Deep Learning Methods for Register

Classification

Thesis: DP in Computer Science (MSc.)
University of Turku

Department of Future Technologies
November 2021

Prashant Mahato

Supervisors: Veronika Laippala,

Sampo Pyysalo

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

PRASHANT MAHATO: Deep Learning Methods for Register Classification

Thesis: DP in Computer Science (MSc.)
Turku NLP Group
November 2021

For this project the data used is the one collected by, Biber and Egbert (2018) related to
various language articles from the internet. I am using BERT model (Bidirectional En-
coder Representations from Transformers), which is a deep neural network and FastText,
which is a shallow neural network, as a baseline to perform text classification. Also,
I am using Deep Learning models like XL Net to see if classification accuracy is improved.

Also, it has been described by Biber and Egbert (2018) what is register. We can think
of register as genre. According to Biber (1988), register is varieties defined in terms
of general situational parameters. Hence, it can be inferred that there is a close relation
between the language and the context of the situation in which it is being used. This
work attempts register classification using deep learning methods that use attention
mechanism. Working with the models, dealing with the imbalanced datasets in real
life problems, tuning the hyperparameters for training the models was accomplished
throughout the work. Also, proper evaluation metrics for various kind of data was
determined.

The background study shows that how cumbersome the use classical Machine Learning
approach used to be. Deep Learning, on the other hand, can accomplish the task with
ease. The metric to be selected for the classification task for different types of datasets
(balanced vs imbalanced), dealing with overfitting was also accomplished.

Keywords: Register, Genre, Register Classification, FastText, BERT, XLNet, Deep

Learning, Attention Mechanism, Supervised Learning, Regularization

Acknowledgement

I would like to thank my supervisors, Sampo Pyysalo, for thorough guidance throughout
my thesis and Veronika Laippala for providing me with the annotated data and for the
instructions, guidance and encouragement throughout the work.

In Turku, November 2021

Prashant Mahato

TABLE OF CONTENTS

List of Figures

List of Tables

List of Acronyms

1 Introduction

2 NLP and Machine Learning Related Terminology

2.1

Text Preprocessing
2.1.1 Tokenization
2.1.2 Normalization
2.1.3 CrossValidation.
214 of/d-df oL Lo
2.1.5 PFeature Engineering
2.1.6 Featureextractiono
2.1.7 Word Embeddings
2.1.8 n-gram.
2.1.9 Some Deep Learning Methods Used in the Field of NLP
2.1.10 Classification Report,
2.1.11 Confusion Matrixo

3 Background

3.1

Register

iv

vi

14
15

16

3.2 MachineLearning

33 Deeplearning

Methodologies

4.1 fastText e

4.2 Exploring Word Embeddings:

43 Workingof FastText
43.1 Working with fastText

4.4

4.5

4.3.2 Text preprocessing in fastText and the Hierarchical Softmax

433 Summary e e

BERT - Bidirectional Encoder Representations from Transformers

4.4.1 BERT Working Principle
442 Transformer Flow:
443 Self-attention
4.44 Multi-headed self-attention
4.4.5 Steps followed for BERT Training
44.6 Implementing BERT
XLNet . . . o e
451 OVerviewo e e
452 Workingof XLNet,
453 TheExperiment

Results and Analysis

5.1

52
5.3

Comparing the Three methods
5.1.1 Resulton FastText:

5.1.2 Resulton BERT:

Comparing the three models:

Conclusion e e

25
25
26
28

29
29

30
32

32
33
36
36
38

39
40

40
42
44

54

6 Conclusion and Findings 56

6.1 Conclusion: e e 56
6.2 Future Extensions: e 57
Bibliography 58

List of Figures

1.1

2.1

3.1

4.1
4.2
43
4.4
45
4.6
4.7
4.8

4.9

5.1

5.2

Class Distribution 4
Word Embedding 9
Latent Semantic Indexing 21
CBOW vs SkipGram e 27
Word Embedding CBOW 27
Nearest Neighbours Skipgram 27
Nearest Neighbour without Using n-grams 28
Hierarchical Softmax Function 30
Transformer Architecture — Source: Vaswani et al. (2017) 33
Encoderin BERT 34
(left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists

of several attention layers running in parallel. 35

XLNetworking e 43

Confusion Matrix, BERT (Imbalanced Class) with 4 epochs and 16 Batch

53

Accuracy Plot for Figure 5.2 with a Dropout of 0.5 51

List of Tables

5.1
5.2
5.3

54
5.5

5.6

Results of Using fastText 47
Different Parameters Used For BERT (Imbalanced Data) model Training 48
BERT Classification Report (Imbalanced Class) with 4 epochs and 16
BatchSize 50
Parameters Used in XLNet Classification(Imbalanced Dataset) 52
XLNet model Classification report for Imbalanced Dataset with 16 Batches
and4 Epoches 53
Comparing Highest Accuracy (Balanced Data) and F-Score (Imbalanced

Data) in the Three Algorithms 54

List of Acronyms

SOTA: State of The Art

CPU: Central Processing Unit

GPU: Graphical Processing Unit
TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

SFL: Systemic Functional Linguistics
TF: Term Frequency

AGI: Automatic Genre Identification
IDF: Inverse Document Frequency
VSM: Vector Space Modeling

BoW: Bag of Words

SVM: Support Vector Machine
SVD: Singular Value Decomposition
POS: Part of Speech

LSI: Latent Semantic Indexing

SMO: Sequential minimal optimization

CV: Cross Validation

ML: Machine Learning

NLP: Natural Language Proessing

IR: Information Retrieval

CNN: Convolutional Neural Network

DNN: Deep Neural Network

RNN: Recurrent Neural Network

Bi-RNN: Bi-directional Recurrent Neural Network
W-RNN: Weighted Recurrent Neural Network
LSTM: Long Short Term Memory

BoW: Bag of Words

CBoW: Continuous Bag of Words

BERT: Bidirectional Encoder Representations from Transformers
OOV: Out of Vocabulary

MLM: Masked Language Modeling

NSP: Next Sentence Prediction

AUC-ROC: Area Under Curve-Receiver Operator Characteristic

1 Introduction

Computers have always been a means to simplify human life. Language is means of
transferring knowledge among human beings. Natural Language processing is related to
machine learning algorithms applied to linguistics. We use NLP for various day to day
tasks like using Alexa, Siri or Google Assistant, searching on google whatever we want
and so forth. NLP can provide human-like experiences by applying it to various problems

like -
* information retrieval
* language translation
 email filtering
* text analytics
* speech to text (and vice-versa)
* chatbots and virtual assistants
* market intelligence

This thesis topic is related to text classification using Natural Language Processing. Ac-

cording to Goldberg (2017, p.1) :

Human language is highly ambiguous ... It is also ever changing and evolv-

ing. People are great at producing language and understanding language, and

CHAPTER 1. INTRODUCTION 2

are capable of expressing, perceiving, and interpreting very elaborate and
nuanced meanings. At the same time, while we humans are great users of
language, we are also very poor at formally understanding and describing the

rules that govern language.
Excerpting from book ’Natural Language Processing with Python’ Bird, p. ix

We will take Natural Language Processing — or NLP for short —in a wide
sense to cover any kind of computer manipulation of natural language. At
one extreme, it could be as simple as counting word frequencies to compare
different writing styles. At the other extreme, NLP involves “understanding”
complete human utterances, at least to the extent of being able to give useful

responses to them .

We are aware of the fact that the text following certain nuances has a particular pattern
(e.g, conversation can differ from scientific exposition, considering the writing style). In
context of NLP/linguistics we call it register Manning et al. (2008). It is similar to ’genre’

.Egbert et al. (2015) describes register as

text varieties that are initially defined based on their situational characteris-
tics (e.g. participants, interactivity, communicative purposes, topic). Regis-
ters can be analyzed in terms of their pervasive lexico-grammatical linguistic

charactersitics.

Hence, we can say that a register is distinguished based on particular situations and
by the linguistic features (that the Deep Learning models can extract, in my case) that it
shares Argamon (2019).

Objective

I am trying to apply few state-of-the-art Deep Learning algorithms viz. Google BERT
(Devlin et al. (2018)), Facebook’s fastText (Joulin et al. (2016)), also XLNet(Yang et al.

(2020)) to see if they can generalize register patterns and perform register classification

CHAPTER 1. INTRODUCTION 3

accurately. The main objective of this thesis is to do multi-class classification and com-

pare the three algorithms’ performance.

The Data
The data that I got is by Egbert et al. (2015), which uses Web as Online Corpus (of reg-

isters). It has 26 labels, classified under four different classes (4 main classes (situational
variables) have 22 sub classes): viz.
1. Narrative Register
NE: News Report
PB: Personal Blog
SR: Sports Report
HA: Historical Article
TB: Travel Blog

SS: Short Stories

2. Opinion, Advice and Persuasion Registers
OB: Opinion Blog
RV: Review
DS: Description with Intent to Sell
AV: Advice

RS: Religious Blog/Sermon

3. Informational Descriptions, Explanations, and Procedures:
IN: Informational Description
IB: Informational Blog

HI: How-to/Instructional

CHAPTER 1. INTRODUCTION 4

5000 4

4000 -

3000 4

2000 +

1000 A

LS BH e EAT RS R TERARNE GO

Figure 1.1: Class Distribution

RA: Research Article

DP: Description Blog

EN: Encyclopedia Article
FI: FAQ about Information

RE: Recipe

4. Oral Registers
IN: Interactive Discussion
IT: Interview
SP: Spoken
It was scraped from various websites, following the book (Biber and Egbert, 2018, p. 9-

10,15,19,42). The annotation of registers was done manually. This work uses Web as a

Corpus. Continuous Space of Registers Variation.

CHAPTER 1. INTRODUCTION 5

From the Figure 1.1, we can see that the data is highly imbalanced. So appropriate metric
has to be used in this case. Or, balancing the classes with equal number of labels can be
carried out.
Thesis Structure:

The first section is the introduction of the task. Introduction to register is included in this
section. Also, the data is described in the introduction section itself. Basic terminology
related to Machine Learning and Natural Language Processing are presented thereafter.
After that, the related works done in this field are described. Then, the three methodolo-
gies that I have applied for this work, FastText, BERT, and XLNet are dealt with, followed
by the results and conclusions. Further improvement that could be done with this task is

discussed in the conclusion.

2 NLP and Machine Learning Related

Terminology

2.1 Text Preprocessing

Text preprocessing is the most important initial step in NLP. We perform text preprocess-
ing in order to transform text into a simpler form so that the machine learning algorithms

can perform better. The basic steps in text preprocessing:

2.1.1 Tokenization

Tokenization is about splitting a string into smaller pieces. The algorithms that I am using

tokenize the strings into words.

