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ABSTRACT 

Type 1 diabetes (T1D) is a complicated autoimmune disease with largely unknown 
disease mechanisms. The diagnosis is preceded by a long asymptomatic period of 
autoimmune activity in the insulin-producing pancreatic islets. Currently the only 
clinical markers used for T1D prediction are islet autoantibodies, which are a sign of 
already-broken immune tolerance. The focus of this dissertation is on the early 
asymptomatic period preceding seroconversion to islet autoantibody positivity. 

The genetic risk of type 1 diabetes has been thoroughly mapped in genome-wide 
association studies, but environmental factors and molecular mechanisms that 
mediate the risk are less well understood. According to the hygiene hypothesis, the 
risk of immune-mediated disorders is increased by the lack of exposure to pathogens 
in modern environments. Within a study on the hygiene hypothesis, we compared 
umbilical cord blood gene expression patterns between children born in 
environments with contrasting standards of living and type 1 diabetes incidences 
(Finland, Russia, and Estonia). The differentially expressed genes were associated 
with innate immunity and immune maturation. Our results suggest that the 
environment influences the immune system development already in-utero. 

Furthermore, we analyzed genome-wide DNA methylation and gene expression 
profiles in samples collected prospectively from Finnish children and newborn 
infants at risk of type 1 diabetes. Bisulfite sequencing analysis did not show any 
association of neonatal DNA methylation with later progression to T1D. However, 
antiviral type I interferon response in early childhood was found to be a risk factor 
of T1D. This transcriptomic signature was detectable in the peripheral blood already 
before islet autoantibodies, and the main observations were confirmed in an 
independent German study. These results contributed to the hypothesis that virus 
infections might play a role in T1D. 

Additionally, this dissertation contributed to transcriptomic and epigenomic data 
analysis workflows. Simple probe-level analysis of exon array data was shown to 
improve the reproducibility, specificity, and sensitivity of detected differential exon 
inclusion events. Type 1 error rate was markedly reduced by permutation-based 
significance assessment of differential methylation in bisulfite sequencing studies. 

KEYWORDS: Bioinformatics, type 1 diabetes, transcriptomics, DNA methylation, 
alternative splicing, microarrays, bisulfite sequencing, RRBS   
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TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
Lääketieteellinen mikrobiologia ja immunologia 
ESSI LAAJALA: Tyypin 1 diabeteksen varhaisten molekulaaristen 
mekanismien multiomiikka-analyysi 
Väitöskirja, 79 s. 
Molekyylilääketieteen tohtoriohjelma 
Marraskuu 2021 

TIIVISTELMÄ 

Tyypin 1 diabetes (T1D) on autoimmuunitauti, jonka taustalla olevista meka-
nismeista tiedetään vähän. Diagnoosia edeltää pitkä oireeton jakso, jonka aikana 
insuliinia tuottaviin beetasoluihin kohdistuva autoimmuunireaktio etenee haiman 
saarekkeissa. Tämä väitöskirjatutkimus keskittyy T1D:n varhaiseen oireettomaan 
ajanjaksoon, joka edeltää serokonversiota autovasta-ainepositiiviseksi. 

Tyypin 1 diabeteksen geneettiset riskitekijät on kartoitettu perusteellisesti 
genominlaajuisissa assosiaatiotutkimuksissa, mutta ympäristön riskitekijöistä ja 
riskiä välittävistä molekyylimekanismeista tiedetään vähemmän. Hygienia-
hypoteesin mukaan vähäinen altistuminen taudinaiheuttajille lisää immuuni-
järjestelmän häiriöiden riskiä. Hygieniahypoteesiin liittyvässä osatyössä vertasimme 
hygienian ja T1D:n ilmaantuvuuden suhteen erilaisissa ympäristöissä (Suomi, 
Venäjä ja Viro) syntyneiden lasten napaveren geeniekpressioprofiileja. Erilaisesti 
ekspressoituneet geenit liittyivät synnynnäiseen immuniteettiin ja immuuni-
järjestelmän maturaatioon. Näiden tulosten perusteella ympäristö saattaa vaikuttaa 
immuunijärjestelmän kehitykseen jo raskauden aikana. 

Genominlaajuista DNA-metylaatiota ja geeniekspressiota analysoitiin näytteistä, 
jotka oli kerätty laajassa suomalaisessa seurantatutkimuksessa T1D:n riskiryhmään 
kuuluvilta lapsilta ja vastasyntyneiltä. Bisulfiittisekvensointianalyysin perusteella 
vastasyntyneen DNA-metylaation ja lapsuuden aikana kehittyvän T1D:n välillä ei 
ollut yhteyttä. Sen sijaan RNA:n tasolla havaittava viruksiin kohdistuva tyypin 1 
interferonivaste varhaislapsuudessa todettiin T1D:n riskitekijäksi. Tämä havainto 
tehtiin perifeerisestä verestä jo ennen saarekevasta-aineiden ilmaantumista, ja 
päähavainnot vahvistettiin saksalaisessa tutkimuksessa. Nämä tulokset vahvistivat 
hypoteesia, jonka mukaan virukset voivat vaikuttaa T1D:n puhkeamiseen. 

T1D-tutkimuksen ohella tämä väitöskirjatyö kehitti transkriptomiikkaan ja 
epigenomiikkaan sopivia analyysimenetelmiä. Eksonimikrosirujen koetintasoisen 
analyysin todettiin parantavan toistettavuutta, sensitiivisyyttä ja tarkkuutta vaihto-
ehtoisen silmukoinniin kartoittamisessa. Tilastollisen merkitsevyyden permutaatio-
pohjainen analyysi vähensi tyypin 1 virhettä bisulfiittisekvensointidatan analyysissa. 

AVAINSANAT: Bioinformatiikka, tyypin 1 diabetes, transkriptomiikka, DNA-
metylaatio, vaihtoehtoinen silmukointi, mikrosirut, bisulfiittisekvensointi, RRBS   
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C-section Caesarean section 
CpG C followed by G (p stands for the phosphate that connects two adjacent 

bases in DNA) 
CVB Coxsackievirus B 
DIPP Diabetes Prediction and Prevention Study: a large Finnish follow-up 

cohort of children at risk of type 1 diabetes 
DMC Differentially Methylated Cytosine 
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DNA Deoxyribonucleic Acid 
EM Expectation Maximization 
eQTL Expressed Quantitative Trait Locus/Loci 
eQTM Expressed Quantitative Trait Methylation 
FDR False Discovery Rate 
FIRMA Finding Isoforms Using Robust Multichip Analysis 
FWER Family-wise Error Rate 
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GLM Generalized Linear Model 
GLMM Generalized Linear Mixed-effects Model 
H3K9 Lysine (K) 9 on Histone H3 
HLA Human Leukocyte Antigen 
IA2A Insulinoma-Associated Protein 2 Antibody, also known as Islet Antigen 

2 Antibody 
IAA Insulin Antibody 
ICA Islet Cell Antibodies 
IRLS Iteratively Reweighted Least Squares 
LC/MS Liquid Chromatography Mass Spectrometry 
LM Linear Model 
MCMC Markov Chain Monte Carlo 
MIDAS Microarray Detection of Alternative Splicing 
MM Mismatch (probe on Affymetrix microarrays) 
G Guanine (one of four bases of DNA) 
GADA Glutamic Acid Decarboxylase Antibody 
GSEA Gene Set Enrichment Analysis 
GWAM Genome-Wide Average Methylation 
GWAS Genome-Wide Association Study/Studies 
GWS Genome-Wide Significance 
meQTL Methylation Quantitative Trait Locus/Loci 
mRNA Messenger RNA 
PCA Principal Component Analysis 
PCR Polymerase Chain Reaction 
PECA Probe-level Expression Change Averaging 
PLIER Probe Logarithmic Intensity Error Model 
PM Perfect match (probe on Affymetrix microarrays) 
RMA Robust Multichip Average 
RNA Ribonucleic Acid 
RNA-seq RNA sequencing 
PBMC Peripheral Blood Mononuclear Cell 
ROC Receiver Operating Characteristics 
RRBS Reduced Representation Bisulfite Sequencing 
RT-PCR Reverse Transcription Polymerase Chain Reaction 
SI Splicing Index 
SNP Single Nucleotide Polymorphism 
T Thymine (one of four bases of DNA) 
Th2 T helper type 2 (lymphocyte) 
T1D Type 1 Diabetes 
U Uracil 
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WGBS Whole Genome Bisulfite Sequencing 
ZnT8A Zinc Transporter 8 Antibody 
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1 Introduction 

The immune system is a complex network of mechanisms that enable the recognition 
and elimination of threats, and on the other hand the tolerance towards self-antigens 
and other harmless substances. Autoimmune diseases are conditions, where 
tolerance mechanisms have failed, and some self-antigens are systematically 
recognized as pathogenic. 

Type 1 diabetes is a common autoimmune disease with serious complications 
and a world-widely increasing incidence. The symptoms of type 1 diabetes can be 
kept under control, but currently the disease cannot be prevented or reversed. By the 
time of diagnosis, most of the insulin producing pancreatic beta cells have become 
dysfunctional and the individual is dependent on insulin injections. This is preceded 
by a long asymptomatic period of autoimmune activity in the pancreatic islets. Islet 
autoantibodies can typically be detected in the peripheral blood some months or 
years before the diagnosis. Earlier molecular markers of type 1 diabetes are an active 
area of research to which we have contributed. Our study material includes blood 
samples collected before seroconversion to autoantibody positivity, which are 
extremely hard to obtain but most valuable to improve our understanding of 
mechanisms that lead to immune tolerance failure. 

Both genetic and environmental factors contribute to the risk of type 1 diabetes. 
Their effects can be mediated by epigenetics and gene expression, which are at the 
center of focus of this thesis. We explored transcriptomic patterns in a longitudinal 
sample series (Study II) and DNA methylation in umbilical cord blood samples 
(Study IV) of children at risk of type 1 diabetes. We also compared the 
transcriptomes of children born in environments with contrasting standards of living 
and type 1 diabetes incidences (Study III). This was motivated by the hygiene 
hypothesis, according to which the risk of immune-mediated disorders is increased 
by the lack of exposure to pathogens in modern environments. 

Such explorative studies have been enabled by the rapid development of high-
throughput ’omics technologies during the past two decades. The field of 
bioinformatics emerged and keeps developing alongside these technologies. Studies 
II and III utilized gene expression microarrays and Study IV quantified DNA 
methylation through reduced representation bisulfite sequencing (RRBS). To better 
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answer the biological questions within this thesis, I evaluated and improved the 
existing bioinformatics methodology in transcriptomic and epigenomic studies. 
More specifically, this thesis discusses the analysis of alternative splicing events in 
exon microarray data (Study I) and the estimation of statistical significance in 
spatially correlated bisulfite sequencing data (Study V). 
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2 Review of the Literature 

2.1 Aetiology of type 1 diabetes 

2.1.1 Type 1 diabetes disease model 
Type 1 diabetes, also known as insulin dependent diabetes mellitus or juvenile 
diabetes, is an autoimmune disease of the insulin-producing beta cells which are 
located in the islets of Langerhans of the pancreas. Insulin is needed to activate 
glucose intake and metabolism by binding to the insulin receptor, which is present 
on all mammalian cells (1). Impaired insulin production leads to elevated blood 
glucose levels (hyperglycemia), which in the long-run causes endothelial cell 
dysfunction through glyco-oxidation (2). Consequently, the risk of microvascular 
complications such as retinopathy, nephropathy, and neuropathy are elevated among 
diabetic individuals, and their average life expectancy is approximately 12 years 
shorter compared to the general population (3,4). Type 1 diabetes symptoms can be 
kept under control by insulin injections and careful monitoring of blood glucose 
levels, but the disease cannot currently be prevented or reversed. 

The JDRF (Juvenile Diabetes Research Fund), the Endocrine Society, and the 
American Diabetes Association have proposed the following classification of type 1 
diabetes stages: 1) seroconversion to two or more islet autoantibodies (details below) 
2) asymptomatic dysglycemia 3) symptomatic type 1 diabetes (5). The dysglycemic 
state typically fluctuates and even one incident of abnormal glucose tolerance after 
seroconversion is highly predictive of progression to symptomatic type 1 diabetes 
within a few years (6). The observed time between seroconversion and diagnosis has 
ranged from months to decades with median values of for example 4 or 9 years, 
depending on the studied population (7–9).  

Type 1 diabetes can be diagnosed based on clinical symptoms, when 80–90 % 
of insulin-producing beta cells have been destroyed or become dysfunctional. An 
oral glucose tolerance test can typically reveal the impaired insulin production 
several months before clinical symptoms (10). Currently the earliest clinical markers 
used to predict type 1 diabetes onset are islet autoantibodies, which unfortunately 
arise at a relatively late stage of the pathogenesis. According to the traditional 
Eisenbarth disease model for type 1 diabetes (11) the emergence of auto-antibodies 
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(seroconversion) is preceded by a long asymptomatic period, during which 
functional beta cell mass slowly decreases (Figure 1).  

Several aspects of the Eisenbarth disease model for type 1 diabetes have been 
questioned in light of more recent observations (12,13). The insulin-producing beta 
cell mass does not always decline until none remains. In fact, some remaining beta 
cells were found in the pancreata of 37 out of 42 diabetic organ donors still 4-67 
years after the diagnosis with type 1 diabetes (14) and other studies have reported 
similar observations (15,16). Either these remaining beta cells differ from other beta 
cells to escape the autoimmune destruction altogether or beta cells are being 
continually regenerated and destroyed in some individuals with long-standing type 
1 diabetes. In individuals with newly-onset type 1 diabetes (less than 1 year from 
diagnosis), the residual amount of insulin-positive pancreatic islets is larger than was 
earlier thought, especially in those with disease-onset after age 15. The observed 
proportions of insulin-positive islets have been on average 56 % and 38 % in newly-
diagnosed type 1 diabetes cases, with disease onset after 15 and before 15 years of 
age, respectively (13). However, the number of insulin-positive pancreatic islets 
provides little information on the remaining beta cell mass and says nothing about 
the beta cells’ ability to respond to glucose, which can be poor in pancreatic islets 
with normal beta cell counts and insulin levels (17,18). 

Furthermore, the idea of constant immune cell activity in pancreatic islets and 
gradual decline of functional beta cell mass over some years before type 1 diabetes 
diagnosis, has been challenged. Insulitis (the immune cell infiltration in pancreatic 
islets) has been a very rare observation in the pancreata of pre-diabetic organ donors 
positive for islet autoantibodies (19) and is not always present at the time of 
diagnosis either (20). Autoimmune activity in pancreatic islets could be occurring in 
a relapsing-remitting fashion, which is typical for some other autoimmune diseases 
and is somewhat supported by the frequent observation of improved insulin 
production a few months after type 1 diabetes is diagnosed (21). The original 
Eisenbarth disease model from 1986 and the modern version are illustrated in Figure 
1. 
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Figure 1.  An illustration of A) the original and B) the updated Eisenbarth disease model of type 1 

diabetes, modified from A) Eisenbarth 1986: “Type I Diabetes Mellitus”, The New 
England Journal of Medicine 314 (21): 1360–68 and B) Herrath, Sanda, and Herold 
2007: “Type 1 Diabetes as a Relapsing-Remitting Disease?” Nature Reviews. 
Immunology 7 (12): 988–94. 

2.1.2 Roles of different cell types in type 1 diabetes 
Immune cell infiltration in the pancreatic islets (insulitis) was first observed in 1902 
in a child who died of ketoacidosis and has later been confirmed by several studies 
on organ donors with type 1 diabetes (13). Cytotoxic CD8+ T lymphocytes have 
been the most abundant immune cells in such pancreatic lesions, followed by 
macrophages, B lymphocytes and CD4+ T lymphocytes (22). The autoimmune 
nature of type 1 diabetes is a long-standing hypothesis, which has only relatively 
recently been confirmed by the observation of islet autoantigen reactive CD8+ T 
cells by in situ HLA tetramer staining in the pancreatic islets of organ donors with 
type 1 diabetes (23). Their presence was specific to type 1 diabetes and was not 
detected in non-diabetic individuals or individuals with type 2 diabetes.  

The mechanisms that lead to this immune tolerance failure remain largely 
unknown. What are the most important factors that make immune cells prone to 
attack beta cells or the beta cells prone to be attacked? The active role of beta cells 
has been emphasized for example by studies on endoplasmic reticulum stress that 
can promote a pro-apoptotic feedback loop in the beta cells (24). While most studies 
have focused on T cells, which are part of the adaptive immune system, others have 
emphasized the role of innate immune mechanisms in triggering the inflammation 
that causes beta cell stress and promotes T cell autoreactivity (25). A comprehensive 
survey on cell-type-specific regulatory elements that might mediate the development 
of type 1 diabetes was recently published by Chiou et al. (26). They tested the 
enrichment of genomic type 1 diabetes risk loci from genome-wide association 
studies (GWAS) on candidate cis regulatory elements with cell-type specific 
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accessibility in single-cell ATAC-seq data on human blood and pancreatic tissues. 
Significant enrichment was found on regulatory elements specifically accessible in 
CD4+ and CD8+ T cells.  

2.1.3 Islet autoantibodies 
Islet cell antibodies (ICA) target cytoplasmic proteins in beta cells and are typically 
measured with immunofluoresence detecting blood serum ICA binding on human 
pancreatic cells from organ donors (27). The specific islet autoantigens include 
insulin, insulinoma-associated protein 2 (IA2, also known as islet antigen 2), 
glutamic acid decarboxylase 65 (GAD65), and zinc transporter-8 (ZnT8). The 
autoantibodies for these (IAA, IA2A, GADA, and ZnT8A) are routinely measured 
with specific radiobinding assays. The less specific ICA immunofluoresence test can 
be positive for individuals negative for IAA, IA2A, GADA, and ZnT8A, indicating 
that all islet autoantigens have not yet been identified (27).  

The median age of seroconversion to autoantibody positivity in children at risk 
of type 1 diabetes has been approximately 2 years (8). GADA or IAA typically 
appear first (28). Individuals with GADA as first vs. IAA as first-appearing 
autoantibody are characterized by distinct HLA-DR-DQ-haplotypes and IAA was 
associated with early seroconversion (29).  

The risk of progression to type 1 diabetes within 10 years of seroconversion has 
been estimated to be 10–30 % for individuals positive for only one islet autoantibody 
and 60–90 % for individuals positive for multiple autoantibodies (8,30), depending 
on the study population and other risk factors. The risk depends also largely on the 
antibody or the combination of antibodies. For example the combination of IAA and 
IA2A confers a significantly larger risk of type 1 diabetes than any other combination 
of two antibodies studied in the Finnish-German-American meta-analysis (8) and 
IA2A was found to increase the risk of type 1 diabetes more than any other second 
autoantibody appearing after IAA or GADA (28). 

Ongoing beta cell death and/or insulitis have only been confirmed in a small 
fraction of islet antibody positive individuals (19). Nevertheless, autoantibodies are 
a sign of autoimmunity and the above-mentioned type 1 diabetes associated 
autoantibodies are important predictive and diagnostic markers, for example to 
distinguish between type 1 and type 2 diabetes in newly diagnosed adults.   

2.1.4 Disease subtypes 
Type 1 diabetes is a heterogenous disease, which develops with highly variable time 
schedules and characteristics. Several studies have suggested the existence of 
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different disease subtypes. For example, the above-described GADA-first and IAA-
first profiles might represent different subtypes of type 1 diabetes. 

