in SLE causes the aberrant TCR 
signaling and results in reduced IL2 production. PP2A modulates the transcriptional 
expression of CD3ζ and FcRγ in the TCR complex (Tsokos et al. 2003). PP2A 
dephosphorylates TF Elf-1 (Thr-231) and results in restricted Elf-1 binding to 
CD3ζ and FcRγ gene promoter and former reduced expression but latter enhanced 
expression (Juang et al. 2008). Therefore, due to aberrant TCR CD3 signaling, there 
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is reduced IL-2 production in SLE T cells. However, restoring the defective CD3 
signaling by CD3ζ overexpression in SLE normalizes IL2 expression in T cells 
(Juang et al. 2008). In addition, reduced expression and activity of PKC also 
promotes unopposed PP2A activity (Katsiari et al. 2005). Furthermore, PP2A 
mediated dephosphorylation of specificity protein-1 (SP-1; Ser59) and enhanced 
binding upregulate CREMα (Juang et al. 2011). CREMα suppressed IL-2 and the 
CD3ζ gene promoter to reduce their expression in SLE patients T cells (Juang et al. 
2011).  

The silencing PP2A catalytic subunit (PP2Ac) in SLE patients’ T cells causes 
normal phosphorylation of CREB and IL2 production, thus confirming that 
enhanced PP2A catalytic subunit is the fundamental abnormality responsible for 
disease development (Katsiari et al. 2005). Therefore, enhanced PP2A catalytic 
subunit expression derives reduced IL-2 production in SLE immune cells and disease 
development but warrants further studies for therapeutic intervention.  

 
Figure 4:  The mechanism of enhanced expression of PP2A catalytic C subunit and regulation of 

reduced IL-2 production in SLE disease development. The illustration created with 
BioRender.com. 
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2.3.6 PP2A in Th17 and Treg cells 
Transgenic animals overexpressing PP2Ac have elevated IL-17 production 
(Apostolidis et al. 2013). In addition, PP2Ac overexpression results in the 
development of glomerulonephritis (Crispín et al. 2012). PP2Ac activates Rho 
kinase (ROCK), which phosphorylates TF IRF4. The latter promote recruitment of 
histone acetyltransferases (HAT) and other factors for the transcription of IL17 
(Apostolidis et al. 2013). Therefore, PP2Ac regulates IL17 expression by activation 
of IRF4 and enhancing histone 3 acetylation of the IL17 locus. Specific deletion of 
PP2A catalytic subunit α reduces the Th17 cell differentiation and EAE disease in 
animals (Xu et al. 2019). PP2A regulates the phosphorylation of the SMAD2/3 and, 
therefore, RORγt binding on IL17 in Th17 cells (Xu et al. 2019). 

PP2A activity in Treg cells is indispensable for suppressing effector T cells 
(Apostolidis et al. 2016; Sharabi et al. 2018). Treg-specific deletion of PP2A in mice 
results in multiorgan autoimmunity. PP2A-deficient animals have a skin rash, scaly 
tails, and ears, wasting, dermatitis, ulcerations and a higher frequency of activated 
CD4+ T and CD8+ T cells in spleen and lymph nodes. Ex vivo-stimulated PP2A-
deficient T cells produced more proinflammatory cytokines IL-17 and IL-2, IFN-γ, 
and TNF-α, and proliferation than cells from control animals. Gene expression 
profiling identified repression of Sgms1 (SMS1; Sphingomyelin Synthase 1) gene 
due to Foxp3 direct binding to its promoter in Treg cells (Apostolidis et al. 2016). 
The reduced expression of SMS1 restricts ceramide and phosphatidylcholine 
conversion to diacylglycerol and sphingomyelin in sphingolipid metabolism and, 
therefore enhances ceramide levels in Treg cells (Figure 5). Various studies showed 
that the interaction of ceramide with PP2A endogenous inhibitor SET activates PP2A 
(Mukhopadhyay et al. 2009; Perry et al. 2012; Dobrowsky et al. 1993; Lambrecht et 
al. 2013; Oaks and Ogretmen 2015). Therefore, specific accumulation of ceramide 
inhibits TCR induced PP2A inhibitor SET, promotes PP2A activity in Treg cells. 
Further, PP2A direct interaction and mTOR complex-1 (mTORC1) inhibition are 
essential for Treg suppression of effector cells (Apostolidis et al. 2016).  
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Figure 5:  PP2A activation in Treg cells. Foxp3 promoter binding inhibits sgms1 expression and 

promotes ceramide accumulation. The ceramide interaction with PP2A endogenous 
inhibitor SET activates PP2A. On the other hand, PP2A activity is important to inhibit 
mTORC1 and ADAM10 and promote STAT5 and Foxp3 expression in Treg cells. The 
illustration created with BioRender.com.  

Cytokine IL-2 promotes the development of Treg cells to maintain tolerance and is 
also crucial for the T-cell effector and memory responses. At low concentrations, IL-
2 selectively induced Treg cell responses without activation of effector cells 
(Hirakawa et al. 2016). The responsiveness of Treg cells towards IL-2 is due to 
higher expression of IL-2 receptor and enhanced activity of the phosphatase PP2A 
(Sharabi et al. 2019; Sharabi et al. 2018). PP2A restrains the activity of sheddase 
ADAM, which cleaves the IL2 receptor in T cells (Figure 5). Therefore, enhanced 
PP2A activity prevents the degradation of the IL2 receptor and thus promotes 
increased IL2 consumption by Treg cells, which is essential for Treg suppression of 
effector cells (Sharabi et al. 2019). PP2A-deficient thymic Treg cells have reduced 
IL2R and STAT5 tyrosine phosphorylation. The STAT5 tyrosine phosphorylation in 
IL-2 signaling is essential for inducing FOXP3 expression (Malek and Bayer 2004; 
Yao et al. 2007; Burchill et al. 2007; Fontenot et al. 2005; Malek et al. 2002; Furtado 
et al. 2002). Therefore, PP2A promotes IL2-STAT5 signaling and is important for 
Foxp3 expression (Figure 5) and essential for Treg cells (Sharabi et al. 2019). 
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2.4 Cancerous inhibitor of protein phosphatase 2A 
CIP2A, also known as KIAA1524 or p90, encoded by KIAA1524, and located in 
human chromosome 3q13.13 (Soofiyani et al. 2017). CIP2A is an endogenous 
protein inhibitor of phosphatase PP2A (Junttila et al. 2007). Its enhanced expression 
in cancer cells promotes cell transformation. It directly interacts and inhibits 
phosphatase PP2A activity in the cancer cells. CIP2A cell-endogenous inhibition of 
PP2A prevents dephosphorylation and proteolytic degradation of TF and 
oncoprotein c-Myc S62. In addition, CIP2A regulates the dephosphorylation of 
several targets of PP2A, including AKT (Kauko et al. 2018; Kauko and Westermarck 
2018). Structural studies have shown that CIP2A forms a homodimer and it 
specifically interacts with PP2A B subunits B56α and B56γ (Wang et al. 2017). The 
conserved N-terminal region of CIP2A binds to the B56 proteins, and CIP2A 
dimerization promotes this binding. Both CIP2A self-dimerization and binding to 
PP2A is important for CIP2A stabilization.  

2.4.1 CIP2A in disease 
CIP2A overexpression has been observed in several cancers and correlates with poor 
survival and disease progression (Khanna and Pimanda 2016; Khanna et al. 2013). 
Neuroblastoma is a pediatric cancer of neural crest derived embryonic peripheral 
nervous system. Overexpression of the TF MycN is a hallmark associated with poor 
prognosis and aggressive neuroblastoma disease. High expression of CIP2A is 
associated with MycN in regions of the neural plate and poor prognosis of 
neuroblastoma (Kerosuo et al. 2018). 

CIP2A overexpression is associated with the poor prognosis of colon cancer 
(Teng et al. 2012). The direct binding of activating transcription factor 6 (ATF6) to 
the CIP2A promoter is associated with the latter over expression and colon cancer 
cell chemoresistance (Liu et al. 2018). Recently, a micro peptide named CIP2A 
binding peptide (CIP2A-BP) encoded by non-coding RNA LINC00665 was reported 
(Guo et al. 2020). CIP2A-BP interacts with CIP2A and competes for the PP2A 
subunit B56γ binding site. CIP2A-BP directly binds on the N-terminal of CIP2A to 
replace PP2A’s B56γ subunit, and release PP2A activity, to decrease tumorigenesis. 
In cancer cells, enhanced expression of translation inhibitory protein 4E-BP1 
restricts LINC00665 and CIP2A-BP expression, promote PP2A inhibition by CIP2A 
and metastasis (B. Guo et al. 2020). In colorectal cancer cell lines, the use of specific 
inhibitors or small interfering RNA (siRNA) downregulation of histone deacetylase 
1 reduced CIP2A expression and restored PP2A activity (Balliu et al. 2016).  