2.1.2 Normalization

There has to be uniformity in the sequence of words since computers are not good at
dealing with variation (due to several form of a same word, and due to several contexts).
Normalization reduces dimensionality of the input. So, the process of normalization can

further involve :

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 7

Stemming/L.emmatization

Stemming converts the word to its stem form, whereas lemmatization considers the con-
text of the word in which it is used. Either of the process could be used to make learning

of words better.

Converting to Lowercase

Algorithms assign a different word vector for *Capital’ different than for ’capital’. So it

is important to have uniformity.

Noise Removal

Noise removal cleans text, so that unnecessary words like stop-words(articles, conjunc-
tions etc.), punctuation, special characters, HTML tags can be removed. Noise removal
also reduces number of inputs and the model doesn’t get interference by them for our task

of text classification.

2.1.3 Cross Validation

Cross-validation is done by holding out a certain portion of data as unseen (as a test or
a validation set) and use the rest for training. This can be useful in testing the model
in an unseen data, as by doing cross validation, we are making it unbiased by reducing
the variability (Often multiple rounds of cross-validation is carried out, which finally is

averaged).

2.1.4 tf/ tf-idf

It is often used in IR and keyword extraction. It can be used for feature weighing. Search
engines use tf-idf for ranking relevance of articles. Words frequently used in the article

are ranked higher than those used less. Mathematically, idf is represented as the logarithm

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 8

of the number of documents to the number of documents with the particular term. Now

tf-idf is the product of term frequency and idf.

_ (Number of times term t appears in a document))

if =

(Total number of terms in the document)

log_e(Total number of documents)

idf

"~ (Number of documents with term t in it)

tf-idf=tf*idf

2.1.5 Feature Engineering

Like in Machine Learning, in NLP, it is also essential to select only essential features
from the document. Steps like removing stop-words, stemming, etc., can be considered
as feature selection. idf-weighting for words with low or high frequency can also be used,

as it can identify rare words, and it can convert strings to numbers.

2.1.6 Feature extraction

Before feeding into the ML classifier, each document has to undergo Vector Space Mod-
eling. Bag-of-words is simply counting the occurrence of a particular word in a sentence
(vector). Doc2Vec creates a numerical representation of the document regardless of what
is the length. It is an unsupervised 3-layer shallow neural network. A set of documents is
required for training a doc2vec model. A Word vector is generated for each word. Also,
each document is represented by its vector. Hidden softmax layers are also trained, Le
and Mikolov (2014). BoW tf-idf can be one way of feature extraction, Liu et al. (2018).

Doc2Vec is also one of the ways.

2.1.7 Word Embeddings

Similar words appear in a similar context. In NLP, we have numerical representation for

words as vectors called Word Embedding. Each word is mapped as a vector. These vector

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 9

values in the embedding are learned using a neural network. Hence we will get a real-

valued vector of fixed dimension, depending on the model we are using.

. Cat

Horse

.Dog

. Lime

. Tomato

Figure 2.1: Word Embedding

Each word is mathematically represented as a vector. The word is represented as a
one-hot vector (Categorical features represented as one-hot array) value multiplied by

embedding weight matrix (neural network).

2.1.8 n-gram

A sequence of n characters or words in a sentence, is referred to as n-gram. n-gram follows
the principle *You shall know an object by the company it keeps’, Sadeghi et al. (2014). 1t
is used in NLP to identify letters or words that adhere together. The n-grams information
enriches word vectors with sub-word information. It is often used in predictive text input
and speech-to-text. FastText incorporates a sub-word model. It can efficiently handle Out

Of Vocabulary (OOV) words by using subword information. It also has shared parameters

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 10

for words with the same roots.

2.1.9 Some Deep Learning Methods Used in the Field of NLP
Perceptron

Perceptron is the simplest neural network. In Perceptron multiple binary inputs produce
a binary output. First the input X is multiplied by weight, bias added to this term gives us
with weighted sum. The weighted sum is then passed through an activation function to
give an output.

Weight and Bias Bias is a constant vector, added to the product of input and weight.
The mathematical expression of perceptron is Y = W*x+b, where W is weight and b is
bias. Weight decides what importance to give to the individual input, whereas bias offsets
the results (shifts the result of activation function to positive or negative side). Hence there
is better generalisation of neural networks (bias controls when to activate the activation
functions).

Activation Functions Each neuron in the Neural network possesses an activation that
tells it to what extent it should be stimulated to the connected neuron. It takes input as
inputs, multiplied with the weights, added with bias to produce the binary output. This

can further be passed to subsequent neurons.

Feed Forward Neural Network

Feed-Forward Neural Network can be thought of as a non-linear mapping such that u =
G(x). Here input patterns x is mapped to output patterns u by a mapping function G, Be-
bis and Georgiopoulos (1994, p. 27-31). A multi-layered Feed-forward Neural Network
would have an input layer, multiple hidden layers, and an output layer.

In a neural network, the nodes are interconnected so as to pass the information and com-
pute the output. It is trained by using back-propagation, and minimizing the loss/cost in

the error function. Various ways of increasing performance include:

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 11

Weight Initialization Weight initialization is used so that the neurons in neural net-
works learn properly from the features. For example, I have used random initialization of
weights, using pytorch’s inbuilt methods (For BERT).

Initially, the weight matrices contain random values, which are then gradually adjusted
based on the feedback values. Training the neural network updates the weight values.
Iteration over all the batches and epochs result in a finally updated weight matrix.

Learning Rate Learning rate is a hyperparameter which tells what amount of weight
is updated while training and is used to control how quickly the model will adapt to the
problem. It can take any value between 0.0 and 1.0.

Batches and Epochs Batch is one of the hyperparameters in the neural network.
We use batches to load all of our data in memory to not make it too expensive for our
CPU/GPU. Once all the samples in a batch of operations are complete, the internal model
parameters can be updated then after. Error is calculated after a batch of operations. An
epoch, on the other hand, is a complete pass through the entire dataset(forward and then
backward). Increasing/decreasing it can affect neural network performance too. An epoch
can have one or several batches. In deep learning algorithms, less epochs can cause un-
derfitting, so increasing epoch size can make it optimal. Also, it should not be increase
too much so that it can cause overfitting.

Regularization It is used to handle over-fitting by penalizing the weight, which maps
input to output. The additional penalty term is used to control the coefficients of the error
function. Hence the excessively fluctuating function is controlled. Typically L1 (sum of
absolute values of weight) and L2 (sum of squared values of weight) vector norm penalty
is used.

Optimization Loss Loss function is calculated at the end of each epoch. It tells
how much quantity needs to be minimized during the training. Based on loss function,

optimizer determines how the network will be updated.

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 12

Recurrent Neural Network (RNN)

RNNSs work on sequential data: RNN is often used when pattern in data change with time.
In terms of text data, the word gets transformed into vector first. Then in time series, the
vector is processed one by one, passing through a succession of cells. Thus, the hidden
states (memory) propagate sequentially as it passes through the cells. The problem, how-
ever, with RNN is that with longer sequences, it is difficult for them to remember the past
states as there is exponentially small gradients and decay of information through time.
Hence, there is inability to capture relevant dependencies in long sequences, Cho et al.

(2014)

LSTM

LSTMs are also a type of RNN. In addition to having recurrent nodes, they also have
an internal state (to forget or remember some information). Input value, the previous
output and the internal state are all used in node calculation. We can get output value
and also internal state is updated. LSTMs have a parameter known as gates to control
the flow of information within the nodes. These gates parameters are weights and biases.
Hence LSTM nodes are more complicated than RNN nodes and complex dependencies
and sequences of data can be learnt, Cheng et al. (2016). So, they can better capture the

dependencies between the long sequences, although they are slower than RNN.

CNN

Convolutional Neural Networks, trained on pretrained word vectors can be used for sen-
tence classification. Word vectors, or a word is projected as a sparse representation (of an
embedding) is passed into a hidden layer (which acts as feature extractors) . Hence we
get the semantic feature of a word. CNN can have filters to learn multiple features, and
also, it does not forget the past states easily as there are local dependencies and distance

between positions is known, Kim (2014).

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 13

Transformers

The Transformer relies on self-attention for information interaction among the input se-
quence. This is the advancement made in RNN and CNN Vaswani et al. (2017). Self-
attention is an attention mechanism (which helps focus on the important parts of an input
data, and fade out the rest) relating to the different positions of a single sequence so as
to calculate representation of the same sequence. Thus, self-attention allows the inputs to

interact with each other to compute which token should be paid attention to more.

Global Attention

Global Attention applies in terms of transformers (Refer 2.7.9). Since the Vanilla encoder-
decoder suffers from vanishing gradients, global attention mechanism was formed. When
attention is placed on all source states, it is called Global Attention. Referring to Luong

et al. (2015), Global Attention can be described as :

1. At each position, there is a variable-length alignment vector

2. There is a current target state and all source states

3. Global context vector is computed as weighted sum of attention weights as well as

the hidden states that maps to the input sequence.

Hence, all the words on the source side are attended to to get the target word, so it is

expensive.

Pretrained Model

A neural language model, which often has millions of parameters is trained on a large un-
labelled corpora. During this process, the word representations are learned in a pretrained

model, which can be reused in supervised training for a task (e.g. genre classification)

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 14

with optional fine-tuning, thus saving us a lot of time and effort, Gururangan et al. (2020).

Pretrained models are availed with a large amount of training data.

2.1.10 Classification Report

A Classification report is used to assess the quality of predictions from a classification
model. The metrics are defined in terms of true positives & false positives and true neg-
atives & false negatives. A true positive is when a class is actually classified correctly
(gets correct label). A false positive is when some wrong class is classified in a true class
(for example, a sick person is classified as a healthy person). Some terms used in the
Classification Report are:

Precision is the labels correctly predicted among the labels predicted by the

model.

Recall : is the number of labels that were successfully predicted, among all the

real labels.

F1-Score : is the harmonic mean of both of the above. Micro-F1 score are used to

assess the quality of multilabel problems. (1 to indicate the best of micro-precison

and micro-recall)

Support : By Support, the inference from the dataset that can be made is the

number of times the class actually appears in the specified dataset.

Mathematical Formula:

Procisi TP
recision = ———
TP+ FP
TP
="
Reca TP EN
P . .
F1-Score — 2 % recision * Recall

Precision + Recall

CHAPTER 2. NLP AND MACHINE LEARNING RELATED TERMINOLOGY 15

2.1.11 Confusion Matrix

The Confusion-Matrix takes the training data, test data, the classifier and shows the
visualization of the performance of an algorithm. The report shows a comparison of the
test values’ predicted classes versus their actual classes. It is used to test which classes

are most easily confused. !.

