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ABSTRACT

The overwhelming amount and the increasing rate of publication in the biomedical
domain make it difficult for life sciences researchers to acquire and maintain all in-
formation that is necessary for their research. Pubmed (the primary citation database
for the biomedical literature) currently contains over 21 million article abstracts and
more than one million of them were published in 2020 alone.

Even though existing article databases provide capable keyword search services,
typical everyday-life queries usually return thousands of relevant articles. For in-
stance, a cancer research scientist may need to acquire a complete list of genes
that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for
BRCATI returns over 16,500 article abstracts, making manual inspection of the re-
trieved documents impractical. Missing even one of the interacting gene partners
in this scenario may jeopardize successful development of a potential new drug or
vaccine. Although manually curated databases of biomolecular interactions exist,
they are usually not up-to-date and they require notable human effort to maintain. To
summarize, new discoveries are constantly being shared within the community via
scientific publishing, but unfortunately the probability of missing vital information
for research in life sciences is increasing.

In response to this problem, the biomedical natural language processing (BioNLP)
community of researchers has emerged and strives to assist life sciences researchers
by building modern language processing and text mining tools that can be applied at
large-scale and scan the whole publicly available literature and extract, classify, and
aggregate the information found within, thus keeping life sciences researchers al-
ways up-to-date with the recent relevant discoveries and facilitating their research in
numerous fields such as molecular biology, biomedical engineering, bioinformatics,
genetics engineering and biochemistry.

My research has almost exclusively focused on biomedical relation and event
extraction tasks. These foundational information extraction tasks deal with auto-
matic detection of biological processes, interactions and relations described in the
biomedical literature. Precisely speaking, biomedical relation and event extraction
systems can scan through a vast amount of biomedical texts and automatically detect
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and extract the semantic relations of biomedical named entities (e.g. genes, proteins,
chemical compounds, and diseases). The structured outputs of such systems (i.e.,
the extracted relations or events) can be stored as relational databases or molecular
interaction networks which can easily be queried, filtered, analyzed, visualized and
integrated with other structured data sources. Extracting biomolecular interactions
has always been the primary interest of BioNLP researcher because having knowl-
edge about such interactions is crucially important in various research areas includ-
ing precision medicine, drug discovery, drug repurposing, hypothesis generation,
construction and curation of signaling pathways, and protein function and structure
prediction.

State-of-the-art relation and event extraction methods are based on supervised
machine learning, requiring manually annotated data for training. Manual annota-
tion for the biomedical domain requires domain expertise and it is time-consuming.
Hence, having minimal training data for building information extraction systems is
a common case in the biomedical domain. This demands development of methods
that can make the most out of available training data and this thesis gathers all my
research efforts and contributions in that direction.

It is worth mentioning that biomedical natural language processing has under-
gone a revolution since I started my research in this field almost ten years ago. As a
member of the BioNLP community, I have witnessed the emergence, improvement—
and in some cases, the disappearance—of many methods, each pushing the perfor-
mance of the best previous method one step further. I can broadly divide the last
ten years into three periods. Once I started my research, feature-based methods that
relied on heavy feature engineering were dominant and popular. Then, significant
advancements in the hardware technology, as well as several breakthroughs in the
algorithms and methods enabled machine learning practitioners to seriously utilize
artificial neural networks for real-world applications. In this period, convolutional,
recurrent, and attention-based neural network models became dominant and superior.
Finally, the introduction of transformer-based language representation models such
as BERT and GPT impacted the field and resulted in unprecedented performance im-
provements on many data sets. When reading this thesis, I demand the reader to take
into account the course of history and judge the methods and results based on what
could have been done in that particular period of the history.
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THVISTELMA

Biolddketieteen alan tutkimusartikkeleiden méird kasvaa valtavaa vauhtia. Tamén
vuoksi alan tutkijoiden on vaikea hankkia ja ylldpitdad kaikkea tutkimuksessa tarvit-
tavaa tietoa. PubMed eli bioldiketieteellisen tutkimuskirjallisuuden ensisijainen viit-
taustietokanta sisiltdd tilld hetkelld yli 21 miljoonaa tutkimusartikkelin tiivistelm&a.
Pelkéstiddn vuonna 2020 julkaistiin yli miljoona artikkelia.

Vaikka nykyiset tutkimustietokannat tarjoavat tehokkaita hakupalveluja, taval-
liset, jokapidivéiset haut palauttavat yleensd tuhansia relevantteja artikkeleita. Es-
imerkiksi syOpitutkija saattaa tarvita luettelon kaikista geeneisti, jotka ovat
vuorovaikutuksessa BRCA1-geenin (breast cancer 1) kanssa. PubMedin hakupalvelu
palauttaa hakusanalle BRCA1 yli 16500 artikkelitiivistelmad, joten haettujen asi-
akirjojen manuaalinen tarkastelu on epikdytidnnollistd. Yhdenkin vuorovaikutus-
geenin puuttuminen tidssd skenaariossa voi vaarantaa mahdollisen uuden lddkkeen
tai rokotteen kehittimisen. Vaikka kisin kuratoituja biomolekyylien vuorovaiku-
tustietokantoja on olemassa, ne eivit yleensi ole ajan tasalla, ja niiden ylldpitiminen
vaatii huomattavan maérin ihmistyond tehtidvii ylldpitoa. Tdmin vuoksi tiedot uu-
sista tutkimustuloksista jaetaankin tavallisesti tutkimusartikkeleissa. Hakupalvelujen
tehottomuuden vuoksi riski tiedon ja tutkimustulosten hukkumiselle kuitenkin kas-
vaa jatkuvasti.

Bioldiketieteellisten tekstien louhintaan erikoistunut BioNLP-tutkimusala on ke-
hittynyt vastaamaan tdhén haasteeseen. BioNLP pyrkii auttamaan biotieteiden tutki-
joita kehittamadlld nykyaikaisia kielenkésittely- ja tekstinlouhintatykaluja, jotka
voivat skannata koko julkisesti saatavilla olevan tutkimuskirjallisuuden ja poimia, lu-
okitella ja koota siitd 10ytyvad tietoa. Niin esimerkiksi molekyylibiologian, ldiketi-
eteellisen tekniikan, bioinformatiikan, geenitekniikan ja biokemian tutkijat pysyvét
ajan tasalla viimeisimmisti tutkimustuloksista, ja heidédn tutkimustyonsi helpottuu.

Viitostutkimukseni keskittyy ldhes yksinomaan biolédiketieteellisten relaatioiden
ja tapahtumien louhintaan. Tilld tarkoitetaan bioldédketieteellisessd kirjallisuudessa
kuvattujen biologisten prosessien, vuorovaikutusten ja suhteiden automaattista tun-
nistamista. Bioldéketieteellisten relaatioiden ja tapahtumien louhintajirjestelmiit
voivat skannata valtavan méirén alan tekstejd ja havaita ja poimia automaattisesti
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biolddketieteellisten nimettyjen entiteettien, kuten geenien, proteiinien, kemiallisten
yhdisteiden ja sairauksien semanttisia suhteita.

Tillaisten louhintajérjestelmien tuottama rakenteinen tieto, eli poimitut relaatiot
tai tapahtumat, voidaan tallentaa relaatiotietokantoihin tai molekyylien vuorovaiku-
tusverkkoihin. Ndiistd voidaan helposti tehdd hakuja, tai niitd voidaan suodattaa,
analysoida, visualisoida ja integroida muihin rakenteisiin tietoldhteisiin.
Biomolekulaaristen vuorovaikutussuhteiden poimiminen on aina ollut
BioNLP-tutkimuksen fokuksessa, koska tieto vuorovaikutussuhteista on ratkaise-
van tirkedd monilla tutkimusaloilla, kuten tdsméildiketieteessd, lddkekehityksessd,
ladkkeiden uudelleenkohdistamisessa, hypoteesien luomisessa, signalointireittien rak-
entamisessa ja kuratoinnissa seki proteiinien toiminnan ja rakenteen ennustamisessa.

Nykyiset relaatioiden ja tapahtumien louhintajdrjestelmét perustuvat ohjattuun
koneoppimiseen. Niiden jirjestelmien kouluttaminen edellyttdd manuaalisesti anno-
toitua aineistoa. Biolddketieteen alalla manuaalinen annotointi vaatii alan asiantun-
temusta, ja se on erittdin aikaavievdd. Niin ollen on yleisti, ettd tiedonlouhin-
tajdrjestelmien rakentamiseen on kdytettdvissd vain vahin koulutusaineistoa. Siksi
vaaditaan menetelmid, jotka pystyvit hyddyntdméddn mahdollisimman tehokkaasti
kaiken kéytettdvissd olevan aineiston. Tamai tutkielma kokoaa yhteen tutkimustyoni,
jossa paneudun tihédn kysymykseen.

BioNLP on ldpikidynyt ennennikemittomid muutoksia sen jilkeen, kun aloitin
tutkimukseni téllé alalla 1ihes kymmenen vuotta sitten. BioNLP-yhteison jasenend
olen nidhnyt monien menetelmien syntymisen, kehittymisen — ja joissakin tapauksissa
katoamisen. Jokainen ndistd menetelmistd on ollut askeleen edeltdjddnsd parempi.
Viimeiset kymmenen vuotta voidaan jakaa karkeasti kolmeen ajanjaksoon.

Kun aloitin tutkimukseni, parhaiten menestyvia ja suosituimpia olivat piirrepohjaiset
menetelmit, jotka pohjautuvat datan ominaisuuksia kuvaavien piirteiden tarkkaan
suunnitteluun ja valitsemiseen. Sitten laitteistojen merkittdvd kehitys sekd useat
algoritmiikan ja menetelménkehityksen lapimurrot mahdollistivat neuroverkkopoh-
jaisen koneoppimisen hyddyntdmisen reaalimaailman sovelluksissa.T#lloin vallitse-
viksi tulivat konvoluutioneuroverkot, takaisinkytkeytyvit neuroverkot ja huomiopoh-
jaiset rakenteet. Lopuksi transformer-arkkitehtuuriin pohjautuvat mallit, kuten BERT
ja GPT, johtivat ennennikemaéttomiin suorituskyvyn parannuksiin monissa eri
BioNLP:n sovelluksissa. Pyydin lukijaa titd tutkielmaa lukiessa huomioimaan ke-
hityshistorian ja arvioimaan tuloksia sen perusteella, mitd kyseiseni ajankohtana oli
mahdollista tehda.
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1 Introduction

The amount of new discoveries in life sciences has been growing at an increasing
rate over the past few decades, while the formal ways in which the new findings are
announced and shared within the research community have roughly stayed the same
and confined to scientific publication in relevant journals and conference proceed-
ings.

PubMed! (the primary database of biomedical literature and life sciences jour-
nals) currently contains over 21 million article abstracts® and more than one million
of them where published in 2020 alone. The overwhelming amount and the increas-
ing rate of publication in the biomedical domain make it difficult for life sciences re-
searchers to acquire and maintain all information that is necessary for their research.
For instance, a cancer research scientist may need to acquire a complete list of genes
that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for
BRCA1 returns no less than 16,531 article abstracts®, making manual inspection
of the retrieved documents impractical. Missing even one of the interacting gene
partners in this scenario may jeopardize successful development of a potential new
drug. Even though manually curated databases of biomolecular interactions exist,
they are usually not up-to-date and they require notable human effort to maintain. To
summarize, new discoveries are constantly being shared within the community via
scientific publishing, but unfortunately the probability of missing vital information
for research in life sciences is increasing.

Inresponse to this problem, the biomedical natural language processing (BioNLP)
community of researchers has emerged and strives to assist life sciences researchers
by building modern natural language processing (NLP), text mining, information
extraction (IE) and information retrieval (IR) tools which can be applied at large-
scale and scan the whole publicly available literature (PubMed article abstracts and
PubMed Central Open Access (PMCOA) full article texts) and extract, classify, and
aggregate the information found within, thus keeping life sciences researchers al-
ways up-to-date with the recent relevant discoveries and facilitating their research
in numerous fields such as molecular biology, biomedical engineering, bioinformat-
ics, genetics engineering and biochemistry. On the one hand, such tools should be

1 https://www.ncbi.nlm.nih.gov/pubmed/
2 queried on 2021.03.25
3 queried on 2021.03.25
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able to deal with the inherent complexity and ambiguity of natural languages, and on
the other hand, they should be able to normalize the variability of natural language
statements, meaning that a single phenomenon, discovery, prediction or speculation
can be stated in various ways in a natural language, but all variations of the same
statement should be identified and mapped into a single unified form after extraction
from the literature.

1.1 Biomedical relation and event extraction

Among all different tasks, biomedical relation and event extraction tasks have re-
ceived much attention in the BioNLP community. These foundational information
extraction tasks deal with automatic detection of biological processes, interactions
and relations described in the biomedical literature. Precisely speaking, biomedical
relation and event extraction systems can scan through a vast amount of biomedical
texts and automatically detect and extract the semantic relations of biomedical named
entities (phrases, nouns and abbreviations referring to genes, proteins, chemical com-
pounds, diseases and other biomedical entities). The structured outputs of such sys-
tems (i.e., the extracted relations or events) can be stored as relational databases or
molecular interaction networks which can easily be queried, filtered, analyzed, visu-
alized and integrated with other structured data sources (see Figure 1).

Biomedical literature
(PubMed abstracts, PMC
full text articles, ...)

Relation
Extraction
System

/ Interaction network

Interaction/relation
database

Figure 1. lllustration of relation/event extraction systems.
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Biomolecules (e.g., proteins, nucleic acids, carbohydrates and lipids) are funda-
mental building blocks of living organisms that play indispensable roles in all life
processes including metabolism, growth, active and passive transport, producing en-
ergy, reproduction, and defence against pathogens via the immune system (Bjorne,
2014). Having knowledge about biomolecular interactions is crucially important
in various research areas including precision medicine, drug discovery, drug repur-
posing, hypothesis generation, construction and curation of signaling pathways, and
protein function prediction. Therefore, the majority of the efforts within the BioNLP
community has been spent on building resources and methods to extract information
about the interactions of biomolecules.

Traditionally, biomedical relation extraction has focused on finding semantic re-
lations between pairs of named entities. A number of shared tasks* have been
organized to promote the development and systematic evaluation of pairwise rela-
tion extraction methods for the biomedical domain. For example, the BioCreative 11
and BioCreative III challenges (Krallinger et al., 2008, 2011) focused on extract-
ing protein-protein interactions (PPI), while the BioCreative V CDR Task focused
on chemical-disease relation extraction (Wei et al., 2016). The two drug-drug inter-
action shared tasks (DDI-2011 and DDI-2013) focused on the detection of adverse
interactions between pairs of drugs (Segura-Bedmar et al., 2011, 2013), and BioCre-
ative VI Track 5 (also known as ChemProt Track) focused on extracting chemical-
protein interactions (CPI) from PubMed article abstracts (Krallinger et al., 2017).
However, not all shared tasks have focused on interactions of biomolecules. For ex-
ample, the four Bacteria-Biotope (BB) tasks in BioNLP Shared Task 2011 (BioNLP-
ST-11), BioNLP Shared Task 2013 (BioNLP-ST-13), BioNLP Shared Task 2016
(BioNLP-ST-16) and BioNLP Open Shared Tasks 2019 (BioNLP-OST-19) aimed at
extracting the location of bacteria from scientific Web pages and PubMed abstracts
(Bossy et al., 2011, 2013; Deléger et al., 2016; Bossy et al., 2019).

In pairwise relation extraction tasks, each input to the system is a text (e.g., a
sentence or a paragraph) with two candidate named entities (using a named-entity
recognition (NER) system, named entities are found in advance) and the system pre-
dicts whether the text states any relations/interactions between the two entities (see
Figure 2).

Depending on the task definition, pairwise relations can be either typed or
untyped. For example, if a protein-protein relation extraction task is defined as
a simple binary classification problem, detecting whether the two protein mentions
interact or not, the extracted PPIs are untyped (i.e., they do not specify anything par-
ticular about the type of the interaction between their arguments), but in a multi-class
or multi-label classification setup, the aim is to extract the different types of relations

4Shared tasks in computer science are public competitions where the participants are given a com-
mon goal and within a certain time frame, they have to produce a solution to the defined problem
(Bjorne, 2014).
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CHEMICAL PROTEIN

— —
Rapamycin allosterically inhibits the proteasome.

!

Relation extraction system

!

Label (Rapamycin, proteasome) = down_regulator/inhibitor

Figure 2. Chemical-protein relation extraction example. The input is a sentence with the two
entities, and the output is the predicted label for the pair.

between the proteins (such as Binding, Regulation and Phosphorylation). In
addition, pairwise relations can be either directional or non-directional.
Some relations such as Binding are semantically non-directional,

e.g., Binding(P, P») = Binding(Ps, P1),

and some types such as Regulation are directional,

e.g., Regulatation(Py, Py) == Regulatation(Py, P}).

Although pairwise relation extraction can provide information that is detailed
enough for many research applications, simple pairwise relations are not fully ca-
pable of capturing and representing the meaning of complicated statements written
in biomedical texts. To deal with this problem, biomedical events have been pro-
posed as an alternative for pairwise interactions. Biomedical event annotations were
first introduced by the GENIA (Tateisi et al., 2005; Ohta et al., 2006; Kim et al.,
2008) and Biolnfer (Pyysalo et al., 2007) corpora, and biomedical event extraction
was popularized by the BioNLP 2009 Shared Task on Event Extraction (Kim et al.,
2009). Events are complex relations that aim to provide an annotation scheme de-
tailed and flexible enough to fully capture, extract and represent the semantics of
natural language with a formal representation. Events are characterized by (1) anno-
tated trigger words, (2) directed and typed arguments and (3) the ability to nest other
events. For example, the sentence “Protein A causes protein B to bind protein C”
can be annotated with the nested event structure Cause(A, Bind(B,C')) (Bjorne,
2014). Obviously, biomedical events capture the semantics of the statements bet-
ter than simple pairwise relations (and this might be useful for some applications in
modern biology research), but at the same time, they add quite a lot of complica-
tion into the information extraction pipelines, because it is generally much harder to
extract the nested events than it is to extract binary relations.
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1.2 Research questions

Currently, state-of-the-art relation and event extraction methods are based on super-
vised learning methods. These methods require manually annotated data for train-
ing, but creating manually annotated data for the biomedical domain is considerably
time-consuming and it requires domain expertise. Therefore, the much-needed train-
ing data for building biomedical relation and event extraction systems can sometimes
be minimal.

For example, biomedical event description covers a wide variety of different
event types. There is a fair amount of manually annotated training data for some
event types (e.g., Binding, Regulation and Phosphorylation) that are discussed
very frequently in the literature, whereas for some rarer event types (e.g., Acetylation,
Ubiquitination, Glycosylation, and Hydroxylation) training data is limited. In
other words, we only have massive/sufficient training data for a small selection of
the event types, thus scaling up event extraction systems to cover all types of events
is difficult and therefor we need to have methods that can efficiently deal with a very
limited amount of training data.

Not having a fair amount of training data can lead to a poor extraction perfor-
mance. On one hand, a system may fail to extract a considerable proportion of
events/relations from the literature, and on the other hand, many of the extracted
events/relations might be actually incorrect. These can lower the credibility of text
mining-based resources and make them not so reliable for serious biomedical re-
search. Therefore, thousands of expert-hours are still spent to keep “manually cu-
rated databases” up-to-date, but due to the significant rate of publication in the
biomedical domain, the risk of missing vital information for biomedical research
is unfortunately high.

The main focus of this dissertation is to improve the performance of event and
relation extraction for the biomedical domain, either by optimizing machine learn-
ing, text mining and natural language processing methods (i.e., by making better
event and relation extraction systems), or by improving the quality of the extracted
data in post processing, after relation and event extraction systems have been exe-
cuted at large-scale and extracted millions of relations/events from the literature®. In

SIn contrast to my research topic which has primarily focused on supervised relation extraction,
a separate line of research—introduced by Mintz et al. (2009) and further developed by Riedel et al.
(2010) and Surdeanu et al. (2012)-has focused on using distant supervision and multi-instance learn-
ing to build relation extraction system when no labeled data is available. Such methods rely on an
existing knowledge base of entity-pair relations to train a relation extraction classifier that can extract
new relations from textual data. Typically, the schema of a used knowledge base (e.g., entity and rela-
tion types), dictates what sorts of new relations can be extracted from texts. For biomedical text mining
applications, sometimes the required knowledge base does not exist beforehand, or the schema of the
knowledge base is not in harmony with what a biologist need to be extracted from the texts. There-
fore, distant supervision relation extraction methods have not become super popular for the biomedical
domain. For a literature survey about distant supervision methods for biomedical relation extraction,

5
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particular, we aim to address the following research questions.

Question 1: Improving the quality of extracted data in automatically
generated event and relation databases

During the past decade, several event/relation extraction systems have been applied
at large scale, extracting millions of events from massive text corpora (Van Lan-
deghem et al., 2013a; Gerner et al., 2012). These large corpora, typically the totality
of PubMed abstracts and PubMed Central full-text articles, contain a number of doc-
uments which are partly or entirely out-of-domain for these systems, being unlike
the manually annotated shared task data that are carefully selected from narrow bi-
ological domains on which the systems have been trained. Facing documents from
such previously unseen domains, the systems often produce suboptimal output. On
one hand, these systems can produce thousands/millions of incorrect events (false
positives events, i.e. incorrect relations that are not actually stated in the input texts),
thus lowering the perceived precision, and on the other hand, they may fail to extract
thousands/millions of correct events (i.e. false negatives), leading to lower recall val-
ues. Tuning the performance of these systems in the general domain requires further
effort.

Increasing the recall usually translates to running a better information extrac-
tion system on all previously processed documents. This obviously demands a few
thousand extra CPU/GPU hours, and for institutions with limited budget or access to
computational resources, it is usually not considered to be a viable option. Increasing
the precision, in contrast, can be done in post-processing and by finding and remov-
ing incorrect events/relations from the system output, i.e. from the event/relation
databases or molecular interaction networks. The first research question addressed
in this dissertation is what sort of approaches can be developed to automatically and
efficiently target and remove incorrectly extracted relations/events from the output
of relation/event extraction systems and improve the precision.

Question 2: Deep learning with minimal training data

State-of-the-art relation and event extraction methods are based on supervised ma-
chine learning. In particular, supervised deep learning-based methods have recently
shown superior performance on many datasets. As discussed earlier, supervised
methods require manually annotated texts for training and development, but the
much-needed training data for building biomedical text mining systems is sometimes
minimal. This hinders the utilization of the deep learning-based methods to their full
potential.

A general rule of thumb is that more complex neural network architectures can

please refer to Boudjellal et al. (2020).
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learn better representations of their inputs, leading to better performance on down-
stream tasks. However, adding more layers to a neural network, increasing the di-
mensionality of the layers or adding more edges to an architecture, all translate into
having more neural network weights and demanding more data for neural network
training. Generally, the more network weights an architecture includes, the more
training data is required to learn those weights.

One solution is to use unsupervised methods to pre-train network components
in advance on large corpora. For example, word vector representations (embed-
dings) can be pre-trained in advance and then plugged into different neural models.
Similarly, recurrent neural network (RNN), convolutional neural network (CNN) or
transformer -based encoders (e.g. BERT (Devlin et al., 2018)) can be pre-trained on
large corpora and then fine-tuned with the task-specific training data for a particu-
lar relation extraction task at hand. However, even with pre-trained embeddings or
encoders, sometimes neural models cannot efficiently learn the tasks when training
and development (validation) data is very limited. Deep neural networks can have
millions of weights and learning/fine-tuning the weights and finding the best hyper-
parameters (such as the learning rate, mini-batch size and number of epochs) become
challenging with minimal training and development data.

The second research question of this thesis is how to efficiently train and opti-
mize deep neural network models for biomedical relation extraction tasks with min-
imal training and development data. Instead of designing yet another neural network
architecture, we aim to search for simple methods that can be utilized for any relation
extraction task.

Question 3: Exploring different contexts for relation extraction

Normally, each input to a relation extraction system is a text (e.g., a sentence or a
paragraph) and two candidate named entities and the system aims to predict if the
text states any relations between the two entities or not. In this manner, the context
plays a crucial role in detecting the semantic relations. Focusing on the entities that
occur in the same sentence, relation extraction approaches can be broadly divided
into three main categories, based on the type of context that they use.

The first approach is using all tokens of the sentence as the context for relation
extraction. For example, in one approach, the words in the sentence are first divided
into three groups: before, between and after the two entities. Each group is further
represented with a bag-of-features. Mooney and Bunescu (2006) used this approach
to build a subsequence kernel for each bag, with the final kernel function being sim-
ply the sum of the three kernels, which is further used with a support vector machine
(SVM) classifier for relation classification. Another example is the convolutional
neural network (CNN)-based relation extraction system developed by Nguyen and
Grishman (2015). Their neural network model processes all tokens of the sentence

7
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and relies on position embeddings to encode the relative distances of each word in
the sentence to the two entities of interest.

The second approach is using the shortest dependency path (SDP) as the context.
The shortest path connecting the two candidate named entities in the sentence depen-
dency parse graph is known to contain most of the words relevant to characterizing
their relationship, while excluding less relevant and uninformative words (Bunescu
and Mooney, 2005). For this reason, many successful feature-based, kernel-based
and deep learning-based relation extraction systems have been developed based on
utilizing the SDP in various forms (Bunescu and Mooney, 2005; Airola et al., 2008;
Chowdhury et al., 2011; Bjorne, 2014; Liu et al., 2015; Can et al., 2019; Li et al.,
2019).

The third approach is relying on the SDP in conjunction with the full sentence
tokens. For example, the Turku Event Extraction System (TEES) builds on the fea-
tures that are extracted from the SDP, as well as features that are based on the words
located in the distance of [-3,+3] tokens to the two entities in the sentence (Bjorne,
2014). Another example is the neural network system that has been developed by Li
et al. (2019) for clinical relation extraction. Their system uses a bidirectional long
short-term memory network (Bi-LSTM) to capture the features in the sentence se-
quence, as well as a CNN and a Bi-LSTM to capture the syntactic context for target
entities using SDP information. Similarly, the CNN-based model developed by Peng
et al. (2018) relies on SDP and full sentence tokens for chemical-protein relation
extraction.

Unfortunately, the relation extraction systems belonging to either one of the three
approaches mentioned above, are usually evaluated on different corpora or rely on
different sets of features and utilize different machine learning techniques for op-
timization. This makes it difficult to judge which of the mentioned approaches is
superior for relation extraction. Therefore, a systematic comparison of the three ap-
proaches would be interesting. In particular, this thesis aims to methodically explore
the effect of using full sentence tokens besides the SDP tokens for improving the
performance of relation extraction in modern deep learning-based methods.

Question 4: Exploring hybrid relation extraction methods

According to Zhang et al. (2017), supervised relation extraction methods can be
broadly divided into three main groups: (1) feature-based methods, (2) kernel-based
methods and (3) deep learning-based methods, each requiring a distinct set of skills
and expertise such as feature-engineering, kernel design and neural network archi-
tecture design and pre-training.

For example, feature-based methods heavily rely on feature engineering, thus
improving relation extraction performance in this approach usually translates to de-
signing and extracting better features to characterize and represent each example

8
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(entity pair) to classification algorithms. During the past decades, the BioNLP com-
munity has put a lot of effort and engineered various creative features that can be
extracted from the input and enhance relation extraction performance.

In contrast, deep learning-based methods can automatically learn efficient rep-
resentations from their input that are suitable for the relation classification task at
hand. For example, convolutional neural networks can automatically learn position-
invariant semantic n-grams from the training data and recurrent neural networks are
very efficient in learning good representations of input sequences. Therefore, for im-
proving relation extraction performance in this approach, researchers have focused
on designing better neural network architectures and utilized various pre-training
methods to learn neural network weights in advance.

While there have been great advances in each group, a separate line of research
has focused on building hybrid relation extraction methods. In particular, many suc-
cessful relation extraction methods have been developed by combining feature-based
and deep learning-based methods. This combination can be achieved in two levels:
system-level combination (i.e., combining the predictions of various systems) and
feature-level combination (e.g., incorporating engineered features into neural net-
work models). In this thesis, we aim to explore and hopefully propose new methods
for building hybrid relation extraction systems.

Question 5: Unsupervised pre-training of biomedical entity-pair embed-
dings to improve relation extraction performance

Biomedical literature includes a lot of information about the relations and interac-
tions of biomedical named entities (e.g. genes, proteins, chemicals, and drugs). We
aim to leverage this literature-wide information using unsupervised methods and for
every unique named-entity pair (E;, E;), capture all stated information about £; and
E; and their relations and build embeddings (vector representations) of entities and
entity pairs. Similarly to word2vec (Mikolov et al., 2013) for ordinary words, our
objective is for similar entities (e.g., proteins and chemicals) and pairs (e.g., protein-
chemical pairs) to obtain similar embeddings.

We are especially interested in investigating the possible effects of incorporating
these entity and entity-pair embeddings into neural models, in order to improve the
performance in relation extraction tasks in the biomedical domain. In addition, we
are interested to explore different approaches for pre-training vector representations
for biomedical entities and entity pairs.



2 Foundations

This chapter provides essential natural language processing (NLP) background knowl-
edge that is necessary for understanding the methods discussed throughout this the-
sis.

Section 2.1 provides a brief overview of various NLP pre-processing tasks, with
a special focus on the biomedical domain. The list of all pre-processing tasks is
extensive, hence I will only focus on the tasks that are relevant to relation and event
extraction tasks.

Since the majority of my research has been focused on biomedical relation ex-
traction task, in section 2.2 I will discuss the basics of relation and event extraction.
This section also aims to present a brief literature survey about the history of relation
extraction methods that have been developed for the biomedical domain.

Not all text mining systems perform very satisfactory in large-scale real-world
applications. A typical way to estimate the performance of a system on unseen data is
to prepare a representative held-out test set and use suitable performance metrics for
evaluation!. Therefore, in section 2.3, I will briefly review the performance metrics
that are used in my research and the shared tasks that I have participated in.

2.1 NLP pre-processing tasks

Natural language processing and text mining systems are typically implemented as
end-to-end systems, meaning that they accept raw texts as their input and gener-
ate final outputs to address end-users’ information needs. Traditionally, end-to-end
systems are implemented as software pipelines that automatically execute chains of
tools, each dealing with one or more particular NLP task(s) (e.g., sentence bound-
ary detection, tokenization, part-of-speech (POS) tagging, syntactic parsing, named-

Iy underscore that in some scenarios, achieving a good performance on a held-out test set does
not necessarily guaranty that the system will achieve a good performance in large-scale applications.
For example, BioNLP shared tasks do normally have a genuine held-out test set, but these typically
represent the same sub-domain as the training and development sets, i.e., the test set has the same
data selection biases as the training and development data. After training and optimizing a system on
carefully selected narrow-domain shared task data, the system can make a lot of mistakes if it is executed
on all PubMed abstracts, because there are a number of documents which are partly or entirely out-of-
domain for the system. Tuning the performance of systems in such scenarios requires further effort and
this is extensively discussed in the next chapter.
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entity recognition or relation extraction), either transforming/annotating the input
and generating a set of features that are required by the subsequent tools in the
pipeline, or generating the final set of outputs. This problem decomposition strat-
egy allows NLP practitioners to focus on one specific task at a time, create annotated
corpora for that task and develop better tools to address the task. It is worth men-
tioning that in modern text mining systems, sometimes two or more NLP tasks are
performed jointly by a single neural network model that receives raw texts as its in-
put, and for this reason, the term “end-to-end” is sometimes used to imply that the
process is joint (instead of a pipeline), but that is a narrower definition of end-to-end
system.

NLP includes an extensive list of different tasks. Some tasks such as sentence
boundary detection, tokenization, stemming, lemmatization, POS-tagging and pars-
ing are usually viewed as pre-processing tasks (thus appearing earlier in NLP pipelines)
and other tasks such as named-entity recognition, event/relation extraction or senti-
ment analysis are usually the ultimate goal, providing the final results. In the subse-
quent sections, I will briefly discuss the NLP pre-processing tasks that are relevant
to relation and event extraction tasks.

Tokenization

Recognizing the constituent words of a sentence (represented as a sequence of char-
acters) considerably facilitates the understanding of its semantics as a whole. After
transforming a sentence into the sequence of constituent words or tokens, we can
determine the rype of each token (e.g. being a noun, a verb or an adjective) by subse-
quent part-of-speech tagging. In addition, we can analyze the syntactic structure of
the sentence and determine the grammatical relationships among the words/tokens
(e.g., determining the subject(s) and object(s) for each verb in the sentence).

The task of segmenting a text into its constituent tokens is refereed to as lexical
tokenization or tokenization for short. This is usually a preliminary and necessary
pre-processing step for many subsequent tasks including part-of-speech (POS) tag-
ging and parsing, since these tasks generally require the sentence to be already seg-
mented into its composing elements. Other tasks such as named-entity recognition or
relation extraction may or may not rely on tokenization, depending on whether they
work on token-level (versus working purely on character-level) and if they utilize
POS-tagging/parsing features.

Typically, the domain and the particular requirements of downstream tasks, dic-
tate the strategy for tokenization. One basic tokenization approach is to regard
white spaces (e.g. space, tab or newline) and punctuation characters as separators.
Although this works flawlessly for phrases like “analysis of protein-chemical interac-

2Modern neural network-based NLP and text mining methods rely on using sufficiently common
subwords instead of words or tokens. Subword tokenization is discussed in the next section.
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tions,” or “... aspartate aminotransferase (AST), cytoplasmic and phosphoenolpyru-
vate carboxykinase (ATP) (PEPCK) were up-regulated.”, it can segment individual
gene or protein names (such as (MIP)-1« or TrpEb_I) into separate tokens (which
might be improper for the subsequent tools in the pipeline). This simple example
shows that the tokenizers that are developed for the general domain, may not per-
form very well on biomedical/clinical texts.

As discussed by He and Kayaalp (2006), choosing the right tokenizer for the
biomedical domain is not trivial and several factors affect the choice of right tok-
enizer. For example, since tokenization affects the indexing for IR, it is necessary to
fine-tune the tokenization rules to be able to address the information retrieval needs
once the indexing is done. Similarly, the choice of POS-tagger/parser affects the
choice of the tokenizer.

Tokenizers can be broadly divided into two main groups : (1) rule-based tokeniz-
ers and (2) trainable tokenizers which work based on supervised machine learning
(He and Kayaalp, 2006). In the rule-based approach, experts carefully analyze the
domain and existing texts and implement and optimize a set of rules (which deter-
mine the conditions for segmentation) to improve the tokenization for the down-
stream tasks at hand. For example, to improve chemical named-entity recognition
performance, Akkasi et al. (2016) have developed the ChemTok tokenizer. They
have manually implemented a set of tokenization rules from the training set of the
CHEMDNER task (Krallinger et al., 2015) of the BioCreative IV challenge (Arighi
et al., 2014) and have shown that when NER classifiers are trained on the output
of the ChemTok, they achieve higher performance on the NER task, compared to
when they are trained on the output of ordinary rule-based tokenizer available for the
biomedical domain. The rule-based approach does not require any annotated corpus
for training but manual design and fine-tuning the rules are generally time-consuming
and labor-intensive.

In supervised learning methods, tokenizer is implemented as a classifier that is
trained on an annotated corpus (a set of sentences and their constituent tokens) and
learns to determine the segmentation positions in given sentences. To find token
boundaries, the tokenizer either splits or joins textual objects through classification
to form tokens. A good example is the tokenizer built by Barrett and Weber-Jahnke
(2011) for the biomedical domain, which works based on regular expressions in con-
junction with machine learning techniques.

An extensive review of the challenges in making efficient tokenizers for the
biomedical domain is presented by Cruz Diaz and Maia Lépez (2015). In addition,
He and Kayaalp (2006) have systematically compared 13 tokenizers on MEDLINE®
abstracts.
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Subword tokenization

Subword tokenization is an important NLP pre-processing task that plays a cru-
cial role in modern language processing methods, specially in neural sequence-to-
sequence learning tasks such as neural machine translation (NMT), automatic speech
recognition (ASR), and text generation. Similarly to lexical tokenization, subword
tokenization also deals with segmenting input sentences (or individual tokens) into
smaller elements known as subword units (e.g., word-pieces and sentence-pieces),
but for different purposes: (1) dealing with infinite vocabularies and rare words of
a language/domain and (2) allowing to train efficient deep neural networks (DNN)
with less computations.

According to Zipf’s law (Zipf, 1949), if we analyze any large corpus and rank
all unique words based on their frequency (occurrence count in the corpus), the fre-
quency of each word multiplied by its rank is a constant. For example, in any English
corpus, there are some words such as “the” that constitute a significant proportion
of the corpus while a lot of rare words with very low frequency exist in that corpus.
In neural networks that accept natural language text as their input or generate text
as their output, each unique word of the vocabulary is typically represented with a
unique continuous-space vector known as word embedding. For instance, a neural
model for biomedical relation extraction may contain 100K unique vectors for 100K
unique words such as “the”, “regulation”, “S—arrestinl” and “EphA2”. The
word embeddings can be either pre-trained in advance (using unsupervised methods
such as Word2Vec (Mikolov et al., 2013)) or learned from scratch during the actual
neural network training for the specific task at hand. Naturally, there is a restriction
on the vocabulary size, based on what can fit into GPU’s memory. In other words,
existing neural network models incorporate finite number of unique words (receiv-
ing in their inputs and yielding in their outputs), whereas some NLP tasks such as
machine translation or text summerization usually deal with unrestricted (open) vo-
cabulary (e.g. any unknown word may appear in the input text which needs to be
addressed for translation). Consequently, word embeddings approach is not suitable
for NLP applications that need to deal with open vocabularies. Another major issue
with word embeddings is sparsity: neural network models usually cannot learn good
representations (embeddings) for the rare words and this can negatively impact the
performance of downstream tasks.

There is yet another problem with using word embeddings when dealing with
large vocabularies. In neural models that generate text (sequence of words) as their
output, in every time-step, a probability distribution over all words of the vocabulary
is calculated (using the softmax activation function), hence the amount of required
computation is correlated with the size of the vocabulary, and larger vocabularies
slow down the training and prediction times. To summarize, the word embedding
approach suffers from the following problems: (1) it is not a suitable approach for
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dealing with unrestricted vocabularies; (2) the quality of embeddings for the rare
words is usually poor; (3) word embeddings for large vocabularies may not fit into
GPUs with limited memory; and (4) in neural network models that generate text as
their output, large vocabularies slow down the training and prediction times.

Three main approaches have been proposed to deal with the aforementioned
problems. The first approach is to simply focus only on the most frequent words.
This clearly results in a significant number of out-of-vocabulary (OOV) words. Al-
though this has been shown to work efficiently for some NLP tasks (e.g. text classifi-
cation and relation extraction), it is definitely not ideal for tasks such as machine
translation that should deal with open vocabularies. The second approach is to
build purely character-level neural models, in which, sentences are represented as
sequences of characters (with character embeddings) and not tokens. Even though
character-level models have shown good performance on many tasks (for example,
dos Santos and Guimaraes (2015) and Gridach (2017) have used character embed-
dings besides the word embeddings to boost the performance of named-entity recog-
nition), in general they demand more computations (compared to word-level mod-
els) for training and prediction. The third approach, subword tokenization, solves
the shortcomings of the previous approaches. The idea here is to define a desired
number of subword units in advance (V) and training a subword tokenizer on a large
corpus. The training is usually unsupervised and the tokenizer automatically detects
N best subword units in the given corpus. These subwords form a subword inventory
which can further be used for actual segmentation. In other words, after the train-
ing and forming the subword inventory, the segmenter can segment any sequence
of characters (e.g. a sentence or a token) into its constituent subwords, hence there
will be theoretically no OOV words> thus the neural network models can deal with
unrestricted vocabularies.

In this approach, common words of a language/domain are represented with ded-
icated subword units (e.g. “regulation” could be represented with a single dedicated
subword), whereas less common and rare words are segmented into their constituent
subwords (e.g. “aminoglycosides” could be represented as [“amino”, “gly”, “cos”,
“ides’]).

Similarly to words, each unique subword of the inventory can be represented
with a unique continuous-space vector (i.e., a subword embedding) and subword
embeddings can be either pre-trained in advance or learned from scratch during the
actual neural network training for the specific task at hand. By setting a reasonable
number for /V (e.g. 20K or 30K subword units), all subword embeddings can easily
fit into GPU memory and because all words can be segmented into subword units,
there will be no problem in sequence-to-sequence learning tasks. In contrast to the

3n practice, if one tokenizes a massive corpus, there might be many rare Unicode characters and
therefore some of the rarest characters are simply not included in the vocabulary and thus all subwords
that contain them will be actually out-of-vocabulary.
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word embeddings approach, the subword embeddings approach does not suffer from
producing poor quality embeddings for the rare words because representing a rare
word with its constituent subword embeddings is quite efficient. Finally, it should be
highlighted that neural models that rely on subword embeddings have outperformed
the models that rely on word and/or character embeddings.