The pancreata with some remaining beta cells after type 1 diabetes diagnosis 
differ in their patterns: either the remaining beta cells are only found in few 
pancreatic lobes and expressing an inhibitor of apoptosis or 100 % of pancreatic 
islets contain small numbers of normal-appearing beta cells (31). Individuals with 
childhood-onset type 1 diabetes present more often with insulitic lesions and have 
less remaining beta cells at diagnosis, as compared to those with disease onset after 
age 15 (13). Other histological studies have suggested type 1 diabetes subtypes 
characterized by high vs. low frequencies of CD20+ B-cells present in pancreatic 
islets (32). Pancreatic islets from individuals with early type 1 diabetes onset (age < 
7 years) were characterized by high frequencies of CD20+ B-cells, aberrant 
proinsulin processing and low C-peptide levels, as compared to individuals with 
disease onset after 13 years of age (33). Altogether, these observations suggest a 
more aggressive autoimmune process in individuals with early-onset type 1 diabetes. 

2.1.5 Environmental risk factors of type 1 diabetes 
Even though type 1 diabetes is a highly inheritable common disease, only 15 % of 
newly-diagnosed individuals have a family history of type 1 diabetes (34,35). The 
risk of type 1 diabetes among the monozygotic twins of individuals with type 1 
diabetes is 50–70 %, and the time of onset between twins can differ by decades 
(36,37). This partial discordance in monozygotic twins, as well as the worldwide 
increase in the incidence of type 1 diabetes (38,39), prove that the disease risk is a 
combination of hereditary and environmental factors. The role of the environment is 
further supported by the increase in type 1 diabetes incidence among people, who 
have migrated to a country with a higher incidence of type 1 diabetes (40,41). The 
genomic risk loci have been thoroughly mapped in genome-wide association studies 
(GWAS), based on data collected from hundreds of thousands of individuals 
(26,42,43), but non-genetic risk factors are less understood. 

Environmental/behavioral factors that have been observed to correlate with type 
1 diabetes include the level of hygiene (44), early exposure to cow’s milk (45,46), 
especially A1 β-casein in cow’s milk (47), vitamin D deficiency (48,49), high birth 
weight and rapid growth in early childhood (50–52), certain viral infections (53), and 
early exposure to perfluoroalkyl substances (54). Some of these observations have 
led to intervention studies, none of which have confirmed causality or lead to altered 
recommendations (12,55). The field has suffered from lack of reproducibility, which 
might reflect the heterogeneous nature of type 1 diabetes, complex and unknown 
interactions between risk factors, as well as slightly varying goals and designs of 
different studies (53). For example, opposite correlations between Coxsackievirus B 
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(CVB) infections and the risk of type 1 diabetes have been observed, depending on 
the virus strain and the time of infection–an early infection with some virus strain 
might protect from a later infection with a more diabetogenic strain (56). 

Exposure to pathogens is one of the most extensively studied environmental 
factor that may have a role in the development of type 1 diabetes. While some 
pathogens, such as the common parasite Schistosoma Mansoni, might have a 
protective effect (57), others have been associated with an increased risk of type 1 
diabetes. For example Encefalomyocarditis-D viruses (EMC-D) have been shown to 
selectively target pancreatic beta cells in animal models for type 1 diabetes (58). 
Especially in the event of a persistent viral infection, permanent immune tolerance 
failure might develop through increased presentation of antigens of damaged beta 
cells by antigen presenting cells and HLA class I hyperexpression by beta cells 
(23,56). Viruses might also induce autoreactivity of T cells, if the virus proteins 
closely resemble autoantigens (59). For example the viral glycoprotein VP7 of 
rotavirus is recognized by T cell receptors that also bind to the islet autoantigen IA-
2 (60). 

In humans, the association between type 1 diabetes and rota- and enteroviruses, 
especially CVB, is supported by growing evidence (61–63). Increased incidence of 
type 1 diabetes was associated with a CVB epidemic already in the 1980s (64). The 
frequency of CVB1 has been slightly greater (odds ratio 1.7) among children with 
type 1 diabetes compared to matched control children, based on serological evidence 
from 249 children per group (65). Much larger odds ratios were observed in a meta-
analysis of studies investigating the correlation between enteroviral infections and 
type 1 diabetes with molecular virological methods (66). 

The association between type 1 diabetes and enteroviral infections has been 
especially strong in studies that have focused on the time of type 1 diabetes onset 
(17,56,67,68). For example, CVB4 has been found in the beta cells of some organ 
donors newly diagnosed with type 1 diabetes and is able to impair insulin-production 
when introduced to healthy pancreatic islets (17). The presence of enteroviral capsid 
protein (VP1) was detected in the pancreatic islets of all six newly diagnosed living 
diabetic individuals, who donated pancreatic biopsy samples, whereas the same 
observation was made in only two out of nine control samples from non-diabetic 
organ donors (69).  

To investigate the possible causality between CVB infection and the 
development of type 1 diabetes, Gallagher and others engrafted mice with human 
islets and infected some mice with CVB4. Out of 15 CVB-infected mice, 7 
developed diabetes within five weeks, whereas all 5 mock-infected control mice 
remained normoglycemic (70). Enterovirus vaccination trials for risk groups of type 
1 diabetes have been suggested (63). A significant decrease in type 1 diabetes 
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incidence has been reported in Australia after the introduction of rotavirus vaccine 
in the national vaccination program (71). 

2.1.6 DNA methylation and type 1 diabetes 
DNA methylation is the addition of a methyl group to cytosine (C) that occurs almost 
without exception in the CpG (cytosine followed by guanine) context in mammals 
(72,73). It is a mitotically inheritable epigenetic mechanism that typically silences 
gene expression when present at the promoter (74). DNA methylation is required for 
processes that are essential for normal development, such as cellular differentiation 
and genomic imprinting (75). In mammals, the majority of the CpG sites are 
methylated but some genomic regions, such as promoters of expressed genes, are 
maintained in an unmethylated state (76). The methylation states can be spatially 
correlated between CpG sites up to a distance of approximately 2 kilobases, 
depending on the genomic context (77,78). 

DNA methylation patterns are established in-utero (79) and have been suggested 
to mediate the impacts of the in-utero environment on later health (80–82). 
Compared to for example the transcriptome or the proteome, the temporal within-
individual variation of DNA methylation is small (83). If epigenomic differences in 
early life reflect the risk of later type 1 diabetes, the differences may be observable 
in cross-sectional data, such as the one presented in Study IV. 

Genome-wide average methylation (GWAM) on promoter regions has been 
observed to be highly correlated between pairs of both monozygotic (r=0.82) and 
dizygotic (r=0.85) twins at the time of birth, indicating that GWAM is strongly 
influenced by the in-utero environment but not necessarily by genetics (84). 
However, genetic polymorphisms known as methylation quantitative trait loci 
(meQTL) affect DNA methylation at specific locations (74,85), indicating some 
degree of genetic heritability of DNA methylation patterns. Cis-acting meQTL 
effects have been observed in a large proportion of type 1 diabetes associated GWAS 
loci, suggesting that DNA methylation might mediate the genetic risk of type 1 
diabetes (86). 

Associations between DNA methylation patterns and type 1 diabetes have 
mainly been explored between already-diagnosed individuals and healthy controls. 
Hypothesis-driven studies on specific genomic loci have identified type 1 diabetes 
associated methylation for example at the promoters of the insulin gene and 
interleukin-2 receptor alpha chain (IL2RA) (87,88). The most extensive 
observational study identified thousands of CpG sites with differentially variable 
methylation proportions between 52 pairs of monozygotic twins discordant for type 
1 diabetes, but only one CpG site was identified as differentially methylated at 
genome-wide significance (89). 
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The only published prospective study on the association between DNA 
methylation and later progression to type 1 diabetes reported two differentially 
methylated CpG sites (DMCs) and 28 differentially methylated regions (DMRs), 
some of which were discovered already before the case individuals’ seroconversion 
to islet autoantibody positivity (90). Both these studies (89,90) included some 
umbilical cord blood samples but they were only utilized to test, whether the above-
mentioned findings could be confirmed, and genome-wide cord blood DNA 
methylation measurements were not published. To our knowledge, other published 
results on the possible association between neonatal DNA methylation patterns and 
later progression to type 1 diabetes are not yet available. 

2.1.7 RNA-level gene expression and type 1 diabetes 
The study of genome-wide gene expression on the level of RNA is referred to as 
transcriptomics. There are numerous examples of useful clinical applications that 
have been enabled by transcriptomics, such as non-invasive prediction of cardiac 
allograft rejection from peripheral blood mononuclear cell RNA (91) or molecular 
tumor profiling for the identification of the tissue of origin in cancer of unknown 
primary (92). 

Since most type 1 diabetes associated GWAS loci reside outside protein-coding 
regions, transcriptomic studies are necessary to understand the mechanisms behind 
their impact on disease risk (43). Genetic variants that correlate with gene expression 
are called expression quantitative trait loci (eQTL). Human tissue-specific eQTL 
have been mapped for example by the Genotype-Tissue Expression (GTEx) 
consortium (93), and a human whole blood eQTL database is available as part of the 
BIOS QTL browser (94). 

The association between transcriptomic patterns and type 1 diabetes have been 
studied especially in animal models and in human pancreatic tissues from organ 
donors (95). For example, gene expression microarray profiling of pancreatic islets 
and pancreatic lymph nodes of NOD (non-obese diabetic) mice identified two genes 
that were differentially expressed and alternatively spliced between NOD and 
nondiabetic NOD.B10 mice and showed similar patterns between diabetic and non-
diabetic human organ donors (96). More recent advances include a single-cell-level 
transcriptomic atlas of the human pancreas (97) and an inflammation-specific beta 
cell regulatory landscape (98). 

Given the invasiveness of pancreatic biopsies, pancreatic gene expression 
patterns cannot be utilized in clinical applications, unless they are reflected in 
peripheral blood. Therefore, blood-based signatures of type 1 diabetes have been an 
active area of research, reviewed for example by Cabrera et al. (99). Before Study II 
that was conducted within this thesis and published in 2014 together with a similar 
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but independent German study (100), all peripheral blood transcriptomic studies on 
type 1 diabetes had focused on people with a clinical type 1 diabetes diagnosis at the 
time of sample collection (99). All these studies reported associations between gene 
expression and type 1 diabetes, especially among inflammatory genes (101–107). 
However, it was not known whether any associations could be found in a prospective 
study setting before disease onset or even before the seroconversion to islet 
autoantibody positivity.  

After Study II, pre-seroconversion transcriptomic studies have been conducted 
in a larger whole blood data set with microarrays (108), isolated CD4+, CD8+, and 
CD4-CD8- cell fractions and unfractionated PBMCs with RNA sequencing (109) 
and within islet autoantigen responsive CD4+ T cells with single-cell PCR (110). 
These three recent studies conclude that already during the first year of life, gene 
expression patterns are associated with and/or can even be used to predict later 
progression to islet autoimmunity.  

2.2 High-throughput technologies for 
transcriptomic and epigenomic studies 

2.2.1 Gene expression microarrays 
Gene expression microarray technology was preceded by Northern blotting, which 
was used to probe the expression level of one transcript at the time. The Northern 
blotting workflow included 1) RNA isolation from the cells/tissues, 2) size-
separation of RNA molecules by gel electrophoresis, 3) transfer and attachment of 
the RNA from the gel on a paper or membrane, 4) hybridization of radioactively 
labeled probes complementary to the RNA of interest, and 5) X-ray detection of 
hybridization (111). In gene expression microarray technology, introduced in 1995, 
the probes are readily attached on an array and the expression levels of tens of 
thousands of mRNA molecules can be simultaneously detected (112). 

Gene expression microarray study protocols include 1) isolation, fragmentation, 
and purification of poly-A-tailed mRNA from cells/tissue, 2) production of either 
cDNA or cRNA molecules complementary to the sample mRNA, 3) PCR 
amplification of the target cDNA or cRNA if needed, 4) hybridization of the target 
on the array of readily-attached probes, 5) washing of the arrays to remove 
unhybridized material and 6) detection of hybridization by fluorescent labels (113). 

Different gene expression microarray technologies exist in two main categories: 
two-color and one-color microarrays. Two-color microarrays can only be used with 
paired study-designs: one fluorescent dye is used for the case cDNA sample and a 
different dye for the control cDNA sample, and each pair of samples is hybridized 
on a single array to detect the relative gene expression between the case and the 
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control. The two-color technology has mostly been used in the context of spotted 
microarrays, where the array-to-array-variability is large (114). Spotted arrays are 
glass or nylon surfaces lined with spots of (typically) in-house designed cDNA 
probes that are attached after being generated (115).  

One-color technology can be used in the context of well-standardized 
oligonucleotide arrays, which are produced either by in-situ-synthetization or self-
assembled synthetization of probes/probesets (113). The in-situ-synthetization is 
done directly on the array surface and has been used for example by the manufacturer 
Affymetrix. Illumina uses self-assembled synthetization, which takes place on 
labeled silica or polystryrene beads, deposited on an array of micro-wells. The 
production of synthetic oligonucleotides requires pre-existing DNA sequence 
information but is very efficient compared to cloning probes from a DNA library for 
the spotted arrays (112). The usage of spotted microarrays was largely replaced by 
in situ synthetized oligonucleotide arrays in the end of 1990s, as publicly available 
DNA sequence information was rapidly increasing (113).  

Short oligonucleotide microarrays suffer from significant amounts of unspecific 
hybridization, and probe sequences as short as 25 bases (which used to be the 
standard length) can match more than one transcript (116). Although these issues 
have been alleviated by the increasing probe sequence length, further challenges in 
probe design include the presence of genomic variations and alternative splicing 
events. Manufacturers have kept updating their probe sets to target the sequences 
they are intended to target, and therefore transcript-level measurements from 
different platform versions are not always comparable (117). Probes/probesets from 
different platforms of the same manufacturer might target completely non-
overlapping genomic regions, even if they are labelled with the same identifier (118). 
The main limitation of microarrays is that they can only measure the expression of 
known targets. During the last decade, gene expression microarrays have been 
largely replaced by RNA sequencing. 

2.2.2 Exon microarrays 
Exon arrays have been designed for the detection of alternative splicing events. Two 
major classes of array designs have been implemented for genome-wide alternative 
splicing studies: 1) exon junction arrays and 2) arrays with exon-specific 
probes/probesets (119). Affymetrix human exon arrays include 4 perfect-match 
probes for each of 1.4 million known or predicted exons in the human genome (120). 
Compared to exon junction arrays, they are more easily applicable to gene expression 
studies, and might in fact quantify gene expression similarly or even more accurately 
than gene expression microarrays (121,122). The main limitation of exon arrays is 
that they can only detect alternative exon inclusion/exclusion events among exons 
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targeted by the designed probes. RNA sequencing is much more flexible in detecting 
previously unknown alternative splicing, including events such as intron retention 
and alternative 3’ or 5’ splice sites in addition to exon inclusion/exclusion (123). 

2.2.3 Next-generation sequencing 
High-throughput sequencing is nowadays a relatively cost-efficient method to for 
example quantify gene expression on the RNA level, to obtain the genomic sequence 
of a novel pathogen or to identify DNA methylation patterns in a biological sample. 
Modern day short-read sequencing was preceded by Sanger sequencing, which was 
used in the Human Genome Project, the cost of which has been estimated to have 
been 0.5–1 billion dollars (124). Sanger sequencing was based on introducing the 
fragmented and denaturated DNA sample of interest to a mixture of DNA 
polymerase, primers and all four types of nucleotides, some of which include a 
fluorescently labeled 3’ block that irreversibly terminates the polymerization (125). 
The result is a mixture of double stranded DNA fragments of different lengths, each 
fluorescently labelled with one of the four different colors indicating the type of the 
terminator base. The sequence can then be read by size separation. 

During the last two decades, innovations in sequencing protocols have brought 
the cost of a sequenced genome down to some hundreds of dollars. All protocols 
include: 1) Sample fragmentation and size selection 2) Adapter ligation. The 
adapters typically contain three segments: a short sequence that gets attached to the 
flow cell, a sample identifier to enable multiplexing (several samples sequenced on 
one lane) and a sequence complementary to the primer to initiate amplification and 
sequencing. 3) Library amplification by polymerase chain reaction (PCR) 4) 
Sequencing.  

The most commonly used protocol is Illumina’s reversible terminator short read 
sequencing (124,126). After the library preparation steps, common to all protocols, 
the prepared DNA fragments are washed across a flow cell, lined with sequences 
complementary to the beginning of the adapter sequence. The fragments captured by 
the flow cell are then bridge amplified to generate a cluster of identical sequences 
from each fragment (each cluster corresponding to one read). Fluorecently labelled 
terminator bases, each base with a different colored label, are then added to the flow 
cell, together with DNA polymerase and primers. At each round, unattached bases 
are washed away and the color of the fluorescence of attached bases detected, after 
which the 3' block is removed to start the next round. 
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2.2.4 Reduced representation bisulfite sequencing 
Bisulfite sequencing is a technology to detect DNA methylation at a single-
nucleotide resolution. The detection is based on bisulfite treatment, which converts 
unmethylated cytosine (C) to uracil (U), which is then read as thymine (T). Instead 
of whole-genome bisulfite sequencing (WGBS), a common practice is to use reduced 
representation bisulfite sequencing (RRBS), which captures CpG-rich genomic 
regions and is therefore more cost-efficient than WGBS. In the human genome, the 
small fraction (1%) of DNA captured by MspI enzyme digestion typically covers 
2.5–3 million CpG sites, which is approximately 10 % of the total number of human 
CpG sites (127,128). In comparison, the most common technology used in 
epigenome-wide association studies is the Illumina 450k DNA methylation 
microarray which targets approximately 450 000 CpG sites (129). 

The RRBS protocol (127) includes the following steps (Figure 2): 1) MspI 
enzyme recognizes CCGG sequences and cleaves them asymmetrically, leaving 
CGG in the 5’ end of the top strand and only a C at the 3’ end of the bottom strand. 
This is followed by end repair, which completes the 3’ ends with CG. 2) Both strands 
are A-tailed (a single A added to the 3’ ends) and adapters are ligated to these A-
tails. 3) The fragments are size selected in order to enrich for promoter regions and 
CpG islands. Typically, a fragment size range of 40–220 bp is selected. 4) Bisulfite 
conversion 5) Library amplification by PCR. If proofreading is used, it needs to be 
done with an enzyme that does not stall at Uracil. 6) Sequencing, for example with 
the above-described Illumina protocol. 

The fragment length is an important property to consider in planning RRBS 
experiments. In MspI digested human genome the fragment length distribution is 
skewed towards the shorter end of the spectrum (130). Therefore, increasing read 
length does not linearly increase the number of detected CpG sites. Furthermore, 
paired-end sequencing is not as cost-efficient as it would be in the context of e.g. 
whole genome bisulfite sequencing (WGBS) or RNA sequencing (RNA-seq), where 
the fragment length is typically size-selected to be 200-400 bp (131,132). Paired-end 
RRBS often includes a substantial amount of overlapping pairs of reads. This leads 
to the rejection of some read 2 data to avoid double-calling the methylation statuses 
of cytosines within short fragments (133). 
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Figure 2.  An illustration of the RRBS protocol. Orange color highlights bases that are added at 

the end repair step and do not necessarily reflect the methylation status of the original 
sequence. The removal of end repair biases is described in section 2.3.1.5. 

