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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from the Coronaviridae 

family is an enveloped, spherical virus with a 30 kb long non-segmented positive 

single-stranded RNA genome, which encodes for 16 non-structural, four structural, and 

eleven accessory proteins. It was first discovered in 2019 in Wuhan, Hubei province, 

China, from a patient suffering from pneumonia caused by a previously unknown virus. 

SARS-CoV-2 rapidly spread throughout Wuhan, after which it spread around the world, 

leading to the current pandemic. The common symptoms caused by SARS-CoV-2 are 

fever, cough, dyspnea, and myalgia, similar to other human-infecting coronaviruses 

such as SARS-CoV and MERS-CoV, but less severe. SARS-CoV-2 has been shown to 

inhibit the RIG-I pathway, disrupting the production of type I and III interferons, and to 

evade host innate immune response. 

In this study, I analyzed whether some SARS-CoV-2 proteins have an ability to inhibit 

the production of type III interferon by interfering with the RIG-I pathway. Additionally, 

I checked if the ORF9B accessory protein was immunogenic. To accomplish this, I 

cloned the genes of interest into mammalian expression vectors, which were then 

transfected to HEK-293 cells along with a constitutively active form of RIG-I and IFN-1 

promoter luciferase reporter plasmid. Structural proteins were incapable of inhibiting 

RIG-I induced activation of type III interferon promoter, while nonstructural proteins 

Nsp1, Nsp6, and Nsp13 showed clear inhibitory activity. ORF9B was found not to be 

immunogenic. 
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1. Review of literature 

1.1 Introduction  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified as 

the causative agent of coronavirus disease (COVID-19) in December 2019 and has since 

then spread to all continents except Antarctica, causing the ongoing pandemic that has 

by October, 2021 resulted in almost 240 million confirmed cases and over 5 million 

deaths (Johns Hopkins Coronavirus Resource Center). Like all other coronaviruses, it 

belongs to the Coronaviridae, a family of large, enveloped, positive-sense single-

stranded ribonucleic acid (ssRNA) viruses that infect the upper respiratory tract. It is 

genetically closely related to severe acute respiratory syndrome coronavirus (SARS-

CoV), which caused an epidemic in 2002.  

Like the other coronaviruses, SARS-CoV has different mechanisms that it utilizes to 

evade or delay the host’s immune response. These mechanisms have been studied 

extensively after the 2002 epidemic, and the sequence similarity of SARS-CoV with the 

SARS-CoV-2 may provide insight into its mechanisms as well. How SARS-CoV-2 evades 

the innate immune system, particularly the RIG-I pathway, is the topic of this study. 

1.2 Viruses 

Viruses are small particles that are reliant on other organisms to replicate their 

genome, produce necessary proteins for their function, and assemble the virion 

particles themselves. They are comprised of a usually small DNA or RNA genome, and a 

protective shell known as a capsid, which is comprised of repeating units of structural 

proteins known as capsomers, at minimum, although they often also have accessory 

proteins within the capsid, such as the tegument proteins within the capsid of herpes 

simplex virus 1. The capsid has receptor binding proteins on its surface, which make 

viruses entry into the host cell possible. Although animal viruses rely on receptors to 

gain access to the cells, plant viruses have no need for them. Instead, they infiltrate 

the cell in the aftermath of events that damage cell walls, and among various fluids 

that plants take from the soil and elsewhere. (Understanding Viruses 3rd Edition) 

The most common shapes for viruses are icosahedral and helical, although other 

shapes such as brick-like or pleomorphic are also possible. The shape is determined by 
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the capsomers, of which there can be more than one type, that form the capsid. The 

capsid is the result of capsomers forming the lowest-energy conformation, which is the 

most stable form the capsid can take. The virus particle can either be naked or have 

one or more envelopes surrounding it. These envelopes are membranes taken from 

the host cells, and they provide an additional means of evasion against the immune 

defenses of the host. (Understanding Viruses 3rd Edition, Chapter 2) 

The genome type varies between different virus species, and viruses can be classified 

into different groups according to the Baltimore system. According to this system, 

there are seven different virus types (Table 1). The genome type greatly influences the 

replication cycle of the virus, since negative-sense ssRNA and double-stranded 

deoxyribonucleic acid (dsDNA) virus genomes can be directly replicated by viral or 

cellular RNA polymerases. Positive sense RNA viruses need to produce their own 

polymerases and in the case of some types reverse transcriptase is also required. 

(Understanding Viruses 3rd Edition) 

Due to the small genome size, virus proteins often perform multiple functions, 

maximizing the utility of their limited protein selection. (Understanding Viruses 3rd 

Edition) 

Table 1 Virus type classifications as according to the Baltimore system 

Class Genome type Specifics 

I dsDNA DNA-dependent RNA polymerase required 

II ssDNA DNA-dependent DNA polymerase required 

III dsRNA Viral RNA-dependent RNA polymerase required 

IV negative-sense ssRNA Immediately transcribed by the host polymerase 

V negative-sense ssRNA Viral RNA-dependent RNA polymerase required 

VI positive-sense ssRNA Requires viral reverse transcriptase 

VII dsRNA Requires viral reverse transcriptase 
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1.3 Coronaviruses 

Coronaviruses belong to the Coronaviridae family, the largest family in the order 

Nidovirales (ICTV). The name coronavirus comes from the distinct, sun-like silhouette 

formed by the capsid and the club-shaped receptors-binding proteins protruding from 

the surface, that are visible when observing the virions with electron microscopy. 

Earliest members of the Coronaviridae family were identified in the 1930s, but they 

were not grouped together until the 1960s. The coronaviruses that infect and cause 

respiratory symptoms in humans are part of the Orthocoronavirinae subfamily and are 

further divided into alphacoronavirus and betacoronavirus genera (Figure 1). In total, 

as many as 45 different coronavirus species have been discovered. These viruses 

collectively infect and cause disease to many different host species, which range from 

rodents to beluga whales. (ICTV) Out of these 45 viruses, 7 are pathogenic to humans 

(Table 2). The rates of coronavirus mutations are in the range of 10-4 mutations per 

year per site. This combined with the fact that different coronaviruses circulate in the 

same reservoirs and can recombine makes it likely that new strains capable of infecting 

and causing disease in humans will emerge. (Su et al. 2016; Wang et al. 2020) 
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Figure 1 Phylogenic tree of coronaviruses. (Tabibzadeh et al. 2021) 

Table 1 List of human infecting coronaviruses that cause respiratory tract symptoms 

Virus Discovery year Genus 

HCoV-229E 1966 alphacoronavirus 

HCoV-OC43 1967 betacoronavirus 

HCoV-NL63 2004 alphacoronavirus 

HCoV-HKU1 2005 betacoronavirus 

SARS-CoV 2002 betacoronavirus 

MERS-CoV 2012 betacoronavirus 

SARS-CoV-2 2019 betacoronavirus 

 

 



8 
 

HCoV-229E and HCoV-OC43 were the first human-infecting coronaviruses to be 

discovered, in 1966 and 1967 respectively (Hamre and Procknow 1966; McIntosh et al. 

1967). HCoV-229E sequence does not vary much between isolates from different 

regions, whereas HCoV-OC43 sequence does, even in the same region (Fields Virology 

6th Edition, Chapter 28, p. 844). While HCoV-229E utilizes the ANPEP receptor when 

entering to the cell, HCoV-OC43 uses a different receptor that remains to be identified 

(Forni et al. 2016).  These viruses were isolated from patients suffering from upper 

respiratory symptoms in the late 1960s. Both of these viruses are seasonal, circulating 

the populace and causing outbreaks around the globe during winter and early spring. 

They are responsible for 15-29% of all respiratory tract infections, causing mild flu-like 

symptoms. (Su et al. 2016) 

SARS-CoV was first isolated in 2002 in the Guangdong province, People’s Republic of 

China. SARS-CoV enter the cell by binding to the ACE2 receptor. Although civets were 

first suspected to be the main reservoir for the virus, horseshoe bats were later 

indicated as the primary reservoir, due to a large amount of bat coronavirus strains 

that were very similar to SARS-CoV. (Cui et al. 2019) What made it notable was its 

ability to cause severe, in some cases fatal, illness in individuals with no underlying 

problems with health, with a case-fatality -ratio (CFR) of 11% (Chang-Yeung and Xu 

2003). This sparked considerable interest in coronaviruses and led to the development 

of new viral RNA detection assays, utilizing PCR, that were very coronavirus species 

specific. Currently, SARS-CoV is not circulating in the human population 

(https://www.cdc.gov/sars/index.html). 

The new sensitive viral RNA detection assays led to the discovery of new coronavirus 

species that are mildly pathogenic to humans, NL63 and HKU1. When a nasal swab 

taken in 1982 from an 8-month-old boy suffering from pneumonia caused by an 

unknown pathogen was tested with one of these new RNA detection assays, NL63 was 

discovered. NL63 uses ACE2 to enter the host cell. A year later, another coronavirus 

species known as HKU1 was isolated from a 71-year-old patient in Hongkong, once 

again by being detected with a SARS-CoV-specific PCR assay. Both of these newly 

discovered coronaviruses circulate the world seasonally. (Fouchier et al. 2004; Vabret 

et al. 2005) 
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In 2012, a new deadlier species, MERS-COV, was isolated from a 60-year-old man in 

Jeddah, Saudi Arabia (Zaki et al. 2012). Unlike other coronaviruses, MERS-CoV 

infections could lead to serious complications by causing renal failure, in addition to 

causing acute respiratory distress syndrome (ARDS). MERS-CoV attaches to the CD26 

receptor on the surface of the host cell, similarly to HKU4, which is a bat coronavirus, 

and evolutionary most closely related to MERS-CoV (Lu et al. 2013). With a CFR of 36%, 

MERS-CoV is the most severe coronavirus species to humans (WHO). Currently, MERS-

CoV is not circulating in the human population. 