Cells maintain homeostasis by a lysosomal-mediated self-eating process called 
autophagy. Autophagy inhibition is commonly observed in cancer cells (Mulcahy et 
al. 2020). There are several mechanisms by which PP2A regulates autophagy 
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(Bánréti et al. 2012; Yorimitsu et al. 2009), and CIP2A was reported to inhibit 
autophagy (Yu et al. 2013). RNA interference (RNAi) phosphatome screening 
identified phosphatase PP2A and oncoprotein CIP2A among the regulators of 
autophagy (Puustinen et al. 2014). Immunoprecipitation studies revealed that PP2A 
and CIP2A are associated with kinase mTORC1 in cancer cells. The kinase 
mTORC1 prevents autophagy by promoting nutrient uptake for protein synthesis and 
cell growth. CIP2A inhibition of PP2A prevents dephosphorylation of mTORC1 
targets RPS6KB1 and EIF4EBP1, known to maintain anabolic cells’ state and 
prevents autophagy in cancer cells. Conversely, nutrient unavailability (e.g., amino 
acid deprivation) inactivates mTORC1 and promotes autophagic degradation of 
CIP2A (Puustinen et al. 2014). Thus, a positive feedback loop exists: CIP2A 
overexpression in cancer cells and PP2A inhibition promotes mTORC1 associated 
cell growth, and inhibition of autophagy prevents CIP2A degradation. CIP2A also 
regulates the cell cycle and mitosis by interacting with polo-like kinase 1 (Kim et al. 
2013). Further, CIP2A high expression promotes a cellular energy bias towards 
oxidative phosphorylation, rather than glycolysis, by 5′ AMP-activated protein 
kinase signaling (Austin et al. 2019). Elevated CIP2A expression is observed in 
chronic myeloid leukemia and acute myeloid leukemia (Lucas et al. 2015; Lucas et 
al. 2011; 2018). Similarly, a genomic copy of CIP2A has increased in head and neck 
squamous cell carcinoma cancer (Routila et al. 2016; Ventelä et al. 2015). 

Interestingly, as in cancer cells, CIP2A upregulation led to PP2A inhibition is 
associated with AD (Shentu et al. 2018; Ohlmeyer 2019). AD is a neurodegenerative 
and neuroinflammatory disease, characterized by aggregates of hyperphosphorylated 
tau protein and cognitive deficits. PP2A is the primary phosphatase in the regulation 
of tau phosphorylation. CIP2A overexpression in AD led to PP2A inhibition and 
hyperphosphorylation and aggregation of tau (Shentu et al. 2018). Thus, the 
pathophysiological role of CIP2A, suggesting it as a possible target for AD therapy. 
CIP2A also functions in the development of astrocytoma and neuroblastoma 
development (Yi et al. 2013; Kerosuo et al. 2018). Interestingly, CIP2A expression 
in the olfactory bulb and hippocampus areas in humans and mice, and its in-vitro 
role in promoting mouse neural progenitor cells was suggested (Kerosuo et al. 2010). 
Dandy-Walker malformation is a rare congenital malformation and developmental 
defect of the brain (Reith and Haussmann 2018). Recently, an activating pathogenic 
mutation on CIP2A via whole-exome sequencing was associated with Dandy-
Walker malformation, suggesting the role of CIP2A in the disruption of neuronal 
development (Austin et al. 2019). Interestingly, CIP2A expression in fibroblast-like 
synoviocytes is associated with invasiveness and resistance to apoptosis in 
rheumatoid arthritis (Lee et al. 2012; 2013).  

In summary, the overexpression and pathogenic function of CIP2A is well-
characterized in cancer. Additional reports suggest its enhanced expression in other 
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diseases, such as neurodegenerative disorders, and it as a target therapeutic 
development. Therefore, the physiological immune-cell related functions of CIP2A 
deserve further attention. 

2.4.2 CIP2A inhibitors 
The following compounds were also found to inhibit CIP2A expression in cells: 

Bortezomib. Proteasome inhibitor Bortezomib (Velcade) causes cell-cycle 
arrest and apoptosis. Bortezomib inhibits the 26S subunit of the proteasome (Adams 
and Kauffman 2004). Bortezomib and its derivatives with no proteasomal activity 
have antitumor activity, and they are approved by Food and Drug Administration 
(FDA) for multiple myeloma treatments (Niesvizky et al. 2015). In addition to 
antitumor effects, Bortezomib also downregulates CIP2A expression in cancers and 
increases PP2A activity (Yu et al. 2013; Lin et al. 2012; Hou et al. 2013; Ding et al. 
2014; Chen et al. 2010). The downregulation of CIP2A occurs at the transcriptional 
level, but the mechanism of Bortezomib in the transcriptional regulation of CIP2A 
is unclear (Huang et al. 2012; Chen et al. 2010; Lin et al. 2012; Yu et al. 2013). 
Interestingly, Bortezomib inhibits the release of NF-κB and inflammatory cytokines 
from T cells. Therefore, Bortezomib has been suggested as a candidate therapy for 
rheumatoid arthritis, multiple sclerosis, and other inflammatory diseases treatment 
(Mohty et al. 2013). In adoptive transfer experiments, Bortezomib treatment to 
recipient animals reduces lung cancer metastases with enhanced antitumor T-cell 
function in the host (Mohty et al. 2013; Shanker et al. 2015). 

Celastrol. Celastrol is a pentacyclic triterpenoid found in traditional Chinese 
medicine. It is isolated from the roots of Tripterygium wilfordii (Zhou 2011). Its 
anticancer properties are due to mitochondrial apoptotic signaling, but the effector 
target in mitochondrial signaling is yet to be identified (Yu et al. 2015; Yang et al. 
2011; Shrivastava et al. 2015; Mou et al. 2011;Lee et al. 2012). Celastrol induces 
both caspase-dependent and caspase-independent apoptosis in cancer cells (Yang et 
al. 2011; Lee et al. 2012; Shrivastava et al. 2015). Recently, reduced levels of CIP2A 
upon celastrol treatments were associated with inhibition of CIP2A targets, 
phosphorylated AKT and c-MYC (Zi Liu et al. 2014). Celastrol directly interacts 
with CIP2A and promotes CIP2A proteolytic degradation by an E3 ubiquitin ligase, 
CHIP/STUB1, which has enhanced interaction with CIP2A in the presence of 
celastrol (Liu et al. 2014). Interestingly, it has anti-inflammatory properties. It 
prevents induction of proinflammatory cytokines IL-6 and TNF-α, and celastrol 
treatment in animals reduced the incidence of arthritis in an animal model for 
rheumatoid arthritis (Venkatesha et al. 2011; 2016; Kim et al. 2009). 

Erlotinib. The epidermal growth factor receptor tyrosine kinase (EGFR) kinase 
inhibitor Erlotinib (Tarceva) is an FDA- approved drug for non-small cell lung 
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cancer treatment (Wu et al. 2015; Mendelsohn and Baselga 2006). Erlotinib binding 
blocks EGFR phosphorylation and downstream signaling in cancer cells. However, 
numerous studies identified an EGFR-independent Erlotinib mechanism of action, 
such as transcriptional downregulation of CIP2A (Yu et al. 2014; Chen et al. 2012; 
Liu et al. 2017; Wang et al. 2014). Mechanistically, Erlotinib treatment results in 
ERK inhibition leads to Elk-1 inactivation. Latter restricted nuclear translocation 
promotes CIP2A transcriptional inhibition in cancer cells (Liu et al. 2017). 
Interestingly, the immune response was impaired upon Erlotinib treatment, both in 
vitro and in vivo, including reduced T-cell proliferation (Luo et al. 2011). Down-
regulation of c-Raf/ERK and other Akt signaling components is associated with 
Erlotinib-mediated impaired T-cell response (Luo et al. 2011). In addition, Erlotinib 
treatment caused an enhanced anti-tumor immune response (Im et al. 2016). 
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3 Aims of the Study 

The Th cell activation and differentiation play central roles in providing immune 
protection against extracellular and intracellular pathogens. However, CD4+ T cells 
are also responsible for the development of several inflammatory disorders and 
autoimmune diseases (Hirahara and Nakayama 2016). Therefore, understanding the 
molecules expressed in T cells can help to develop strategies to prevent 
inflammatory conditions. Multiple reports about the role of the recently 
characterized protein CIP2A in various types of cancers and other diseases suggested 
it as a potential therapeutic target (Kauko et al., 2018; Khanna et al., 2016; Khanna 
et al. 2013). However, the role of CIP2A role in immune cell regulation has not been 
studied. It is important to establish the influence of CIP2A targeting on the immune 
response to facilitate the development of related therapies. The objective of the 
research presented in this thesis was to describe the role of oncoprotein CIP2A in 
CD4+ T-cell activation and functionally distinct Th cell lineages and particularly 
Th17 cells. 
 
The presented studies were designed with the following aims: 

Aim 1:  To elucidate the functional role of CIP2A in T-cell activation (I).  

Aim 2:  To investigate the role of CIP2A in regulating Th17 cell subset 
differentiation (II).  

Aim 3:  To identify the protein Interactome of CIP2A in Th17 cells (III). 

 

 



 46 

4 Materials and Methods 

4.1 Human CD4+ T-cell isolation, activation, and 
differentiation (I, II, and III)  

CD4+ T-cell isolation and Th cell differentiation were performed with umbilical cord 
blood. Anonymous healthy donors were used for cord blood collection at Turku 
University Hospital, south-west Finland, with permission from the district hospital 
ethical committee. Human blood from the umbilical cord was first layered on the top 
of Ficoll (GE Healthcare, cat# 17-1440-03) to enrich mono-nuclear cells. Further, 
CD4+T cells were isolated from the enriched cells with CD4+ magnetic bead kit 
(Invitrogen, cat # 11331D).  

For Th17 in-vitro culture, we used serum-free X-Vivo 20 media (Lonza, Basel, 
Switzerland) supplemented with L-glutamine (2 mM, Sigma-Aldrich, UK), 
penicillin (50 U/mL), and streptomycin (50 μg/mL) antibiotics (Sigma-Aldrich). 
Purified naive CD4+ T cells were activated (2 million cells/well) with plate-bound 
anti-CD3 antibody (Beckman Coulter, cat# IM-1304, 3750 ng/well of 6-well culture 
plate) and 1 μg/mL of soluble anti-CD28 antibody (Beckman Coulter, cat# IM1376), 
and a cocktail of cytokines, including 10 ng/mL of IL6 (Roche, cat# 11138600 001), 
10 ng/mL of IL1β (R&D Systems, cat#201 LB) and 10 ng/mL of TGFβ (R&D 
Systems, cat# 240;) in the presence of 1 μg/mL of the neutralizing antibodies anti-
IFNγ (R&D Systems, cat# MAB-285) and anti-IL4 (R&D Systems cat# MAB204). 
In parallel, cells were cultured in X-Vivo 20 with activation and neutralizing 
antibodies as described above, but without cytokines, as activated nonpolarized 
control cells (Th0). The cells were cultured at 37°C in 5% CO2. Successful Th17 
polarization was confirmed by the following three measurements: IL17 RNA 
expression by TaqMan qPCR, IL17 protein secretion by Luminex or ELISA, and the 
surface expression of CCR6 by flow cytometry.  