Training a subword tokenizer on a relatively large corpus usually takes a few

hours on a single computer and tokenization and detokenization (constructing the
sentence based on the sequence of subwords in text generation tasks) are also rel-
atively very fast. Without delving into the details, four subword tokenization algo-
rithms and libraries worth mentioning:

1. Schuster and Nakajima (2012) proposed WordPieceModel (WPM) to deal with

infinite vocabulary problem in building a speech recognition system for Japanese
and Korean languages at Google. Later, it was successfully adopted in Google’s
machine translation systems (Wu et al., 2016; Johnson et al., 2017) and Google’s
neural language model, BERT (Devlin et al., 2018).

. Sennrich et al. (2016) proposed byte pair encoding (BPE) subword tokeniza-
tion algorithm to deal with the translation of rare and unknown words in NMT
systems*. BPE was later used in OpenAl’s neural language models, GPT (Rad-
ford et al., 2018) and GPT-2 (Radford et al., 2019).

. Kudo (2018) proposed a subword tokenization and regularization algorithm
based on a unigram language model to improve the performance of NMT sys-
tems.

. Kudo and Richardson (2018) developed the SentencePiece library, a language
independent subword tokenizer and detokenizer that is freely available for pub-
lic use®. SentencePiece implements two subword tokenization algorithms:
BPE (Sennrich et al., 2016) and the unigram language model (Kudo, 2018),
with the extension of direct training from raw sentences, which allows build-
ing purely end-to-end systems that do not depend on any language specific
pre-processing. Similarly to WPM, in SentencePiece, whitespace is handled
as a normal symbol, hence it can be applied on raw data (any sequence of char-
acters), requiring no prior tokenization and consequently, it can successfully
be used for languages that do not use space character between words (non-
segmented languages) such as Japanese and Chinese. Subword tokenization in
SentencePiece is lossless, meaning we can detokenize a sequence of subword
units without any ambiguities, making this method ideal for neural network-
based text generation systems (e.g. NMT systems).

4An implementation of BPE (with slight modifications) can be found in subword-nmt library:
https://github.com/rsennrich/subword-nmt

https://github.com/google/sentencepiece
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Defining the desired number of subwords is tricky and more or less domain/task
dependent. However, there are a few important points to consider. The ultimate
goal for subword tokenization is to find (and subsequently learn dedicated embed-
ding vectors for) the common words/subwords of a language/domain/corpus, while
still being able to represent all rare words with sequences of existing subwords. For
example, since “P53” is very frequent in the biomedical domain, it is generally pre-
ferred to learn a dedicated embedding for this word in a neural model rather than
representing it as a sequence of separate vectors (e.g. “P” and “53”). This hopefully
assists the subsequent layers of the network for addressing the main task at hand (e.g.
relation extraction).

Another fact to consider is the negative correlation between the vocabulary size
(number of unique subwords) and the average length of the sentence (represented
as a sequence of subwords). Recurrent neural networks (including LSTM and GRU
networks) have shown better performance on shorter sequences, i.e. they have trou-
ble learning from very long sequences. Therefore, when working with RNNs, it may
be interesting to investigate the effect of choosing different sizes for the subword
inventory, since it directly affects the average length of the input sequences.

Sentence boundary detection

Many NLP tasks require their input to be segmented into sentences. As mentioned
by Xuan et al. (2007), isolating sentences is a prerequisite for any syntactic analy-
sis of texts such as POS-tagging, chunking (shallow parsing) (Jurafsky and Martin,
2009) and constituency/dependency parsing. Other NLP tasks that have such require-
ment include text summarization, sentence alignment (Brown et al., 1991), machine
translation and any NLP task that demands measuring the similarity between the sen-
tences (Achananuparp et al., 2008). Besides task requirements, there are technical
reasons for segmenting larger texts into the sentences. Neural networks are typically
executed on GPUs, and GPUs have limited amount of memory. Hence, it might be
totally impossible to feed a large amount of text (e.g. a whole book) into the GPU
memory at once, specially when using deep networks that have millions of free pa-
rameters (e.g. BERT (Devlin et al., 2018) encoder6).

Sentence boundary detection (also known as sentence boundary disambiguation
and sentence segmentation) is an NLP pre-processing task that aims to detect where
sentences begin and end in larger bodies of text (e.g. articles or books). In the
English language, sentences usually end with period, exclamation mark or question
mark. Consequently, sentence boundary detection algorithms focus on punctuation
occurrences in the input text and decide which of them denotes a sentence termina-
tion. The period is the most ambiguous punctuation because it can occur inside or

6BERTBASE has about 110M parameters and BERTrarcr has about 340M parameters.
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collocate with almost any words, including abbreviations, numbers, dates, file names,
proper names (e.g. protein/gene/chemical names) and titles. Xuan et al. (2007) have
analyzed 6 million MEDLINE® abstracts and have found that about 33% of periods
are ambiguous.

As discussed by Xuan et al. (2007), sentence boundary detection in the biomed-
ical domain and the clinical domain is more challenging than the general English
domain. In the clinical domain, abundance of acronyms and abbreviations, mis-
spellings, punctuation errors and incomplete sentences are the main source of error
in sentence boundary detection (Kreuzthaler and Schulz, 2015). After a comprehen-
sive investigation of characteristics of sentence boundaries in biomedical literature,
Xuan et al. (2007) have identified the following unique features that differentiate
biomedical literature from regular English text for the SBD task.

1. The biomedical literature contains a large amount of abbreviations
(e.g. “E.coli”, “i.c.v.”, “N. lactamdurans”, “Hs.1259”, “C. elegans”,
“S. pombe”) which can appear anywhere in a sentence and having a large
amount of abbreviations with period is a major source of errors in sentence
boundary detection.

2. Unlike the general domain, proper names in the biomedical domain (such as
gene or protein names) can start with lower-cased letters (e.g. “hA2aR”, “hKv
beta 37). In addition, it is not uncommon to begin sentences with such proper
names (e.g. “hRCEI activity was ...”). In general English texts, when an abbre-
viation is followed by a period and the next word is a number or lower-cased,
that period does not typically denote a sentence boundary (Mikheev, 2000).
This assumption does not hold in biomedical literature since there are many
cases that a sentence ends with an abbreviation and the next sentence starts
with a lower-cased proper name. In addition, in general domain, a common
postulation in rule-based approaches stipulates if the word immediately before
an ambiguous period is a single uppercase letter then the period does not de-
note a full-stop. However, biomedical domain includes a lot of gene or protein
names that end with a single uppercase letter (e.g. “cyclin F”) and it is very
common to have such names at the end of a sentence.

3. On one hand, the biomedical domain contains a significant number of com-
pound words, and on the other hand, lack of naming convention has led to a
naming chaos, having multiple names all referring to a single entity. Unfortu-
nately, not all names of entities are recorded in the dictionaries. This situation
significantly degrades the results of classic POS taggers. As a result, SBD
algorithms based on POS taggers will obtain less accuracy on biomedical cor-
pora than on general corpora.
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4. Biomedical literature contains a considerable amount of articles that are con-
verted to text from images using optical character recognition (OCR) systems.
These systems can make a lot of mistakes during the conversion (e.g. “1.5-3.0
mM” may become “I . 5-3. 0 mM”) which complicate sentence bound-
ary detection. In addition, various forms of citations appear frequently in
MEDLINE® abstracts. These contain a lot of abbreviated author and con-
ference/journal names. General domain sentence boundary detection systems
are not usually equipped to handle such cases efficiently.

Sentence boundary detection systems can be broadly divided into three main cat-
egories: (1) rule-based systems that utilize hand-crafted regular-expressions, heuris-
tics and dictionaries, (2) supervised learning-based systems that require an anno-
tated corpus for training, and (3) fully unsupervised methods. Finally, it should be
mentioned that sentence boundary detection can be performed either before, after or
even simultaneously with lexical tokenization. For example, in the UDPipe soft-
ware (Straka et al., 2016; Straka and Strakova, 2017), sentence segmentation and
tokenization is performed jointly, using a bidirectional GRU network that for each
character in the input text predicts whether it is the last one in a sentence, the last one
in a token, or not the last one in a token.

Stemming and lemmatization

Lemmatization is an NLP pre-processing task that converts a word (as it appears in
a text) into its dictionary or base form, also known as lemma. Lemmatization trans-
forms each noun into its singular form, each verb into its infinitive form, and each
adjective/adverb into its base positive form. For example, “sing”, “sings”, “sang” and
“sung” are transformed into their common lemma “sing”. Similarly, “regularization”
and “regularisation” are both converted into “regularization”, “am”, “is’ and “are”
are converted into “be”, and “mouse” and “mice” are transformed into “mouse”.

Having knowledge about the morphological rules of the language is important for
lemmatization and for this reason, lemmatizers often rely on using a comprehensive
lemma dictionary (Shatkay and Craven, 2012). In addition, it is generally required to
consider the context of a word for lemmatization, because the part-of-speech (POS)
and morphology tags of a word in the context are needed to disambiguate the cor-
rect corresponding lemma (Kanerva et al., 2020). For example, the word “/ives” in
English language can be either a verb (e.g. “He lives in Helsinki.”) or a plural noun
(e.g. “This study examines the lives of the rich and famous.”), with the former being
lemmatized into “live” and the latter into “life”.

Lemmatization acts as a normalization process, mapping all morphological vari-
ants of a word into the same underlying lemma, hence all of them will be seen as

the same term in the subsequent steps of NLP pipelines. In other words, by reduc-
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ing the total number of distinct terms, lemmatization decreases the complexity of
the input texts, and therefore brings important benefits to downstream tasks such as
information retrieval, information extraction, document classification and clustering
and natural language understanding (NLU) (Liu et al., 2012). For example, in rela-
tion extraction systems, lemmas (instead or in addition to the original words) can be
used when representing the shortest dependency path which connects the two can-
didate entities in the parse graph. In the GENIA event extraction (GE) shared task
of the BioNLP-ST-11 challenge (Kim et al., 2011b), 4 out of 9 participating teams
used lemmatization features to improve the performance of their systems (Liu et al.,
2011; McClosky et al., 2011; Vlachos and Craven, 2011; Emadzadeh et al., 2011).

Stemming is another NLP pre-processing task which aims to reduce all mor-
pholigical variants into a single stem form by trimming the suffixes. In contrast
to lemmatization, stemming does not necessarily generate a valid dictionary form.
For example, lemmatization of “regulated” results in the base verb form “regulate”,
whereas stemming may generate “regul” as the stem. Stemming can mistakenly re-
duce words with different meanings into the same stem. For example, “experiment”
and “experience” could be both reduced into “experi” (Shatkay and Craven, 2012)
and “activates”, “activations” and “activities” could all be reduced into “activ’ or
“act” by most stemming algorithms (Liu et al., 2012). In addition, stemming does
not typically take the part-of-speech (POS) of the words into account, does not recog-
nize the relationship between “mouse” and “mice” and can sometimes fail to reduce
semantically relevant words into the same stem form (under-stemming).

According to Liu et al. (2012), general domain lemmatizers such as morpha
(Minnen et al., 2001) or WordNet-based (Fellbaum, 1998) lemmatizers which are not
specifically developed for the biomedical domain, often fail to produces the correct
lemmas for the biomedical terms. One important reason is that many domain-specific
terms (e.g. “methylation” or “phosphorylation”) are usually not recorded in general
English thesaurus such as the WordNet. Consequently, applying a general domain
lemmatizer to the biomedical literature results in some loss in performance.

For this reason, BioNLP researchers have either developed lemmatizers that are
specifically designed for the biomedical domain, or they have adapted and re-trained
general domain lemmatizers on biomedical corpora.

For example, Liu et al. (2012) have developed the BioLemmat izer tool. This tool
is based on the MorphAdorner’ toolkit, but is specifically designed and optimized
for the biomedical domain, through the integration of several lexical resources related
to molecular biology. Another example is the recent work by Ngo et al. (2019). They
achieved the first rank in the Structural Annotation Task (dependency parsing) of the
CRAFT-2019 shared task (Baumgartner et al., 2019) using an approach that builds
primarily on the Turku neural parser (Kanerva et al., 2018), Universal lemmatizer

7http://morphadorner.northwestern.edu/morphadorner/
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(Kanerva et al., 2020), and various domain-adaptation techniques.

Part-of-speech (POS) tagging

The words in any language can be categorized into different grammatical classes
known as parts of speech (POS). The part of speech of a word indicates how it func-
tions in meaning as well as grammatically within a given sentence. Words in English
language can be divided into two major groups: (1) words that always have the same
part of speech, regardless of the context (e.g. “methylation” is always a noun), (2)
words that can have different part of speech, depending on the context they appear
in. For example, work can be either a noun or a verb (e.g. “I work in the TurkuNLP
group.” v.s. “My work is not easy.”). Dictionaries usually list the most common
meanings with their corresponding part of speech for the entries.

The exact number of part of speech categories for a natural language depends on
how the language is analyzed by a linguist (coarse-grained v.s fine-grained classes).
For example, most English grammars would include at least 8 part of speech cate-
gories (noun, verb, adjective, adverb, pronoun, preposition, conjunction, and inter-
Jjection), whereas the part of speech annotation scheme used in creation of the first
version of Penn Treebank (Marcus et al., 1993) includes 36 distinct POS tags8 (see
Table 1).

The task of recognizing the correct POS class (also known as POS-tag) for the
words in a given sentence is referred to as part of speech tagging (POS-tagging).
Knowing how the constituent words grammatically function in the sentence is very
beneficial for syntactic and semantic analysis, hence, POS-tagging is often regarded
as a preceding step for lemmatization, parsing, named-entity recognition, relation
extraction, speech synthesis, machine translation and many other NLP tasks®.

State-of-the-art POS taggers are based on supervised learning (Jurafsky and Mar-
tin, 2009), requiring an annotated corpus. The GENIA corpus (Tateisi et al., 2005)
(which originally contained 500 manually annotated MEDLINE® abstracts) and the
CRAFT corpus (Verspoor et al., 2012) (97 annotated full-text biomedical articles) are
the most famous and widely used annotated corpora for developing and evaluating
POS-tagging systems for the biomedical domain.

POS-tagging systems can be broadly divided into traditional feature-based sys-
tems and neural network-based systems. Nguyen and Verspoor (2019) have retrained
and evaluated six established POS-tagging systems on GENIA and CRAFT corpora:

81n the subsequent versions of the schema, a few basic punctuation marks (such as period, comma,
colon, parentheses, dollar, and opening/closing quotation marks) are added as additional POS-tags.

9 As discussed earlier, modern end-to-end neural NLP systems often differ from multi-stage NLP
pipelines in the sense that they accept raw texts as their input and provide the final desired results (e.g.,
lemmas or named-entity tags) as their output, without relying on or running other NLP tools. Hence,
such systems do not depend on POS-tags as features and part of their inputs.
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# | Tag Description

1 CC Coordinating conjunction

2 | CD Cardinal number

3 DT Determiner

4 | EX Existential there

5 FwW Foreign word

6 | IN Preposition or subordinating conjunction
710 Adjective

8 JJR Adjective, comparative

9 AN Adjective, superlative

10 | LS List item marker

11 | MD Modal

12 | NN Noun, singular or mass

13 | NNS Noun, plural

14 | NNP Proper noun, singular

15 | NNPS | Proper noun, plural

16 | PDT Predeterminer

17 | POS Possessive ending

18 | PRP Personal pronoun

19 | PP$ Possessive pronoun

20 | RB Adverb

21 | RBR Adverb, comparative

22 | RBS Adverb, superlative

23 | RP Particle

24 | SYM | Symbol

25 | TO infinitive to

26 | UH Interjection

27 | VB Verb, base form

28 | VBD Verb, past tense

29 | VBG | Verb, gerund or present participle
30 | VBN | Verb, past participle

31 | VBP Verb, non-3rd person singular present
32 | VBZ Verb, 3rd person singular present
33 | WDT | Wh-determiner

34 | WP Wh-pronoun

35 | WP$ Possessive wh-pronoun

36 | WRB | Wh-adverb

Table 1. Penn Treebank POS tagset

Foundations

GENIA POS-tagger (Tsuruoka et al., 2005), MarMoT (Mueller et al., 2013),
NLP4J-POS (Choi, 2016), Bidirectional LSTM+CRF (Huang et al., 2015),
Bidirectional LSTM+CRF+CNN-char (Ma and Hovy, 2016), and

Bidirectional LSTM+CRF+LSTM-char (Lample etal.,2016). They have re-
ported that all the POS-taggers perform very similarly, achieving ~98% accuracy on
GENIA and ~97% accuracy on CRAFT corpus. These results are very impressive
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since they are very close to the human agreement on these corpora.

Traditionally, POS-tagging and parsing were closely intertwined because many
parsers depended on receiving POS-tags as part of their input. In other words, such
parsers utilized the POS-tags as an important feature set. Consequently, one could
not swap one POS-tagging system with another one and expect the same performance
from parser, unless he re-trained the parser from scratch with the new POS-tags pro-
duced by the second POS-tagging system. For this reason, older parsers usually had
an internal POS-tagging component and the part of speech tagging was usually per-
formed as a preceding step, by the parser pipeline itself. However, in most modern
neural parsers such as UDify (Kondratyuk and Straka, 2019), POS tagging and pars-
ing are done simultaneously as a joint prediction tasks, hence, POS tagging is no
longer an essential preceding task for parsing.

Syntactic parsing

Even though POS-tagging detects the grammatical type for the constituent words
of a given sentence (e.g., being a noun, an adjective or a verb), it does not provide
sufficient information about the syntactic structure of the sentence. For example, a
sentence may contain a number of nouns and verbs, so it is essential to know what
the subject(s) and object(s) are for each recognized verb. For this reason parsing
(syntactic analysis) is used.

Parsing is one of the most important tasks in NLP which provides corresponding
parse graphs for the input sentences, based on a constituency (phrase-structure) or
dependency grammar. Parse graph representation reveals the grammatical relation-
ships among the constituents (phrases) or the words of the sentence, hence providing
beneficial information for downstream tasks such as sentence classification, senti-
ment analysis or relation extraction'®. In natural language processing, usually two
types of sentence parsing are used. In constituency parsing, the aim is to find the hier-
archy of constituents (phrases and words) in a given sentence, based on the rules of a
context-free grammar and in a recursive manner. In contrast, the aim in dependency
parsing is to directly find the grammatical relationships (known as dependencies)
among the words. Hence, in dependency graphs, words are represented by nodes
and dependencies are represented using directed and typed edges. Figure 3 shows a
comparison between constituency and dependency parsing for an example sentence
from PubMed.

Modern parsers are based on supervised learning, requiring a manually annotated
treebank (a corpus of sentences with their corresponding parse graphs and POS-tags).
It is worth noting that the annotation schema and the grammar used in the creation of
a treebank dictates how the parsers trained on that treebank should work. Similarly

10 highlight that modern end-to-end neural NLP systems may not depend on parse graph information
as their features.

22



Foundations

ROOT

|

NP ADVP / VP _
NN RB VBZ NP "
Rapamycin allosterically inhibits DT NN

-

the proteasome

(a) Constituency parse graph

punct
nsubj dobj
f fadvmod det ~

Rapamycin allosterically inhibits the proteasome .

(b) Dependency parse graph

Figure 3. Comparison of different parsing methods for an example sentence: “Rapamycin
allosterically inhibits the proteasome.”

to POS-tagging, the parsers that are trained on a general domain corpus will not
perform well on biomedical texts. For this reason, parsers should be re-trained on
biomedical treebanks such as the GENIA corpus (Tateisi et al., 2005).

An extensive review and comparison of modern parsers that are developed for
the biomedical domain (during the CRAFT 2019 Shared Tasks) is presented by
Baumgartner et al. (2019). In addition, Nguyen and Verspoor (2019) have per-
formed an empirical study and compared state-of-the-art feature-based and neural
network-based dependency parsers on two benchmark biomedical corpora, GENIA
and CRAFT.
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Co-reference resolution

Co-reference resolution is the task of clustering mentions in text that refer to the
same underlying real world entities. It plays a crucial role in language understanding
and can considerably affect the performance of NLP tasks such as relation extraction
and question answering.

In relation/event extraction tasks, performing co-reference resolution can in-
crease the recall of detected events. For instance, in the following example from
Li et al. (2018a), we notice a binding relation between “Grb2” and “Shc” is stated in
the text, and the pronoun “It* refers to the mention “Grb2”:

“... Grb2 binds directly to the EGFR at Y-1068. It also binds Shc ...”

In this example, “Grb2” and “Shc” entities are located in separate sentences.
Hence, any relation extraction system that is not trained to detect cross-sentence rela-
tions will fail to detect this binding relation. However, by running a co-reference res-
olution system on the text we can for example replace the pronoun “it” with “Grb2”,
thus helping relation extraction systems to detect the relation.

Co-reference resolution systems can be broadly divided into traditional feature-
based systems that heavily rely on parsing features and modern neural network-based
system, both working based on the supervised learning approach. The BioNLP Pro-
tein Coreference dataset (Nguyen et al., 2011) and the CRAFT corpus (Cohen et al.,
2017) are two annotated corpora that are built for developing co-reference resolution
systems for the biomedical domain.

Named-entity recognition

Named-entity recognition (NER) is an important task in NLP that deals with finding
mentions of real-world entities (e.g. people or organization names) in input texts. In
the biomedical domain, the types of named entities that are of interest include genes,
proteins, chemicals, drugs, diseases and disorders, chromosomal locations, cell lines,
and cell types.

Named-entity recognition (in conjunction with entity linking) can be performed
as an optional pre-processing step for information retrieval. By finding the occur-
rences of named entities in a collection of documents (and associating them with
canonical forms or database identifiers!!) and indexing the documents based on the
entities they contain, a search engine will be able to answer complex user queries
and retrieve the documents that discuss a particular named-entity, such as a particu-
lar gene or protein of interest. Of course, one can alternatively use the full-text in-
dexing approach, but it usually leads to a lower precision and recall for the retrieved
documents.

Named-entity recognition is an indispensable preceding step for relation and

Hgee named-entity normalization in the next section.
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event extraction since these tasks by definition focus on the detection of semantic
relations among named entities in the given texts. In other words, named entities
are typically known and given as part of the input in event and relation extraction
tasks!2.

According to Shatkay and Craven (2012), there are a number of reasons that
make biomedical named-entity recognition difficult. For example, in the case of
recognizing gene and protein names:

1. Some gene and protein names are short. These names are sometimes called
gene symbols. For some species, gene symbols are actually abbreviations for
longer, more descriptive names (e.g. “BRCAT1” is short for “breast cancer type
1 susceptibility protein®). The longer forms for some species are very common
in the literature.

2. The names for some genes are homonyms of ordinary English words. For
example, “And”, “lot”, “stuck”, “lush”, and “dreadlocks” are a few gene or
protein names for the fruit fly.

3. Some gene names coincide with phrases that have common meanings in En-
glish language (e.g. “cheap date”, “onion rings” or “Sunday driver”) or have
whimsical interpretations in English (e.g. “pray for elves” and “sonic hedge-

hog”).

4. It is very common in the biomedical domain that same name is used for a gene
and its products. Hence, for each mention in the text, NER systems should
decide whether this particular mention refers to the gene, to its protein product,
its transcribed RNA, or a combination of these possibilities. This ambiguity
is a complicating factor for the NER systems that have to make a distinction
among such alternatives.

5. Some protein names are composed of other protein names. For example,
“MAP kinase 8” and “MAP kinase 8 interacting protein 1 are different pro-
tein names. Similarly, “MAP kinase 17 and “MAP kinase kinase 1" are distinct
protein names.

The aforementioned examples show that biomedical NER is a challenging task
and simple dictionary matching or rule-based approaches may fail to provide high
precision and recall. Currently, state-of-the-art NER systems are based on supervised
learning approach and utilize conditional random fields (CRF) in conjunction with

12p, end-to-end neural relation or event extraction systems, named-entity recognition and rela-
tion/event extraction are done jointly. For example, DeepEventMine system (Trieu et al., 2020) extracts
nested biomedical events from raw texts, without any pre-processing needed.
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deep neural networks. For example, in the recent PharmaCoNER track (Pharmaco-
logical Substances, Compounds and proteins Named Entity Recognition) (Gonzalez-
Agirre et al., 2019) of The BioNLP Open Shared Tasks 2019 (Jin-Dong et al., 2019),
Xiong et al. (2019) achieved the first rank in the competition by using a classifier
that utilized a CRF layer on top of a pre-trained BERT (Devlin et al., 2018) encoder.
There have been a number of shared task challenges that have provided manually an-
notated data to support the development of NER systems for a variety of biomedical
entities ranging from mentions of genes, proteins, cell lines and diseases to anatom-
ical entities. Recently, Crichton et al. (2017) have done an impressive work and
gathered 15 different biomedical NER corpora into a single repository!? and they
have unified all corpora by conversion to the CoNLL format. This facilitates the
development and evaluation of new NER methods for the biomedical domain. For
further discussions about the recent advancements in the deep learning-based NER
methods, refer to Yadav and Bethard (2018) and Li et al. (2018b).

Named-entity normalization

The typical output of an NER system consists of the type and beginning/end offsets
for each entity that is detected in the input text. For many text mining applications
this output is not sufficient, particularly when we need to know which real-world
entities are actually mentioned in the given texts. For instance, in automatic creation
or curation of gene-related databases, we need to be able to retrieve a set of sentences
that discuss a particular gene. By running a gene NER software on PubMed abstracts,
we obtain the offsets of gene mentions in each document, but we still do not know
which genes are actually referenced in those documents. To address this problem,
named-entity detection is often followed by named-entity normalization (also known
as entity linking). Entity normalization is an NLP task which entails associating each
recognized entity mention with a canonical identifier for the entity being referenced
(Shatkay and Craven, 2012).

Entity normalization in the biomedical domain is often challenging. For instance,
in gene (or protein) entity normalization tasks, we usually face the following prob-
lems:

1. Some names and symbols in the biomedical domain are polysemes for multiple
genes. Similarly, there are many cases in which the same name is used for
related genes (or proteins) in different species. For example, “p53” is used for
any isoform of a protein encoded by homologous genes in various organisms,
including “TP53” (humans) and “Trp53” (mice). Consequently, it is necessary
to first recognize which organism(s) is discussed in a given text, in order to
assign the correct identifier(s) to “p53” mentions in that text.

13Https ://github.com/cambridgeltl/MTL-Bioinformatics—-2016
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2. Itis often the case that there are several different names for the same gene and a
multitude of typographical variants for each one. For instance, the gene “tumor
necrosis factor” has other names such as “tumor necrosis factor alpha”, “TNF”
, “TNF alpha” and “TNF «”. When maintaining gene-related databases, it is
necessary to map all different mentioned names into a single standard name (or
database identifier), to be able to retrieve all relevant documents that discuss a
particular gene, regardless of how the gene is mentioned in the texts.

3. Sometimes authors paraphrase or use permutations instead of using standard
gene names. For instance, “ciliary neurotrophic factor receptor” may be re-
ferred to as “receptor for ciliary neurotrophic factor”. To be able to retrieve
all relevant documents that discuss a particular gene, it is necessary to detect
and map all variants into a single standard name (or database identifier) when
indexing the documents.

In the biomedical domain, gene entity mentions are usually normalized into
NCBI Entrez identifiers (Benson et al., 2013; Maglott et al., 2011), protein men-
tions are normalized into UniProt entry names or accession numbers, organism men-
tions are normalized into NCBI Taxonomy identifiers (Federhen, 2012), chemical
mentions usually into ChEBI (Chemical Entities of Biological Interest) identifiers
(Hastings et al., 2016) or NCBI PubChem identifiers (Kim et al., 2019), and disease
mentions into MEDIC concepts (Davis et al., 2012).

Since normalization requires mapping all possible variants into unique
names/identifiers (e.g. ontology concepts or database identifiers), a common ap-
proach is to compile and utilize a dictionary that associates each canonical identifier
with all possible names and symbols. For example, a dictionary that associates each
NCBI Entrez identifier with all possible variants of gene names and symbols. Un-
fortunately, simple dictionary lookup or simple string matching algorithms do not
work very well in the biomedical domain because if is often the case that there are
numerous ambiguous mentions in each article that can be either mapped into more
than one unique identifier or not mapped to any identifier at all. Currently, state-of-
the-art entity normalization methods work based on supervised learning and learn-
ing surface and semantic similarities between mentions and concept names, directly
from the training data. A simple approach is to first represent both mentions and the
names as weighted Term Frequency-Inverse Document Frequency (TF-IDF) vectors
and then train a classifier (e.g. a SVM classifier) which learns to associate each men-
tion to the correct corresponding name (for example, see Paper III). Alternatively,
we can learn various semantic vector representations for mentions and the terms,
and use the cosine similarity measure to calculate the similarity of a mention with
all possible names and choose the best candidate name. Finally, a variety of neu-
ral network-based methods have been recently proposed for entity normalization by
various authors (Li et al., 2017; Deng et al., 2019; Ji et al., 2019; Tang et al., 2021).
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2.2 Relation and event extraction

Among different tasks, biomedical relation and event extraction tasks have received
much attention in the BioNLP community. These foundational information extrac-
tion tasks deal with automatic identification of biological processes, interactions and
relations described in biomedical literature. Precisely speaking, biomedical relation
and event extraction systems can scan through a vast amount of biomedical texts and
automatically detect and extract the semantic relations of biomedical named entities.
The structured outputs of such systems (i.e., the extracted relations or events) can
be stored as relational databases or molecular interaction networks which can easily
be queried, filtered, analyzed, visualized and integrated with other structured data
sources.

While biomedical NER and entity normalization systems can find mentions of
real-world entities in given texts, biomedical relation and event extraction systems
can extract semantic relations among the detected entities, thus providing additional
information to biomedical researchers. For instance, while it might be interesting
for researchers to know which PubMed Central articles discuss a particular protein
(addressed by NER and entity normalization), what the researchers are usually inter-
ested about is obtaining information about the interactions of that particular protein
with other entities (such as proteins or chemicals), and this can be addressed by re-
lation extraction systems.

Biomedical relation extraction has traditionally focused on pairwise relations,
i.e., the interactions or relations between two candidate named-entities. In these
cases, each input example to the system is a text (e.g. a sentence or a paragraph) with
two candidate named entities and the system predicts whether the text states any rela-
tions between the two entities (see Figure 4). As discussed in Section 1.1, depending
on the task definition and annotation schema, pairwise relations can be either t yped
or untyped and they can be either directional ornon-directional. Hence,
a relation extraction task can be cast into a binary, multi-class or multi-label clas-
sification problem, predicting the existence, type and possibly the direction of the
relation(s) for each candidate named-entity pair in the given input texts.

A brief review on relation extraction methods

Early relation and event extraction systems were based on rules or patterns. Such
rule-based or pattern-matching approaches can lead to low recall and/or precision,
because it is difficult to come up with a comprehensive set of rules that can cover
all possible ways that biomedical relations can be discussed in the literature, without
making many mistakes. State-of-the-art relation and event extraction systems are
thus based on supervised machine learning, relying on manually annotated data to
train a classifier (e.g. an SVM, an ANN or a Naive Bayes classifier) capable of
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Rapamycin allosterically inhibits the proteasome.
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Figure 4. Chemical-protein relation extraction example. The input is a sentence with the two
entities, and the output is the predicted label for the pair.

detecting statements of relations in texts.

According to Zhang et al. (2017), supervised relation extraction methods can be
broadly divided into three main groups: (1) feature-based methods, (2) kernel-based
methods and (3) deep learning-based methods'4.

Feature-based methods extract a series of relevant features from the text in
order to train a relation extraction classifier. In these methods, each entity pair
is represented with a corresponding numerical feature vector that is further used
for either training the classifier or for detection of the relation(s) (Zhang et al.,
2017). The list of features usually includes (but is not necessarily limited to) bags-
of-words/lemmas/POS/DTs or their n-grams in the sentence or along the shortest de-
pendency path (SDP). The Turku Event Extraction System (TEES) (Bjorne, 2014)—
previously developed by members of our research group—is an example of such a
system, using a rich set of features to train an SVM classifier. TEES achieved
62.99 F-score in the DDI-2011 task (Segura-Bedmar et al., 2011), 58.7 F-score in the
DDI-2013 task (Segura-Bedmar et al., 2013), and state-of-the-art performance (42.00
F-score) in the Bacteria-Biotope 2013 relation extraction task (Deléger et al., 2016).
Another example is the VERSE system, developed by Lever and Jones (2016), which
obtained the state-of-the-art result with an F-score of 55.8 in the Bacteria-Biotope
2016 relation extraction task (Deléger et al., 2016). Similarly to TEES, VERSE
also extracts a rich set of features in order to train a linear SVM, but utilizes a fea-

14While the mentioned categorization is pretty common in NLP community, one could correctly
argue that a distinction between feature-based and neural/deep learning-based methods lacks precision,
because deep learning-based methods can still use manually engineered features (e.g., features that are
extracted from sentence parse graph), thus the actual distinction should be made between manually
engineered versus automatically learned features instead of methods or systems. While this is very
correct, I prefer to use the mentioned categorization of the methods, because my aim in this section it to
provide a historical perspective about how different approaches for building relation extraction systems
have emerged, instead of focusing on different features that have been used in such systems, being
manually engineered or automatically learned.

29



Farrokh Mehryary

ture selection component for optimization. Finally, Raihani and Laachfoubi (2016)
achieved the impressive F-score of 71.14 on the DDI-2013 corpus with a feature-
based system utilizing lexical, phrase, verb, syntactic and auxiliary features.

Kernel-based methods use kernel functions that are able to directly calculate
the similarity between two instances (i.e. two machine learning examples) to train
a relation classification model (Zelenko et al., 2002; Zhang et al., 2017). In kernel
methods, examples retain their original representation (e.g. as bag-of-words in the
sentence, sentence dependency parse graph or sentence shallow parse graph) and the
kernel method is able to assign a label to a given novel example by computing and
comparing its similarity to all labeled training set examples (Zelenko et al., 2002;
Culotta and Sorensen, 2004; Zhang et al., 2017). An advantage of kernel methods
is that they can search a feature space much larger than could be represented by a
feature-based approach, because the kernel functions can explore an implicit feature
space when calculating the similarity between two examples (Culotta and Sorensen,
2004). Kernel functions are usually used in conjunction with classifiers like sup-
port vector machines and voted perceptron (Freund and Schapire, 1999). Several
kernel functions have been suggested and applied for relation extraction. In a bag-
of-features kernel approach, the words in the sentence are divided into three groups:
before, between and after the two entities. Each group is further represented with
a bag-of-features. Mooney and Bunescu (2006) used this approach to build three
subsequence-kernels for each bag, with the final kernel function being simply the
sum of the three kernels, which is further used with an SVM classifier for relation
classification. Another popular family of kernels are tree/graph kernels. Zelenko
et al. (2002) developed kernels capable of comparing the similarity of shallow parse
trees and used them with SVM and voted perceptron classifiers for relation extrac-
tion. Culotta and Sorensen (2004) extended the previous work by introducing the
Dependency Tree Kernel for relation extraction and showed that their model outper-
forms bag-of-words kernel approach by 20 percentage points in F-score. Reichartz
et al. (2009) developed the All-Pairs Dependency Tree Kernel, and the Dependency
Path Tree Kernel and showed their kernels with richer structural features signifi-
cantly outperform all published approaches for kernel-based relation extraction from
dependency trees. Finally, Airola et al. (2008) developed the All-Paths Graph Kernel
for biomedical relation extraction and showed that their method achieves the state-
of-the-art performance on five protein—protein interaction corpora.

Feature-based methods rely extensively on natural language processing tools
(e.g. tokenizers, POS taggers, lemmatizers, syntactic parsers, etc.) and require heavy
feature engineering to transform the input data into a representation (i.e. a feature
vector) that can lead to a successful relation classification. On one hand, feature en-
gineering is skill-dependent and time-consuming (Zhang et al., 2018), on the other
hand, the errors in the NLP tools are amplified in the relation extraction systems,
negatively impacting their performance (Zhang et al., 2017).
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In contrast, the aim in deep learning approach is to automatically learn effi-
cient representations, suitable for the relation classification task at hand. Deep learn-
ing achieves this by introducing representations that are expressed in terms of other,
simpler representations and allowing the computer to automatically learn complex
concepts out of simpler concepts (Goodfellow et al., 2016). For example, the repre-
sentation of a sentence can be expressed by phrases, while phrases are composed of
words and syntactic dependencies among them. This allows a modular design and
training of a hierarchy of representations, with the root (of the hierarchy) as the final
representation used for a prediction task. A key feature is that lower-level representa-
tions (i.e. embeddings) can be pre-trained in advance, in an unsupervised fashion and
with training data other than the training data available for the prediction task at hand.
A successful example is pre-trained word embeddings, the vector representations for
words in a language that are trained on millions of unannotated sentences, so that
words with similar meanings have similar corresponding vectors in the vector space
model (Mikolov et al., 2013). Several studies have shown that integrating pre-trained
word embeddings into deep neural networks (DNN) can improve the performance of
downstream prediction tasks.

Deep learning-based relation extraction methods have recently outperformed
feature/kernel-based methods on different corpora. For example, on the DDI-2013
corpus (Segura-Bedmar et al., 2013), all top performing methods are based on DNNs
(Zhang et al., 2018). The only exception is the feature-based system of Raihani and
Laachfoubi (2016) with 71.1 F-score, on par with the recent deep learning-based
methods. In earlier approaches, recurrent neural network (RNN) and convolutional
neural network (CNN) were the two main neural structures that have been exten-
sively utilized in DNNs for achieving state-of-the-art performance in various NLP
and text mining tasks, including syntactic parsing, sentence classification, sentiment
analysis, text summarization, machine translation, named-entity recognition and re-
lation extraction. CNNs are inherently efficient in learning local or position-invariant
features through discrete convolution with different size filters (also known as ker-
nels!d), because they extract the features based on n-grams of the sentences. In
contrast, RNNs can directly model sequential data, such as the sequence of words in
sentences. Long short-term memory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) and gated recurrent unit (GRU) networks (Cho et al., 2014) are variant of
RNNs that utilize memory cells and/or gating mechanisms to deal with the vanishing
or exploding gradients (Bengio et al., 1994), a problem associated with vanilla RNNs
which negatively impacts their training and prediction performance.

Yin et al. (2017) have systematically compared the performance of CNNs with
LSTMs and GRUs on various NLP tasks and have shown that the performance
of CNN and LSTM/GRU networks are very close for relation extraction on the

15 CNN kernels should not be confused with kernels in kernel-based methods.
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SemEval-2010 corpus (Hendrickx et al., 2010). For example a literature survey on
DDI-2013 corpus shows that Sun et al. (2019) have achieved 75.48 F-score with
a novel recurrent hybrid convolutional neural network (RHCNN) architecture; Lim
et al. (2018) have achieved F-score of 73.5 with an ensemble of Tree-LSTMs; Zhou
et al. (2018) have achieved 73.0 F-score with position-aware attention-based bidirec-
tional LSTM networks and multitask learning; Zhang et al. (2018) have achieved
72.9 F-score using hierarchical bidirectional LSTM networks. The dependency-
based CNN developed by Liu et al. (2016) has achieved 70.8 F-score, the multi-
channel CNN developed by Quan et al. (2016) has achieved 70.21 F-score and the
Syntax CNN (SCNN) developed by Zhao et al. (2016) has achieved 68.6 F-score.

I highlight that the performance of a neural relation extraction system does not
boil down only to the neural network architecture it uses, but also the inputs it re-
ceives, the feature set that it uses and the training and optimization procedures that
are used to build the system. In addition, there are certain tried-and-true creative tech-
niques that can be used to improve performance. For example, when working with
unbalanced data sets, if the proportion of negative examples is considerably higher
than of positive examples (which often happens to be the case in many biomedical
relation extraction corpora), one can utilize negative sub-sampling (also known as
negative instance filtering) to make a balanced data set. Another innovative method
is utilizing multi-task learning methods to improve the performance. One main ad-
vantage of DNNs is their ability to learn from a combination of several different
prediction tasks, each contributing in a unique manner to a single shared represen-
tation of the input (Crawshaw, 2020). In this manner, the networks can act as a
method to fuse information about individual objects from vastly varied data and hold
promise of major performance improvements in problems where there is only a lim-
ited amount of training data for the primary task at hand. Hence, multi-task learning
setup is ideal for building efficient biomedical relation extraction systems, when ac-
tual training data for the main task is limited, but several relevant proxy or auxiliary
tasks can be found, for which sufficient training data already exist. The general idea
here is to train a DNN with several input and output layers at once, with a shared in-
ternal representation, each input/output pair contributing to this joint representation.
In the field of natural language processing it has been demonstrated that even rela-
tively different tasks can contribute to the learned representation and support rather
than fight each other, resulting in more robust representations and higher accuracy in
downstream applications.