SARS-CoV-2 was first identified in Wuhan, Hubei province, in the People’s Republic of 

China. It was isolated from several patients with upper-respiratory-system-related 

symptoms. (Zhu et al. 2020) Of the early cases, 66% of the patients were exposed in 

the Wuhan seafood market area (Huang et al. 2020).  Like SARS-CoV, it can cause 

severe complications via ARDS and uses ACE2 as a primary receptor to enter the host 

cell (Arya et al. 2021). With a CFR of ca. 2%, it is less lethal than SARS-CoV and MERS-

CoV, but it spreads more efficiently due to its high basic reproduction number (R0) of 3 

(Wang et al. 2020). The evolutionary origin of SARS-CoV-2 is still under debate and 

several theories for the possible origin have been suggested. Many of these theories 

propose a spillover event from one of the many animal species sold in the Wuhan 

seafood market. For example, many proteins of the bat coronavirus RaTG13 have 

highly similar sequences compared to their counterparts in SARS-CoV-2. Some, like E 

and Nsp7 have an identical sequence, while others are very close, like RdRp with 96,2% 

sequence similarity with the corresponding SARS-CoV genes. Other possible reservoir 

animals include minks and pangolins. (Wang et al. 2020; Andersen et al. 2020) 

1.4 Clinical symptoms of COVID-19  

Symptoms of SARS-CoV-2 infection resemble those of the influenza viruses: Dyspnea, 

fever, coughing, and myalgia are present in many cases. Rarer symptoms include 

headache, confusion, and a sore throat. (Figure 2.) In severe cases, SARS-CoV-2 

infection may result in ARDS, a potentially fatal condition. Patients with dyspnea and 

low oxygen concentration in blood are at a greater risk of developing ARDS rapidly (Tu 

et al. 2020). Asymptomatic individuals make up a significant portion of all cases, 

although estimates of exact percentage vary (Oran and Topol 2020). 
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Figure 2 Typical symptoms caused by SARS-CoV-2 (Finnish Institute for Health and Welfare) 

1.5 Epidemiology of SARS-CoV-2 

As of 5th October, 2021, SARS-CoV-2 has a mortality rate of ca. 2%, not accounting for 

unconfirmed cases due to lack of testing, and has caused a total of 238 million 

infections (Johns Hopkins Coronavirus Resource Center). Most of the deaths are 

among elderly patients, 60 years old and up, with the likelihood of fatal complications 

increasing with age. Other factors, such as the quality of health care provided, also 

affect the fatality rates. (Tu et al. 2020) The spread of SARS-CoV-2 was rapid: After the 

first reported death in People’s Republic of China on 9th January 2020, the first death 

out of People’s Republic of China was reported on 1st February 2020, and the first 

death out of Asia on 14th February 2020. A month later, the virus had spread and 

caused fatalities worldwide in every continent except Antarctica. (Kumar et al. 2020) 

By comparison, Spanish flu took around 4 months to spread to every continent, barring 

Antarctica (Spinney 2018).  

After the initial spread of the Wuhan variant, several mutant strains of SARS-CoV-2 

have emerged. Most notable of these are the British variant B.1.1.7, the South African 

variant B.1.351, the Brazilian variant P.1, and the Indian variant B.1.617.2, also known 

as alpha, beta, gamma, and delta variants, respectively 

(https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/). These four 
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variants belong to the variants of concern in many countries, since they have 

mutations that make them more likely to spread from human to human and provide 

enhanced resistance against vaccines that are designed based on the original strain. 

(Chakraborty et al. 2021) 

1.6 Innate immunity  

Immunity is divided into two parts: innate and adaptive immunity. Innate immunity is a 

collection of mechanisms that protect the organism from pathogens. These 

mechanisms are the first responders to pathogen invasions, enacting defenses against 

pathogens within minutes to hours after their entry into the host. Compared to the 

adaptive immunity, innate immunity is much less specific, allowing it to interact with 

multiple different pathogens immediately after encountering them. Adaptive immunity 

is much more specific and efficient but takes days to weeks to develop after the 

primary infection starts. However, if the same pathogen infects the host later, adaptive 

immune responses to this secondary infection take place much faster. (Kuby 

Immunology 7th edition, Chapter 5) 

Mechanical barriers, like skin, are the first defenses against pathogens. As well as being 

physical barriers, surfaces also secrete antimicrobial proteins, such as lactoferrin, that 

inhibit the growth of bacteria or destroy them (Bulet et al. 2004). If these barriers are 

damaged and breached, such as by insect bites or mechanical stress, or the pathogens 

bypass them by different means, other innate immunity mechanisms join the fray. 

Phagocytic cells, such as macrophages, often are the first cells to respond to any 

pathogens that have found their way into the host. They engulf the pathogens and 

destroy them with chemical cocktails that contain damaging compounds, like reactive 

oxygen species. The engulfment may take place without any assisting proteins, or the 

pathogens may be first opsonized to enhance phagocytosis. (Aderem and Underhill 

1999)   

The complement system is another powerful mechanism associated with innate 

immunity. It consists of several different proteins located in the serum that cleave each 

other, resulting in different cascades that have various effects on the invading 

pathogens. These cascades are initiated by three different pathways: the classical, the 
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alternative, and the lectin pathway. All of the pathways produce C3 convertases, which 

play an integral role in different mechanisms that include opsonization of bacteria, 

formation of membrane attack complexes, and interactions with the adaptive branch 

of immunity, to name a few. (Dunkelberger and Song 2010) 

In addition to previous mechanisms, cells have a plethora of receptors on inside and on 

their surface, which trigger various different inflammatory, antiviral, and other 

signaling pathways upon binding to specific ligands. This is done with various pattern 

recognizing receptors (PRRs), which detect and bind to common secondary structures 

or post-translational modifications present in pathogens, called pathogen associated 

molecular patterns (PAMPs) (Unterholzner and Bowie 2008). 

1.7 Adaptive immunity 

Adaptive immunity is the part of the immune system which is acquired through 

exposure to viruses, bacteria, and other pathogens. When the adaptive immune 

system encounters a new pathogen, T lymphocytes are activated, leading to the 

development of cell-mediated immunity. B lymphocytes are also activated, producing 

antibodies against the invading pathogens. Some of the generated B lymphocytes will 

be memory cells, giving the organism the ability to remember antigens that have 

invaded it. This immunological memory is the backbone of adaptive immunity, allowing 

the organism to respond to secondary infections fast and specifically. (Palm and 

Medzhitov 2009; Sun et.al 2011) 

1.8 Interferons 

Interferons (IFNs) are a family of cytokines, which were discovered in the late 1950s 

(Isaacs and Lindenmann 2015). Interferons are divided in to three groups, type I, II, and 

III, which have various effects on both innate and adaptive immunity. As part of the 

innate immune system, interferons are among the first proteins that prime the cells to 

an antiviral state (Sadler and Williams 2008).  

Type I interferons are 18-20 kDa large proteins with a helical structure that are divided 

into two major subgroups, interferon-α and interferon-β, and several minor subgroups 

(Kuby Immunology 7th edition, Chapter 5; Sadler and Williams 2008). Both major 

subgroups are secreted by activated macrophages and dendritic cells, as well as by 
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cells infected with viruses. (Samuel 2001; Zdrenghea et al. 2015) Once secreted, 

interferons interact with membrane-bound receptors such as type I IFN receptor 

(IFNAR) 1 / 2 heterodimer, activating JAK-STAT signaling pathways that culminate in 

the production of interferon-stimulated genes (ISGs) (Sadler and Williams 2008). These 

ISGs trigger the production of a variety of different proteins, such as ribonucleases, 

which destroy both host and virus RNA. Destruction of the host cells’ RNA also 

inevitably leads to the death of the host cell itself, preventing the spread of viral 

infection to other cells. (Samuel 2001) ISGs also enhance host’s virus -resistance in a 

myriad of other ways, like by upregulating RIG-I expression (Sadler and Williams 2008).  

Type II interferon, also known as interferon-γ, influences the adaptive immunity by 

directing the T- helper cells to form more TH1 type cells, and by activating multiple 

immune cell types. Type II interferon also induces antiviral responses especially against 

DNA viruses. Type II interferon structure differs greatly from type I interferons and it 

binds to a different receptor, interferon gamma receptor (IFNGR). (Samuel 2001; 

Schroder et al. 2004) 

Type III interferons, or interferon-λ, are the most recent group of interferons, 

discovered in 2003. Their effects are similar to the type I interferons. Their structure is 

closely related to IL-10 family cytokines. Type III interferons bind to class II chemokine 

receptor (IFN- λR). Unlike IFNAR, which is expressed by all nucleated cells, IFN-λR is 

only expressed by epithelial cells, such as in the gut. (Gad et al. 2009; Wack et al. 2015)              

1.9 Sars-CoV-2 structure and genome organization 

SARS-CoV-2 enters the cell by binding to angiotensin-converting enzyme 2 (ACE2) and 

co-receptor transmembrane protease serine 2 (TMPRSS22), after which the viral and 

host membranes fuse, releasing the helical nucleocapsid to the cytoplasm (Kumar et al. 

2020; V’kovski et al. 2020).  Neuropilin-1 (NRP-1) has also been shown to aid SARS-

CoV-2 to enter host cells and enhance infection in Hek-293T cells (Cantuti-Castelvetri 

et al. 2020).  

SARS-CoV-2 RNA genome is approximately 30 kb long, and it has 14 open reading 

frames (ORF), which encode for 4 structural proteins, 16 non-structural proteins (Nsp), 

and 11 accessory proteins (Arya et al. 2021). The non-structural proteins are translated 
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from the two largest ORFs, ORF1a and ORF1b, as polyprotein precursors pp1a and 

large pp1ab. Pp1ab is translated when a -1-ribosome frameshift bypasses the stop 

codon of ORF1a, allowing the translation to continue through ORF1b. Polyproteins are 

cleaved to individual proteins by viral proteases such as Nsp3, which has a papain-like-

protease domain, while the structural and accessory proteins are translated as 

individual proteins from the smaller ORFs. (Chen et al. 2020; Chan et al. 2020) The 

genome is flanked by untranslated regions (UTR), which have secondary structures 

that are important in the replication cycle (Huston et al. 2021). The 5’-end is capped 

with a 5’-methylguanosine cap and the 3’-end contains a Poly(A) tail, mimicking the 

structure of host mRNA and allowing viral mRNA to be translated by the host 

translation machinery (Chen et al. 2020; Huston et al. 2021). 