"https://www.scikit-yb.org/en/latest/api/classifier/confusion_matrix.html

https://www.scikit-yb.org/en/latest/api/classifier/confusion_matrix.html

3 Background

Lots of work have been done in the field of text classification. A lot of effort is required
in terms of classical machine learning. It is my approach to evaluate a number of SOTA
algorithms and get results for my task of register classification. We see in this section, the
works done in the field of register classification: classical machine learning approach and

deep learning algorithms used for the task.

3.1 Register

There has been stackoverflow tag prediction online competetion (Schuster et al. (2013)).
Various works have been done in the field of movie or book Genre classification by some
companies. Argamon (2019) has done a work of Register Analysis:

Register Analysis - This is the task of classifying texts into a particular register using
some computational methods. For the feature extraction part, machine learning tech-
niques have been used. Then classification models were built. Also, multidimensional
analysis is done. The purpose of multidimensional analysis is to find a set of continuous
dimensions that exhibits register-relevant variation, Argamon (2019). Egbert et al. (2015)
has developed a web tool that enables user-based text classification of texts (from the in-
ternet). It can be inferred from the work that registers can be analyzed in terms of their
pervasive lexico-grammatical linguistic characteristics. They have worked on describing
linguistic variation on the web by developing a hierarchical register framework and a de-

cision tree to take a range of facets as well. Hence, information necessary to classify text

CHAPTER 3. BACKGROUND 17

was developed (using a a user-based web register classification instrument) . They have
taken the multifaceted structure of the register framework (multiple characteristics of the
text). Thus, it is possible to get situational information in an incremental way. They have
classified register categories based on the situations in which language is used, and further
analyses have been done for investigating the characters of the defined registers.
They developed a framework that itemized the registers found on the web. Users are them-
selves assigning registers to the web texts, being able to modify the categories themselves
when needed. Also, in one pilot phase, they modified the classification rubric to a deci-
sion tree, where situational parameters viz. mode, interactivity, communicative purpose,
and factuality are considered for register classification. This resulted in the hierarchy in
classification. Few sub-registers were highly frequent and easily identifiable. Hence users
were able to select from a drop-down of various categories of registers.

For the user-based register classification, the first instrument developed was a sim-
ple web-tool of register categories. Considering reliability as a factor, a flowchart was

developed later on, which followed situational binary variables as below:

mode (spoken/written)
interactivity (multi-participant/single author)
purpose (narrative/descriptive)

factuality (opinion/objective)

The study concluded that even non experts can, by using bottom-up approach, classify
documents using a decision tree into the general registers, sub registers and register hy-
brids (one webpage having characteristics of multiple registers). They have concluded
that the hybrids have more power to incorporate general patterns more than others.
Argamon (2019) has also made several studies related to academia, like finding dif-
ferences in social communities based on registers usage, the evolution of registers in sci-
entific publications, variation in different registers of various (World) Englishes. Also,

works are done to analyze the similarity between registers, say based on linguistic fea-

CHAPTER 3. BACKGROUND 18

tures they share. Clarke and Grieve (2017) has used Multidimensional Analysis for Abu-
sive Language detection. Also, Egbert et al. (2015) mentions that registers can be used to
improve word disambiguation software, taggers, parsers, and IR tools. Biber and Egbert
(2016) mentions the use of Web-as-corpus by researchers/linguists for language teach-
ing, information scientists for information retrieval, and computational researchers for
improving results of search engines and for spam filtering. There are some works done to
improve Information Retrieval tasks and Search Engines. Abdullah and Zamil (2018) has
used text classification during the indexing phase, as an improvement to classical IR Sys-
tems, to improve the results of IR systems. Karlgren (1996) has used register categories

to improve information retrieval and search.

3.2 Machine Learning

Argamon (2019) has used conventional Machine Learning techniques for feature extrac-
tion and used techniques like Multidimensional Analysis Also, Syntactic parsing and shal-
low parsing are used as an alternative. Systemic Functional Linguistics (SFL) is used to
observe differences between the various level of abstractions. Simply stated, SFL is a
term used by applied linguists, which studies similarities and the contrast between a set of
texts (having common/similar topic), based on metafunctions like interpersonal (Speaker
- addressee interaction), textual (Organisational text) and experiental (representing expe-
rience) Briones (2016). Support Vector Machines (SVM), Neural Networks, Rule-Based
Learning, and Bayesian Regression are some of the ML methods mentioned in the paper.
The paper considers appropriate evaluation metrics like per class precision and recall, as
overall accuracy may not be a good metric to consider. Further, it explains that accuracy
can be high if the accuracy of majority is high. It has mentioned handling majority and

minority classes, using undersampling and oversampling respectively. For text represen-

CHAPTER 3. BACKGROUND 19

tation, it has used Stylistic Text Features as in Herke-Couchman and Canzhong (2004),
which has multidimensional approach of representing a register. One of the dimensions
is stratification, which orders space into four different levels (viz.context, semantics, lexi-
cogrammar and phonology/ graphology). Another dimension is Ideational metafunction,
that divides space into ideational, interpersonal and textual functionally diverse modes.
Ideational refers to the world around us: experimental (processes, circumstances, and
participants) and logical (modification and exemplification). The third dimension is in-
stantiation. At any point in instantiation, we can pick up a distinct task (eg. translating at
one end, developing reference grammar at another).

Biber (2004) has used Multidimensional Analysis (Factor Analysis) and identified seven
factors of variation for the registers. Factor Analysis has been used not only for lexical
and syntactic features but also over cohesive text features (linguistic features that link sen-
tences in a text together e.g. lexical syntax and grammar). Also, the article mentions the
work of Teich and Fankhauser (2010). The paper discusses the use of k-means clustering
for investigating how the mixed type registers are related to the pure registers (e.g., how
bio-informatics is related to biology and computer science). Also, SVM is used for this
purpose.

Vidulin et al. has dealt with transforming a multilabel ML problem into several single-
label classification problems, using a supervised ML approach. Since a web page is a
complex document, the single page can be classified using multilabel classification. They
have transformed the problem into multi-class and then into a set of binary sub-problems.
Finally, standard ML algorithms have been used on the transformed data. The model that
deals best with multi-genre web pages is then determined. Based on the result of a set of
binary classifiers (one per genre) that can learn overlaps between several genres and clas-
sify a complex web document into a single label, then a zero-to-multi genre assignment
is done. This is binary approach. In multi-class, the classifier is able to learn the overlap

between the different genres (due to the induction of a single classifier). and generalizes

CHAPTER 3. BACKGROUND 20

the most dominant register. The performance, however, for such a classifier was low.

There were 20-genre collection corpus to cover aspects viz. content, linguistic form,
visual form, and context of a web page. The features were separated into four groups:
surface, structural, presentation, and context.

As mentioned already, the work has transformed a multi-class problem into a set of
binary problems. Support Vector Machine (SVM) and Adaptive Boosting (AdaBoost)
are used to learn classifiers (For easier model selection and better generalization perfor-
mance AdaBoostSVM is used, Li et al. (2008a). The way SVM works is by finding
the best decision boundary (hyperplane) to separate two classes. A weakened SVM was
used to provide weight to the classifier. Hence by tuning (kernel) parameters so that
one classifier doesn’t come as dominant by having too much weight, Li et al. (2008b);
Govindaraj (2016). The evaluation was done based on the Exact match ratio, which is
similar to accuracy micro-averaged measures, which averages over all the web pages,
and macro-averaged measures, which weigh all the genre categories equally regardless of
their frequencies.

The paper suggests that precision is a good property of measuring.

Radovanovic et al. (2009, p.861-893) presents idea of constructing a meta-search
engine powered by text classification techniques. The paper says, text categorization
can have applications like text filtering, word-sense disambiguation and categorization of
web-pages.

We can see the detailed implementation of the model in this work. The document is
represented into its numerical counterpart using methods like bag-of-words. For measur-
ing similarity between documents, cosine similarity is used. In deep-learning methods,
word-embeddings serve this role. For dimensionality reduction stemming is used. Also,
feature selection and feature extraction (LSI) has been used to reduce the number of fea-
tures. LSI uses SVD to decompose the term-document matrix to transform the document

vectors to lower-dimensional space Refer (3.7). After this, modeling can be done using

CHAPTER 3. BACKGROUND 21

one among the models: viz. Perceptron, SVM, Naive-Bayes, Nearest-neighbor classifier,

Decision tree

Latent Semantic Analysis

Raw Document
Text Term
Data Matrix

Figure 3.1: Latent Semantic Indexing

To evaluate the classifiers, cross-validation method is used. Evaluation of classifier is
done using accuracy, precision and recall.
The datasets used were from six categories: arts, computer, sports, music, role-playing,

and physics.

3.3 Deep Learning

There are deep learning algorithms text classification. Some of which are described in
Minaee et al. (2020). My effort is to evaluate some of the SOTA deep learning methods.
Prior to transformers, LSTM had been used for language translation, text classifica-
tion, etc. LSTMs are a advanced form of RNNs capable of learning long-term dependen-
cies. LSTMs were capable of solving the problem of vanishing gradients of the traditional

RNNs. But LSTMs also suffered from the following drawbacks :

3. Slow to Train Sentences are processed sequentially, words by words. This is the

reason it cannot be trained in parallel.

CHAPTER 3. BACKGROUND 22

2. Past Information Retained Through Past Hidden States In Sequence-to-Sequence
models, each state is dependent on the previously seen state. Hence encoding of
the word strongly affects the next time step. But, after certain time-steps this de-
pendency is lost . In LSTM, the dependency range can be boosted a bit due to the
deeper processing of the hidden states, utilizing gates to allow only certain informa-
tion to pass through the cell states. On the other hand, the self-attention mechanism
used by Transformers can learn the dependency between the current word and the

precious part of the same sentence, Vaswani et al. (2017).

3. Not Truly Bidirectional The true meaning of words is not entirely captured. Even
the bidirectional LSTMs are learning right to the left or left to right, the context

separately and then concatenating them. So the actual context is not fully captured.

Xu et al. (2020) has solved some of the problems in LSTM using per-layer-nonlinearity
with depth-wise LSTM, instead of residual connections.

Lyu and Liu (2020) combined CNN and RNN employing the strengths of the two
networks. CNN captures the local invariant features, so in this work, a 2D weight matrix is
learned. Hence, the importance of each word from different aspects is represented. RNN
(bidirectional) is utilized to learn the word contextual information. A neural tensor on top
of bidirectional RNN obtains the fusion of bidirectional contextual information around the
focus word. This new neural network architecture was evaluated on six different datasets
for Text Classification.