Another established method for improving the performance is a system combi-
nation approach. In this approach, different relation extraction systems are trained
on the same training data and their outputs (i.e. predictions) are aggregated to pro-
vide a final set of predictions for the task at hand. Although all individual systems
are trained on the same data, since they can rely on different sets of features or dif-
ferent neural architectures, they have an opportunity to learn different aspects about
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the complicated relation extraction task at hand, hence by aggregating their results
we can hope to achieve higher performance for the task. System combination has
been a very popular approach for biomedical relation extraction. For example, in the
BioCreative VI ChemProt relation extraction shared task (Krallinger et al., 2017),
the first rank with 64.10 F-score has been achieved by Peng et al. (2018) with a sys-
tem combination approach. Their method is an ensemble of three separate systems:
(i) a CNN-based relation extraction system that receives the sentence sequence and
the SDP sequence as inputs, (ii) an RNN-based system that utilizes a bidirectional
LSTM network to learn from the full sentence sequence and (iii) an SVM-based
system that generates features based on the full sentence and SDP. To aggregate the
predictions of the three systems, they trained a random forest (RF) classifier which
relies on prediction confidence scores as features. We also participated in this shared
task with a similar system combination approach that utilized an SVM-based system
and a deep learning-based system that utilized SDP tokens and we achieved the third
rank in the task (60.99 F-score) (Mehryary et al., 2017a). After the shared task we
substituted our neural model with a better architecture that utilized SDP and full sen-
tence tokens and improved our previous results by 2.11 percentage points, achieving
63.10 F-score (Paper V).

Recently, the introduction of transformer-based language representation models
such as BERT (Devlin et al., 2018), GPT (Radford et al., 2018) and GPT-2 (Rad-
ford et al., 2019) impacted the field of natural language processing and resulted in
unprecedented performance improvements on many data sets. Such encoders can be
pre-trained in advance on large corpora and then fine-tuned with the actual training
data for a particular task at hand. For instance, by pre-training a BERT encoder on
PubMed abstracts and fine-tuning it with a decision layer on the ChemProt data, Lee
et al. (2019) achieved an impressive F-score of 76.46, improving the best previous
result of Krallinger et al. (2017) by more than 12 percentage points. With significant
performance improvements that have been achieved with transformers, it seems un-
likely to see another state-of-the-art method based on simple RNNs or CNNs on any
data set.

2.3 Performance Metrics

In this section, I will briefly discuss the evaluation metrics that are commonly used
for assessing the performance of relation and event extraction tasks.

Pairwise relation extraction tasks are usually cast to binary classification prob-
lems. For instance, in the Bacteria Biotope relation extraction shared task (BB3-
event) (Bossy et al., 2013), for each (Bacteria, Habitat) named-entity pair, the aim is
to detect whether the mentioned Bacteria lives in the mentioned Habitat (a positive
label) or not (a negative label) according to the given input text.

When measuring the classification performance against a validation (or test) set,
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we investigate how many examples of each class are correctly classified and how
many of them are misclassified. These numbers are typically represented with a con-
fusion matrix, or equivalently with the number of true-positives (TP), true-negatives
(TN), false-positives (FP) and false-negatives (FN). Calculating these values is usu-
ally followed by calculating three performance metrics: precision, recall, and F-
score.

In binary relation extraction, precision demonstrates the fraction of extracted
relations that are actually correct, while recall (also known as sensitivity) shows the
Jraction of correct relations that are actually extracted (Equation 1).

TP TP
Precision = TP+ P’ Recall = TPLFN e

For example, when measuring the performance of a relation extraction system
against BB3 test set, precision denotes how many of the extracted relations are actu-
ally correct (i.e., the mentioned bacteria lives in the mentioned habitat), while recall
denotes how many of the total relations in the test set, the system has been able to
extract.

Usually there is an inherent trade-off between the precision and recall, because
intuitively speaking, if we want to increase the recall and find more instances of
something, we are probably going to make more mistakes, which can lead to a lower
precision. Choosing which performance measures should be prioritized, depends on
the application. For example, there could be some scenarios when we are looking for
extremely high recall results and/or we have some post-processing methods that can
later filter out the noise. In contrast, there could be some other scenarios in which
we want to be extremely conservative, hence we prefer a very high precision level,
even though we know the system will fail to detect many of the relevant instances.

F-measure (also known as F-score) is a combined measure to assesses the
precision-recall trade-off. It is the weighted harmonic mean of precision and recall
and it is often used for as a single measure for ranking different machine learning
methods (Equation 2).

F = 1 _ (8% + 1) * Precision x Recall 2
- o+ (1—a)py (8% Precision) + Recall

«Q Precision Recall

The weight in the F-measure formula allows us to control how much we would
like to emphasize precision or recall. This can be used for classifier optimization,
as we can give more weight to precision (or recall) in the formula and optimize the
classifier against that formula. With o = % (or equivalently 5 = 1), we keep a
balance between precision and recall and the resulting formula is called F/-measure
or Fl-score. This is the most common performance measure for evaluating and
optimizing classifiers since it gives the same weight to precision and recall. Two
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other common measures are Fy-score (i.e., 5 = 2) which weights recall higher than
precision, and Fj 5-score (i.e., 8 = 0.5) which emphasizes precision more.

When doing multi-class classification, we can similarly compute precision and
recall separately for each class. However, to assess the overall performance of the
whole system, we need measures that combine the separate measurements. The
two common ways to combine the results are called macro-averaging and micro-
averaging.

macro-averaging

In macro-averaging, performance is computed per-class, then the results are averaged
over the classes (Equation 3). For example if there are 100 different classes, we have
to compute 100 precision scores and 100 recalls and then average them all.

ol .

Z‘-,l precision; Z D i—y recall;
= , Recall =

C] Cl
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In macro-averaging each class participates equally, because this metric puts em-
phasis on good performance for all classes, even if they are very small. Thus, macro-
averaged precision and recall will be high if the classifier performs very well for all
of the classes, regardless of how common they are. In other words, macro-averaging
does not weigh by the class sizes, therefore small classes mater as much as large
classes and they affect the results equally much as large classes.

micro-averaging

In micro-averaging, individual decisions are summed over all classes. In other words,
we collect decisions for all classes into one single confusion matrix, and then calcu-
late precision and recall for the confusion matrix (Equation 4).
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As wee see, the micro-average is dominated by the score on common classes.
In fact micro-averaging provides a measure of overall performance of the system.
Hence it is often used if the goal is to maximize the number of correct predictions
regardless of class. For example, assume we have five classes, and in the test set,
classes 1 to 4 have only 10 instances each, while class 5 has 3000 instances. In
micro-averaging if the classifier predicts class 5 very well, we will have very high
overall precision and recall, even if the classifier performs very poorly for the other
classes, since this metric shows the performance of the system in terms of overall
correct predictions of instances, regardless of class.
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Finally, in both cases (micro/macro averaging), the F-score is calculated using
the mirco/macro averaged recall and precision, with Equation 2.
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3 Research in brief

In this chapter, I will very briefly present my research papers. Since the reprints of
the original papers are included in the thesis, the aim of this chapter is to highlight
the main contributions of each paper with regard to the research questions of the
thesis and report the results, without discussing every detail of the methods. Instead
of presenting research papers one by one, I have organized this chapter by topics,
each section corresponding to one of the research question discussed in Chapter 1.

3.1  Optimizing large-scale event databases

In this section, I present the contributions of the thesis in response to research ques-
tion 1: Improving the quality of extracted data in automatically generated event and
relation databases.

As discussed in Section 1.2, application of biomedical event extraction systems
at large scale, e.g., the totality of PubMed abstracts and PMCOA articles, can re-
sult in poor precision and recall, because these corpora contain a large number of
documents that are partly or entirely out-of-domain for these systems, being unlike
the manually annotated shared task data on which the systems have been trained.
Increasing the recall requires running a better event extraction system on all previ-
ously processed documents, hence it might not be a practical solution for institutions
that have limited access to computational resources. In this section, I will briefly
present Paper I and discuss a few supervised and unsupervised methods we have
developed that can be executed in post-processing to automatically find and remove
incorrect events from the output of event extraction systems (e.g., from large-scale
event databases or molecular interaction networks), thus improve the precision of
such resources without sacrificing recall. This can increase the perceived credibility
of such resources for modern biology research.

3.1.1 Introduction

In biomedical event extraction, the extraction of every event is based on the recogni-
tion of an occurrence of a trigger word in the underlying sentence. Trigger words are
textual spans expressing the biological processes underlying the events. For exam-
ple, if the sentence states “GENE_A is regulated by GENE_B.”, the word “regulated”
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is the trigger word and based on this, a regulation event with two event arguments
(GENE_B being the regulator and GENE_A being the regulatee) is extracted.

A single unique trigger word, such as modify, may have a number of occurrences
in the data, acting as a trigger for many events. It is important to note that these
events may be of different types. For instance the trigger word expression acts as a
trigger for both gene_expression and transcription events, depending on the context.

There are a number of ways to approach the problem of finding incorrect events
in large-scale event databases, but a study published by Van Landeghem et al. (2013b)
points out that a large portion of the false event predictions originates from the trig-
ger detection phase, i.e. false identification of text spans as trigger words which can
lead to the generation of incorrect events. It is worth noting that top-ranking event
extraction systems are based on machine learning (Bossy et al., 2011; Kim et al.,
2011b; Nédellec et al., 2013), meaning that they do not rely on a list of “safe” trig-
ger words (which could lead to a low recall). Instead, any word can be predicted as
a trigger word, and this occasionally leads to wildly incorrect predictions and that
lowers the precision of the event databases. Hence, in this work we focus on event
triggers with the objective of automatically identifying obviously incorrect triggers
(i.e., the words that can never act as triggers, regardless of their contexts). By finding
incorrect trigger words, we can then remove all events that are extracted based on
those triggers and increase the precision of the extracted data.

3.1.2 Data

There are a number of large-scale biomedical event databases but in this work,
we mainly focus on the EVEX resource! (Van Landeghem et al., 2013a), contain-
ing 40,190,858 events of 24 different types such as binding, positive-regulation,
negative-regulation, and phosphorylation. EVEX events are extracted using the
TEES system (Bjorne, 2014) from 6,392,824 PubMed abstracts and 383,808 PMC-
OA full-text articles that were published up to 2012 and which contain at least one
gene/gene-product mention.

In total, there are 137,146 unique event triggers that are not comprised purely of
numbers and not containing unicode special characters. Different trigger words have
event frequencies in the system ranging from 1 to 3,909,759 corresponding events
for the trigger word “expression”. As expected, the vast majority of events in EVEX
correspond to a small number of highly frequent trigger words. For instance, there
are only 3,391 trigger words with frequency above 300 (i.e. corresponding to at
least 300 event occurrences), but these words account for fully 97.1% of all events in
EVEX. We thus first focus on these highly frequent triggers since finding incorrect
triggers among them can have a huge impact on the events.

11'1ttp ://evexdb.org/
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3.1.3 Method

In this section, I will briefly discuss the methods that we have developed for finding
incorrect trigger words. These methods are discussed in Paper I in detail.

Unsupervised method

Our unsupervised method is based on hierarchical/agglomerative clustering of the
3,391 top-most frequent trigger words, which results in obtaining the binary cluster
tree with many coarse/fine grained sub-clusters that contain trigger words with bio-
logically similar meaning. For clustering, we induce a vector space representation
for the trigger words, and hierarchically cluster the triggers based on this represen-
tation. Cosine similarity is used as the clustering metric with the Ward’s variance
minimization algorithm defining the distances between newly formed clusters. To
build the vector space representations, we train a word2vec-based model (Mikolov
et al.,, 2013) on biomedical literature (details are discussed in Paper I). After the
clustering, the leaves of the tree present individual trigger words and the root is the
group containing all trigger words.

We prepare a list of safe trigger words from the BioNLP ST-09, BioNLP ST-
11, and BioNLP ST-13 (Kim et al., 2009, 2011b; Nédellec et al., 2013) training and
development sets and then try to match EVEX triggers (in the tree) against these
triggers and mark them as safe or correct. We developed an approximate matching
algorithm that relies on splitting multi-token trigger words, lemmatization of the
parts, removing certain prefixes and suffixes and a manually engineered stop list.
Our matching algorithm resulted in marking 1,483 EVEX trigger words in the tree as
safe. The 1,908 remaining triggers in the tree were marked as possibly incorrect. At
this stage, leaves (trigger words) in the binary cluster tree are marked as being either
safe (correct) or possibly incorrect. Table 2 shows a few example words from EVEX
triggers that were matched against shared task trigger words, parts, or lemmas.

EVEX trigger word Shared task trigger word/Part/Lemma
co-transcribed transcribed

calcium-induced induced

co-immunoprecipitates | immunoprecipitate

downregulating downregulate

recognise recognize

preceding precede

analyzing analyse

Table 2. Examples of matching EVEX trigger words against Shared Task exact trigger words or
their corresponding parts/lemmas

Finally, we developed a recursive bottom-up algorithm which processes the tree

39



Farrokh Mehryary

by starting from the leaves and moving up to the root. The algorithm prunes all sub-
clusters that were composed of only “possibly incorrect” trigger words. Thus, our
pruning algorithm removes a proportion of possibly incorrect trigger words, those
that are grouped together in different sub-clusters. After the pruning, all remaining
trigger words were marked as safe or correct. The clustering and pruning algorithm
results in finding more correct EVEX triggers, comparing to what we had originally
been able to match against the shared task triggers.

Manual annotation method

As it will be discussed in the results section, the unsupervised method mistakenly
removes a number of correct trigger words which lowers the recall. As an alter-
native method, we gave the list of 3,391 EVEX triggers to an annotator with prior
experience in biomedical domain annotation for manual annotation. This resulted
in annotating 2083 triggers as correct and 577 triggers as incorrect. Unfortunately,
731 triggers were ambiguous and remained undecided. These words have multiple
meanings and they are used in both biomedical and general domains (e.g. ‘“con-
served”, “deletion”, and “development”). Hence, it is possible to construct sentences
where these words are valid triggers, but the annotator was not able to find any evi-
dence supporting the use of these words as triggers from the existing literature. The
undecided triggers are later addressed in our Aggregation method.

Aggregation method

We further aggregate the results from tree pruning and manual annotation. We pri-
oritize the manual annotation, i.e., in the aggregated data a trigger remains correct
or incorrect if labeled as such in the manual annotation. The undecided triggers are
assigned using the tree pruning method. As a results, the final set is comprised of
2,242 correct triggers and 1,149 incorrect triggers.

Classification of low frequency trigger words

Previous methods focused on classifying 3,391 top most frequent trigger words (those
with at least 300 corresponding events), which account for 97.1% of all EVEX
events. Obviously, manual annotation cannot be applied to the huge number of trig-
gers with lower frequency that exist in EVEX. For this aim, we train a support vector
machine (SVM) classifier. As training data, we use the aggregated trigger set from
the previous section, assigning correct and incorrect triggers as positive and negative
examples. For features, we use the vector representations of the trigger words (based
on the word2vec model that we had trained) as well as a carefully engineered set
of features for the task. For hyper-parameter optimization, we use grid search com-
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bined with 5-fold cross-validation, and after finding the best parameters, we use all
training data to train the final model and classify all low frequency EVEX triggers.
This results in finding 16,674 negative (presumably incorrect) triggers with a total
frequency of 232,748 respective events in EVEX.

We underscore that although low frequency trigger words account for ~3% of
the events in the EVEX, these events can appear in end-user queries, even for impor-
tant genes such as 'P53’, so removing incorrect events from this group does make a
difference in the perceived quality of the data by the users.

3.1.4 Evaluation and results

To evaluate the effect of trigger filtering methods on event extraction, we focus on
the official test set of the BioNLP Shared Task 2011 and BioNLP Shared Task 2013
GE task (Kim et al., 2011b; Nédellec et al., 2013). As the starting point, we consider
the outputs of the TEES system entry in 2011 (3rd place) (Bjorne et al., 2012) and
in 2013 (2nd place) GE tasks (Bjorne and Salakoski, 2013), and for the 2013 Shared
Task, also the winning EVEX entry (Hakala et al., 2013b). We prune the outputs
of these systems by removing events whose trigger words are identified as incorrect
using the aforementioned methods and evaluate the resulting pruned set of events
using the official evaluation services of the respective Shared Task on the held-out
test sets. Results are shown in Table 3.

I undersocre that the magnitude of the F-score improvement is modest because
the top-ranking systems are well optimized and major improvements have been hard
to achieve regardless of the approach. In addition, filtering methods (such as the
ones we have developed in this work), cannot increase the recall because they are
not able to produce new events. Our main focus in this work thus is on increasing
the precision (by removing incorrect events) while trying to retain the recall, which
should result in increasing the credibility of large-scale event databases in general.

Evaluation of the unsupervised method (event filtering based on the incorrect
triggers obtained after pruning the binary cluster tree) shows that in all three in-
stances, when compared to the TEES and EVEX baselines, there is an improvement
in both precision and F-score with a relatively small drop in recall. Interestingly, the
Pruned-EVEX (Unsupervised Method) achieves a new state-of-the-art result for the
task.

Evaluation of the manual annotation method shows that this method preserves
the recall better than our unsupervised method. However in all three instances, its
precision and F-score is less than the precision and F-score of our unsupervised
method. The higher precision of the unsupervised pruning strategy shows that some
cases not clear for a human annotator, can be classified with this method. As precise
annotation was not possible for many trigger words, we have 731 undecided top most
frequent triggers, and many incorrect trigger words might actually be among them.
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| Predictions [ P [ R | F1
Original TEES 61.76 48.78 54.51
TEES-2011 Pruned-TEES (Unsupervised M.ethod) 62.39 48.75 54.74
(ST-11) Pruned-TEES (Manual Annotation Method) 62.04 48.78 54.62
Pruned-TEES (Aggregation Method) 62.26 48.78 54.70
Pruned-TEES (Aggregation Method + SVM)  62.27 48.78 54.71
Original TEES 56.32  46.17 50.74
TEES-2013 Pruned-TEES (Unsupervised M.ethod) 57.13  46.02 50.97
(ST-13) Pruned-TEES (Manual Annotation Method) 56.63 46.17 50.87
Pruned-TEES (Aggregation Method) 56.97 46.17 51.00
Pruned-TEES (Aggregation Method + SVM)  57.01 46.17 51.02
Original EVEX 58.03 4544 50.97
EVEX-2013 Pruned-EVEX (Unsupervised Mf:thOd) 58.77 4529 51.15
(ST-13) Pruned-EVEX (Manual Annotation Method) 58.32 4544 51.08
Pruned-EVEX (Aggregation Method) 58.66 4544 51.21
Pruned-EVEX (Aggregation Method + SVM)  58.71 4544 51.23

Table 3. Performance comparison of the different pruning approaches and the baseline methods
(TEES/EVEX) on the official BioNLP Shared Tasks 2011 and 2013 GE data sets

To summarize, the manual annotation has produced an almost pure but incomplete
set of incorrect trigger words. In comparison to the baselines, our manual annota-
tion method does increase the precision and F-score while retaining the recall, but its
precision and F-score are not as high as our unsupervised method.

Evaluation of the aggregation method shows that this method retains the recall
and increases the precision and F-score. Interestingly, in all three cases, in compar-
ison with manual annotation method it has a higher precision and F-score. Conse-
quently, we conclude that our unsupervised method is indeed able to find incorrect
trigger words elusive to the human annotator.

Finally, we combine the incorrect triggers obtained from the aggregation method
with the incorrect triggers we obtained by running the SVM classifier on low-frequency
EVEX triggers and use this set to prune the outputs of the three baselines. Compar-
ing this method (Aggregation Method + SVM) against the best previous method
(aggregation only) shows slight improvements in precision and F-score while re-
taining the same recall, suggesting this approach produces the most complete set of
incorrect trigger words. We emphasize that the improvements are small since most
of low-frequency triggers found by the SVM classifier are unlikely to be found in
carefully selected in-domain shared task data sets.

We further randomly selected 700 low-frequency EVEX triggers and manually
annotated them and built a test set (by retaining the positive and negative examples
and excluding 104 undecided triggers for simplicity) and evaluated the performance
of the SVM classifier on this test set. The evaluation showed 0.98 positive recall
which translates to preserving a significant proportion of correct events, while the
classifier has 0.44 negative recall, meaning that it is able to identify about half of the
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incorrect events.

Evaluation of event removal on the EVEX resource

For focusing on 3,391 top most frequent EVEX trigger words (accounting for 97.1%
of all EVEX events), we rely on our aggregation method because it had the best
performance. The aggregation method resulted in labeling 1,149 triggers as incor-
rect, and these account for 1,105,327 events in EVEX. For the rest of EVEX triggers
(low-frequency triggers) we use the SVM classifier for prediction. This resulted
in the identification of 16,674 incorrect triggers with 232,748 respective events in
EVEX. In total we were able to identify 17,823 presumably incorrect triggers in the
whole EVEX resource with 1,338,075 events, which constitute 3.3% of all events in
EVEX2. Removing such events from EVEX resource improves the quality of data
and increases the perceived credibility of this resource for the end-users.

3.1.5 Discussion and conclusions

In this work, we proposed novel methods which can be used for the identification of
incorrect trigger words and removing incorrect events from the output of large-scale
event extraction systems.

Focusing on top most frequent EVEX triggers (those with event frequency of
at least 300 that account for 97.1% of the whole EVEX events), our unsupervised
method achieves a modest improvement over the winning system of the BioNLP
2013 Shared Task on GENIA event extraction and establishes a new best score on
the task. The aggregation of manual annotation results with our unsupervised method
results further increases the precision and F-score of the unsupervised method, while
the original event extraction recall is preserved. Focusing on low frequency EVEX
triggers (those with event frequency below 300), our SVM classifier on one hand
achieves 0.98 positive recall which translates to preserving a significant proportion of
correct events, while on the other hand the classifier has 0.44 negative recall, mean-
ing that it is able to identify about half of the incorrect events. Combining the results
of our aggregation method with incorrect trigger words identified by applying the
classifier on all low frequency EVEX triggers resulted in recognition of 17,823 pre-
sumably incorrect triggers with 1,338,075 respective events which constitutes about
3.3% of all events in the EVEX resource.

It should be noted that even though our manual annotation or aggregation meth-
ods are able to preserve the recall when evaluated against official predictions of

2Paper I also includes discussion about the evaluation of the hierarchical cluster tree before and
after pruning incorrect trigger words, and specially with regard to the types of events that they represent.
Here, I have omitted those discussions as they are secondary to the main contribution of the paper, i.e.,
increasing the quality of data in large-scale event databases by removing incorrect events.
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Shared Task test sets, it is not guaranteed that the same performance will be achieved
when applying them on a large-scale resource such as EVEX. In fact there might be
correct triggers which are not present in the ST 11 or ST’ 13 test sets, but are mistak-
enly labeled as incorrect by the human annotator, our unsupervised method, or the
classifier. Consequently, in the evaluation against official Shared Task test sets, we
do not delete these triggers so we do not detect any drop in recall. However, based
on our evaluation results, we are optimistic that most of the correct events will be
preserved when the method is applied on the EVEX resource.

Finally, I underscore that our methods can be adapted and used by other research
groups for increasing the perceived credibility of other large-scale event collections
similar to EVEX. For example, if a group does not have manual annotation expertise,
they can still use our unsupervised method to filter out a proportion of false events
and improve event extraction results. If the group members can perform manual an-
notation but they are not experienced in machine learning, they can use our manual
annotation approach, and if they are experienced in both machine learning and man-
ual annotation, they can follow our aggregation method (with or without building a
predictive model for classification).

There are several possible future research directions for our work. First, our fo-
cus here was on incorrect trigger identification and we studied the impact of event
removal on large-scale event resources. Even though our evaluations show only min-
imal drop in recall, however persistent removal of events might have undesired ef-
fects. The alternative would be developing a scoring system that considers both
event extraction classification confidence (derived from TEES) and incorrect trigger
identification confidence (derived from our approach), to rank events when they are
shown to the end-user. Therefore, likely incorrect events will be given lower scores,
but will remain in the collection for use-cases that demand extremely high recall, but
can tolerate or overcome the noise in the data (e.g. through post processing).

Second, it would be interesting to investigate how our method can be extended
to address correct but mistyped events, thus increasing the precision and recall even
further. For instance, it is possible that a detected regulation trigger should in fact be
classified as positive-regulation, a subtype of regulation, but the trigger classifier has
not been able to make this distinction. By observing where the given trigger word is
located in the hierarchical cluster tree, these errors could be possibly corrected.

For clustering and classification of the trigger words we heavily relied on their
Word2Vec vector representations. It is worth mentioning that this research work
was initiated in 2013 and completed in 2016 (Paper I). Biomedical natural language
processing methods have extensively improved since then. Therefore, instead of
using simple vector representations for clustering/classification of the trigger words,
it would be interesting to investigate and possibly utilize modern neural network-
based encoders (e.g. BERT (Devlin et al., 2018)) for these tasks. It might be easy in
the future to instead of judging the trigger words globally, to focus only on certain
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types of contexts in which the trigger words appear, and this may give us the ability
to make more precise decisions.

3.2 Deep learning with minimal training data

In this section, I present the contributions of the thesis in response to research ques-
tion 2: Deep learning with minimal training data.

As discussed in Section 1.2, state-of-the-art relation and event extraction meth-
ods are based on supervised machine learning, requiring manually annotated data for
training. Unfortunately, training data for building biomedical text mining systems is
sometimes minimal and this hinders the utilization of the deep learning-based meth-
ods to their full potential. The second research question of this thesis is how to
efficiently train and optimize deep neural network models for biomedical relation
extraction tasks with minimal training and development data. Instead of designing
yet another neural network architecture, our aim is to develop simple methods that
can be utilized for any biomedical relation extraction task at hand.

In this section, I will briefly review Paper II and Paper III and discuss a simple
method that we developed to deal with the aforementioned problem. Paper II de-
scribes the methods and results of our participation in the Bacteria Biotope event
extraction task (BB3-event) of the BioNLP Shared Task 2016 (Deléger et al., 2016),
which resulted in obtaining the second rank among nine participants. In the BB3-
event task, named entities (Bacteria, Habitat, and Geographical) are manually an-
notated and given as input data and the focus of the task is on extracting locations
of bacteria by predicting correct labels for (Bacteria, Habitat) and (Bacteria, Geo-
graphical) pairs.

Paper III discusses an end-to-end system that we developed after the shared
task. This system is capable of named entity detection, normalization and relation
extraction for extracting information about bacteria and their habitats from biomedi-
cal literature. The official evaluation of joint entity detection and relation extraction
on the test of the BB3-event+ner task showed that our system outperforms the win-
ning team of the Shared Task by 19 percentage points (pp) on F-score, establishing
a new top score for the task. We also achieved state-of-the-art results in the normal-
ization task, as evaluated on the test set of BB3-cat task. Since my contribution was
focused on building the relation extraction system in Paper III, in this thesis I will
focus on describing the details of the relation extraction method rather than entity
detection or normalization.

3.2.1 Introduction

The BB3-event task of the BioNLP Shared Task 2016 focused on extracting the lo-
cations of bacteria from PubMed abstracts. In this task, three types of named entities

45



Farrokh Mehryary

(Bacteria, Habitat, and Geographical) are manually annotated and given as the input
data and the task focus is on extracting directed binary associations between (Bacte-
ria, Habitat) and (Bacteria, Geographical) candidate named-entity pairs. It should
be mentioned that although the associations are directed, in the task, the direction is
implied, and determination of the direction is not a part of the task.

For the purposes of machine learning, we thus cast the BB3-event task as binary
classification, taking a candidate entity pair as input and predicting whether or not a
Lives_in relation holds between the Bacteria and the location (Habitat or Geograph-
ical). The BB3-event+ner task, in contrast, focused on the joint development and
evaluation of named-entity detection and relation extraction systems. Hence, named
entities in BB3-event+ner test set are not given and they must be predicted with
an entity detection system and then provided to a relation extraction system as input.
Consequently, the performance of the NER system has a direct impact on the relation
extraction system and subsequently on the performance of an end-to-end system.

One interesting aspect of the BB3-event and BB3-event+ner data sets is the min-
imal number of positive relations. Table 4 shows the statistics of these data sets. As
the table shows, there are only 327 annotated relations in the training sets, which
make it challenging to train deep neural network architectures for relation extraction.
In addition, the development sets are also very small (they include only 223 positive
relations). These limitations can lead to overfitting on small training data and poor
generalization to unseen data. In the following section, I will first briefly discuss the
details of our deep learning-based relation extraction method and then continue by
discussing the problems that can arise in training with this minimal data.

BB3-event BB3-event+ner

Train Dev Test Total Train Dev Test Total
Documents 61 34 51 146 71 36 54 161
Words 13,850 | 8,491 13,039 | 35,380 | 16,295 | 8,890 | 13,933 | 39,118
Bacteria 358 238 336 932 375 244 401 1,020
Habitat 687 454 720 1,861 747 454 621 1,822
Geographical 35 38 37 110 36 38 27 101
Total entities 1,080 730 1,093 2,903 1,158 736 1,049 2,943
Lives_in  events 294 186 312 792 294 186 288 768
(Habitat)
Lives_in  events 33 37 28 98 33 37 26 96
(Geog.)
Intra-sentence 240 165 248 653 240 165 231 636
events
Inter-sentence 87 58 92 237 87 58 83 228
events
Total Lives_in 327 223 340 890 327 223 314 864
events

Table 4. The statistics of BB3-event and BB3-event+ner data sets (Deléger et al., 2016).
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3.2.2 Methods

Our relation extraction approach is based on the shortest dependency path (SDP)
between the two entities in the sentence dependency parse graph. The syntactic
structure connecting two entities e/ and e2 in various forms of syntactic analysis is
known to contain most of the words relevant to characterizing the relationship R(el,
e2), while excluding less relevant and uninformative words (Bunescu and Mooney,
2005). This observation has served as the basis for many successful relation extrac-
tion approaches in both general and biomedical domain NLP (Bunescu and Mooney,
2005; Airola et al., 2008; Nguyen et al., 2009; Chowdhury et al., 2011; Liu et al.,
2015; Can et al., 2019; Li et al., 2019). However, there is a downside: since de-
pendency parse graphs connect words to others in the same sentence, most of the
approaches that are based on the SDP focus on a single sentence at a time3 and
consequently, they fail to detect cross-sentence relations, i.e., the relations between
the entities that are located in different sentences. Cross-sentence relations usually
constitute a small proportion of the total relations but they are known to present
particular challenges for event and relation extraction systems, which rarely attempt
their extraction (Kim et al., 2011a). Since our approach is based on SDP of single
sentences, we also exclude cross-sentence examples from the data®.

We propose a multi-channel neural network for relation extraction (see Figure 5).
The network architecture is centered around three distinct RNNs (chains of LSTM
units) for processing the words, POS tags and dependency types along the SDP which
connects the Bacteria mention to the location mention (Habitat or Geographical) in
the sentence parse graph. For a given example, the sequences of words, POS tags
and dependency types along the SDP are first mapped into vector sequences by three
separate embedding lookup layers. These vector sequences are then input into the
three RNNs. The outputs of the last LSTM unit of each of the three chains are then
concatenated, and the resulting vector is fed into a fully connected hidden layer.
The hidden layer finally connects to a single-node binary classification layer. The
sigmoid activation function is applied on the output of all LSTM units, the hidden
layer and the output layer.

The POS and dependency type embeddings are initialized randomly, in contrast
to the word embeddings, which are initialized with pre-trained word embeddings
provided by Pyysalo et al. (2013). These word embeddings are induced by training
the skip-gram model of the word2vec method (Mikolov et al., 2013) on PubMed and
PMCOA texts. During the training, the POS and dependency type embeddings are
trained and the pre-trained word embeddings fine-tuned.

3Unless the root nodes of the parse graphs of individual sentences are connected to form a document
graph, as proposed by Quirk and Poon (2017) and Peng et al. (2017).

4Such relations are calculated as false-negatives of our system when it is evaluated against the offi-
cial development and test set data.
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Figure 5. Proposed network architecture for relation extraction.

For training the network we use the Adam optimization algorithm with the pa-
rameters suggested by Kingma and Ba (2015). We found that this algorithm yields
considerably better results compared to conventional stochastic gradient descent in
terms of classification performance.

Determining how long to train a neural network model is critically important for
its generalization performance. This is usually determined by the number of epochs,
i.e., the number of passes through the training set. If the network is under-trained,
model parameters will not have converged to good values. Conversely, over-training
leads to overfitting on the training set. A conventional solution to this problem is
early stopping, which means training the model (typically for one epoch) and evalu-
ating the model performance on the development (validation) set and continuing the
training as long as performance on the development set is improving. By repeating
this approach for 15 different runs, using the exact hyper-parameters but with dif-
ferent initial random initialization of the model, we experimentally found that the
optimal length of training for our neural network architecture on this data is four
epochs5 . Finally, to decrease the risk of the overfitting, we used the dropout method
(Srivastava et al., 2014) on the output of the hidden layer with a dropout rate of 0.5.

5In neural network training, there is a strong interplay between three hyper-parameters: number of
epochs, mini-batch size, and learning rate. The best way to find an optimal set of values for these
parameters is grid search. If the grid search is expensive, one can keep two of the mentioned parameters
fixed and iterate over possible values for the third.
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3.2.3 Dealing with minimal training data: measuring and over-
coming variance

At the beginning of training, the weights of the neural network are initialized ran-
domly. As we are only using pre-trained embeddings for words, this random initial-
ization also applies to the POS and dependency type embeddings.

Since the number of weights is high and the training set is very small, the ini-
tial random state of the model can have a significant impact on the final model and
its generalization performance. As discussed earlier, having a limited number of
training examples is known to represent significant challenges for leveraging the full
power of deep neural networks, and we found this to be the case also in this task.

To study the influence of random effects on our model, we evaluate it with 15
different random initializations, training each model for four epochs on the training
data with the same set of hyper-parameters, and evaluating on the development set
using the standard precision, recall and F-score metrics. Table 5 shows the results.

Run | Recall Precision F-score
12 76.3 60.3 67.3
14 71.2 63.0 66.8
13 75.7 59.3 66.5
10 78.0 56.3 65.4
3 80.8 54.0 64.7
15 79.1 54.3 64.4

1 66.1 62.2 64.1
11 65.0 62.8 63.9
2 67.8 59.4 63.3
5 55.9 69.7 62.1
7 57.6 66.7 61.8
9 53.1 70.2 60.5
8 50.9 74.4 60.4
6 50.3 73.6 59.7
4 46.9 78.3 58.7
T 65.0 64.3 63.3
o 11.3 7.3 2.6

Table 5. Development set results for 15 repetitions with different initial random initializations with
mean (z) and standard deviation (o). Results are sorted by F-score.

As Table 5 shows, we find that the primary evaluation metric, the F-score, varies
considerably, ranging from 58.7% to 67.3%. The 8.6% difference in F-score clearly
illustrates the extent to which the random initialization can impact the performance
of the model on unseen data in this particular task. While the method is shown
to obtain on average an F-score of 63.3% on the development set, it must be kept in
mind that given the standard deviation of 2.6, individual trained models may perform
substantially better (or worse). It is also important to note that due to the small size
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of the development set, individual models that achieved high performance in this
experiment will not necessarily generalize well to unseen data. To deal with these
issues and make a robust relation extraction system, we introduce a straightforward
voting procedure that aggregates the prediction outputs of the 15 classifiers based on
a given threshold value ¢ € {1,...,15}:

1. For each example, predict outputs with the 15 models;

2. If at least t outputs are positive, label the example positive, otherwise label it
negative.

With this simple ensemble voting approach, ¢ becomes a hyper-parameter to be
optimized against the primary evaluation metric, F-score. Clearly, the most con-
servative threshold is ¢ = 15, where a relation is voted to exist only if all the 15
classifiers have predicted it. Conversely, the least conservative threshold is ¢ = 1
where a relation is voted to hold if any classifier has predicted it. Table 6 shows the
development set results for the voting algorithm with different threshold values.

Threshold () | Recall Precision F-score
1 83.6 53.2 65.1
2 79.7 54.0 64.4
3 78.5 57.0 66.0
4 78.0 59.0 67.2
5 75.7 60.1 67.0
6 70.6 60.7 65.3
7 67.8 61.5 64.5
8 65.5 62.0 63.7
9 62.2 65.5 63.8
10 58.2 66.5 62.1
11 57.1 69.7 62.7
12 52.5 70.5 60.2
13 514 72.8 60.3
14 48.6 74.8 58.9
15 452 80.0 57.8

Table 6. Development set results for voting based on the predictions of the 15 different classifiers.
Best results for each metric shown in bold.

As table shows, the threshold ¢ = 1 produces the highest recall (83.6%) with
the lowest precision (53.2%). With increasing values of ¢, precision increases while
recall drops, and the highest precision (80.0%) is achieved together the lowest recall
(45.2%) with t = 15. According to the table, the highest F-score is obtained with
t = 4, where an example is labeled positive if at least four classifiers have predicted
it to be positive, and negative otherwise. Figure 6 shows the precision-recall curve
for these 15 threshold values.
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Figure 6. Precision-recall curve for different values of the threshold ¢ (shown as labels on the
curve).

As it can be seen in Table 6, the voting algorithm results in obtaining 67.2% F-
score on the development set (which is lower than 67.3% F-score, achieved by our
best performing neural network model, see Table 5). However, we emphasize again
that due to the small size of the training set and the development set, there is no
guaranty that our best performing single model can generalize well to unseen data.
The ensemble method and voting algorithm in contrast, promise to make a more
robust system (as it can be seen based on the results on the held-out test set that we
achieved in the shared task).

For prediction of the test set we applied the proposed voting approach: 15 neural
networks were trained on the combination of training and development data. Each
trained model was then used to produce one set of predictions for the test set. To
obtain the final test set predictions, the outputs of the 15 classifiers were aggregated
using the voting algorithm with a threshold ¢ = 4.

3.2.4 Resulis

Our method achieved an F-score of 52.1% with a recall of 44.8% and a precision
of 62.3%, ranking second among the entries to the BB3-event shared task, being
the best performing deep learning-based system in this task®. The first rank in the
shared task was achieved by Lever and Jones (2016) (55.8% F-score, 61.5% recall
and 51.0% precision) with a feature-based system that relies on an extensive set of
manually engineered features, feature-selection, and an SVM (or logistic regression)
classifier.

In the end-to-end system that we developed after the shared task (Paper III),

ORefer to Deléger et al. (2016) for detailed comparison of the shared task entries.
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we followed the same ensemble voting approach for relation extraction, except for
neural network models, we replaced the three LSTM networks with three convo-
lutional neural networks followed by global max-pooling. CNNs are significantly
much faster to calculate compared to LSTM networks. The evaluation of this ap-
proach on the BB3-event test set resulted in achieving an F-score of 51.2% (44.4%
recall and 60.5% precision), performing very similarly to the LSTM-based ensem-
ble. Finally, on BB3-event+ner task, the joint evaluation of our CNN-based relation
extraction system and our NER system showed an F-score of 38.1%, improving the
best previous result (LIMSI developed by Grouin (2016)) by 19 percentage points
and achieving the new state-of-the-art score for the task. We emphasize that no other
data than BB3 is used for training/optimization of our relation extraction system in
any way. In addition, the test sets of BB3-event and BB3-event+ner tasks differ,
hence, the results are not comparable.

While training 15 neural models and predicting the development/test sets for 15
times seem to be counter-intuitive for large-scale real-word applications, I under-
score that on a single machine equipped with a consumer-grade GPU, training one
neural network model is relatively fast (taking about 10 minutes). This is mainly
because the training set is very small. Prediction of the development set using a
trained model is very fast, taking only about 10 seconds. Finally, the voting algo-
rithm executes in less than a minute for all 15 thresholds’. Therefore we conclude
that the proposed ensemble voting approach in practice is quite feasible, as the time-
consuming training process only needs to be done once and prediction on unseen
data is quite fast.