1.9.1 Non-structural proteins 

Non-structural proteins are proteins responsible for the replication process of the 

virus. They accomplish this by hijacking the protein production machinery of the host 

cell, as well as by producing viral complexes essential to the replication cycle or 

survival of the virus. Characteristically to virus proteins, coronavirus Nsps often have 

multiple roles, such as an inhibitor of one of the many innate immunity responses. 

(Figure 3, Table 3) The close sequence similarity of the SARS-CoV-2 genome to the 

more studied coronaviruses makes it possible to deduce the likely functions of the 

SARS-CoV-2 proteins. 
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Figure 3 SARS-CoV-2 proteins encoded from the genome and cleaved from the primary amino acid chain, with 
proposed functions. (Arya et al. 2021) 
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Table 2 Non-structural and structural proteins of SARS-CoV-2 and their primary functions 

Protein Function 

Nsp1 Inhibits host cells protein synthesis 

Nsp2 Not known 

Nsp3 Scaffolding, cleaves viral polyproteins 

Nsp4 Membrane restructuring 

Nsp5 Protease 

Nsp6 Inhibits type I interferon response 

Nsp7 RNA primase 

Nsp8 Part of the primase complex 

Nsp9 Phosphatase 

Nsp10 Scaffolding protein 

Nsp11 Not known 

Nsp12 Catalytic subunit of RdRp 

Nsp13 Helicase 

Nsp14 Proofreading and methylation of mRNA 

Nsp15 Cleaves RNA 

Nsp16 2-O-methyltransferase 

Spike Receptor binding 

Envelope Participates in viral membrane formation 

Membrane Organizes virion assembly 

Nucleocapsid Protects the genome 

 

Nsp1 is a 19,8 kDa protein that inhibits host cell protein synthesis by binding to the 40S 

ribosomal subunit, blocking the mRNA entry channel with its C-terminal domain, and 

by degrading host mRNA (Gordon et al. 2020; Schubert et al. 2020). Its production is 

initiated in the early stage of infection by it being cleaved from the N-terminus of 

polyprotein precursors pp1a and pp1ab by papain-like protease (PLpro) (Arya et al. 

2021). SARS-CoV Nsp1 has been implicated in the suppression of the host’s innate 

immunity by inhibiting type I interferon expression, although the mechanisms for this 

are not fully known. Since there is considerable amino acid sequence similarity (84%) 
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between SARS-CoV-2 and SARS-CoV Nsp1 proteins, it is possible that SARS-CoV-2 Nsp1 

has a similar inhibitory function. (Lei et al. 2020; Xia et al. 2020; Suruyawanshi et al. 

2021)  

Nsp2 is 638 amino acids long, 70,5 kDa protein which function is still unknown. It has 

also been shown to interact with strumpellin, which regulates actin assembly in 

intracellular vesicles and may help the virion particles to exit the cell after maturation. 

(Seaman et al. 2013; Gordon et al. 2020; Ma et al. 2021) In SARS-CoV, Nsp2 also 

disturbs the host’s intracellular signaling by interacting with prohibit 1 and 2, 

modulating the cell survival signaling pathway (Cornillez-Ty et al. 2009). Because its 

sequence similarity with SARS-CoV Nsp2 is only 76,8%, the functions may be different 

(Ma et al. 2021). 

Nsp3 is 1945 amino acids long, 217,3 kDa protein, which makes it the largest protein 

encoded by SARS-CoV-2 (Gordon et al. 2020). Nsp3 is a multidomain, membrane 

bound protein with multiple functions, such as acting as scaffolding for viral and host 

proteins. It has also been shown to delay the activation of IFN-β (Lei et al. 2020). In 

SARS-CoV Nsp3, the PLpro domain not only cleaves polyprotein precursors, but also 

inhibits type I interferon signaling by interfering with STING-TRAF3-TBK1 complex 

(Harcourt et al. 2004; Chen et al. 2014). Macrodomain X is a conserved domain in 

coronaviruses, and it inhibits type I interferon response by interfering with ADP-

ribosylation (Claverie 2020). (Lei et al. 2018) 

Nsp4 is 56,2 kDa protein and has not been well studied in SARS-CoV-2, but since it has 

a fairly high sequence similarity (80%) with its SARS-CoV counterpart, it may similarly 

contribute to viral replication by rearranging membranes to create viral protein 

factories. (Gordon et al. 2020; Arya et al. 2021; Suruyawanshi et al. 2021) 

Nsp5 is a 33 kDa protease that cleaves pp1a and pp1ab with the 3CL-pro domain to 

create 12 different proteins (Gordon et al. 2020). It also regulates gene expression and 

inhibits innate immune response by reducing nuclear translocation of HDAC2, an 

important epigenetic modifier, and by cleaving TAB1. (Suruyawanshi et al. 2021; 

Moustaqil et al. 2021) 
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Nsp6 is a 33 kDa protein and has been shown to inhibit type I interferon response by 

interacting with TBK1, leading to the inhibition of IRF3 phosphorylation. SARS-CoV 

Nsp6 restricts the size of hosts autophagosomes, reducing the degradation rate of viral 

cytoplasmic proteins, while also generating autophagosomes for the viral proteins to 

exploit. (Cottam et al. 2014; Gordon et al. 2020; Xia et al. 2020) 

Nsp7 is a 9,2 kDa conserved protein in SARS-CoV-2 and SARS-CoV, which forms an RNA 

primase complex with Nsp8, which in turn is part of the replicase complex (Te Velthuis, 

Aartjan J. W et al. 2012; Gordon et al. 2020). SARS-CoV-2 Nsp7 may also downregulate 

Rho GTPase expression and influence the organization of the host cell cytoskeleton, as 

well as inhibit IFN-α signaling (Bouhaddou et al. 2020; Xia et al. 2020).  

Nsp8 is a 22 kDa protein which is another conserved protein in SARS-CoV-2 and SARS-

CoV that participates in the formation of replication complex by being part of the 

primase complex (Te Velthuis, Aartjan J. W et al. 2012; Gordon et al. 2020). It has not 

been shown to interfere with the RIG-I pathway or interferon production (Lei et al. 

2020).  

Nsp9 is 12,4 kDa phosphatase that binds ssRNA as part of the replication-transcription 

complex (Egloff et al. 2004; Gordon et al. 2020). It has also been shown to increase 

virulence of the virus, be involved in viral RNA processing, and to have a stimulatory 

effect on type I IFN response (Egloff et al. 2004; Lei et al. 2020). SARS-CoV-2 Nsp9 has 

97% sequence similarity with its SARS-CoV counterpart, which makes it highly probable 

that it also must form a dimer to function properly (Littler et al. 2020). 

Nsp10 is a 14,8 kDa accessory protein that acts as scaffolding to Nsp14 and Nsp16, 

which has very high sequence similarity with its SARS-CoV counterpart (Gordon et al. 

2020). SARS-CoV Nsp10 forms a complex with Nsp16 that assists with the processing of 

viral mRNA by methylating its 5’guanosine cap, making it harder for RIG-I to detect the 

viral mRNA. In the case of Nsp14, Nsp10 activates its proofreading and RNA editing 

capabilities. (Bouvet et al. 2014) 

Nsp11 is a 1,3 kDa byproduct from the cleavage of pp1a (Gordon et al. 2020). Its 

function is still unknown (Arya et al. 2021).  
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Nsp12 is a 103 kDa catalytic subunit of the SARS-CoV-2 RNA-dependent RNA 

polymerase (RdRp) (Gordon et al. 2020). Its 554 amino acids long C-terminal RdRp 

domain contains a catalytical site, which enables Nsp12 to replicate the viral genome. 

To fully function, it must form a replicase complex with Nsp7 and Nsp8. (Hillen et al. 

2020; Gao ja muut 2020) Nsp12 has been shown to inhibit IFN-β expression (Lei et al. 

2020).   

Nsp13 is a 67 kDa helicase, which is another protein that participates in the replicase-

complex (Gordon et al. 2020). SARS-CoV Nsp13 unwinds RNA/DNA duplexes and is 

involved in 5’-RNA capping (Tanner et al. 2003). Its sequence identity with its SARS-CoV 

counterpart is nearly 100%, differing only by one amino acid, suggesting that the 

functions are similar (Chen et al. 2020). Nsp13 has been shown to inhibit IFN-β 

signaling in a similar fashion as Nsp6, as well as inhibiting IFN-α signaling (Xia et al. 

2020).  

Nsp14 is a 60 kDa protein with two distinct functions. Its N-terminal exonuclease 

domain proofreads viral mRNA, removing incorrect nucleotides. (Gordon et al. 2020) 

The C-terminal guanine-N7 methyl transferase methylates 5-capped mRNA, allowing 

viral mRNA to avoid detection by host PRRs (Bouvet et al. 2014). Nsp14 interferes with 

the IFN-β pathway by inhibiting IRF3 from reaching the nucleus (Lei et al. 2020).   

Nsp15 is a 36,9 kDa conserved, negative-sense RNA cleaving, uridylate-specific 

endoribonuclease, which has also been implicated in blocking IRF3 localization to the 

nucleus. (Gordon et al. 2020; Arya et al. 2021) 

Nsp16 is a 33,3 kDa 2-O-methyltransferase, which like Nsp14 methylates the 5-cap of 

viral mRNA to help the virus to avoid the host PRRs. It interferes with the IFN response 

when complexed with Nsp10. (Bouvet et al. 2014; Gordon et al. 2020) 

1.9.2 Structural proteins  

Structural proteins form the virion particle and protect the genome that is encased 

within the capsid. Besides providing the genome protection from the harsh 

environment outside and inside the cell, structural proteins have other equally 

important tasks, such as binding to the receptors of the host cell, assisting in the self-

assembly of the virion or stabilizing the genome. Structural proteins are most likely 
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immunogenic, since they are exposed to the various innate immunity receptors and 

cells within the host. (Understanding Viruses 3rd edition, Chapter 2) 

Spike (S) protein is a 1273-amino-acids long, 141,2 kDa, homo-trimeric, and club-

shaped structural protein that is essential for receptor-mediated entry into the host 

cell. It has two subunits, S1 and S2. Two distinct domains, the receptor-binding domain 

facilitating the virus’s attachment to the ACE2 receptors, and an N-terminal galectin-

like domain are located in the S1 subunit (Arya et al. 2021). The function of the N-

terminal galectin-like domain is not entirely clear, but it may stabilize the S2 domain in 

its prefusion conformation (Walls et al. 2020). Fusion of the host cell and virus 

membranes is mediated by the S2 subunit, which has four distinct structural motifs: 

fusion peptide, heptad repeats 1 and 2, and a transmembrane region (Wrapp et al. 