For human iTreg cell differentiation, we used CD4+ CD25- cells prepared by 
depleting CD25+ cells from isolated cord blood CD4+ cells, using LD columns and 
a CD25 depletion kit from Miltenyi Biotec. The cells were activated (at a density of 
2 million cells/mL of serum-free X-Vivo 15 media from Lonza) with plate-bound 
anti-CD3 (500 ng/24-well culture plate well) and soluble anti-CD28 (500 ng/mL) in 
the presence of a cytokine cocktail of TGF-β (10 ng/mL), IL-2 (12 ng/mL), (both 



Materials and Methods 

 47 

from R&D Systems), 10 nM ATRA (all-trans retinoic acid; Sigma-Aldrich), and 
10% human serum (Biowest, cat# S4190-100). Control (Th0) cells were activated 
similarly with plate bound anti CD3 and soluble anti-CD28 and cultured in X-Vivo 
15 media without TGFβ, IL2, ATRA, and human serum. Foxp3 expression was 
measured at 72 h after cell activation by western blotting and flow cytometry-based 
intracellular staining analysis. In addition, the ability of the iTreg cells to suppress 
the proliferation of effector cells was used as confirmation for a successful iTreg 
polarization.  

4.2 Cell transfection with siRNA (I, II, and II) 
Human CD4+ T cells, isolated as described above, were resuspended in Opti-MEM 
(Gibco by Life Technologies, cat # 31985-047) at a concentration of 4 million cells 
in 100 µl for each transfection. The siRNA transfections were performed using the 
Amaxa nucleofector 2b system (Lonza). Transfected cells were rested for 48 h in 
RPMI medium supplemented with 10% serum and penicillin/streptomycin 
antibiotics. 

The following siRNAs, synthesized by Sigma/Merck or Dharmacon, were used:  
 

siNT 5´-AAUUCUCCGAACGUGUCACGU-3´ (Control siRNA) 
siCIP2A-1 5´-CUGUGGUUGUGUUUGCACU-3´ (Junttila et al. 2007) 
Dharmacon siGENOME individual CIP2A siRNAs  
siCIP2A-2: 5´-GAACAUAAGCUAGCAAAUU-3´ 
siCIP2A-3: 5´-GAAACUCACACGACUAUUU-3´  
siCIP2A-4: 5´-GCACGGACACUUGCUAGUA-3´ 
siCIP2A-5: 5´-GUACCACUCUUAUAGAACA-3´ 
AGK siRNAs taken from (Bektas et al. 2005) 
siAGK1 5´-AACAGAUGAGGCUACCUUCAG-3´ 
siAGK2 5´-GAGGCUACCUUCAGUAAGA-3´ 
siAGK3 5´-GGAGAGACCAGUAGUUUGA-3´ 
siPP2A 5'-TTTTCCACTAGCTTCTTCA-3' (Junttila et al. 2007) 

4.3 Mice, T-cell Isolation, and Th17 differentiation 
(I and II) 

Mice on a C57BL/6 background in which the CIP2A gene was deleted by gene-trap 
technology were provided by Prof. Jukka Westermarck (Ventelä et al. 2012). The 
ethical committee, University of Turku, provided permission to perform experiments 
with the animals’ cells. I have a license issued by the University of Turku to dissect 
the animals to obtain the tissue for isolation of T cells. 
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Same-gender mice of 8–12 weeks were euthanized using CO2, and the spleens 
were dissected for cell isolation. A syringe plunger was used to squeeze the tissue 
through the 70-µm cell strainer to make a single-cell suspension. The single-cell 
suspension was treated with ACK RBC lysis buffer to remove RBC contamination 
for 10 min (cat# A10492-01, Gibco). Cells were isolated as per the manufacturer’s 
instructions (Miltenyi Biotec, cat# 130-106-643). The purity of the cells was 
confirmed using the flow cytometry staining for CD4+ T cells, CD62L+ T cells, and 
CD25+ T cells. Cells with more than 98% CD4+CD62L+ population were 
considered naive cells and used for in-vitro culture. Cells were activated as controls 
(TCR control) using 1 μg/ml anti-CD3, (cat# 553238; BD Pharmingen) and 2 μg/ml 
anti-CD28 (cat# 557393; BD Pharmingen), both plate-bound.For Th17 cultures, 
naive T cells were activated in medium supplemented with cytokines: 20 ng/ml IL-
6 (R&D, cat# 406-ML), 1 ng/ml TGF-β1 (R&D, cat# 240-B), 10 ng/ml IL1β (R&D, 
cat# 201-LB). The medium, Iscove’s modified Dulbecco medium (Sigma), was 
supplemented with 5% (vol/vol) FCS, 0.002 M L-glutamine, non-essential amino 
acids (cat# 11140-035; Gibco), 100 U/ml of penicillin, 100 μg/ml of streptomycin 
and 50 μM β-mercaptoethanol (Gibco). For both activation and Th17 polarization, 
the medium was supplemented with neutralizing antibodies anti-IL4 (10 µg/ml, BD 
cat# 559062) and anti-IFN-γ (10 µg/ml, BD cat# 557530). 

4.4 Flow cytometry (I and II) 
For flow cytometry cell-surface staining, cells were first washed with phosphate-
buffered saline (PBS) (two times), followed by antibody incubation in FACS I buffer 
(1% FBS in PBS) for 15 min, at +40C in the dark. Stained cells were then washed 
two times again with FACS I buffer and finally resuspended in FACS I buffer for 
flow cytometer acquisition or 1% formalin for next day acquisition. During 
intracellular protein staining, after cells were washed twice with PBS, cells were 
fixed with 4% paraformaldehyde (PFA) for 15 min at room temperature (RT). After 
two washes with FACS I buffer, cells were permeabilized with permeabilization 
buffer (10% saponin, 0.05% BSA in PBS) for 15 min on ice. Finally, cells were 
stained for 30 min with respective antibody incubation, followed by cell 
resuspension in FACS I/1% formalin. For annexin/propidium iodide (PI) staining, 
similarly cells (24 h post cell activation) were washed and incubated with annexin 
(BD, cat# 556419) and PI (BD, cat# 51-66211E) in 2X binding buffer (10 mM 
Hepes, 140 mM NaCl, 5 mM CaCl2, pH 7.4) adjusted to a final 1X concentration in 
FACS I buffer. Annexin/PI staining cells were immediately acquired in a flow 
cytometer. For carboxyfluorescein succinimidyl ester (CFSC) cell staining, the 
homogenous cell suspension was incubated with 5 μM final concentration of CFSC 
(Invitrogen, cat# C1157) at 370C, followed by stopping the reaction with fetal bovine 
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serum. The stained cells were then cultured, and flow cytometer acquisition was 
performed on days 4, 5, and 6. The FlowJo (FlowJo LLC, treestar) or flowing 
software (Version 2.5.1) (http://flowingsoftware.btk.fi/) were used to analyze the 
data acquired in either BD LSR II or Fortessa/Caliber flow cytometer (BD 
Biosciences). 

The following antibodies used for the analysis: anti-mouse CD69 (eBioscience, 
cat# 11-0691-82), anti-human CD69 (BD, cat# 347823), mouse IL17-PE (BD, cat# 
559502), STAT3-PE (BD phosflow, cat# 557815) and pSTAT3-AlexaFlour 647 
(Y705; BD phosflow, cat# 557815). 

4.5 TaqMan Quantitative Real-Time Polymerase 
Chain Reaction (PCR) (I and II) 

In TaqMan qRT-PCR analysis, cells were washed twice with PBS, and the cell pellet 
was resuspended in complete RLT buffer (RNeasy Mini Kit from QIAGEN, cat# 
74106) with β-mercaptoethanol. The RNA was isolated, following the manufacture’s 
protocol (RNeasy Mini Kit). The DNase (Qiagen cat# 79254) on-column treatment 
during the RNA isolation to remove DNA contamination. Potential residual DNA 
contamination was further removed by in-tube DNase I (Invitrogen™, #18068-015) 
digestion. The negative qRT-PCR was performed using housekeeping gene primers 
and probe and the isolated RNA as a template. The Nanodrop 2000 detector (Thermo 
Fisher Scientific) was used to measure the RNA concentration, and complementary 
DNA (cDNA) synthesis was performed by using either Roche Transcriptor First 
Strand cDNA synthesis kit (RNA amounts < 100ng; cat# 04379012001) or 
Invitrogen’s Superscript™ II Reverse Transcriptase (RNA amounts 100 ng–1 μg; 
cat# 18064-014). 1:5 or 1:10 diluted cDNA was used for TaqMan qRT-PCR runs 
with target gene probes and primers designed by Universal Probe Library System 
(Roche Life Science). Quant Studio™ 12K Flex Real-Time PCR System (Thermo 
Fisher Scientific) and their software were used to run the TaqMan qRT-PCR 
reactions and data analysis, respectively. In the data analysis, the cycle threshold (Ct) 
value of the gene of interest was subtracted from that of internal control (EF1alpha) 
to calculate delta Ct (dCT) and plotted as dCt or fold-change (2-dCt). 

4.6 Luminex assay (II and III)  
Cytokine (IL17 or IFNγ) measurements in culture supernatants were performed 
using Luminex assay (Merck Millipore; HCYTOMAG-60K-01) or Duoset ELISA 
(enzyme-linked immunosorbent assay) kit (R&D Biosystems DY317-05, DY008), 
according to the manufacturer’s instructions. The concentrations of cytokines were 

http://flowingsoftware.btk.fi/
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normalized with flow cytometry-based cell counts in each culture to avoid bias due 
to cell death or proliferation. 