Coverage is the main limitation of whole-genome and reduced representation 
sequencing. Some genomic regions of interest might only be covered by a few reads, 
in which case the methylation proportion measurement uncertainty is high. A 
common practice is to perform technical validation by a targeted method. Targeted 
pyrosequencing was able to accurately quantify the true methylation proportion of a 
target sequence in a study that compared different DNA methylation assays (134). 
The genomic region of interest is first captured by a specifically designed assay, after 
which the fragments are bisulfite treated and PCR amplified. The number of PCR 
rounds is typically larger than in WGBS or RRBS, since the starting material is very 
small.  

Pyrosequencing is a relatively old method (135) based on detecting DNA 
polymerase activity as light, emitted when ATP sulfurylase and luciferase act on 
pyrophosphate, which is produced only if a base is added to the template DNA of 
interest. Different types of bases are iteratively introduced to the template hybridized 
on a primer. The greater the number of added bases, the greater amount of 
pyrophosphate and the higher the light intensity. One limitation of this sequencing 
method is that the light intensity increases linearly only up to the addition of third 
base. If the DNA sequence of interest for example includes several thymines next to 
a CpG site, the methylation status of that CpG site cannot be reliably determined. 
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2.3 Data analysis strategies in transcriptomics and 
epigenomics 

2.3.1 Technical biases and preprocessing 

2.3.1.1 Preprocessing workflows for gene expression microarray data 

The amount of hybridization of the target material at each probe is observed as 
fluorescence intensity and encoded as numeric values in either binary CEL-files or 
human-readable text files. One-color oligonucleotide microarray data preprocessing 
workflows typically include the following steps: 1) background correction to remove 
optical noise and non-specific signal 2) normalization 3) summarization of probe-
level data to probeset-level or gene-level data 4) present/absent calling. 

Affymetrix microarrays measure each transcript with a set of 16–20 probe pairs: 
each perfect match (PM) probe is paired with a mismatch (MM) probe, which is 
identical to the PM probe for all bases except one in the middle. The purpose of the 
mismatch probes was to quantify non-specific binding, which could be interpreted 
as background noise. Early expression measures were based on either the difference 
or the quotient between pairs of PM and MM intensity values. For example, 
Affymetrix’s software MAS 5.0 summarizes each probeset with a robust average 
log(PM-MM) (136). However, spike-in experiments (performed with hybridization 
solutions of known concentrations of RNA fragments that perfectly match certain 
PM probes) showed that MM probes capture some signal, as well as noise (137). 

The robust multi-array average (RMA) preprocessing workflow for Affymetrix 
microarray data includes the following steps (138): 1) Background correction, which 
utilizes the mode of all log-scale MM intensity values on the array. 2) Quantile 
normalization between arrays, followed by log2-transformation, which removes most 
of the correlation between intensity and variation (137). 3) The expression values μi 
are inferred for each transcript from the following linear model:  

 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑎𝑎𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖, (1) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 is the background corrected normalized log2 transformed PM probe 
intensity value for probe j in sample i, 𝜇𝜇𝑖𝑖 is the sample-specific (log2) expression 
value, aj is the probe-specific affinity and εij is the i.i.d. (independent and identically 
distributed) noise. The fitting is done with Tukey’s median polish method, which is 
robust to outliers. 

The underlying assumption behind present/absent calling is that in the studied 
biological sample, only some genes are expressed, and some threshold value can 
distinguish between present and absent transcripts. Hebenstreit and others 
demonstrated that gene expression distributions in RNA sequencing experiments (at 
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least in humans, mice and Drosophila) are bimodal and the two modes correspond 
to highly expressed and lowly expressed genes (139). For example, in mouse T 
helper 2 (Th2) cell RNA-seq data, the highly expressed genes corresponded to genes 
with activating histone marks (H3K9/14 acetylation, according to ChIP-seq data 
from the same Th2 samples) and included known Th2-specific transcripts, whereas 
the lower peak corresponded to transcripts lacking H3K9 acetylation and included 
transcripts specific to other cell types. They showed that the lower peak in the gene 
expression distribution is neither explained by technical noise nor by contamination 
with other cell types, but repressed genes are expressed in very small quantities. This 
gene expression bimodality is in line with later observations in single cells (140). 
The vast majority of human genes seem to be expressed in episodic bursts and can 
be assumed to be either in state OFF (low-level random transcription) or state ON 
(orders of magnitude higher expression than at the OFF-state) at a given time point 
(141–143). 

In microarray data, expression distribution bimodality is often observed, 
although the lower peak is likely to include unspecific hybridization, as well as lowly 
expressed genes (139). A threshold value for present/absent transcripts can be 
determined for example by fitting a two-component Gaussian mixture model for the 
gene expression distribution (144,145). Other options include selecting an arbitrary 
threshold or estimating a threshold based on some negative and positive controls. 
Transcripts that are virtually absent in almost all samples (in both groups if the goal 
is to compare gene expression between two groups) are often excluded from further 
analysis. 

2.3.1.2 Preprocessing of Affymetrix exon microarray data 

Just as for gene expression microarray data, preprocessing steps for exon microarray 
data include background-correction, normalization, log2-transformation, and 
optionally summarization to exon-level expression values and filtering based on 
present/absent calls. The background correction is usually implemented by the 
manufacturer. For example in the case of Affymetrix human exon arrays, 
background noise is estimated based on pools of probes (different pools 
corresponding to different GC-contents) targeting such non-human genomic regions 
that are not expected to cross-hybridize with the human exon targeting probes (120).  

Often the goal is to detect differentially spliced exons between two groups of 
samples, such as normal vs. tumor. At the (optional) present/absent call filtering step, 
exons are typically required to be expressed in at least one of the study groups within 
genes that are expressed in both study groups. To quantify alternative splicing, each 
exon expression level needs to be normalized to the expression level of the gene it 
belongs to (146). Since microarray measurements are noisy at the lower end of the 
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expression range, limiting the study to highly expressed genes is likely to decrease 
the proportion of false positives among the detected differentially spliced exons 
(119). Other recommended filtering steps include removing probes with extremely 
low between-sample variation (which might indicate saturation) and excluding 
exons with very high (such as 5-fold) expression values compared to the median of 
other exons within the same gene and sample, since such outliers are likely to 
originate from cross-hybridization (120). 

2.3.1.3 PCR biases in bisulfite sequencing 

GC bias is a well-known phenomenon in sequencing data: sequences with a higher 
GC-content tend to have a lower coverage. Although the sequence content can affect 
several stages of the sequencing protocol, such as size selection and sequencing 
errors, library amplification by polymerase chain reaction (PCR) is considered the 
major mechanism behind the GC bias (147,148). This bias is especially relevant if 
the GC abundance correlates with the studied phenomenon, such as DNA 
methylation in bisulfite sequencing studies. After the bisulfite conversion, highly 
methylated regions have a higher GC-content than regions with low methylation 
levels and are consequently amplified less by the PCR.  

A recent systematic analysis of technical biases (149) in DNA methylation data 
compared methylation levels estimated by bisulfite sequencing after different library 
preparation protocols to those quantified with LC/MS. The methylation percentage 
of heat-denaturated bisulfite converted PCR amplified DNA was over-estimated to 
be double compared to the true value (6 % vs. 3 %) at a lowly methylated genome, 
and most of this was ascribed to PCR amplification (hardly any over-estimation was 
observed with an amplification-free protocol in the same setting). The over-
estimation was more modest in the context of higher methylation percentage (22 % 
amplified protocol vs. 15 % LC/MS). Another source of methylation percentage 
over-estimation is the DNA denaturation step. The decreased GC content due to the 
bisulfite treatment increases DNA degradation in high temperatures (150). However, 
according to Olova et al. (149) this only leads to a modest methylation percentage 
over-estimation (3.3 % vs. 3 %). 

The amount of PCR duplication can obviously be decreased by decreasing the 
number of PCR rounds needed. This is relevant when the amount of starting material 
is considered. Fragment size selection is important, since there is a well-known 
inverse correlation between fragment size and amplification (151). If the variation 
of fragment size is high, shorter sequences will be overrepresented in the data. 

PCR biases are especially difficult to take into account in reduced representation 
bisulfite sequencing (RRBS) data analysis. In the context of other types of 
sequencing data, a common practice is to exclude reads that map to exactly the same 
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positions and are therefore more likely to arise from PCR duplication than to 
originate from different fragments (152). This is not possible for RRBS data, which 
includes identical fragments due to the Msp1 enzyme digestion. In order to exclude 
most PCR duplicates, we and others have removed CpG sites with extreme 
coverages. Most CpG sites are covered with 0–200 reads but a small fraction can 
have extreme coverages, up to approx. 100 000 reads. The authors of MethylKit have 
recommended removing CpG sites with coverage above the 99.9th percentile in each 
sample (153). 

2.3.1.4 Preprocessing and alignment of high-throughput sequencing 
data 

Sequencing read data is stored in the FASTQ format, which includes the sequence 
identifier, the sequence, and the quality scores for each base in ASCII format (only 
one character for each score). A common practice is to trim the reads before aligning 
them on the genome of interest. Trimming by quality scores has been shown to 
markedly increase the total number of aligned reads and the concordance between 
different alignment tools (154). The following steps are common to most 
preprocessing workflows of bisulfite sequencing and other types of high-throughput 
sequencing data: 

- Reads are trimmed based on the quality scores. In protocols such as Illumina 
reversible terminator sequencing, the probability of sequencing errors 
increases towards the 3’ end of the read. Quality scores are generated during 
the sequencing based on properties such as light intensity profiles at each 
sequence cluster (each read). The quality of each base within each read is 
typically reported as a Phred score, which is -10log10(error probability). 

- Adapter sequences are removed.  

- After the above steps, reads are excluded based on a length cutoff, such as 
20 bp. 

Adapter sequence and quality trimming are especially important in genetic variant 
and DNA methylation studies, where the exact base at each position matters. The 
above-mentioned trimming steps are less critical in gene expression studies (RNA 
sequencing), where the purpose is to quantify the RNA, in which case adapter 
sequence contamination and sequencing errors are harmful only if they lead to an 
alignment failure. A good practice is to observe quality control plots before and after 
trimming the reads. Quality control tools such a fastQC (155) are useful to detect 
e.g. adapter contamination or other sequence overrepresentation. 

After read trimming and quality control steps, the next step is the alignment of 
sequenced reads to a reference genome. Dozens of sequencing alignment algorithms 
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have been developed, only few of which are being actively used by the scientific 
community (156). Bowtie (157) and BWA (158) and their successors (such as 
Bowtie2 and BWA-SW) remain among the most popular short read alignment tools 
probably due to their efficiency and active maintenance (156). 

2.3.1.5 Bismark workflow for the preprocessing and alignment of 
reduced representation bisulfite sequencing data 

Please refer to Figure 4, Section 4.10. for an example RRBS data analysis workflow. 
The Bismark workflow for RRBS data starts with observing quality control plots and 
performing at least the above mentioned trimming steps, which are implemented for 
RRBS data in the Trim Galore tool (133): 

- Quality trimming: The default setting in Trim Galore is to exclude bases with 
Phred scores below 20 (sequencing error probabilities above 1 %) at the 3’ 
end of each read. 

- Any remaining sequence that does not originate from the DNA fragment of 
interest could potentially lead to alignment failure and errors in methylation 
calls. By default, the Bismark workflow trims any adapter sequence overlap 
from the 3’ ends of reads. In the case of Illumina adapter 
AGATCGGAAGAGC, even a single A observed at the 3’ end of the read 
(overlapping the adapter sequence by one base) is removed. 

In addition to the above-mentioned steps, the removal of end-repair biases is 
important for RRBS data. End-repair is the addition of CG to the 3’ ends of the DNA 
fragments after the digestion with the MspI enzyme, which cuts each CCGG site, 
such that CGG remains at the 5’ end of each fragment but only one C remains at the 
3’ end (Figure 2). The methylation statuses of the cytosines filled in during the end-
repair step do not represent the true methylation statuses of the cytosines in the 
original sequence. The Bismark workflow removes this bias by excluding additional 
2 bases from 3’ ends of sequences that were adapter-trimmed and 2 bases from the 
5’ end of read 2 in the context of paired-end sequencing (133). 

Alignment algorithms for bisulfite sequencing reads need to account for the 
conversion of unmethylated cytosines to thymines, which are observed as guanines 
transformed to adenines on the complementary strand. Bismark creates fully C-to-
T-converted and fully A-to-G-converted versions of each read and applies Bowtie2 
(159) to align them to similarly converted versions of the genome (160). This 
obviously requires 4 times the computational resources needed for Bowtie2 
alignment in non-bisulfite context, since both versions of each read need to be 
aligned to both versions of each genome. 
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Sun and others evaluated the performances of different bisulfite sequencing read 
alignment methods with respect to their ability to detect CpG sites and to accurately 
estimate methylation proportions in simulated data (161). The best-performing 
methods Bismark (160), BS-Seeker2-bowtie2 (162), GSNAP (163) and bwa-meth 
(164) were almost identical with respect to these criteria but Bismark and GSNAP 
were slower than BS-Seeker2-Bowtie2 and bwa-meth (161). Although several more 
recent alignment tools have been developed after Bismark, the main improvements 
have been made in computing time, and comparisons have revealed very little 
difference between the tools with respect to the end results (165). 

The final step in the Bismark workflow is to extract the numbers of methylated 
and unmethylated reads at each cytosine (or more commonly just each cytosine in 
the CpG context). This is a relatively fast and trivial task once the alignment has 
been completed. Each uniquely aligned read is compared to the corresponding 
reference genome sequence. An important issue to consider at this step is the possible 
overlap of pairs of reads in paired-end sequencing data. Such overlaps are especially 
common in RRBS data, where the fragment lengths are size selected to be between 
40–220 bp, and typically at least half of the selected fragments are shorter than 100 
bp in the MspI digested human genome (127,130). By default, Bismark methylation 
extractor excludes any sequence from read 2 that overlaps with read 1 to avoid 
redundant methylation calls. The rationale behind keeping read 1 and excluding (part 
of) read 2 in the event of overlaps is the higher sequencing error rate at read 2 in 
Illumina sequencing (132). 

2.3.1.6 Estimation of bisulfite conversion efficiency 

Bisulfite conversion efficiency is usually estimated by spiking in some DNA that is 
known to be completely unmethylated and can be easily distinguished from the 
genome of interest (166). For example in Studies IV and V, fully unmethylated 
lambda phage DNA was added to each human DNA sample and bisulfite conversion 
efficiency was estimated as the proportion of lambda phage cytosines that were read 
as thymines. Additionally, since DNA methylation occurs almost exclusively in the 
CpG context in mammalian genomes (72,73), the proportion of converted cytosines 
in CHH (C followed by any two bases other than G) and CHG (C followed by any 
base other than G, followed by G) contexts can be utilized as another estimate of the 
bisulfite conversion efficiency. Samples with low (for example < 98 %) conversion 
efficiency need to be excluded, unless the differential methylation analysis corrects 
for it (167). 
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2.3.1.7 M-biases in bisulfite sequencing data 

For quality control purposes, the Bismark methylation extractor quantifies average 
methylation percentages per sequencing read position, separately for CpG, CHG and 
CHH contexts. Ideally, at a given context (such as CpG) the average methylation 
percentage should be identical across read positions; hence any deviations are called 
M-biases. Since M-biases are typically enriched at the ends of sequencing reads, the 
developers of the quality control tool BSeQC recommend quantifying normal 
variation based on middle positions and trimming away 3’ and 5’ end bases that 
exceed it (168). In RRBS data this normal variation is much larger than in WGBS, 
which might be explained by the presence of some transcripts with extremely high 
coverages in RRBS (see section 2.3.1.3 on PCR biases). Furthermore, RRBS reads 
should not be trimmed at the 5’ end, which always starts with a CpG site (127). 
Average methylation at the RRBS 5’ CpG is usually higher than at other read 
positions. CpG sites at middle positions are more likely to originate from CpG 
islands than those in the 5’ end. CpG islands are characterized by hypomethylation 
(169). 

2.3.1.8 SNP detection in bisulfite sequencing data 

A comparative population study revealed that the majority of CpG sites with 
differential methylation between populations contained common SNPs (single 
nucleotide polymorphisms) with different allele frequencies in the studied 
populations (170). This suggests that many of CpG sites that were observed as 
differentially methylated, were probably not differentially methylated. Since 
bisulfite treatment converts unmethylated C to U (read as T), a C to T SNP can be 
misinterpreted as a completely unmethylated CpG site. The removal of SNPs from 
bisulfite sequencing data is therefore an important preprocessing step. Most bisulfite 
sequencing protocols, are strand-specific (171). That is, only cytosine gets converted 
to uracil, whereas guanine on the opposite strand is unaffected. If a T is observed 
opposite to G, the T is most likely a result of the bisulfite conversion and not a SNP.  

SNP detection software such as Bis-SNP (171) are based on Bayesian inference: 
The probability of each possible underlying genotype, given the observed reads, is 
proportional to the prior probability of each genotype (genotype frequencies in the 
population) and the likelihood of observing the reads, given each genotype. Bisulfite 
conversion efficiency and base calling error rates are taken into account in the 
likelihood term. BS-SNPer (172) is essentially a slightly simpler and more efficient 
version of the Bis-SNP algorithm for the detection of SNPs in bisulfite sequencing 
data. It does not, for example, perform base quality score recalibration, which is an 
important step in the Bis-SNP algorithm. 
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2.3.2 Confounding effects 
When multiple explanatory variables affect the response variable, their effects can 
confound each other, and failing to deal with this issue can lead to both false negative 
and false positive findings. The greater the number of independent samples in a 
study, the smaller the likelihood of an unknown confounding factor being 
unbalanced with respect to the variables of interest. Since the number of available 
samples is often very limited in biological studies, the following four aspects need 
careful consideration: 

1. Balanced study design: The effects of two mutually correlated explanatory 
variables are hard to tell apart. Studies need to be designed such that potential 
confounding factors are either balanced with respect to the variable(s) of 
interest (for example equal proportions of males and females selected for the 
patient group and the control group) or avoided (for example only males 
within age range 20–25 included in a study). Technical variables, such as 
sample preparation batches, deserve special attention in ’omics studies. 
Since the number of simultaneously processed samples is limited, matched 
study designs can be useful, even if the downstream statistical inference is 
unmatched. For example, each case individual might be matched with a 
control individual with similar characteristics (such as sex and time of birth). 
If matched pairs (or small groups) of samples are processed within the same 
batch throughout the study, the case and control groups are likely to be 
comparable even in the presence of small batches. Some algorithms have 
been published for the purpose of multivariate study design optimization 
(173,174). 

2. Randomization is applicable to intervention studies. It is the process of, for 
example, using a random number generator to allocate individuals to drug 
and placebo groups in clinical trials. Compared to arbitrary human decisions, 
a random allocation procedure reduces the risk of confounding effects but is 
not sufficient in studies with small sample numbers or batch sizes. Matched 
study designs have been found to outperform unmatched randomized study 
designs, as measured with sensitivity and specificity to detect true effects in 
simulated data, even if the matching is done based on several irrelevant 
covariates in addition to some relevant ones (175). However, it must be noted 
that randomization and matching are by no means mutually exclusive 
options. In randomized trials, the random allocation to study groups can be 
done within each pair/group of matched individuals. Such an approach has 
been taken for example in the above-mentioned non-bipartite matching 
algorithm (174). 
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3. Blinding is an important principle in both intervention and observational 
studies: the investigator should not know the study group the 
sample/individual belongs to, while processing the samples or interacting 
with the study participants (if applicable). Just as randomization, also 
blinding can be combined with matching. For example, a laboratory 
technician might be instructed to process samples 1A and 1B together, 2A 
and 2B together, 3A and 3B together etc. but the labeling of cases and 
controls as ”A” or ”B” might have been decided with a coin flip within each 
pair, such that the technician is blind to the sample groups.  