Beltagy et al. (2020) has worked on decreasing the runtime of transformers from
quadratic to linear. Also, they work on longer sequence texts (4096 tokens), 8 times
longer than what BERT can work as BERT is pretrained to work on a maximum of 512
token-size. One of the works they have done is document classification. They have done
replacement of self-attention, combining local windowed attention with a task motivated
global attention. The proposed solution utilized multiple layers of attention to building

contextual representations of the entire context. They have combined windowed local-

CHAPTER 3. BACKGROUND 23

context self-attention global attention to learn higher contexts in less time.

Sun et al. (2020) has done 3 works to fine-tune BERT for text classification:

1. Further Pretrain BERT: Further pretraining has been done in following ways:
Within-task pre-training:
In-domain pre-training

Cross-domain pre-training

2. Fine-tuning BERT: To fine-tune BERT three things are necessary:

Pre-processing of long texts Pre-processing of long texts (max allowed se-
quence length is 512). They have applied some truncation methods to deal with
long texts. The logic they have given is that the key information is contained in the

beginning and ending of an article.

Layer Selection Selecting the most effective layer for text classification out of

the embedding layer, 12-layer encoder and a pooling layer.

Overfitting Problem For dealing with overfitting problem (occurs when model
also memorizes the noise and model can’t perform well on real data) appropriate
learning rates were adopted.

Multi-task fine-tuning refers to sharing of the knowledge that is obtained from sev-
eral related supervised tasks. All the tasks share the BERT layers and the em-
bedding layer, except the final classification layer. Hence, each task has a private

classifier layer.
3. Fine-tuning BERT for Target Class: Investigation of fine-tuning methods were
done. Some of which were:
layer-wise learning rate

catastrophic forgetting: In transfer learning, when pre-trained knowledge is

erased when new learning is done, it is referred to as catastrophic forgetting. A

CHAPTER 3. BACKGROUND

24

lower learning rate was required for overcoming this.

low-shot learning problems: This occurs when there is less training data.

They have used BERT for question classification, topic classification etc.

4 Methodologies

The practical implementation has been carried out using three different algorithms Fast-

Text, BERT, and XLNet. This chapter deals with the working of these algorithms.

4.1 fastText

fastText was created by Facebook’s Al Research (FAIR) lab. fastText is an extension of
the Word2Vec model. It represents each word as n-grams. It uses either skip-gram or
CBOW (the former tries to predict the neighbours of a word whereas the latter predicts a
word on the basis of the surrounding context) algorithm thereafter for the learning model.
This model can be considered as a bag-of-words model with a sliding window. It works
well with rare words. Word2Vec and Glove both fail at rare words.

The work of Mikolov et al. (2013a)

We observed that it is possible to train high quality word vectors using very
simple model architectures, compared to the popular neural network models

(both feedforward and recurrent)

In fastText word embedding, we can set a character n-gram, which can represent rare un-
known words. In such embedding, a word can be represented as subwords of n-grams.
FastText uses a bag of n-grams as additional features to capture local word order infor-

mation.

CHAPTER 4. METHODOLOGIES 26

For example "'where’ can be represented as <wh, whe, her, ere, re >

(Source — Bojanowski et al. (2017))

The sum of the character n-grams is equal to the word representation (vector) of the word.
This can, for example, be useful in a noisy context when some words are misspelled.
Hence (Out of Vocabulary) OOV words can be better handled by FastText. (By utilizing
the power of n-grams), Bojanowski et al. (2017)

I have used fastText as a baseline for text classification as it is fast in train/test. Good
results can be obtained when proper parameters are used. fastText can scale to a very

large corpus.

4.2 Exploring Word Embeddings:

Embeddings are often very good at capturing syntactic and semantic patterns or regular-
ities in a language. For e.g., if country/capital relationship is to be learned, and with the
induced vector representations, “Tokyo + Finland - Helsinki” results in a vector very close
to ”Japan”, Mikolov et al. (2013b). By default, Using C-BOW, we get a vector of length
100 for each word, whereas using skip-gram, we get a 300-length vector (by default).
For this experiment skip-gram and CBOW models have been used. The former can
predict a target based on surrounding words. The latter predicts based on its context,
which is represented as a bag of words of fixed size window around the target word.

Figure 4.1 can help make it clear. (The target word I have used is ’coffee’)

Experimenting with Embeddings:

* Getting CBOW Word Embedding For example, in case of fastText, we can have
an embedding for sentence ’ I have Flu’ as in Figure 4.2. We can see that a word
vector is a sequence of numbers. Using Skipgram model for the word or token

“university’, we see the following words that are similar to university Figure 4.3.

CHAPTER 4. METHODOLOGIES 27

CBOW Skip Gram

Coffee Coffes Caffes

Ead '

| like

| I mam
5 o I L

| like coffee, | like tea

Figure 4.1: CBOW vs SkipGram

T -0.0090744 0.0030181 0.0036649 -0.0072966 -0.0087633 0.0086196 -0.0016136 -0.0070292 -0.0044502 -0.0031499 0.0074152 0.0017169 0.0070711 -0.0089702 -0.0099752 -0.0052907 0.00062203
0.0068797 -0.0072831 -0.00061667 0.00074814 -0.002491 0.0022133 -0.0028185 0.0081895 -0.00087634 -0.0027834 -0.00073714 0.0079433 -0.0055013 -0.0070244 0.00041117 0.0092409 -0.0010757
-0.001283 -0.0066493 -0.0022708 -0.0017359 0.0015584 0.0098021 0.0016578 -0.0049743 0.0056912 0.0031568 -0.0057034 0.0053827 0.0063985 0.0043272 0.0013929 -0.0069845 0.005771 -0.0012259
-0.0020764 0.0049895 -0.0029791 -0.0029406 5.3337e-07 0.0070176 0.00047287 -0.0074385 0.0027879 0.0065971 -0.0037722 0.0057403 0.00067505 0.009792 0.0063213 0.0028784 -0.0087285
-0.00036142 -0.0027219 0.00049145 0.0080468 -0.0065174 0.0071007 -0.0044903 0.0046376 0.004383 0.0083373 0.0060683 0.0071654 0.0098928 0.0022931 -0.0055353 0.0092951 -0.0087131
-0.0033984 -0.0016355 -0.0015631 0.00109 0.0013871 -0.0063052 -0.0084328 -0.0045896 -0.0074275 -0.0092313 -0.0007249 0.0071343 0.008785 -0.0069762

have -0.37099 -2.816 2.7273 -2.1672 2.1239 -0.57863 -1.4942 -2.4251 1.824 -3.6228 -1.612 -1.9301 -0.84554 -0.28912 -1.5839 0.51743 0.16541 -1.18 1.1469 -0.74312 0.93622 -1.3337 0.33816
-1.1396 -0.4096 0.93125 0.74007 2.1041 2.7931 -1.259 0.51509 0.22772 -2.4192 0.90916 -1.8677 0.10189 2.0898 -0.52709 1.146 1.3583 -1.0388 -0.44789 -2.4948 0.76581 -1.797 0.086604
0.52881 -0.9688 0.16535 -3.0956 -0.87818 -1.9602 0.32151 -0.60913 -0.22648 0.10153 -0.93308 -1.2513 0.49535 -0.22059 -0.17945 0.58495 -1.2138 0.48066 -0.21948 1.3242 0.94692 0.69149
-0.11769 -0.55814 1.0488 0.36328 1.4307 -0.69256 -0.98004 -0.18493 -1.2323 -3.0526 -0.97918 2.4191 -0.0029029 -0.52686 -0.67256 -1.4007 -1.7723 -0.56219 1.6908 1.2629 0.61943 -1.6557
-1.1342 -1.0631 1.0561 -1.3715 0.89728 -2.0098 -1.9347 -0.86331 -0.37552 -2.1858

Flu -0.35545 -0.15695 -0.62518 0.010087 0.075173 -0.37632 0.45597 -0.57293 -0.075117 0.24037 -0.27492 0.45457 -0.1734 -0.52649 0.099054 0.17709 0.2694 0.64642 0.027788 0.23318 0.003724
0.17263 0.0059726 0.54223 -0.2816 0.18249 -0.62774 0.42179 0.11917 0.57805 0.3533 -0.14467 0.54037 -0.21328 -0.21039 -0.41746 0.28841 0.14022 -0.20242 0.346 -0.014571 -0.34152 0.25394
-0.17405 -1.0414 -0.1237 -0.2612 0.53746 -0.21838 -0.062093 0.086078 0.068931 0.36832 -0.47977 0.44995 0.14064 -0.30328 0.13912 0.021949 -0.023176 -0.36979 0.14211 -0.27937 0.16054
-0.31279 0.13496 0.22656 -0.094986 -0.4023 -0.30575 -0.080566 -0.032001 -0.062667 -0.064527 -0.47731 -0.085665 0.36586 -0.42902 -0.082744 0.38624 0.6035 0.049251 0.48474 -0.29734
-0.2258 -0.1852 -0.39353 0.42274 -0.12725 -0.090741 -0.29358 0.060634 -0.080695 0.059498 -0.3584 0.27202 -0.13923 0.23483 -0.17711 -0.70389

Figure 4.2: Word Embedding CBOW
* Getting Nearest Neighbours with SkipGram model as shown in Figure 4.4

[mahatopr@datamangler03 fastText-0.2.0]$./fasttext nn skmodel.bin
Query word? university
university; 0.922958

universit 0.914945
university-educated 0.819659
universidad 0.817097
universities 0.787482
[professor 0.762339

college 0.746933

professor 0.7149

gynecology 0.712299
professorship 0.707839

Figure 4.3: Nearest Neighbours Skipgram

* Measuring Similarities between Word Vectors by utilizing word analogies, also dis-
cussed in section 4.2. As words in an embedding are just vectors, we can use op-
erations like addition and subtraction to get Word Analogies, Allen and Hospedales

(2019). For e.g., the analogy for

CHAPTER 4. METHODOLOGIES 28

man is to king as woman is to ..?

can be expressed as Wy-W,,+W,,, where Wy, is the word embedding of the vector
king, W,, is the embedding of man and W,, is the word embedding of the vector

woman.

In fastText, we can enter query triplets i.e, 3 word vectors and observe the word

analogy, doing additions and subtractions.

e Comparing Power of Embedding Using n-grams: Word n-grams can be used n-
grams can be helpful in many scenarios, for e.g., for noisy documents, for segment-
ing compound words etc., Kim et al. (2019)

Details about n-grams is dealt in subsection 2.1.8

Jfasttext skipgram -input train.preprocessed.txt -output skmodel-none -maxn 0
[mahatopr@datamangler03 fastText-0.2.0]$./fasttext nn skmodel-none.bin
Query word? university

emory 0.797913

university; 0.78507

professor 0.783203

obstetrics 0.778652

gynecology 0.776846

rmit 0.773954

graduate 0.766258

touro 0.760225

uc 0.759991

adjunct 0.757738

Figure 4.4: Nearest Neighbour without Using n-grams

4.3 Working of FastText

fastText uses shallow neural networks, called a Continuous Bag of Words (CBOW) and
skipgram, for the part of the word representation. It speeds up computation using hier-
archical softmax over softmax, as we do not need to compute all the label probabilities,

Joulin et al. (2016).