4.7 Western blotting (I, II, and III) 
Triton-X-100 lysis buffer (TXLB) (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% 
Triton-X-100, 5% glycerol, 1% SDS) was used to resuspend the cell pellet (1–5 
million T cells) and sonicated in a Bioruptor sonicator (Diagenode; 30 sec ON and 
30 sec OFF) for 5–7 min, followed by high-speed spin (16,000 g) for 1–5 min. 
Protein concentration in the supernatant was measured by DC Protein assay (Bio-
Rad, cat# 500-0111). The protein extracts (10–30 μg) were run on acrylamide gel 
(Bio-Rad Mini or Midi PROTEAN® TGX precast gels). For protein transfer, PVDF 
membranes (BioRad) were used and transfer was performed on Trans-Blot Turbo 
Transfer System (BioRad). 

The membranes were incubated in 5% non-fat milk or BSA TBST buffer 
(0.1%Tween 20 in Tris-buffered saline) with primary and secondary antibodies. 
Western blot bands were quantified using Image J software. The antibodies used for 
the WB analysis were STAT3 (Cell Signaling Technology, cat# 9139), phospho-
STAT3 (Y705) (Cell Signaling Technology, cat# 9131), CIP2A (Junttila et al. 2007; 
Côme et al. 2016), CIP2A (Cell Signaling Technology, cat# 14805), PP2A-A/B 
(Santa Cruz, cat# sc-15355), Trim21 (Santa Cruz, cat# sc25351), IRF4 (M-17) 
(Santa Cruz, cat# sc6059), PPP1A/PPP1CA (Abcam, cat# ab137512), PP1α (G-4) 
(Santa Cruz, cat# sc-271762), β-actin (Sigma, cat # A5441), AGK (Abcam, cat# 
ab137616), β-actin antibody (Sigma, cat# A5441). 

4.8 Cell fractionation (III) 
Twenty million Th17 cells were used to isolate the cytoplasmic and nuclear fractions 
for CIP2A localization studies by WB. The fractions were extracted using NE-PER 
Nuclear and Cytoplasmic Extraction Kit (Thermo Fisher Scientific, cat# 78833), 
following the protocol provided by the kit. The extracted proteins were analyzed by 
WB where ⍺-tubulin (Santa Cruz, cat# sc-55529) and ⍺-vimentin (Santa Cruz, cat# 
sc-6260) antibodies were used as control proteins for the cytoplasmic and nuclear 
fractions, respectively.  

4.9 Immunofluorescence (II and III) 
Acid-washed glass coverslips (1 M HCl and heat to 50–60 °C treatment for 4–16 
hours) were used for immunofluorescence staining. Cells (Th17/Th0) were fixed 
with 4% PFA, RT, 10 min, and permeabilized (0.1% Triton X-100 and 30% horse 
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serum in PBS) 10 min at RT. The cells were washed twice with PBS, and non-
specific sites were blocked for 1 h at RT with 30% horse serum in PBS and overnight 
primary antibody incubation at 4°C. The next day, cells were washed with PBS and 
Alexa fluor-conjugated (Life Technologies) secondary antibody incubation for 1 h 
at RT. Again, the cells were washed with PBS and mounted with Mowiol at 37°C 
for 30 min. The instrument Carl Zeiss LSM780 laser scanning confocal microscope 
equipped with 100×1.40 oil plan-Apochromat objective (Zeiss) was used for taking 
the images. The confocal image’s corrected total cell fluorescence intensities were 
calculated for statistics and displayed graphically as an arbitrary unit (AU) (Burgess 
et al. 2010; McCloy et al. 2014). 

In pSTAT3 and AGK colocalization experiments, CIP2A- and control siRNA-
treated Th17 cell were stained with antibodies against both proteins, and seven views 
in each of three replicates was used to calculate the colocalization by image J Coloc2 
plugin. The data were plotted as Pearson’s correlation coefficients. The Mander’s 
coefficients were also observed (data not shown) to avoid expression bias. 

Similarly, the UBR5 Immunofluorescence in Hela cells was performed except 
chambered coverslip (Ibidi, cat# 80826) to culture the cells, and 10% normal goat 
serum (Abcam, cat# ab7481) were used. DAPI (Invitrogen, cat# D1306) was used to 
stain the nuclei, and anti-UBR5 (Abcam, cat# ab70311) and Alex Fluor 488 goat 
anti-rabbit IgG (Invitrogen, cat# A-11008) antibodies were used. 

4.10 Proximity ligation assay (III) 
The assay manufacture’s protocol (Duolink® PLA, Sigma) was used to perform the 
PLA. Briefly, cells (Th17 or HeLa) were fixed, plated on a coverslip, permeabilized, 
and a blocking solution used to remove the background staining as described above 
in the immunofluorescence staining protocol. Before overnight primary antibody 
incubation, the cell coverslip was incubated in a humidity chamber for 30 min at 
37°C. On the next day, kit buffer A was used to wash the unbound primary antibody. 
Next coverslips were incubated in a pre-heated humidity chamber 1 h, 30 min, and 
100 min for PLA probe, ligase, and polymerase amplification reaction solution, 
respectively, at 37°C. The coverslips were washed with buffer B and mounted with 
DAPI for confocal microscopy (LSM780, Carl Zeiss)) and 3i CSU-W1 spinning disk 
microscope equipped with 100x1.4 O Plan-apochromat objective (Zeiss) PLA signal 
detection. The Cell Profiler software (Carpenter et al. 2006) was used to calculate 
the PLA signal out of the signal dots. 

The following antibodies used in the PLA assay: anti-UBR5 (Abcam, cat# 
ab70311), anti-CIP2A (Santa Cruz, cat# sc-80659), anti-PPP1CA (Abcam, cat# 
ab137512), anti-UBR5 (Abcam, cat# ab70311), anti-TRIM21 (Santa Cruz, cat# sc-
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25351), anti-GFP (mouse) (Abcam, cat# ab1218) and anti-GFP (rabbit) (Invitrogen, 
cat# A11122). 

4.11 RNA sequencing (II) 
CIP2A siRNA-silenced and control siRNA human Th17 cells were harvested at 24 
h post-activation. CIP2A knock down at the indicated timepoints was confirmed by 
WB and TaqMan qPCR analysis before RNA sequencing for gene expression 
studies. RNeasy Mini Kit was used to isolate the total RNA according to 
manufacturer’s instructions. Illumina protocol was used to prepare the libraries. An 
advanced Analytical Fragment Analyzer (Advanced Analytical Technologies, 
Heidelberg, Germany) or 2100 Bioanalyzer (Agilent) was used to study the quality 
of the libraries, which were quantified using Qubit Fluorometric Quantitation (Life 
Technologies, Thermo Fisher). The sequencing was performed at the Finnish 
Functional Genomics Centre (FFGC), University of Turku, using a HiSeq2500 Next-
Generation Sequencing platform. The quality control of raw reads by FastQC and 
trimming of adapters or low-quality bases was performed by Trimmomatic (Bolger, 
Lohse, and Usadel 2014). The Tophat2 (D. Kim et al. 2013) was used to align the 
trimmed reads to the human reference genome GRCh37.75 (Ensemble release 75), 
and each gene’s summarized read counts were calculated by HTseq-count (Anders, 
Pyl, and Huber 2015). Differentially expressed (DE) genes were identified with the 
R/Bioconductor package edgeR (M. D. Robinson, McCarthy, and Smyth 2010) 
applying a false discovery rate (FDR) < 0.05. 

4.12 Pathway analysis (II and III) 
IPA (https: www.ingenuity.com/, May 2016) with P-values < 0.01 was used to 
determine the significantly enriched pathways. The IPA results with positive and 
negative z-score were used to identify key upstream regulators and denote predicted 
upstream positive and negative regulators, respectively. A significance threshold for 
upstream regulators with p-value > 0.01 and |z-score| > 2 was applied. 

4.13 Gene set enrichment analysis (GSEA) and 
transcription factor binding sites (TFBS) motif 
enrichment analysis (II) 

Th17 and iTreg signature genes upregulated more than fourfold at the 24 h in the 
respective cell types were taken from the Th17 and iTreg time series data (Tuomela 
et al. 2016; Ubaid Ullah et al. 2018), and the enrichment of gene set in the CIP2A-
silenced RNA-Seq data for 24 h was calculated by using a GSEA tool (Subramanian 
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et al. 2005). The parameters used for the analysis were as follows: permutation type: 
phenotype; number of permutations: 1000; gene list sorting: real; enrichment 
statistics: weighted; metric for ranking: Signal2Noise. TFBS analysis was performed 
as described in Ubaid Ullah et al. 2018. Briefly, CIP2A silenced 136 DE genes 
promoters (-1000 to 100 bp from the transcription start site) was analyzed by the 
FMatch tool of the TRANSFAC database (Release 2018.2) and TFs DE in human 
Th17 or iTreg cells (Ubaid Ullah et al. 2018; Tuomela et al. 2016) were used to make 
the matrices custom profile. Using R (version 3.4.3), the enrichment was calculated 
by the binomial test and the Benjamini & Hochberg method was used to correct the 
p-value, an FDR < 0.05.in was used. 