4. Even if the study design is carefully optimized, the explanatory variable of 
interest rarely has zero correlation with other explanatory variables. Two 
alternative approaches can be taken to deal with potential confounding 
effects in the data analysis phase: 1) the potentially confounding covariates 
can be included in the model or 2) the data can be adjusted with respect to 
some variable(s) before the modeling. Examples of these approaches are 
described in sections 2.3.2.1 (approach 1) and 2.3.2.2 (approach 2). 

2.3.2.1 Multiple linear regression 

In multiple linear regression, a response variable (such as the expression value of a 
gene) is modeled as a linear combination of multiple explanatory variables, which 
can be binary or continuous (such as treatment group, sex, body mass index and 
technical batch): 

 𝐲𝐲 =  X𝛃𝛃 +  𝛆𝛆, (2) 

where y is the dependent variable (a vector of length n, n being the number of 
observations), X is the design matrix of dimensions n × p including a column for the 
intercept and p-1 explanatory variables, β is a p-dimensional vector for the 
coefficients to be estimated from the data, and ε is the error term. If the distribution 
of the i.i.d. error εi (for observations i=1,2,...,n) is Gaussian, the model is an ordinary 
linear regression model, for which the maximum likelihood solution can be 
computed in a closed form. Since the model is additive, each estimated coefficient 
�̂�𝛽𝑖𝑖 of covariate j represents the effect of xj on y that is observed, while the (estimated) 
effects of other covariates are cancelled out. 

2.3.2.2 Batch effect adjustment methods 

If including a covariate in the model is for some reason not possible, one might try 
to adjust the data to remove its effects before the modeling. This approach has 
traditionally been taken to account for batch effects in ’omics studies. The most naïve 
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approach is to zero-center the data within each batch. As one can easily imagine, this 
can lead to both removing true effects and adding false effects to the data, since other 
covariates are not taken into account. A slightly more sophisticated approach is to 
estimate the batch effect from a linear model, which includes at least one covariate 
effect of interest, in addition to the batch effect, and then adjust for the batch effect: 

 𝐲𝐲 =  X𝛃𝛃 + H𝛄𝛄 +  𝛆𝛆  (3)  

 𝐲𝐲adjusted = 𝐲𝐲 − H𝛄𝛄�  , (4) 

where y is the n-dimensional vector of e.g. gene expression values for one gene (for 
samples i=1,2,...,n), X is the design-matrix for some covariate(s) of interest, 
including a column for the intercept term, β is a vector of coefficients for the 
covariates in X, H is the design-matrix for the batches, γ is a vector of coefficients 
for the batches, ε is an n-dimensional vector of error terms, εi ~ N(0, σ2), and 𝛄𝛄� are 
the estimated batch effects. Often the models also include a multiplicative batch 
effect (”scale effect”), in addition to the additive effect γ (”location effect”) 
(176,177). 

However, as Nygaard and others point out, the batch-adjusted data is not free 
from batch effects (178). The original batch effect has just been replaced by a batch-
specific estimation error 𝛄𝛄 − 𝛄𝛄�: 

 𝐲𝐲adjusted = X𝛃𝛃+ H𝛄𝛄 − H𝛄𝛄� + 𝛆𝛆 . (5) 

In case the covariate of interest correlates with the batches, the conclusions on the 
covariate’s effect on 𝐲𝐲adjusted can be heavily influenced by the batch effect 
estimation error (unless the batch effects are again included in the model). The most 
popular batch effect correction method is ComBat, which has been cited more than 
2000 times in 13 years and is still being actively used by the scientific community 
(90,179). It uses an empirical Bayes procedure to estimate the batch effects (176). 
This procedure, which utilizes information across genes to obtain robust batch effect 
estimates, can be expected to decrease the estimation error, as discussed in Section 
2.3.3.2. However, in practice even ComBat has been discovered to increase the type 
1 error rate in study settings, where the covariate of interest correlates with the 
batches (178). 

2.3.3 Strategies to address high dimensionality 
In ’omics studies the sample numbers are often very small compared to the number 
of features measured from each sample. For example, the number of features in a 
typical gene expression study is approximately 20000 (genes), while the number of 
independent samples is rarely more than 100, often just a handful. The multiple 
testing problem is introduced in Section 2.3.3.1, some strategies to address the 



Review of the Literature 

 37 

challenge of inference with a limited number of observations are outlined in Sections 
2.3.3.2 and 2.3.3.3, and Section 2.3.3.4 discusses some strategies to group biological 
features to larger functional entities. 

2.3.3.1 Multiple testing correction in ’omics studies 

The typical key question in ’omics studies is, which features, such as proteins or 
genomic locations, are important for a given phenomenon, such as a disease. If the 
association of each feature is tested separately, multiple testing correction becomes 
vital. For example, the expected number of nominal p-values that fall under threshold 
0.05 is 1000 out of 20000 independent tests, if the data is random noise modeled 
with the correct distribution. The most commonly used multiple-testing correction 
methods are the Bonferroni correction (180) and Benjamini-Hochberg correction 
(181). Bonferroni correction multiplies the p-value by the number of tests to estimate 
the family-wise error rate (FWER), or equivalently divides the significance threshold 
with the number of tests. Benjamini-Hochberg correction divides the p-value by its 
rank and multiplies it by the total number of tests to compute the false discovery rate 
(FDR) i.e. the expected proportion of false discoveries among the discoveries at a 
given p-value threshold. 

Genome-wide significance (GWS) is a concept originally developed in genome-
wide association studies (GWAS), where genotype-phenotype-associations are 
investigated across the genome, typically including data from thousands of 
individuals. GWS is a Bonferroni-corrected significance threshold for an estimated 
number of independent tests in GWAS. The scientific community has set the 
threshold at p ≤ 0.5 × 10-8, based on an estimated number of 1 million common SNPs 
that are independent of each other (not in linkage disequilibrium) in the European 
human genome (182). The estimated GWS thresholds based on different approaches 
have been remarkably close to each other, and genotype-phenotype-associations 
reaching it (p ≤ 0.5 × 10-8) have been highly reproducible (182,183). A relaxation of 
this threshold has been suggested based on the observation that a large proportion of 
genotype-phenotype-associations with p-values close to GWS (between 0.5 × 10-8 
and 10-7) have been reproduced i.e. the threshold p ≤ 0.5 × 10-8 has been reached by 
combining more data with the originally published data (184).  

The rationale behind estimating a GWS threshold for a population is to achieve 
fair FWER control based on the total number of independent hypotheses, instead of 
the limited number of hypotheses that can be tested with a given technology. Since 
the number of tested associations varies from study to study, reporting the nominal 
(uncorrected) p-values and using a standardized significance threshold improves the 
comparability of results from different studies. A similar approach has later been 
adopted in epigenome-wide association studies (185). 



Essi Laajala 

 38 

FWER control is an extremely conservative approach to multiple testing 
correction in biological studies. Since the effect sizes are typically small, genome-
wide significance can only be reached with a large number of samples. If the number 
of independent samples is less than 1000, typically the goal is to generate rather than 
to test hypotheses. The common practice is to report all potential associations with a 
relaxed threshold for the nominal p-value, such as 10-5, required by the GWAS 
Catalog (186). Reported potential associations that have not reached genome-wide 
significance are useful as hypotheses that remain to be tested. 

2.3.3.2 Bayesian and empirical Bayes methods 

Bayesian approaches have some important advantages for studies with modest 
numbers of independent observations. The goal in Bayesian inference is to update 
prior knowledge of the studied phenomenon based on available data. Instead of 
maximum likelihood estimates, posterior probability distributions are evaluated for 
the parameters. If very little data is available to estimate a parameter value, this is 
reflected in the posterior variance; and outliers are not as likely to dominate the 
conclusions as in maximum likelihood inference. Furthermore, useful prior 
knowledge might be incorporated in the model before seeing the data. For example, 
if the goal is to infer the average weight gain in a group of adults within 1 month of 
starting a new antidepressant, a slightly informative prior, such as N(μ = 0, σ=20 kg) 
could be chosen to limit the search space to humanly possible values, while making 
no prior assumptions on the direction of change.  

In contrast to standard Bayesian methods, empirical Bayes approaches utilize 
data to estimate the parameters of the prior distribution (hyperparameters). The 
difference between empirical Bayes and Bayesian hierarchical models is that 
empirical Bayes methods find maximum likelihood estimates for the 
hyperparameters, whereas Bayesian hierarchical models evaluate their distributions.  

In bioinformatics, the most widely-adopted empirical Bayes method is 
implemented in the R package limma (187), originally developed for gene 
expression microarray studies and useful for any high-dimensional data with 
Gaussian noise. Limma has also become popular in RNA sequencing analysis 
combined with a transformation, such as voom (188), to meet the Gaussian noise 
assumption. Combined with voom, limma outperformed many negative binomial 
models in RNA sequencing data analysis in the context of modest (< 20) sample 
numbers (189). In another differential methylation method comparison study for 
RNA sequencing data, it was more robust to outliers than any other parametric model 
evaluated (190). 

Limma is a linear model with an empirical Bayes technique to estimate the 
residual variances for the t- and F-statistics. The prior for the variances is estimated 
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from all genes on the microarray.  The moderated residual variance estimates for 
gene g become: 

 �̃�𝑠𝑔𝑔2 =  𝑑𝑑0𝑠𝑠0
2+𝑑𝑑𝑔𝑔𝑠𝑠𝑔𝑔2

𝑑𝑑0+𝑑𝑑𝑔𝑔
, (6) 

where 𝑠𝑠𝑔𝑔2 is the residual sample variance of gene 𝑔𝑔, 𝑠𝑠02 is close to the mean of all 𝑠𝑠𝑔𝑔2, 
and 𝑑𝑑0 and 𝑑𝑑𝑔𝑔 are the corresponding degrees of freedom, reflecting the numbers of 
independent observations available to estimate 𝑠𝑠𝑔𝑔2 and 𝑠𝑠02 (187). If the number of 
samples is small (such as 2–3 per group, which was common in 2004), the variance 
estimates for a given gene are heavily shrunk towards the common mean of all genes. 

A similar approach has later been applied to estimate the dispersion parameter 
of a negative-binomial model for RNA sequencing data, implemented in the R 
package edgeR, first for two-group comparisons (191) and later as a more flexible 
generalized linear model (192). The main criticism towards this approach is that in 
case the data contains outliers at gene g, the variance of gene g will be 
underestimated, since it is shrunk towards the common mean. One strategy to 
address this problem is to downweigh outliers during the iterative maximum 
likelihood estimation of parameter values. Such an extension to the GLM version of 
edgeR has been implemented in the R package edgeR-robust (193). 

2.3.3.3 Rank-based inference 

Rank-based strategies are nonparametric methods that avoid making assumptions 
about the distribution of the data. Instead of estimating distribution parameters, the 
test statistic is computed based on ranks and the significance is typically estimated 
with a permutation test (unless the test statistic follows a known distribution). Rank-
based methods can outperform parametric methods if the data does not follow the 
distribution assumptions of the parametric models. This has been demonstrated for 
example in RNA-seq data, where extreme outliers are relatively common for both 
technical and biological reasons. The introduction of even a single outlier to 
simulated RNA-seq data sets heavily increased the type 1 error rates of some 
negative binomial models, such as edgeR, in the context of small sample numbers (n 
≤ 10), whereas the non-parametric SAMseq was unaffected (190). SAMseq performs 
a permutation test on a slightly modified Wilcoxon rank sum test statistic after a 
resampling procedure to normalize the expression values to account for differences 
in sample coverages (194). 

Rank product (195) is a classical nonparametric method for two-group 
comparisons in gene expression microarray studies. For paired study designs, it ranks 
genes by pairwise fold changes, normalizes each rank by the total number of genes 
measured for the pair of samples, and calculates the product of these normalized 
ranks RPg for each gene (or some other feature) g: 
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 𝑅𝑅𝑃𝑃𝑔𝑔 = ∏ 𝑟𝑟𝑖𝑖𝑔𝑔/𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1  , (7) 

where rig is the rank of gene g within the ith pair of samples and ni is the total number 
of genes measured for the ith pair of samples. For unpaired study designs, the 
procedure is the same, except the rank products are computed over the ranks of all 
pairwise fold changes between the cases and controls (or some other study groups). 
RPg is the probability of the observed or better ranks, assuming the null hypothesis 
was true for all genes, and is hence akin to a nominal p-value. The false discovery 
rate is estimated with a permutation test. 

Rank product was developed during the time, when two-group comparisons in 
microarray studies were typically based on either Welch’s t-tests or just observed 
fold changes without any significance estimation. Estimating within-group variation 
based on 2–5 biological replicates or ignoring statistical significance altogether are 
both obviously problematic approaches. T-tests call small between-group 
differences significant, as long as the within-group differences are even smaller. The 
authors of rank product argue that small gene expression differences, such as 1.1-
fold, are rarely biologically relevant, even if they are statistically significant (195). 
Furthermore, the within-group variation can easily be underestimated, given the 
limited sample numbers. The empirical Bayes approach limma (187), which was 
published around the same time with rank product, successfully addressed this 
problem by utilizing the parallel nature of microarray studies for more stable 
variance estimation (see Section 2.3.3.2). Rank product avoids the need to estimate 
variation altogether. Compared to other methods for differential expression 
detection, available during the microarray era (including limma), rank product has 
been observed to perform especially well if sample numbers are small (196,197). 

Other rank based approaches in bioinformatics include various forms of 
transforming the data to ranks, plugging them in analysis of variance formulae and 
evaluating the significance of the test statistic either based on a known distribution 
under asymptotics or based on a permutation test, in case the number of observations 
is small (198). Top scoring pairs (k-TSP) (199,200) is a simple and widely-used 
nonparametric classification method, which has been useful as such and combined 
with other machine learning algorithms (201). Top scoring pairs is based on 
identifying pairs of features with consistent relative ranks in one group and the 
opposite pattern in the other. A more recent rank-based personalized medicine tool 
for cancer studies is based on a similar idea: Pairs of genes with stable relative ranks 
are identified in normal samples (minimum 99 % consistency is considered stable), 
after which genes or pathways with opposite patterns are identified for each diseased 
individual (202). 

The main limitation of rank-based methods, such as the ones described above, is 
that they are less powerful compared to parametric alternatives, in case the data 
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meets the distribution assumptions (194,198). Also, permutation tests can be time-
consuming, and huge numbers of permutations are needed, if the goal is to reliably 
estimate small p-values (203). In the presence of confounding covariates, special 
care needs to be taken to meet the exchangeability assumption of permutation tests. 
That is, the empirical null distribution should reflect the heteroscedasticity structure 
of the original data. If an explanatory variable is permuted, its joint distribution with 
other explanatory variables should remain unchanged. In some cases this can be 
achieved with simple block-wise permutations (for example permuting case- and 
control-labels of individuals instead of samples, when several samples have been 
collected from each individual), and several strategies have been implemented for 
permutation testing in the presence of more than one explanatory variable (204).  In 
practice, tools with permutation-based significance testing are often limited with 
respect to their ability to deal with covariate effects. 

2.3.3.4 Gene set analysis 

Features in ’omics studies can be grouped to functional entities, such as signaling 
pathways or co-expressed genes. Observations on individual features in biological 
high-throughput data are rarely informative unless other related features show 
similar patterns. If associations between features and explanatory variables are first 
evaluated on the level of individual features, enrichment of functional entities (e.g. 
pathways or gene ontologies) on the list of selected features (e.g. differentially 
expressed genes) is typically evaluated through Fisher’s exact test. Alternative 
strategies achieve better statistical power by directly modeling this higher level 
instead of individual features. Some methods that focus on differentially methylated 
genomic regions instead of individual CpG sites are discussed in Section 2.3.4.3, 
while this section focuses on higher-level functional grouping of genes. 

Most functional annotations of genes are based on evidence from scientific 
literature that is either automatically searched, collected from authors, and/or expert-
curated. For example, Gene Ontologies (205,206) are a large scientific consortium 
project that aims to provide the latest scientific consensus knowledge on gene 
functionalities. Literature-based annotations have the obvious limitation that 
literature is not available for all genes. GeneNetwork.nl (207) addresses this issue by 
providing gene annotations that are based on principal component analysis (PCA) 
on publicly available RNA-seq data from more than 31 000 samples. They computed 
enrichment scores of functionally annotated gene sets from public databases, such as 
KEGG pathways and human phenotype ontology (HPO) terms, for each eigenvector. 
The association of any gene to terms/pathways can be estimated based on the 
correlation between the gene’s eigenvector coefficients and the eigenvector 
enrichment scores for each term/pathway.  
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Chaussabel and others developed a functional annotation resource for the field 
of immunology by grouping consistently co-expressed genes to modules that were 
then annotated by automatic literature search (208). Specifically, they used 
Affymetrix gene expression microarrays to analyze peripheral blood mononuclear 
cells (PBMCs) from 239 individuals with one of eight different diseases, such as 
systemic lupus erythematosus, influenza A or melanoma. K-means clustering of 
gene expression profiles was done separately within each subset of samples 
representing different diseases, and a module was defined as a group of genes that 
clustered together in at least 6 out of 8 diseases. The modules were functionally 
annotated through an automatic literature search (209) on publication abstracts from 
the Medline database. Altogether 14 out of 28 modules were annotated to cell types 
or immune processes, based on frequent co-appearance of terms and gene names, 
normalized to the overall frequency of each term and the total number of abstracts 
containing each gene name. 

Strategies that directly model associations between explanatory variables and 
sets of features include Gene Set Enrichment Analysis (GSEA) (210), which was 
developed in the early microarray era but is still being actively used by the scientific 
community. The enrichment score in GSEA is a Kolmogorov-Smirnov-like statistic 
based on the overrepresentation of features belonging to a pathway (or some other 
gene set of interest) on the extremes of a ranked list of features. The ranking can be 
based on any metric that represents the features’ association to the biological 
phenomenon of interest, for example the average expression difference between two 
groups of samples. The basic principles of GSEA have been further developed by 
several more recent gene set analysis strategies (211,212). 

2.3.4 Models for spatially correlated count data 
Sequencing technology quantifies DNA/RNA sequences in read counts. In the case 
of bisulfite sequencing, DNA methylation at each cytosine is quantified as numbers 
of methylated reads (cytosines) and numbers of unmethylated reads (thymines). The 
total number of methylated and unmethylated reads is referred to as coverage. 

Flexibility and the availability of a closed-form maximum likelihood solution 
are attractive properties of ordinary linear models with Gaussian noise assumptions. 
Although such models can not directly be applied to sequencing count data, they 
have been used together with some simple variance stabilizing transformations. 
Examples include the log transformation for RNA-seq counts and the logit 
transformation for methylation proportions. Unlike gene expression microarray data, 
sequencing count data meet the Gaussian noise assumption poorly even after such 
transformations. For both technical and biological reasons, bisulfite sequencing and 
RNA-seq data are zero-inflated (213–215).  
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Moreover, such strategies ignore the technical variation at each feature. If for 
example bisulfite sequencing counts are transformed to percentages, the coverage 
information is lost. That is, 10 out of 50 reads methylated at some CpG site will be 
observed as being no different from 1 out of 5 reads methylated (20 % methylation 
in both cases), although the technical uncertainty is much greater in the latter case. 
Some models address this issue by including coverage-weights in the linear 
modeling strategy (188,216). The other option is to directly model the data 
generating process with a suitable distribution. Poisson and negative binomial 
models are applicable to RNA sequencing data (191,217–220). Sections 2.3.4.1 and 
2.3.4.2 introduce beta-binomial and binomial mixed effect models for bisulfite 
sequencing data. Section 2.3.4.3 discusses the spatial correlation issue. 