We emphasize that training an ensemble of differently initialized models and
aggregating their predictions would not be necessary if sufficient training data was
available. For example, on the ChemProt corpus (Krallinger et al., 2017) we ob-
served only ~1% variance in F-score with a similar neural network architecture
(Paper V) (in contrast to the ~9% variance observed on the BB3-event corpus).
This is because the ChemProt corpus has a comparatively much larger training set
(4,157 chemical-protein interactions). Since the variance is small on the ChemProt
corpus, it can be neglected. To summarize, ensemble training is not critical for cor-
pora that have sufficient training data, but since having limited supervised data is
a common case in biomedical text mining, therefore our method can benefit many
potential relation extraction tasks.

3.2.5 Discussion and conclusions

Having a limited number of training and validation examples is known to represent
significant challenges for leveraging the full power of deep neural networks. When

7For more details about runtime performance, see Paper II.
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the number of weights in a neural network architecture is high and the training set
is very small, the initial random state of the model can have a significant impact on
the final model and its generalization performance. Since having minimal training
data is a common case in biomedical text mining, I would like to bring attention
the often underestimated effect of network initialization when working with small
data sets and state that it might produce substantial variance in F-score (or similar
performance metrics), even in cases that a few hundred training examples are avail-
able. For example, on BB3-event corpus (with 327 training examples) we showed
that F-score can vary up to 8.6 percentage points. Therefore, I encourage BioNLP
researchers to measure and take into account the variance of the performance of their
neural network models, specially when working with small data sets. When super-
vised data is minimal, a single experiment (training a neural model on the training
set and obtaining a high or low score on the development set) does not necessarily
reflect the real performance. For example, achieving a high score on the development
set can easily happen just by chance and due to the initial random weights, but this
does not necessarily translate to good generalization performance in large-scale real-
world applications. Therefore, it is crucial to measure the variance and address the
issue if it is necessary. It is worth noting that even with a larger number of training
examples, a variation in the evaluation metrics will happen, but the variance in such
cases is usually small, thus it can be neglected.

In this work we proposed a simple ensemble training and voting method that can
overcome the variance, stabilizes the output and results in robust neural network-
based relation extraction systems. Our approach consists of training the neural net-
work model for a number of times with different initial random states, predicting
the development/test set examples and aggregating the classifiers’ predictions us-
ing a simple voting algorithm and an aggregation threshold hyper-parameter (¢) that
can be used to select different precision-recall trade-offs. If the aim is to obtain the
best overall performance, we can investigate which threshold parameter produces the
highest F-score. Alternatively, for applications that specifically require high recall or
high precision, a different threshold value can be selected to optimize the desired
metric. Our approach resulted in achieving the second rank in the BioNLP 2016
BB3-event shared task, being the best deep learning-based method among the par-
ticipating entries. We emphasize that the proposed ensemble training and voting ap-
proach can be easily extended to multi-class and multi-label classification tasks. For
example, for multi-class classification, we can add the prediction confidence scores
of individual neural models (i.e., the outputs of the softmax activation functions of
the individual decision layers) and then judge the label based on the element which
has the maximum confidence.

Finally, if the development set is really small, we suggest to use the proposed en-
semble voting approach in a cross-validation setup. There are several possible ways
to couple the two ideas but one simple way is to first combine the training and de-
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velopment sets into a bigger set, and then partition this set into a model-building set
(e.g. 70% of the total data) and an ensemble-aggregation set (e.g. 30% of the total
data). A K-fold cross-validation can then be applied on the model-building set. For
example, this set can be partitioned into 5 folds. In each iteration, 4 folds (80% of
the data) are used to train a neural network model, and the remaining fold (20% of
the data) is used for hyper-parameter optimization. By selecting the best performing
model from each iteration, we will obtain 5 neural network models that are trained
and optimized on different parts of the data. To make an ensemble and find the best
value for the voting hyper parameter (¢), we can predict the ensemble-aggregation set
with these trained models and select a value that leads to the highest F-score on this
set. Alternatively, Peng et al. (2018) proposed to train a meta-classifier (e.g. an SVM
classifier) which can learn to predict the label for each example, based on the con-
fidence scores, produced by the individual neural network models for that example.
By combining the ensemble training idea with cross-validation, we can reduce the
risk of overfitting and move one further step toward obtaining better generalization
on unseen data.

3.3 Exploring different contexts for relation extraction

In this section, I present the contributions of the thesis in response to research ques-
tion 3: Exploring different contexts for relation extraction.

As discussed in Section 1.2, relation extraction systems can be broadly divided
into three main categories, based on the type of context that they use: (1) systems
that use all tokens of the sentence as the context for relation extraction, (2) systems
that only rely on the shortest path that connects the two candidate named entities
in the sentence dependency parse graph, and (3) systems that rely on the SDP in
conjunction with the full sentence tokens.

Unfortunately, the relation extraction systems belonging to either one of the three
groups mentioned above, are usually evaluated on different corpora or rely on differ-
ent sets of features and utilize different machine learning techniques for optimization.
This makes it difficult to judge which of the mentioned approaches is superior for re-
lation extraction. Therefore, a systematic comparison of the three approaches would
be interesting. In particular, this thesis aims to systematically explore the effect of
using full sentence tokens besides the SDP tokens for improving the performance of
relation extraction in modern deep learning-based methods.

For this aim, in this section I will briefly compare the two neural network sys-
tems (discussed in Paper V) that we developed for chemical-protein relation extrac-
tion. Both systems are trained, optimized and evaluated on the ChemProt corpus
(Krallinger et al., 2017) and they rely on similar sets of features. The first system
(ST-ANN) relies on the SDP as the context for extracting relations, whereas the sec-
ond system uses SDP and full sentence tokens as the context.
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3.3.1 Data

The ChemProt corpus is a pairwise relation data set that was created for the Text min-
ing chemical-protein interactions track of the BioCreative VI challenge (Krallinger
etal., 2017). In this task, all entities are given as known data to the participants, thus
the task is to predict the relations for valid pairs of these entities. The relations are
directed, always connecting a GENE-type entity (gene or protein) to a CHEMICAL-
type entityg. A large set of distinct types are used for annotating the relations, but
these types are combined into 10 groups that are used as the actual classes for this
task. Further, only five of these classes are taken into account in the task evaluation.
The micro-averaged F-score of the five target classes is the official metric used for
evaluation.

Cross-sentence relations constitute less than 1% of the total relations in the
ChemProt training set. In addition, only 10 pairs in the training set have been labeled
with multiple relation types. Hence, we formulate the task as a multi-class classifi-
cation task where we classify each valid pair of entities as one of the 10 annotated
relation types or as a “negative”, and we only focus on candidate pairs belonging to
the same sentence.

3.3.2 Method

The first system (ST-ANN) is an ensemble of four neural network models with iden-
tical architectures, that are initialized with different random weights to stabilize the
output and overcome the variance in the measured performanceg. The neural net-
works in this ensemble are based on the SDP that connects the two candidate entities
in the sentence. Each neural model utilizes three separate LSTM chains for repre-
senting the words, POS tags, and dependencies (i.e. directed and typed edges in the
parse graph) along the SDP that connects the chemical entity to the protein (also
referred to as gene) entity (see Figure 7).

As Figure 7 shows, the shortest dependency path in the parse graph is first found.
The path is traversed from the chemical entity to the protein entity, producing the
sequence of words, the sequence of POS tags, and the sequence of dependency types
along the path. The words, POS tags and dependency types are then mapped into
their corresponding vector representations using embedding lookup layers and then
input to three separate LSTM chains. The outputs of the last LSTM units of the three
chains are concatenated together and the resulting higher dimensional vector (i.e. the
SDP vector representation) is input to a hidden dense layer. The hidden layer finally

8Although the associations are directed, in the task, the direction is implied, and determination of
the direction is not a part of the task.

9As discussed earlier, we noticed ~1 percentage point variation the F-scores, which suggests that
making an ensemble of neural network for this corpus is not critical, but we chose to train an ensemble
anyway, to make a robust system.

55



Farrokh Mehryary

CHEMICAL GENE

Annotated sentence: Rapamycin allosterically inhibits the |proteasome.

Inputs: nsubj dobj
- Ny N

——

Dependency parse graph: 'I;apamycin allosterically inhibits the proteasome.

Shortest path: Rapamycin | NN nsub inhibits | VBZ dob

words ! parts of speech ! dependencies
I I
Rapamycin inhibits proteasome i NN VBZ NN i (nsubj.—) (dobj—)
Embeddings i i
LSTM networks i i
\\ 1 1
Concatenate T

)

—
e

Fully connected (]E
Kll%llj
Fully connected Q

—

Figure 7. Architecture of one neural network in the ST-ANN ensemble.

connects to the decision (classification) layer, which has a softmax activation.

The second system (I-ANN) is also an ensemble of four neural network mod-
els with identical architectures, that are initialized with different random weights to
stabilize the output and overcome the variance in the measured performance. The
neural models in I-ANN ensemble are similar to the ST-ANN models (i.e. each
model utilizes three LSTM chains for representing the sequence of words, POS tags
and dependencies along the SDP), but a bidirectional LSTM (forward and backward
chains) is also added to the architecture for learning a representation of the full sen-
tence and the two entities of interest in it (see Figure 8).

As Figure 8 shows, the input to the model is a sentence and its dependency parse
graph. The model utilizes three LSTM chains for learning an SDP vector representa-
tion and two LSTM chains (forward and backward) for learning a full sentence vector
representation. The words, POS tags and dependency types along the SDP connect-
ing the chemical entity to the protein entity are mapped into their corresponding
vector representations (embeddings) and input to the three SDP LSTM chains. In
addition, for each token of the sentence, its word, POS tag, position to the first en-
tity, position to the second entity, and token-type are mapped into their embeddings
and concatenated. Forward and backward sequences of the resulting token represen-
tations are input to the forward and backward sentence LSTM chains, resulting in
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Figure 8. Architecture of one neural network in the I-ANN ensemble.

two hidden representation for each token (forward and backward), which are further
concatenated to obtain the final representations of the sentence tokens. Applying
max-over-time pooling on these representations produces a vector representation for
the full sentence. The outputs of the last LSTM units of the three SDP chains and the
full sentence vector representation are concatenated together and the resulting higher
dimensional vector is input to a hidden dense layer. The hidden layer finally connects
to the decision (classification) layer, which has a softmax activation. The word and
POS tag embeddings are shared among the SDP and the full sentence LSTM chains.

57



Farrokh Mehryary

3.3.3 Results

We train ST-ANN and I-ANN neural networks on the ChemProt training set and
optimize the hyper-parameters by performing a grid search and predicting the devel-
opment set (for a comprehensive list of hyper-parameters, see Paper V). We use the
official evaluation script provided by the organizers'®. After training, we notice the
F-score of proposed models can vary up to 1 percentage point when evaluated on
the development set. Therefore, instead of training a single model for ST-ANN or
I-ANN systems, we train an ensemble of four neural network models (with identi-
cal architectures but different initial random weights) for each system. Each neural
network in ST-ANN or I-ANN ensemble predicts a set of confidences for each de-
velopment/test set example. The final prediction for an example is generated by
summing the confidences of all networks in an ensemble and selecting the label with
the highest overall confidence. Table 7 shows the evaluation results.

Development set Test set

System | Precision | Recall | F-score | Precision | Recall | F-score
ST-ANN 60.51 58.01 59.23 61.55 53.93 57.49
I-ANN 63.18 56.25 59.51 62.39 57.81 60.01

Table 7. Evaluation results on ChemProt development and test sets (result are from row 3 and row
4 in Table 4 from Paper V)

As Table 7 shows, on both development set and test set, [-ANN system outper-
forms ST-ANN system, showing that utilizing full sentence tokens besides the SDP
features can actually improve the performance of relation extraction in this task.

3.3.4 Discussion and conclusions

We showed that utilizing full sentence tokens besides SDP features can actually im-
prove the performance of relation extraction. This suggests there are clues outside of
the SDP which can help in characterizing the semantic relationships between the can-
didate entity pairs, therefore, one should not solely rely on SDP features for building
state-of-the-art relation extraction systems.

We emphasize that our work is by no means an ablation study. For instance, we
do not have the results for an LSTM-based ensemble system that only relies on full
sentence tokens (and not the SDP). We first developed the ST-ANN system for our

1OAs discussed earlier, the relations in the training and development sets are annotated with 10 dif-
ferent possible class labels but only 5 of these class labels are taken into account in the task evaluation.
In our neural networks, the decision layer is an 11-dimensional vector, predicting either one of the 10
positive class labels or the “negative” class label when there is no relation between the chemical and
protein entities. The official evaluation script automatically discards any predicted relation if its type
does not belong to one of the five target class labels.
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participation in the BioCreative VI ChemProt track (Mehryary et al., 2017a). After
the shared task and inspired by the CNN-based system developed by Peng et al.
(2018), we developed I-ANN system to improve our previous results.

In addition, we emphasize that the performance of a relation extraction system
does not boil down to the type of context that it uses, but also on the machine learning
and optimization methods. For example, the highest F-score (64.10) in the BioCre-
ative VI ChemProt track was achieved by Peng et al. (2018) with a system com-
bination approach. Their method is an ensemble of three separate systems: (1) a
CNN-based relation extraction system that receives the sentence sequence and the
SDP sequence as inputs, (2) an RNN-based system that utilizes a bidirectional LSTM
network to learn from the full sentence sequence, and (3) an SVM-based system that
generates features based on the full sentence and the SDP sequences. After the shared
task, Lee et al. (2019) achieved an F-score of 76.46 by pre-training a BERT encoder
(Devlin et al., 2018) on PubMed abstract and fine-tuning it on ChemProt training
set examples using a decision layer. Finally, we achieved the state-of-the-art result
on ChemProt corpus with an F-score of 77.19 using a pre-trained BERT encoder and
pre-trained entity and pair embeddings (Paper VI). In this work, I mainly focused on
neural network-based relation extraction system. For additional discussion regarding
the effects of context in non-neural systems, refer to Miwa et al. (2010).

3.4 Hybrid relation extraction systems

In this section, I present the contributions of the thesis in response to research ques-
tion 4: Exploring hybrid relation extraction methods.

As discussed in Section 1.2, according to Zhang et al. (2017), supervised relation
extraction methods can be broadly divided into three main groups: (1) feature-based
methods, (2) kernel-based methods and (3) deep learning-based methods, each re-
quiring a distinct set of skills and expertise such as feature-engineering, kernel design
and neural network architecture design and pre-training.

While there have been great advances in each group, a separate line of research
has focused on building hybrid relation extraction methods. In particular, many suc-
cessful relation extraction methods have been developed by combining feature-based
and deep learning-based methods. This combination can be achieved in two levels:
system-level combination (i.e., combining the predictions of various systems) and
feature-level combination (e.g., incorporating engineered features into neural net-
work models). In this section, I will briefly review the existing methods and discuss
the new methods for building hybrid relation extraction systems that we have devel-
oped.
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3.4.1 System-level combination

The easiest way to combine feature-based and deep learning-based systems is via
system combination. This approach is not new and numerous successful text min-
ing systems are developed using this approach. In this setup, two or more relation
extraction systems are separately trained and optimized. For each machine-learning
example (i.e., a candidate entity pair), each system provides a set of confidence scores
(based on the number of classes in the task). The predictions of individual systems
are systematically aggregated together, providing a final set of predictions for the
pairs. This combination approach usually makes sense when the individual systems
rely on distinct sets of features or they are based on different machine learning meth-
ods or they are trained and optimized differently. In this section, I will first discuss a
simple system combination method that we adopted to improve the performance of
chemical-protein relation extraction on the ChemProt corpus (Paper V), and then I
will briefly discuss a better system combination method which is based on training a
meta-classifier.

System combination for improving chemical-relation extraction perfor-
mance

For participation in the BioCreative VI ChemProt track, we developed the ST-ANN
ensemble system (discussed in Section 3.3.2) and combined its predictions with the
TEES system (Bjorne, 2014)'!. TEES is a feature-based relation extraction system
that relies on support vector machines for classification.

After the shared task, for improving our previous results, we developed the I-
ANN ensemble system (see Section 3.3.2) and combined its predictions with the
TESS system (Paper V). As discussed earlier, the I-ANN system outperforms the
ST-ANN system. Therefore, I only focus on the results of combining the predictions
of TEES with the I-ANN system.

The SVM system (i.e. TEES) and the I-ANN system differ substantially. This is
a potential case for testing whether combining predictions of the two systems could
help in achieving better performance for chemical-protein relation extraction task.
We implement this system combination by merging the relation predictions from the
two systems as either a union (OR) or an intersection (AND) operation, resolving
overlapping predictions with conflicting types using the classifier confidence scores.
Since all entities are known data in this task, the predictions from the two systems
can be aligned using pairs of gold standard entities.

If only one system predicts a relation for a given pair of entities, it is either in-
cluded in (OR) or discarded from (AND) the combination. If both systems predict

Hhe results for combining predictions of the ST-ANN system with TEES system can be found in
Mehryary et al. (2017a).
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a relation, the relation with the higher confidence score is included in the combina-
tion. Both SVM and I-ANN systems produce confidence scores in their own ranges.
These ranges are normalized into the 0 — 1 interval for both systems, after which the
normalized scores are compared. We experiment with combining all predictions (all
11 possible classes, including the “negative” class), only positive predictions (all 10
possible classes) or only predictions for the classes that are evaluated in the shared
task (the five target classes) and find that system combination in fact leads to better
performance scores on the task!2. Figure 9 illustrates how the predictions of the I-
ANN system and the SVM system are combined to produce a final set of predictions
for the development and the test set.

12The official evaluation script always discards any relation if its type does not belong to the 5 eval-
uated classes, and then calculates the micro-averaged F-score for the task.
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Figure 9. Predicting labels for ChemProt test set examples. The figure illustrates how the
predictions of the I-ANN system and the SVM system are combined to produce a final set of
predictions for the test set. Each neural network in the I-ANN ensemble predicts a set of
confidences for each test set example. The confidences for each example are summed together
and the label with the highest overall confidence score is selected as the relation type for that
example. This aggregation procedure produces the final set of predictions by the I-ANN ensemble.
The SVM system also predicts a set of confidences for each example, and the label with the
highest confidence score is selected as the predicted relation type for that example. The
confidence scores of the I-ANN and the SVM system predictions are further normalized into 0-1
interval. Using one of the aforementioned system combination methods (e.g. intersection or
union), the two prediction sets are combined together, producing a final, combined set of
predictions for the test set. The same procedure is applied for predicting labels for the
development set and test set examples.

System Development set Test set

P R F P R F
SVM 64.55 | 54.72 | 59.23 | 66.08 | 56.62 | 60.99
I-ANN 63.18 | 56.25 | 59.51 | 62.39 | 57.81 | 60.01

SVM + I-ANN (OR, positive classes) 58.70 | 63.78 | 61.14 | 61.65 | 66.66 | 64.05
SVM + I-ANN (AND, positive classes) | 74.73 | 48.47 | 58.80 | 74.45 | 50.23 | 59.99

SVM + I-ANN (OR, all classes) 65.56 | 56.17 | 60.50 | 65.66 | 58.21 | 61.71
SVM + I-ANN (AND, all classes) 65.56 | 56.17 | 60.50 | 65.68 | 58.16 | 61.69
SVM + I-ANN (OR, eval classes) 57.65 | 65.81 | 61.46 | 59.05 | 67.76 | 63.10
SVM + I-ANN (AND, eval classes) 79.36 | 46.94 | 58.99 | 77.79 | 48.21 | 59.53

Table 8. Performance of the systems on the development set and the test set
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Table 8 shows the evaluation results of different approaches on the development
and the test set, using the official evaluation script provided by the task organiz-
ers. According to the results, the SVM and [-ANN systems perform similarly on
the development data, achieving 59.23 and 59.51 F-score respectively. However,
by combining the predictions of SVM and I-ANN systems, further performance im-
provements have been achieved. The best F-score on the development set (61.46,
SVM + I-ANN (OR, eval classes)) is achieved by first removing the negative and
non-evaluated predictions and then taking the union of the predictions, and resolv-
ing overlapping predictions with conflicting types by using the normalized classifier
confidence scores. This approach results in an F-score of 63.10 on the test set, and
hence, this is our best F-score for the task, 2.11 pp higher than our best test set sub-
mission during the shared task. This is also very close to the highest F-score (64.10),
achieved by Peng et al. (2018) in the shared task.

Training meta-classifiers for improved system combination

Even though our easy-to-implement system combination method was shown to im-
prove the overall performance, I believe it is not the best way of combining the
predictions of individual systems.

Ideally, one should use a system combination approach in a cross-validation
setup. In addition, one can try to train a classifier to automatically learn the best
way of combining the predictions of the individual systems based on the confidence
scores. Such classifiers are typically referred to as meta-classifiers since they use
other classifiers’ predictions as their features.

While there are several ways to implement the aforementioned ideas, here I will
briefly discuss the approach used by Peng et al. (2018), the winning team in the
BioCreative VI ChemProt shared task. They participated with an ensemble system
composed of an SVM system, an RNN-based system and a CNN-based system and
for system combination they either used majority voting or they combined the pre-
dictions of the three systems by training a random forest classifier.

They first combined the training and development set and then partitioned the
total data into 5 folds. During the development and for hyper-parameter optimiza-
tion, they used 3 folds for training a system, one fold for training the random forest
classifier and one fold for validation. However, for their final submission (entries to
the shared task), they used 4 folds to build every SVM, CNN and RNN model and
one fold to build the ensemble system. Since they used 5-fold cross-validation, they
obtained five SVMs, five CNNs and five RNNs in total. During the ChemProt task,
they submitted five runs as they final submissions. Each of their final submissions is
based on the best method for each of the folds. For example, Submissions 1 and 2
use a majority voting system. These runs were chosen based on their respective folds
performance on the validation dataset. Thus, voting was the best method on folds 1
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and 2 and random forest combination was best for Folds 3 — 5. Their Submission 2
(which is based on majority voting) achieved the first rank in the shared task with an
F-score of 64.10.

3.4.2 Feature-level combination

In this section, I will first briefly review the methods that have been proposed to in-
corporate engineered features into neural network models, then I will briefly discuss
Paper IV and introduce a novel approach that we developed during our participation
in the 2nd Social Media Mining for Health Applications Shared Task - Task 2 (Sarker
et al., 2018).

The most popular and common way for feature level combination is via auto-
matic learning of feature vector representation. For example, POS tags for each
token can be first extracted from the input text with a POS-tagger. Each possible
POS-tag can be represented with a dedicated n-dimensional vector representation
(i.e., embedding) within the neural network model. Using an embedding lookup
layer, the sequence of POS-tags in the input sentence (or SDP) can then be mapped
into the corresponding sequence of POS-tag vector representations and then fed to
the subsequent layer(s) in the network such as a CNN or an RNN. Alternatively, the
POS-tag embedding for each token can first be concatenated to its word embedding
(and other possible embeddings), making a higher-dimensional vector representation
of the token, and then the sequence of tokens’ representations be fed into the sub-
sequent layers in the network. When referring to “engineered” features, it makes
sense to make a distinction between POS-tag embeddings (and other engineered em-
beddings) and ordinary word embeddings, because words naturally exist in the raw
input sequence, hence they do not require running a dedicated feature extractor such
as a POS-tagger to be extracted from the input.

The embeddings in a neural network model are usually initialized randomly, but
upon the training with the training data, they will be automatically learned, such that
similar elements (e.g., words, POS tags or dependency types) will have similar vec-
tor representations in the vector space model. Alternatively, the embeddings can be
pre-trained in advance with unsupervised algorithms and then incorporated into neu-
ral network models. For instance, word embeddings can be pre-trained with methods
such as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014). After in-
corporation, the embeddings will be further fine-tuned based on the supervised signal
and the actual training data for a particular task at hand (e.g., relation extraction).

Various types of embeddings have been proposed by researchers. The most popu-
lar embeddings include POS-tag embeddings, dependency-type embeddings, named-
entity embeddings (if the token is part of a specific entity type or not) (Peng and Lu,
2017), token-type embeddings (if the token is part of a specific entity type or it is
located before the first entity, between the two entities, or after the second entity)
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(Mehryary et al., 2018), position embeddings (e.g., the relative distance of the to-
ken to the first or second occurring entity of interest in pairwise relation extraction)
(Zeng et al., 2014; Nguyen and Grishman, 2015), on-dep-path embeddings (shows
whether the token is on the dependency path between the two entities or not) (Fu
et al., 2017), and path embeddings and shortest-path embeddings (the incoming or
outgoing dependency type for each token if it is located on the SDP) (Bjorne and
Salakoski, 2018), each requiring a different amount of work to be implemented and
extracted from input texts.

One important aspect of the mentioned embedding approach is assignment of a
feature vector to each token in the input sequence. This is suitable for many types of
features since there is a natural order in the tokens in an input sequence (e.g., sentence
or SDP). Once the sequence of embeddings is obtained, the subsequent layers in the
network architecture can take over and utilize this input sequence in various ways.
For example, CNNs can automatically learn position-invariant semantic n-grams and
RNNs can effectively learn a good representation of the input sequence. However,
during the past decades, the NLP community has developed numerous binary, cate-
gorical and numerical features (useful for different text mining applications), that can
not necessarily be attributed to single tokens. For example, various types of patterns
can be extracted from the input and be represented as binary features.

If the number of such features is limited, they can directly be given as input to the
network and then concatenated to the sentence or SDP vector representations (e.g.,
concatenated to the output of an RNN which processes the sentence/SDP sequence).
However, feature-based text mining methods are famous for using substantially mas-
sive but sparse matrices which can include hundreds of thousands of columns for rep-
resenting the features. If the number of features is substantially high, efficient train-
ing of neural models can become challenging. The neural network models may be-
come excessively large with millions of weights and we may not have enough train-
ing data to efficiently learn all the weights from the sparse features. Therefore, we
propose to use dimensionality reduction methods in such scenarios to first map the
excessively large feature vector representations into lower-dimensional condensed
vectors and then use these vectors as additional inputs to the network to further im-
prove the performance of the neural network models. We successfully adopted this
approach (Paper IV) during our participation in the 2nd Social Media Mining for
Health Applications Shared Task - Task 2 (Sarker et al., 2018). Adding condensed
feature vectors to the neural network model resulted in 2 percentage points improve-
ment on the development set and the test set. Here, I will briefly discuss the task and
our method.

65



Farrokh Mehryary

Ensemble of convolutional neural networks for medicine intake recog-
nition in Twitter

The goal of the task was to develop systems capable of recognizing mentions of
medication intake in Twitter. Each of the provided tweets were to be assigned with
one of the following three classes: personal medication intake, possible medication
intake or non-intake. This is an important preliminary task for extracting adverse
drug reactions (ADRSs) from social media, since it can filter out the majority of tweets
that mention drugs without any indications of personal intake.

We participated in this task with two systems: (1) a feature-based system which
uses a linear SVM for classification (our baseline system), and (2) an ensemble of
neural networks with features generated by word- and character-level convolutional
neural network channels and a condensed weighted bag-of-words representation.

For our baseline approach, we form term frequency-inverse document frequency
(TF-IDF) weighted sparse bag-of-words (BOW) representations for all given tweets.
These representations are not only constructed for single tokens, but also token bi-
grams, trigrams and character n-grams of length 1 to 4. These representations are
then fed as features to a linear SVM classifier. The regularization parameter is se-
lected to optimize the micro-averaged F-score of intake and possible intake classes,
the official evaluation metric on the development set. For the final submission in the
shared task we merge the training and development sets and train the system on the
combined data set.

Our CNN-based system is composed of an ensemble of neural network models
with identical architectures that are initialized with different random weights (to sta-
bilize the output and overcome the variance in the measured performance). Each
neural model in the ensemble receives two inputs: the sequence of words, and se-
quence of characters in the input tweet. The separate inputs are processed with
separate convolutional channels. Each element in these sequences is represented
with a latent feature vector, i.e. an embedding. The word embeddings are initial-
ized using word2vec model, trained with approximately 1 billion drug related tweets
as provided by Sarker and Gonzalez (2017). The character embeddings are initial-
ized randomly, but the networks were allowed to backpropagate to both word and
character embeddings. The convolutional kernels are applied on the aforementioned
two sequences using sliding windows. The outputs are subsequently max-pooled
and concatenated. The concatenated vectors are further fed through two densely
connected layers, the latter having the output dimensionality corresponding to the
number of labels in the data set with softmax activation. The networks are trained
on the official training data using the Nadam optimization algorithm. The networks
are regularized with dropout rate of 0.2 after the first dense layer, no explicit regular-
ization is applied on the convolutional part of the network. The training is stopped
once the performance on the development set is no longer improving, measured with
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the official evaluation metric. We perform hyper-parameter optimization using the
grid-search and predicting the development set (for a comprehensive list of hyper-
parameters, see Paper IV).

Training the network on this data set resulted in relatively large variance in the
measured performance, caused by the random initialization of the weights. Thus
we stabilize the system by training 15 networks, all identical apart from the initial
(random) weights. We then select the optimal subset of these networks, as measured
on the development set, for the final system where the final predictions are created
by summing the confidences of all selected networks and choosing the label with the
highest overall confidence. The final system included a subset of 6 neural networks
out of the 15. We state that this approach may potentially overfit on the training set.

Evaluations on the development set showed that unfortunately, the CNN-based
ensemble was on par with the SVM-based system, i.e., we did not notice any signif-
icant differences in the task metric between the two systems.

To further improve the performance of the CNN-based system, we thus used an
additional input to the neural network models, in conjunction with the sequences of
words and characters: in addition to the convolutional layers, we utilized the same
TF-IDF weighted sparse vector representations as in the baseline method. As these
representations have dimensionality in the order of hundreds of thousands, we first
densify the representations to 4000 dimensional vectors using truncated singular-
value decomposition (SVD) method (Halko et al., 2011). These vectors are con-
catenated alongside the CNN outputs. This dimensionality reduction is performed
mainly due to computational reasons since the approach was prototyped on a con-
sumer grade GPU with limited amount of memory. Projecting the sparse vectors to
4K dimensions preserves 74% of the variance in the data. Adding these additional
features resulted in ~2 percentage points increase, both on the development and the
test set. Table 9 shows the results of the two systems and the results of the winning
team in the shared task (InfyNLP).

Development set Test set
Precision | Recall | F-score | Precision | Recall | F-score
SVM 72.3 67.0 69.6 69.2 60.1 64.3
CNN 74.2 71.2 72.7 70.1 63.0 66.3
InfyNLP - - - 72.5 66.4 69.3

Table 9. Overall performance of our SVM and CNN-based systems. The development set results
are measured with our own evaluation whereas the test set scores are as reported by the
organizers. For comparison we have added the results of the best performing team: InfyNLP.

By incorporating engineered featured into the CNN-based system, we achieved
a relatively strong performance, with an F-score of 66.3 according to the official
evaluation, resulting in the 5th place in the shared task with performance close to the
winning systems.
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I emphasize that due to Twitter policy, the organizers only provided the IDs of
the tweets instead of their actual content. Since we started investigating this task
much later than the data was released, we were only able to obtain the contents for
7444 tweets out of the 8000 annotated tweets as some of the content had been already
removed by the Twitter users, i.e. we had 7% less training data than teams who were
involved in the shared task since the very beginning. The organizers also provided
a separate development data set, which consists of 2260 annotated tweets, of which
we also lost roughly the same proportion. As we only had access to a partial training
data, we try to estimate how much the performance of the systems could have been
improved with additional data. To accomplish this, we train the CNN-based system
with different subsets of the training data, starting from 5K training examples and in-
crementally increasing the size in steps of 300 up to the whole training data available
to us. After every increment we evaluate the system’s performance on the devel-
opment set. To stabilize the output caused by different initial random weights, we
train 5 networks with each subset of the training data, and calculate the average per-
formance for each subset. Fitting a linear regression on the resulting measurements
shows that in this region, the learning curve is fairly linear and decent performance
improvements can be gained by adding more training data. Assuming a performance
increase equal to the slope of the fitted regression line, having the full training data
set would have increased our performance by 0.7pp in F-score, ranking our system
higher in the shared task.

3.5 Entity-pair embeddings for improving relation ex-
traction in the biomedical domain

In this section, I present the contributions of the thesis in response to research ques-
tion 5: Unsupervised pre-training of biomedical entity-pair embeddings to improve
relation extraction performance.

I will briefly review Paper VI and I discuss a novel method that we have devel-
oped to pre-train embeddings (vector representations) of biomedical named entities
and entity pairs. Our main goal is to incorporate these embeddings into neural net-
work architectures to improve the performance of relation extraction for the biomed-
ical domain.

3.5.1 Introduction

Biomedical literature includes a significant number of sentences that discuss the rela-
tions and interactions of biomedical named entities (e.g. genes, proteins, chemicals,
and drugs). We aim to leverage this literature-wide information using unsupervised
methods and for every unique named-entity pair (£;, E;), capture all stated informa-
tion about £;, F; and their relations and build embeddings (vector representations)
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of entities and entity pairs.

In this work we mainly focus on chemical-protein entity pairs and we evaluate
our approaches on the ChemProt relation extraction corpus (Krallinger et al., 2017),
but our methods can be used for other relation extraction tasks such as protein-protein
relation extraction. Similarly to the word2vec method for ordinary words (Mikolov
et al., 2013), our objective is for similar proteins, chemicals and chemical-protein
pairs to obtain similar embeddings and feed these embeddings into neural network
models to improve the performance of relation extraction (see Figure 10).

Sentence text and named entities Pre-trained Embeddings

CHEMICAL PROTEIN

Rapamycin allosterically inhibits the proteasome. Rapamycin | | ‘ (Rapamycin,, protessome)

¢ ! v '

Neural network

|

predicted interaction = down_regulator/inhibitor

Figure 10. Incorporating entity and pair embeddings into a neural network to improve the
performance of relation extraction. Inputs are the sentence text with the two entities as well as the
pre-trained embeddings of the chemical and protein entities and the chemical-protein pair. The
output is the predicted label for the pair, down_regulator/inhibitor, according to the
sentence.

3.5.2 Method

We explore different approaches for pre-training vector representations for biomed-
ical entities and entity pairs. Our approaches are inspired by the work of Levy
and Goldberg (2014), using richer contexts to extend the skip-gram architecture of
Word2Vec model introduced by Mikolov et al. (2013).

Pre-training entity and pair embeddings

Typically, unsupervised embedding learning methods require a vast amount of text
for pre-training (Mikolov et al., 2013; Pennington et al., 2014). Therefore, we first
obtain the list of all chemical-protein pairs in the Chemprot corpus and then find all
sentences in PubMed and PMCOA texts that contain at least one pair. For obtaining
PubMed and PMCOA texts, we use the resource provided by Hakala et al. (2016),
because they have already pre-processed the data (e.g., the sentences are tokenized
and parsed).
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For pre-training embeddings for named entities and named-entity pairs, we use
the skip-gram training of the word2vec £ toolkit (Levy and Goldberg, 2014), whereby
the named entities, or entity pairs are given as the focus terms, and elements from
their contexts are predicted. We investigate two ways to define the context: a simple
linear context of words as in the base word2vec (see Figure 11), and as an alterna-
tive, a rich set of features extracted from the sentence. These features have previously
been shown to be useful in supervised relation extraction and one might therefore ex-
pect they result in embeddings informative for relation extraction. More specifically,
we will rely on the Turku Event Extraction System (TEES) (Bjorne, 2014) to gen-
erate these features, a system that has achieved numerous top ranks in biomedical
relation extraction tasks.

Sentence: W1, Wz, W3 . rWt-2r Wt-1! eq, Wt+11 Wt+2r veen g Wn
Input Projection Output
Wt-2

Wi-1
o

Wit+1

Wit+2

A

Skip-gram
model
Figure 11. The skip-gram model of word2vec: the words surrounding entity e; are used as the

context.

Since simultaneous training of embeddings for entities and entity pairs can im-
pact the final model (due to the shared output layer in the word2vec model), we
train separate embedding models that include only entity pairs, only entities, or both
pairs and entities, resulting in six models (see Table 10).

Relation extraction with entity and pair embeddings

We incorporate pre-trained entity and pair embeddings to the following neural net-
work architectures.

1. BERT_MASK (baseline #1): This neural network architecture was proposed by
Lee et al. (2019) and achieved state-of-the-art, with an F-score of 76.46 on
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Model Content Context for training

P_TEES only pair embeddings TEES features

P_Words only pair embeddings union of the words surrounding the two entities

E_TEES only entity embeddings union of TEES features for every pair that in-
cludes the entity

E_Words only entity embeddings words surrounding the entity

PE_TEES pair and entity embeddings | TEES features

PE_Words | pair and entity embeddings | surrounding words

Table 10. Description of the different embedding models.

ChemProt test set. This is basically a BERT encoder (Devlin et al., 2018) that
has been pre-trained on PubMed abstracts and fine-tuned on the ChemProt
training set for chemical-protein relation extraction. The sentence is input to
the BERT encoder, and BERT sentence representation vector (/CLS] token) is
fetched and provided to the decision layer which has a softmax activation to
decide the label. Since a sentence may include more than one chemical and/or
protein mention, and the relation extraction task is performed as a sentence
classification task, we need to inform the classifier which chemical and protein
entities in the sentence should be focused in a given example. In BERT_MASK
approach, the chemical and protein entities of focus are masked. More specif-
ically, the chemical mention is replaced with @ CHEMICALS$ and the protein
mention is replaced with @PROTEINS (see Figure 12.1).

2. BERT_MARK (baseline #2): Since the entity and pair embeddings we pre-train
provide some information about them, it would be unrealistic to obtain perfor-
mance improvements by adding them to the BERT_MASK model. Therefore,
we introduce BERT _MARK model, which is identical to the previous one, ex-
cept instead of masking the entities, we mark them with BERT unused tokens.
This should provide a fairer baseline!3 (see Figure 12.2).

3. BERT+Entities: This architecture is similar to the BERT_MARK model,
except the pre-trained chemical and protein embeddings are concatenated to
the [CLS] token and transformed through a 1024-dimensional dense layer with
tanh activation and then presented to the decision layer. The dense layer with
the non-linear activation function learns to combine BERT features with the
entity embedding features (see Figure 12.3).

13In BERT_MASK model, entities are hidden, i.e., the BERT encoder and the classifier have no
information about them. By feeding the embeddings of the missing entities to such model, we will
obtain a performance improvement for relation extraction, but that improvement is not realistic, because
the entities had been masked in the first place. Our aim is to show and conclude that feeding entity and
pair embeddings to neural network models can in fact provide additional information to the classifiers,
but to the classifiers that had the chance of observing chemical and protein mentions in their input.
Therefore, we propose BERT_-MARK model as a fairer baseline for the task.
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4. BERT+Pairs: This architecture is similar to the BERT+Entities model,
except we concatenate the pair embedding to the [CLS] token (see Figure 12.4).

5. BERT+Pairs+Entities: This model is similar to previous models, except
we concatenate chemical, protein, and pair vectors (see Figure 12.5).

3.5.3 Results
Model selection

We evaluate our approaches on the ChemProt development set. Since the initial
random weights of a neural model can affect the final F-score, we repeat each exper-
iment (training on the ChemProt training set and evaluate the model by predicting the
development set) for 10 times, resulting in 10 F-scores for each approach. We report
the average and standard deviations of the F-scores and use two-tailed two-sample
independent t-test (Welch’s t-test) to compare the results and establish statistical sig-
nificance. Table 11 summarizes the results on the development set.

# | Neural model Embeddings F-score F-score c1 | ¢
model (mean) (std)
1 BERT_MASK - 78.41 0.53 - Yes
2 BERT_MARK - 78.96 0.41 Yes -
3 | BERT+Entities E_Words 79.23 0.43 Yes | No
4 BERT+Entities E_TEES 79.15 0.42 Yes No
5 | BERT+Pairs P Words 79.27 0.43 Yes | No
6 | BERT+Pairs P_TEES 79.36 0.32 Yes | Yes
7 | BERT+Pairs+Entities | PE_Words 79.47 0.37 Yes | Yes
8 BERT+Pairs+Entities PE_TEES 79.55 0.40 Yes Yes
9 | BERT+Pairs+Entities 3a1?d?ml¥ 79.05 0.46 Yes | No
initialized

Table 11. Results on ChemProt development set. Columns G1 and G2 show if
based on the statistical test, the F-score mean is significantly different from the
F-score mean of BERT_MASK and BERT_MARK models respectively.

As column G1 shows, all models that use the marking approach outperformed
the masking approach (BERT_MASK baseline), and based on column G2, only three
approaches were able to outperform the BERT_MARK approach (rows 6, 7, and 8).
Therefore, we select these approaches for the final evaluation on the test set. We
further conduct another experiment and test the effect of randomly initializing entity
and pair embeddings instead of using pre-trained embeddings to check if the neural
model can efficiently learn these embeddings from scratch. As can be seen in row
9, however, this approach is not able to outperform the baseline. Thus we conclude
pre-training embeddings on the literature is indeed useful.