4.14 Immunoprecipitation (II and III) 
Specific antibodies were used to immunoprecipitate STAT3 and CIP2A along with 
their respective Immunoglobulin G (IgG) control IPs. In addition, CIP2A interactors 
were compared by using two CIP2A-specific antibodies that recognize distinct 
regions of CIP2A protein. For IP, we used Pierce™ MS-Compatible Magnetic IP Kit 
(Thermo Fischer, cat# 90409), following manufacturer’s instructions. Briefly, cells 
were harvested on ice and washed twice with PBS to remove the culture media. The 
ice-cold IP-mass spectroscopy (MS) cell lysis (IP-MS) buffer supplied in the kit was 
used to resuspend the cells for 10 min with periodic mixing for cell-lysis. The cell 
lysate was centrifuged at full speed to remove membranes and other debris. The 
supernatant was transferred to new tube, and protein measurements were performed 
using the NanoDrop™ spectrophotometer (Thermo Scientific). 500–1000 µg of 
protein lysate in IP-MS cell lysis buffer was incubated with antibody (1:50 dilution) 
at +4oC overnight. The immune complex was incubated with protein A/G magnetic 
beads for 1 h at RT on second day. The target protein and their respective interactors 
were later eluted after washing the complex and the magnetic beads with the washing 
buffer supplied in the kit. The eluate was later transferred to a new low binding 
Eppendorf sample tube. The elution buffer was removed by vacuum dry 
centrifugation for SDS PAGE and WB analysis.  

4.15 Mass spectrometry (II and III) 
The respective biological IP samples were denatured with 8 M urea and 
dithiothreitol, reduced alkylated with iodoacetamide, digested with trypsin (370C, 16 
h). The samples were desalted using Empore C18 disks (3M) (Fisher scientific, cat# 
2215). Based on Nanodrop-1000 UV spectrometer detection, proteomics analysis of 
equivalent aliquots of the digested peptides were made in triplicates by liquid 
chromatography-tandem MS (LC-MS/MS) using a Q-Exactive HF quadrupole–
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Orbitrap mass spectrometer (Thermo Fisher Scientific) with EASY-nLC 1200 UPLC 
system. The i.d. pre-column 20 x 0.1 mm and i.d. analytical column 150 mm x 75 
µm packed in conjunction with Reprosil 5-µm C18-bonded silica (Dr Maisch 
GmbH) were used with a gradient of 8–45% B for 78 min at a flow rate of 300 nl/min 
for separation and, water with 0.1% formic acid (A) and 80% acetonitrile 0.1% 
formic acid (B) compositions for the mobile phase.  

4.16 Selected reaction monitoring mass 
spectrometry (III) 

The MS detected protein targets of interest (CIP2A and AGK for publication II and 
20 for publication III) were validated by SRM MS. The synthetic peptide analogs 
isotopically labelled (lysine 13C6 15N2 and arginine 13C6 15N4) were selected based on 
their consistency in discovery data, LC-MS/MS using a Q Exactive HF quadrupole–
Orbitrap mass spectrometer (Thermo Scientific). The integrity of the signals from 
the transitions measured for the heavy labelled and native peptide MS/MS spectra 
was evaluated by the Skyline software (MacLean et al. 2010). 

To validate the MS-detected interactome by SRM-MS, the CIP2A IP samples 
were prepared as for the discovery measurements and spiked with synthetic heavy-
labeled peptide analogs of the targets and retention time standard (MSRT1, Sigma). 
The TSQ Vantage Triple Quadrupole Mass Spectrometer (Thermo Scientific) 
coupled to Easy-nLC 1000 liquid chromatograph (Thermo Scientific) was used for 
the LC-MS/MS analyses. A faster gradient of 8–43% B in 27 min, then to 100% B 
in 3 min, at a flow rate of 300 nl/min was used to separate the peptide, although the 
column configuration was same as in the discovery measurements with the Q-
Exactive. Similarly, the compositions of the mobile phases were water with 0.1 % 
formic acid (A) and 80% acetonitrile 0.1% formic acid (B). PASSEL (Farrah et al. 
2012) with dataset identifier PASS01186 was used to deposit SRM data. 

4.17 MS data analysis (II and III) 
A MaxQuant with the inbuilt Andromeda search engine (Jürgen Cox and Mann 
2008; Jürgen Cox et al. 2011) was used to search their data using a UniProt human 
protein sequence database (version June 2016, 20,237 entries). The database search 
parameters used were methionine oxidation as a variable modification, cysteine 
carbamidomethylation as a fixed modification, and two missed cleavages. An FDR 
of 0.01 at the level of peptide and protein was applied. To calculate the relative 
protein intensity profiles across the samples, MaxQuant’s label-free quantification 
(LFQ) algorithm was used with the “match between runs” function enabled. The 
Perseus statistics and informatics platform was used to process the values of LFQ 
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protein intensity (MaxQuant output). The output was filtered to remove the proteins 
detected by less than two peptides (Jürgen Cox et al. 2014; Tyanova et al. 2016). The 
Perseus permutation-based t-test was used to evaluate the relative abundance of the 
proteins detected in the pull-downs. The Resource for Evaluation of Protein 
Interaction Networks interface was used to analyze the filtered LFQ protein 
intensities (Mellacheruvu, et al. 2013). Briefly, the average LFQ of the triplicate 
were calculated for each biological replicate of the IPs and the mock baits. The 
relative protein intensities were analyzed using the Significance Analysis of 
INTeractome (SAINT) algorithm, and only proteins were included with a SAINT 
score ≥ 0.7 (Choi et al. 2011) were included. In addition, a catalog of 
immunoprecipitation experiments (CRAPome) was used to filter and remove 
common protein contaminants from the interaction list (Mellacheruvu, et al. 2013). 
The cut-off of 60% of the proteins present in the contaminant repository database 
was excluded as there was no direct match between the samples and the IP 
conditions.  

4.18 Network and enrichment analysis (II and III) 
The functional protein association network database STRING version 11 
(Szklarczyk et al. 2017) was used to map and download the known factors (STAT3 
and CIP2A), from which the high confidence interactions, (interaction score ≥ 0.7) 
networks were visualized with Cytoscape version 3.7.1 (Shannon et al. 2003). The 
Cytoscape plug-in cluster Maker v2 algorithm MCL Cluster (Morris et al. 2011) with 
the granularity parameter (inflation value) set to 1 (STAT3 interactome) and 1.8 
(CIP2A interactome) were used to identify the clusters using the Markov clustering 
algorithm in Cytoscape (Brohée and van Helden 2006). The SAINT probability 
scores (SP) were used to define combined SP to define the strength of the protein 
interactions with STAT3 in CIP2A silenced and control conditions. The combined 
SP was calculated as SP siCIP2A - SP siNT and range from -1-0-1, which designate 
interactions only in control, equal strength of interactions and only in the CIP2A 
silenced condition, respectively, with a coded continuous color gradient from blue (-
1) to white (0) to red (1). The CIP2A interactome immuno-precipitates and the 
controls IgG MS intensity differences were calculated as the normalized log2-
transformed intensities and coded as continuous gradient from the white to grey node 
inner color. 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
version 6.8 (Huang et al., 2009a; Huang et al., 2009b) and the Protein Annotation 
Through Evolutionary Relationship (PANTHER) classification system version 13.0 
(Mi et al. 2013; 2017) were used to identify STAT3/CIP2A interactome associated 
enriched Gene Ontology (GO) biological processes. The analysis was performed 
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using the STAT3/CIP2A interactome as the input and the Th17 proteome as 
background reference (Tripathi et al. 2019). The DAVID GO FAT terms were 
considered to filter the non-specific terms (Huang et al., 2009b). The GO FAT 
enriched biological process was defined for any cluster with more than four 
members. To summarize, the enriched biological process in the STAT3/CIP2A 
interactome and the GO SLIM terms from PANTHER were used to identify the 
broadest terms and filter the more specific ones. The enriched biological process was 
defined at FDR ≤ 0.05. The IPA analysis was used to summarize the cellular location 
and classification of the identified proteins. 

4.19 Data availability (II and III) 
The RNA-Seq data in publication II is deposited under the accession number 
GSE118094 at National Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) database. The ProteomeXchange Consortium via the 
PRIDE (Vizcaíno et al. 2016) partner repository with identifiers PXD010612 and 
PXD008983 were used to deposit the STAT3 and CIP2A interactome, respectively. 
The CIP2A interactome validation SRM MS data was submitted with identifier 
PASS01186 to Peptide Atlas (Desiere et al. 2006), and the raw reads are available 
through PASSEL (Farrah et al. 2012). 
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5 Results 

5.1 Defective T-cell activation and proliferation 
upon CIP2A depletion (PART I and II) 

RNA-Seq gene expression profiling of human and mouse T cells showed that CIP2A 
(KIAA1524) expression is upregulated in TCR-activated CD4+ T cells (Tuomela et 
al. 2016). In our further investigations, both WB and TaqMan qPCR analysis were 
used to demonstrate this difference. In contrast, CIP2A expression was undetectable 
in naive T cells (I; Figure 4; II, Figure 1 and S1). WB analysis additionally confirmed 
CIP2A expression in activated CD8+T cells (I; Figure 4).  

The effects of CIP2A depletion in CD4+ T cells were observed to identify the 
significance of CIP2A in T-cell activation. Five siRNAs (named as siCIP2A1-5) 
targeting different regions of CIP2A were tested and the best three (siCIP2A1, 4, and 
5) were selected (II; Figure 2) to exclude CIP2A depletion off target effects. Flow 
cytometry analysis of CD69 and CD25 expression was used to compare differences 
in the activation of human cord blood CD4+ T cells transfected by CIP2A-targeting 
and control siRNA, and CIP2A deficient/sufficient mouse CD4+CD62L+ T cells 
isolated from the spleen. These measurements revealed that expression of CD69 and 
CD25 was reduced in activated CIP2A-depleted human and mouse T cells (I, Figure 
4; II, Figure S2). In addition, the effects of CIP2A ablation in human and mice cells 
on T-cell proliferation were monitored by CFSC dilution. The absence of CIP2A in 
T cells resulted in the delayed proliferation of both human and mouse Th cells (II; 
Figure S2). Using the annexin and PI flow cytometry assay, analysis of cell viability 
demonstrated no significant cell death upon CIP2A depletion in T cells (II; Figure 
S2). 