2.3.4.1 Beta-binomial regression 

The technical variation in bisulfite sequencing data is most naturally captured with 
a model, where the number of methylated reads yij in each sample i and cytosine j is 
binomially distributed with parameters πij and nij, where πij is the true underlying 
methylation proportion and nij is the total number of reads. The between-sample 
(biological) variation of the methylation proportion can then be modeled with a beta 
distribution, which is a conjugate prior of the binomial likelihood. The methylation 
proportion is modeled as a regression problem through a link function, such as logit. 
Maximum likelihood estimation of regression coefficients requires iterative 
optimization, but is relatively straightforward, due to the tractability of the beta-
binomial distribution. 

Beta-binomial regression was first applied to bisulfite sequencing data already 
in 2011 (221) and later implemented as differential methylation analysis tools, such 
as RADMeth (222), DSS (223,224), and MOABS (225). The beta-binomial model 
RADMeth has outperformed other types of approaches, such as ordinary linear 
models, Poisson regression and logistic regression (167,226,227) 

2.3.4.2 Generalized linear mixed effect models for bisulfite sequencing 
data 

The main limitation in modeling the between-sample variation with a beta 
distribution is that only binary covariate effects can be included. To increase 
flexibility, binomial mixed effect models have been developed for the detection of 
differential methylation (167,220,227). They can include both binary and continuous 
fixed covariate effects and model arbitrary covariance structures as random effects. 
A generalized linear mixed effect model (GLMM) for bisulfite sequencing data is 
formulated for one CpG site as: 



Essi Laajala 

 44 

 𝑦𝑦𝑖𝑖~𝐵𝐵𝐵𝐵𝑛𝑛(𝑛𝑛𝑖𝑖,𝜋𝜋𝑖𝑖), (8) 

 𝑙𝑙𝑙𝑙𝑔𝑔 𝝅𝝅𝒊𝒊
𝟏𝟏−𝝅𝝅𝒊𝒊

=  𝒙𝒙𝑖𝑖T𝛃𝛃 + 𝒛𝒛𝑖𝑖T𝐮𝐮+  ei, (9) 

where 𝑦𝑦𝑖𝑖 is the number of methylated reads for sample i, 𝑛𝑛𝑖𝑖 is the total number of 
reads, and 𝜋𝜋𝑖𝑖 is the underlying methylaton proportion, which is modeled through the 
logit link function as a sum of linear mixed effects and Gaussian noise. Here 𝒙𝒙𝒊𝒊 is 
the design vector (for sample i) of length p, p is the number of covariates modeled 
as fixed effects, 𝛃𝛃 is the vector of fixed effect coefficients (length p), 𝒛𝒛𝒊𝒊 is the design 
vector of random effects of length k, 𝐮𝐮 is the vector of random effect coefficients of 
length k, and ei is the residual. The random effects and residuals are both normally 
distributed with mean 0. The residuals are independent and identically distributed, 
whereas the random effects u can have any covariance structure.  

The logit link function is optimal for interpretability of binomial regression 
models: each model coefficient represents the increase in log odds when the 
explanatory variable value increases with 1 unit (if other variables were kept 
constant). Extreme values 0 and 1 are problematic in this context, since they are 
infinite (–∞ and ∞, respectively) in the logit-transformed space. The convergence of 
such GLMs can be markedly improved by adding 1 to the observed numbers of 
successes (methylated reads) and 2 to the numbers of trials (total number of reads), 
as recommended for example by the authors of PQLseq (220). Similar pseudo-count 
transformations are commonly used for other types of count data, such as RNA 
sequencing reads or microbial abundance counts (228,229). 

The flexibility of GLMMs comes at the cost of having to deal with intractable 
marginal likelihoods. Unlike linear (Gaussian noise) models, GLMs do not have 
closed form solutions, and unlike GLMs, GLMMs cannot be solved with relatively 
simple iteratively reweighted least squares (IRLS) techniques. The options include 
approximating the posterior distribution with techniques such as Markov Chain 
Monte Carlo (MCMC) sampling or finding maximum likelihood estimates with 
iterative techniques tailored for GLMMs. Of the above-mentioned methods for 
differential methylation detection, MACAU (227) implemented a Gibb’s sampler to 
approximate the posterior distribution, even though the goal was to find maximum 
likelihood estimates and standard errors for the regression coefficients to compute 
approximate (frequentist) Wald test p-values. LuxUS (167) is a Bayesian method 
that used Hamiltonian Monte Carlo sampling to approximate the posterior 
distributions of the model parameters and to test hypotheses by using Bayes factors. 
PQLseq (220) used iterative optimization to find maximum quasi-likelihood 
estimates for the coefficients. 

Briefly, the optimization algorithm implemented in PQLseq maximizes a 
Laplace-approximated joint quasi-likelihood (quasi-, since it is not an actual 
probability distribution that would integrate to 1) with an expectation maximization 
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(EM) algorithm that iterates between updating pseudo-data and updating parameters 
until convergence. At each iteration, pseudo-data is generated based on the current 
estimates of the parameters using a second order Taylor expansion. The next 
parameter estimates can then be inferred using a standard algorithm designed for 
linear mixed effect models. Just as in the case of linear mixed effect model fitting 
(230), this process alternates between updating the fixed and the random effect 
parameters. 

2.3.4.3 Strategies to account for spatial correlation in bisulfite 
sequencing data 

Methylation-determining regulatory elements can establish and maintain the 
hypomethylated state of regions, such as promoters (231). Therefore it is not 
surprising that strong spatial correlation between methylation statuses of CpG sites 
have been observed up to a distance of 1–2 kb (77). Accounting for the spatial 
correlation between methylation statuses of CpG sites and studying differential 
methylation on the level of regions (rather than individual CpG sites) is of interest 
in DNA methylation array studies (232), and even more important in bisulfite 
sequencing studies, where the resolution is higher. 

Different strategies have been developed to account for the spatial correlation 
either 1) before and/or during, or 2) after the model fitting and hypothesis testing. 

Type 1) tools, include for example dmrseq (216), which first combines CpG sites 
to candidate differentially methylated regions (DMRs) by identifying adjacent sites, 
whose methylation difference is to the same direction (with a liberal cutoff), and fits 
a generalized least squares model including a region-level spatial correlation 
structure. BiSeq (233) utilizes information from adjacent CpG sites to improve the 
stability of methylation proportion estimates through kernel smoothing, performs a 
naïve t-test at each individual CpG site and combines differentially methylated CpG 
sites (DMCs) to DMRs based on a t-statistic cutoff. LuxUS (167) fits a GLMM on 
pre-defined candidate regions and models the spatial correlation between CpG sites 
directly through random effects. A pre-analysis method is implemented for candidate 
region formation, based on preliminary CpG-level differential methylation analysis 
and other criteria, such as a 2 kb maximum window length. 

Type 2) approaches perform hypothesis testing on the level of individual CpG 
sites first, and adjust p-values for their spatial correlation afterwards for example 
with an autocorrelation-adjusted Z-test (222,234) or a sliding linear model SLIM 
(235), which is the default multiple testing correction method in MethylKit (153). 
The autocorrelation-adjusted Z-test is also known as a Stouffer-Lipták-Kechris 
correction (234), which is described and discussed in Study V. Briefly, it performs a 
sliding-window meta-p-value analysis, where it computes the weighted sum of 
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probit-transformed p-values (up to a user-defined distance) and corrects for the lack 
of independence between the p-values by adjusting for their autocorrelation. The 
autocorrelation is estimated beforehand through a sliding window analysis across the 
genome.
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3 Aims 

The aim of this thesis was to contribute to a better understanding of early-life risk 
factors of type 1 diabetes and to improve existing analysis workflows in 
transcriptomic and epigenomic studies. The more specific goals were: 

I. Evaluation of methods for the detection of differential exon 
inclusion/exclusion events between two groups in Affymetrix exon array 
data 

II. Comparison of early longitudinal gene expression patterns between 
children who later develop type 1 diabetes and control children who 
remain healthy 

III. Exploration of transcriptomic differences between neonates born in 
Finland, Estonia, and Russian Karelia with contrasting standards of 
living 

IV. Comparison of DNA methylation patterns between neonates who later 
develop type 1 diabetes and control children who remain healthy 

V. Empirical estimation of the false discovery rate of common workflows 
for the detection of differentially methylated regions in bisulfite 
sequencing data 
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4 Materials and Methods 

4.1 Detection of differential splicing between two 
groups of samples (I) 

Study I compared methods for the detection of differential splicing in publicly 
available Affymetrix Human ST 1.0 Exon Array data, where each exon is targeted 
with a set of probes (usually 4 probes per exon). Splicing index (SI) is a simple model 
for comparing exon inclusion between two samples (146). Each exon-level 
expression value is first normalized to the expression of the gene it belongs to. 
Splicing index is the log-ratio of these normalized exon-level values between two 
samples: 

 𝑆𝑆𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢𝑔𝑔 = �𝜇𝜇𝑢𝑢𝑢𝑢 − 𝜇𝜇𝑢𝑢𝑔𝑔� − �𝜇𝜇𝑢𝑢𝑢𝑢 −  𝜇𝜇𝑢𝑢𝑔𝑔�, (10) 

where 𝑆𝑆𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢𝑔𝑔 is the splicing index of exon e within gene 𝑔𝑔 between samples u and 
v, 𝜇𝜇𝑢𝑢𝑢𝑢 and 𝜇𝜇𝑢𝑢𝑔𝑔 are the normalized log2-transformed exon and gene expression 
estimates of sample u, and 𝜇𝜇𝑢𝑢𝑢𝑢 and 𝜇𝜇𝑢𝑢𝑔𝑔 are those of sample v. The exon-level and 
gene-level summary expression values can be calculated with a procedure such RMA 
(138), as described in Section 2.3.1.1. We developed a probe-level splicing index: 

 𝑆𝑆𝐼𝐼𝑢𝑢𝑢𝑢𝑘𝑘 = 𝑥𝑥𝑢𝑢𝑘𝑘 − 𝑥𝑥𝑢𝑢𝑘𝑘 − 𝜇𝜇𝑢𝑢𝑢𝑢𝑔𝑔, (11) 

where 𝑆𝑆𝐼𝐼𝑢𝑢𝑢𝑢𝑘𝑘 is the splicing index of probe k (within gene 𝑔𝑔) between samples u and 
v, 𝑥𝑥𝑢𝑢𝑘𝑘 and 𝑥𝑥𝑢𝑢𝑘𝑘 are probe intensities, and 𝜇𝜇𝑢𝑢𝑢𝑢𝑔𝑔 is the estimated gene expression 
change between samples u and v, which can be for example the difference between 
median log2 probe intensities over all probes targeting gene 𝑔𝑔, as suggested earlier 
in the context of gene expression studies (236). Between-group differences can then 
be summarized for each probe for example by calculating a moderated t-statistic over 
pairwise splicing indexes with the empirical Bayes method implemented in package 
limma (Smyth 2004, Section 2.3.3.2). These statistics are summarized for each exon 
as the median over the probes targeting the exon. Since this pairwise differential 
splicing analysis strategy was inspired by probe-level expression change averaging 
(PECA) (236) and the splicing index, we call it PECA-SI. 

We compared the ability of PECA-SI to rank differential splicing events to seven 
other strategies: RMA-SI, PLIER-SI, RMA-MIDAS, PLIER-MIDAS, RMA-LM, 
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PLIER-LM, and FIRMA. The splicing index methods RMA-SI and PLIER-SI 
summarize the probe level intensities to exon-level and gene-level expression values 
before computing the exon-level SI for each pair of samples, as in Equation (10). 
The summarization is done either with the RMA procedure (138) or the probe 
logarithmic intensity error model PLIER, which is part of commercial microarray 
data preprocessing software provided by Affymetrix. Similarly to RMA, it accounts 
for probe affinities that are assumed to have an additive effect on the total signal on 
the log scale, and aims at robust parameter estimation. PLIER (by default) uses the 
difference between each perfect match (PM) probe and its paired mismatch (MM) 
probe intensity to model background-corrected signal, but improves its predecessor 
MAS 5.0 by accounting for the dependency of the error on the intensity and does not 
assume the errors of the MM and PM probe intensities to be equal within each pair 
of probes (237). Since Affymetrix Exon arrays lack mismatch probes, the 
background correction is based on the median of probes that target a different 
genome but have the same GC-content (238). 

Affymetrix’s exon-level Microarray Detection of Alternative Splicing (MIDAS) 
approach (238) is based on the splicing index. It adds a small constant to the exon-
level and gene-level intensities (before the log2-transformations) to stabilize the 
variance of the splicing index, which would otherwise be large close to the detection 
limit. The splicing index of each exon is then modeled as a sum of group effects and 
i.i.d. noise, and the significance of the group effect(s) of interest are evaluated by 
analysis of variance (ANOVA). 

The linear model approaches RMA-LM and PLIER-LM were implemented as 
described by the authors of the two-way Analysis of Splice Variation (ANOSVA) 
method (239). ANOSVA models the observed exon intensities as a sum of baseline 
gene expression, an exon effect, a sample group effect, an interaction effect between 
the exon and the sample group, and the i.i.d. noise. Exons that have a significant 
interaction effect with the sample group are considered differentially spliced. 

Finding Isoforms using Robust Multichip Analysis (FIRMA) (240) was 
considered the state-of-the art method to compare to. It models alternative splicing 
as an outlier detection problem. As in Equation (1) in Section 2.3.1.1, the normalized, 
background-corrected, and log2-transformed intensity value of each probe is 
modeled as a sum of sample-specific gene expression, probe affinity effect, and the 
error term. The parameters for the model are evaluated with iteratively reweighted 
least squares (IRLS) method. The final alternative splicing score of each exon is the 
median probe-level residual over the probes targeting the exon divided by their 
median absolute deviation. This FIRMA score is calculated separately for each 
sample and summarized to a t-statistic for a two-group comparison.  
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4.2 Evaluation of methods for the detection of 
differential splicing in synthetic and real data (I) 

The methods for differential splicing detection were evaluated with respect to 
reproducibility, specificity, and sensitivity in real and simulated data. The data sets 
are described in Table 1, and further details can be found in the Methods section of 
Study I and the original publications associated with each data set. 

Table 1.  Data sets and criteria used in the evaluation of methods for the detection of differential 
splicing between two groups of samples. 

Evaluation with 
respect to: 

Description Data set 

AUROC Synthetic data with characteristics similar to Affymetrix 
exon microarray data for 10000 genes with two levels of 
noise and 1-5 exons per gene simulated as differentially 
spliced between two groups of 10 samples 

Simulated as 
described in (240)  

Reproduciblility Total RNA from two tissues (brain and heart) mixed in 
different proportions, 3 biological replicates of each 
mixture. Ideally, differences that are detected between 
pure brain vs. pure heart samples should also be 
detected between samples with unequal proportions of 
brain and heart tissue. Reproducibility was defined as the 
overlap of top k1 findings in mixed vs. pure data. 

Example tissue 
mixture data 
provided by 
Affymetrix2 

Reproducibility Tissue pool and brain RNA samples hybridized in two 
different laboratories (2 technical replicates of each of the 
5 brain and 5 pool samples). Reproducibility was defined 
as the overlap of top k findings (differentially spliced 
exons in heart vs. tissue pool) between the two 
laboratories. This was evaluated with all combinations of 
2–4 pairs of technical replicates per group.  

Laboratory 
comparison data, 
Gene Expression 
Omnibus (GEO) 
accession code 
GSE13072 (241) 

Sensitivity RT-PCR-confirmed brain-specific exons in an independent 
set of samples from (146) were considered true positives. 
False positive rate at different significance thresholds was 
evaluated with a permutation analysis, where heart and 
pool sample labels were permuted 100 times 

Laboratory 
comparison data, 
Gene Expression 
Omnibus (GEO) 
accession code 
GSE13072 (241) 

Reproducibility 10 matched pairs of tumor and normal tissue samples. 
Reproducibility was defined as the overlap of top k findings 
(differentially spliced exons between tumor and normal tissue) 
detected in independent subsets of 2 - 4 sample pairs 

Colon cancer data 
(242) 

AUROC Positive and negative findings in colon cancer data, as 
determined by RT-PCR in the same samples (242) 

Colon cancer data 
(242) 

 
 
1  k = 100, 500, 1000, 1500, 2000 
2  Downloaded from www.affymetrix.com/support/technical/sample_data/gene_1_0_array_data.affx 

which nowadays (02/2021) re-directs to www.thermofisher.com/fi/en/home/life-
science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/gene-
st-array-data-set.html  

http://www.affymetrix.com/support/technical/sample_data/gene_1_0_array_data.affx
http://www.thermofisher.com/fi/en/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/gene-st-array-data-set.html
http://www.thermofisher.com/fi/en/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/gene-st-array-data-set.html
http://www.thermofisher.com/fi/en/home/life-science/microarray-analysis/microarray-data-analysis/microarray-analysis-sample-data/gene-st-array-data-set.html
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4.3 Sample collection and study design (II, III, IV 
and V) 

The samples for these studies came from two prospective type 1 diabetes study 
cohorts: the Finnish Diabetes Prediction and Prevention Project (DIPP, Studies II, 
IV and V) and DIABIMMUNE (Study III). DIPP has been collecting follow-up data 
on children at risk of type 1 diabetes since 1994. The genetic type 1 diabetes risk of 
each participant is evaluated at birth based on their HLA-DR/DQ haplotype 
(243,244), determined from a dried spot of umbilical cord blood, and newborn 
infants with high or moderate risk are invited to the follow-up, which includes islet 
autoantibody measurements 1–4 times per year until type 1 diabetes diagnosis or age 
15. The case individuals had a type 1 diabetes diagnosis and/or were persistently 
positive for at least two islet autoantibodies (GADA, mIAA, IA2A or ZnT8A) 
measured with radiobinding assays, whereas the control individuals remained 
healthy throughout the follow-up. Study II, however, included two (out of 28) 
individuals, whose inclusion as cases was based on less specific ICA measurements 
by immunofluorescence (Section 2.1.3), according to an older DIPP protocol.  

For the longitudinal gene expression study (II), peripheral blood samples were 
collected within the DIPP study in PAXgene blood RNA tubes 1–4 times per year 
from 28 case-control-pairs matched by date and place of birth, sex, and HLA risk 
class. Altogether, 356 RNA samples were included, spanning the time from before 
seroconversion through the time of type 1 diabetes diagnosis (Figure 3).  
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Figure 3.  Reproduced from Study II with the permission of the copyright holder (American 

Diabetes Association, Diabetes journal): Each case-control-pair is visualized as a green 
or red line segment. The green and red colors correspond to sample sets S and D, 
respectively. Sample set D was collected closer to the time of diagnosis and hybridized 
on gene expression microarrays later than sample set S. The black diamonds represent 
the timing of sample collection relative to A) the time of the case individual’s 
seroconversion to islet autoantibody positivity and B) the time of the case individual’s 
diagnosis with type 1 diabetes. The dotted lines and grey boxes show five analysis time 
windows: 1. time before seroconversion 2. seroconversion 3. 6–18 months after 
seroconversion 4. 1–2 years before diagnosis 5. diagnosis. 