72



1) BERT_MASK

Research in brief

2) BERT_MARK

(@CHEMICALS allosterically inhibits the @PROTEINS.

BioBERT Encoder J

[CLS] token

Decision layer

down_regulator/inhibitor

Rapamycinl] allosterically inhibits the lproteasomell.

'

BioBERT Encoder J

[CLS] token

Decision layer

down_regulator/inhibitor

3) BERT+Entities

4) BERT+Pairs

Rapamycinl] allosterically inhibits the lproteasomell.

'

[ BioBERT Encoder }

¥

[[CLS]token IRapamycinI proteasome }

v

[ Hidden layer ]

!

down_regulator/inhibitor

Rapamycinl] allosterically inhibits the llproteasomell.

'

BioBERT Encoder J

!

[ [CLS] token I (Rapamycin , pmteasome)]

'

[ Hidden layer ]

!

down_regulator/inhibiter

5) BERT+Pairs+Entities

[Rapamycinll allosterically inhibits the lproteasomell.

Y

[ BioBERT Encoder J

{ [CLS] token IRapamycin I proteasome I (Rapamycin , proteasumc}}

'

[ Hidden layer ]

!

down_regulator/inhibiter

Figure 12. Relation extraction neural network architectures.

Final evaluation

We compare our best models selected on the development set (rows 6-8 in Table 11)
with the best previous result of Lee et al. (2019) (an F-score of 76.46%) on the test
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set. We also evaluate the BERT_MASK model to check how well we have been able
to replicate the method of Lee et al. (2019). We repeat each experiment 10 times
and obtain 10 F-scores and we use the one-sample t-test (p=0.05) to assess statistical
significance.

Embeddings F-score F-score
# | Neural model model & (mean) (std) Gl1
Lee et al. (2019) - 76.46 - -
1 | BERT_MASK - 76.41 0.72 No
2 BERT+Pairs P_TEES 77.13 0.53 Yes
3 | BERT+Pairs+Entities | PE_Words 76.71 0.77 No
4 | BERT+Pairs+Entities | PE_TEES 77.19 0.49 Yes

Table 12. Results on ChemProt test set. Column G1 shows if based on the statistical
test, F-score mean is significantly different from the F-score of Lee et al. (2019)

Row 1 in Table 12 validates our replication of the Lee et al. (2019) method.
Among the three approaches that used pre-trained embeddings, the model that uses
surrounding words as the context (row 3) does not outperform the baseline, however
the models that use TEES features (rows 2,4), outperform the best previous result,
suggesting that pair-embeddings with rich feature-based context can improve upon a
strong BERT-based baseline. Our best model (row 4) sets a new state-of-the-art for
the task, improving the best previous score by 0.73 percentage points.

3.5.4 Discussion and conclusions

In this work, we compared different approaches for unsupervised pre-training of em-
beddings for biomedical named entities and named-entity pairs to improve relation
extraction performance in the biomedical domain. We have shown that: (1) incorpo-
ration of entity and pair embeddings into neural models helps to achieve better per-
formance, (2) using rich features as context (instead of using the surrounding words)
leads to better results; (3) using pair embeddings with/without entity embeddings
leads to better results compared to using entity embeddings alone. Our best model
achieves an F-score of 77.19, improving the best previous result by +0.73 percentage
point over a strong baseline, and setting a new state-of-the-art for the task.

As an additional experiment (not discussed in Paper VI), we investigated the
effect of incorporating entity and pair embeddings to other neural network architec-
tures. Specifically, we added entity and pair embeddings to the ST-ANN and I-ANN
neural models (discussed in Paper V) which utilize bidirectional LSTM networks to
process the words, POS-tags and dependency types in the sentence and/or along the
shortest dependency path that connects the two entities in the sentence parse graph.
To our surprise, entity and pair embeddings could improve the performance of those
models up to 4 percentage points. However, even with such improvements, the per-
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formance of LSTM models stay much behind modern neural models that utilize pre-
trained transformer encoders such as BERT. Hence, I conclude that in comparison
with LSTM and CNN -based architectures, the pre-trained transformers are much
more powerful tools for relation extraction tasks and I predict achieving significant
performance improvements on top of such architectures is going to be challenging.
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4 Discussion and conclusion

4.1 Contributions of the thesis

In this thesis, I introduced novel methods to both improve the performance of biomed-
ical relation extraction systems, and improve the quality of extracted data, after
biomedical events have been detected and extracted from the biomedical literature.

Paper I introduces novel methods which can automatically and efficiently tar-
get and remove incorrect events from the output of large-scale event databases, thus
improving the precision of such resources without sacrificing the recall. We showed
that application of our best method on the EVEX event database results in identifi-
cation of 1,338,075 incorrect events, which constitutes 3.3% of all events in EVEX.
Introduction of different supervised and unsupervised methods enables other groups
(with different expertise and skills) to adapt and use one of our methods to increase
the perceived credibility of other large-scale event collections similar to EVEX.

Having a limited number of training and validation examples is known to repre-
sent significant challenges for leveraging the full potential of deep neural networks.
When the number of weights in a neural network architecture is high and the training
set is very small, the initial random state of the model can have a significant impact
on the final model and its generalization performance. To measure the extent of this
effect, one can repeat the development cycles (training on the training set with a fixed
set of hyper-parameters and evaluating the model by predicting the validation set) a
number of times and measure the standard deviation of the primary performance
metric. Unfortunately, having minimal training and development data is a common
case in the biomedical domain, hindering the development of robust relation extrac-
tion systems. Paper II, IIT and V introduce a few simple methods that can be used
to stabilize the output, overcome the variance and build robust and efficient relation
extraction systems for the biomedical domain. Our ensemble voting approach ranked
the second among the entries to the BB3-event shared task, being the best perform-
ing deep learning-based method in this task (Paper II). Similarly, on BB3-event+ner
task, the joint evaluation of our CNN-based relation extraction system and our NER
system, showed 19 percentage points improvement over the winning entry this task,
setting a new state-of-the-art score for the task (Paper III).

Focusing on the entities that occur in the same sentence, relation extraction ap-
proaches can be broadly divided into three main categories based on the type of
context that they use: (1) methods that only rely on SDP features, (2) methods that
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rely on full sentence tokens, and (3) methods that utilize SDP features as well as fea-
tures that are extracted from the whole sentence. In this thesis I explored the effect
of using different types of contexts for relation extraction and showed that utiliz-
ing full sentence tokens alongside with the SDP features can actually improve the
performance of relation extraction (Paper V). This suggests there are clues outside
of the SDP which can help in characterizing the semantic relationships between the
candidate entity pairs, therefore, I encourage NLP practitioners to not solely rely on
SDP features for building state-of-the-art relation extraction systems.

Many successful systems are built based on combining feature-based and deep
learning-based methods to improve the performance of relation extraction. This com-
bination can be achieved in two levels: (1) system-level combination, i.e., combining
the predictions of various systems, and (2) feature-level combination, e.g., incorpo-
rating engineered features into neural network models. In this thesis, I explored
existing hybrid relation extraction methods and discussed two hybrid methods that
we developed to improving the performance. Paper V introduces a simple method
to combine the predictions of feature-based systems with neural network models.
During our participation in the BioCreative VI ChemProt track, our best result (the
fifth rank in the task with 60.99 F-score), was achieved by our feature-based system.
After the shared task, and by improving our deep learning-based system and combin-
ing its prediction with the feature-based system, we improved our previous results by
2.11 percentage points. Paper IV proposes to utilize dimensionality reduction tech-
niques and use the lower-dimensional resulting vectors as additional inputs to neural
network models to improve the performance of the text mining task at hand. Based
on this idea, we improved the performance of our CNN-based system by 2 percent-
age points on the development and the test set and achieved the 5th place in the 2nd
Social Media Mining for Health Applications Shared Task - Task 2. I also discussed
and estimated that, we would have increased our system performance by 0.7pp in
F-score (ranking our system higher in the shared task), if we had access to the full
training data.

Finally, Paper VI introduces a novel unsupervised method to pre-train embed-
dings for biomedical entity and entity-pairs to improve the performance of relation
extraction. We showed that by incorporating such embeddings into neural network
models, higher performances can be achieved. In particular, our proposed neural
network model that utilizes a BERT encoder alongside with pre-trained entity and
entity-pair embeddings achieved an F-score of 77.19 on the ChemProt corpus, set-
ting a new state-of-the-art for the task.

4.2 Future directions for biomedical relation extraction

Two decades ago, feature-based text mining methods were dominant and extremely
popular. Therefore, the majority of BioNLP researchers had focused on heavy feature
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engineering, designing and extracting various creative features to improve the perfor-
mance of text mining systems. The significant advancements in the hardware tech-
nology during the last decade, as well as several breakthroughs in the algorithms and
methods, enabled machine learning practitioners to seriously utilize artificial neural
networks for real-world applications. The deep learning approach allowed computers
to automatically learn efficient representations of their inputs that are suitable for the
machine learning task at hand, hence, the focus of the BioNLP community shifted
from feature engineering to neural network design and unsupervised pre-training.
The field gradually underwent a significant progress, with deep learning-based meth-
ods showing superior performance on many NLP and text mining tasks. Recently, the
introduction of transformer-based language representation models such as BERT im-
pacted the field and resulted in unprecedented performance improvements on many
data sets. I believe deep learning-based methods are to stay, at least for the upcom-
ing decade, and I predict future developments and progress in biomedical text mining
will be along this direction. For achieving higher performance in relation and event
extraction tasks, I can enumerate the followings for possible future work.

1. Designing better language representation models and/or better neural network
architectures.

2. Designing better unsupervised methods to pre-train neural network compo-
nents (e.g. encoders) on biomedical literature.

3. Finding suitable auxiliary tasks for multi-task learning setups to improve re-
lation extraction performance, as well as designing better loss-functions for
training neural network models in such setups.

4. Unification of different relation extraction corpora to obtain more training data.

5. Addressing cross-sentence relation extraction by natural extension of existing
sentence encoder-based methods to receive a full abstracts or a paragraph in-
stead of processing a single sentence at a time.
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Abstract
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Background

The overwhelming amount of biomedical literature
published annually makes it difficult for life science
researchers to acquire and maintain a broad view of
the field, crossing the boundaries of organism-centered
research communities and gathering all of the informa-
tion that would be relevant for their research. Modern
natural language processing (NLP) techniques strive to
assist the researchers with scanning the available literature
and aggregating the information found within, automati-
cally normalizing the variability of natural language state-
ments. The applications of NLP in life sciences range from
automated database curation and content visualization to
hypothesis generation and offer intriguing challenges for
both NLP and life science communities [1-3].

As a response to the need for advanced literature min-
ing techniques for the biomedical domain, the BioNLP
(Biomedical Natural Language Processing) community
of researches has emerged. The primary focus of the
majority of research within the BioNLP community is
to improve information retrieval (IR) and information
extraction (IE) in the domain.

In this paper we focus on the task of event extraction, a
task that has received much attention in BioNLP recently.
Event extraction constitutes the identification of biolog-
ical processes and interactions described in biomedical
literature, and their representation as a set of recur-
sive event structures. In its original form, introduced in
the 2009 BioNLP Shared Task on Event Extraction (ST)
[4], the task focused on gene and protein interactions,
such as RNA transcription, regulatory control and post-
translational modifications. In subsequent Shared Tasks,
while the overall setting remained unchanged, the task
has been broadened to cover a large number of additional
biological domains and event types [5, 6].

More specifically, event extraction involves detecting
mentions of the relevant named entities which are typi-
cally genes and gene products (GGPs), the type of their
interaction from a small vocabulary of possible types, the
trigger expression in the text which states the event, and
the roles of the participants in the event, e.g. regulator
or regulatee. One of the distinguishing features of events
is that they can recursively act as participants of other
events, forming recursive tree structures which precisely
encode the factual statements in the text, but are a chal-
lenging extraction target. An example of an event is shown
in Fig. 1.

A number of event extraction systems have been intro-
duced as the result of the series of BioNLP Shared
Tasks. Most of these systems focus solely on the
immediate textual context of the event candidates, but
recently approaches benefiting from bibliome-wide data,
either through self-training or post-processing steps, have
been introduced as well [7-9]. Unfortunately the recent
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advancements in this field have been modest, reflecting
the complexity of the task. As an example, the best per-
forming system in ST’09, TEES (Turku Event Extraction
System) [10], has remained a state-of-the-art approach,
winning also several categories in the later Shared Tasks,
although the performance of the system has not increased
substantially during these years.

Several event extraction systems have been applied at
a large scale, extracting millions of events from massive
text corpora [11, 12]. These large corpora, typically the
totality of PubMed abstracts and PubMed Central full-
text articles, contain a number of documents which are
partly or entirely out-of-domain for these systems, being
unlike the carefully selected data from narrow biological
domains on which the systems have been trained. Fac-
ing documents from such previously unseen domains, the
systems often produce suboptimal output, making what
seems to a human like trivial mistakes. Tuning the per-
formance of these systems in the general domain requires
further effort.

Here we focus on EVEX [11], an event database cov-
ering the whole PubMed and PubMed Central Open
Access (PMC-OA) literature, produced using the afore-
mentioned TEES system. Already a casual inspection of
EVEX reveals occasional occurrences of obviously incor-
rect events especially in out-of-domain documents. Previ-
ously, Van Landeghem et al. [13] have studied the output
of the event extraction systems on general domain data
in further detail. Their analysis resulted in a set of rules
that can be used to remove or correct erroneous events.
Although applying this method produced only an increase
of 0.02pp in F-score when evaluated on the official Shared
Task data, the consequences on large-scale resources such
as EVEX are significant: hundreds of thousands of false
events can be excluded, thus greatly improving the quality
of the extracted data. This is because the official Shared
Task test data does not contain the out-of-domain docu-
ments found in the corpora used to build EVEX and many
of the error types made by the system will not be seen in
the test set output.

Van Landeghem et al. point out that a large portion
of the false event predictions originate from the trigger
detection phase, i.e. false positive identification of the tex-
tual spans expressing the biological processes underlying
the events. These, in turn, lead to the generation of false
positive events by the system. Here it is important to
take into consideration that the top-ranking event extrac-
tion systems are based on machine learning and do not
uniquely rely on a list of possible “safe” trigger words,
which would result in an excessively low recall. Instead,
any word can become a trigger word, which occasion-
ally leads to wildly incorrect predictions. These, in turn,
are easily spotted by the users of the event databases and
decrease the perceived credibility of the resources.
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Our data suggest that Dpb11is held in proximity to damaged DNA through an interaction with the phosphorylated

S Cause )
"[GGP Positive_requiation’’ Theme [Phicsphoryiation’ Theme ' GGR)

9-1-1 complex, leading to Mec1-dependent

phosphorylation of Rad9.

Fig. 1 Visualization of a specific event occurrence. Genes and gene products (GGPs') are marked, as well as the trigger words that refer to specific
event types. Finally, arrows denote the roles of each argument in the event (e.g. Theme or Cause). (Adapted from [23])

In this paper, we thus focus specifically on the event
triggers in the EVEX event database, with the objective
of automatically identifying and removing those that are
obviously incorrect. To solve this problem, we introduce
a novel approach based on word embeddings, bibliome-
wide statistics and both supervised and unsupervised
machine learning techniques.

Since our method relies on bibliome-wide statistics that
should be gathered from a large-scale biomedical event
database, it serves as a post-processing step in event
extraction pipeline to filter out incorrect events from that
database, after the events are extracted.

Method

In this section, we first introduce the data that is used in
this study and then propose a 6-step method to achieve
the aforementioned objectives.

In the first five steps of our method, we focus on the
top most frequent trigger words which account for 97.1 %
of all events in EVEX. In steps 1, 2, 3 and 4 we per-
form hierarchical clustering of these trigger words and
build, analyze and prune the resulting binary tree to cat-
egorize these triggers as correct/incorrect. In step 5, we
refine these two sets using manual annotation. Finally in
step 6, we build a predictive model based on support vec-
tor machines (SVM) to classify the triggers as correct or
incorrect.

Data

This study is based on the EVEX resource [11] contain-
ing 40,190,858 events of 24 different types such as binding,
positive-regulation, negative-regulation, and phosphoryla-
tion. These events are extracted using the TEES system
[14] from 6,392,824 PubMed abstracts and 383,808 PMC-
OA full-text articles that were published up to 2012 and
which contain at least one gene/gene-product mention.
The EVEX resource can be downloaded and browsed
online at www . evexdb . org.

Trained on the ST-data sets, TEES extracts events based
on the recognition of an occurrence of a trigger word in
the underlying sentence. An event is thus representing
the link between the event trigger word and participat-
ing argument GGPs. However, one textual span can act
as a trigger for multiple events with varying arguments as
illustrated in Fig. 2.

In addition, a single unique trigger word, such as modify,
may have a number of occurrences in the data, acting as a
trigger for many events. It is important to note that these
events may be of different types. For instance the trigger
word expression acts as a trigger for both gene-expression
and transcription events, depending on the context.

Throughout this paper, we refer to the total number of
extracted events from a trigger as “trigger frequency” and
to the actual occurrence count of the trigger in the corpus
as “trigger occurrence count’. Clearly, trigger frequency is
greater or equal to trigger occurrence count since one trig-
ger occurrence can be associated with multiple events. For
example, the frequency of expression is 3,909,759, while
its occurrence count is 2,736,782. It should be highlighted
that the aim of this study is to increase the precision of
extracted events, thus the focus is on the trigger frequency,
i.e. the number of incorrect events that are finally removed
from EVEX, when a particular trigger is identified as
incorrect.

In total, there are 137,146 unique event triggers (exclud-
ing obviously incorrect trigger words that are purely num-
bers and those which contain unicode special characters).
Different trigger words have different frequency in the
system ranging from 1 to 3,909,759.

As expected, the vast majority of events in EVEX corre-
spond to a small number of highly frequent trigger words,
as shown in Table 1. For example, there are only 3,391 trig-
ger words with frequency above 300 (i.e. corresponding to
at least 300 event occurrences), but these words account
for 97.1% of all events in EVEX. Consequently, when the
aim is to increase the precision of the events in EVEX by
recognizing incorrect trigger words and eliminating them,
the focus should be centered on highly frequent trigger
words instead of the rare ones. Accordingly, we decided
to concentrate on these 3,391 top most frequent trigger
words. Limiting ourselves to the top most frequent trig-
ger words allows manual inspection of the hierarchical
clustering tree discussed in the following sections.

Among the trigger words, we will target those which
are obviously incorrect, regardless of their context. These
could be for example, gene/protein/chemical names,
author names or any other words such as hospital, univer-
sity, research, diagram, box, clarify, investigate, visualiza-
tion, knowledge, one or please. The main objective of this
study is thus to develop a method that can categorize the
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(Gene or gene product
The Western blot analysis showed that recombinant fusion protein could be recognized by anti-Hp positive

The Western blot analysis showed that recombinant fusion protein could be recognized by
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MP mAb, suggesting that this protein had good antigenicity.
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~(Einding)

anti-Hp positive serum and anti-18,000 OMP mAb, suggesting that this protein had good

Fig. 2 Example sentence with multiple events sharing a single trigger. Two event occurrences extracted from the same trigger word recognized

trigger words so as to eliminate the obviously incorrect
trigger words, thus increasing the precision of the event
extraction systems without impacting their recall.

Another interesting aspect when studying the trigger
words is to build a general overview of all of the trig-
ger words according to the 24 different event types and
to study whether there exist groups/sub-groups of related
trigger words which would allow us to define subtypes of
the 24 event types. Of specific interest will be studying the
groups/sub-groups before and after eliminating incorrect
trigger words.

Hierarchical clustering of top most frequent trigger words

In the first step, we induce a vector space representa-
tion for the trigger words, and hierarchically cluster the
triggers based on this representation. Cosine similarity is
used as the clustering metric with the Ward’s variance
minimization algorithm defining the distances between
newly formed clusters. To build the vector space repre-
sentations, we use the word2vec method of distributional
semantics introduced by Mikolov et al. [15] and previ-
ously applied in the biomedical domain by Pyysalo et al.
[16]. The word2vec method comprises a simplified neu-
ral network model with a linear projection layer and a
hierarchical soft-max output prediction layer. The input

Table 1 Distribution of triggers and their associated event
percentages in the EVEX database

Trigger word frequency EVEX events coverage Number of trigger
(at least) percentage words

100 98.4 6339

200 976 4263

300 97.1 3391

400 96.6 2880

500 96.3 2538

layer has the width of the vocabulary, while the projection
layer has the desired dimensionality of the vector space
representation. Upon training, the weight matrix between
the input and the projection layer constitutes the word
vector space embeddings. The network can be trained
in several different regimes, but in this work we use the
skip-gram architecture, whereby the network is trained to
predict nearby context words, given a single focus word at
the center of a sliding window context.

We train the word2vec model on the lower-cased texts
from the EVEX resource, i.e. all abstracts and full-text arti-
cles in which at least one GGP was identified. All GGP
mentions in the texts are replaced with the ‘ggp” place-
holder and all numbers with the “num” placeholder to
densify the text.

An initial experiment in hierarchical clustering of the
top 100 most frequent trigger words revealed that on one
hand many coarse/fine grained sub-clusters were formed
in a way that each sub-cluster contained trigger words
with biologically similar meaning. Many sub-clusters
could be clearly associated with a unique event type.
On the other hand, many trigger words were clustered
together incorrectly, especially for the common positive-
regulation and negative-regulation types (e.g. increase and
decrease) because they have a high similarity in the vector
space representation.

To address this issue, we add trigger/event type asso-
ciation information as additional dimensions to the word
vectors, thereby affecting the clustering to more closely
conform to the event types. To obtain reliable event type
distribution for the trigger words, we use the BioNLP
Shared Task 2011 (ST’11) training and development sets
[5]. Out of the 1,447 unique trigger words in this data,
995 are single-token trigger words and of these, 828 are
actually among the top 3,391 most frequent EVEX trig-
ger words. For these 828 triggers, we append a normalized
event type distribution vector to their word2vec-based
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vectors (the vectors for the remaining 2,563 triggers
for which a reliable event type information could not
be obtained are simply padded with 24 zeroes). Re-
clustering with the modified vectors, we notice that
positive-regulation and negative-regulation trigger words
are no longer clustered together, obtaining more meaning-
ful clusters with regard to the task at hand.

Event type vectors of sub-clusters

In this step, event type distribution vectors for all nodes of
the binary cluster tree are calculated. For each leaf of the
tree (i.e., a trigger word), its corresponding trigger/event
type vector is calculated based on the occurrence counts
of its respective events in EVEX, and for each interme-
diate node of the tree (i.e., a sub-cluster), its respective
event type vector is calculated by adding trigger/event
type vectors of all triggers that belong to it.

Using this information, it is possible to inspect how
the tree is organized and whether and how its different
branches represent different event types. For example, by
checking which element in a sub-cluster’s event type vec-
tor has the maximum value, we can tell what is the event
type that this sub-cluster is mostly associated with and
the level of purity of that cluster. For example, while one
sub-cluster can be 98% binding and is thus to a large
extent pure, another cluster can be 43 % gene_expression
and cannot be assigned a single predominant type.

Identifying possibly incorrect trigger words

Focusing on 3,391 top most frequent trigger words, in this
step we prepare a list of safe or supposedly correct trigger
words and regard the remaining triggers as possibly incor-
rect. This is necessary for pruning the tree and finding the
list of incorrect trigger words in the next step.

As stated in Section Hierarchical clustering of top most
frequent trigger words, by analyzing the ST’11 training
and development sets, we obtain a list of 995 unique
single-token trigger words. Some of these triggers are
overlapping with EVEX triggers. However, our list con-
tains many other trigger words that can not be directly
found in the ST’11 sets, but variations of them or vari-
ations of their parts can. For instance, processing and
co-regulation are in the EVEX-based list, while processed
and regulation are in the ST’11 sets.

We therefore process BioNLP ST’09 [4], ST’11 [5], and
ST’13 [6], training and development sets, to obtain a set
of all single-token ST-trigger words. This trigger set, here-
after ST-set, contains 1,092 trigger words. Then we per-
form the following preprocessing steps on every trigger
word in both EVEX and ST-set.

1. Remove any punctuation or special characters from
the beginning of the trigger word, retaining the rest
of the word as the trigger word. For example,
-stimulated is transformed into stimulated.
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2. We split each trigger word based on occurrences of
the following characters: {-, ", ‘", */’}. For example,
co-express is divided into co and express, and
similarly cross-reacts is divided into cross and reacts.

3. For every trigger word, each of its split parts is saved
if all of the following conditions are met:

(1) The part is longer than one character.

(2) The part is not a number.

(3) The part is not in the following stop list: {32p,
auto, beta, cis, co, cross, de, double, down,
mono, non, out, poly, post, re, self, trans,
under}. We obtained this list experimentally
by careful examination of the ST-set.

4. Finally, we lemmatize all the trigger words, and all of
their parts, using the BioLemmatizer tool [17] which
is specifically developed for the biomedical domain,
and record all the produced lemmas for each trigger
word.

After the preprocessing, 977 EVEX trigger words that
can directly be found in the ST-set are regarded as safe.
The rest of the triggers are regarded as safe if their exact
form, or one of their parts, or one of the lemmas of their
parts can be found in the ST-set, or ST-set words’ parts or
part lemmas. Otherwise, the trigger word is regarded as
possibly incorrect.

Performing the aforementioned approach resulted in
identification of 506 trigger words which were added to
the list of safe triggers, totaling to a list of 1,483 safe trigger
words. The 1,908 remaining triggers are regarded as pos-
sibly incorrect. Table 2 shows some example words from
EVEX triggers in our list that are matched against ST-set
trigger words, parts, or lemmas.

As discussed earlier, we do not save parts of the EVEX
trigger words if they belong to our stop list. The stop
list comprises the prefix parts obtained by splitting ST-set
trigger words, which are not themselves ST-set trigger
words. For example, cross-link is a ST-set trigger word, but
cross itself is not a stand-alone ST-set trigger, therefore

Table 2 Examples of matching EVEX trigger words against
Shared Task exact trigger words or their corresponding
parts/lemmas

EVEX trigger word ST'11-trigger word/Part/Lemma
co-transcribed transcribed
calcium-induced induced

co-immunoprecipitates immunoprecipitate

downregulating downregulate

recognise recognize
preceding precede
analyzing analyse
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cross is included in the stop list. As a contrary example,
up-regulation is a ST-set trigger word, however we did not
include up in the stop list because up itself is a ST-set trig-
ger word. We perform such approach because we do not
want any EVEX trigger word like re-X or cross-X (X can be
any word) to be matched against ST-set words, parts and
lemmas, just because it has a re or cross as a prefix.

Pruning the tree
Pruning the tree is done using the list of possibly incorrect
trigger words in four steps:

1. If a trigger word exists in the list of possibly incorrect
trigger words, its corresponding leaf is marked as
unsafe, otherwise it is marked as safe.

2. If all of the children of an intermediate node are
marked as unsafe, this node (sub-cluster as a whole)
is marked as unsafe as well, otherwise it is marked as
safe.

3. All of the descendants of the intermediate nodes that
are marked as unsafe, are deleted from the tree. The
respective trigger words of the deleted leaves are
subsequently added to the list of incorrect trigger
words.

4. After tree pruning, the trigger words of all leaves that
remain in the tree, are marked as safe and regarded
correct.

After applying the aforementioned tree pruning algo-
rithm, we obtain a set of correct and a set of incorrect top
most frequent EVEX trigger words.

There is one important aspect in the pruning algorithm.
Since the tree is binary, not all of the trigger words that
are in the list of possibly incorrect triggers were finally
regarded as incorrect trigger words, because if such a trig-
ger word was clustered near a safe trigger word (i.e., had a
very small cosine distance to a safe trigger word in the fea-
ture space), it was not considered as an incorrect trigger
word and remained in the tree. This helps us to identify
more correct trigger words.

For example, co-localization which is an EVEX trig-
ger word is also a Shared Task trigger word, so it had
been marked as safe in the matching step, however
colocalization (another EVEX trigger word) originally had
been regarded as possibly incorrect, because our match-
ing procedure could not have matched this trigger word
(or its lemma) against any ST-set trigger word or part or
lemma. However, because these two words are extremely
similar in the vector space representation, they clustered
together in the binary cluster tree. Consequently, since an
unsafe trigger was clustered with a safe trigger, that whole
sub-cluster was regarded as safe and remained in the tree,
so colocalization finally is regarded as a correct trigger
word. To summarize, the tree pruning algorithm causes
deletions to be propagated to the upper level nodes of the
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tree only if all of the participating leaves are recognized as
incorrect.

After pruning, event type vectors for all intermediate
nodes of the tree are recalculated so that we can compare
the tree before and after pruning.

Refining correct and incorrect trigger sets

The output of the tree pruning step are the correct and
incorrect trigger words sets, into which the top most fre-
quent EVEX trigger words are assigned. As discussed
in Section Results, our unsupervised method (steps 1-4)
increases the precision and F-score of event extraction
systems, however it causes a comparatively small drop
of recall. This means that some of the correct trigger
words are erroneously included in the incorrect trigger
set, thus deleting their corresponding events from EVEX
consequently decreases the recall of that event extraction
system. As our objective is to increase the precision with-
out decreasing the recall, i.e. we try to avoid removing
correct events from EVEX at any cost, we address the issue
using manual annotation to refine the results.

Manual annotation of triggers

A list of 3,391 trigger words was prepared by extract-
ing the trigger words with frequency of at least 300 from
EVEX. As discussed in Section Identifying possibly incor-
rect trigger words, 977 of EVEX top most frequent triggers
overlap with the ST-set. We assume these triggers to be
correct and provided the 2,414 remaining trigger words to
an annotator with prior experience in biomedical domain
annotation.

The annotator performed the manual annotation by
deciding for each trigger whether it is correct or incor-
rect. On one hand, a trigger is correct if its occurrence can
lead to the extraction of one or more of the 24 Shared
Task event types, i.e. the given trigger word can repre-
sent at least one of the ST event types in some context,
although in another context they might still be invalid. On
the other hand, an incorrect trigger cannot express Shared
Task events in any context. The annotator was allowed
to use any available resources, such as NCBI [18], Gene
Ontology [19] and KEGG [20] databases, to support the
annotation.

The annotation of the top most frequent EVEX triggers
resulted in three categories:

e 2083 triggers were annotated as correct.

e 577 triggers were annotated as incorrect.

e 731 triggers were not annotated and remained
undecided.

In a closer look at the annotation data, the most
common correct triggers are the words specifically
used in biomedical domains such as “gene expression’,
“regulation” and “transcription” to state the events. The
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incorrect triggers are mostly biomedical entities such as
genes, proteins and chemicals. While the majority of the
triggers (2660/3391, 78.44 %) can be annotated, the anno-
tator was unable to make a decision for 21.56 % of the
triggers. Most of these undecided triggers are multiple-
meaning words used in both biomedical and generic
domains such as “conserved’, “deletion’, and “develop-
ment”. Thus it is possible to construct hypothetical sen-
tences where these words are valid triggers, but the anno-
tator was not able to find any evidence supporting the
use of these words as triggers from the existing literature.
While going through all the sentences would be an ideal
solution to resolve this issue, it is impossible in practice
due to the vast amount of the data.

As this evaluation was conducted by a single annota-
tor, we have not assessed the inter-annotator agreement
(IAA) for this task. To our knowledge, the organizers of
the BioNLP Shared Task have not reported the IAA for
the GE data set either. For the EPI data set (Epigenet-
ics and Post-translational Modifications) the organizers
report agreement level of 82 % measured in F-score [21].
This evaluation, however, measures the annotation of the
full event structures and no direct conclusions can be
made for the trigger annotations.

Aggregating unsupervised method results with manual
annotation results

In this step, we aggregate the results from tree prun-
ing (Section Pruning the tree) and manual annotation.
We naturally prioritize the manual annotation, i.e., in the
aggregated data a trigger remains correct or incorrect if
labeled as such in the manual annotation. The undecided
triggers are assigned using the tree pruning method. As a
result, the final set is comprised of 2,242 correct triggers
and 1,149 incorrect triggers.

Classification of low-frequency event triggers
In the previous steps, the focus was on assigning a label for
top most frequent trigger words (those with frequency of
at least 300) which account for 97.1 % of all EVEX events.
However, this demanding manual annotation method can
not be applied to the huge number of triggers with lower
frequency that exist in EVEX. To address this problem,
we use support vector machines (SVM) to classify the
low-frequency triggers (i.e., triggers with frequency below
300). As the training data, we use the aggregated trigger
set from the previous section, assigning correct and incor-
rect triggers as positive and negative examples, respec-
tively. Our training set totals 3,391 training examples,
consisting of 2,242 positive and 1,149 negative examples.
We optimize the model using grid-search combined with
cross-validation.

Prior to building the model, we considered two impor-
tant aspects which should be highlighted here. First, we
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prefer a conservative predictive model which tends to
have a very high positive recall, because if the classi-
fier mispredicts a correct trigger as incorrect, all of its
respective events mistakenly will be deleted from the
output of event extraction systems which is very unde-
sirable and that can also have a huge adverse effect on
the recall of events. Conversely, if the classifier mistak-
enly predicts an incorrect trigger as correct, its respective
events will remain in the output of event extraction sys-
tems, and in general we prefer to tolerate false events
instead of deleting correctly extracted events. Because
of this reason, and because our training set is imbal-
anced, we give weight 10 to the positive class and weight
1 to the negative class during classifier training. These
weights are set experimentally during the grid search and
classifier optimization. In addition, during optimization,
instead of optimizing against F1-score we optimize against
F2-score, because F2-score weights recall higher than
precision.

Second, from the point of view of event extrac-
tion systems, the respective events of the triggers are
more important than the trigger words themselves. For
instance, misclassifying a correct trigger with frequency
of 200 will translate into removing 200 correct events,
comparing it with the removal of a correct trigger with fre-
quency of only 1. Consequently, we consider the precision
and recall of respective events (not the triggers) and adjust
the parameter optimization and training accordingly:

e During optimization, instead of optimizing against
the F2-score of triggers, i.e., calculating F2-score
based on the counts of true-positives (TP),
true-negatives (TN), false-positives (FP) and
false-negatives(FN), we optimize against F2-score of
trigger frequency, i.e., calculating F2-score based on
the sum of frequencies of TP, TN, FP and FN.

e e give a weight to each training example by
calculating the logarithm of its frequency.

Thus the training examples with higher weights, i.e.
higher event frequency, will be regarded more
important than lower weight examples, those with
lower event frequency. In other words, classifier will
be penalized more on misclassifying the frequent
trigger words than lesser ones during training and
k-fold cross-validations. As a result, the classifier is
trained towards better performance on more
frequent triggers while we intentionally do not give
the trigger frequency as a feature to the classifier.

Below is the set of features used by the classifier.

1. word2vec-based vector for each trigger, which is
exactly the same vector discussed in
Section Hierarchical clustering of top most frequent
trigger words.
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2. If the trigger word (or its lemma or its parts or
lemmas of its parts) can be matched against ST-set
words/parts/lemmas (according to
Section Identifying possibly incorrect trigger words)
this feature is 1, otherwise it is zero.

3. The value for this feature is calculated as following:
feature_value = occurrence count of trigger / X
where X is the sum of occurrences of the word in all
PubMed abstracts and PMC-OA full text articles
published up to 2013, regardless of being recognized
as a trigger word in the underlying sentences or not.
For many incorrect trigger words, this feature will
have a very low value. For example, for an incorrect
trigger word like hospital which is in EVEX (not in
training set), the value will be (928 / 1,266,408) =
0.0007.

4. For this feature, we first extract the set of single-token
triggers with length of more than 6 characters in the
ST-set, introduced in Section Identifying possibly
incorrect trigger words. Then, for each training
example we calculate the feature value as following:
feature_value = length(trigger word) / (Y + 1)
where Y is the minimum edit distance (Levenshtein
distance) of the trigger word to the words in the
previously created set. For all training examples that
belong to the ST-set, we assume Y to be zero.

The longer the trigger word, and the smaller its
minimum edit distance, the higher will be the value
of this feature.

This feature is beneficial for example in the case of a
misspelled trigger (e.g., phosphoryalation instead of
phosphorylation), which is not recognized correctly
by our matching protocol discussed in

Section Identifying possibly incorrect trigger words.

5. Number of alphabetic characters divided by the
length of the trigger word.

We perform a grid-search combined with 5-fold cross-
validation to optimize the classifier and find the best
hyper-parameters for the model (kernel type, C value, and
the gamma parameter for RBF-kernel) against the F2-
score of trigger event frequency. Subsequently, we train
the classifier using the best parameter values on all avail-
able training examples.

Results

In this section, we discuss the results in four parts. First,
in Section Evaluation of event filtering, we evaluate the
impact of trigger pruning on event extraction systems.
We then evaluate our predictive model and investigate
the effect of event filtering on the EVEX resource in
Sections Evaluation of low-frequency trigger classification
and Evaluation of event removal on the EVEX resource.
Finally, in Section Tree organization before/after pruning
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we examine the trigger cluster tree organization before
and after the pruning.

Evaluation of event filtering

Evaluation method

We evaluate the impact of trigger pruning on event extrac-
tion using the official test sets of the BioNLP ST’11 and
GENIA Event Extraction (GE) Shared Tasks (ST’13). As
the basis we consider the outputs of the TEES system
entry [10, 14] in 2011 (3rd place) and in 2013 (2nd place)
GE tasks and, for the 2013 Shared Task, also the winning
EVEX entry [7]. We prune the outputs of these systems
by removing events whose trigger words are identified as
incorrect using the aforementioned algorithm and eval-
uate the resulting pruned set of events using the official
evaluation services of the respective Shared Task on the
held-out test sets. The results are shown in Table 3.

It should be highlighted that naturally the magnitude of
the F-score improvements is modest, as the top-ranking
systems are well optimized and major improvements have
been difficult to achieve regardless of the approach. Note
also that a filtering approach such as the one proposed in
this paper cannot increase recall because it is unable to
produce new events. Our main focus thus is on improv-
ing the precision while trying to retain the recall, aiming
to increase the credibility of large-scale event extraction
systems in general.

Evaluation of unsupervised method

In this section, we investigate the effect of removing
triggers from event extraction systems using the set of
incorrect trigger words obtained from our unsupervised
method in Section Pruning the tree.

As shown in Table 3, in all three instances (compar-
ing our unsupervised method against the TEES system’s
predictions on tasks 2011 and 2013, and the EVEX sys-
tem’s predictions on task 2013), we see an improvement
in both precision and F-score with a relatively small drop
in recall. Especially for the ST’13, the pruned TEES sys-
tem (+0.23pp F-score over TEES) matches in performance
with the winning 2013 EVEX system. Since the EVEX sys-
tem was also based on TEES, it is interesting to note that
we have matched these improvements using a different
approach. Finally, the pruned EVEX system (+0.18pp F-
score over the EVEX entry) establishes a new top score on
the task.

Evaluation of manual annotation method

In this section we investigate the effects on event extrac-
tion if we rely our method solely on the manual annotation
results. We remove events from those three aforemen-
tioned event extraction system outputs, using the set of
trigger words that were annotated as incorrect by the
human annotator.
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Table 3 Performance comparison of the different pruning approaches and the baseline methods (TEES/EVEX) on the official BioNLP

Shared Task GE data sets

Predictions Precision Recall F1-score
Original TEES 61.76 48.78 5451
Pruned-TEES (Unsupervised Method) 62.39 48.75 54.74
TEES-2011 (Shared Task 2011) Pruned-TEES (Manual Annotation Method) 62.04 4878 5462
Pruned-TEES (Aggregation Method) 62.26 4878 54.70
Pruned-TEES (Aggregation Method + SVM) 6227 4878 54.71
Original TEES 5632 46.17 50.74
Pruned-TEES (Unsupervised Method) 5713 46.02 50.97
TEES-2013 (Shared Task 2013) Pruned-TEES (Manual Annotation Method) 56.63 46.17 50.87
Pruned-TEES (Aggregation Method) 56.97 46.17 51.00
Pruned-TEES (Aggregation Method + SVM) 57.01 46.17 51.02
Original EVEX 5803 4544 5097
Pruned-EVEX (Unsupervised Method) 5877 4529 51.15
EVEX-2013 (Shared Task 2013) Pruned-EVEX (Manual Annotation Method) 5832 4544 51.08
Pruned-EVEX (Aggregation Method) 58.66 45.44 51.21
Pruned-EVEX (Aggregation Method + SVM) 5871 4544 51.23

As shown in Table 3, in all three instances (compar-
ing manual annotation method against the TEES system’s
predictions on tasks 2011 and 2013, and the EVEX sys-
tem’s predictions on task 2013), manual annotation retains
the recall, which is obviously a better result than our unsu-
pervised method. However in all three instances, its pre-
cision and F-score is less than the precision and F-score of
our unsupervised method.