CHAPTER 4. METHODOLOGIES 29

fastText model is capable of learning word representations and sentence classification.
One good feature of fastText is that it can support multiprocessing during training. There
are various types of support while training -CBOW or Skip-gram models using softmax

and hierarchical softmax loss functions.

4.3.1 Working with fastText

There are two ways we can use fastText: one is in command line mode and the other is in
python. Bash commands were used in command line mode. There is an option to activate
hyperparameter optimization — By providing a validation file with -autotune-validation

argument. So, working with fastText becomes quite easy.

4.3.2 Text preprocessing in fastText and the Hierarchical Softmax

In Hierarchical Softmax, a (balanced) binary tree is used instead of a flat layer as in Soft-
max. As a result of hierarchical softmax, the accuracy is decreased, but computation
power is really high and the imbalance in data is handled. Each word is represented as a
leaf of the tree. In softmax, we get a probability of a word being the target word given the
context. As the softmax layer is very big, the computational cost is very high as we have
to calculate all the pre-activation for every training example.

On the other hand, in Hierarchical Softmax, the probability of observing a word is de-
composed into a sequence of probabilities corresponding to the choices of the word be-
longing to a particular group. As FastText deals with Word n-grams and hierarchical
split, the imbalance was not a problem, Joulin et al. (2017). To illustrate the con-
cept of hierarchical softmax with an example: Suppose we have a tokenized document.
['I’,am’,’having’,’common’,’ cold’,’and’,’not’,’corona’] We can further simplify the equa-
tion in the figure as in the equation below:

p('corond’|context) = sigm(bl + V1.h(z)) * (1 — sigm(b3 + V3.h(x))x*
(1 — sigm(b6 + V6.h(z))

CHAPTER 4. METHODOLOGIES 30

p(branch right at 1| context)

ok p('corona'|context) =
*p(branch left at 3| context)

'am' *p(branch left at 6)
'having' _
‘common’ :

cold” vV —)

‘and’ Rl

not'

» ‘'common’
‘corona’ ‘am"'I'

'having'

Figure 4.5: Hierarchical Softmax Function

In the equation above, V is the matrix of parameters where all the nodes in the tree is

connected to the sigmoidal output units in the neural network, h is the hidden layer and b
is the bias.
We can see from the figure - in the context we have - that the neural net is extracting the
word representation, concatenating them, and computing the hidden layer of the neural
net. The hidden layer will connect to all of the nodes in our tree. So internal nodes
will connect to V. All the nodes in the tree are connected to sigmoid output units of the
Neural Network. In short, V multiplied by hidden layer, and applying sigmoid gives us
probability of branching right or left, Rong (2016).

4.3.3 Summary

To summarize, following steps have been followed, loading data till autotuning:

CHAPTER 4. METHODOLOGIES 31

1. Prepare training and test/validation data

I had 17589 training samples (documents), 2212 test samples. The training data is
used for model training, whereas test data is used to check model accuracy. Test
data is isolated from the training data and can test the model’s capability for unseen
data. Validation data is used while training the model for tuning hyperparameters,
avoid overfitting, i.e., check the performance difference in training and validation

data.

2. Text Preprocessing for making results better
For text preprocessing, all the noises and stop words in the data have been removed
and they were translated to lowercase so that ’Data’ and ’data’ , for example, would
have the same meaning for the model. Also, the data is shuffled so as to prevent

overfitting.

3. Make first supervised model specifying our input train data and output model
After preprocessing text, the loss obtained was little more than the one without

preprocessing (around 1%).

4. Specifying various parameters: epochs, learning-rates, word n-grams
This had been tried out manually. Also, automatic hyperparameter optimization
as in (5) can help us estimate one of the best parameters selection. fastText al-
lows automatic hyperparameter optimization, using keyword -autotune-validation.
However, in this experiment, though, the best results were found specifying a few

parameters manually.

5. Applying Hierarchical Softmax Loss Function
Our dataset was still small. Hierarchical softmax is used when we have a large
number of data and a large number of labels. With this loss function, the softmax is

approximated much faster. This does so by building a binary tree corresponding to

CHAPTER 4. METHODOLOGIES 32

the labels. Each node uses binary decision activation, and thus the path of traversal

is minimized by deciding whether we go left or right.

4.4 BERT - Bidirectional Encoder Representations from
Transformers

The traditional methods used either the previous 'n’ tokens, or the next 'n’ tokens to
predict the current token. There was no method that could take the previous and next
tokens at a time. BERT, which works on the principle of "transformers’, solved this issue
of ’bidirectionality’. Transofrmers employ encoder-decoder architecture, just like RNNs.
Unlike RNNs, in transformers, input sequence can be passed in parallel. It has an encoder
as in Transformer, which has self-attention and feed-forward neural network. Thus the

model learns the context of a word as it is dynamically informed by its surroundings.

4.4.1 BERT Working Principle

The transformer is based on the self-attention mechanism. BERT is a large-scale transformer-
based language model, Vaswani et al. (2017). BERT uses byte-pair encoding iteratively
replaces the most frequently used byte pairs in a sequence, with a single unused byte,
Sennrich et al. (2015). BERT developers trained a huge model with parallel computation
imparting a significant improvement on RNN, Devlin et al. (2018). BERT is trained in
several different ways in unsupervised data. It has token input, token embeddings, and
positional embeddings. We can use BERT to extract high-quality language features from
our text data as it has bidirectional training, hence better context awareness.

BERT that I am using (small uncased) has a vocabulary of 30 K tokens with 768
dimensional embeddings. The self-attention mechanism allows each word to be processed
independently, and parallelization is possible. The vocabulary of BERT is fixed, so if there

is any unseen word, BERT treats it smartly using the word-piece model breaking down

CHAPTER 4. METHODOLOGIES 33

the tokens into multiple sub-words.
Transformers are faster than RNNs as words can be processed simultaneously. Con-
text of words is better learned as they can learn context from both directions simultane-

ously (deeply bidirectional).

4.4.2 Transformer Flow:

The Encoder consists of two layers, a self-attention layer and a feed-forward neural net-
work. Attention considers a linear combination of hidden states to each input word and
determines what weight to give to which word. For example, if we want to find attention
for a particular word in a sentence, each embedding of the word having three vectors (key,
query and value) obtained by matrix multiplication. The intuition behind self-attention is
that inputs interact with each other and get a way of paying attention to a particular word,

Cutput

Probabilities

Acdd & Norm
Feed
Farward
Add & Norm
| Add & Norm |
S8 o Mult-Head
Feed Attention
Forward) M
e
N Add & Nerm
Add & Morm Masked
Multi-Head Multi-Head
Attention Attenticn
. S, [T S
Ne—— J O\ —
C Positional
Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 4.6: Transformer Architecture — Source: Vaswani et al. (2017)

CHAPTER 4. METHODOLOGIES 34

Cheng et al. (2016).

The mathematical equation for self-attention can be given by:

. QKT
Attention(Q, K, V') = softmax(———
@K V) r

From the above equation, we can see that attention is a (scaled) dot product. Dot

)

product of Query (Q) is computed with all the keys (K), each having a dimension dg, as
shown in the equation. The reciprocal of square root of this dimension helps scale the
result and prevent from vanishing gradient problem (when the dot product of Q and K is
large) before applying the activation function (softmax) to the output layer. We get high
attention value when the Key and Query vectors are closely aligned. The Key with the
highest dot product with the Query is then selected. All this phenomena is also pictorially
represented in Figure 4.8 (left). From the right part of the figure, we can see that multi-
head attention as the parallel dot-product attentions, having 4 number of linear projections
for Keys, Values and Queries. The result of multiple attentions, that are calculated in

parallel are concatenated to produce final linear vector.

&

4 Y
Feed-Forward Neural Network
W ﬂ .
4 Y
Self-Attention
% o

f

Figure 4.7: Encoder in BERT

CHAPTER 4. METHODOLOGIES 35

Scaled Dot-Product Attention Multi-Head Attention

Scaled Dot-Product I .
Attention <
=

n
L

K v

Source — Vaswani et al. (2017)

Figure 4.8: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of

several attention layers running in parallel.

Each word (in the form of BERT-embedding) passes through self-attention, which
gives a hidden state, and then through the feed-forward neural network, where learn-
ing takes place. During this phase, various weights of self-attention mechanism are also
learned. In BERT architecture, the encoder is a stack of several encoders (12), each hav-
ing similar architecture but different weights.

BERT pretraining has following steps:

1. Masked Language Modeling:
15% of the words are masked, and predictions are made on them, based on context

provided by non-masked words.

2. Next Sentence Prediction:
The model receives a pair of sentences as input. The classifier learns to predict if

the second sentence is the subsequent sentence in the document.

Execution time could be decreased due to parallelization. Large more resource-intense
problems could be computed due to parallelization of the heads . Every encoder gives an

enriched embedding as an output.

CHAPTER 4. METHODOLOGIES 36

4.4.3 Self-attention

Solves the ’bad memory’ of RNN and can remember longer sequences. There is a connec-
tion between the output and the hidden units of the encoder. Focus is provided by adding
soft attention weights. It focuses on an essential part of the sequence (Soft alignment).
Attention is a two matrix multiplications, so its quadratic in the length of our sequence.
For short sequences, it has a very good profile, and can perform 4 times faster than RNNs.
As we linearly transform into a query, linearly transforming every position in the neigh-
borhood (or input) to a key (attention heads can be paying attention to certain language
structure and semantics). These linear transforms can be thought of as features. The at-
tention can be thought of as a feature detector, which carries in itself linear transformation
(projecting them in a space). For efficiency, instead of having the dimensions operate in a
large space, the dimensionality of all the heads are reduced (in comparison to RNNs and
CNNs), and operated in parallel. The number of softmax operation is increased as each
head has its own softmax operation. Having more heads, we can also simulate CNNs, but

with a lots of parameters, Vaswani et al. (2017).

4.4.4 Multi-headed self-attention

1. It extends the model’s ability, hence can focus on several words. The current word
itself dominates the output Z (output of self-attention), but it focuses on several

words.

2. Each word gets represented as several different embeddings, as output by each at-
tention head in the transformer (Z). Each of these sets is used to project the input
embeddings into a different representation subspace. These Zs could be concate-

nated finally.