The DNA methylation studies (IV and V) were based on DNA extracted by salting 
out procedure (245) from 200 umbilical cord blood samples collected from DIPP 
study participants in 3ml EDTA tubes immediately after birth and stored in –20°C. 
The metadata included all information recorded by the hospital on the pregnancy, 
delivery, the mother, and the neonate. Out of 200 samples, 20 were later rejected due 
to low (< 97 %) bisulfite conversion efficiency, 2 were excluded due to completely 
missing hospital metadata, and 5 were rejected due to inadequate amount or quality 
of DNA. Out of the 173 remaining DNA samples, 43 are from DIPP case individuals, 
and 79 from DIPP control individuals. Samples from 51 individuals, who did not 
qualify as DIPP cases or controls (for example due to transient autoantibody 
positivity), were excluded from the case-control-comparison in Study IV but 
included in the study on other covariates (Study V). 

Study III is part of the DIABIMMUNE project which investigates risk factors of 
allergy and autoimmunity, especially type 1 diabetes and the hygiene hypothesis. 
According to the hygiene hypothesis, exposure to pathogens in early life improves 
later immune tolerance (44,246). DIABIMMUNE data collection started in 2008 in 
Finland, Russian Karelia, and Estonia. Compared to Russian Karelia, Finland has a 
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higher standard of living, much lower incidence of some infections, such as 
Helicobacter Pylori, and a higher incidence of immune-mediated diseases and 
allergies (247). For example, the incidence of type 1 diabetes is six times higher in 
Finland as compared to Russian Karelia, even though the frequencies of predisposing 
and protective HLA genotypes are similar in these two areas (248). DIABIMMUNE 
has collected follow-up data for example on celiac disease and type 1 diabetes 
autoantibodies, gut microbiome, and diet from approximately 800 participants with 
an increased genetic (HLA) risk for autoimmunity. Another goal of DIABIMMUNE 
is to study immunologically relevant differences between the general populations in 
these three locations. 

Study III compared gene expression in umbilical cord blood samples collected 
in Tempus RNA tubes (Applied Biosystems) from three locations: Jorvi maternity 
ward, Espoo, Finland (N = 48), maternity units of Tartu and Põlva, Estonia (N = 25), 
and two maternity wards in Petrozavodsk, Russian Karelia (N = 40). The samples 
were selected based on place and time of birth. Since the goal was to explore 
differences between the general populations of three locations, the HLA risk class 
information was not used for sample selection, even though it was collected and later 
included as a covariate in the analysis. All samples within Study III were collected 
between January and May 2010 according to the manufacturer’s (Applied 
Biosystems) protocol and stored in –70°C until RNA extraction in Turku centre for 
Biotechnology (Finland). The compared study groups (Finland, Estonia, and Russian 
Karelia) had similar sex and HLA risk class distributions (III, Table 1), and all 
individuals within the study were born vaginally at a minimum gestational age of 37 
weeks (full-term). 

4.4 RNA extraction and hybridization on 
oligonucleotide microarrays (II and III) 

Genome-wide gene expression measurements were obtained using Affymetrix U219 
microarrays in Study III. Study II included two sets of samples: the first set was 
collected close to the time of seroconversion from 10 case-control-pairs and 
hybridized on Illumina HumanWG-6 version 2 arrays (later referred to as WG-6), 
whereas the second set was collected close to the time of type 1 diabetes diagnosis 
from 18 case-control-pairs and hybridized on Illumina HumanHT-12 version 3 
arrays (later referred to as HT-12). These sample sets are visualized as green (the 
first set) and red (the second set) lines in Figure 3 and referred to as case-control-
pairs S1-10 and D1-18. All 356 samples from 28 case-control-pairs were later 
hybridized on Affymetrix U219 arrays for technical replication.  

Total whole-blood RNA was extracted from the samples using PAXgene Blood 
RNA kit (Qiagen) in Study II and Tempus Spin RNA isolation kit (Applied 
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Biosystems) in Study III. In both projects (II, III) the RNA samples were processed 
with the Ovation RNA amplification system v2 including the Ovation whole-blood 
reagent (NuGEN Technologies) and hybridized on GeneChip Human Genome U219 
array plate (Affymetrix). GeneTitan Multi-Channel instrument (Affymetrix) was 
used for automatized hybridization, washing, staining, and scanning of the arrays. 
All samples within Study II were also hybridized on Illumina arrays. Illumina Sentrix 
human WG6 v2 expression bead chips were used for case-control pairs S1–S10, and 
Illumina Human HT-12 Expression BeadChips version 3 were used for case-control 
pairs D1–D18. Samples from case-control pairs S1–S6 were amplified with an older 
kit (RiboAmp OA 1 Applied Biosystems/Arcturus) for the Illumina array 
hybridizations (the above-mentioned Ovation kit was used for all other samples). 

4.5 Preprocessing of gene expression microarray 
data (II and III) 

For Illumina data, the background correction and the summarization of signals from 
individual beads to probe intensities were done using software provided by the 
manufacturer. The probe-level intensities were then quantile normalized and log2-
transformed. For Affymetrix data (Studies II and III), the Robust Multi-array 
Average (RMA) preprocessing pipeline (137,138) was applied. Just as typical 
preprocessing workflows for Illumina data, it includes background correction, 
quantile normalization and log2-transformation of the measured intensities, but the 
RMA summarization step (Section 2.3.1.1) is specific to Affymetrix microarray data, 
which typically contains 15–20 partially overlapping probes per probeset, and each 
transcript is targeted with 1–4 probesets, whereas Illumina WG-6 and HT-12 arrays 
target each transcript with 1–4 unique probes (mostly 1). 

Some analyses, such as the detection of transcripts that were differentially 
expressed between cases and controls 1–2 years before the cases’ type 1 diabetes 
diagnosis, included samples from Illumina WG-6 and HT-12. Whenever data from 
different platforms needed to be combined, we only included probes that had 
remained similar between the platforms (challenges in probe design are discussed in 
Section 2.2.1). A minimum probe sequence overlap of 25 out of 50 consecutive bases 
(1 mismatch allowed) was required. Unless the sequences were completely identical, 
the probes were also required to target the same gene according to Illumina’s 
annotations. In case the gene name had been updated, while the probe sequence had 
remained completely unchanged, we adopted the newer gene name. In total, 70 % of 
the probe sequences had remained completely identical, and another 6 % had been 
slightly updated but fulfilled our similarity criteria. 

The present/absent calling (Section 2.3.1.1) was done using detection p-values 
for the Illumina data and by fitting a two-component Gaussian mixture model for the 
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Affymetrix data (II and III) with an expectation maximization (EM) algorithm using 
R package mixtools (249). We excluded probes/probesets that were called absent in 
all samples of at least 50 % of the individuals in all study groups (cases and controls 
in Study II; Finland, Espoo, and Russian Karelia in Study III). 

In study III, the transportation of Russian Karelian samples was delayed. Finnish 
and Estonian samples were hybridized on array plates in December 2011–January 
2012, whereas the Russian Karelian samples were hybridized in March 2013. To be 
able to estimate the batch effect, some samples (7 from Russian Karelia, 4 from 
Finland, and 4 from Estonia; hybridization batch 4 in Supplementary Table 1, Study 
III) were re-hybridized. Batch correction (Section 2.3.2.2) was done with an 
empirical Bayes method implemented in package ComBat (176) such that the 
individual and the place of birth were included as covariates. Batch effects were not 
an issue in Study II, where the case-control pairs were kept together during all sample 
processing steps and the analysis was done in a paired way. 

4.6 Differential expression analysis (II and III) 
In Study III, the effect of the in-utero environment (Finland, Estonia or Russian 
Karelia) on each log2-transformed gene expression value was estimated with a linear 
model implemented in the R package limma (187), which uses an empirical Bayes 
approach to estimate residual variances (Section 2.3.3.2). Sex, gestational age, 
month of birth (numeric values 1–5, representing January–May), and HLA risk class 
(ordinal variable with levels low, moderate, high and very high) were included as 
covariates. The effects of three contrasts were estimated: Finland vs. Russian 
Karelia, Estonia vs. Russian Karelia and Finland vs. Estonia. Probe sets with FDR < 
0.01 (Benjamini-Hochberg) were considered differentially expressed. 

In Study II, the non-parametric rank product method (195) was applied to detect 
pairwise transcriptomic differences between 28 case individuals, who developed 
islet autoantibodies or were diagnosed with type 1 diabetes, and 28 matched controls, 
who remained autoantibody-negative throughout the follow-up. Data set 1 included 
10 case-control-pairs, whose samples were mostly collected close to the time of 
seroconversion, and data set 2 included 18 case-control-pairs, whose samples were 
mostly collected close to the time of diagnosis. The differential expression analysis 
was done A) across the longitudinal profiles, separately in data set 1 and data set 2 
and B) in specific time-windows relative to the disease progression (including 
samples from both data sets in most time windows).  

The objective of analysis A) was to find genes that showed a between-group 
(case vs. control) expression difference in at least one time point during the follow 
up but that had little within-individual variation in the control profiles. For each 
transcript, the expression value at each case sample was transformed to a z-score (x–
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m)/s, where m is the sample mean and s is the sample standard deviation over the 
samples of the matched control. Such an approach had been earlier taken in similar 
studies where the case and control time points are not exactly matched (104,250). 
The maximum/minimum z-scores of each case individual were used in the rank 
product analysis. Transcripts with FDR < 0.05 were considered differentially 
expressed. We excluded transcripts that were detected as differentially expressed 
with FDR < 0.05 in a swapped analysis (where control-case differences were 
penalized for within-case variation). 

For analysis B), each control sample series was matched to the time points of the 
corresponding case sample series to calculate pairwise expression differences. This 
was done by approximating the control gene expression with inter-/extrapolation at 
each case sample. More specifically, linear interpolation was applied for the time 
points that were inside the range of real control time points. For the time points 
needed outside this range, the expression values were approximated by constant 
extrapolation (set equal to the closest real measurement). Rank product was then 
applied for pairwise maximum/minimum differences within 5 distinct time windows 
(Figure 3): 1. before seroconversion to islet autoantibody positivity 2. at 
seroconversion (the first autoantibody-positive sample from each individual) 3. 6–
18 months after seroconversion 4. 1–2 years before type 1 diabetes diagnosis, and 5. 
at diagnosis (the sample closest to diagnosis from each diagnosed individual) 

For technical replication, all the above-described analysis steps were performed 
separately for Affymetrix and Illumina data (all samples within Study II had been 
hybridized to both platforms), and only genes detected as differentially expressed 
with both platforms (concordant up-/downregulation and FDR < 0.05 in both 
analyses) were considered differentially expressed. Affymetrix and Illumina data 
were combined on the level of gene symbols using Ingenuity Pathway Analysis (251) 
annotations. 

4.7 eQTL analysis (II) 
Whole blood DNA was genotyped with the Immunochip (252) array, according to 
Illumina protocol at the Department of Genetics, University Medical Centre 
Groningen (the Netherlands). Single nucleotide polymorphisms (SNPs) were 
mapped to National Center for Biotechnology Information build 36 (hg18). The pre-
processing was done using the default pipeline within software PLINK (253): 
Samples with a call rate < 95 % were excluded. SNPs were excluded if they deviated 
from the Hardy-Weinberg equilibrium within the control group (p-value < 0.0001), 
had a minor allele frequency < 10 % (in our data) or a call rate < 98 %. The data set 
was then pruned based on linkage disequilibrium between the markers (r2 > 0.8). Our 
final data set included 30463 SNPs. 
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To estimate possible cis eQTL (expressed quantitative trait loci) effects on the 
differentially expressed genes, a linear model for the effect of genotype (the number 
of alternative alleles) on gene expression was fit for each SNP-gene-pair, including 
all SNPs within 250 kb to both directions from the genomic coordinates of each 
differentially expressed gene. SNPs with significant (FDR < 0.05) correlations with 
gene expression in our data and their proxies (r2 > 0.8) were then searched for 
associations with autoimmune diseases from published GWAS (254,255). The 
proxies of the SNPs were found based on HapMap3 release 2 and 1000 Genomes in 
the CEU population panel by using the Broad Institute’s SNP annotation and proxy 
search tool, nowadays known as SNPsnap (256) 

4.8 Functional interpretation of differential 
expression (II and III) 

4.8.1 Overrepresented pathways, transcription factor 
binding sites and functional modules (II and III) 

All the enrichment analyses were based on the Fisher’s exact test. The enrichment 
of the differentially expressed genes on pathways was explored through the 
Ingenuity Pathway analysis (IPA) tool from QIAGEN 
(www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis, (251) and 
the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
(257). Transcription factor binding site enrichment was tested in the promoter 
regions (62 kb around the transcription start site) of each differentially expressed 
gene using the transcription factor targets in the Molecular Signatures Database 
(210). A curated list of genes with functions in human innate immunity was retrieved 
from the InnateDB (258). Modules of human blood co-expressed genes, annotated 
with automatic literature search, were downloaded from www.biir.net/modules 
(208).   

4.8.2 Association with immune system maturity (III) 
To estimate the immune system maturity reflected in the gene expression patterns of 
the umbilical cord blood samples in Study III, we compared our results to two 
published transcritome-wide data sets that included samples from neonates and 1-
year-old infants. One of these studies reported 549 genes that were differentially 
expressed between these age groups in activated macrophages (259). The other study 
(260) compared the whole blood transcriptome of children under bacterial sepsis to 
that of healthy control children. We downloaded preprocessed and normalized 
microarray data sets of (260) from Gene Expression Omnibus (GSE26440 and 
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GSE26378) and selected data from neonates (age < 1 month) and older infants (age 
0.5–1.5 years). Approximately 1/3 of the selected data were from healthy control 
individuals and 2/3 from sepsis patients in both age groups. A linear model was fit 
for each gene expression value as a function of age (binary variable with categories 
“newborn” and “infant”), health status and survival. The association between age 
group and gene expression was evaluated with an F-test, moderated such that the 
residual variances were estimated with an empirical Bayes procedure implemented 
in R package limma (187). Altogether 2205 genes were identified as upregulated and 
1432 genes as downregulated in older infants, as compared to the neonates (FDR < 
0.01). The enrichment of these genes, as well as the differentially expressed genes 
from (259), among our differentially expressed genes were calculated using Fisher's 
exact test and the p-values were Benjamini-Hochberg corrected. 

4.9 Bisulfite sequencing of umbilical cord blood 
samples (IV and V) 

The Library preparation was started from 200 ng of genomic DNA and performed 
according to the reduced representation bisulfite sequencing (RRBS) protocol from 
(261). Briefly, the protocol includes MspI digestion to capture CpG rich areas, 
followed by end repair, A-tailing, and adapter ligation of the DNA fragments. A 
lower concentration of adapters (1:10 dilution) was used than recommended by the 
manufacturer to reduce the occurrence of adapter dimers. Bisulfite conversion and 
sample purification were done according to Invitrogen MethylCode Bisulfite 
Conversion Kit protocol. Aliquots of converted DNA were amplified by 18 cycles 
of PCR with a proofreading enzyme that does not stall at uracil. Library qualities 
were analyzed with either Advanced Analytical Fragment Analyzer or Bioanalyzer 
(depending on library size) and only high-quality libraries were sequenced. The 
sequencing was done in 32 lanes, 4–7 samples per lane, with Illumina HiSeq 2500 
instrument using TruSeq v3 sequencing chemistry. Paired-end sequencing with 2 x 
100 bp read length was used with 6 bp index run. Technical quality of the HiSeq 
2500 run was good and the cluster amount was as expected. The yields were 18 - 37 
million raw paired-end reads per sample. 

4.10 Preprocessing and filtering of bisulfite 
sequencing data (IV and V) 

The RRBS data preprocessing and analysis workflow is reviewed in Sections 
2.3.1.3–2.3.1.8, 2.3.4.2, and 2.3.4.3 and summarized in Figure 4. The reads were 
trimmed by running TrimGalore version 0.4.3 (133) with default parameters in 
paired end RRBS mode on each fastq-file to remove 1) end repair biases, 2) adapter 
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sequences with a minimum sequence overlap of 1 base, 3) bases with base call error 
rate above 1%, and 4) reads shorter than 20 bp after trimming. This step removed 2 
- 8 % of the raw reads from all samples except one sample, from which 24 % of raw 
reads were discarded. 

Read alignment was done on the human GRCh37 (hg19) genome assembly 
(262,263) and the lambda phage genome simultaneously with Bowtie2 version 2.3.1 
within Bismark version 0.17.0 (160) with default parameters in paired-end mode. 
Numbers of methylated and unmethylated reads at each CpG site in each sample 
were extracted with Bismark methylation extractor version 0.22.3 (160), which 
excludes read 2 bases that overlap with read 1 to avoid redundant methylation calls. 
Bisulfite conversion efficiency was estimated as the sum of observed unmethylated 
CpG counts divided by the total sum of methylated and unmethylated CpG counts 
within the lambda genome. The conversion efficiencies were above 97 % (median 
99.4 %) for all except 20 samples, which were excluded. 

To remove M-biases, positions at the 3’ end of read 1 and both ends of read 2 
were excluded if their CpG methylation proportions were more than 3 standard 
deviations below or above the mean methylation proportion at positions 10–91 
(middle 80 %). In practice, Bismark methylation extractor was re-run with additional 
ignore-parameters to exclude biased positions after extracting the needed 
information from the output M-bias files of the first run. The information from both 
strands was merged for each CpG site by running Bismark function 
coverage2cytosine with parameter merge_CpG for each .cov-file produced by 
Bismark methylation extractor. The numbers of methylated and unmethylated reads 
were extracted from the output of coverage2cytosine and organized into count 
matrices with total and methylated numbers of reads for each CpG site and each 
sample. 

SNP detection was done by applying bsSNPer (172) with its default parameters 
on bam-files sorted by genomic coordinates after excluding the lambda phage 
genome. The SNPs (flagged “PASS”) detected for each individual were removed 
from the data (the individual’s read counts set to NA at the SNP). In order to remove 
most PCR duplication biases, CpG sites with coverage above the 99.9th percentile 
were removed from each sample. CpG sites were completely excluded if they had a 
low-coverage value (total number of reads < 10) or a missing value (NA due to a 
potential SNP or extremely high coverage) in at least two thirds of the samples. The 
below-described differential methylation analysis was run for all 2 752 981 CpG 
sites passing these criteria. However, further covariate-specific filtering of CpG sites 
was done before calling differential methylation associated with any binary 
covariate. Minimum coverage 10 in at least one third of the samples in each group 
was required and further, a minimum coverage 10 was required in at least five 
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samples per group (the second criterion is relevant only for binary covariates with 
less than 15 samples in one group). 

 
Figure 4. modified from Study V: The outline of the reduced representation bisulfite sequencing 

(RRBS) data analysis workflow in Studies IV and V. 
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4.11 Differential methylation analysis (IV and V) 

4.11.1 GLMM for each CpG site 
The differential methylation analysis was done by applying a binomial mixed effects 
model (Section 2.3.4.2) implemented in R package PQLseq version 1.1. (220) within 
R version 3.6.1. on the methylated and total read counts at each high-coverage CpG 
site on chromosomes 1–22. This was done after adding + 1 to the numbers of 
methylated reads and +2 to the total numbers of reads to avoid modeling methylation 
proportions that are exactly 0 or 1. This pseudo-count transformation was only 
applied to non-missing values (coverage > 0). In Study V the goal was to evaluate 
differential methylation associated with several covariates. Therefore, the source 
code of PQLseq was modified to output the coefficients, standard errors and Wald 
test p-values for all covariates included in the model. The modified version is 
available in Github (264). 