The preserved recall suggest that our annotation
strongly agrees with the ST annotation guidelines. How-
ever, the higher precision of the unsupervised pruning
strategy shows that some cases not clear for a human
annotator, can be classified with this method.

This is exactly what we had anticipated. As precise
annotation was not possible for many trigger words,
we have 731 undecided top most frequent triggers, and
many incorrect trigger words might actually be among
them.

To summarize, the manual annotation has produced an
almost pure but incomplete set of incorrect trigger words.
In comparison to original event extraction system perfor-
mances, our manual annotation method does increase the
precision and F-score while retaining the recall, but its
precision and F-score are not as high as our unsupervised
method.

Evaluation of aggregation method

As shown in the previous sections, our unsupervised
method increases the precision and F-score, but slightly
drops the recall, whereas the manual annotation alone
retains recall with lesser increase in precision. In this

section, we investigate the effect of event filtering using
the set of incorrect triggers obtained from the aggregation
method discussed in Section Aggregating unsupervised
method results with manual annotation results.

As shown in Table 3, in comparison with the TEES
performance on ST’'11 and ST’13, and the EVEX perfor-
mance on ST’13, the aggregation method retains the recall
and increases the precision and F-score. Interestingly, in
all three cases, in comparison with manual annotation
method it has a higher precision and F-score. Conse-
quently, we conclude that our unsupervised method is
indeed able to find incorrect trigger words elusive to the
human annotator.

If we compare the aggregation method performance
with our unsupervised method performance, we notice
that in all three instances, it does have a higher recall
and in two cases also higher F-score. In one case the
unsupervised method alone reaches the highest F-score.
This might be due to trigger words that we have anno-
tated as correct, but are used in wrong event types by the
underlying even extraction system, thus resulting in lower
precision.

As a conclusion, while all of our methods establish
new top scores on 2013 tasks, the aggregation method is
the best among them. It retains the recall, increases the
precision and has the best F-score in two cases out of
three.

Evaluation of low-frequency trigger classification
As stated in Section Classification of low-frequency event
triggers, we use all 3,391 top most EVEX frequent triggers
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to train the classifier and aim to apply it on those triggers
with frequency below 300.

Similar to the previous evaluations, we first evaluate
the classifier performance against the Shared Task test
sets as an end-to-end system together with the aggrega-
tion method. For this aim, we apply the trained classifier
to predict labels for EVEX triggers with frequency below
300. This results in identification of 16,674 negative (sup-
posed to be incorrect) triggers with total frequency of
232,748 respective events in EVEX. The rest of the triggers
were predicted as correct. Then, we prune the output of
event extraction systems using these recognized incorrect
triggers and incorrect triggers obtained by aggregation
method.

Results for this experiment are shown in Table 3. Com-
parison of this method (Aggregation Method + SVM
entries in the table) against our aggregation method, the
previously best approach, shows slight increase in both
precision and F-score in all three cases while retaining the
same recall. Thus, the classifier is able to recognize some
previously undetected incorrect trigger words, giving us
the most complete set of incorrect trigger words.

As this processing step focuses specifically on low-
frequency (rare) triggers, unlikely to be found in the
carefully selected Shared Task data sets, the performance
improvement is small, as anticipated. However, we expect
the outcome to be more significant in large-scale event
extraction and to show this we conduct another evaluation
based on the EVEX resource.

In the second evaluation we form an evaluation set by
randomly selecting 700 words from the triggers with fre-
quency less than 300 in EVEX and use the same manual
annotation procedure discussed in Section Manual anno-
tation of triggers to divide them into positive (correct) and
negative (incorrect) sets.

The annotation resulted in 363 correct and 233 incor-
rect triggers. For 104 triggers our annotator was unable
to assign a label. Even though, in terms of our annotation
protocol, the triggers are divided into three independent
classes, for simplicity we exclude the 104 undecidable trig-
ger words from our test set and use only the 596 remaining
words.

The performance evaluation results against the test set
are shown in three different tables.

e Table 4 shows the counts and respective event
frequencies of true-positives, true-negatives,
false-positives and false-negatives.

e Table 5 shows the performance in terms of
classification of triggers. Precision, recall and
F2-score in this table are calculated based on the
counts of the predicted triggers.

e Table 6 shows the performance in terms of
classification of events. Precision, recall and F2-score
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Table 4 Trigger/event classification performance, measured on
the EVEX test set: The first column (Count) shows prediction
results based on the counts of trigger words (test set examples).
The second column (Sum of frequency) shows the number of
respective events of those triggers in the EVEX database. For
instance, the first row (True-Positive) shows that the classifier has
correctly predicted 352 test set trigger words to be correct
triggers, while these words account for 4,602 extracted events in
the EVEX resource

Sum of frequency

Count (Number of events)
True-Positive 352 4602
True-Negative 9 679
False-Positive 134 850
False-Negative 1 115
Total 596 6246

in this table are calculated based on the event
frequencies of the predicted triggers (i.e., based on
the sum of frequencies of TP, TN, FP and EN).

As mentioned in Section Classification of low-fre-
quency event triggers, from the event extraction point
of view, the event frequencies are more important than
the unique trigger words themselves. Thus, results listed
in Table 6 are the most relevant for examining the per-
formance of the classifier. As this is also the evaluation
metric the classifier hyper-parameters were optimized
against, the numbers in Table 6 are generally higher than
in Table 5.

We can see that the classifier achieves recall of 0.98
for the positive class, i.e. the correct triggers as shown
in Table 6. This result suggests that we have succeeded
in our goal of preserving as much of the true events as
possible. Besides, the classifier also reaches recall of 0.44
for the incorrect triggers, i.e. we are able to detect and
exclude almost half of the events with false triggers in this
evaluation set.

Table 5 Trigger classification performance on the EVEX resource
based on trigger counts (test set examples). The prediction
measures in this table are calculated based on the values in the
first column of Table 4. This table shows how well the classifier is
able to classify and distinguish between correct and incorrect
trigger words. The last column (Support) shows that there are
363 correct and 233 incorrect trigger words in the test set, i.e, 596
in total

Precision Recall F2-score Support
Negative (incorrect) 0.90 042 048 233
Positive (correct) 072 097 091 363
Weighted averages, total ~ 0.79 0.76 0.74 596
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Table 6 Classification performance on the EVEX resource based
on the respective event counts in the EVEX database. This table
shows how well the classifier will perform the prediction,
preserving correct and eliminating incorrect respective events
from the EVEX database. The prediction measures in this table are
calculated based on the values in the second column of Table 4.
The last column (Support) shows that there are 1,529 incorrect
and 4,717 correct corresponding events in the EVEX database
(6,246 in total) which are extracted based on those 596 trigger
words in the test set

Precision Recall F2-score Support
Negative (incorrect) 0.86 044 049 1529
Positive (correct) 084 098 095 4717
Weighted averages, total ~ 0.85 0.77 0.77 6246

Evaluation of event removal on the EVEX resource

In this section we investigate the impact of removing
events from the EVEX resource based on all trigger words
recognized as incorrect.

Even though our manual annotation or aggregation
methods are able to preserve the recall when evaluated
against official predictions of Shared Task test sets, it
is not guaranteed that the same performance will be
achieved when applying them on a large-scale resource
such as EVEX. In fact there might be correct triggers
which are not present in ST’11 or ST’13 test sets, but are
mistakenly labeled as incorrect by the human annotator,
our unsupervised method or the classifier. Consequently,
in the evaluation against official Shared Task test sets,
we do not delete these triggers and do not detect any
drop in recall. However based on our evaluation results,
we are optimistic that most of the correct events will be
preserved if the method is applied on the EVEX resource.

To investigate the impact of event removal on EVEX,
for top most frequent triggers (accounting for 97.1 % of
all EVEX events), we rely on our aggregation method
which had the best performance. The aggregation method
resulted in labeling 1,149 triggers as incorrect and these
account for 1,105,327 events in EVEX.

For the rest of EVEX triggers (low frequency triggers
accounting for 2.9% of all EVEX events), we use the
classifier. However, the classifier could not be applied to
48,960 triggers with 122,344 respective events (0.3 % of all
EVEX events). These words have less than 5 occurrences
in the corpus used for training the word2vec model, and
thus do not have a corresponding vector representation,
required by the classifier. Applying the classifier on the
rest of low frequency triggers (accounting for 2.6 % of all
EVEX events) resulted in identification of 16,674 incorrect
triggers with 232,748 events in EVEX.

Consequently, in total we have been able to identify
17,823 expected to be incorrect triggers in the whole
EVEX resource with 1,338,075 events which constitutes
3.3% of all events in EVEX.
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Tree organization before/after pruning

In this section we address two questions. First, how the
resulting binary cluster tree differs before and after the
pruning, and second, whether we can define new event
subtypes based on the organization of sub-clusters in dif-
ferent branches of the tree. For these aims, we visualize the
tree before and after pruning up to the depth of 9 using
the Dendroscope software [22]. We label every intermedi-
ate node of the tree with its mostly associated event type
and the level of purity of that sub-cluster (see Additional
file 1 for diagrams of the tree).

As expected, in both trees we notice that trigger words
of same event types are clustered together, to some
extent. By considering the length of the shortest path
in tree as a basic distant measure, we observe that sub-
clusters of similar/related event types are closer in the
tree, while sub-clusters of different event types are located
far. For instance, triggers for expressing different types
of post-translational modifications events (e.g., “phos-
phorylation’, “DNA-methylation’, “glycosylation’, “acety-
lation”) are clustered together, far from trigger words
for expressing “positive/negative regulation” or “binding”.
Similarly, sub-clusters of “gene-expression’, “transcrip-
tion” and “localization” trigger event types are close in the
tree. We observe that before pruning the tree, sub-clusters
are not pure. For example, many trigger words for “pos-
itive regulation” events are often clustered together with
the ones for “negative regulation” events. By removing the
sub-clusters of purely incorrect triggers, i.e. pruning, the
sub-clusters in the middle levels of the tree become purer
and are for the most part, associated with the same event
type which signifies the possibility of identifying some of
the event subtypes.

We thus continue the analysis on the associated events
in the sub-tree anticipating to recognize the patterns.
However, to our surprise, there is no clear signal in the
sub-clusters that would signify any of the subtypes. As a
result, we thus do not pursue further analysis on the trees.
To conclude, our pruning algorithm yields a meaningful
tree which can distinguish different event types into sub-
clusters, however, the resulting clusters could not be used
to identify event subtypes.

Conclusions

In this paper, we propose a method which can be used
for identification of incorrect trigger words and remov-
ing incorrect events from the output of large-scale event
extraction systems.

Our unsupervised method achieves a modest improve-
ment over the winning system of the BioNLP 2013 Shared
Task on GENIA event extraction and establishes a new
top score on the task. The aggregation of manual annota-
tion results with our unsupervised method results, further
increases the precision and F-score of the unsupervised
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method. Besides, the unsupervised method decreases the
original recall when evaluated against official predictions
of Shared Task test sets, while our aggregation method
retains it.

Because the highly demanding manual annotation is not
possible for all EVEX trigger words, we build a SVM classi-
fier for predicting incorrect triggers among low-frequency
EVEX triggers. While having 0.98 positive recall which
translates to preserving a huge proportion of correct
events, the classifier has 0.44 negative recall, meaning that
it is able to identify about half of the incorrect events.

Combining the results of our aggregation method with
incorrect trigger words identified by applying the classifier
on all low frequency EVEX triggers, results in recog-
nition of 17,823 expected to be incorrect triggers with
1,338,075 respective events which constitutes about 3.3 %
of all events in EVEX resource.

In this paper we have only discussed the identification
of the incorrect triggers and the outcome of removing
these triggers from a large-scale event resource. Although
our evaluation shows only minimal drop in recall, bluntly
removing the corresponding events might have unwanted
effects. As the EVEX resource ranks the events shown
to the users based on a scoring system derived from
the TEES classification confidence, we would thus as a
future work like to investigate how to incorporate these
new findings in the ranking. This would let us, instead
of completely abolishing the likely incorrect events, only
to decrease their scoring and conserve them for those
use cases that demand extremely high recall, but can
overcome the noise in the data.

Another direction is to investigate the different event
types in more detail. We hope this study will give us a
better insight of whether the method can be adapted to
also correct mistyped events, thus increasing the precision
even further. For instance, it is possible that a detected
regulation trigger should in fact be classified as positive-
regulation, a subtype of regulation, but the used trigger
detector has not been able to make this distinction. By
observing how the given trigger word is located in the
hierarchical cluster tree, these errors could be possibly
corrected.

As the distributional semantics research is progress-
ing towards better representations of phrases and larger
text sections in addition to word-level embeddings, it
might be possible in the future to instead of judging
the trigger words globally, to focus only on certain types
of contexts giving us the ability to make more precise
decisions.

Availability of supporting data

The source code and data sets supporting the results
of this article are available at the Turku BioNLP group
website at: http://bionlp-www.utu.fi/trigger- clustering/.
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Additional file

Additional file 1: This tar file contains images of the binary cluster tree,
before and after the pruning. The HowTolnterpretTreeDiagrams.txt file
describes how the diagrams should be interpreted. (TAR 1290 kb)
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Abstract

We present the TurkuNLP entry to
the BioNLP Shared Task 2016 Bacte-
ria Biotopes event extraction (BB3-event)
subtask. We propose a deep learning-
based approach to event extraction using
a combination of several Long Short-Term
Memory (LSTM) networks over syntac-
tic dependency graphs. Features for the
proposed neural network are generated
based on the shortest path connecting the
two candidate entities in the dependency
graph. We further detail how this network
can be efficiently trained to have good gen-
eralization performance even when only a
very limited number of training examples
are available and part-of-speech (POS)
and dependency type feature representa-
tions must be learned from scratch. Our
method ranked second among the entries
to the shared task, achieving an F-score of
52.1% with 62.3% precision and 44.8% re-
call.

1 Introduction

The BioNLP Shared Task 2016 was the fourth in
the series to focus on event extraction, an infor-
mation extraction task targeting structured asso-
ciations of biomedical entities (Kim et al., 2009;
Ananiadou et al., 2010). The 2016 task was also
the third to include a Bacteria Biotopes (BB) sub-
task focusing on microorganisms and their habi-
tats (Bossy et al., 2011). Here, we present the
TurkuNLP entry to the BioNLP Shared Task 2016
Bacteria Biotope event extraction (BB3-event)
subtask. Our approach builds on proven tools and
ideas from previous tasks and is novel in its ap-
plication of deep learning methods to biomedical
event extraction.
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The BB task was first organized in 2011, then
consisting of named entity recognition (NER) tar-
geting mentions of bacteria and locations, fol-
lowed by the detection of two types of relations
involving these entities (Bossy et al., 2011). Three
teams participated in this task, with the best F-
score of 45% achieved by the INRA Bibliome
group with the Alvis system, which used dic-
tionary mapping, ontology inference and seman-
tic analysis for NER, and co-occurrence-based
rules for detecting relations between the entities
(Ratkovic et al., 2011). The 2013 BB task de-
fined three subtasks (Nédellec et al., 2013), the
first one concerning NER, targeting bacteria habi-
tat entities and their normalization, and the other
two subtasks involving relation extraction, the task
targeted also by the system presented here. Sim-
ilarly to the current BB3-event subtask, the 2013
subtask 2 concerned only relation extraction, and
subtask 3 extended this with NER. Four teams par-
ticipated in these tasks, with the UTurku TEES
system achieving the first places with F-scores of
42% and 14% (Bjorne and Salakoski, 2013).

We next present the 2016 BB3-event subtask
and its data and then proceed to detail our method,
its results and analysis. We conclude with a dis-
cussion of considered alternative approaches and
future work.

2 Task and Data

In this section, we briefly present the BB3-event
task and the statistics of the data that has been used
for method development and optimization, as well
as for test set prediction.

Although the BioNLP Shared Task has intro-
duced an event representation that can capture as-
sociations of arbitrary numbers of participants in
complex, recursive relationships, the BB3-event
task follows previous BB series subtasks in ex-
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Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158

Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics. (The relation
annotations of the test set have not been released.)

clusively marking directed binary associations of
exactly two entities. For the purposes of machine
learning, we thus cast the BB3-event task as binary
classification taking either a (BACTERIA, HABI-
TAT) or a (BACTERIA, GEOGRAPHICAL) entity
pair as input and predicting whether or not a Lives-
in relation holds between the BACTERIA and the
location (HABITAT or GEOGRAPHICAL).

Our approach builds on the shortest dependency
path between each pair of entities. However, while
dependency parse graphs connect words to oth-
ers in the same sentence, a number of annotated
relations in the data involve entities appearing in
different sentences, where no connecting path ex-
ists. Such cross-sentence associations are known
to represent particular challenges for event extrac-
tion systems, which rarely attempt their extraction
(Kim et al., 2011). In this work, we simply ex-
clude cross-sentence examples from the data. This
elimination procedure resulted in the removal of
106 annotated relations from the training set and
62 annotated relations from the development set.

The examples that we use for the training,
optimization and development evaluation of our
method are thus a subset of those in the origi-
nal data.! When discussing the training, develop-
ment and test data, we refer to these filtered sets
throughout this manuscript. The statistics of the
task data after this elimination procedure are sum-
marized in Table 1. Note that since there are var-
ious ways of converting the shared task annota-
tions into examples for classification, the numbers
we report here may differ from those reported by
other participating teams.

'Official evaluation results on the test data are of course
comparable to those of other systems: any cross-sentence re-
lations in the test data count against our submission as false
negatives.

3 Method

We next present our method in detail. Preprocess-
ing is first discussed in Section 3.1. Section 3.2
then explains how the shortest dependency path
is used, and the architecture of the proposed deep
neural network is presented in Section 3.3. Sec-
tion 3.4 defines the classification features and em-
beddings for this network. Finally, in Section 3.5
we discuss the training and regularization of the
network.

3.1 Preprocessing

We use the TEES system, previously developed
by members of the TurkuNLP group (Bjorne and
Salakoski, 2013), to run a basic preprocessing
pipeline of tokenization, POS tagging, and pars-
ing, as well as to remove cross-sentence relations.
Like our approach, TEES targets the extraction
of associations between entities that occur in the
same sentence. To support this functionality, it
can detect and eliminate relations that cross sen-
tence boundaries in its input. We use this feature
of TEES as an initial preprocessing step to remove
such relations from the data.

To obtain tokens, POS tags and parse graphs,
TEES uses the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The phrase structure
trees produced by the parser are further processed
with the Stanford conversion tool (de Marneffe et
al., 2006) to create dependency graphs. The Stan-
ford system can produce several variants of the
Stanford Dependencies (SD) representation. Here,
we use the collapsed variant, which is designed to
be useful for information extraction and language
understanding tasks (de Marneffe and Manning,
2008).

3.2 Shortest Dependency Path

The syntactic structure connecting two entities e
and ey in various forms of syntactic analysis is
known to contain most of the words relevant to
characterizing the relationship R(ej,ez), while
excluding less relevant and uninformative words.

This observation has served as the basis
for many successful relation extraction ap-
proaches in both general and biomedical domain
NLP (Bunescu and Mooney, 2005; Airola et al.,
2008; Nguyen et al., 2009; Chowdhury et al.,
2011). The TEES system also heavily relies on
the shortest dependency path for defining and ex-




tracting features (Bjorne et al., 2012; Bjorne and
Salakoski, 2013). Recently, this idea was applied
in an LSTM-based relation extraction system by
Xu et al. (2015). Since the dependency parse is di-
rected (i.e. the path from e; to ey differs from that
from ez to e;), they separate the shortest depen-
dency path into two sub-paths, each from an entity
to the common ancestor of the two entities, gen-
erate features along the two sub-paths, and feed
them into different LSTM networks, to process the
information in a direction sensitive manner.

To avoid doubling the number of LSTM chains
(and hence the number of weights), we convert the
dependency parse to an undirected graph, find the
shortest path between the two entities (BACTERIA
and HABITAT/GEOGRAPHICAL), and always pro-
ceed from the BACTERIA entity to the HABI-
TAT/GEOGRAPHICAL entity when generating fea-
tures along the shortest path, regardless of the or-
der of the entity mentions in the sentence. With
this approach, there is a single LSTM chain (and
set of LSTM weights) for every feature set, which
is more effective when the number of training ex-
amples is limited.

There is a subtle and important point to be
addressed here: as individual entity mentions
can consist of several (potentially discontinu-
ous) tokens, the method must be able to select
which word (i.e. single token) serves as the start-
ing/ending point for paths through the dependency
graph. For example, in the following training
set sentence, “biotic surfaces” is annotated as a
HABITAT entity:

“We concluded that S. marcescens MG1
utilizes different regulatory systems and
adhesins in attachment to biotic and
abiotic surfaces [...]”

As this mention consists of two (discontinuous)
tokens, it is necessary to decide whether the
paths connecting this entity to BACTERIA men-
tions (e.g., “S. marcescens MG1”) should end at
“biotic” or “surfaces”. This problem has fortu-
nately been addressed in detail in previous work,
allowing us to adopt the proven solution proposed
by Bjorne et al. (2012) and implemented in the
TEES system, which selects the syntactic head,
i.e. the root token of the dependency parse sub-tree
covering the entity, for any given multi-token en-
tity. Hence, in the example above, the token “sur-
faces” is selected and used for finding the shortest
dependency paths.
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3.3 Neural Network Architecture

While recurrent neural networks (RNNs) are in-
herently suitable for modeling sequential data,
standard RNNs suffer from the vanishing or ex-
ploding gradients problem: if the network is deep,
during the back-propagation phase the gradients
may either decay exponentially, causing learning
to become very slow or stop altogether (vanish-
ing gradients); or become excessively large, caus-
ing the learning to diverge (exploding gradients)
(Bengio et al., 1994). To avoid this issue, we
make use of Long Short-Term Memory (LSTM)
units, which were proposed to address this prob-
lem (Hochreiter and Schmidhuber, 1997).

We propose an architecture centered around
three RNNs (chains of LSTM units): one rep-
resenting words, the second POS tags, and the
third dependency types (Figure 1). For a given
example, the sequences of words, POS tags and
dependency types on the shortest dependency
path from the BACTERIA mention to the HABI-
TAT/GEOGRAPHICAL mention are first mapped
into vector sequences by three separate embedding
lookup layers. These word, POS tag and depen-
dency type vector sequences are then input into
the three RNNs. The outputs of the last LSTM
unit of each of the three chains are then concate-
nated and the resulting higher-dimensional vector
input to a fully connected hidden layer. The hid-
den layer finally connects to a single-node binary
classification layer.

Based on experiments on the development set,
we have set the dimensionality of all LSTM units
and the hidden layer to 128. The sigmoid activa-
tion function is applied on the output of all LSTM
units, the hidden layer and the output layer.

3.4 Features and Embeddings

We next present the different embeddings defining
the primary features of our model. In addition to
the embeddings, we use a binary feature which has
the value 0 if the corresponding location is a GEO-
GRAPHICAL entity and 1 if it is a HABITAT entity.
This input is directly concatenated with the LSTM
outputs and fed into the hidden layer. We noticed
this signal slightly improves classification perfor-
mance, resulting in a less than 1 percentage point
increase of the F-score.

3.4.1 Word embeddings

We initialize our word embeddings with vectors
induced using six billion words of biomedical
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Figure 1: Proposed network architecture.

scientific text, namely the combined texts of all
PubMed titles and abstracts and PubMed Central
Open Access (PMC OA) full text articles avail-
able as of the end of September 20132 These
200-dimensional vectors were created by Pyysalo
etal. (2013) using the word2vec implementation
of the skip-gram model (Mikolov et al., 2013).

To reduce the memory requirements of our
method, we only use the vectors of the 100,000
most frequent words to construct the embedding
matrix. Words not included in this vocabulary
are by default mapped to a shared, randomly ini-
tialized unknown word vector. As an exception,
out of vocabulary BACTERIA mentions are instead
mapped to the vector of the word “bacteria”.
Based on development set experiments we esti-
mate that this special-case processing improved
the F-score by approximately 1% point.

3.4.2 POS embeddings

Our POS embedding matrix consists of a 100-
dimensional vector for each of the POS tags in the
Penn Treebank scheme used by the applied tagger.
‘We do not use pre-trained POS vectors but instead
initialize the embeddings randomly at the begin-
ning of the training phase.

% Available from http: //bio.nlplab.org/
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3.4.3 Dependency type embeddings

Typed dependencies — the edges of the parse
graph — represent directed grammatical relations
between the words of a sentence. The sequence
of dependencies on the shortest path between two
entities thus conveys highly valuable information
about the nature of their relation.

‘We map each dependency type in the collapsed
SD representation into a randomly initialized 350-
dimensional vector (size set experimentally). Note
that in the applied SD variant, prepositions and
conjunctions become part of collapsed depen-
dency types (de Marneffe et al., 2006), as illus-
trated in Figure 2.

(RIS} PreP >INy ~POP "[NINSy““Ccy°" [NNS)

proteins in archaea and bacteria

prep_in
NS/ ) \TE\ NS)

proteins in archaea and bacteria

Figure 2: Basic (top) and collapsed (bottom) Stan-
ford Dependency representations

As the collapsed dependencies thus incorporate
preposition and conjunction words into the gram-
matical relations themselves, the set of depen-
dency types is somewhat open-ended. To account
for this, all preposition/conjunction dependency
types not observed in the training and develop-




ment sets are mapped to the vectors for the gen-
eral preposition and conjunction types prep and
conj, respectively.

3.5 Training and Regularization

‘We use binary cross-entropy as the objective func-
tion and the Adam optimization algorithm with the
parameters suggested by Kingma and Ba (2014)
for training the network. We found that this al-
gorithm yields considerably better results than the
conventional stochastic gradient descent in terms
of classification performance.

During training, the randomly initialized POS
and dependency type embeddings are trained and
the pre-trained word embeddings fine-tuned by
back-propagation using the supervised signal from
the classification task at hand.

Determining how long to train a neural network
model for is critically important for its generaliza-
tion performance. If the network is under-trained,
model parameters will not have converged to good
values. Conversely, over-training leads to over-
fitting on the training set. A conventional solu-
tion is early stopping, where performance is eval-
uated on the development set after each set pe-
riod of training (e.g. one pass through the train-
ing set, or epoch) to decide whether to continue
or stop the training process. A simple rule is to
continue while the performance on the develop-
ment set is improving. By repeating this approach
for 15 different runs with different initial ran-
dom initializations of the model, we experimen-
tally concluded that the optimal length of training
is four epochs. Overfitting is a serious problem in
deep neural networks with a large number of pa-
rameters. To reduce overfitting, we experimented
with several regularization methods including the
1 weight regularization penalty (LASSO) and the
lo weight decay (ridge) penalty on the hidden layer
weights. We also tried the dropout method (Srivas-
tava et al., 2014) on the output of LSTM chains as
well as on the output of the hidden layer, with a
dropout rate of 0.5. Out of the different combi-
nations, we found the best results when applying
dropout after the hidden layer. This is the only
regularization method used in the final method.

4 Results

4.1 Overcoming Variance

At the beginning of training, the weights of the
neural network are initialized randomly. As we are
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Run Recall Precision F-score
12 76.3 60.3 67.3
14 71.2 63.0 66.8
13 75.7 59.3 66.5
10 78.0 56.3 65.4
3 80.8 54.0 64.7
15 79.1 54.3 64.4
1 66.1 62.2 64.1
11 65.0 62.8 63.9
2 67.8 59.4 63.3
5 55.9 69.7 62.1
7 57.6 66.7 61.8
9 53.1 70.2 60.5
8 50.9 74.4 60.4
6 50.3 73.6 59.7
4 46.9 78.3 58.7
T 65.0 64.3 63.3
o 11.3 7.3 2.6

Table 2: Development set results for 15 repeti-
tions with different initial random initializations
with mean (%) and standard deviation (o). Results
are sorted by F-score.

only using pre-trained embeddings for words, this
random initialization applies also to the POS and
dependency type embeddings. Since the number
of weights is high and the training set is very small
(only 524 examples), the initial random state of the
model can have a significant impact on the final
model and its generalization performance. Lim-
ited numbers of training examples are known to
represent significant challenges for leveraging the
full power of deep neural networks, and we found
this to be the case also in this task.

To study the influence of random effects on our
model, we evaluate it with 15 different random ini-
tializations, training each model for four epochs
on the training data and evaluating on the develop-
ment set using the standard precision, recall and
F-score metrics. Table 2 shows the obtained re-
sults. We find that the primary evaluation met-
ric, the F-score, varies considerably, ranging from
58.7% to 67.3%. This clearly illustrates the extent
to which the random initialization can impact the
performance of the model on unseen data. While
the method is shown to obtain on average an F-
score of 63.3% on the development set, it must be
kept in mind that given the standard deviation of
2.6, individual trained models may perform sub-
stantially better (or worse). It is also important to
note that due to the small size of the development



Threshold () Recall Precision F-score
1 83.6 532 65.1
2 79.7 54.0 64.4
3 78.5 57.0 66.0
4 78.0 59.0 67.2
5 75.7 60.1 67.0
6 70.6 60.7 65.3
7 67.8 61.5 64.5
8 65.5 62.0 63.7
9 62.2 65.5 63.8
10 58.2 66.5 62.1
11 57.1 69.7 62.7
12 52.5 70.5 60.2
13 51.4 72.8 60.3
14 48.6 74.8 58.9
15 452 80.0 57.8

Table 3: Development set results for voting based
on the predictions of the 15 different classifiers.
Best results for each metric shown in bold.

set, individual models that achieved high perfor-
mance in this experiment will not necessarily gen-
eralize well to unseen data.

To deal with these issues, we introduce a
straightforward voting procedure that aggregates
the prediction outputs of the 15 classifiers based
on a given threshold value ¢ € {1,...,15}:

1. For each example, predict outputs with the 15
models;

. If at least ¢ outputs are positive, label the ex-
ample positive, otherwise label it negative.

Clearly, the most conservative threshold is ¢ = 15,
where a relation is voted to exist only if all the 15
classifiers have predicted it. Conversely, the least
conservative threshold is ¢ = 1, where a relation is
voted to hold if any classifier has predicted it.

The development set results for the voting al-
gorithm with different threshold values are given
in Table 3. As expected, the threshold ¢ 1
produces the highest recall (83.6%) with the low-
est precision (53.2%). With increasing values of
t, precision increases while recall drops, and the
highest precision (80.0%) is achieved together the
lowest recall of (45.2%) with t = 15. The best
F-score is obtained with ¢ = 4, where an example
is labeled positive if at least four classifiers have
predicted it to be positive and negative otherwise.
Figure 3 shows the precision-recall curve for these
15 threshold values.
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Figure 3: Precision-recall curve for different val-
ues of the threshold ¢ (shown as labels on the
curve).

As is evident from these results, the voting al-
gorithm can be used for different purposes. If the
aim is to obtain the best overall performance, we
can investigate which threshold produces the high-
est F-score (here ¢t = 4) and select that value when
making predictions for unseen data (e.g., the test
set). Alternatively, for applications that specifi-
cally require high recall or high precision, a dif-
ferent threshold value can be selected to optimize
the desired metric.

To assess the performance of the method on the
full, unfiltered development set that includes also
cross-sentence relations, we selected the threshold
value ¢ = 4 and submitted the aggregated predic-
tion results to the official Shared Task evaluation
server. The method achieved an F-score of 60.0%
(60.9% precision and 59.3% recall), 7.2% points
below the result for our internal evaluation with
filtered data (Table 3).

4.2 Test Set Evaluation

For evaluation of the test set, we applied the pro-
posed model with the voting approach presented
above): 15 neural network models with different
random initializations were trained for 4 epochs
on the combination of the training and the devel-
opment sets. Each trained model was then used to
produce one set of predictions for the test set. To
obtain the final test set predictions, the outputs of
the 15 classifiers were aggregated using the voting
algorithm with a threshold ¢ = 4.




Our method achieved an F-score of 52.1% with
a recall of 44.8% and precision of 62.3%, rank-
ing second among the entries to the shared task.
We again emphasize that our approach ignored all
potential relations between entities belonging to
different sentences, which may in part explain the
comparatively low recall.

4.3 Runtime Performance and Technical
Details

We implemented the model using the Python pro-
gramming language (v2.7) with Keras, a model-
level deep learning library (Chollet, 2015). All
network parameters not explicitly discussed above
were left to their defaults in Keras. The Theano
tensor manipulation library (Bastien et al., 2012)
was used as the backend engine for Keras. Com-
putations were run on a single server computer
equipped with a GPU.? All basic python process-
ing, including e.g. file manipulation, the TEES
pipeline and our voting algorithm, was run on a
single CPU core, while all neural network related
calculations (training, optimization, predictions)
were run on the GPU, using the CUDA toolkit ver-
sion 5.0.

The training process takes about 10 minutes, in-
cluding model building and 4 epochs of training
the network on the training set, but excluding pre-
processing and the creation and loading of the in-
put network. Prediction of the development set
using a trained model with fully prepared inputs
is very fast, taking only about 10 seconds. Finally,
the voting algorithm executes in less than a minute
for all 15 thresholds.

We note that even though the proposed ap-
proach involving 15 rounds of training, predic-
tion and result aggregation might seem to be
impractical for large-scale real-word applications
(e.g., extracting bacteria-location relations from
all PubMed abstracts), it is quite feasible in prac-
tice, as the time-consuming training process only
needs to be done once, and prediction on unseen
data is quite fast.

4.4 Other Architectures

In this section, we discuss alternative approaches
that we considered and the reasons why they were
rejected in favor of that described above.

3In detail: two 6-core Intel® Xeon® E5-2620 processors,
32 gigabytes of main memory, and one NVIDIA® TESLA™

C2075 companion processor with 448 CUDA cores and 6 gi-
gabytes of memory.

79

One popular and proven method for relation
extraction is to use three groups of features,
based on the observation that the words preceding
the first entity, the words between the entities,
and those after the second entity serve different
roles in deciding whether or not the entities are
related (Bunescu and Mooney, 2006). Given
a sentence S = Wi, ..., €1, e, Wiy .ory €24 ..oy W,
with entities e; and ez, one can represent
the sentence with three groups of words:
{before}er{middle}es{after} (e; and ey can
also be included in the groups). The similarity
of two examples represented in this way can be
compared using e.g. sub-sequence kernels at word
level (Bach and Badaskar, 2007). Bunescu and
Mooney (2006) utilize three subkernels matching
combinations of the before, middle and after
sequences of words, with a combined kernel that
is simply the sum of the subkernels. This kernel is
then used with support vector machines for rela-
tion extraction. Besides the words, other features
such as the corresponding POS tags and entity
types can also be incorporated into such kernel
functions to further improve the representation.

We adapted this idea to deep neural networks.
We started with the simplest architecture, which
contains 3 LSTM networks. Instead of gener-
ating features based on the shortest path, each
LSTM receives inputs based on the sequence of
the words seen in each of the before, middle, and
after groups, where the word embeddings are the
only features used for classification. Similar to the
architecture discussed in Section 3.3, the outputs
of the last LSTM units in each chain are concate-
nated, and the resulting higher-dimensional vector
is then fed into a fully connected hidden layer and
then to the output layer. This approach has a ma-
jor advantage over the shortest dependency path,
in particular for large-scale applications: parsing,
the most time-consuming part in the relation ex-
traction pipeline, is no longer required.

Unfortunately, our internal evaluation on the de-
velopment set showed that this model failed to
achieve results comparable to those of the shortest
dependency path model, only reaching an F-score
of about 57%. Hence, we attempted to use more
features by adding 3 or 6 additional LSTM chains
to the model, for POS or/and dependency type
embeddings. Even in these cases, the F-scores
only varied in the range of 57% to about 63%
(for different random initializations). We conclude



that even though not requiring parsing is a benefit
in these approaches, our experiments suggest that
they are not capable of reaching performance com-
parable to methods that use the syntactic structure
of sentences.

5 Conclusions and Future work

We have presented the entry of the TurkuNLP
team to the Bacteria Biotope event extraction
(BB3-event) sub-task of the BioNLP Shared Task
2016. Our method is based on a combination
of LSTM networks over syntactic dependency
graphs. The features for the network are derived
from the POS tags, dependency types, and word
forms occurring on the shortest dependency path
connecting the two candidate entities (BACTERIA
and HABITAT/GEOGRAPHICAL) in the collapsed
Stanford Dependency graph.

We initialize word representations using pre-
trained vectors created using six billion words of
biomedical text (PubMed and PMC documents).
During training, the pre-trained word embeddings
are fine-tuned while randomly initialized POS and
dependency type representations are trained from
scratch. We showed that as the number of train-
ing examples is very limited, the random initial-
ization of the network can considerably impact
the quality of the learned model. To address this
issue, we introduced a voting approach that ag-
gregates the outputs of differently initialized neu-
ral network models. Different aggregation thresh-
olds can be used to select different precision-recall
trade-offs. Using this method, we showed that
our proposed deep neural network can be effi-
ciently trained to have good generalization for un-
seen data even with minimal training data. Our
method ranked second among the entries to the
shared task, achieving an F-score of 52.1% with
62.3% precision and 44.8% recall.

There are a number of open questions regard-
ing our model that we hope to address in future
work. First, we observed how the initial random
state of the model can impact its final performance
on unseen data. It is interesting to investigate
whether (and to what extent) pre-training the POS
and dependency type embeddings can address this
issue. One possible approach would be to ap-
ply the method to similar biomedical relation ex-
traction tasks that include larger corpora than the
BB3-event task (Pyysalo et al., 2008) and use the
learned POS and dependency embeddings for ini-
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tialization for this task. This could also establish to
what extent pre-training these representations can
boost the F-score.

Second, it will be interesting to study how the
method performs with different amounts of train-
ing data. On one hand, we can examine to what
extent the training corpus size can be reduced
without compromising the ability of the proposed
network to learn the classification task; on the
other, we can explore how this deep learning
method compares with previously proposed state-
of-the-art biomedical relation extraction methods
on larger relation extraction corpora.

Third, the method and task represent an oppor-
tunity to study how the word embeddings used
for initialization impact relation extraction perfor-
mance and in this way assess the benefits of dif-
ferent methods for creating word embeddings in
an extrinsic task with real-world applications.

Finally, it is interesting to investigate differ-
ent methods to deal with cross-sentence relations.
Here we ignored all potential relations where the
entities are mentioned in different sentences as
there is no path connecting tokens across sen-
tences in the dependency graph. One simple
method that could be considered is to create an
artificial “paragraph” node connected to all sen-
tence roots to create such paths (cf. e.g. Melli et
al. (2007)).

‘We aim to address these open questions and fur-
ther extensions of our model in future work.
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Abstract

We introduce an end-to-end system capa-
ble of named-entity detection, normaliza-
tion and relation extraction for extracting
information about bacteria and their habi-
tats from biomedical literature. Our sys-
tem is based on deep learning, CRF clas-
sifiers and vector space models. We train
and evaluate the system on the BioNLP
2016 Shared Task Bacteria Biotope data.
The official evaluation shows that the joint
performance of our entity detection and re-
lation extraction models outperforms the
winning team of the Shared Task by 19pp
on F-score, establishing a new top score
for the task. We also achieve state-of-
the-art results in the normalization task.
Our system is open source and freely
available at https://github.com/
TurkuNLP/BHE.

1 Introduction

Knowledge about habitats of bacteria is crucial for
the study of microbial communities, e.g. metage-
nomics, as well as for various applications such
as food processing and health sciences. Although
this type of information is available in the biomed-
ical literature, comprehensive resources accumu-
lating the knowledge do not exist (Deléger et al.,
2016).

The BioNLP Bacteria Biotope (BB) Shared
Tasks are organized to provide a common evalua-
tion platform for language technology researchers
interested in developing information extraction
methods adapted for the detection of bacteria and
their physical locations mentioned in the literature.
So far three BB shared tasks have been organized,
the latest in 2016 (BB3) consisting of three main

*These authors contributed equally.
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subtasks: named entity recognition and catego-
rization (BB3-cat and BB3-cat+ner), event extrac-
tion (BB3-event and BB3-event+ner) and knowl-
edge base extraction. The NER task includes three
relevant entity types: HABITAT, BACTERIA and
GEOGRAPHICAL, the categorization task focuses
on normalizing the mentions to established ontol-
ogy concepts, although GEOGRAPHICAL entities
are excluded from this task, whereas the event ex-
traction aims at finding the relations between these
entities, i.e. extracting in which locations certain
bacteria live in. The knowledge base extraction
task is centered upon aggregating this type of in-
formation from a large text corpus.