Following these observations, we sought to investigate whether CIP2A 
expression is induced by TCR triggering or autocrine/paracrine IL-2 signaling. 
TaqMan PCR analysis of T-cell activation using TCR triggering or IL2 alone 
indicated CIP2A expression was induced upon TCR activation but not with IL-2 
stimulation (II; Figure 1). The results demonstrated that T-cell activation upregulates 
CIP2A expression, and its absence results in defective T-cell activation and 
proliferation. While PP2A and CIP2A regulate cell proliferation in cancer cells 
(Ventelä et al. 2012; Yang et al. 2016; Wang et al. 2017; Kauko et al. 2018; Kerosuo 
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et al. 2018; De et al. 2014), this study was the first to report the influence of CIP2A 
on T-cell activation. Therefore, CIP2A is a TCR- but not an IL-2-induced protein 
and is essential for T-cell activation and proliferation. Moreover, CARMA1 is an 
adapter protein that functions as a molecular scaffold to recruit signaling mediators 
essential for T-cell activation (Eitelhuber et al. 2011). Interestingly, PP2A plays a 
significant role in limiting T-cell activation by direct interaction and 
dephosphorylation of scaffolding proteins CARMA1 (Eitelhuber et al. 2011). This 
suggests that hampered T-cell activation due to the absence of CIP2A might be due 
to enhanced PP2A activity. Further studies are required to investigate whether 
CIP2A prevents CARMA1 dephosphorylation from PP2A and promotes T-cell 
activation. 

5.2 CIP2A negatively regulates IL17 expression in 
human Th17 cells (PART II) 

We first studied IL-17 expression between CIP2A-targeting and non-targeting 
siRNA-treated human CD4+ T cells at 72 hours in Th17 polarizing conditions. The 
enhanced expression of IL-17 and CCR6 in CIP2A-silenced human Th17 cells was 
observed (II; Figure 2). Similarly, upregulation of IL-17 expression was also seen in 
mouse CIP2A-deficient cells under Th17 polarizing conditions for 5 days (II; Figure 
2). The detection of IL17 expression was performed at the mRNA level by TaqMan 
PCR and the protein level by intracellular flow cytometry staining or IL-17 protein 
secretion. Similar to our observations in activated cells, CIP2A silencing reduced 
Th17 cell proliferation (II; Figure S2). Thus, the upregulation of IL17 expression 
upon CIP2A depletion in Th17 cells was not due to enhanced cell proliferation. 

5.2.1 Gene expression analysis of CIP2A-silenced Th17 
cells (PART II) 

To gain insight into the underlying mechanism of the enhanced IL17A expression 
observed with CIP2A depletion, genome-wide (RNA Seq.) gene expression analysis 
was performed for 24 h polarized human Th17 cells. With CIP2A knockdown, 136 
DE genes were detected with an FDR cutoff of <0.05 and log2 fold-change (log2FC) 
increase in expression of 1.0 (II; Figure 3; table 1). Among these were several well-
known Th17 genes that were upregulated upon CIP2A depletion, including the 
transcription factors RORC, RORA and MAF, further supporting hypothesis for 
negative regulation of IL-17 signaling by CIP2A. In contrast, IRF8 and IFNG, which 
repress Th17 differentiation, were among the downregulated genes in CIP2A-
silenced Th17 cells. Among the other genes of interest downregulated upon CIP2A 
silencing were regulatory associated protein of MTOR complex 1 (RPTOR), and 
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colony stimulating factor 2 (CSF2). RPTOR is a component of signaling in response 
to nutrient availability that controls cell growth and autophagy. RPTOR modulates 
the activity of the rapamycin complex 1 (mTORC1) by acting as the scaffold for 
recruiting mTORC1 substrates. Intriguingly, a positive loop exists between CIP2A 
and mTORC1 in the inhibition of autophagy (Puustinen et al. 2014). CIP2A inhibits 
PP2A to prevents dephosphorylation and degradation of mTORC1, and the latter 
prevents autophagic degradation of CIP2A (Puustinen et al. 2014). Thus, our results 
support the concept of transcriptional regulation of the mTORC1 subunit RPTOR by 
CIP2A, in addition to the previously reported CIP2A mTORC1 regulation. CSF2 
(colony stimulating factor 2) is a cytokine essential for EAE disease development in 
animals (Gaffen et al. 2014; Stockinger and Omenetti 2017). Accordingly, it will be 
important to assess CIP2A depletion in an autoimmune animal disease model. 

GSEA (Subramanian et al. 2005) confirmed the global upregulation of Th17 
signature genes upon CIP2A ablation in Th17 cells. However, iTreg gene signature 
was not enriched. Th17 and iTreg signature genes were defined based on their 
upregulation in respective cell types at 24 h, FDR <0.05, log2[FC] > 2) (Tuomela et 
al. 2016;Ullah et al. 2018). CIP2A-silenced DE genes in Th17 cells were used for 
IPA to identify the enriched pathway and classification of DE genes in CIP2A-
silenced Th17 cells. The IPA analysis revealed that enzyme was the most abundant 
class of DE genes and IL-17 regulated pathways in epithelia, macrophages, and Th 
cell, were the most enriched, further supporting IL17 signaling inhibition by CIP2A 
in Th17 cells (II; Figure 3).  

5.2.2 CIP2A controls STAT3 signaling to constrain Th17 
differentiation (PART II) 

IPA analysis was performed to predict the upstream regulators of the genes DE upon 
CIP2A silencing in Th17 cells. In addition, the promoters of the DE genes were 
analyzed for TFBS enrichment. Among the key upstream regulators ∣Z score <-2 or 
> 2∣, STAT3 enrichment was found in IPA analysis (II; Figure 4). The direct binding 
of STAT3 is known to regulate IL17 expression during Th17 differentiation, and its 
deficiency in animals prevents EAE disease development (Liu et al. 2008). Notably, 
we found increased and sustained STAT3 phosphorylation (Y705 and S727) levels 
in CIP2A-silenced cells (II; Figure 4). To further investigate this association, protein 
interactions with pSTAT3 (Y705) in CIP2A sufficient and deficient Th17 cells were 
determined by MS (II; Figure 5). LC-MS/MS proteomics analysis was made for 
immunoprecipitants of pSTAT3 (Y705) in CIP2A-silenced and control Th17 cells. 
Confirming the successful pulldown, STAT3 was the most enriched protein (II; 
Figure 5; Table S4). After statistical analysis and filtering on the basis of cut-offs (P 
< 0.05, and SP >0.7) (Emani et al. 2015), 217 protein interactions were common 
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between the conditions, but 69 and 49 interactions were exclusive to pSTAT3 
proteins in CIP2A-sufficient and -deficient Th17 cells, respectively (II; Figure 5). 
GO and network analysis of this pSTAT3 interactome revealed that immune 
response was among the most enriched biological processes related to the STAT3 
interactors (II; Figure 5). The pSTAT3 interactome identified in this study provides 
a resource for future studies 

Interaction between kinase AGK and ubiquitin ligase TRIM21 with pSTAT3 
were demonstrated in CIP2A-sufficient and -deficient Th17 cells, respectively (II; 
Figure 5-6). Furthermore, TRIM21 and AGK interaction was also observed in the 
interactome of CIP2A in Th17 cells (Khan et al. 2020b). TRIM21 is known to 
regulate proinflammatory IL-17 producing cells. Trim21 depletion in animals results 
in enhanced production of proinflammatory cytokines (including IL-17), and 
autoimmunity (Espinosa et al. 2009; Ahn et al. 2017). In addition, TRIM21 is known 
for IRF8 proteasomal degradation. The IRF8 downregulation was also observed by 
RNA-Seq analysis of CIP2A-silenced Th17 cells. However, since CIP2A silencing 
resulted in increased pSTAT3 without influencing the total STAT3 levels, this 
suggests that the interaction of TRIM21 with pSTAT3 in CIP2A-sufficient 
conditions would not explain the upregulation of pSTAT3 observed with CIP2A 
depletion. AGK regulates the JH2 autoinhibitory domain of JAK2 and STAT3 
phosphorylation in cancer cells (Chen et al. 2013). AGK silencing downregulates 
pSTAT3 phosphorylation, but overexpression results in enhanced pSTAT3 in cancer 
cells (Chen et al. 2013). 

Therefore, we hypothesize CIP2A interaction with AGK could be the mechanism 
for the enhanced STAT3 phosphorylation in CIP2A-silenced Th17 cells. The 
stronger interaction between pSTAT3 and AGK in CIP2A-silenced Th17 cells was 
validated by pSTAT3 IP, followed by WB analysis (II; Figure 6). The confocal 
microscopy as an additional validation confirmed the enhanced interaction between 
AGK and pSTAT3 in CIP2A-silenced Th17 cells (II; Figure 6). Notably, we 
demonstrated downregulation of pSTAT3 levels in AGK RNAi-silenced Th17 cells, 
but total STAT3 levels was not affected upon AGK silencing which is comparable to 
earlier report in cancer cells (X. Chen et al. 2013). Furthermore, the simultaneous 
depletion of both AGK and CIP2A can rescue enhanced pSTAT3 and IL-17 levels 
(II; Figure 6). Thus, these measurements demonstrated that the CIP2A interaction 
with AGK regulates pSTAT3 and IL-17 expression levels in Th17 cells. 