From all available information collected by the Turku University Hospital 
maternity ward and the DIPP clinic, clinical covariates were selected to be included 
in the regression model, such that within each group of mutually correlating 
covariates (Pearson correlation coefficient > 0.3 and p-value < 0.05, or alternatively 
Fisher’s exact test p < 0.05, depending on the types of the covariates), the most 
reliably measured covariate was included (V, Supplementary Table 1 and IV, 
Supplementary Table 1). Table 2 lists the covariates that were part of the final design 
matrix, modeled as fixed effects. Missing covariate values were median-imputed, 
and continuous covariates were Z-transformed (divided by the standard deviation 
after subtracting the mean).  
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Table 2.  Modified from Study IV and Study V: Covariates included in the differential methylation 
analysis, modeled as fixed effects by PQLseq (220) in Studies IV and V. Study IV focused 
on differential methylation associated with later progression to type 1 diabetes (“Class”) 
but included all the other covariates to account for potential confounding effects. Study V 
evaluated differential methylation associated with each clinical covariate listed here. Study 
IV included a subset (N=122) of the individuals included in Study V (N=173). 

Covariate Description 
Age, mother Z-transformed continuous covariate 
Apgar, low The 1-minute Apgar points simplified to low/normal, such that values 8–10 

were encoded as 0 (N=149) and values below 8 were encoded as 1 (N=24) 
Birth weight Z-transformed continuous covariate 
BMI, mother (pre-
pregnancy) 

Z-transformed continuous covariate 

Caesarean section The mode of delivery simplified to a binary variable, such that 0=vaginal 
(N=152), 1=C-section (N=21) 

Class The covariate of interest in Study IV: 0=Completely autoantibody-negative 
control (N=79), 1=Case persistently positive for multiple autoantibodies 
and/or diagnosed with type 1 diabetes (N=43). Study V included class as a 
confounding covariate, such that 1=persistent autoantibody positivity for 1 
or more autoantibodies (N=47), 0=control (N=126, including 79 totally 
autoantibody-negative individuals and 47 individuals with transient 
autoantibody-positivity). 

Epidural 
anaesthetic 

A binary covariate, 0=not used (N=87), 1=used (N=86). This value was 
corrected to 0 for two individuals with an elective C-section 

Gestational weight 
gain, mother 

Z-transformed continuous covariate 

Height, mother Z-transformed continuous covariate 
HLA risk class The HLA risk class was defined as described earlier (243,244) and included 

in the regression model in Study IV but not in Study V. This ordinal variable 
was divided into two binary variables ”HLA neutral” (N=31) and ”HLA high” 
(N=45). Moderate risk (N=46) was included in the intercept. 

Induced labor A binary covariate, 0=not induced (N=145), 1=induced (N=28). 
Insulin-treated 
diabetes, mother 

This can be gestational or any other type of diabetes treated by insulin 
during the pregnancy. 0=no (N=165), 1=yes (N=8) 

Library preparation 
batch 

A technical categorical covariate with 7 binray levels (intercept and 6 
others). The number of samples per batch ranged from 5 to 48, median 23 

Number of earlier 
miscarriages 

The number of miscarriages was simplified to a binary variable, such that 
1=one or more earlier miscarriages (N=31) 

PC1 and PC2 Principal components 1 and 2 of the full median-imputed methylation 
proportion matrix were included to account for technical variation 

Smoking during 
pregnancy 

Since the data only included two examples of smoking only during the first 
trimester, and 12 examples of smoking throughout the pregnancy, this 
variable was simplified to smoking (N=14)/no smoking (N=159) 

Month of birth The month of birth was transformed as cos(2𝜋𝜋m/12) to account for its cyclic 
nature (m = month, originally encoded as 1–12)  

Year of birth Z-transformed continuous covariate 
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Since PQLseq was originally designed to model differential methylation in the 
presence of population structures, we included the relatedness of the individuals as 
a random effect. To our knowledge, these 173 individuals are unrelated, but we 
estimated their genetic similarity by utilizing the SNPs detected as described above. 
The relatedness matrix is a correlation matrix of the samples’ SNP profiles, which 
include all detected (flagged “PASS”) SNPs with minor allele frequency > 5%, 
encoded as the number of reference alleles (0,1,2). This is calculated as XXT/NSNPs, 
where X is a Nsamples x NSNPs matrix (173 x 189985) containing numbers of reference 
alleles, standardized to z-scores within each sample. 

4.11.2 Spatial adjustment and FDR-correction 
The Wald test p-values computed for each CpG site within PQLseq were spatially 
adjusted with an autocorrelation-corrected Z-test implemented in RADMeth (222) 
within Methpipe version 3.4.3. after sorting the CpG sites by chromosome and 
location. By default, RADMeth performs a Benjamini-Hochberg-correction on the 
adjusted p-values, but we found this procedure to be insufficient for FDR control. 
Instead, we estimated an empirical threshold for the spatially adjusted p-values 
through a permutation analysis. Specifically, we re-ran PQLseq and the spatial 
adjustment 48 times (3 times for each covariate) such that one covariate was 
permuted at each run. A threshold for the spatially adjusted p-value was set such that 
the number of differentially methylated cytosines (DMCs) associated with a 
permuted covariate (false discoveries) would be less than 5 % of the number of 
DMCs associated with the corresponding real covariate using that threshold. The 
median threshold value over three repeats was used. 

CpG sites were considered differentially methylated if their Benjamini-
Hochberg-corrected p-value was significant (< 0.05) already before any spatial 
adjustment, or if they were part of a differentially methylated region (DMR). To 
detect DMRs, we considered all candidate CpG sites with an empirically determined 
FDR < 0.05 after the spatial adjustment, in addition to the cytosines with evidence 
of differential methylation already before spatial adjustment. A differentially 
methylated region (DMR) was defined as a genomic region with two or more such 
candidate CpG sites that were within a window of 2 kb and had the same direction 
of methylation difference in at least 90 % of the candidate CpGs. Further, at least 
one of the CpGs was required to have coverage-corrected mean methylation 
difference > 5 %. Coverage-corrected mean methylation difference is calculated as 
sum(number of methylated reads in cases)/sum(number of total reads in cases) - 
sum(number of methylated reads in controls)/sum(number of total reads in controls). 

Annotation of differentially methylated CpG sites to genomic parts (promoter, 
intron, exon, intergenic) and nearest UCSC known genes was done through R 
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package genomation version 1.16.0 (265) using Genome Reference Consortium 
Human Build 37 (GRCh37, hg19). 

4.12 Pyrosequencing validation of selected targets 
(IV and V) 

For technical validation of candidate differentially methylated regions with targeted 
pyrosequencing, 60 individuals were chosen with the following criteria: even 
number of male and female cases and male and female controls, pregnancy duration 
> 37 weeks, normal birth weight (2.5–4.5 kg), no multiple pregnancies, normal 
Apgar points (8–10), no perinatal asphyxia, vaginal birth, and no maternal smoking. 
The regions of interest were captured with a targeted assay and amplified by 45 
rounds of PCR. The Pyrosequencing was done with PyroMark Q24, and methylation 
percentages were extracted from the light intensity values at each CpG site using the 
manufacturer's software. Since technical uncertainty due to limited coverage is not 
an issue in targeted pyrosequencing, a standard linear model was applied after 
transforming each methylation proportion with: arcsin(2 × proportion – 1). All 
explanatory variables in Table 2 were included in the model, except for the above-
listed variables that had zero variation among these individuals (such as maternal 
smoking). The model was fit with and without the covariate of interest, and the 
models were compared with a likelihood ratio test to assess the significance of the 
covariate’s effect on DNA methylation at each CpG site. These steps were done 
using functions lm and anova, R version 4.0.4. (266). 
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5 Results 

5.1 Probe-level estimation improves the detection 
of alternative splicing events in Affymetrix exon 
array studies (I) 

A novel method was developed for the detection of differential splicing between two 
groups and is currently available as function PECASI under R/Bioconductor package 
PECA version 1.26.0 (267). The proposed probe-level splicing index method 
(PECA-SI) was compared to seven other differential splicing detection methods in 
terms of reproducibility, specificity, and sensitivity in both real and simulated data. 

The performance of all the evaluated methods was excellent (AUROC 0.94–
0.99) in simulated data at a typical noise level σ = 0.7 (240), when only one exon per 
gene was simulated as differentially spliced between two groups of samples, but 
PECA-SI outperformed the other methods, when multiple exons per gene were 
differentially spliced (I, Table 1). At 5 differentially spliced exons per gene, the 
AUROC-values of the other methods dropped to 0.79–0.88, while the performance 
of PECA-SI decreased only slightly, as compared to the simpler simulation setting 
(AUROC 0.92 vs. 0.99 at 5 vs. 1 exon per gene simulated as differentially spliced). 
As expected, the performance of all methods decreased, as the noise level was 
increased to σ = 1. At the most challenging settings (σ = 1 and 5 differentially spliced 
exons per gene) the AUROC-values ranged from 0.66 (FIRMA) to 0.74 (PECA-SI). 

Reproducibility was evaluated in the context of technical replication (ability to 
detect similar results in data replicated in different laboratories), controlled 
biological noise (the ability to reproduce pure brain vs. pure heart tissue differences 
in samples with varying mixtures of brain and heart tissue) and biological replication 
in heterogeneous colon cancer data (ability to detect similar results from independent 
subsets of sample pairs). The between-laboratory overlap of top 500 differentially 
spliced exons detected with PECA-SI was on average approx. 60 % already with as 
few as 2 biological replicates per group and improved to approx. 70 %, when the 
sample number was increased to 4 biological replicates per group (I, Figure 2). The 
reproducibility of the other methods also improved with increasing sample size but 
remained at 50 % or lower even with 4 biological replicates per group. 
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Out of top 500 exons differentially spliced between pure heart and pure brain 
tissue, PECA-SI reproduced one third between tissue mixtures with a 20 % mixture 
difference (95% heart/5% brain vs. 75% heart/25% brain) (Figure 5). The method 
with the second highest reproducibility in this context was FIRMA, which was able 
to reproduce 13 % of the findings already at mixture difference 20 %. As expected, 
the proportion of reproduced findings increased with increasing mixture difference, 
regardless of the differential splicing detection method. The reproducibility of 
PECA-SI was higher compared to the other methods across different mixture 
differences and top list sizes except for top list size 100, where the FIRMA method 
performed similarly as PECA-SI (I, Additional file 1).  

 
Figure 5.  From Study I, reproduced with a permission from the copyright holder (BMC, Genome 

Biology). Reproducibility in the context of controlled biological noise: the ability of 
differential splicing detection methods to reproduce pure brain vs. pure heart tissue 
detections in samples with varying mixtures of brain and heart tissue. Reproducibility 
was defined as the overlap between 500 top-ranked splicing events in pure vs. mixed 
data sets. 

To assess reproducibility in a more challenging context, we compared top ranked 
differentially spliced exons using independent subsets of sample pairs from a colon 
cancer study that collected tumor and adjacent normal tissue samples (242). The 
reproducibility between independent sets of tumor vs. normal samples was 
comparable to that in the most challenging tissue mixture setting (mixture difference 
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5 %). Even with the best-performing method PECA-SI, the reproducibility of such 
results was on average only 10 % at 2–4 biological replicates, which is not surprising, 
given the biological variation between tumors and individuals. Again, the other 
methods produced less reproducible results at all sample sizes and top list sizes (I, 
Figure 3 and Additional file 3).  

Two of the evaluated methods (RMA-MIDAS and PLIER-MIDAS) performed 
poorly with respect to reproducibility in all comparisons. Their reproducibility was 
less than 20 % in the context of technical replication, and less than 10 % in the 
context of biological replication. 

Finally, the methods were evaluated in terms of specificity and sensitivity to 
detect RT-PCR-confirmed differentially spliced exons. Out of 51 exons that were 
confirmed to be brain-specific based on RT-PCR measurements (146) and that 
matched the probesets of the brain vs. tissue pool exon array comparison (241), 44 
were differentially spliced at FDR < 0.01 between brain and tissue pool, based on 
ranking by PECA-SI and estimating the FDR with a permutation test. All the 
methods were able to detect at least 37 out of 51 exons at this FDR threshold (I, 
Figure 4a). For the colon cancer data, we performed an ROC analysis based on 17 
true and 14 false findings, according to RT-PCR measurements within the same 
study (242). When the exons array measurements were ranked by PECA-SI after 
filtering out low-intensity probes, we observed a perfect separation of RT-PCR-
confirmed (10) and non-confirmed findings (8). The performance of all methods was 
improved by filtering out low-intensity probes (solid vs. dotted lines in I, Figure 4b). 
However, even without the filtering, PECA-SI performed at least as well as the other 
methods in this comparison. 

5.2 Longitudinal gene expression patterns 
associated with type 1 diabetes (II) 

The transcriptome-wide microarray data of longitudinal samples collected from 
children at risk of type 1 diabetes (Study II) is available in Gene Expression Omnibus 
under accession code GSE30211. We identified 109 genes at FDR < 0.05 (II, 
Supplementary Data 3) that were differentially expressed across samples collected 
close to the time of seroconversion to islet autoantibody positivity, compared to 
samples from matched autoantibody-negative control individuals. Interferon 
regulatory factor binding sites were enriched in the promoters of these genes (II, 
Figure 2A). The upregulated genes included two interconnected interferon 
regulatory factors 5 and 7 (IRF5 and IRF7) and 15 other genes that interact with 
IRF5 and IRF7 (II, Figure 2B), which are central mediators of the innate response to 
viral infections.  
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In the time-window-specific analysis of these samples, 124 genes were 
differentially expressed already before seroconversion, 60 of which were also 
differentially expressed at the time of clinical diagnosis (II, Figure 3), even though 
the data within these time windows were collected from almost independent sets of 
individuals (Figure 3). Human innate immune genes from innateDB (258) were 
enriched among the genes that were differentially expressed before and after 
seroconversion, as well as close to the time of diagnosis (II, Supplementary Data 3,4 
and 5). Accordantly, out of co-expressed modules of genes reported in human blood 
(208), modules associated with interferon and neutrophils were differentially 
expressed across the time-line in our data (II, Figure 4, Supplementary Data 6). 

To explore the possible genomic background of the observed differential gene 
expression patterns, genotype data (Immunochip) from the study participants was 
collected and all potential cis-eQTL effects within 250 kb from each differentially 
expressed gene were reported (II, Supplementary Data). Significant correlations 
between genotype(s) and gene expression (FDR < 0.05) were observed at 118 
differentially expressed genes, and 27 % of these potential eQTL effects had been 
reported in a human blood eQTL meta-analysis, based on data from 5311 individuals 
with replication in 2775 individuals (268). Altogether 14 differentially expressed 
genes had one or more potential eQTL SNP that was previously associated with 
autoimmune diseases in genome-wide association studies (254,255). 

5.3 Gene expression patterns associated with in-
utero environment (III) 

Study III explored the transcriptomic differences in umbilical cord blood samples 
collected from children born in Finland (N = 48), Estonia (N = 25), and Russian 
Karelia (N = 40). At FDR < 0.01, 3442 probesets were differentially expressed in 
these data between Finland and Russian Karelia, 1655 probesets between Russian 
Karelia and Estonia, and 130 probesets between Finland and Estonia (III, 
Supplementary Table 2). The probesets that were upregulated in Finland, as 
compared to Russian Karelia, were often also upregulated in Estonia, as compared 
to Russian Karelia (overlap 475, as visualized in a Venn diagram, III Figure 2). 
Similarly, the probesets that were downregulated in Finland, as compared to Russian 
Karelia, were often also downregulated in Estonia, as compared to Russian Karelia 
(overlap 424). Opposite patterns (a probeset being downregulated in Finland vs. 
Russian Karelia but upregulated in Estonia vs. Russian Karelia or vice versa) were 
not observed. 

Genes with functions in human innate immunity (258) were enriched 
(Benjamini-Hochberg corrected Fisher’s exact test p-value < 0.05) among genes that 
were upregulated in Russian Karelia, as compared to Finland and/or Estonia, and 
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among genes that were downregulated in Russian Karelia, as compared to Finland. 
For example, toll-like receptor 2 (TLR2) and several other receptors responsible for 
recognizing microbial patterns were upregulated in Russian Karelia, as compared to 
Finland and/or Estonia. 

To estimate whether the observed differences reflect immune maturation, we 
compared our results to earlier published gene expression patterns in the context of 
immune defense between different age groups. One of these studies (259) explored 
gene expression in macrophages that were extracted from blood samples of neonates 
and 1-year-old children and activated by lipopolysaccharides (characteristic of 
Gram-negative bacteria). Another study reported whole blood gene expression 
patterns in children under bacterial sepsis compared to healthy control children in 
different age groups (260). We re-analyzed the data for differential expression 
between 1-year-old children and neonates. We observed a highly significant overlap 
between transcripts that were upregulated in Russian Karelia, as compared to Finland 
and/or Estonia, and transcripts that were upregulated in 1-year-old children, as 
compared to neonates. The significances of the overlaps are visualized in III, Figure 
4, and the details are in III, Supplementary Table 3. 

5.4 Spatial adjustment by autocorrelation-corrected 
Z-test inflates p-values in RRBS data analysis 
(IV and V) 

Differential methylation analysis is typically done separately for each CpG site, and 
the p-values are combined afterwards to account for spatial correlation between 
methylation statuses of adjacent CpG sites (Section 2.3.4.3). One of the most 
commonly used methods for this is the autocorrelation-adjusted Z-test implemented 
in RADMeth (222). If several relatively small raw p-values are associated with CpG 
sites that are close to each other in the genome, the spatially adjusted p-values are 
often several orders of magnitude smaller than any of the original ones.  By default, 
RADMeth estimates FDR by Benjamini-Hochberg-correcting the adjusted p-values. 

In Studies IV and V the goal was to locate any CpG sites, where explanatory 
variables such as later progression to type 1 diabetes, birth weight or maternal age 
have a significant effect on umbilical cord blood DNA methylation. Using the 
standard workflow for spatial adjustment, hundreds of CpG sites were associated 
even with covariates, such as the month of birth that were expected to be irrelevant. 
As a sanity check, we re-ran the differential methylation analysis for a permuted 
covariate, such that the input files remained otherwise unchanged. Ideally, no 
differential methylation should have been associated with the permuted covariate 
(especially since we made sure it did not correlate with any real clinical or technical 
variable). However, hundreds of false positives were observed using a standard 
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threshold (Benjamini-Hochberg corrected spatially adjusted p-value < 0.05). After 
replicating this sanity check 3 times for each of 16 clinical covariates, we concluded 
that the spatially adjusted p-values were inflated (hundreds of false positives were 
detected every time, as visualized in V, Figure 3) but there was no such problem with 
the raw output p-values of PQLseq (220). The number of differentially methylated 
CpG sites associated with a permuted covariate before the spatial adjustment 
(Benjamini-Hochberg corrected PQLseq p-value < 0.05) was nearly always 0. 
Typically, the smallest raw p-values were in the order of 10-7 (as expected among 
2.6 million tests) whereas the smallest spatially adjusted p-values were in the order 
of 10-10-10-16 in the permuted analyses. 