In this paper we revisit the BB3 subtasks of
NER, categorization and event extraction, all of
which are essential for building a real-world infor-
mation extraction pipeline. As a result, we present
a text mining pipeline which achieves state-of-the-
art results for the joint evaluation of NER and
event extraction as well as for the categorization
task using the official BB3 shared task datasets and
evaluation tools. Building such end-to-end sys-
tem is important for bringing the results from the
shared tasks to the actual intended users. To our
best knowledge, no such system is openly avail-
able for bacteria habitat extraction.

The pipeline utilizes deep neural networks, con-
ditional random field classifiers and vector space
models to solve the various subtasks and the code
is freely available at https://github.com/
TurkuNLP/BHE. In the following sections we
discuss our system, divided into three modules:
entity recognition, categorization and event ex-
traction. We then analyze the results and finally
discuss the potential future research directions.

Proceedings of the BioNLP 2017 workshop, pages 80-90,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



2 Method

2.1 Named entity detection

Detecting the BB3 HABITAT, BACTERIA and GE-
OGRAPHICAL mentions is a standard named entity
recognition task, evaluated based on the correct-
ness of the type and character offsets of the dis-
covered text spans. In our NER pipeline, all doc-
uments are preprocessed following the approach
of Hakala et al. (2016). In brief, we first con-
vert all documents and annotation files from UTF-
8 to ASCII encoding using a modified version
of publicly available tool designed for parsing
PubMed documents (Pyysalo et al., 2013) !. Next
we split documents into sentences using the Ge-
nia Sentence Splitter (Setre et al., 2007) and the
sentences are subsequently tokenized and part-of-
speech tagged using the tokenization and POS-
tagging modules in NERsuite 2, respectively.

To detect the entity mentions we use NERsuite,
a named entity recognition toolkit, as it is rela-
tively easy to train on new corpora, yet supports
adding novel user-defined features. In biomedical
NER, NERsuite has been a versatile tool achiev-
ing excellent performance for various entity types
(Ohta et al., 2012; Kaewphan et al., 2014, 2016),
however, it is not capable of dealing with overlap-
ping entities. Therefore, we only use the longest
spans of overlapping annotated entities as our
training data, ignoring embedded entities which
are substrings of the longest spans.

In biomedical NER, domain knowledge such
as controlled vocabularies has been crucial for
achieving high performance. In this work we pre-
pare 3 dictionaries, specific for each entity type.
For BACTERIA, we compile a dictionary of names
exclusively from the NCBI Taxonomy database’
by including all names under bacteria superking-
dom (NCBI taxonomy identifier 2). The scien-
tific names are expanded to include abbreviations
whose genus names are conventionally abbrevi-
ated with the first and/or second alphabet, whereas
the rest of the names, such as species epithet and
strains, remains unchanged. For HABITAT, we
combine all symbols from the OntoBiotope on-
tology # and use them without any further mod-
ifications.  Similar to HABITAT, we also pre-
pare dictionary for GEOGRAPHICAL by taking all

'https://github.com/spyysalo/nxmI2txt
2http://nersuite.nlplab.org/
3https://www.ncbi.nlm.nih.gov/taxonomy
*http://agroportal.lirmm.fr/ontologiess ONTOBIOTOPE
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strings under the semantic type geographical area
from UMLS database (version 2016AA) (Boden-
reider, 2004). All dictionaries prepared in this
step are directly provided to NERsuite through the
dictionary-tagging module without any normaliza-
tion. The tagging provides additional features de-
scribing whether the tokens are present in some
semantic categories, such as bacteria names or ge-
ographical places. For GEOGRAPHICAL model,
we also add token-level tagging results for loca-
tion from Stanford NER (SNER) (Finkel et al.,
2005) as binary values to NERsuite; 1 and O for
location and non-location, respectively.

Although utilizing dictionary features is benefi-
cial for NER, strict string matching tends to lead
to low coverage, an issue which is also common in
the categorization task. To remedy this problem,
we also generate fuzzy matching features based
on our categorization system (see Section 2.2) by
measuring the maximum similarity of each token
against the NCBI Taxonomy and OntoBiotope on-
tologies for BACTERIA and HABITAT respectively.
Thus, instead of a binary feature denoting whether
a token is present in the ontology or not, a sim-
ilarity score ranging from 0 to 1 is assigned for
each token. This approach is similar to (Kaewphan
et al., 2014), but instead of using word embedding
similarities, our fuzzy matching relies on character
ngrams. We do not use these features for the GEO-
GRAPHICALentities, which are not categorized by
our system.

In the official BB3 evaluation, NER is jointly
evaluated with either categorization or event ex-
traction system. In BB3-cat+ner task, SER (Slot
Error Rate) is used as the main scoring metric,
whereas in BB3-event+ner, participating teams
are ranked based on F-score of extracted rela-
tions. Due to the lack of an official evaluation
on NER for all entities in BB3-event+ner and
for GEOGRAPHICAL in BB3-cat+ner, we use our
own implementation by calculating the F-score
using exact string matching criteria as our main
scoring metric. In this study, we consider BB3-
event+ner as our primary subtask and thus all
hyper-parameters in model selection are optimized
against F-score instead of SER.

2.2 Named entity categorization

In the BB3 categorization subtask each BACTE-
RIA and HABITAT mention has to be assigned to
the corresponding ontology concepts, specifically




to NCBI Taxonomy and OntoBiotope identifiers
respectively. This task is commonly known as
named entity normalization or entity linking and
various approaches ranging from Levenshtein edit
distances to recurrent neural networks have been
suggested as the plausible solutions (Tiftikci et al.,
2016; Limsopatham and Collier, 2016).

Our categorization method is based on the com-
mon approach of TFIDF weighted sparse vector
space representations (Salton and Buckley, 1988;
Leaman et al., 2013; Hakala, 2015), i.e. the prob-
lem is seen as an information retrieval task where
each concept name in the ontology is considered
a document and the IDF weights are based on
these names. Consequently, each concept name
and each entity mention is represented with a
TFIDF weighted vector and the concept with the
highest cosine similarity is assigned for a given
entity. Whereas these representations are com-
monly formed in a bag-of-words fashion, in our
experiments using character-level ngrams resulted
in better outcome. In the final system we use
ngrams of length 1, 2 and 3 characters. These
ngram lengths produced the highest accuracy on
the official development set for both BACTERIA
and HABITAT entities, each entity type evaluated
separately. The TFIDF vectorization was imple-
mented using the scikit-learn library (Pedregosa
et al., 2011) and default parameter values except
for using the character level ngrams instead of
words.

For both included ontologies we use the pre-
ferred names as well as the listed synonyms to
represent the concepts. Since the task is restricted
to bacteria mentions instead of all organisms, we
also narrow down the NCBI Taxonomy ontology
to cover only the Bacteria superkingdom, i.e. the
categorization system is not allowed to assign tax-
onomy identifiers which do not belong to this su-
perkingdom. Otherwise all concepts from the used
ontologies are included.

As preprocessing steps we use three main ap-
proaches: abbreviation expansion, acronym ex-
pansion and stemming. For stemming we use the
Porter stemmer (Porter, 1980) and stem each to-
ken in the entities and concept names. Accord-
ing to our evaluation this is not beneficial for the
BACTERIA entities and is thus included only for
the HABITAT entities.

In biomedical literature the genus names in
BACTERIA mentions are commonly shortened af-
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ter the first mention, e.g. Staphylococcus aureus
is abbreviated as S. aureus, but the NCBI Taxon-
omy ontology does not include these abbreviated
forms as synonyms for the corresponding con-
cepts. Thus, if an entity mention includes a token
with a period in it, we expand the given token by
finding the most common token with the same ini-
tial from all previously mentioned entities of the
same type within the same document.

Another commonly used naming convention for
BACTERIA mentions is forming acronyms, e.g.
lactic acid bacteria is often referred to as LAB.
Consequently, when we detect a BACTERIA men-
tion with less than five characters or written in
uppercase, we try to find the corresponding full
form by generating acronyms for all previously
mentioned BACTERIA entities by simply concate-
nating their initials. However, many BACTERIA
acronyms do not follow this format strictly, e.g
Lactobacillus casei strain Shirota should be short-
ened to LcS instead of LCSS and Francisella tu-
larensis Live Vaccine Strain as LVS instead of
FTLVS. Thus, instead of using strict matching
to find the corresponding full form, we utilize
the same character-level TFIDF representations
as used for the actual categorization for these
acronyms to find the most similar full form. In our
evaluation, using the same approach for HABITAT
entities dramatically decreased the performance
hence was thus not used for this entity type (see
Section 3.2).

Both of these expansion methods have similar
intentions as the preprocessing steps utilized by
the winning system in BB3 (BOUN) by Tiftikci
et al. (2016), but our system uses more relaxed
criteria for finding the full forms and should thus
result in better recall at the expense of precision.

2.3 Event extraction

The BB3-event and BB3-event+ner tasks demand
extraction of undirected binary associations of two
named entities: a BACTERIA entity and either a
HABITAT or a GEOGRAPHICAL entity; and these
relations represent the locations in which bacteria
live. We thus formulate this task as a binary clas-
sification task and assign the label positive if such
relation holds for a given entity pair and negative
otherwise.

To address this task, we present a deep learning-
based relation extraction system that generates
features along the shortest dependency path (SDP)



Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics.

which connects the two candidate entities in the
syntactic parse graph. Many successful relation
extraction systems have been built utilizing SDP
(Cai et al., 2016; Mehryary et al., 2016; Xu et al.,
2015; Bjorne and Salakoski, 2013; Bjorne et al.,
2012; Bunescu and Mooney, 2005) since it is
known to contain most of the relevant words for
expressing the relation between the two entities
while excluding less relevant and uninformative
words. Since this approach focuses on a single
sentence parse graph at a time, it is unable to detect
plausible cross-sentence relations, i.e, the cases in
which the two candidate entities belong to differ-
ent sentences. As discussed by Kim et al. (2011),
detecting such relations is a major challenge for
relation extraction systems. We simply exclude
any cross-sentence relations from training, devel-
opment and test sets.” Table 1 summarizes the
statistics of the data that is used for building our
relation extraction system after removing cross-
sentence relations.

2.3.1 Preprocessing

For preprocessing, we use the preprocessing
pipeline of the TEES system (Bjorne and
Salakoski, 2013) which automates tokenization,
part-of-speech tagging and sentence parsing.
TEES runs the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The resulting phrase
structure trees are then converted to dependency
graphs (nonCollapsed variant of Stanford Depen-
dency) using the Stanford conversion tool (version
2.0.1) (de Marneffe et al., 2006).

2.3.2 Relation extraction system architecture

The architecture of our deep learning-based rela-
tion extraction system is centered around utiliz-
ing three separate convolutional neural networks
(CNN): for the sequence of words, the sequence of

*Official evaluation results on the development and test
data are of course comparable to those of other systems: any
cross-sentence relations in the development/test data count
against our submissions as false negatives.
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POS tags, and the sequence of dependency types
(the edges of the parse graph), along the SDP con-
necting the two candidate entities (see Figure 1).
Even though the parse graph is directed, we re-
gard it as an undirected graph and always traverse
the SDP by starting the path from the BACTERIA
entity mention to the HABITAT/GEOGRAPHICAL,
regardless of the order of their occurrence in the
sentence. Evaluation against the development set
showed that this approach leads to better general-
ization in comparison with simply traversing the
path from the first occurring entity mention to the
second (with/without considering the direction of
the edges).

The structure of each CNN is similar: the words
(or POS tags or dependency types) in the sequence
are mapped into their corresponding vector repre-
sentations using an embedding lookup layer. The
resulting sequence of vectors is then forwarded
into a convolutional layer which creates a convo-
lution kernel that is applied on the layer input over
a single spatial dimension to produce a tensor of
outputs. These outputs are then forwarded to a
max-pooling layer that gathers information from
local features of the SDP. Hence, the three CNNs
produce three vector representations.

Subsequently, the output vectors of the CNNs
and two 1-hot-encoded entity-type vectors are
concatenated. The first entity-type vector repre-
sents the type of the first occurring entity in the
sentence (BACTERIA, HABITAT or GEOGRAPH-
ICAL), and the other is used for the second one.
The resulting vector is then forwarded into a fully
connected hidden layer and finally, the hidden
layer connects to a single-node binary classifica-
tion layer.

For the word features, we use a vector space
model with 200-dimensional word embeddings
pre-trained by Pyysalo et al. (2013). These are
fine-tuned during the training while the POS-tag
and dependency type embeddings are learned from
scratch after being randomly initialized.

Based on experiments on the development set,
we have set the dimensionality of the POS tag em-
beddings to 200, and for dependency types to 300.
For all convolutional layers, the number of filters
has been set to 100 and the window size (filter
length) to 4. Finally, dimensionality of the hid-
den layer has been set to 100.The ReLU activation
function is applied on the output of the convolu-
tional layers while we apply sigmoid activation to
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Figure 1: Proposed network architecture.

the output of the hidden layer.

2.3.3 Training and optimization

We use binary cross-entropy as the objective
function and the Adam optimization algorithm
(Kingma and Ba, 2014) for training the network.
Applying the dropout (Srivastava et al., 2014) with
rate of 50% on the output of the hidden layer is the
only network regularization method used to avoid
overfitting.

When the number of weights in a neural net-
work is high and the training set is very small (e.g.,
there are only 524 examples in the BB3-event
training set), the initial random state of the model
can have a significant impact on the final model
and its generalization performance. Mehryary
et al. (2016) have reported that the F-score on the
development set of BB3-event task can vary up to
9 percentage points based on the different initial
random state of the network.

To overcome this problem, we implement the
simple but effective strategy proposed by them,
which consists of training the neural network
model 15 times with different initial random
states, predicting the development/test set exam-
ples and aggregating the 15 classifiers’ predictions
using a simple voting algorithm.

For each development/test example, the voting
algorithm combines the predictions based on a
given threshold parameter ¢: the relation is voted
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to be positive if at least ¢ classifiers have predicted
it to be positive, otherwise, it will be considered as
a negative. Obviously, the lowest threshold value
(t = 1) produces the highest recall and lowest pre-
cision and the highest threshold (¢ = 15) produces
the highest precision and lowest recall and the aim
is to find be best threshold value which maximizes
the F-score.

Our experiments on the development set (us-
ing the proposed network architecture) showed
that for the BB3-event task the optimal results
are achieved when we train the networks for 2
epochs and set the threshold value to 4, and for the
BB3-event+ner task, when we train the networks
for 2 epochs and set the threshold value to 3.

3 Results and discussion

3.1 Named entity detection

For the named entity detection task, we obtain
the baseline performance by training NERsuite for
each entity-type independently. As shown in Ta-
ble 2, the F-scores for BACTERIA, GEOGRAPH-
ICAL and HABITAT are 0.713, 0.516 and 0.482
respectively. The baseline performance of HABI-
TAT and GEOGRAPHICAL models is significantly
lower than BACTERIA.

For all entities, adding dictionary features im-
proves the performance of the model. A substan-
tial improvement in F-score is found for GEO-
GRAPHICAL where the performance is increased



Entity/Experiment  Precision Recall F-score
Bacteria

BB3 0.787 0.652  0.713
BB3 + dict 0.833 0.697  0.759
BB3 + tfidf 0.793 0.660  0.720
BB3 + tfidf + dict 0.822 0.717  0.766
BB3 + BB2 + dict 0.902 0.713  0.796
BB3 + BBI +dict 0.893 0.721  0.798
Habitat

BB3 0.589 0.407 0482
BB3 + dict 0.649 0465  0.541
BB3 + tfidf 0.697 0.482  0.570
BB3 + tfidf + dict 0.715 0.520  0.602
BB3 + BB2 + dict 0.560 0.500  0.529
Geographical

BB3 0.667 0421 0516
BB3 + dict 0.719 0.605  0.657
BB3 + SNER 0.694 0.658  0.676
BB3 +dict + SNER  0.788 0.684  0.732
BB3 + BB2 + dict 0.903 0.737  0.812

Table 2: The performance of our named entity de-
tection system on BACTERIA, HABITAT and GE-
OGRAPHICAL mentions using internal evaluation
system. The models are evaluated on the BB3 de-
velopment data.

by more than 14pp compared to 6pp and Spp for
HABITAT and BACTERIA, respectively. Adding
fuzzy matching features further improves the F-
score for HABITAT by more than 12pp compared
to 8pp for BACTERIA. This result shows that hav-
ing both domain knowledge and relaxed matching
criteria can significantly enhance the model per-
formance.

We improve equally the baseline performance
for GEOGRAPHICAL by adding features from
SNER tagging. The increase in F-score, 0.657
versus 0.676, is about the same as independently
adding UMLS-geographical area dictionary fea-
tures. Further increase in F-score is achieved by
combining both features, likely due to the ex-
panded coverage of geographical names.

The BB3 corpus is relatively small in terms of
entity frequency and the number of unique entities.
We explore the possibility of increasing model
performance through adding additional training
data from previously organized BB Shared Tasks
(i.e, BB1 (Bossy et al., 2011) and BB2 (Bossy
et al., 2013)). Annotations for BACTERIA men-
tions are available in both BB1 and BB2 Shared
Tasks and we thus train NERsuite models by
adding these annotations to the training data. The
results show that the models, trained with addi-
tional datasets, achieve higher performance. BB1
provides a slightly better F-score than BB2, 0.798
vs 0.796.
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For GEOGRAPHICAL and HABITAT entities,
compatible annotations are only available from
BB2 (Bossy et al., 2013), subtask 2. We thus train
NERsuite for both HABITAT and GEOGRAPHI-
CAL by using combined BB3 and BB2 data. The
result for GEOGRAPHICAL is similar to the one
observed with BACTERIA and additional data can
increase the model F-score by more than 15pp.
However, the result for HABITAT is different as
F-score slightly drops from 0541 to 0.529. The
best NER model for HABITAT thus remains un-
changed.

Finally, we train our final model by combining
training and development datasets and use hyper-
parameters obtained from the best performing sys-
tem on development dataset. The official evalua-
tion of the NER task jointly with either catego-
rization or event extraction system is discussed in
Section 3.2 and Section 3.3, respectively.

3.2 Categorization

To analyze our categorization approaches, we
evaluate their performance on the official develop-
ment set. During the development we used accu-
racy for evaluating the effects of different hyper-
parameters and preprocessing steps. To get com-
parable results to previous systems we, however,
report the results in this paper using the precision
scores from the official evaluation service. As the
used ontologies form hierarchical structures, the
official evaluation penalizes the incorrect predic-
tions based on the distance from the gold standard
annotations, whereas our internal accuracy evalua-
tion measures exact matches. Our accuracy scores
and the official evaluation seem to correlate to the
level that all improvements validated using the ac-
curacy score also improved the performance ac-
cording to the official evaluation.

The performance of our system and various pre-
processing steps are shown incrementally in Ta-
ble 3. As a baseline system we use TFIDF bag-
of-words representations without any of our pre-
processing steps. By simply switching to charac-
ter level representations the precision is increased
by 1.3pp for HABITAT and 14.1pp for BACTERIA
mentions.

Adding the abbreviation expansion step further
improves precision for BACTERIA by 14.1pp, but
does not influence HABITAT entities as most likely
there are no abbreviated mentions in this category.
The acronym expansion has a lesser, but still no-




ticeable impact and improves precision for BAC-
TERIA by 4.9pp. However, applying this method
to HABITAT entities decreases the performance by
4.5pp and is thus left out in the final system for this
entity type. This is probably due to the fact that we
consider all tokens with less than 5 characters to
be acronyms, which seems to hold for BACTERIA
mentions, but is a bad assumption for HABITAT
entities. The final preprocessing step, stemming,
improves the performance on HABITAT entities by
mere 1.3pp, but has a negative impact on BACTE-
RIA and is left out for this entity type in the final
system.

The results on the official test set are consis-
tently lower than on the development set for both
entity types (see Table 4), suggesting that the
hyperparameters selected based on the develop-
ment set might have been slightly overfit on this
data. However, our system is able to outperform
BOUN (Tiftikci et al., 2016), the winning system
from the BioNLP’16 BB3 Shared Task, by 1pp,
1.5pp and 1.2pp on HABITAT, BACTERIA and all
entities respectively.

Since the BB3 tasks do not evaluate named en-
tity recognition independently, but only in con-
junction with either categorization or event ex-
traction, we also report the official numbers for
the BB-cat+ner task in Table 5. In this com-
bined evaluation our system is not able to reach
the performance level of the state-of-the-art sys-
tem Taglt (Cook et al., 2016), but does outperform
the other systems which participated in the given
subtask.

Our combined system is also performing clearly
worse on the test set than on the development set.
Unfortunately, due to the test set being blinded,
we are unable to specify the exact cause for this.
However, the official evaluation service does pro-
vide relaxed evaluation modes where e.g. entity
boundaries are ignored, i.e. the evaluation fo-
cuses on the categorization task. Based on these
evaluations our categorization system seems to
perform on the same level on both development
and test sets, but the performance of our NER
model drops, especially for the BACTERIA men-
tions. This might be simply due to overfitting on
the development set, but requires further investi-
gation.
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Habitat Bacteria Overall
BOW TFIDF 0.634 0.531 0.568
Char TFIDF 0.647 0.672 0.656
+ abbreviations 0.647 0.813 0.705
+ acronyms 0.602 0.862 0.693
+ stemming 0.660 0.858 0.729
Final system 0.660 0.862 0.731

Table 3: Evaluation of our categorization sys-
tem with different preprocessing steps compared
to a baseline system with TFIDF weighted bag-
of-words (unigrams) representations. The scoring
is produced by the official evaluation service. Any
added processing step, which decreases the perfor-
mance is left out for the given entity type for the
following experiments.

Habitat Bacteria Overall
Our system 0.630 0.816 0.691
BOUN 0.620 0.801 0.679

Table 4: Comparison of our entity categoriza-
tion system and the best performing system in
BioNLP’16 BB3 Shared Task on the test set using
the official evaluation service.

Habitat Bacteria Overall
Development set
Our system 0.645 0.377 0.553
Taglt 0.511 0.303 0.439
Test set
Our system 0.804 0.706 0.766
Taglt 0.775 0.399 0.628

Table 5: Official results for the combined evalu-
ation of named entity recognition and categoriza-
tion compared against the state-of-the-art system.
The results are evaluated in slot error rate (SER),
i.e. a smaller value is better. The scores for the
Taglt system are as reported in their paper.

3.3 Event extraction

As discussed earlier, there are two tasks in the
BB3 which involve extracting the relations be-
tween BACTERIA and HABITAT/GEOGRAPHICAL
entities: (1) The BB3-event task, for which all
manually annotated entities are given (even for
the test set). This task aims to assess the per-
formance of relation extraction systems; (2) The
BB3-event+ner task, for which, entities for the test
set are hidden and the aim is assessing the joint
performance of the NER and the relation extrac-
tion systems.

It should be highlighted that the performance
of the NER system has a direct impact on the
relation extraction system and subsequently on
the performance of an end-to-end system for the



BB3-event+ner task. On one hand, if the NER
system produces extremely low recall outputs, the
relation extraction system will fail to extract some
of the valid relations, simply because it only inves-
tigates the existence of possible relations among
the given entities. On the other hand, if the NER
system provides high recall but very low precision
predictions, this means that words mistakenly de-
tected as valid entities are given to the relation
extraction system. For each given entity, the re-
lation extraction system pairs it with other pro-
vided entities in the sentence and tries to classify
all candidate pairs. Hence, invalid entities will
lead to generation of candidate pairs in which one
or even both of the entities are actually invalid.
Since the relation extraction system is trained on
valid entity pairs, i.e., (BACTERIA,HABITAT) or
(BACTERIA,GEOGRAPHICAL), it can easily pro-
duce a plethora of false-positives and hence, its
precision will dramatically drop.

To summarize, if the NER system performance
is low (low precision and/or low recall), even a
very high-performance relation extraction system
will not be able to compensate. Thus, when build-
ing an end-to-end system, the joint performance
of NER and relation extraction should be assessed
since individual performances do not reflect how
efficiently the system will work in real-world ap-
plications.

The official performance of our relation extrac-
tion system alone when evaluated against the test
set of the BB3-event task is 0.512 measured in F-
score (0.444 recall and 0.605 precision), achieving
the third place among Shared Task participants for
this task.

Dataset Overall Habitat Geography
Development set

With sub-optimal 0423 0390 0.576
entities

With optimal 0429 0395 0.604
entities

Test set

With sub-optimal 0372 0388 0207
entities

With optimal 0381 0386 0319
entities

Table 6: Combined performance of our named en-
tity recognition and event extraction systems on
the event+ner task reported in F-score as measured
by the official evaluation service.

For the BB3-event+ner task, the official results
on the development and the test set are given in Ta-
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ble 6. As discussed earlier, to increase the perfor-
mance of the NER system, we combine the BB3
with older BB datasets. This leads to the best pre-
diction performance (denoted as optimal). Thus,
we report and compare the overall performance
of the end-to-end system when we use these en-
tities. To establish a fair comparison with previ-
ously published systems we also report results for
models trained only on the BB3 (denoted as sub-
optimal). As Table 6 shows, using previous BB-
ST data for training the NER leads to 3pp increase
in F-score of (BACTERIA,GEOGRAPHICAL) rela-
tions on the development set and about 11pp for
the test set, probably due to the drastically in-
creased performance for GEOGRAPHICAL entity
detection. Unfortunately, since there are much
less (BACTERIA,GEOGRAPHICAL) relations than
(BACTERIA,HABITAT) relations in the data, our
approach increases the overall F-score only by 1pp
for the test set.

Table 7 compares the performance of our end-
to-end system with the winning team in the
BB3-event+ner task (LIMSI, developed by Grouin
(2016)). As it can be seen in the table, our sys-
tem outperforms the winning team by 19pp in F-
score, achieving the new state-of-the-art score for
the task. Even if we solely rely on BB3 data for the
NER system, the improvement is 18pp in F-score.
We emphasize that no other data than BB3 is used
for training/optimization of our relation extraction
system in any way.

Teams F-score Recall Precision SER

LIMSI 0.192  0.191 0.193  1.558

Our system 0.381  0.292 0.548 0.891
Table 7: Official evaluation results for BB3-

event+ner test data of our system compared to
LIMSI, the winning team in the Shared Task.

4 Conclusions and future work

In this work, we introduced an open-source end-
to-end system, capable of named-entity detec-
tion/normalization and relation extraction to ex-
tract information about bacteria and their habitats
from text. Our system is trained and evaluated on
the BioNLP Shared Task 2016 Bacteria Biotope
data.

According to the official evaluation, our entity
detection and categorization system would have
achieved the second place in BB3. Compared to
the best performing system on cat+ner, Taglt, we




consider that our approach on NER can still be
improved, especially for HABITAT entities. First,
we consider employing a post-processing step in
order to recover embedded entities which are not
currently handled by NERsuite. An effective post-
processing step should have a substantial impact
on our NER system as the embedded entities ac-
counted for over 10% of all HABITAT mentions.

Our categorization system outperforms the best
performing system of BB3 by 1.2pp in the offi-
cial evaluation, constituting the new state-of-the-
art for this task. Our system also relies less on
rule-based or heuristic preprocessing steps and
uses the same general approach for both BACTE-
RIA and HABITAT mentions suggesting that it will
be more adaptable for new entity types.

As 9.6% of the HABITAT entities in the official
training set have more than one gold standard on-
tology annotation whereas our current system is
only assigning a single concept for each entity, one
future work direction is to assess different ways of
associating entities with multiple concepts. In the
simplest form this could be implemented by defin-
ing a similarity threshold instead of selecting only
the best matching concept.

Since the character level ngrams resulted in sig-
nificantly better performance than our word level
baseline, the exploration of character level neural
approaches is also warranted for the categorization
task and will be tested in the future.

Official evaluation shows that the joint perfor-
mance of entity detection and relation extraction
of our end-to-end system outperforms the winning
team by 19pp on F-score, establishing a new top
score for the event+ner task. In this work we did
not use previous BB Shared Task data for training
the relation extraction system. However, as a fu-
ture work we would like to investigate the effect
of utilizing previous BB Shared Task data.

As a future work, we would like to run our sys-
tem on large-scale, on all PubMed abstracts and
PubMed Central Open Access full articles to form
a publicly available knowledge base.

We highlight that the methods discussed and
used in this work are not only applicable for BB3
tasks and can be beneficial for other entity detec-
tion/normalization and relation extraction projects
as well.
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Abstract

We present the results from our participation in the 2nd Social Media Mining for Health Applications Shared Task —
Task 2. The goal of this task is to develop systems capable of recognizing mentions of medication intake in Twitter.
Our best performing classification system is an ensemble of neural networks with features generated by word- and
character-level convolutional neural network channels and a condensed weighted bag-of-words representation. A
relatively strong performance is achieved, with an F-score of 66.3 according to the official evaluation, resulting in the
5th place in the shared task with performance close to the best systems created by other participating teams.

Introduction

Pharmacovigilance is the science of detecting, assessing and preventing drug-related adverse effects. A central focus
and challenge is to detect adverse drug reactions (ADRs), which are undesired and harmful effects resulting from
taking medications. Traditionally, ADRs are identified and recorded by health care professionals, and a part of their
work includes weighting the risks and benefits of using medications. However, the number of documented ADRs is
limited and it is believed that some of the more rare ADRs have not been revealed yet. As an alternative approach,
pharmacovigilance has turned to social media. Social media represents a valuable forum for drug safety surveillance
where text-mining techniques can be applied to extract potentially ADR-related events from a large population.

Our team participated in Task 2 of the 2nd Social Media Mining for Health Applications Shared Task at AMIA 2017.
The goal of this shared task was to develop systems capable of classifying the mentions of medication intakes in
tweets. Each of the provided tweets were to be assigned with one of the following three classes: personal medication
intake, possible medication intake or non-intake. This is an important preliminary task for extracting ADRs from social
media, since it can filter out the majority of tweets that mention drugs without any indications of personal intake. We
participated with classifiers based on support vector machines (SVMs) and neural networks (NNs), as described in
more detail in the Method section.

Data

The organizers provided a training dataset with manually assigned labels (intake, possible intake, non-intake) for
each tweet. The intake class is defined as clearly expressing a personal intake of medication, whereas the possible
intake is more ambiguous, yet still suggesting an intake by the tweet writer. The non-intake class includes the rest
of the tweets, all of which include a mention of a drug, but refer to an intake by another person or discuss the drugs
in general. Approximately 50% of the data belongs to the non-intake class, whereas the intake and possible intake
classes constitute 19% and 31% of the data, respectively.

Due to the data sharing restrictions of Twitter, the organizers only provided the IDs of the tweets instead of their actual
content. Since we started investigating this task much later than the data was released, we were only able to obtain
the contents for 7444 tweets out of the total 8000 annotated tweets as some of the content had been already removed
by the Twitter users, i.e. we had 7% less training data than teams who were involved in the shared task since the very
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beginning. The organizers also provided a separate development dataset, which consists of 2260 annotated tweets, of
which we also lost roughly the same proportion. In the Results and Discussion section we evaluate the impact of the
lost data in more detail.

Method

For our baseline approach we form term frequency—inverse document frequency (TF-IDF) weighted sparse bag-of-
words (BOW) representations for all given tweets'. These representations are not only constructed for single tokens,
but also token bigrams, trigrams and character n-grams of length 1 to 4. These representations are then fed as features
to a linear SVM classifier?. The regularization parameter is selected to optimize the micro-averaged F-score of intake
and possible intake classes, the official evaluation metric, on the development set. For the final submission in the
shared task we merge the training and development sets and train the system on the combined dataset.

As the sparse representations are not able to generalize well to unseen vocabulary, we also test various NN approaches
on this task. The final system is based on an ensemble of convolutional neural networks (CNNs)? and utilizes word
and character information.

Each tweet is represented as two separate sequences: words and characters, both of which are processed with separate
convolutional channels. Each element in these sequences is represented with a latent feature vector, i.e. an embedding.
The word embeddings are initialized using word2vec* trained with approximately 1 billion drug related tweets as
provided by Sarker and Gonzalez’. We also tested GloVe vectors trained on 2B general domain tweets®, but these
experiments resulted in a decreased performance. The character embeddings are initialized randomly, but the network
is allowed to backpropagate to both word and character embeddings.

The convolutional kernels are applied on the aforementioned two sequences using sliding windows. The outputs are
subsequently max-pooled and concatenated. The concatenated vectors are further fed through two densely connected
layers, the latter having the output dimensionality corresponding to the number of labels in the data set with softmax
activation.

In addition to the convolutional layers we utilize the same TF-IDF weighted sparse vector representations as in the
baseline method. As these representations have dimensionality in the order of hundreds of thousands, we first densify
the representations to 4000 dimensional vectors using truncated singular-value decomposition (SVD)’. These vectors
are concatenated alongside the CNN outputs. This dimensionality reduction is performed mainly due to computational
reasons since the approach was prototyped on a consumer grade GPU with limited amount of memory. Projecting the
sparse vectors to 4K dimensions preserves 74% of the variance in the data and may have caused a minor performance
loss.

The network is trained on the official training data using the Nadam optimization algorithm. The network is regularized
with dropout rate of 0.2 after the first dense layer, no explicit regularization is applied on the convolutional part of the
network. The training is stopped once the performance on the development set is no longer improving, measured with
the official evaluation metric. Table 1 shows the comprehensive list of used hyperparameters.

Hyper-parameter Optimal value Tested Values
Character embedding dimensionality 25 [25,50,75,100]
Word embedding dimensionality 400 pre-trained
Character CNN, number of filters per window size 50 [50,100,150,200]
Character CNN, window sizes [2,3.4,5] [2,3.4,5]

‘Word CNN, number of filters per window size 200 [100,200,300]
Word CNN, window sizes [2,4] any subset of [2,3,4,5]
Dimensionality of first dense layer 400 [100,200,300,400,500]
Dropout rate 0.2 [0,0.2,0.5]
Activation functions tanh [ReLU, tanh, sigmoid]

Table 1: The optimal and tested hyperparameter values of the CNN-based system.




Training the network on this dataset resulted in relatively large variance in the measured performance, caused by the
random initialization of the weights. Thus we stabilize the system by training 15 networks, all identical apart from the
initial (random) weights. We then select the optimal subset of these networks, as measured on the development set,
for the final system where the final predictions are created by summing the confidences of all selected networks and
choosing the label with the highest overall confidence. The final system included a subset of 6 neural networks out of
the 15. We note that this approach may potentially overfit on the development set.

Other NN architectures experimented and tested during this shared task include various versions of BiLSTM and
attention based networks®® but none of these experiments resulted in better performance than the CNN architecture
described in detail. However, due to the time limits of the shared task, we cannot reject the possibility of these
approaches being competitive as well.

We also experimented with a way of (pre-)tuning the utilized word embeddings to this specific classification task in
an attempt to give the word-level CNN a better starting point for the training. This was done using the principles
underlying the random indexing (RI)!® method. Unique index vectors are first assigned to each of the three classes
(intake, possible intake and non-intake), and empty context vectors are assigned to each word in the data set. When
traversing the training set, each word, in each tweet, have the index vector associated with the tweet’s class added to
their context vector. After training, the resulting word context vectors are normalized to unit length and summed with
the corresponding word embeddings/vectors generated using word2vec® (also normalized to unit length). To make the
signal provided by the RI approach have a modest impact on the conjoint vectors, these vectors are first multiplied with
a weight of 0.3. However, the described approach did not seem to result in a positive performance impact, compared
to using the original word2vec generated embeddings.

We also tested the potential benefits of including part-of-speech (POS) tags, which were produced using the Twitter
NLP toolkit'!. The sequences of POS tags were treated in similar fashion to the word and character sequences.
Although the benefits of POS tagging are intuitive as for instance verbs in past tense are twice as common in the intake
class as in the possible intake, we did not see any increase in the performance when POS tags were utilized.

Results and Discussion

We measure the performance of our systems using micro-averaged F-score of intake and possible intake classes,
following the official evaluation, and conduct all our experiments on the official development set. However, the
reported results are not directly comparable with other systems as we only had access to a subset of the original data
(see the Data section). The results on the test set are as reported by the organizers and thus comparable to other
systems.

The overall performance of our baseline (i.e. SVM) and CNN-based systems are relatively strong, resulting in F-
scores of 69.6 and 72.7 on the development set respectively (see Table 2). We suspect the main advantage of the CNN
approach to be the generalizability of the word embeddings, which leads to the 3.1pp improvement in F-score. We
also briefly tested a nonlinear multilayer perceptron with the same BOW features as used in the SVM, which led to a
slight improvement over using the linear SVM model, but was not able to outperform our CNN-based system. Thus
the model complexity alone does not explain the performance difference between the SVM and CNN approaches.

An unexpected observation is that the intake class seems to be harder to predict than the possible intake, although eye-
balling the data suggests otherwise and the annotation guidelines provide more precise definition for the intake class.
Also for the CNN-based system it seems that the precision and recall are rather well balanced, thus no performance
improvements could have been gained through further fine tuning of these metrics.

The test set results follow the same patterns as the development set evaluation: SVM and CNN systems reach F-scores
of 64.2 and 66.3, respectively. Thus it seems that either the test set is somewhat harder than the development set or
both of the systems are overfitting equally on the development set, even though the implemented ensemble system
with CNNs could have caused greater overfitting. According to the official evaluation, our best system loses to the
winning system by 3pp in F-score, the difference being roughly the same in both precision and recall. This places our
system in the Sth position in the shared task.

By inspecting the confusion matrices it can be concluded that our classifiers tend to confuse intake class with both



Development set Test set
Precision Recall F-score Precision Recall F-score

Intake 70.5 64.5 67.4
SVM Possible Intake 733 68.6 70.9
Overall 72.3 67.0 69.6 69.2 60.1 64.3
Intake 70.9 71.3 71.1
CNN Possible Intake 76.3 71.1 73.6
Overall 74.2 71.2 72.7 70.1 63.0 66.3
InfyNLP  Overall 72.5 66.4 69.3

Table 2: Overall performance of our SVM and CNN-based systems. The development set results are measured with
our own evaluation whereas the test set scores are as reported by the organizers. The class specific performance was
not evaluated by the organizers and has been thus left out from the table. For comparison we have added the results of
the best performing team: InfyNLP.

possible intake and non-intake classes equally often, whereas the possible intake is more often confused with the
non-intake class.

As we only had access to a partial training data, we try to estimate how much the performance of the systems could
have been improved with additional data. To accomplish this, we train the CNN-based system with different subsets
of the training data, starting from 5K training examples and incrementally increasing the size in steps of 300 up to the
whole training data available to us. After every increment we evaluate the system’s performance on the development
set. To reduce the variance caused by different initial random weights, we train 5 networks with each subset of
the training data, and calculate the mean performance for each subset. Fitting a linear regression on the resulting
measurements shows that in this region, the learning curve is fairly linear and decent performance improvements can
be gained by adding more training data. Assuming a performance increase equal to the slope of the fitted regression
line, having the full training dataset would have increased our performance by 0.7pp in F-score, placing our system
close to the top 3 teams in the shared task.

5000 5500 6000 6500 7000 7500 8000

Training examples

Figure 1: Influence of the number of training examples to the performance of the CNN system as evaluated on the
development set.

As most approaches we tested, as well as the systems created by other teams, resulted roughly in the same performance
level, we wanted to assess what would be a theoretical performance limit for this task. To this end, we manually
annotated a random subset of 100 tweets from the development set and evaluated the annotations against the gold
standard. Surprisingly our manual annotations reached only an F-score of 59.3, notably lower than the developed
systems or what the official inter-annotator agreement would suggest'>. This indicates that the task is complex even
for humans and deep understanding of the annotation guidelines is required for high quality annotations.




Conclusions and Future Work

‘We have shown that strong results in detecting tweets describing personal medication intake can be achieved using
convolutional neural networks and word embeddings. However, more traditional methods relying on bag-of-words
features and linear classifiers also result in competitive performance. Considering that such a system can be imple-
mented in less than an hour with the existing tools and libraries, and is easily interpretable, the simpler methods may
be a more practical choice in many use cases.