2020). The S2 subunit has two different conformations, prefusion and postfusion. 

Transition from prefusion to postfusion is initiated by the host proteases after the 

receptor-binding domain (RBD) in S1 binds to the ACE2, altering the trimer 

conformation and exposing a cleavage site on the S2 subdomain (Renhong et al. 2020). 

The cleaving events are enhanced by co-receptor TMPRSS22.  A separate furin 

cleavage site unique to SARS-CoV-2 is located between these subunits, the cleavage of 

which enhances the penetration of the virus into the host cell (Walls et al. 2020). S 

protein has not been shown to interfere with interferon responses. S protein 

mutations play a central role in different variants, since they can alter the receptor 

specificity of SARS-CoV-2 (Chakraborty et al. 2021).  

Envelope (E) protein is a 75-amino-acids long, 8-12 kDa transmembrane protein that is 

part of the virion’s envelope. Although it is expressed in only limited amounts, it is 

critical for the infectivity of the virus, as seen by the virus’s failure to propagate in 

mutant strains that lack E protein. It has three different domains: an N-terminal 

hydrophilic domain, a single-helix transmembrane domain, and a hydrophilic C-

terminal domain.  E protein has not been shown to inhibit interferon response, instead 

it has a stimulatory effect on the ISGs. (Sarkar and Saha 2020; Arya et al. 2021; 

Suruyawanshi et al. 2021) 

Membrane (M) protein is a 222-amino-acids long, 25-30 kDa transmembrane protein 

with three distinct domains: an N-terminal domain outside of the envelope, a triple-
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helix transmembrane domain, and a C-terminal domain inside the virion. Like the E 

protein, it participates in the formation of the envelope, where most of its structure is 

buried (Gordon et al. 2020; Thomas 2020). From the four structural proteins, it’s 

expressed the most. M protein has been shown to inhibit the activation of interferon-β 

(Lei et al. 2020).  

Nucleocapsid (N) protein is 422 amino acids long, 43-50 kDa protein with two major 

domains, N-terminal and C-terminal, and is located inside the virion. Both domains are 

globular, contain several disordered regions, and are linked by a linker region, which is 

also disordered (Schiavina et al. 2021). The N-terminal domain’s primary function is to 

bind to RNA, while the C-terminal domain regulates the formation of N homodimers. 

Both also have other functions.  Several monomers of N cover the viral RNA, forming a 

ribonucleoprotein complex (RNP) with M proteins, stabilizing the viral genome, and 

shielding it from damage. The N protein interacts with the rest of the structural 

proteins when virions are being assembled to envelope the RNA and it has not been 

shown to inhibit interferon production. (Ye et al. 2020; Arya et al. 2021; Suruyawanshi 

et al. 2021) 

1.9.3 Accessory proteins 

SARS-CoV-2 has 11 accessory proteins which have distinct functions, some of which are 

unknown, and while they are not essential for the replication of the virus, they 

enhance the pathogenicity of SARS-CoV-2. The accessory proteins are involved in the 

suppression of the host cell antiviral response, and some of them directly interfere 

with type-I interferon pathways. All of the accessory proteins are small in size, with 

ORF3B being the largest at 227 amino acids. Some of the accessory proteins have 

undergone through mutations in the more pathogenic SARS-CoV-2 variants and may 

thus contribute to the pathogenicity of these variants. (Redondo et al. 2021).  
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1.10 Replication cycle  

Replication cycles of viruses are an important field of study (Figure 4.). By identifying 

proteins or protein complexes that are essential for the replication of the virus and do 

not interfere with the normal functions of the host cell too severely, it is possible to 

target these proteins with antiviral drugs, halting the replication cycle of the virus and 

thus hamper the spread of the infection. Prime targets for these antiviral drugs are the 

viral proteins that are essential for the replication cycle, such as viral RdRp since the 

host cell has no need for them and is not harmed by their absence.  

 

 

Figure 4 Different stages of the SARS-CoV-2 replication cycle (V’kovski et al. 2020, modified) 

 



23 
 

After accessing the host’s respiratory tract, the virion attaches to the epithelial cell by 

binding to its primary receptor ACE2 on the surface of the cell membrane. Secondary 

receptor TMPRSS2 primes the S protein for binding by cleaving it. Binding triggers 

conformational changes in the S protein on the surface of the virion and leads to the 

fusion of the virion’s envelope and host cells membrane, releasing the viral RNA into 

the cytosol of the host cell. Proteases present in the cell and environmental factors, 

such as pH, also play a role in the fusion event. (Hoffmann et al. 2020) 

After the coated viral RNA is released to the cytoplasm, it starts to be degenerated by 

host cells proteases, leading to the uncoating of the viral RNA.  This RNA is 

immediately translated in to two polyprotein precursors, which are autocleaved and 

processed further by the autocleavage products. Some of the cleaved proteins are 

post-translationally modified in the endoplasmic reticulum (ER), for example by 

glycosylation. The RNA is also used as a template for genomic and subgenomic 

negative-sense ssRNA. The former is used to form new virions and the latter as a 

template for positive-sense ssRNA, which are translated into more viral proteins. 

(V’kovski et al. 2020) 

The virus particles are assembled in the ER, endoplasmic reticulum-Golgi intermediate 

compartment (ERGIC), and the Golgi apparatus itself, where most of the particle 

assembly happens (Astuti and Ysrafil 2020). The newly synthesized viral genomic RNA 

interacts with the structural proteins that are translocated into the Golgi, and new 

virions are formed. Fully assembled particles are secreted via exocytosis. (Chen et al. 

2020) 

1.11 RIG-I pathway  

Retinoic acid-inducible-gene-I (RIG-I) pathway is one of the innate immunity 

mechanisms that is activated when virus RNA is detected by the RIG-I receptor. This 

pathway triggers the production of different types of interferons, which in turn 

activate a JAK-STAT pathway, culminating in the expression of interferon-stimulated 

genes, which encode antiviral proteins such as dsRNA-activated protein kinase, also 

known as PKR. (Sadler and Williams 2008; Onomoto et al. 2021). 
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1.11.1 RIG-I 

RIG-I is a soluble PRR, which is present in the cytosol of most cell types. It 

differentiates between viral RNA and host RNA by recognizing structural differences, 

pathogen-associated molecular patterns (PAMP). Such PAMPs include double-stranded 

regions of the RNA, polyuridine sequences, and 5’ triphosphate modification that is 

done to the viral RNA when it is processed, or which is already present in some viruses. 

RIG-I has two RNA binding domains, DECH helicase and C-terminal domain (CTD). Its 

tandem caspase activation recruitment domain (2CARD) is blocked by the helicase 

domain when viral RNA is not bound to prevent unintended activation which might 

lead to a cytokine storm, damaging the host. Upon RNA binding to the CTD-domain, 

the conformational change exposes the 2CARD, allowing it to oligomerize and form a 

tetramer, which in turn is capable to interact with the next signaling component. (Loo 

and Gale 2011; Schlee 2013; Onomoto et al 2021) 

1.11.2 MAVS  

Mitochondrial antiviral signaling protein (MAVS), also known as interferon-beta 

promoter stimulator 1 (IPS-1), is a 57 kDa multidomain adaptor protein, that interacts 

with oligomerized RIG-I to propagate the signal further. MAVS attaches to the RIG-I 

tetramer, which functions as nucleation point to the MAVS filament, with its N-

terminal CARD domain (Figure 5). Although MAVS is attached to the mitochondria by 

its C-terminal transmembrane domain, its linker domain is long and flexible enough to 

allow the CARD domain to move around. As more MAVS CARD domains aggregate to 

the RIG-I tetramer, they start to form a filament.  This filament promotes the 

formation of a scaffolding complex consisting of TNFR-associated death domain 

(TRADD), Fas-associated death domain (FADD), and a kinase RIP1. (Scott 2010; Wu and 

Hur 2015) 

1.11.3 Kinases associated with the RIG-I pathway  

TANK-binding kinase 1 (TBK1), also known as T2K, is an important component of many 

signaling pathways, including the RIG-I pathway. TBK1 phosphorylates IRF3, allowing it 

to form the dimers to activate IFN production. TBK1 is recruited to the RIG-I pathway 
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by different scaffolding proteins, which are associated with the MAVS induced 

scaffolding complex. (Chau et al. 2008; Ahmad et al. 2016) 

Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKK-e) is another kinase that 

phosphorylates IRF3, with the same outcome as TBK1. It is recruited by the same 

scaffolding proteins as TBK1. (Chau et al. 2008) 

1.11.4 Signaling pathway 

Binding of RIG-I to the viral RNA allows the 2CARD domain to form oligomers with 

other activated 2CARDs. The oligomerization can happen with the assistance of 

ubiquitination or through filaments, which occurs more often with longer dsRNA. Once 

the RIG-Is have formed a tetramer, they can interact with a membrane bound MAVS. 

The tetramer resembles a “lock-washer” and acts as a nucleation point to which MAVS 

can aggregate to with N-terminal CARD domains to form a filament. MAVS filament 

then recruits several proteins, such as adaptor proteins TRADD, TRAF3, and RIP1, 

which in turn recruit and activate NEMO/IKK complex. This complex together with 

TBK1 phosphorylates IRF3 and IRF7, which then form mono- and heterodimers. The 

dimers are transported to the nucleus, where they bind to their target sequences, 

activating interferon transcription (Figure 6). (Wu and Hur 2015, Chen et al. 2020)  

 

Figure 5 Proposed model for the assembly of RIG-I tetramer and the subsequent MAVS monomer binding. (Wu and 
Hur 2015) 
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Figure 6 The RIG-I pathway and JAK-STAT pathway. Left) RIG-I pathway, its components and proposed inhibition 
targets for some of the SARS-CoV-2 proteins. Right) JAK-STAT pathway, its components and proposed inhibition 
targets for some of the SARS-CoV-2 proteins. (Xia et al. 2020) 
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2. Goal of the study 

Based on the previous studies of Coronaviridae and other viruses in general, it is 

expected that some of the SARS-CoV-2 proteins will interfere with the host innate 

immune system to protect the virus from the host antiviral response. These proteins 

often target pathways regulating interferon gene expression, such as the RIG-I 

pathway. 