5.2.3 PP2A independent CIP2A functions in Th17 cells 
(PART II) 

Initially, CIP2A inhibition of PP2A activity towards c-Myc and AKT was identified 
from studies of CIP2A overexpression in cancer cells (Junttila et al. 2007; O’Connor 
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et al. 2018; Kauko and Westermarck 2018). The reported interaction between CIP2A 
and PP2A in cancer cells was further demonstrated in Th17 cells (Junttila et al. 
2007;Wang et al. 2017; Khan, et al. 2020b). Other reports have shown PP2A 
positively regulates IL-17 expression and PP2A gene knock out animals display 
impaired Th17 cell differentiation (Xu et al. 2019; Apostolidis et al. 2013). 
Therefore, we hypothesized that the enhanced IL-17 expression during inhibition of 
CIP2A in Th17 cells could be due to an increase in PP2A activity. To test this 
hypothesis, PP2A was inhibited by two different concentrations of siRNA specific 
to the PP2A-A subunit. The PP2A-A subunit was selected since it is a scaffolding 
subunit, and its inhibition could disperse the holoenzyme composition. In addition, 
a chemical inhibitor of PP2A, okadaic acid, was used in Th17 cells. Okadaic acid 
has broad activity as a serine threonine phosphatases inhibitor, but at low 
concentration, okadaic acid is more specific to PP2A than to other serine threonine 
phosphatases (Kauko et al. 2018; Kauko and Westermarck 2018). Therefore, we 
used the least tolerated okadaic acid doses for experiments and included the siRNA 
to compare the results. We also used FTY720, an immune suppressive compound 
and a PP2A activator drug (O’Connor et al. 2018; Kauko and Westermarck 2018; 

Chun and Hartung 2010). FTY720 activates PP2A by disrupting its interaction with 
PP2A endogenous inhibitor SET/I2

PP2A. In disease conditions, FTY720 suppresses 
inflammatory cytokines, including IL-17. Interestingly, PP2A inhibition by either 
RNAi or OA in Th17 cells resulted in upregulation of IL-17 expression, and PP2A 
activator FTY720 treatment led to reduced IL-17 expression in Th17 cells (II; Figure 
7).  

Previous studies targeting the same molecule in human and mouse cells resulted 
in the development of opposite phenotypes (Ciofani et al. 2012; Tripathi et al. 2019). 
For example, silencing of the chromatin regulator SATB1 in human Th17 cells 
upregulates IL-17 expression, but its deficiency in mice reduces IL-17 in Th17 cells 
(Ciofani et al. 2012; Tripathi et al. 2019). Similarly, the effects of PP2A inhibition 
in mice and human Th17 cells are not same. In line with this, only a small degree of 
overlap of transcriptome and proteome between human and mice Th17 cells was 
reported (Tripathi et al. 2019; Tuomela et al. 2016). Therefore, phenotypic 
characterization of a gene should be first carried out in human cells before using the 
in-vivo animal mouse model for detailed characterization (Stockinger and Omenetti 
2017). Furthermore, CIP2A participates in a specific interaction with the PP2A-B56 
subunit that is indispensable for the stability of CIP2A (J. Wang et al. 2017). Also, 
the composition of PP2A depends on the cellular expression of the subunit isoforms, 
as this can dictate the functions of the PP2A holoenzyme (Janssens et al. 2001; 
Janssens et al. 2008; O’Connor et al. 2018; Kauko et al. 2018). In summary, the 
upregulation of IL-17 expression both by inhibition of CIP2A and PP2A could be 
due to the substrate specificity of CIP2A towards the PP2A-B56 subunit. 
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Subsequently, it will be important to establish the significance of PP2A subunit 
specific immune responses in future studies.  

A range of studies indicated the importance of CIP2A as a target for drug 
therapies for cancer treatment (O’Connor et al. 2018; Kauko and Westermarck 
2018). In the work presented in this thesis, increased expression of the 
proinflammatory cytokine IL-17 was observed upon CIP2A depletion (Khan, et al. 
2020a). Nevertheless, an increase in IL-17 expression in the absence of CIP2A does 
not necessarily mean that there will be a twist towards an inflammatory phenotype 
upon targeting CIP2A. This is because IL-17 also provides protection against fungal 
and bacterial pathogens (Stockinger and Omenetti 2017). Similar to CIP2A, a 
deficiency of Tbet resulted in the upregulation of IL-17 expression (Lazarevic et al. 
2010). However, Tbet deficiency in animals ameliorated EAE disease (Wang et al. 
2014). Interaction of Tbet and Runx1 inhibits the binding of Runx1 to the Il17 
promoter, and therefore, absence of Tbet removes this inhibition and increased IL-
17 expression (Lazarevic et al. 2010). However, Tbet and Runx1 are indispensable 
for the ontogeny of EAE in animals (Wang et al. 2014). Interestingly, CIP2A also 
interacts with the Runx1 (Khan et al. 2020a). Therefore, future studies are needed to 
further clarify the role of CIP2A in T cells and related immune diseases.  

5.3 CIP2A protein interactome in Th17 cells (PART 
III) 

To further understand the molecular mechanisms of CIP2A functions in T cells, we 
analyzed CIP2A protein interactions in human Th17 cells. The choice of cell type 
was motivated by the observed role of CIP2A in Th17 cell differentiation (Khan et 
al. 2020a). To avoid detection of non-specific interactions and to improve 
reproducibility, two CIP2A specific antibodies (Ab1 and Ab2) targeting different 
regions of CIP2A were used together with their respective control IgG (IgG1 and 
IgG2) antibodies (III; Figure 1; S1). Ab1 is monoclonal and specific to the N-
terminal region (residues surrounding Val 342) and Ab2 polyclonal, targeting the C-
terminus (Hoo, Zhang, and Chan 2002) (III; Figure 1; S1). The use of two 
specifically validated antibodies made it possible to carry out IP of CIP2A in primary 
human T cells, without the need for CIP2A overexpression. For these measurements, 
CIP2A IP was performed in 72-h polarized human Th17 cells.  

After trypsin digestion of the IP samples for proteomics analysis, 680 CIP2A 
proteins were detected by LC-MS/MS. An acceptance criterion of two or more 
unique peptides of confidence threshold 99% or more was applied. The list of 
proteins was further filtered to reduce the contribution of non-specific interactions 
and common contaminants. Using a software package for scoring protein-protein 
interactions (SAINT), proteins with probability scores of greater than or equal to 
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0.95 were retained, and proteins frequently detected (>60%) in a database aggregated 
from negative controls (CRAPome) were removed (Mellacheruvu et al. 2013). In 
total, 335 putative CIP2A protein interactions and over 80% of interacting proteins 
were identified with both antibodies. The top 50 were represented (III; Figure 1). 
CIP2A(KIAA1524) protein was among the most enriched proteins detected with 
both antibodies. 

Included in the top CIP2A interactions were beta-spectrin (SPTBN1), TRIM21, 
phosphatase PP1, adaptor protein DOCK8, and LIMA. In addition, among the most 
significant interactions identified were phosphatase PP1 regulatory (PPP1R18 and 
PPP1R12A) and catalytic (PPP1CA) subunit. Previously, the lead inhibitory role of 
CIP2A has been linked to phosphatase PP2A. However, in this study, we showed for 
the first time the interaction of CIP2A with PP1. Further studies are needed to 
establish whether the inhibitory functions of CIP2A are common to other 
phosphatases. Additionally, increased phosphatase PP1 activity has been observed 
in rheumatoid arthritis. The PP1 dephosphorylate (Ser418) and degrade FOXP3 and 
thus, impaired Treg response and inflamed synovium (Nie et al. 2013). The known 
associations of CIP2A (Lee et al. 2012; 2013) and PP1(Nie et al. 2013) with RA and 
their interaction in human Th17 cells (Khan et al. 2020b) merits further 
investigations.  

The protein SPTBN1 regulates the shape of cells and organelles and has not been 
studied in the context of CIP2A (Machnicka et al. 2012). Interestingly, both CIP2A 
and SPTBN1 are overexpressed in neurodegenerative AD pathology, and SPTBN1 
has been considered as an AD biomarker (Sihag et al. 1996; Yan et al. 2012). In AD, 
CIP2A overexpression is associated with PP2A inhibition, and 
hyperphosphorylation, and mis-localization of tau (Y. P. Shentu et al. 2018). In 
addition, CIP2A overexpression in animals induced AD-like cognitive deficits 
(Shentu et al. 2018). Accordingly, it will be essential to determine whether the 
interaction of CIP2A with SPTBN1 plays a role in the development of AD.  

The E3 ubiquitin ligase TRIM21 is involved in proteasomal regulation of the 
interferon regulatory factor (IRF) family, and its gene or genetic polymorphism has 
been linked to the autoimmune disease SLE. TRIM21 provides protection in 
inflammatory bowel diseases by inhibiting Th1 and Th17 cells in the intestinal 
mucosa (Espinosa et al. 2009; Yoshimi et al. 2012; Zhou et al. 2017). In addition, 
Trim21- deficient animals have reduced ubiquitination of protein IRF5 and enhanced 
B-cell differentiation, and its dysfunction has been suggested for SLE disease 
pathogenesis. Enhanced PP2A expression and activity leads to IL2 repression and 
represents a central component of the immunopathology of SLE disease (Katsiari et 
al. 2005). Therefore, further studies can identify the significance of CIP2A 
interactions with TRIM21 and PP2A in SLE disease.  



Mohd Moin Khan 

 64 

Another notable CIP2A-interacting protein is the adaptor protein DOCK8. 
Mutations in the DOCK8 gene have been associated with combined 
immunodeficiency in humans in a very similar manner as has been observed with 
STAT3 mutations (Su 2010; Q. Zhang et al. 2009). In addition, both STAT3 and 
DOCK8 are components of the same signaling pathway. The latter acts as an adaptor 
protein for the recruitment of kinases, regulating STAT3 phosphorylation in B cells 
(Jabara et al. 2012). It would be interesting to characterize the relevance of enhanced 
STAT3 phosphorylation, and its interaction with DOCK8 in CIP2A silenced cells in 
future studies. 