The spatial adjustment approach used here was originally intended for the beta-
binomial regression p-values computed as implemented within RADMeth. To check, 
whether the p-value inflation could be caused by the application of RADMeth spatial 
adjustment on output p-values of PQLseq, we re-ran the analysis with the RADMeth 
pipeline. However, this did not change the conclusions. In fact, thousands of false 
discoveries were detected with this approach (V, Table 2). We also re-ran the 
analysis with comb-p (234), which is another implementation of the autocorrelation-
adjusted Z-test with a different definition of a differentially methylated region. The 
numbers of false discoveries were close to the numbers observed for RADMeth. 

Benjamini-Hochberg-correction on raw output p-values associated with 
individual CpG sites (such as those computed by PQLseq) assumes independence of 
tests and is too conservative in the analysis of bisulfite sequencing data, where 
measurements can be arbitrarily close to each other and high spatial correlation is 
present (77). Furthermore, efficient spatial adjustment such as the one implemented 
within RADMeth, is necessary for the study of differentially methylated regions, 
which can be expected to be biologically more relevant than individual CpG sites. 
Therefore, we kept the autocorrelation-adjusted Z-test as a convenient tool to find 
candidate differentially methylated regions but determined the significance threshold 
empirically. With this approach, few differentially methylated CpG sites or regions 
were associated with some covariates, but the number of findings was typically two 
orders of magnitude smaller than it would have been before this sanity check. 

5.5 Association of umbilical cord blood DNA 
methylation with later progression to type 1 
diabetes and other variables (IV and V) 

Altogether, 297 differentially methylated regions (DMRs) were associated with sex, 
and in addition to the DMCs within these regions, 261 CpG sites outside DMRs were 
detected as differentially methylated based on Benjamini-Hochberg-corrected p-
values (FDR < 0.05) already before any spatial adjustment (V, Table 1 and V, 
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Supplementary Table 2). Our results confirmed a large proportion (overlap 221 CpG 
sites, Fisher’s exact test p-value < 10-15) of differentially methylated cytosines that 
had been reported in two earlier studies on sex-associated umbilical cord blood DNA 
methylation marks (269,270). 

Promoter regions with most significant differential methylation associated with 
sex (among top 5, ranked by p-value) included the promoters of zona-pellucida 
binding protein 2 (ZPBP2) and developmental pluripotency associated 5 (DPPA5), 
which are overexpressed in the testis tissue and have very little or no expression in 
any other tissue type, according to the Genotype-Tissue Expression (GTEx) Portal 
on 30/11/20 (271). These promoter regions were hypomethylated in males, as 
compared to females. Hence, ZPBP2 and DPPA5 can be expected to be more highly 
expressed in males. The differentially methylated region on the promoter of ZPBP2 
was selected for technical validation with targeted pyrosequencing. The coverage on 
the region was already excellent in RRBS data (median 78 reads per sample, range 
4–298) but we selected this validation target as a positive control to confirm that 
DNA methylation can be reliably quantified by the pyrosequencing protocol that was 
newly established in our laboratory. The hypomethylation of all 6 CpG sites in males 
(compared to females) was confirmed with p-values in orders of 10-6–10-9 (V, Table 
4). 

Very little differential methylation was associated (FDR < 0.05) with any 
covariate, other than sex. A couple DMRs (1–2) and/or a few DMCs outside DMRs 
(1–10) were associated with maternal age and height, maternal smoking during the 
pregnancy, the newborn infant’s Apgar points, the usage of epidural anesthetic 
during delivery, the year of birth, maternal insulin-treated diabetes, and gestational 
weight gain (V, Table 1). No such associations were found for maternal pre-
pregnancy BMI, earlier miscarriages, the mode of delivery, the newborn infant’s 
birth weight, labor induction or the cosine transformed month of birth. 

The goal of Study IV was to investigate, whether any differential methylation in 
umbilical cord blood would be associated with the child’s later progression to type 
1 diabetes. Before the inflation of spatially adjusted p-values was discovered, 28 
genomic regions were thought to be differentially methylated between the cases, who 
became persistent for at least two islet autoantibodies during the follow-up, and the 
controls, who remained healthy. We had already tried to validate these observations 
technically by targeted pyrosequencing at five selected regions, but the 
pyrosequencing results showed no evidence for differential methylation (IV, 
Supplementary Results). This lack of technical validation further confirms that 
discoveries based on spatially adjusted p-values (with standard FDR control) are 
often false discoveries.  

After the more conservative empirical FDR control was applied, we were left 
with one region that had some weak evidence of differential methylation. The region 
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is on an intron of gene PKP3 and contains two CpG sites (chr11:400288 and 
chr11:400295) with spatially adjusted p-values in the order of 10-13. Re-runs of 
PQLseq and spatial adjustment with three different permuted versions of the class 
covariate yielded some p-values that were of the same order of magnitude but not 
smaller than the p-values that indicated an association between this region and the 
real class covariate. Technical validation by pyrosequencing showed that this 
difference was not significant. 
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6 Discussion 

Alternative splicing events, which enable the production of a variety of proteins from 
each gene, have been estimated to take place in at least 95 % of human genes (272). 
Exon microarray technology enabled the study of genome-wide alternative splicing. 
Although the later-developed RNA sequencing technology is more flexible, exon 
arrays still remain a popular choice due to their lower cost and simpler data analysis 
workflow (273). This is reflected by further method development for differential 
splicing analysis, as well as the usage of the probe-level splicing index, developed 
12 years ago within Study I, in relatively recent publications (274,275). 

An important limitation of Study I is that the methods were evaluated with 
respect to their ability to rank differentially spliced exons, and significance 
thresholds were not discussed. Evaluation criteria included, for example, overlaps of 
top k=100, 500, 1000, 1500, and 2000 top ranked exons detected using independent 
subsets of samples. Also, AUROC values are measures of the ability to rank features. 
To evaluate the sensitivity to detect RT-PCR confirmed brain-specific exon 
inclusion/exclusion events in an independent data set at FDR ≤ 0.01, the FDR 
thresholds were estimated empirically through permutations of sample labels. This 
procedure was the same for all compared methods and did not evaluate sensitivities 
at method-specific significance thresholds. The reason for this is that the primary 
goal was to compare the novel probe-level estimate to approaches that summarize 
probe intensities to exon-level values already at the preprocessing stage. The current 
implementation of PECA-SI (267) uses the ordinary t-test or the moderated t-test 
(through limma (187)) for significance testing, but in itself, probe-level splicing 
index is not a test. 

Later-developed differential splicing detection methods for exon array data 
include information theoretic approaches, such as Alternative splicing Robust 
Entropy (ARH) (276). To compute ARH, differential splicing probabilities of exons 
are first estimated based on deviations of exon-specific log fold expression changes 
(between the compared groups) from the median log fold change over all exons 
within the same gene. The Shannon entropy of such a probability distribution for a 
given gene is large, if all exons within the gene have similar splicing probabilities, 
and small if only one exon deviates. To be a useful metric for alternative splicing, 
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the entropy needs to be normalized to the number of exons within the gene, as well 
as the overall range of exon deviations. ARH was the best-performing method in a 
comparison study that attempted to include all exon-level differential splicing 
detection methods available at that time for exon array data (273). Although this 
comparison did not include PECA-SI (since the authors decided to limit the study to 
exon-level methods), our observations on the other methods received further 
confirmation. Despite being among the oldest methods in the comparison, FIRMA 
(240) was still among the best performers. The authors denote that methods based 
on classical statistical testing, such as the ANOVA approaches MIDAS (238) and 
ANOSVA (239) (Section 4.1), have poor sensitivity compared to approaches that 
estimate significance with a permutation test (273). 

Study II explored longitudinal gene expression profiles of children at risk of type 
1 diabetes, half of which developed multiple islet autoantibodies and/or clinical type 
1 diabetes during the follow-up within the DIPP project. The long-term follow-up of 
thousands of DIPP study participants enabled us to include some samples that were 
collected already before the case individuals’ seroconversion to islet autoantibody 
positivity. Together with a simultaneously published gene expression study of a 
German type 1 diabetes cohort (100), ours was the first study to report type 1 diabetes 
associated gene expression patterns that were already present before seroconversion.  

Our study provided further support for a possible role of innate immune 
pathways in the initiation of type 1 diabetes, reviewed for example by (25). 
Importantly, a similar type I interferon signature preceding seroconversion was 
observed in an independent prospective type 1 diabetes study, which also associated 
the innate immune activity temporally with upper respiratory infections in the 
studied individuals (100). Together these results have contributed to the hypothesis 
that some virus infections might trigger the autoimmune process that leads to type 1 
diabetes (277), reviewed in Section 2.1.5. 

We identified an upregulated interconnected network of genes related to the 
innate viral response, induced by toll-like receptor 5 and regulated by interferon 
regulatory factors IRF5 and IRF7. Out of 12 target genes of IRF7 that were 
upregulated in our data, 8 were also identified as being part of an IRF7-driven 
regulatory network that was associated with type 1 diabetes through an enrichment 
analysis of GWAS SNPs (278). 

Study III was part of the DIABIMMUNE project, which is motivated by the 
hygiene hypothesis (247,248). Gene expression microarrays were used to identify 
transcriptome-wide differences that are already present at the time of birth in three 
locations with contrasting standards of living: Finland (representing a modern 
environment), Estonia (a country in rapid transition) and Russian Karelia (traditional 
environment). Genes with functions in innate immune responses were upregulated 
in Russian Karelia (as compared to Finland and/or Estonia), including toll-like 
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receptor 2 (TLR2), which is highly expressed in leukocytes responding to Gram-
positive bacteria already at the time of birth (279). TLR2 has been earlier observed 
to be upregulated in blood samples from children living in environments with higher 
microbial abundance (280). Downregulation of TLR2 has also been observed in 
umbilical cord blood samples of children with allergic mothers, as compared to 
children of non-allergic mothers (281,282). 

We observed a large and highly significant overlap between the genes 
upregulated in Petrozavodsk vs. Finland and/or Estonia and genes upregulated in 1-
year-old children vs. neonates in two independent studies (259,260). Our results 
suggest that the immune system of Russian Karelian neonates might be more mature 
than the immune system of neonates born in environments with higher standards of 
living and lower maternal exposure to pathogens (Finland and Estonia). Based on 
earlier household dust and drinking water sample analyses, Finland and Russian 
Karelia are strikingly different living environments, Russian Karelian residents 
being exposed to a much higher bacterial load dominated by Gram-positive bacteria 
(283,284). We hypothesize that this bacterial exposure could affect the immune 
system development already in-utero. Similar conclusions were made in a study that 
compared neonatal antigen presenting cells (APCs) between Australia (modern 
environment) and Papua New Guinea (more traditional environment), where the 
Papua New Guinean neonatal APCs were characterized by markers of maturation, 
presumably explained by in-utero exposure to microbial antigens (285). A positive 
correlation between neonatal immune system maturity and maternal exposure to 
pathogens has also been suggested in a study that compared T and B cell maturation 
markers between European and African umbilical cord blood samples (286). 

Other than the HLA haplotype, we did not account for genetic markers that might 
explain some of the observed differences in gene expression. Based on a genome-
wide SNP analysis of 1564 European samples, the Estonian and Russian populations 
are genetically close to each other, whereas the Finnish population is fundamentally 
different from the rest of Europe (287). Conversely, we observed very few 
transcriptomic differences between the Finnish and Estonian samples compared to 
the extent of differential expression observed between Estonia and Russian Karelia 
(III, Figure 2). 

Batch effects were kept at minimum by immediate sample collection in RNA 
stabilizing tubes and storage in –70°C after birth. Furthermore, the RNA isolation 
and amplification steps were centralized (to one person), and the array hybridizations 
were done by a robot in the Finnish Microarray and Sequencing Centre. 
Unfortunately, the much later arrival of Russian Karelian samples and the 
consequent sample processing and hybridization on a different date than the Estonian 
and Finnish samples, might have confounded our observations. We addressed this 
issue by re-hybridizing a subset of the samples from each location in one batch, 
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estimating the batch effect with an empirical Bayes method, and adjusting the data 
accordingly, as implemented in R package ComBat (176). However, such batch 
effect correction approaches have been later shown to increase false discoveries 
(178), as discussed in Section 2.3.2.2. 

The scope of our study (III) was limited to overall transcriptomic differences 
between the three populations at one time point (at birth in children born between 
January and May 2010). Environmental/lifestyle characteristics, other than the place 
of birth, were not recorded within this study, and neither did we explore associations 
between transcriptomic patterns and later allergies or immune-mediated diseases. 
Both of these aspects have later been studied within the DIABIMMUNE project 
(109,288–290). In line with our observations, a gut microbiome analysis of 74 infants 
from each location (Finland, Estonia, and Russian Karelia) revealed major 
differences between Russian Karelia and the other two locations but little difference 
between Finland and Estonia (291). The early lipopolysaccharide (LPS) exposures 
of Russian Karelian infants were dominated by Esterichia coli, which was shown to 
decrease the incidence and delay the onset of diabetes in susceptible mice (non-obese 
diabetic mice), unlike the structurally distinct LPS of Bacteroides dorei, which 
prevailed in Finnish and Estonian stool samples (291). 

The data sets released in Gene Expression Omnibus (accession numbers 
GSE30211 and GSE53473) within this thesis have been valuable resources for 
further study of biological questions related to type 1 diabetes (292,293), as well as 
for method development in machine learning and statistics (294). We have 
emphasized the value of real data for example in Study I, where – in addition to more 
traditional criteria, such AUROC in simulated data – the exon array data analysis 
methods were evaluated with respect to their sensitivity to detect exon skipping 
events that were confirmed by RT-PCR in independent data. Simulations are 
important but they often over-simplify the real world. For example, the spatial 
adjustment through an autocorrelation corrected Z-test implemented within 
RADMeth has performed well in simulated data (167,222,226,227) but turned out to 
strongly inflate p-values in the real data presented in IV and V. Some characteristics 
of real DNA methylation data, such as missing values and the bi-modal distribution 
(high peaks at both extremes, since CpG sites are often totally unmethylated or 
totally methylated) are often absent in simulated data. Moreover, usually only one 
covariate is simulated to have a true effect, whereas real DNA methylation can be 
influenced by several factors. Empirical FDR control, which decreased type 1 error 
rate and completely changed our conclusions in Studies IV and V, was only possible 
through the bisulfite sequencing of a relatively large number of independent samples 
(N=173).  

As reviewed in Section 2.1.6, very little is known of the possible association 
between early-childhood DNA methylation and later progression to type 1 diabetes. 
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Associations of umbilical cord blood DNA methylation patterns with other variables 
such as maternal smoking, maternal BMI, birth weight and gestational age have been 
explored in large meta-analyses of published DNA methylation microarray data 
(295–298). Most published studies on DNA methylation have been performed with 
microarrays and are hence limited to the CpG sites that are targeted by the probes on 
the array. Bisulfite sequencing data usually covers a much larger number of CpG 
sites and is better suited to find methylation patterns across regions. The unique 
bisulfite sequencing data produced within Studies IV and V have potential to be 
useful for future studies on umbilical cord blood DNA methylation. Since 
sequencing data is sensitive by nature, the raw data could not be published. However, 
we released the processed counts (numbers of methylated reads and total coverage 
at each CpG site in each sample), technical covariates, sex, and class labels in 
ArrayExpress (accession code E-MTAB-10530, available as soon as IV is accepted 
for publication). Data on other clinical variables could not be published for privacy 
reasons but is available from the corresponding author of IV upon reasonable 
request. We expect the published data to be valuable for further testing and 
development of differential methylation analysis methods and for future studies on 
the epigenomics of type 1 diabetes.  

The transcriptomic and epigenomic analysis of early molecular mechanisms of 
type 1 diabetes presented within this thesis (II, III, and IV), as well as the epigenomic 
study on newborn infants and pregnancy-related variables (V), are limited to whole 
blood. To gain insight into the roles of different cell types and other functional 
entities that might contribute to the type 1 diabetes associated transcriptomic 
signature in Study II, we performed an enrichment analysis on literature-annotated 
modules of co-expressed genes in human blood (208). The module map of our 
differentially expressed genes in different time windows (II, Figure 4) further 
emphasizes the presence of an interferon signature throughout the follow-up. Also, 
genes associated with neutrophils and cytotoxic cells were differentially expressed 
from the time before seroconversion until the diagnosis with type 1 diabetes. 
Cytotoxic T cells have a key role in the pancreatic lesions of people newly diagnosed 
with type 1 diabetes (23) but this activity was not expected to be reflected in 
peripheral blood. The observed downregulation of neutrophil-associated genes at the 
time of diagnosis is concordant with an earlier publication reporting decreased 
circulating neutrophil counts in children and adults with newly-onset type 1 diabetes 
(299).   

Later studies on type 1 diabetes have further explored cell-type-specific gene 
expression patterns even on the level of single cells (109). Given the cost of single-
cell ’omics or cell fractionation followed by sequencing of several fractions of each 
sample, such studies typically include only a limited number of samples. The only 
published study on DNA methylation changes that precede type 1 diabetes is limited 
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to peripheral whole blood (90). DNA methylation patterns in cell fractions isolated 
from early samples in prospective type 1 diabetes study cohorts should be explored 
in future studies. 

The studies presented within this thesis are observational and have focused on 
hypothesis generation rather than testing. The expression patterns associated with 
type 1 diabetes in Study II and with in-utero environment in Study III are yet to be 
replicated in larger data sets. However, as discussed above, the main conclusions of 
these studies have been presented by other independent studies as well. The virus 
hypothesis (reviewed in Section 2.1.5) remains to be confirmed by vaccination trials, 
which are currently at phase 1 in Finland. An impact of in-utero environment on the 
neonatal immune maturity is nowadays supported by increasing evidence (300). 
Significant associations between umbilical cord blood DNA methylation and later 
progression to type 1 diabetes were not discovered in Study IV but might be 
discoverable in a larger or a more homogeneous data set. 
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7 Summary/Conclusions 

Our studies on type 1 diabetes have contributed to the understanding of early 
mechanisms behind the immune tolerance failure, which develops before any clinical 
signs of autoimmunity. The prospective study on global gene expression patterns in 
diabetic children and their matched controls (II) provided further support for the 
hypothesis that virus infections could play a role in the pathogenesis of type 1 
diabetes. The longitudinal RNA profiles were characterized by a type I interferon 
signature, which was also observed in an independent German study (100). 
Importantly, these were the first studies to report gene expression patterns associated 
with later type 1 diabetes that were observable in peripheral blood already before the 
islet autoantibody positivity. We also reported that immunologically relevant 
differences were present already at the time of birth between children born in 
different environments with contrasting incidences of type 1 diabetes (III). However, 
type 1 diabetes associated epigenetic differences were not yet present at the time of 
birth in our data (IV). 

In addition to providing resources for the further study of biological questions 
related to type 1 diabetes, this thesis has contributed to the analysis workflows in 
transcriptomics and epigenomics. A probe-level splicing index was shown to be a 
useful metric to rank differential splicing events between two groups of samples, as 
compared to methods that summarize probe intensities to exon intensities already at 
the preprocessing stage. This method was developed for Affymetrix exon array 
technology, which is still widely used, despite the availability of RNA sequencing. 
Bisulfite sequencing of a relatively large number of samples (IV and V) enabled a 
permutation-based significance analysis, which revealed a serious inflation of p-
values caused by a commonly used spatial adjustment strategy. Adjustment of p-
values by a weighted Z-test is a quick way to account for the spatial correlation in 
bisulfite sequencing data. However, for future studies we recommend either 
estimating the significance threshold empirically, as done here, or not using spatially 
adjusted p-values for significance assessment at all. 
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