The goal of this study was to determine which, if any, of the SARS-CoV-2 proteins 

interfere with the RIG-I pathway. Additionally, immunogenicity of ORF9B was 

investigated with SARS-CoV-2 patient serum samples.  
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3. Materials and methods 

3.1 Plasmids 

pcDNA 3.1/Myc-His expression plasmid was used as the backbone plasmids for SARS-

CoV-2 proteins and pEBB-N-HA expression plasmid was used for the Zika proteins. 

pIFN-β- and pIFN-λ1-luc promoter reporter plasmids and RSV-Renilla reporter plasmid 

were used in the luciferase assays. Delta-RiG-I was expressed with pcDNA 3 expression 

plasmid. 

3.2 Sera samples 

COVID-19 patient serum samples (n = 119) were collected from 40 patients at Turku 

University Hospital (TYKS, Turku, Finland; data treated according to ethical permission 

HUS/1238/2020). 

Randomly selected negative control samples (n = 100) were collected in early 2019. 

12 samples (3 negative, 4 acute stage, 4 convalescent stage, and 1 positive control) 

were used in total. 

3.3 Cell lines 

Human embryonic kidney 293 cells (HEK-293) and human hepatocyte-derived 

carcinoma cells (HuH-7) were the cell lines used in this study. The cell lines were 

obtained from the cell type collection maintained by the Institute of Biomedicine, 

University of Turku. 

3.4 Antibodies 

His-tag rabbit Ab (Cell Signaling Technologies), HA-tag mouse mAb (Cell Signaling 

Technologies), Anti-GAPDH mouse monoclonal IgG (Santa Cruz Biotechnology), Myc-

tag rabbit polyclonal IgG (Santa Cruz Biotechnology), Alexa Fluor 488 goat anti-mouse 

IgG (Invitrogen), Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen), IRDye 680RD Goat 

anti-rabbit (Licor), IRDye 680RD Goat anti-mouse (Licor). Antibodies were used as per 

the instructions provided by the manufacturers. 
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3.5 Cell culturing 

Cells were handled with aseptic technique in a BSL-2 biosafety cabinet (NordicSafe). 

Growth media was removed from the cell vessel and cells were washed once with 

sterile 1 x PBS and detached by adding 5 ml of trypsin-EDTA (MP-Biomedicals). Trypsin 

was inactivated with 5 ml of growth media (DMEM (BioWhittaker,Lonza), 

supplemented with, 10% heat-inactivated fetal bovine serum (Invitrogen) , 5% 

Penicilin/Streptomycin solution (PEST), 5% Glutamax (ThermoFisher)) and cells were 

thoroughly mixed before being transferred to a new vessel.   

3.6 Western blotting  

Cells were plated on a 6-well plate and transfected at 85-95% confluence with 

transfection mixture (TransIt (Mirus) or Viafect (Promega), desired plasmid, and 

OptiMem (ThermoFisher)) and were incubated at 37°C at 5% CO2 18-24 hours. 

The 6-well plate was transferred on ice and the growth media was removed. Cells were 

washed twice with 500 μl of ice-cold PBS (Medicago) and lysed with 200 μl of ice-cold 

lysis buffer (0,1% Triton-X, 1x cOmplete Protease Inhibitor Cocktail (Sigma-Aldrich), 50 

mM Tris-HCl, 150 mM NaCl, 1% NP-40, 1 mM EDTA, Benzonase nuclease (Sigma-

Aldrich)). Lysed cells were scraped with a cell scraper or pipette tip and transferred to 

1,5 ml Eppendorf tubes and stored in -80°C for at least 18 hours.  

Protein concentrations of the lysates and BSA standards were measured in duplicates 

with a Bradford assay. BSA standard curve was prepared by diluting BSA to sterile 

water in different concentrations. 10 μl of diluted lysates and BSA standards were 

pipetted to a 96-well plate. 200 μl of 5% Bradford reagent was added to each well and 

the plate was incubated for 5 minutes. Absorbances were measured at 450 nm 

wavelength with a plate reader (Victor Nivo, Perkin Elmer). 

Lysate sample protein concentrations were equalized with sterile water to match the 

sample with the lowest protein concentration. Sodium dodecyl sulfate (SDS) buffer 

was added, and samples were boiled for 5 min at 100°C. Boiled samples were loaded 

to a SDS gel (Any kD Mini-PROTEAN TGX gel, Biorad) submerged to run buffer (1 x TGS) 

in a gel tank (Mini-PROTEAN Tetra Cell, Biorad) and were ran for 45-60 min at 180 V 

(PowerPac HC, Biorad). Gel pads and nitrocellulose membrane (GE Healthcare, 
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Amershan) were soaked in transfer buffer (20% methanol, 25 mM Tris, 192 mM 

glycine). Proteins from the gel were transferred to a membrane with semi-dry transfer 

system (Biorad) for 20-25 min at 20 V. Membrane was rinsed with sterile water, and 

blocked with blocking buffer (5% BSA or non-fat milk/TBS-Tween) for 1 h at RT. 

Blocking buffer was removed and membrane was washed once with TBS-Tween for 

5min, after which primary antibodies diluted to 7,5 ml of blocking buffer were added 

to the membrane and were incubated o/n at +4°C. 

The primary antibody solution was removed and the membrane was washed 3 x 10 

min with TBS-Tween. Secondary antibodies diluted in 7,5 ml of blocking buffer were 

added to the membrane and incubated for 1 h at RT in the dark. The secondary 

antibody solution was removed and the membrane was washed 3 x 10 min with TBS-

Tween and imaged with OdysseyFc (Licor) at 400 nm and 800 nm wavelength. 

3.7 Immunofluorescence assays (IFA) 

3.7.1 IFA using coverslips 

Cells on coverslips were transfected at 75-80% confluence and were incubated o/n at 

37°C and 5% CO2. Cells were washed once with 1 x PBS and fixed for 20 min at RT with 

4% paraformaldehyde (PFA). PFA was removed and cells were washed twice with 1 x 

PBS and stored at +4°C. 

Cells were permeabilized with block-permeabilization solution (1% BSA, 0,1% Triton X-

100 in PBS) for 30 min at RT. Cells were incubated with primary antibodies diluted to 

block-permeabilization solution for 60 min at RT and then washed for 5 minutes thrice 

with the block-permeabilization solution. Secondary antibodies diluted in the block-

permeabilization solution were added and cells were incubated for 30 min at RT in the 

dark. 4’,6-diamidino-2-phenylindole (DAPI) diluted 1:5000 in PBS was added to the 

cells, which were then first washed for 10 min with PBS + 0,1% Triton-X-100 and then 

washed for 5 min twice with PBS. Coverslips were then dipped in sterile water, excess 

water was dried, and coverslips were embedded on top of a Prolong Antifade Gold 

(Invitrogen) droplet on an object glass slide and either imaged with a microscope (Leica 

DMLR) or stored at + 4°C.  
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3.7.2 IFA in immunogenicity assays 

10 000 Huh7 cells/well were plated on a 96-well plate and grown o/n at 37°C and 5% 

CO2. Transfection mixture (200 ng of SARS-CoV-2 S1 or Orf9B, 0,15 μl of TransIt (Mirus) 

in OptiMem (ThermoFisher)) was prepared and incubated for 25 min. 10 μl of 

transfection mixture or OptiMem was added per well and cells were incubated o/n) at 

37°C and 5% CO2.  

Cells were fixed with 4% PFA for 20 min at RT. PFA was removed,1 x PBS was added, 

and cells were stored at +4°C.  

Cells were permeabilized with 0,1% Triton-X-100 + PBS for 5 min at RT and then 

labeled with mouse monoclonal anti-His antibodies (Cell Signaling Technologies) 

diluted 1:200 and serum samples diluted 1:40 in 3% BSA + PBS for 1 hour at RT. Serum 

samples were added in duplicates. Cells were washed for 5 min thrice with 0,5% BSA + 

PBS and secondary antibodies (1:1000 goat-anti-human A-488 (Licor), 1:1000 goat-

anti-mouse A-566 (Licor)) and 1:5000 DAPI were added. Cells were washed for 5 min 

thrice with 0,5% BSA + PBS, leaving the last wash in the well, and imaged the cells with 

microscope (Evos, ThermoFisher).       

3.8 Luciferase assays 

96-well plate was seeded with HEK-293 cells at low density and incubated o/n at 37°c, 

at 5% CO2. Cells at 50% confluence were transfected with 3 ng, 10 ng, and 30 ng of 

target plasmids or control plasmid, 30 ng of of delta-RIG-I for interferon response 

induction, 20 ng of reporter gene construct and 50 ng of RSV-Renilla for normalization. 

Transfection mixtures were incubated for 15-30 min before adding them to the cells. 

Cells were incubated o/n at 37°C, at 5% CO2. 

Growth media was aspirated and wells were washed once with PBS and cells were 

lysed by adding 20 μl of lysis buffer (TwinLite) and incubating for 15 min at RT on a 

shaker. 100 μl of FireLite+ (TwinLite) was added per well and mixed gently by pipetting 

up and down couple of times, after which firefly luciferase values were measured with 

a plate reader (Victor Nivo, Perkin Elmer). 100 μl of RenLite+ (TwinLite) was added per 

well and mixed gently by pipetting up and down couple of times, after which Renilla 

luciferase values were measured with a plate reader (Victor Nivo, Perkin Elmer).  
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Firefly luciferase values were normalized with Renilla values.  