BERT does not consider the decoder side of the original encoder-decoder Transformer

model. We have encoders only. One benefit of the Transformer is the use of parallelization

CHAPTER 4. METHODOLOGIES 37

due to use of feed-forward neural network. BERT (small model) has 12 heads, each
having length 64 gives us 768 dimensional self-attention output.

After the input words are processed by self-attention, it passes through Feed-Forward
Neural Network or Dense Layer, before it can be fed to another encoder.

The order of the words is taken into account by the use of Positional encoding. These
are the vectors added to each input embedding. The model learns a specific pattern, hence
the position of each word and the distance between different words in a sequence can be
determined.

BERT will have a subword for every character in the alphabet. We can see (S##Var)
marks on subwords except for the first subword (pad), which is a token. There are em-
bedded vectors like CLS (reserved token for the start of the sequence), SEP (separate
segment/sentence), and MASK.

The BERT I have been using is small-uncased and uses 12 BERT layers, and on the
top, there is a single classification layer and load all the pre-trained weights from BERT
layers. We can configure if we can use the class output from all hidden states. There
are 109 million parameters in 12 layers of the BERT model, and it takes 417 MB. All the
weights are pre-trained. The weights for the classification layer in the output are randomly
initialized.

The model learns the context of each word before and after it. BERT is also trained in
high data (around 3.3 billion word corpus), with the majority from Wikipedia and about
0.8 billion from BooksCorpus.

There are 26 outputs (the register categories in my case), 768 weights each (20K
weights on the output layer, and 110M behind that in all these BERT layers). The fine-

tuning phase has following steps:

The Training loop:
The first token ([CLS]) of the last layer of BERT encoder is used as feature vector for the

document, and it further passes to the softmax to get the output probability distribution

CHAPTER 4. METHODOLOGIES 38

over the classes. In this training process, the weight of already pretrained BERT model is
optimized (fine-tuned) based on our dataset - CORE corpus. For this experiment, the best
result was found with 4 epoch and 16 batches. The detailed process for training phase is

discussed in subsection 4.4.5

The Evaluation loop:

Here we measure the evaluation accuracy. When there was overfitting, regularization
using dropout technique was applied. After looking at the Training curve vs Validation
curve, we can decide if we need some steps to control the overfitting or determine if the

training on the data is done properly.

4.4.5 Steps followed for BERT Training

1. Shuffling Dataset
Shuffling dataset increases the variability within batches of data. It reduces the

variance, and overfitting can be prevented.

2. Running BERT

Running Classifier To run BERT first, we need to download BERT pretrained

model and Embeddings, then load the BERT vocabulary.

Optimization
For the optimization, the parameters used are as per recommended by the authors:

viz. Batch size: 16 or 32, Optimizer - Adam, Number of epochs 2,3 or 4
Tokenization

I have downloaded the uncased lowercase version of BERT bert_uncased L-12_H-
768_A-12/1. Before tokenization, the text is normalized by converting the whites-
paces characters to spaces and using the lower cases. Then afterward, CLS and SEP

tokens are added to the beginning and end of a sentence. Breaking into word-pieces

CHAPTER 4. METHODOLOGIES 39

like: ’slump’, *##s’ , "marius’, 'k’, *##lo’, "##pper’, "##s’ (Random example). Fi-

nally, words in the text are mapped to indexes using BERT’s vocabulary.

4.4.6 Implementing BERT

The types of classification that I have followed are:

Addressing Imbalance in Dataest

As the data is highly imbalanced, I have tried to balance all the classs.When there
1s such a high imbalance in data, the result is mostly made in favor of the majority
classes. Thus the minority classes are considered less important by the classifier.
For this purpose, I have tried to balance it all with a count of 802 (I chose this
threshold, which is the number of one of the labels). Also, classes with higher
frequency were undersampled to the same count .

Random Undersampling' is used for majority classes. It randomly undersamples
(or selects) examples in the majority classes.

Random Oversampling’ is used in the minority class. It randomly duplicates or

synthesizes examples of the minority classes.

Imblanced Dataset

In order to compare the accuracy result without handling the imbalance, the exper-

iment is carried out with the original label distribution.

Hence, the experiment with BERT has been carried out. BERT, unlike RNN and
LSTM, can parallelize the input data. All words’ embeddings are determined simulta-

neously. Also, Transformer is faster than RNN and ,unlike LSTM, deeply bidirectional.

Thttps://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html

Zhttps://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling. SMOTE.html

https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

CHAPTER 4. METHODOLOGIES 40

Transformers also have the property of solving exploding/vanishing gradient like LSTM,
with less complicated architecture. Self-attention helps in getting the proper context of
the word (By using multiple heads). Positional encodings are required as transformer
archtecture doesn’t have a sequential architecture as in RNN. The normalization layers

reduce the number of steps to optimize the network. Hence the transformers is fast.

4.5 XLNet

4.5.1 Overview

The transformer was originally built for translation tasks. TransformerXL was developed
for Language modeling, which yielded a lot of improvements in many tasks, Dai et al.
(2019). XLNet is an autoregressive pre-training for language understanding, which is
based on Transformer-XL. The two significant modifications made from Transformer to
Transformer-XL: Memory between segments and Change from Absolute to Relative Po-
sitional Encoding (to maintain positional information of each token), which enable state
reuse without causing temporal confusion (confusion in a given context). The hidden state
of first segment is cached in each layer’s memory so that attention is updated accordingly.
So, reuse of memory for each segment is allowed. Hence much information from the
history can be utilized, and context level fragmentation can be avoided.

BERT is limited to a small number of sentences. Also, there is missing dependency
due to the [MASK] tokens, which leads to fine-tune discrepancy. BERT used Autoen-
coding language modeling. It employs Masked Language Modeling or it rebuild original
data from the corrupted input. BERT has a limitation that words cannot be dependent on
distant words, and predicted tokens are independent of each other. Yang et al. (2020).
For example in the following case:

I am doing NLP thesis. With 40 % masking, it can be represented as:

I [MASK] doing [MASK] thesis. It tries to predict both the [MASK] tokens using the sen-

CHAPTER 4. METHODOLOGIES 41

tence I [MASK] doing [MASK] thesis.” So only 40% of tokens are masked. In the paper
of BERT, it is stated that 10% of the masked tokens will be replaced by themselves. The
architecture of XLNet is quite similar to that of BERT. There is a different pretraining
procedure than BERT, however. Until Transformers, autoregressive language modeling
had been used. Autoregression means regression of a variable against itself. Hence the
subsequent or the next token is dependent on the previous tokens. XLNet combines the
best of both, autoencoder and autoregression model. In pre-train phase, it focuses on
permutation language modeling, where it trains the model on all possible permutation of
words in a sentence. During this process, each position learns the information from the
surrounding context from all the positions. Hence, it captures the bi-directional context
of the given text sequence.

Specifically, given a text sequence x = (x1,..., XT), auto-regressive language modeling

factorizes the likelihood into a forward product

T
p(x) = [[p(zila<) (4.1)
t=1
or a backward one
1
p(z) = [plailzs) (4.2)
t=T

According to the equation, each word is predicted from the word before it
or after it. XLNet considers all possible orderings. For, e.g., if the sample
comes: 'New York is a city.”, BERT has limitations as BERT neglects depen-

dency between the masked positions, whereas XLNet solves it.

Jxrner = logP(New | isacity) + log P(York | New, isacity) (4.3)

CHAPTER 4. METHODOLOGIES 42

Jperr = log P(New | is acity) +log P(York | isacity) (4.4)
Source — Yang et al. (2020)

We can see Equation (4.3) and Equation (4.4) applied in case of Equation (4.5)

4.5.2 Working of XLNet

BERT captures bidirectional context using MASK token and parallels independent pre-
dictions. On the other hand, XLNet uses permutation language modeling as done by
Uria et al. (2016). It uses random ordering of tokens and not sequential as in traditional
models.

During the pretraining phase, all the tokens are used in random order. For a sequence
containing n tokens, there are n! possible factorization possible. It doesn’t use fixed left-
right or right-left, but instead log-likelihood over all possible permutations of the sequence
is carried out.

In addition, XLNet uses two critical ideas from TransformerXL: Relative Positional
Embeddings (to track position of each segment) and the Segment Recurrence mechanism
(hidden state of first segment is allowed to update attention in each layer, which allows

reuse of memory for each segment).

Transformer-XL manages to model dependency that is about 80% longer than
recurrent networks and 450% longer than Transformer. Moreover, Transformer-

XL is up to 1,800+ times faster than vanilla Transformer during evaluation.
(Source — Dai* et al. (2019))

XLNet uses the idea of Permutation Language Modeling as in
XLNet works smart by introducing Two Stream Self-Attention (Probability is condi-
tioned not only by context token indices but also the index of the token whose probability

is taken). This is also of two types:

CHAPTER 4. METHODOLOGIES 43

2.3 Architecture: Two-Stream Self-Attention for Target-Aware Representations

Artention Masks

() | ()] (0} H Masked Two-stream Attention
! : Content smrsam:

g | e AN / i
)) 66 (968 ()
i SR ; N\ N e—

Attention / i mmoy e it
(o v Masked Two-stream Attention

| |

CU)) o)) Sample a factonization oider:
e w | feo)f| w | e w P

® ©
Figure 4.9: XLNet working

(Source — yang2020xlInet)

1. Content Stream: Just as in self-attention, the content and the positional information

of the token to be predicted is examined

2. Query Stream: It replaces the input [MASK] token with query representation.
Hence, it can predict target token using context and the positional information (and

not the actual content) of the target .

Figure 4.9 explains the working of XLNet. The left corner shows how content and
query representation are calculated. The content mask (h) and query mask (g) are both
matrices. The input sentence can be permuted to different factorization orders using the
different attention masks.

To conclude, XLNET has following great features:

1. It is Autoregressive model, which has reparameterization of Transformer XL to
avoid ambiguity arose due to arbitrary factorization order (XLNET considers per-

mutations of the factorization order)
2. It is order aware with positional encodings

3. There is segment-recurrence and relative encoding scheme of Transformer XL in

CHAPTER 4. METHODOLOGIES 44

pretraining stage. Thus, it addresses task involving longer sequences.

4.5.3 The Experiment

The Parameters that I used are as recommended by the authors of the work Yang et al.
(2020) viz. Learning rate 2e-5 and 3e-5, optimizer Adam epsilon, weight decay 0.01.
Higher batch sizes and epochs resulted in overfitting, so the maximum batch size used
was 16, and maximum epoch size was 4 in both the models (for imbalanced type). The
result and analysis for both balanced and imbalanced dataset are in Result and Analysis

section.

5 Results and Analysis

To recap, for fastText, the model was provided by Facebook and is a pretrained model.
The dimension of embedding is 300 and vocabulary of 1M words.