5.3.1 CIP2A interactome–cellular distribution and the 
associated processes (PART III) 

Previous studies with epithelial cancer cells indicated that CIP2A is mainly localized 
in the cytoplasmic subcellular region and has some presence in the nuclear region 
(Myant et al. 2015; Junttila et al. 2007). By confocal microscopy and WB analysis, 
we further confirmed CIP2A localization in the cytoplasmic and nuclear regions in 
Th17 cells (III; Figure 2; S2). Phalloidin and DAPI were used to differentiate the 
cytoplasmic and nuclear regions in confocal microscopy. In addition, vimentin and 
tubulin were used as control proteins for WB analysis of the nuclear and cytoplasmic 
fractions, respectively. Annotation of the cellular locations of the proteins interacting 
with CIP2A was performed by IPA (Qiagen). Consistently, the CIP2A-interacting 
proteins were distributed in both of these sub-cellular compartments (III; Figure 2). 
Overall, this dataset provides a comprehensive view of CIP2A interacting proteins, 
reflecting localization of CIP2A in both the nuclear and cytoplasmic cellular 
compartments regions.  

Further, GO and bioinformatics interaction tools performed network analysis for 
the biological processes associated with the CIP2A interactome. The CIP2A 
interactome network determined from the STRING database was visualized with 
Cytoscape (Shannon et al. 2003; Szklarczyk et al. 2017). The process most 
frequently linked with the interactome was “RNA metabolism or splicing”. (III; 
Figure 3). This is consistent with a previous phospho-proteome study linking CIP2A 
with RNA splicing (Kauko et al. 2020). However, further studies are required to 
dissect the role of CIP2A in the regulation of RNA biogenesis. Based on the 
intensities of protein interactions with both CIP2A antibodies, the top proteins 
interacting with CIP2A are represented in the form of a heatmap (III; Figure S3). 
The functional enrichment analysis by bioinformatics tools DAVID and PANTHER 
similarly revealed CIP2A-interacting proteins involved in RNA-related processes, 
including splicing among the most important biological processes (Huang et al. 
2009b; Mi et al. 2017; 2013). IPA analysis revealed that the molecular function of 
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the majority of CIP2A interacting proteins was enzymes (III; Figure 3). Also, in 
addition to these, putative interactions with a diverse class of proteins, some not well 
known, were shown. 

In summary, the interactome bioinformatics analysis revealed that the majority 
of the CIP2A-associated proteins are involved in RNA processes, including splicing. 
In cancer cells, splicing of apoptotic proteins produces variant proteins that promote 
anti-apoptotic pathways (David and Manley 2010; Schwerk and Schulze-Osthoff 
2005). It will be interesting to study further the splicing-associated role of CIP2A in 
cancer cell transformation. Splicing of Treg lineage TF FOXP3 plays a role in Th17 
cell inhibition (Mailer et al. 2015). Future studies could establish whether there are 
splicing-related functions of CIP2A in T-cell differentiation and cancer 
development. 

5.3.2 CIP2A protein interactome validation (PART III) 
SRM-MS, PLA, confocal microscopy, and WB were used to validate CIP2A protein 
interactions. SRM-MS analysis of three independent biological replicates confirmed 
more than 20 CIP2A interaction targets (III; Figure 4; Supplementary Table 4-5). 
Interactions between the phosphatase PP1 and CIP2A were identified and validated, 
in addition to the known CIP2A interaction with PP2A (III; Figure 4-5). Potentially, 
the identified CIP2A interaction with the catalytic subunit of both PP1 and PP2A 
phosphatase. The WB and PLA also confirmed CIP2A interactions with PPP1CA, 
TRIM21, STAT1, IRF4, UBR5, and PP2A. (III; Figure 5). Additionally, siRNA 
ablation of CIP2A in Th17 cells identified the functional significance of the CIP2A 
interaction with NF-κB2 by phosphorylation upregulation of NF-κB2 in CIP2A-
silenced Th17 cells (III; Figure 5). 

Previously, the interaction between CIP2A and the PP2A-A and PP2A-B (B56) 
subunits was identified in cancer cells (Junttila et al. 2007; Wang et al. 2017). In this 
study, we verified these CIP2A-PP2A interaction in Th17 cells. In addition, we 
showed, for the first time, the interaction of CIP2A with the PP2A-C (PPPCA and 
PPPCB) catalytic subunits. Since the phosphatase PP1 catalytic subunit was also 
identified among the CIP2A interactors and the catalytic subunit of both 
phosphatases is highly conserved in evolution (Shi 2009), the interaction could be 
because of their structural similarity. Further, the SNP on the catalytic subunit of 
PP2A has been associated with SLE, and its overexpression is linked with the 
pathology of the disease (Tan et al. 2011; Katsiari et al. 2005). Accordingly, it will 
be important to study if CIP2A has a role in SLE. In addition, high PP2A activity 
was demonstrated indispensable for the suppressive functions of Treg cells and IL17 
expression in mouse T cells (Apostolidis et al. 2013; Xu et al. 2019; Apostolidis et 
al. 2016). In the work presented in this thesis, we have also shown PP2A regulation 



Mohd Moin Khan 

 66 

of IL17 expression in human Th17 cells (II; (Yang et al. 2016)). In human Th17 
cells, PP2A siRNA depletion or inhibition by okadaic acid negatively regulates IL17 
expression. In line, the use of PP2A activator FTY720 downregulates IL-17 in 
human Th17 cells. PP2A activation for treatment of cancer and other diseases seems 
to be promising. Thus, our results further supporting PP2A activation could be 
beneficial in human inflammatory diseases. However, PP2A promotes IL-17 
expression in mice T cells and ameliorated EAE in PP2A gene-deficient animals. 
The differences could be due to species specific differences in PP2A functions.  

The validated CIP2A interactions by SRM-MS and WB analysis with T-cell-
associated TFs are RUNX1, IRF4, STAT1, and DDX5. IRF4 initiates Th17 
differentiation, and PP2A regulation of IRF4 has been studied (Apostolidis et al. 
2013; Ciofani et al. 2012). In addition, DDX5 is also important for Th17 
differentiation (W. Huang et al. 2015). Further studies are needed to understand the 
importance of these interactions for Th17 cell differentiation. 

 



 67 

6 Summary 

The activation and differentiation of CD4+T cells into the functionally distinct 
effector and regulatory T helper cell lineages enable balanced immune responses, 
protecting against pathogens. In addition to the hallmark transcription factors and 
cytokines, numerous molecules affect these processes, and a detailed understanding 
of T helper cells signaling pathways and regulatory mechanisms is vital for the 
treatment and prevention of immune-mediated diseases. In the work presented in this 
thesis, the role of CIP2A in T helper cell activation, differentiation and functions of 
Th17 cells functions was studied. To gain further insight into the targets and 
interactions of CIP2A in Th17 cells, its protein interactome and the influence of 
silencing, and the associated changes in the pSTAT3 interactome were determined.  

 
Figure 6.  Summary of thesis research study results in the form of Illustration. The upper panel 

showing CIP2A depletion hampered T-cell activation. Middle panel, upregulation of IL-
17 and phosphorylation of STAT3 was further studied by transcriptome analysis and 
pSTAT3 interactome in CIP2A-silenced cells. The last arrow shows the CIP2A protein 
interactome in Th17 cells using two antibodies targeting different regions of CIP2A. 
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Among the T helper subsets, Th17 cells are central in the eradication of fungal and 
bacterial infections. However, aberrant Th17 cell response can impair this protection 
or lead to inflammation and autoimmune diseases. Accordingly, strategies to prevent 
excessive Th17 response have been actively developed for the treatment of 
inflammatory disorders. CIP2A inhibits PP2A and drives cancer cell transformation 
and is considered a potential target for cancer therapies. In addition, CIP2A has been 
associated with the development of AD (Kerosuo et al. 2018; Kauko et al. 2018; C. 
Y. Liu et al. 2017; De et al. 2014; Khanna et al. 2013). PP2A regulates immune 
responses and autoimmunity (Apostolidis et al. 2016; Eitelhuber et al. 2011). Prior 
to the current work, the role of CIP2A in immune cells had not been studied.  

We found that expression of CIP2A was induced by T-cell activation (Côme et 
al. 2016; Figure 6). Further, CIP2A-deficient mice and siRNA-mediated CIP2A-
silenced human primary CD4+ T cells, resulted in reduced T-cell activation and 
proliferation. CIP2A-deficient T cells in mice and humans showed increased Th17 
differentiation and enhanced and prolonged phosphorylation of the key Th17 
transcription factor, STAT3 (Y705) (Khan, et al. 2020a; Figure 6). Proteomics 
analysis of the pSTAT3 interactome in CIP2A silenced and control Th17 cells 
revealed that CIP2A regulates the interaction between the transcription factor 
STAT3 and kinase acylglycerol kinase (AGK). In CIP2A-deficient cells, enhanced 
interaction of AGK resulted in prolonged STAT3 phosphorylation, facilitated Th17 
differentiation, and upregulation of IL-17 in Th17 cells.  

Comprehensive identification of protein interactome landscapes can uncover the 
mechanistic basis of their cellular functions by providing information about key 
regulators and target molecules. The CIP2A interactome in Th17 cells was 
determined by proteomics using MS analyses of immunoprecipitates with two 
antibodies targeting different regions of CIP2A (Khan, et al. 2020b; Figure 6). A 
panel of the interactors were validated using targeted MS, WB, and proximity 
ligation assay. Among these, in addition to the known interactions with the subunits 
of phosphatase PP2A (i.e., PP2A-A and PP2A-B) interaction with the catalytic 
subunit PP2A-C was demonstrated. Moreover, the interaction of CIP2A with the 
phosphatase PP1 was shown for the first time. The CIP2A interaction network 
provides insight into the contribution of CIP2A in known and novel pathological and 
physiological functions to be further studied.  

In summary, the results of these studies provided new knowledge on the role of 
CIP2A in T-cell functions. The data measured for the CIP2A interactome have 
revealed unreported functions that should be further studied, particularly when 
developing therapies targeting CIP2A. 
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