3.9 Cloning 

3.9.1 Infusion cloning 

Backbone plasmids were linearized and dephosphorylated by incubating the plasmids 

with a digestion mixture (FastDigest BamHI, 10 x FastDigest Green Buffer, nuclease-

free H2O) for at least 3 hours. 

Target sequences were amplified with PCR. PCR reaction mixture (100 ng of DNA 

template, 1 x CloneAmp HiFI PCR premix (TakaraBio), 7,5 pmol of forward and reverse 

primers, filled to 25 μl with nuclease-free H2O) was incubated in thermal cycler (T100 

Thermal Cycler, Biorad) at 98°C for 5 min, then cycled 30 times at 98°C for 10 sec, at 

55°C for 15 sec and at 72°C for 60 sec/kb. Final extension was at 72°C for 5 min.  

Digested plasmids and PCR products were loaded to an 1,5% agarose gel and ran for 

1,5 h at 100 V (PowerPac HC, Biorad) in TAE buffer (40 mM Tris base, 20 mM acetic 

acid, 1 mM EDTA) in an agarose gel electrophoresis (AGE) chamber (HU15 mini 

horizontal, Scie-Plas). Gel parts containing the linearized plasmids were localized with 

UV light, excised, and purified or stored in +4°C. 

DNA was purified with a gel purification kit (NucleoSpin, Machney-Nagel).  

Cloning reaction mixture (100 ng of purified PCR product, 100 ng of linearized 

backbone plasmid, InFusion enzyme premix (TakaraBio), filled to 10 μl with deionized 

H2O) was incubated at 50°C for 15 min and then placed on ice. Stellar Competent cells 

(TakaraBio) were thawed on ice right before use. 50 μl of cells were incubated with 2,5 

μl of reaction mixture for 30 min on ice after which the cells were heat shocked for 45 

sec at 42°C and then transferred back on ice for 2 min. SOC media warmed to 37°C was 

used to fill the cell tubes to 500 μl, which were then incubated by shaking at 200 rpm 

for 1 h at 37°C. 1:10 of cell mixture was plated and the rest was centrifuged at 1500 x g 

for 5 min. Supernatant was discarded, the cell pellet was resuspended to 100 μl of SOC 

media and then plated on LB plates, which were incubated 18-22 hours at 37°C.  

Colonies from the plates were picked and grown in 4 ml of culture media (Luria broth + 

antibiotics (gentamycin or ampicillin)) o/n at 37°C. Glycerol stocks (500 μl of culture, 
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50% glycerol) were prepared and stored at -80°C. Plasmids were purified from the 

cultures with a miniprep kit (GeneJet plasmid miniprep kit, ThermoFisher).  

Sequencing samples (400-500 ng of purified plasmid, primer (5 pmol), filled to 10 μl 

with nuclease-free H2O) were prepared and sent for sequencing to GeneArt.  

After confirming that the sequences were correct, new cultures were prepared from 

glycerol stocks or stored cultures. Cultures were grown in LB + antibiotics (gentamycin 

or ampicillin) o/n at 37°C and 210 rpm, after which plasmids were extracted and 

purified with a maxikit (Endofree plasmid maxi kit, Qiaqen). 

DNA concentration and its purity were determined with NanoDrop (DeNovix). 

3.9.2 Restriction enzyme digestion and plasmid isolation 

Target and backbone plasmids were digested by incubating them in a digestion 

mixture (1,5 μg of plasmids, 1 x FastDigest Green buffer, FastDigest BamHI, filled to 20 

μl with nuclease-free H2O) at 37°C for 1 h. Digested samples were loaded to 0,8% 

agarose gel and ran for 1 h at 95 V (PowerPac HC, Biorad) in TAE buffer (40 mM Tris 

base, 20 mM acetic acid, 1 mM EDTA) in an AGE chamber. Gel parts containing the 

linearized plasmids were localized with UV light, excised, and purified or stored in 

+4°C. 

Plasmids were purified with gel extraction kit (NucleoSpin, Machney-Nagel).Purified, 

linearized insert plasmids were ligated with linearized backbone by incubating them in 

a ligation mixture (1 x T4 ligase, FastDigest buffer, insert DNA, backbone DNA, fill to 10 

μl with nuclease-free H2O) o/n at +4°C. 

Competent DH5a cells were thawed on ice, after which 30 μl aliquotes of them were 

mixed with ligated plasmids and then incubated on ice for 30 min. Cells were heat 

shocked for 50 seconds at 42°C and incubated on ice for 2 minutes. 700 μl of LB was 

added per tube, and incubated on a shaker at 37°C, at 210 rpm for 1 h. Cells were 

plated on agar plates (LB, antibiotics (gentamycin or ampicillin) and were incubated at 

37°C o/n. Colonies were picked and grown in 4 ml cultures (LB, antibiotics (gentamycin 

or ampicillin) at 37°C o/n.   
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Glycerol stocks (500 μl of culture, 50% glycerol) were prepared and stored at -80°C. 

Plasmids were purified from the cultures with a miniprep kit (GeneJet plasmid 

miniprep kit, ThermoFisher). 

Sequencing samples (400-500 ng of purified plasmid, primer (5 pmol), filled to 10 μl 

with nuclease-free H2O) were prepared and sent for sequencing to GeneArt.  

After confirming that the sequences were correct, new cultures were prepared from 

glycerol stocks or stored cultures. Cultures were grown o/n at 37°C and 210 rpm, after 

which plasmids were extracted and purified with a maxikit (Endofree plasmid maxi kit, 

Qiaqen). 

DNA concentration and purity were determined with NanoDrop (DeNovix). 
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4. Results 

4.1 Expression of SARS-CoV-2 proteins 

To perform the luciferase assays it was first necessary to produce and purify several 

plasmids with the target gene sequence, and to verify their expression in the cell lines 

with Western blotting (WB) and immunofluorescence assays (IFA). 

WB is a very common technique that is used to determine if the protein of interest is 

present in the sample. The sample is taken from a cell lysate and proteins are 

separated by weight with SDS-PAGE electrophoresis. Proteins are transferred to a 

membrane and visualized with fluorescent-labelled antibodies.  

IFA is another commonly used technique that is used to visualize target proteins within 

the cell, providing information of the expression and cellular location of the proteins. 

After transfecting the cells with an expression plasmid containing the target protein, 

the expressed proteins are labeled with antibodies and visualized with a fluorescent 

microscope. 

The expression of control proteins, Zika virus non-structural proteins (ZIKV NS) 1, 3, 

and 5, were done with the previously used pEBB-N-HA expression plasmids. The pEBB-

N-HA plasmids had been used previously in the same lab to express several different 

Ebola and Zika virus proteins, that were subsequently biologically active and produced 

reliable data in luciferase assays. Expression of ZIKV NS proteins was successfully 

confirmed with both IFA and WB. SARS-CoV-2 proteins on the other hand proved to be 

more challenging to express. 

The first attempt to express SARS-CoV-2 nonstructural proteins was done using the 

same pEBB-N-HA backbone as with the ZIKV NS and structural SARS-CoV-2 proteins (E-, 

N-, M- and S-proteins). The plasmids containing the structural SARS-CoV-2 genes had 

already been produced by other lab members and S-, M- and, N- proteins had been 

successfully expressed before the start of this study. To verify this, their expression 

was analyzed again with IFA and WB, yielding good expression levels for N-, M- and S-

proteins, but not for E-protein (Figures 7, 8, and 9).  
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Figure 7 HEK-293 cells on 6-well plates were transfected with 2,4 μg of SARS-CoV-2 structural protein or one of the 
control Zika non-structural expression plasmids. A mock well with no plasmids was used as a baseline control. After 
incubating overnight, cells were lysed and ran in a gel at 180 v for 40 min, after which they were transferred on to a 
nitrocellulose membrane with semi-dry transfer. The membrane was blocked with 5% fat-free milk/TBST for 1 hour 
and then incubated overnight in a spinning rack at +4c with primary antibodies. Membrane was stained the next day 
with secondary antibodies and imaged with Odyssey. a) SARS-CoV-2 structural proteins along with the controls b) 
GAPDH controls with the same lysates as in a). 
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Figure 8 HEK-293 cells on 6-well plates were transfected with 2,4 μg of SARS-CoV-2 structural protein or one of the 
control Zika non-structural expression plasmids. After incubating overnight, cells were lysed and ran in a gel at 180 v 
for 40 min, after which they were transferred on to a nitrocellulose membrane with semi-dry transfer. The 
membrane was blocked with 5% fat-free milk/TBST for 1 hour and then incubated overnight in a spinning rack at +4c 
with primary antibodies. Membrane was stained the next day with secondary antibodies and imaged with Odyssey. 
a) SARS-CoV-2 S protein b) GAPDH control with same lysate as in a). 
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Figure 9 Huh7 cells plated on a 12-well plate with glass coverslips were transfected with 1000 ng/well of a given 
SARS-CoV-2 structural protein or control expression plasmids followed by labeling with fluorescent antibodies. 
Green color indicates the proteins that have been detected by the anti-HA antibodies. Blue color indicates the cell 
nuclei stained by DAPI a) SARS-CoV-2 N-protein b) SARS-CoV-2 M-protein c) SARS-CoV-2 S-protein d) ZIKA virus 
NS5-protein 

 

 

Most of the non-structural SARS-CoV-2 proteins were visible in the IFA, but none of 

them could be seen in WB, despite repeating the runs multiple times and with 

adjustment to the run and incubation conditions. 

The failure to express target proteins when their sequence was inserted to pEBB-N-HA 

prompted us to use a different expression plasmid. The expression plasmid pcDNA 

3.1/myc-His was chosen because it had also been used to successfully with similar 

mammalian cell models to express many proteins in the same lab. The inserts from the 

previous expression plasmids were transferred to the expression plasmids first with 

classical restriction enzyme method. However, after the plasmids created in this 

manner yet again failed to express any proteins, a new, next generation cloning 

method called Infusion cloning was used. Infusion cloning does not utilize ligases at all, 

is very accurate, and very rarely introduces errors to the insert sequence. However, 

despite the efficiency of the cloning method, plasmid constructs produced via this 
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manner also failed to express any of the SARS-CoV-2 non-structural proteins, despite 

having their sequences confirmed as correct by sequencing. 