BERT, on the other hand which uses word-piece model is a model developed by
Google. It is trained on Wikipedia corpora as well. Also, BookCorpus corpus are used. It
is pretty massive with 12 stacked encoders and 24 attention heads. The vocabulary limit
size of the tokenizer is 30K, base number of transformer blocks is 12 (for large its 24),
hidden layer size is 768 and attention heads is 12.

BERT is different from XLNet as it does not permute the tokens; instead, it depends
on the network’s computational dependency. XL Net base-cased embedding is of size 768,
maximum. Both the BERT and XLNet support Masked Word Prediction and Sequence
Classification but BERT has the limitation. It can be used only for a small number of
sentences. So XLNet was developed to address this (XL stands for extra long). Also,
BERT suffers from fine-tuning discrepancy due to masked tokens. BERT is an auto-
encoder-based model, whereas XLNet is an auto-regressive model and is aware of the

positional encoding.

5.1 Comparing the Three methods

Comparison: Metrics - Accuracy, Micro Average F-score (not necessarily both) . Accu-
racy is a good choice for Balanced data (when we are interested in True Positives and

True Negatives). F-1 score is more relevant when the data is imbalanced.

CHAPTER 5. RESULTS AND ANALYSIS 46

F-Score gives the harmonic mean of precison and recall, and F1-score gives the best
f-score.For this task, which is multi-class, confusion matrix is a better way of assessing
performance. Balanced dataset was made by random upsampling (for minority classes)
and random oversampling (for the majority classes). The results of these three can be
directly compared to each other, and we can summarize all these.

Then these three methods Fasttext, BERT and XLNet make a reasonable package.
Fasttext being a shallow neural network model, BERT a Autoencoder model and XLNet

being a Autoregressive model.

5.1.1 Result on FastText:

I have tried three values of epochs 70,25&50 and learning rate as well as n-grams.

We can see from the Table 5.1, with an epoch of 10, the F1-Score was higher . On
increasing it to 25, it decreased a bit. With an epoch of 50, however, the accuracy observed
was the highest - 0.694.

With a learning rate of 0.1, the F-Score was low. With the learning rate of 0.5 and 1.0,
though, the accuracy was almost the same.

With a learning rate of 1.0 and epoch 25, the accuracy was 0.688.

Now I have fixed learning rate 1.0, epoch 25, and vary wordNGram as 2,3 and 5. The
F-Score obtained was almost the same (around 0.68 F-score and loss was 0.25, 0.27, and
0.42, respectively). All the results can be seen in the Table 5.1

Using Hierarchical Softmax, with parameters (not in the table):

—Ir 1.0 — epoch 25 — wordN grams e2 — bucket 200000 — dim 50 — loss hs

Thus, using hierarchical softmax, result obtained using above parameters is :
Loss = 0.416960, accuracy = 0.646
The best obtained score, using fastText, was 69%. Whereas, by using the autotune

validation parameter, the result obtained was 64%.

CHAPTER 5. RESULTS AND ANALYSIS

47

Results with various parameters using fastText Model

Epochs Learning Word Loss F-Score
Rate n-gram
10 1.737522 0.557
25 2.058319 0.457
50 0.869470 0.694
0.1 2.049748 0.462
0.5 1.351652 0.659
1.0 1.152584 0.69
25 1 1.143183 0.688
25 1 2 0.368338 0.694
25 1 2 0.500568 0.666
50 1 2 0.185064 0.691

Table 5.1: Results of Using fastText

CHAPTER 5. RESULTS AND ANALYSIS 48

5.1.2 Result on BERT:

The experiments were carried using two deep learning libraries Pyforch and Tensorflow

(Keras).

Imbalanced Data:

The best accuracy score obtained, keeping in consideration that model was not overfit,
was 77% . It is practical to compare F1-Score for the imbalanced class only. The result
obtained was better with higher epoch and batch size. We can see the result of classifi-
cation in Table 5.3. Classes having higher support (having higher instances) have shown
better F-Scores. From the Figure 5.1, if we observe the diagonal, which is the labels
correctly predicted. In most cases, the majority of the instances have been predicted cor-
rectly. The results obtained in table Table 5.2 was from Bert Small Uncased pretrained
model.

The plot of Training Set Accuracy vs Validation Set Accuracy is as in figure 5.2. There
seems to be some overfitting. So after adding a dropout of 0.5, the result obtained is as in

Figure 5.3.

Balanced Dataset:

For balanced dataset, accuracy alone is sufficient to consider as evalutation metric. The

highest obtained accuracy was 74%.

Batch | Epochs | Warmup Proportion | Learning Rate | Epsilon| Weight | Accuracy
size Decay

8 3 0.1 2e-5 le-6 le-8 76%

16 4 time-dependent 2e-5 le-8 0.1 77%

16 4 time-dependent 3e-5 le-6 0.1 75%

Table 5.2: Different Parameters Used For BERT (Imbalanced Data) model Training

CHAPTER 5. RESULTS AND ANALYSIS 49

Confusion Matrix

- 500

- 400

- 300

Tue Labels

- 200

- 100

o1 2 3 4 5 6 7 B 9 1 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Predicted Labels

Figure 5.1: Confusion Matrix, BERT (Imbalanced Class) with 4 epochs and 16 Batch

Size

CHAPTER 5. RESULTS AND ANALYSIS

50

Precision Recall F-1Score Support
0 0.41 0.42 0.43 31
1 0.88 0.73 0.80 180
2 0.85 0.70 0.78 30
3 0.60 0.71 0.64 69
4 0.64 0.67 0.66 150
5 0.89 0.87 0.88 46
6 0.60 0.40 0.41 10
7 0.00 0.00 0.00 2
8 0.82 0.65 0.73 20
9 0.79 0.77 0.79 83
10 0.14 0.18 0.14 33
11 0.89 0.78 0.83 27
12 0.89 0.83 0.86 614
13 0.63 0.65 0.63 188
14 0.62 0.68 0.63 138
15 1.00 0.18 0.28 5
16 0.80 0.86 0.83 91
17 0.95 0.98 0.97 41
18 0.73 0.92 0.75 12
19 0.91 0.89 0.90 46
20 0.81 0.86 0.80 83
21 0.93 0.98 0.96 52
22 0.83 0.97 0.89 229
23 0.89 0.77 0.83 17
24 0.30 0.35 0.29 12
25 0.00 0.00 0.00 1
Accuracy 0.77 2210

Table 5.3: BERT Classification Report (Imbalanced Class) with 4 epochs and 16 Batch-

Size

CHAPTER 5. RESULTS AND ANALYSIS

51

—— Training set accuracy
0.9 4 Validation set accuracy

L85 1

(.80 1

0.75 1

070 1

0.65 1

T T T T T
000 025 05 o075 100 125 150 175 200

Figure 5.2: Accuracy Plot, BERT with 4 epochs and 16 Batch

—— Taining set accuracy
0.85 - Validation set accuracy
0.80 1
0.75 1 -
0.70 1
0.65 -

T T T T
000 025 05 o075 100 125 150 175 200

Figure 5.3: Accuracy Plot for Figure 5.2 with a Dropout of 0.5

CHAPTER 5. RESULTS AND ANALYSIS

52

Batch size | Epochs | Epsilon | Learning Rate | Weight Decay | Accuracy
16 3 le-12 2e-5 0.01 77
16 4 le-12 2e-5 0.01 76
8 4 le-12 2e-5 0.01 77

Table 5.4: Parameters Used in XLNet Classification(Imbalanced Dataset)

5.1.3 Result on XLNet:

For Imbalanced Dataset

With the default parameters (as in the XLNet paper), the highest accuracy obtained was

77%, using 4 epochs and 8 or 16 batches (for batch 16, dropout was used for prevent

overfitting). With epoch more than 4 and batches greater than 8, there was overfitting. In

BERT, highest accuracy was obtained with 4 epoch and 16 batches.

We can also see the per class F1-score were quite good for classes having good number

of samples. Whereas, classes having lesser samples have very less F-Score, some even

have 0.

For Balanced Dataset:

The best accuracy obtained for the balanced dataset was 74% With the same parameters

as used above, the accuracy obtained was 73%.

CHAPTER 5. RESULTS AND ANALYSIS

53

Precision Recall F-1Score Support
0 0.33 0.48 0.39 29
1 0.83 0.75 0.81 154
2 0.60 0.50 0.55 30
3 0.52 0.75 0.61 58
4 0.65 0.58 0.63 134
5 0.84 0.90 0.89 40
6 1.00 0.40 0.57 9
7 0.00 0.00 0.00 2
8 0.79 0.56 0.67 17
9 0.75 0.71 0.74 74
10 0.21 0.15 0.18 30
11 0.74 0.52 0.61 25
12 0.89 0.81 0.85 705
13 0.56 0.66 0.60 195
14 0.63 0.59 0.61 150
15 1.00 0.20 0.33 5
16 0.84 0.87 0.88 72
17 0.87 0.98 0.92 39
18 0.55 0.92 0.69 12
19 0.82 0.77 0.79 40
20 0.75 0.81 0.78 112
21 0.96 0.90 0.93 48
22 0.80 0.91 0.89 188
23 0.69 0.53 0.60 15
24 0.25 0.25 0.25 12
25 0.00 0.00 0.00 1
Accuracy 0.77 2210

Table 5.5: XLNet model Classification report for Imbalanced Dataset with 16 Batches

and 4 Epoches

CHAPTER 5. RESULTS AND ANALYSIS 54

5.2 Comparing the three models:

The highest obtained accuracy for fastText was 69.1%, using 50 epochs, learning rate of 1
and word nGram of 2. For BERT, the highest obtained accuracy was 77% using 4 epochs
and 8 or 16 batches, with a learning rate of 2e-5. For XLNet, epoch 3 and 4 were ideal.
Ideal batch size was 4 or 8. The highest obtained accuracy in XLNet was also 77%.

Talking about the balanced class, both the models had similar performance.

Balanced | Imbalanced

fastText - 69.1%
BERT 74% 77 %
XL Net 73% 77%

Table 5.6: Comparing Highest Accuracy (Balanced Data) and F-Score (Imbalanced Data)

in the Three Algorithms

5.3 Conclusion

After knowing that XLNet has so many advantages over BERT, I thought XI.Net would
give a better result. However, the performance of BERT and XLNet was similar for
this dataset. The XLNet model was overfit if the epochs was exceeded more than 4.
Despite the vast computation capability of these massive models, the performance metric
of fastText was not so much lower than that of BERT or XLNet.

While working with deep learning models, I concluded that dealing with different
types of data with proper parameters to measure proper evaluation metric should be done.
The proper way of working with Deep Learning models is also to check if the model will
work for new data, hence overfitting should always be in the background of mind while

training the model.