Since switching plasmid and the cloning method failed to resolve the expression 

problem, a new approach had to be used. It was decided to use codon-optimized insert 

sequences, which were cloned into the pcDNA 3.1/myc-His backbone plasmid by the 

same company doing the codon optimization (Gene Universal). These ready-made 

plasmid constructs were then produced and purified with the same methods as the 

previous constructs and used to transfect cells. As a result, SARS-CoV-2 proteins Nsp1 

and 14 were clearly expressed as shown in the WB assay (Figure 10). SARS-CoV-2 non-

structural proteins Nsp6 and Nsp13 did not seem to be expressed, although the lane 

with the Nsp6 sample did have a band that was stained with His- antibodies. However, 

the location of this band did not correspond to the size of Nsp6 (Figure 10).  

 

Figure 10 Hek-293 cells on 6-well plates were transfected with 2,4 μg of SARS-CoV-2 structural proteins or one of the 
control Zika non-structural expression plasmids. After incubating overnight, cells were lysed and ran in a gel at 180 v 
for 40 min, after which they were transferred on to a nitrocellulose membrane with semi-dry transfer. The 
membrane was blocked with 5% fat-free milk/TBST for 1 hour and then incubated overnight in a spinning rack at +4c 
with primary antibodies (anti-His, anti-GAPDH). Membrane was stained the next day with secondary antibodies and 
imaged with Odyssey. 
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The successful expression of almost all SARS-CoV-2 proteins of interest allowed to 

proceed with luciferase assays. 

4.2 SARS-CoV-2 structural proteins do not inhibit the RIG-I pathway 

Luciferase assay is a reporter system that is used to study different cellular functions, 

such as signaling pathways, in the eukaryotic cells. It utilizes two reporter plasmids: an 

experimental reporter plasmid, which has a firefly luciferase enzyme-coding gene 

downstream of the promoter of the gene of interest, and a control reporter plasmid 

which contains renilla luciferase enzyme-coding gene downstream of the constantly 

active promoter. The latter is used to provide a baseline luciferase activity based on 

transfection efficiency. Since the assay uses two different luciferases that produce 

luminescence in the presence of different substrates, this combination makes it 

possible to normalize the results and thus to eliminate variations arising from different 

sources, such as pipetting errors or differences in cell amounts. 

In this study, Promegas’ Dual-Luciferase Reporter Assay System was used, which can 

detect firefly (Phonitus phyralis) and Renilla (Renilla reniformis) luciferases as 

experimental and control luciferases, respectively. The reporter plasmids used in this 

study had IFN-λ promoter in front of the firefly luciferase gene and a constitutively 

active Rous sarcoma virus promoter in front of Renilla luciferase gene. 

To study the effects of SARS-CoV-2 proteins on the RIG-I-pathway, HEK-293 cells were 

transfected with a plasmid containing a protein of interest or control protein, both 

luciferase gene-containing plasmids, and a constitutively active delta-RIG-I to induce 

the pathway. As shown in Figure 11, delta-RIG activates the RIG-I pathway efficiently, 

leading to the activation of IFN-λ promoter and subsequent luciferase expression, 

detected by luminescence (Figure 11, indicated by C+). Expression of NS3/4A protein of 

hepatitis C virus resulted in almost no luciferase signal, as expected since NS3/4A 

cleaves MAVS on the RIG-I pathway, fully inactivating the pathway (Li et al. 2005). The 

mock cells resulted in baseline signals from both luciferases. Cells expressing SARS-

CoV-2 structural proteins S, E, N, and M, did not inhibit the RIG-I substantially when 

compared to the positive control. 
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Figure 11 Normalized luciferase signals from SARS-CoV-2 structural proteins. HEK-293 cells were plated on 96-well 
plate, and transfected with 3 ng, 10 ng and 30 ng per well of either SARS-CoV-2 structural proteins (S, E, M, N) or 
HCV NS3/4A expression plasmids. Cells were also transfected with 50 ng of Renilla, 30 ng of delta-RIG-I and 20 ng of 
IFN-lambda-promoter luciferase per well, with the exception of the negative control (C-), which only had the reporter 
plasmids,  the positive control (C+), which had only delta-RIG-I and the reporter plasmids, and mock cells, which were 
not transfected with any plasmids. Cells were lysed after overnight incubation and the luminescence was measured. 
Assay was done once with three replicates within assay. 

4.3 SARS-CoV-2 Nsp1, Nsp6 and Nsp13 inhibit the activation of IFN-λ promoter 

Although the expression of Nsp1 and Nsp14 was confirmed with the WB:s, their 

inhibitory effects, or their lack of, had to be first tested with a promoter that was 

known to be inhibited by them. Since the effects of many SARS-CoV-2 non-structural 

proteins on the type I interferon pathways are known, a reporter plasmid with IFN-β 

promoter and luciferase reporter gene was used to assess if the non-structural 

proteins we had produced would have similar effects on the RIG-I pathway as 

suggested by existing literature. Nsp1 inhibited the RIG-I pathway, shutting it off 

completely, while Nsp14 had no effect on the pathway (Figure 12).  
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Figure 12 Normalized luciferase signals from SARS-CoV-2 non-structural proteins 1,6,13 and 14. HEK-293 cells were 
plated on 96-well plate, and they were transfected with 3 ng, 10 ng and 30 ng per well of either NSPs, Zika NSPs or 
HCV NS3/4A S139A expression plasmids. Cells were also transfected with 50 ng of Renilla, 30 ng of delta-RIG-I and 
20 ng of IFN-β-promoter luciferase per well, with the exception of the negative control (C-), which only had the 
reporter plasmids, the positive control (C+), which had only delta-RIG-I and the reporter plasmids, and mock cells, 
which were not transfected with any plasmids. Cells were lysed after overnight incubation and the luciferase values 
were measured. Assay was done once. 
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The inhibitory effect of Nsp1 was very strong, inhibiting the pathway even more 

efficiently than the HCV NS3/4A would. In this assay, HCV NS3/4A did not inhibit the 

signal, since a S139A mutant was used. The signal strength gained from the Nsp14 was 

slightly higher than the signal strength of the positive control. Mock wells showed only 

baseline signal. The assay was done only once with the IFN-β promoter construct. 

After confirming the target proteins produced by our lab had inhibitory capabilities as 

suggested by the existing literature, the next phase of luciferase assays was started. 

Instead of the IFN-β promoter, it was replaced with an IFN-λ1, also known as IL-29, 

promoter. Otherwise, the assay remained unchanged. Even though the expression of 

Nsp6 and Nsp13 could not be confirmed with either WB or IFA, they were still included 

to the assay, as they could still prove to be informative if they had any inhibitory 

effects. Like with IFN-β promoter, Nsp1 completely shut off the RIG-I pathway, again 

silencing the pathway more efficiently than HCV NS3/4A. Likewise, Nsp14 had similar 

effect with IFN-λ1 as IFN-β, not inhibiting the signal strength. Surprisingly, Nsp6 and 13 

both reduced the firefly luciferase signal to a significant extent, with Nsp6 being the 

more efficient one. (Figure 13).  

 

Figure 13 Normalized luciferase signals from SARS-CoV-2 non-structural proteins 1,6,13 and 14. HEK-293 cells were 
plated on 96-well plate, and they were transfected with 3 ng, 10 ng and 30 ng per well of either NSPs or HCV NS3/4A 
expression plasmids. Cells were also transfected with 50 ng of Renilla, 30 ng of delta-RIG-I and 20 ng of IFN-λ1-
promoter luciferase per well, with the exception of the negative control (C-), which only had the reporter plasmids, 
the positive control (C+), which had only delta-RIG-I and the reporter plasmids, and the mock cells, which were not 
transfected with any plasmids Cells were lysed after overnight incubation and the luciferase values were measured. 
Assay was done three times. 
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Like before, HCV NS3/4A silenced the signal efficiently, and the negative and positive 

controls behaved as expected.  The assays were repeated thrice, with triplicates for 

each protein, and each run produced similar results. Inhibitory effects were statistically 

significant.   

4.4 SARS-CoV-2 ORF9B protein is not immunogenic 

Immunogenic viral proteins are of great interest to vaccine development since they 

can be used as the immunizing component in recombinant and other vaccine types. To 

investigate whether SARS-CoV-2 ORF9B was one of such proteins, the protein was 

expressed in cells and COVID-19 patient sera was used as primary antibody in IFA to 

study if sera contain antibodies detecting ORF9B protein. 

The expression of ORF9B was first investigated with an IFA using antibodies detecting 

HA-tag. As seen in Figure 14, Huh7 cells expressed ORF9B in significant amounts.  

 

Figure 14 Huh7 cells transfected with expression plasmid encoding SARS-CoV-2 ORF9B protein. The bright green 
color marks the location of ORF9B detected with anti-HA antibodies. The blue color indicates cell nuclei stained by 
DAPI. ORF9B is clearly expressed in approximately 30% of the cells. 
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The immunogenic properties of ORF9B were investigated with IFA assay in which Huh7 

cells were transfected with either SARS-CoV-2 ORF9B or S1 in pcDNA 3.1/myc-His 

expression plasmid. A plasmid containing the sequence for the S-protein domain S1 

was used as a protein control for immunogenicity. Cells expressing the proteins were 

incubated with different sera samples taken from humans at different stages of SARS-

CoV-2 infection. These sera samples were either from negative, convalescent, or acute 

stages of the illness, and also included a positive sample as a control. All sera samples 

had been heat-inactivated prior to the assay to ensure safe handling in BSL-2 

laboratory. The positivity of samples to the presence of viral genome from SARS-CoV-2 

had been determined beforehand with a PCR test 

The results of the IFA indicated that ORF9B was not immunogenic, regardless of what 

serum sample type was used. One positive control, four convalescent stage samples, 

four acute stage samples, and three negative samples were used. An example of IFA 

with two sera is shown in Figure 15. None of the cells expressing SARS-CoV-2 ORF9B 

showed any staining with anti-human IgG secondary antibodies, while the expression 

of ORF9B was clearly visible with antibodies detecting the HA-tag of the ORF9B. The 

cells transfected with the S1-domain appeared immunogenic with three convalescent 

samples. None of the negative serum samples and mock cells were recognized by 

patient sera, indicating the lack of false positives. 
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Figure 15 Huh7 cells incubated with human sera from various patients. Bright green color indicates cells to which 
antibodies in the patient samples have bound. Purple color indicates cells transfected with either SARS-CoV-2 ORF9B 
or S1. Blue color indicates cell nuclei stained by DAPI. a) Positive control serum and SARS-CoV-2 S1 b) Convalescent 
serum and SARS-CoV-2 ORF9B C) Convalescent serum and SARS-CoV-2 S1 
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5. Discussion 

While the expression of target proteins proved to be a more difficult, longer, and 

frustrating endeavor than anticipated, it provided valuable lessons in protein 

expression. 