CHAPTER 5. RESULTS AND ANALYSIS 55

Following steps were considered while working with the deep learning models :

Shuffling - the Dataset. This was needed so that data from all the classes get distributed

to the training and validation set.

Checking the Training Accuracy vs. Validation Accuracy - to check if the model has
overfitted. To reduce overfitting, I applied dropout. Dropout skips some portion of the
hidden neurons during the training phase and controls overfitting. Adding dropout seemed

to show some improvement, which can be seen from the figure ??, as in the case of BERT.

Tune parameters - Further tuning of parameters to see if better accuracy can be obtained.
For which I tried various batches, epochs, and learning parameters.
Hyperparameters vs Parameters - Hyperparameters are specific to models, whereas
parameters are something to be learnt by the model, which can be varied to im-

prove the performance of the model.

Maximum Sequence Length - BERT and XLNet have parameters max_seq_len and
max_seq respectively to take into consideration the maximum number of tokens. When
a sequence length of 256 was used, the accuracy was higher than the sequence length of
512. However, since most of the documents are very lengthy, a sequence length of 512,
which is the highest length allowed, would be a better choice for training the model since

it can take surrounding contexts properly.

Balancing the Classes - It can be seen from the figure about data distribution in the

Introduction section, the classes are highly imbalanced. The classes were balanced using

undersampling and oversampling - In my case, the imbalanced class dataset showed
a bit higher accuracy than the balanced class. Nevertheless, the model trained in the
balanced dataset predicts all the classes properly, whereas model trained in imbalanced
class dataset, mostly majority class was predicted well. Hence, even though the accuracy

for the balanced class was low, all the classes were generalized properly.

6 Conclusion and Findings

In this thesis work, I started with annotated data (A web corpus) given by the Turku NLP
group. The task of register classification was addressed by three algorithms: FastText,
BERT, and XLNet. Register can be referred to as a corpus following a particular situa-

tional nuance.

6.1 Conclusion:

To conclude, the task was a supervised machine learning problem with text as the data,
alongwith the corresponding labels. This was a practical real-life problem. While working
with this, a lot of things have to be taken into account like how to work with imbalanced
data, which accuracy metrics to use, which activation functions to use, which algorithms
to use for the best performance.

As the main goal of the task was to evaluate the SOTA Transformer models for this
classification, so based on the experiment it could be figured out that BERT outperformed
the other algorithms. Even though fasText has significantly less parameters and uses less
computational resources, it gave quite acceptable result. XLLNet, which uses Permutation
method, also gave similar result to BERT in this experiment, though BERT gave slightly
higher result. Hence, BERT was the overall winner for this dataset.

In order to get better results, the steps carried were:

1. Train over fewer/higher epochs

CHAPTER 6. CONCLUSION AND FINDINGS 57

2. Checking overfitting by process like dropout

3. Optimization of other hyperparameters like: weight decay, learning rate, warmup

steps

Also, one more way of optimizing would be adding more layers in the pre-trained and

Change the number of nodes in the layers.

6.2 Future Extensions:

Further, an extension of the work can be carried out by combining the embeddings of
these two deep learning methods, viz. BERT and XLNet, as an example. Also, there has
been more recent work like Longformer Beltagy et al. (2020) to work for long sequence.
I have worked with only maximum sequence length allowed by the BERT and XLNet
embeddings. Also, Sun et al. (2020) has dealt with ways to deal with longer sequence and
fine-tune BERT embedding.

Furthermore, Multilabel classification would be a significant problem to be solved
utilizing these deep learning models. Often common language, grammatical and lexical
features sometimes can confuse various registers classification. Hence various registers
can have some characteristics and situations in common. Thus, multilabel classification

would be a good thing to try in such a scenario.

Bibliography

M. Abdullah and M. G. 1. A. Zamil. The effectiveness of classification on information

retrieval system (case study), 2018.

C. Allen and T. Hospedales. Analogies explained: Towards understanding word embed-

dings, 2019.
S. E. Argamon. Computational register analysis and synthesis, 2019.

G. Bebis and M. Georgiopoulos. Feed-forward neural networks. IEEE Potentials, 13(4):
27-31, 1994.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer,

2020.

D. Biber. Variation across Speech and Writing. Cambridge University Press, 1988. doi:

10.1017/CB0O9780511621024.

D. Biber and J. Egbert. Using grammatical features for automatic register identification

in an unrestricted corpus of documents from the open web. 2016.

D. Biber and J. Egbert. Register Variation Online. 08 2018. ISBN 9781107122161. doi:
10.1017/9781316388228.

D. E. Biber. Conversation text types : A multi-dimensional analysis. 2004.

BIBLIOGRAPHY 59

S. Bird. Natural Language Processing with Python: Analyzing Text with the Natural

Language Toolkit.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword

information, 2017.

R. Briones. Textual analysis through systemic functional linguistics. Journal of English

Language Teaching and Linguistics, 1, 08 2016. doi: 10.21462/jeltl.v1i2.27.

J. Cheng, L. Dong, and M. Lapata. Long short-term memory-networks for machine read-

ing, 2016.

I. Clarke and J. Grieve. Dimensions of abusive language on twitter. In ALW@ACL, 2017.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:

Attentive language models beyond a fixed-length context, 2019.

Z. Dai*, Z. Yang*, Y. Yang, W. W. Cohen, J. Carbonell, Q. V. Le, and R. Salakhutdi-
nov. Transformer-XL: Language modeling with longer-term dependency, 2019. URL

https://openreview.net/forum?id=HJePnolcYm.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. arXiv e-prints, art.

arXiv:1810.04805, Oct. 2018.

J. Egbert, D. Biber, and M. Davies. Developing a bottom-up, user-based method of web
register classification. Journal of the Association for Information Science and Technol-

0gy, 66, 2015.

Y. Goldberg. Neural Network Methods in Natural Language Processing (Synthesis Lec-

tures on Human Language Technologies), page 1. Graeme Hirst, 2017.

D. Govindaraj. Can boosting with svm as week learners help? 04 2016.

https://openreview.net/forum?id=HJePno0cYm

BIBLIOGRAPHY 60

S. Gururangan, A. Marasovi¢, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A.

Smith. Don’t stop pretraining: Adapt language models to domains and tasks, 2020.

M. Herke-Couchman and W. Canzhong. Stylistic features as meaning representation:

Text as phase portrait. In AAAI Technical Report, 2004.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classi-

fication, 2016.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classi-

fication. ArXiv, abs/1607.01759, 2017.

J. Karlgren. Stylistic variation in an information retrieval experiment. CoRR, cmp-

1g/9608003, 1996. URL http://arxiv.org/abs/cmp-1g/9608003.

G. Kim, K. Fukui, and H. Shimodaira. Segmentation-free compositional n-gram embed-

ding, 2019.

Y. Kim. Convolutional neural networks for sentence classification, 2014.

Q. V. Le and T. Mikolov. Distributed representations of sentences and documents, 2014.

X. Li, L. Wang, and E. Sung. Adaboost with svm-based component classifiers. Engi-
neering Applications of Artificial Intelligence, 21:785-795, 08 2008a. doi: 10.1016/j.
engappai.2007.07.001.

X. Li, L. Wang, and E. Sung. Adaboost with svm-based component classifiers. Engi-
neering Applications of Artificial Intelligence, 21:785-795, 08 2008b. doi: 10.1016/j.
engappai.2007.07.001.

Q. Liu, J. Wang, D. Zhang, Y. Yang, and W. Naiyao. Text features extraction based on
tf-1df associating semantic. pages 2338-2343, 12 2018. doi: 10.1109/CompComm.
2018.8780663.

http://arxiv.org/abs/cmp-lg/9608003

BIBLIOGRAPHY 61

M.-T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based

neural machine translation, 2015.

S. Lyu and J. Liu. Combine convolution with recurrent networks for text classification,

2020.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to information retrieval. Cam-

bridge, England, 2008. Cambridge University Press.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representa-

tions in vector space, 2013a.

T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word rep-
resentations. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages
746751, Atlanta, Georgia, June 2013b. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/N13-1090.

S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao. Deep

learning based text classification: A comprehensive review, 2020.

M. Radovanovic, M. Ivanovic, and Z. Budimac. Text categorization and sorting of web

search results. Computing and Informatics, 28:861-893, 01 2009.

X. Rong. word2vec parameter learning explained, 2016.

Z. Sadeghi, J. Mcclelland, and P. Hoffman. You shall know an object by the company it
keeps: An investigation of semantic representations derived from object co-occurrence
in visual scenes. Neuropsychologia, 8, 09 2014. doi: 10.1016/j.neuropsychologia.2014.
08.031.

S. Schuster, W. Zhu, and Y. Cheng. Predicting tags for stackoverflow questions. 2013.

https://www.aclweb.org/anthology/N13-1090

BIBLIOGRAPHY 62

R. Sennrich, B. Haddow, and A. Birch. Neural Machine Translation of Rare Words with

Subword Units. arXiv e-prints, art. arXiv:1508.07909, Aug. 2015.
C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text classification?, 2020.
E. Teich and P. Fankhauser. Exploring a corpus of scientific texts using data mining. 2010.

B. Uria, M.-A. Coté, K. Gregor, I. Murray, and H. Larochelle. Neural autoregressive

distribution estimation, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need, 2017.
V. Vidulin, M. Lustrek, and M. Gams. Multi-label approaches to web genre identification.
H. Xu, Q. Liu, D. Xiong, and J. van Genabith. Transformer with depth-wise Istm, 2020.

Z.Yang,Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized

autoregressive pretraining for language understanding, 2020.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	NLP and Machine Learning Related Terminology
	Text Preprocessing
	Tokenization
	Normalization
	Cross Validation
	tf / tf-idf
	Feature Engineering
	Feature extraction
	Word Embeddings
	n-gram
	Some Deep Learning Methods Used in the Field of NLP
	Classification Report
	Confusion Matrix

	Background
	Register
	Machine Learning
	Deep Learning

	Methodologies
	fastText
	Exploring Word Embeddings:
	Working of FastText
	Working with fastText
	Text preprocessing in fastText and the Hierarchical Softmax
	Summary

	BERT - Bidirectional Encoder Representations from Transformers
	BERT Working Principle
	Transformer Flow:
	Self-attention
	Multi-headed self-attention
	Steps followed for BERT Training
	Implementing BERT

	XLNet
	Overview
	Working of XLNet
	The Experiment

	Results and Analysis
	Comparing the Three methods
	Result on FastText:
	Result on BERT:
	Result on XLNet:

	Comparing the three models:
	Conclusion

	Conclusion and Findings
	Conclusion:
	Future Extensions:

	Bibliography