Even though the expression of SARS-CoV-2 Nsp6 and Nsp13 was not detected in either 

IFA or WB, the conformation of the expression of protein of interest is not always 

necessary, or even possible. Due to its small size (10,8 kDa), the ORF9B protein was 

very difficult to visualize with WB. Although other research groups have managed to 

successfully visualize SARS-CoV-2 non-structural proteins and ORFs, they have used a 

different expression plasmid, pGAGS being the most common (Gordon et al. 2020). 

Since this expression plasmid was not available for this study, luciferase assays were 

performed without knowledge on expression levels of SARS-CoV-2 Nsp6 and Nsp13 

proteins. However, the difficulties in expression were unlikely related to the 

expression plasmids in use since these have worked perfectly fine with other inserts. In 

addition, the sequences of plasmid constructs were all correct. Also, the cells, 

transfection, cell lysate collection, and WB methods were not the sources of negative 

results, as all the controls were successfully detected every time. It is possible, that the 

non-optimized constructs could have been toxic to the cells, destroying any 

successfully transfected cells, or that the proteins were expressed at such a low level 

that the WB and IFA were not sensitive enough to detect them. Also, due to a lack of 

influence from other viral proteins that are normally present during infection, proteins 

of interest could have been folded or processed incorrectly. Semi-dry transfer during 

WB is another possible reason for not detecting the SARS-CoV-2 Nsp6 and Nsp13 

proteins since this method is not as efficient as wet transfer. 

The success in expression of SARS-CoV-2 Nsp1 and Nsp14 proteins with codon-

optimized inserts gives a compelling argument for the standardized use of codon-

optimization whenever it is possible. Since the proteins are already produced in an 

abnormal state when transfecting cell cultures with plasmids, compared to in vivo 

situations in infection, the different nucleotide sequence does not affect functions of 

the protein, as long as the primary amino acid sequence remains the same between 

codon-optimized and non-optimized proteins. In many labs that have successfully 
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expressed SARS-CoV-2 proteins, this is already a standard practice (Gordon et al.2020; 

Lei et al. 2020).  

The lack of any inhibitory effect on the IFN-λ-promoter by SARS-CoV-2 S-, E-, N- and M 

proteins was in line with previous studies. Although the M protein had been previously 

demonstrated to inhibit type-I interferon production, it does so by phosphorylating 

STAT1, rather than by interfering with any of the RIG-I pathway components (Lei et al. 

2020; Xia et al. 2020). Except for the E-protein, all SARS-CoV-2 structural proteins were 

successfully expressed in both IFA and WB (Figures 5, 6, and 7). Although at first glance 

the expression of S-protein appears to be weak, the faint loading control on the same 

lane indicates that the loaded protein amount, or the amount of cells before lysing, 

was lower than intended. The expression of E-protein was not expected to be seen 

with either WB or IFA, as other lab members in the same lab had failed to express the 

E-protein using the same expression plasmid. However, at least in one study (Gordon 

et al. 2020) E-protein was successfully expressed, albeit by using a different expression 

vector, pLVX-EF1alpha-IRES-Puro, which additionally had a 2 x Strep-tag instead of the 

HA-tag used in the SARS-CoV-2 structural protein constructs in this study. 

The inhibitory effect of Nsp6 and Nsp13, despite their absence in WB and IFA, on the 

RIG-I pathway was in line with previous studies (Lei et al. 2020; Xia et al. 2020). 

However, in these previous studies on type I interferon inhibition had been studied. 

The fact that SARS-CoV-2 Nsp6 and Nsp13 also inhibit the IFN-λ promoter sheds light 

into the multiple functions that these proteins might harbor. Regarding the WB and 

IFA, unlike ORF9B, both of them are large enough to be seen on WB, so their size 

should not be the issue. It might be possible that the His-antibodies used simply didn’t 

recognize these constructs, for example because of their altered tertiary structure due 

to the inclusion of His-tag region. However, this seems unlikely since His-tag is a 

relatively small tag. In the case of Nsp6, there is also the question of line that can be 

seen in the stacking gel. Despite sonicating and repeating runs, this line was always 

present, and was always stained by the His-antibodies. It could be the Nsp6 protein, 

albeit in an aggregate form or similar structure that has immense difficulty moving 

through the SDS-PAGE gel. 
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Of note, when performing the luciferase assay with the IFN-β-luciferase construct, the 

HCV NS3/4A surprisingly did not inhibit the luciferase signal at all. Upon further 

investigation, it was noticed that a wrong variant of the protein had been used: a clone 

which had a S139A mutation that deleted the protein’s inhibitory activity. 

The inhibitory activity of SARS-CoV-2 Nsp1 on the RIG-I pathway was expected. Recent 

studies (Lei et al. 2020; Xia et al. 2020) have indicated that Nsp1 has an inhibitory 

effect on the RIG-I pathway leading to reduced activation of IFN-β promoter. However, 

the magnitude of this inhibitory effect was surprising. Nsp1 inhibitory effect exceeded 

even the inhibitory effect of HCV NS3/4A, which interferes with the RIG-I pathway by 

directly cleaving MAVS (Li et al. 2005). Further assays with different RIG-I pathway 

components, such as MAVS and IKKe, are required to determine which part of the RIG-

I pathway Nsp1 inhibits. It also would be interesting to see if Nsp1 inhibits the RIG-I 

pathway indirectly by shutting down the host cell translation.  

Contrary to the other SARS-CoV-2 Nsps in this study, Nsp14 did not show any inhibitory 

effect on the RIG-I pathway. Instead, Nsp14 seemed to slightly elevate the activity of 

IFN-β and IFN-λ promoters, compared to the positive control. These results were in 

line with previous studies. This might still be within error margins, since Nsp14 had 

higher error bars throughout all assays. However, it is not uncommon for non-native 

proteins to stimulate innate immunity pathways, as shown by previous studies with 

SARS-CoV-2 proteins (Lei et al. 2020). The non-inhibitory activity of Nsp14 makes it a 

prime candidate for an internal control in any further assays with Nsp constructs, since 

it is in the same expression plasmid, has been produced by the same company, and has 

been successfully detected in WB. The last part is especially important, since it allows 

to confirm that the absence of detectable protein expression is not the source of the 

non-inhibitory effect detected in activation assays.  

Although the IFA determined that SARS-CoV-2 ORF9B is not immunogenic, this result 

needs to be confirmed. Even though it was shown with IFA that ORF9B is expressed in 

Huh7 cells with IFA, it is possible that the protein is folded incorrectly, or that the HA-

tag had been cleaved off, to which the primary antibodies then bound. Without WB 

results, it is impossible to determine if the size of the detected protein is correct. 

However, due to ORF9B’s small size (10,8 kDa), its detection with WB is a difficult, if 
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not even impossible task. On the other hand, the small size, and the fact that ORF9B is 

an accessory protein expressed inside the host cell during infection supports the 

results obtained in this study, that SARS-CoV-2 ORF9B is not immunogenic. 
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6. Conclusions 

The ongoing SARS-CoV-2 pandemic that started in December 2019 in Wuhan, People’s 

Republic of China has indisputably shown that the coronavirus family is still a family 

from which potent human pathogens can emerge and thus should be closely 

monitored. The rapid spread of SARS-CoV-2 around the world beginning in December 

2019 forced many countries to close their borders and limit the movement of their 

citizens to prevent the overloading of their health institutions, underlining the threat 

posed by this new coronavirus, and the importance of research on it. Despite the 

enormous amount of resources that have been poured into SARS-CoV-2 research, 

many aspects of the virus are still unknown. The long-lasting effects on the survivors of 

the infection and the death toll claimed by the virus show that it is critical to 

determine the proteins that are important to the functionality of the virus so that the 

development of anti-viral drugs that can target them may begin, and that infections 

can be diagnosed more efficiently. Equally important is the discovery of immunogenic 

components, so that efficient vaccines can be developed. Many vaccines have already 

been developed, but most of them rely on the spike-protein, which may not be the 

most optimal immunogenic component due to its potential for mutations to avoid 

neutralizing antibodies. 

In this study, it was shown that at least three of the SARS-CoV-2 non-structural 

proteins have inhibitory effects on the RIG-I pathway, an important innate immunity 

signaling pathway. The information we gleaned with our methods concerned mainly 

the activation of IFN-λ promoter. It shows that SARS-CoV-2 Nsp1, Nsp6, and Nsp13 

inhibit the activation of the IFN-λ promoter. Additionally, we showed that ORF9B is not 

immunogenic, contrary to what was claimed in another study (Jiang et al. 2020).  

To further understand how these Nsps inhibit the RIG-I pathway, different components 

of the RIG-I pathway, such as MAVS or IKKε, could be used identify the protein that the 

Nsp is inhibiting and begin to study the mechanism of this inhibition. The mechanistic 

information would be invaluable on the antiviral drug-design front. To get a more 

realistic view of the function and role of the Nsps in the inhibition of RIG-I pathway and 

their other functions, infection studies could be utilized. This could provide 
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information about the interactions of host cell proteins and other viral proteins with 

the inhibiting Nsps. 

All in all, SARS-CoV-2 will likely join the seasonal coronaviruses and circulate around 

the globe for the foreseeable future. This makes it necessary to continue research on 

SARS-CoV-2, not only to understand it, but to be prepared for another pathogenic 

coronavirus, that will surely emerge at some point in the future. 
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