Since the amount of training data for this task is fairly limited, we plan to explore various approaches for pretraining
NN classifiers as a future task. The goal here is to find a suitable proxy task related to the domain for initializing
the network before the actual training. Such a task could be, for instance, sentiment detection as many of the tweets
expressing drug intake also express a certain sentiment about the condition of the user or the effects of the drug.
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Abstract

Biomedical researchers regularly discover new interactions between chemical
compounds/drugs and genes/proteins, and report them in research literature. Having
knowledge about these interactions is crucially important in many research areas such
as precision medicine and drug discovery. The BioCreative VI Task 5 (CHEMPROT)
challenge promotes the development and evaluation of computer systems that can
automatically recognize and extract statements of such interactions from biomedical
literature. We participated in this challenge with a Support Vector Machine (SVM) system
and a deep learning-based system (ST-ANN), and achieved an F-score of 60.99 for the
task. After the shared task, we have significantly improved the performance of the
ST-ANN system. Additionally, we have developed a new deep learning-based system
(I-ANN) that considerably outperforms the ST-ANN system. Both STANN and I-ANN
systems are centered around training an ensemble of artificial neural networks and
utilizing different bidirectional Long Short-Term Memory (LSTM) chains for representing
the shortest dependency path and/or the full sentence. By combining the predictions of
the SVM and the I-ANN systems, we achieved an F-score of 63.10 for the task, improving
our previous F-score by 2.11 percentage points. Our systems are fully open-source
and publicly available. We highlight that the systems we present in this study are not
applicable only to the BioCreative VI Task 5, but can be effortlessly re-trained to extract
any types of relations of interest, with no modifications of the source code required, if
a manually annotated corpus is provided as training data in a specific file format.
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Introduction

BioCreative VI Task 5 challenge (hereinafter referred to
as the ‘shared task’), focuses on extraction of relations
between chemical compounds/drugs and genes/proteins,
stated in biomedical texts (1). The CHEMPROT corpus
that provides such annotations is used as the training and
test data in this task. The aim of the task is to promote the
development of systems for extracting such relations for
use in precision medicine, drug discovery and basic biomed-
ical research (http://www.biocreative.org/tasks/biocreative
-vi/track-5/).

This shared task follows the well-established approach
of pairwise relation extraction in the field of biomedical
text mining. protein—protein interactions (PPI) were one
of the extraction targets in a number of shared tasks
and datasets. The BioCreative II and BioCreative III
challenges (2, 3) focused on pure PPI extraction, while
the BioCreative V CDR Task focused on chemical-
induced disease relation extraction (4). The two drug—
drug interaction shared tasks (DDI-2011 and DDI-2013)
focused on the detection of adverse interactions between
pairs of drugs (5, 6), and the Bacteria-Biotope relation
extraction tasks aimed at extracting the location of bacteria
from scientific web pages or PubMed abstracts (7-9).
Finally, Pyysalo et al. (10) have preprocessed and unified
five publicly available protein—protein interaction corpora
(http://mars.cs.utu.fi/PPICorpora/), in order to facilitate
seamless development and comparison of biomedical
relation extraction methods. Among these tasks, DDI-2013
(6) has become popular for assessing the performance
of relation extraction methods, mainly because it has a
relatively large and challenging corpus.

We approach the BioCreative VI Task 5 challenge as
a classification task where we classify each valid pair of
entities as one of the annotated relation types or as a nega-
tive. We have developed three different systems to address
the task. The first system relies on a rich set of features
and a linear support vector machine (SVM) classifier (11).
The two other systems are based on deep learning and
require less feature engineering. Our shared task artificial
neural network (ST-ANN) system utilizes an ensemble of
neural networks, each having three long short-term memory
(LSTM) chains (12), for representing the words, part-of-
speech (POS) tags and dependency types (DTs) (i.e. edges
in the sentence parse graph) along the shortest depen-
dency path (SDP) connecting the two candidate entities.
Our improved ANN (I-ANN) system is also an ensemble
of neural networks, each having three LSTM chains for
representing the words, POS tags and DTs along the SDP
(similar to the ST-ANN) and a bidirectional LSTM (forward
and backward chains) for learning a representation of the
whole sentence and the two entities of interest in it. We have

also experimented with several methods for combining the
predictions of these systems, with the goal of increasing the
overall performance.

We participated in the shared task with the SVM and
ST-ANN systems (13). On the development set, our system
combination approach outperformed the two individual
systems, achieving an F-score of 61.09. On the test set, our
SVM system achieved the highest result of our submissions
with an F-score of 60.99. After the shared task, we have
significantly improved the performance of the ST-ANN
system. In addition, we have developed the I-ANN sys-
tem, which considerably outperforms the ST-ANN system.
Finally, by combining the predictions of the SVM and I-
ANN systems, we achieved an F-score of 61.46 on the
development set, with a corresponding F-score of 63.10 on
the test set, 2.11 percentage points (pp) higher than our best
test set submission during the shared task. Here we discuss
all approaches and results in detail.

Background

In all the aforementioned biomedical relation extraction
tasks (including BioCreative VI Task 5), the named entities
are manually annotated and given as known data to the
participants, hence the aim is to build methods that are
able to automatically detect statements of relations among
known named entities in the given texts. In addition to the
named entities, the training data for these tasks also include
manually annotated relations, making these tasks ideal for
the development of supervised relation extraction methods.
These machine learning-based methods utilize the provided
training data to train a classifier—e.g. an SVM, an ANN or
a Naive Bayes classifier—capable of detecting statements of
relations in texts.

According to Zhang et al. (14), supervised relation
extraction methods can be broadly divided into three main
groups: (i) feature-based methods, (ii) kernel-based methods
and (iii) deep learning-based methods.

Feature-based methods extract a series of relevant
features from the text in order to train a relation
extraction classifier. In these methods, each entity pair is
represented with a corresponding numerical feature vector
that is further used for either training the classifier or
for detection of the relation(s) (14). The list of features
usually includes (but is not necessarily limited to) bags-of-
words/lemmas/POS/DTs or their n-grams in the sentence
or along the SDP. The Turku Event Extraction System
(TEES) (15)—previously developed by members of our
research group—is an example of such a system, using a
rich set of features to build an SVM classifier. TEES achieved
62.99 F-score in the DDI-2011 task (5), 58.7 F-score in the
DDI-2013 task (6) and the state-of-the-art performance
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(42.00 F-score) in the Bacteria-Biotope 2013 relation
extraction task (8). Another example is the VERSE system,
developed by Lever and Jones (16), which obtained
the state-of-the-art result with an F-score of 55.8 in
the Bacteria-Biotope 2016 relation extraction task (9).
Similarly to TEES, VERSE also extracts a rich set of features
in order to train a linear SVM, but utilizes a feature selection
component for optimization. Finally, Raihani et al. (17)
achieved the impressive F-score of 71.14 on the DDI-2013
corpus with a system utilizing lexical, phrase, verb, syntactic
and auxiliary features.

Kernel-based methods use kernel functions that are able
to directly calculate the similarity between two instances
(i.e. two machine learning examples) to train a relation
classification model (14, 18). In kernel methods, examples
retain their original representation (e.g. as bag-of-words in
the sentence, sentence dependency parse graph or sentence
shallow parse graph) and the kernel method is able to assign
a label to a given novel example by computing and compar-
ing its similarity to all labeled training set examples (14, 18,
19). An advantage of kernel methods is that they can search
a feature space much larger than could be represented
by a feature-based approach, because the kernel functions
can explore an implicit feature space when calculating the
similarity between two examples (19). Kernel functions are
usually used in conjunction with classifiers like SVM and
voted perceptron (20). Several kernel functions have been
suggested and applied for relation extraction. In a bag-of-
features kernel approach, the words in the sentence are
divided into three groups: before, between and after the
two entities. Each group is further represented with a bag-
of-features. Bunescu et al. (21) used this approach to build
three subsequence-kernels for each bag, with the final kernel
function being simply the sum of the three kernels, which
is further used with an SVM classifier for relation classi-
fication. Another popular family of kernels are tree/graph
kernels. Zelenko et al. (18) developed kernels capable of
comparing the similarity of shallow parse trees and used
them with SVM and voted perceptron classifiers for relation
extraction. Culotta et al. (19) extended the previous work
by introducing the ‘Dependency Tree Kernel’ for relation
extraction and showed that their model outperforms bag-
of-words kernel approach by 20 pp. Reichartz et al. (22)
developed the ‘All-Pairs Dependency Tree Kernel’, and the
‘Dependency Path Tree Kernel’ and showed their kernels
with richer structural features significantly outperform all
published approaches for kernel-based relation extraction
from dependency trees. Finally, Airola et al. (23) devel-
oped the ‘All-Paths Graph Kernel’ for biomedical relation
extraction and showed that their method achieves the state-
of-the-art performance on five protein—protein interaction
corpora.

Feature-based methods extensively rely on natural lan-
guage processing (NLP) tools (e.g. tokenizers, POS tag-
gers, lemmatizers, syntactic parsers, etc.) and require heavy
feature engineering to transform the input data into a
‘representation’ (i.e. a feature vector) that can lead to
a successful relation classification. On one hand, feature
engineering is skill-dependent and time-consuming (24), on
the other hand, the errors in the NLP tools are amplified in
the relation extraction systems, negatively impacting their
performance (14). In contrast, the aim in deep learning
approach is to ‘automatically learn’ efficient representa-
tions, suitable for the relation classification task at hand.
Deep learning achieves this by introducing representations
that are expressed in terms of other, simpler representations
and allowing the computer to automatically learn complex
concepts out of simpler concepts (25). For example, the
concept of a sentence can be expressed by phrases, while
phrases are composed of words and syntactical depen-
dencies among them. This allows a modular design and
training of a hierarchy of representations, with the root
as the final representation used for a prediction task. A
key feature is that lower-level representations (i.e. ‘embed-
dings’) can sometimes be pre-trained in advance, in an
unsupervised fashion and with training data other than the
training data available for the prediction task at hand. A
successful example is pre-trained ‘word embeddings’, the
vector representations for words in a language that are
trained on millions of unannotated sentences, so that words
with similar meanings have similar corresponding vectors
in the vector space model (26). Several studies have shown
that integrating pre-trained word embeddings into deep
neural networks (DNNs) can improve the performance of
downstream prediction tasks.

Deep learning-based relation extraction methods have
recently outperformed feature/kernel-based methods on
different corpora. For example, on the DDI-2013 corpus
(6) all top performing methods are based on DNNs
(24). The only exception is the feature-based system of
Raihani et al. (17) with 71.1 F-score, on par with the
recent deep learning-based methods. recurrent neural
networks (RNN) and convolutional neural networks
(CNN) are the two main neural structures that are
extensively utilized in DNNs for achieving state-of-the-
art performance in various NLP and text mining tasks,
such as syntactic parsing, sentence classification, sentiment
analysis, text summarization, machine translation, named-
entity recognition and relation extraction. CNNs are
inherently efficient in learning ‘local’ or ‘position-invariant’
features through discrete convolution with different size
filters (kernels), because they extract the features based
on n-grams of the sentences. In contrast, RNNs can
directly model sequential data, such as the sequence of
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words in sentences (24). LSTM networks (12) and gated
recurrent units (GRUs) (27) are variants of RNNs that
utilize memory cells and/or gating mechanisms to deal
with the vanishing or exploding gradients (28), a problem
associated with RNNs which negatively impacts their
training and prediction performance.

Yin et al. (29) have systematically compared the perfor-
mance of CNNs with LSTMs and GRUs on various NLP
tasks and have shown that the performance of CNN and
LSTM/GRU networks are very close for relation extraction
on the SemEval-2010 corpus (30). However, literature sur-
vey on the DDI-2013 corpus shows that at the moment,
the top three methods on this corpus are based on RNNs
with F-scores higher than those of CNN-based methods.
Lim et al. (31) have achieved the state-of-the-art F-score
of 73.5 with an ensemble of Tree-LSTMSs; Zhou et al. (32)
have achieved 73.0 F-score with position-aware attention-
based bidirectional LSTM networks and multitask learning;
and Zhang et al. (24) have achieved 72.9 F-score using
hierarchical bidirectional LSTM networks. In contrast, the
‘dependency-based CNN’ developed by Liu et al. (33) has
achieved 70.8 F-score, the ‘multichannel CNN’ developed
by Quan et al. (34) has achieved 70.21 F-score and the
‘Syntax CNN’ (SCNN) developed by Zhao et al. (35) has
achieved 68.6 F-score. According to Zhang et al. (24)
the main reason is that the DDI-2013 corpus contains
many long and complicated sentences, and compared to
CNNs, RNN-based models can better learn the long-term
dependence of the sentence that is crucial for capturing the
lexical and syntactic features in the long and complicated
sentences. Since CNNs work based on #n-grams, they can
encounter problems in learning from long sentences or
sentences that have important clues lying far away from
each other. However, we highlight that the performance of a
neural relation extraction system does not boil down only to
the neural network architecture it uses, but also the inputs
it receives, the feature set that it uses and the training and
optimization procedures that are used to train the system.

On the CHEMPROT corpus, the highest F-score (64.10)
in the shared task has been achieved by Peng et al. (36),
with a system combination approach. Their method is an
ensemble of three separate systems: (i) a CNN-based rela-
tion extraction system that receives the sentence sequence
and the SDP sequence as inputs, (ii) an RNN-based system
that utilizes a bidirectional LSTM network to learn from the
full sentence sequence and (iii) an SVM-based system that
generates features based on the full sentence and SDP. This
suggests that combining the power of neural models with
feature-based methods is a promising approach for relation
extraction. We also participated in the shared task with
a system combination approach, utilizing an SVM-based
system and a deep learning-based system (13). After the

shared task we have improved our neural network models,
hence improving our best F-score by 2.11 pps.

Data

The CHEMPROT corpus is a pairwise relation dataset. All
entities are given as known data to the participants, thus the
task is to predict the relations for valid pairs of these entities.
The relations are directed, always connecting a GENE-type
entity (gene or protein) to a CHEMICAL-type entity. A large
set of distinct types are used for annotating the relations, but
these types are combined into 10 groups that are used as the
actual classes for this task. Further, only five of these classes
are taken into account in the task evaluation. The micro-
averaged F-score of the five target classes is the official
metric used for evaluation.

Cross-sentence relations constitute less than 1% of the
total relations in the CHEMPROT training set. In addition,
only 10 pairs in the training set have been labeled with
multiple relation types. Hence, we formulate the task as a
multi-class classification task where we classify each valid
pair of entities as 1 of the 10 annotated relation types or as
a ‘negative’, and we only focus on candidate pairs belonging
to the same sentence.

Methods

We develop three different systems capable of extracting
relations between CHEMICAL and GENE entities. Our first
system relies on a rich set of features and a linear SVM
classifier (11). The two other systems are based on deep
learning and require less feature engineering. Our ST-ANN
system has been developed during our participation in the
shared task, whereas we have developed the I-ANN system
after the shared task. We also combine predictions of the
SVM classifier with either ST-ANN or I-ANN predictions to
boost the F-score, using a simple algorithm that is optimized
on the official development set. In this section we discuss the
details of each approach.

Preprocessing

We use the TEES system (15) to run a preprocessing pipeline
of tokenization, POS tagging and parsing. We convert the
CHEMPROT corpus into the Interaction XML format
native to the TEES preprocessing system. We test different
parses generated using the TEES preprocessor wrappers
for the BLLIP, Stanford converter and SyntaxNet parser
software (37-39). The default parsing pipeline in our exper-
iments consists of BLLIP constituency parsing with the
biomedical domain model of McClosky (40), followed by
conversion to dependencies using the Stanford conversion
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tool (38). We test different variants of the Stanford depen-
dencies (SDs) representation, with the ‘CCprocessed’ vari-
ant being the default unless otherwise stated.

The training data incorporates 10 different types of
relations, five of them being evaluated in the task. We also
define and add a ‘negative’ type for the cases where no
relation exists between the two candidate entities. Hence,
we formulate this relation extraction task as an 11-class
classification problem.

SVM-based system

The SVM-based system used in this work is the TEES (15).
The system is applied as is, with no task-specific modifica-
tions. The TEES system uses the SVM™!" software as the
multi-class classifier implementation (41).

The TEES system has primarily been developed for
the detection of ‘events’ (42), a more complex alternative
to pairwise relation annotations like those used in the
CHEMPROT corpus. Events consist of a trigger word
(usually a verb) and 0-n directed arguments that can be
named entities like proteins, but also other events. In this
manner, events form a complex graph where the named
entities and triggers are the nodes, and the event arguments
are the edges. For detecting events, the TEES system is built
as a pipeline of consecutive classification steps. In the first
step (entity detection), each word token in the sentence is
classified as a trigger or not. In the second phase (edge
detection), directed edges are predicted between all valid
pairs of entities. Since multiple, different events can use the
same word token as their trigger, the third step (unmerging)
is used to ‘pull apart’ such nodes by classifying all valid
trigger and argument combinations as real events or not.
The fourth step (modifier detection) can be used to detect
binary modality modifiers annotated for some events, such
as negation and speculation.

TEES can also be used for pairwise relation extraction
tasks such as the DDI (drug-drug extraction) challenges
(43) or in the current work, the CHEMPROT task. In such
tasks, only the second step (edge detection) of the TEES
pipeline is used. The set of nodes consists of the given named
entities, and relations are predicted for all valid node pairs;
in the case of CHEMPROT all pairs where the first entity is
of type CHEMICAL and the second of type GENE.

For all the steps in the classification pipeline, TEES relies
on a rich feature representation. While most features for
relation detection are generated from the shortest path of
dependencies between the two entities, dependency chains
outside this shortest path, bags-of-words and the linear
order of tokens are also used for generating features, in an
attempt to capture more of the sentence context outside the
direct relation between the two entities of interest.

We test several different forms of parsing and varia-
tions of predicting the CHEMPROT corpus with TEES,
but find that none of these improve performance over
the default approach (see the Shared task results section
for detailed information). In addition we tried using the
DrugBank dataset (44) as additional features. For the three
CHEMPROT corpus representations, the TEES system is
trained with either the default of all 10 classes, with all the
non-evaluated classes merged into a single class or with the
non-evaluated classes entirely removed. For parses, we try
the BLLIP parser with the McClosky biomodel and with all
five types of Stanford conversion, as well as the SyntaxNet
parser.

ST-ANN system

ST-ANN is a deep learning-based relation extraction system
that requires less feature engineering than the SVM system
and is centered around three main ideas: (i) utilizing LSTM
networks instead of simple RNNs, (ii) focusing on the
words along the SDP and (iii) using an ensemble of neural
networks (with identical architectures) instead of a single
neural network, to stabilize the variance in the performance
caused by the random initialization of the network weights.

The ST-ANN system has an architecture similar to the
successful system we have recently developed for extract-
ing bacteria—habitat relations from biomedical texts (45),
but the predictions of the networks in this ensemble are
aggregated using a different approach, more suitable for
multi-class classification. Each neural network in the ST-
ANN ensemble utilizes three separate LSTM chains for
representing the words, representing the POS tags and
representing the DTs (i.e. edges in the parse graph) along
the SDP that connects the two entities. Figure 1 shows the
architecture of one neural network in the ST-ANN ensemble
with an example sentence from the CHEMPROT training
set and its dependency parse graph as the inputs.

Even though standard RNNs are theoretically efficient
sequence learning models, they usually suffer from the van-
ishing or exploding gradients problem (28): if the network
is deep, during the back-propagation, the gradients may
either decay exponentially and cause the learning to become
very slow or stop altogether (‘vanishing gradients’); or
become excessively large, and cause the learning to diverge
(‘exploding gradients’). To address this problem, LSTM
networks (12) and GRUs (27) have been proposed based
on RNNs. LSTM-based networks exploit memory cells and
gating mechanisms while GRU-based models are simpler
and only utilize a gating mechanism. LSTM and GRU
networks are shown to be much more efficient sequence
modelers compared to simple RNNs. For example,
Zhang et al. (24) have compared standard RNNs with



Page 6 of 23 Database, Vol. 2018, Article ID bay120
CHEMICAL GENE
- - . s
Annotated sentence: Rapamycin allosterically inhibits the
Inputs nsubj dobj
uts:
’ e e o
Dependency parse graph: Rapamycin allosterically  inhibits the proteasome.
Shortest path: [ Rapamycin | NN ]4Lllbl_[ inhibits VBZ% proteasome NN
words ! parts of speech } dependencies
1 |
Rapamycin inhibits proteasome i NN VBZ NN i (nsubj«—) (dobj—)
Embeddings ! l l !
1 |
LSTM networks i - i
I |
I | L
Concatenate T

Fully connected

Fully connected

Figure 1. Architecture of one neural network in the ST-ANN ensemble. The figure illustrates the architecture of one neural network in the STANN
ensemble with an example sentence from the CHEMPROT training set and its dependency parse graph as the inputs. The shortest dependency path
which connects the two entities (“Rapamycin” and “proteasome”) in the parse graph is first discovered. The path is traversed from the CHEMICAL
entity to the GENE entity, producing the sequence of words, the sequence of POS tags, and the sequence of dependency types (edges) along the
path. The words, POS tags and dependency types are then mapped into their corresponding vector representations using embedding lookup layers
and then input to three separate LSTM chains. The outputs of the last LSTM units of the three chains are concatenated together and the resulting
higher dimensional vector (i.e. the SDP vector representation) is input to a hidden dense layer. The hidden layer finally connects to the decision

(classification) layer, which has a softmax activation.

LSTMs and GRUs for relation extraction and have shown
that their standard RNN-based model achieves 61.4 F-score
on DDI-2013 corpus, whereas the equivalent GRU-based
and LSTM-based models achieve 72.4 and 72.9 F-score,
respectively, ~11 pps higher than the standard RNN-based
model. In this work, we also use LSTM networks instead of
standard RNN, for capturing the information in the SDP.

The SDP that connects the two entities in the syntactic
parse graph is known to contain most of the relevant
words for expressing the relation between the two entities,
while excluding less relevant and uninformative words (45).
Figure 1 shows an example sentence from the CHEMPROT
training set, its parse graph and the shortest path that
connects the two entities. As can be noticed in the figure,
the SDP for this particular example contains only the sub-
ject ‘Rapamycin’ (the CHEMICAL), the verb ‘inhibits’ and
the direct object ‘proteasome’ (the GENE), whereas less

relevant words (the adverb ‘allosterically” and the article
‘the’) are put aside. Building a relation extraction system
by focusing on the most important words (e.g. words in
the SDP) can lead to good generalization for unseen data.
Based on this observation, many successful feature-based
and deep learning-based relation extraction methods have
been developed (15, 16, 45-49). The ST-ANN system also
generates the features along the SDP. For this aim, we first
assume the parse graph is undirected and find the shortest
path between the two entities (CHEMICAL and GENE),
and always traverse the path from the CHEMICAL entity
to the GENE entity, regardless of the order of the entity
mentions in the sentence. Based on experiments on the
CHEMPROT development set, we notice this approach
results in significantly better generalization for unseen data,
compared to traversing the path from the first occurring
entity mention in the sentence to the second. Besides the
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existing DT edges in the parse graph, we also add an artifi-
cial edge between any two adjacent words of the sentence
(word-adjacency edges). As shown by Quirk et al. (50),
this approach mitigates the parsing errors and increases
accuracy and robustness when the system is confronted
with linguistic variation. For instance, if the parser pro-
duces a graph with more than one connected component,
adding these artificial edges to the parse graph assures the
existence of a path between the two entities. We assign
a distance (weight) of one to DT edges and the distance
assigned to word-adjacency edges is treated as a hyper-
parameter, set (to the value of 5) using the grid-search
optimization procedure described later. We then generate
the features based on the words, POS-tags and DTs in
this path.

As Figure 1 shows, each neural network in the ST-
ANN system utilizes three separate LSTM chains. The
sequences of words, POS tags and DTs are first mapped into
sequences of their corresponding vector representations,
i.e. embeddings, by three separate embedding lookup layers
and then used as input to the three LSTM chains. For words,
we use 200-dimensional pre-trained word embeddings
provided by Pyysalo et al. (51), which have been trained
on the texts of all PubMed titles and abstracts and PubMed
Central Open Access (PMC-OA) full text articles using
the word2vec method (26), whereas POS tag and DT
embeddings are initialized randomly at the beginning of
the training. During the training of our system, word
embeddings are fine-tuned while the randomly initialized
POS and DT embeddings are learnt from scratch. The
outputs of the last LSTM units of the three chains are
concatenated together, the resulting higher-dimensional
vector (i.e. the SDP vector representation) is fed to a fully
connected hidden layer. The hidden layer finally connects
to the decision layer, having an output dimensionality
of 11 (corresponding to the number of classes in the
dataset, plus one for the ‘negative’ class), with the softmax
activation.

We train the aforementioned neural network on the
official CHEMPROT training data and evaluate it with the
official evaluation script—provided by the organizers—
on the official development data. At the beginning of
training, all neural network weights (except for the pre-
trained word embeddings) are randomly initialized. After
the training, we notice a slight variation in the measured F-
score (~1 pp) based on different initial random weights. In
other words, if we repeat training the neural network with
the ‘exact’ hyperparameter values, and over and over again,
the performance of the trained models on the development
set vary in the range of 1 pp. To stabilize the variance in
the performance caused by the random initialization of
the network weights, we train an ensemble of four neural

networks (instead of a single neural network), all identical
apart from the initial (random) weights, and aggregate their
predictions. Each network predicts a set of confidences for
each development/test set example. The final prediction for
an example is generated by summing the confidences of all
networks and selecting the label with the highest overall
confidence. We highlight that this particular ensemble
method does not automatically improve the overall F-score,
but stabilizes the performance of the ensemble (regardless
of the initial random weights in each network). In other
words, the ensemble acts like an average neural network,
but robust and indifferent to the initial random weights
used to train the individual networks. Even though the
1% variation observed in the F-scores does not seem
especially excessive, we use the ensemble method for the
following reasons. Firstly, the ensemble method facilitates
hyperparameter optimization (i.e. finding optimal values
for the hyperparameters), because it ensures the same
performance level can be achieved (on the development set)
if the ensemble is re-trained using the same hyperparameter
values. This helps to make sure the improvements with
values of <1 pp in the F-score are actually due to the
chosen values for the hyperparameters and not caused by
a random initialization of the weights, thus allowing us to
fine-tune the hyperparameters. Secondly, as we discussed
previously, our relation extraction system is not specific
to the CHEMPROT corpus and can be re-trained with
other training data (e.g. the DDI-2013 or the Bacteria-
Biotope corpora) for other biomedical relation extraction
applications. Our previous experiments with similar neural
network-based relation extraction methods and different
corpora indicate that when the number of weights in
a neural network is high and the training set is very
small, the initial random state of a model can have a
significant impact on the final model and its generalization
performance, thus special care is needed when dealing
with such datasets. For example, the Bacteria-Biotope 2016
corpus (9) contains only 524 relations in the training set. We
have previously shown that the F-score on the development
set of this corpus can vary up to 9 pps based on the
different initial random state of the network (45). Training
an ensemble of networks—instead of a single network—
helps to reduce the variance when our system is trained/op-
timized on different corpora for different real-world
applications.

We optimize the following hyperparameters with a grid
search and repeating the cycle of training the ensemble
(with a set of selected hyperparameters) and evaluating
it on the development data: word-adjacency edge weight,
dimensionality of the POS and DT embeddings, output
dimensionality of the LSTMs and the dense layer, activation
functions, dropout rate, learning rate and mini-batch size.
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For training we use the Nadam optimization algorithm,
with a learning rate of 0.002 and mini-batch size of 32,
values found to be optimal by the grid search. Similarly, we
apply a dropout (52) with 0.2 rate on the output of the first
dense layer. The dropout is the only explicit regularization
method used. Finally, we use the early stopping technique to
obtain the optimal number of training epochs: the training
is stopped once the performance on the development set is
no longer improving, measured using the official evaluation
metric.

I-ANN system

The I-ANN system—also an ensemble of four ANNs—
has been developed after our participation in the shared
task. The neural networks in the I-ANN ensemble have an
architecture similar to the networks in the ST-ANN ensem-
ble (i.e. each neural model utilizes three LSTM chains for
representing the sequence of words, POS tags and DTs along
the SDP), but a bidirectional LSTM (forward and backward
chains) is also added to the architecture for learning a
representation of the full sentence and the two entities of
interest in it.

A literature survey shows that in one comparison per-
spective, relation extraction methods can be divided into
three groups: (i) the methods that only rely on the SDP,
(ii) the methods that process either full sentence tokens or
the entire parse graph (e.g. graph kernels or Tree-LSTMs),
not explicitly targeting and extracting features from the
SDP, and (iii) mixed methods that simultaneously process
full sentence tokens and the SDP and generate two distinct
sets of features (two vector representations) from them.
Recently, the mixed methods have become popular, per-
forming efficiently on various relation extraction datasets.
For example, on the Bacteria-Biotope 2016 relation extrac-
tion corpus (9), the state-of-the-art performance has been
achieved by the VERSE system, a feature-based relation
extraction system developed by Lever and Jones (16) that
generates features based on the word/POS tag/DT #n-grams
in the full sentence and also in the SDP, as well as features
that are generated from the two candidate entities and
paths around them in the parse graph. On the DDI-2013
corpus (6), an impressive F-score of 72.9 has been achieved
by Zhang et al. (24) with attention-based bidirectional
LSTM networks that process the sequence of words in the
sentence, as well as the sequence of words in the SDP.
They first divide the sentence into three sub-sequences: the
words before the first entity mention, the words between the
two entity mentions and the words after the second entity
mention. The three sub-sequences and the SDP sequence
are processed by four attention-based bidirectional LSTM
chains that learn the representation for each sequence. The

resulting representations are then processed with an upper-
bidirectional LSTM network that learns the representation
of the full sentence and the SDP. On the CHEMPROT
corpus, the highest F-score in the shared task (64.10) has
been achieved by Peng e al. (36) with a system com-
bination approach. Their method is composed of three
separate systems: (i) a CNN-based relation extraction sys-
tem with separate convolutional layers that simultaneously
learn SDP representation and full sentence representation,
(ii) an RNN-based relation extraction system that utilizes
a bidirectional LSTM network and max pooling to learn
full sentence representation and (iii) an SVM-based system
that generates features based on the SDP and the full
sentence. Based on recent successful works, we believe that
learning two separate representations (for the SDP and for
the full sentence) increases the classification performance
of the relation extraction methods. Particularly in the case
of neural models, since the SDP vector representation and
the full sentence vector representation are usually concate-
nated together and input into subsequent layers, the neural
models learn how to effectively integrate these two vector
representations for the relation extraction task at hand.
Inspired by the work of Zhang et al. (24) and the CNN-
based system of Peng et al. (36), we propose the [LANN
system that simultaneously learns SDP vector representa-
tion and full sentence vector representation. For learning
the SDP vector representation, we use the same architec-
ture of the ST-ANN system and for learning the full sen-
tence vector representation, we use a ‘bidirectional’ LSTM
and max pooling, similar to the RNN-based system of
Peng et al. (36).

All RNN architectures (standard RNNs, LSTMs and
GRUs) use backward connections: assuming a sentence has
n words (W1, Wa, ..., Weq, Wy, ..., Wy), the output
of the network at time-step f is a function of the input
at time-step ¢ and the output (and/or hidden state) of
the network at time-step #-1, meaning they only capture
information from the past words and the current word in
the sentence. However, in many applications we want the
output (i.e. representation) for a word that is dependent on
whole input sequence, i.e. the context before and after that
word. For example, in speech recognition, if there are two
interpretations of the current word that are both acous-
tically plausible, we may have to look far into the future
(and the past) to disambiguate them (25). For this reason,
‘bidirectional’ recurrent networks (53) and their variants
(e.g. bidirectional LSTM/GRU networks) are introduced. In
these networks, two separate RNNs simultaneously pro-
cess the sequence, but from opposite directions, result-
ing in a forward and a backward representation for each
word. The two representations for each word are further
aggregated (e.g. by taking the sum or concatenation), and
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the aggregation is used as the final representation of the
word based on the past and the future words in the sentence.
As suggested by Zhang et al. (24) and Peng et al. (36), and
also based on our own experiments on the CHEMPROT
development data, utilizing a bidirectional LSTM (instead
of a forward LSTM) results in better representations for
the sentences, reflected in achieving higher performances for
the relation extraction tasks at hand. Consequently, we also
use a bidirectional LSTM for modeling the full sentence
and the two entities in it. Figure 2 shows the architecture
of one neural network in the I-ANN ensemble with an
example sentence from the CHEMPROT training set and
its dependency parse graph as the inputs.

As Figure 2 shows, each neural network in the IFANN
ensemble utilizes three LSTM chains for learning SDP vec-
tor representation and two LSTM chains (forward and
backward) for learning full sentence vector representation.
Similar to the ST-ANN system, the words, POS tags and
DTs along the SDP connecting the CHEMICAL entity to
the GENE entity are mapped into their corresponding
vector representations (embeddings) and input to the three
SDP LSTM chains. Simultaneously, for each token of the
sentence, its word, POS tag, relative position to the first
entity, relative position to the second entity and token
type are mapped into their embeddings and concatenated.
Forward and backward sequences of the resulting token
representations are input to the forward and backward
sentence LSTM chains, resulting in two hidden represen-
tation for each token (forward and backward), which are
further concatenated to obtain final representations of the
sentence tokens. Applying max-over-time pooling on these
representations produces a vector representation for the full
sentence. The outputs of the last LSTM units of the three
SDP chains and the full sentence vector representation are
concatenated together and the resulting higher-dimensional
vector is input to a fully connected hidden dense layer. The
hidden layer finally connects to the decision (classification)
layer, which has a softmax activation.

Similar to the ST-ANN system, for words, we use the
same 200-dimensional pre-trained word embeddings pro-
vided by Pyysalo et al. (51). It should be mentioned that
these embeddings are pre-trained on the ASCII-fied PubMed
and PMC-OA texts. Since some CHEMICAL/GENE entity
mentions in the CHEMPROT corpus include unicode char-
acters (e.g. IkBa, M6PRAC, IL-18,118-HSD1, AMPKe, to
name a few), they do not have any corresponding vectors
in the vector space model. Besides, we use only the top 1
million most frequent words from the vector space model.
We thus replace all GENE entity names with the word
‘protein’ and all CHEMICAL entity names with the word
‘chemical’, if the entity name cannot be found in the model.
This resulted in ~0.5 pp increase in the F-score (when

different neural network models were evaluated on the
official development set).

Similar to Zhao et al. (35), the relative position of each
token to the first and second occurring entities are first
calculated and then non-linearly mapped to their corre-
sponding 10-bit binary vectors (embeddings), where the
first bit of each vector stands for the sign and the remaining
bits for the distance. Additionally, inspired by the idea of
‘named entity embeddings’ introduced by Peng and Lu (54),
for each token of the sentence, a token type (one of the
following values) is assigned accordingly:

1. If the token belongs to a CHEMICAL entity mention.

2. If the token belongs to a GENE entity entity mention.

3. If the token is located before the first occurring entity in
the sentence.

4. If the token is located between the two occurring entities
in the sentence.

5. If the token is located after the second occurring entity
in the sentence.

The word and POS tag embeddings are shared among
the SDP LSTM and the full sentence LSTM chains. During
training, the pre-trained word embeddings are fine-tuned,
while POS, DT, position to the first entity, position to the
second entity and token-type embeddings are all learned
from scratch.

Similar to the ST-ANN system, for stabilizing the vari-
ance in the performance of the I-ANN system (caused by the
random initialization of the network weights), we train an
ensemble of four neural networks, all identical apart from
the initial (random) weights, and aggregate their predictions
using the aforementioned aggregation method. Finally, we
optimize the network hyperparameters by doing a grid
search and repeating the cycle of training an ensemble (with
a set of selected hyperparameters) and evaluating it on the
development data. Table 1 shows a comprehensive list of
the hyperparameters, the list of values that are tested and
the optimal values that have been found and selected to
build the final neural model. For example, for the dimen-
sionality of the POS tag embeddings, we tested the values
25,50,75 and 100, and 25 was shown to be the best value
and thus was selected to build the final model. Similarly,
we tested not using a hidden dense layer at all, or using a
hidden layer with the output dimensionality of 300, 500
or 1024, and it was shown that using the additional hidden
dense layer with 1024 output dimensionality leads to better
performance.

System combination

Our SVM and the two deep learning-based systems are
trained with different sets of features. This is a potential



Page 10 of 23 Database, Vol. 2018, Article ID bay120

CHEMICAL GENE
Annotated sentence: Rapamycin allosterically inhibits the [proteasome.

Inputs nsubj dobj

uts:

’ N o D
— ~—— ———— &

Dependency parse graph: Rapamycin allosterically inhibits the proteasome.

word: Rapamycin word: allosterically word: inhibits word: the  word: proteasome word: .
POS tag: NN POS tag: RB POS tag: VBZ POS tag: DT POS tag: NN POS tag: .
pos-1: 0 pos-1: +1 pos-1: +2 pos-1: +3 pos-1: +4 pos-1: +5
pos-2: -4 pos-2: -3 pos-2: -2 pos-2: -1 pos-2: 0 pos-2: +1

type: Chemical type: between  type: between type: between type: Gene type; after
Shared embeddings ’ g

Forward LSTM

Backward LSTM

Concatenate

Max-pooling

SDP words

SDP parts of speech SDP dependencies

Rapamycin inhibits proteasome NN VBZ NN

1 1

I 1

1 1

i i (nsubj«—) (dobj—)
Shared embeddings ! l !

i i

1 1

I 1

1 1

SDP LSTM Networks

Concatenate

Fully connected

Fully connected

Figure 2. Architecture of one neural network in the I-ANN ensemble. The figure illustrates the architecture of one neural network in the I-ANN
ensemble with an example sentence from the CHEMPROT training set and its dependency parse graph as the inputs. The model utilizes three LSTM
chains for learning SDP vector representation and two LSTM chains (forward and backward) for learning full sentence vector representation. The
words, POS tags and dependency types along the SDP connecting the CHEMICAL entity (“Rapamycin”) to the GENE entity (“proteasome”) are
mapped into their corresponding vector representations (embeddings) and input to the three SDP LSTM chains. Simultaneously, for each token
of the sentence, its word, POS tag, position to the first entity, position to the second entity, and token-type are mapped into their embeddings and
concatenated. Forward and backward sequences of the resulting token representations are input to the forward and backward sentence LSTM chains,
resulting into two hidden representation for each token (forward and backward), which are further concatenated to obtain final representations of the
sentence tokens. Applying max-over-time pooling on these representations produces a vector representation for the full sentence. The outputs of the
last LSTM units of the three SDP chains and the full sentence vector representation are concatenated together and the resulting higher dimensional
vector is input to a hidden dense layer. The hidden layer finally connects to the decision (classification) layer, which has a softmax activation. The
word and POS tag embeddings are shared among the SDP and the full sentence LSTM chains.

case for testing whether combining predictions of the two implement this system combination by merging the relation
systems (SVM with either of ST-ANN or I-ANN) could predictions from the two systems as either a union (OR)
help in achieving better performance for this task. We or an intersection (AND), resolving overlapping predictions
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Table 1. Hyperparameters of the networks

Hyperparameter groups Hyperparameters Values
Optimal value Tested values
Dimensionality of embeddings Words 200 pre-trained
POS tags 25 125,50,75,100]
DTs 25 25,50,75,100]
Relative position to first entity 10 Fixed size. See Zhao et al. (35)
Relative position to second entity 10 Fixed size. See Zhao et al. (35)
Token type 10 [10]
Output dimensionality of LSTMs SDP words 300 [100,200,300,400]
SDP POS tags 200 [100,200,300,400]
SDP DTs 200 [100,200,300,400]
Full sentence tokens 300 [200,300]
Other architecture parameters Word-adjacency edge weight 5 [3,4,5,6]
Hidden layer, output dimensionality 1024 [None, 300,500,1024]
Activation functions tanh [tanh, sigmoid]
Dropout rate 0.2 [0,0.2,0.3,0.4,0.5]
Learning parameters Mini-batch size 16 [16,32,64]
Learning rate 0.0005 [0.0005, 0.001, 0.002]

with conflicting types using the classifier confidence scores.
Since all entities are known data in this task, the predictions
from the two systems can be aligned using pairs of gold
standard entities.

If only one system predicts a relation for a given pair
of entities, it is either included in (OR) or discarded from
(AND) the combination. If both systems predict a relation,
the relation with the higher confidence score is included
in the combination. Both SVM and ANN systems produce
confidence scores in their own ranges. These ranges are
normalized into the 0-1 interval for both systems, after
which the normalized scores are compared. We experiment
with combining all predictions (all 11 possible classes,
including the ‘negative’ class), only positive predictions (all
10 possible classes) or only predictions for the evaluated
classes (only the five target classes) and find that system
combination in fact leads to better performance scores on
the task. Figure 3 illustrates how the predictions of the I-
ANN system and the SVM system are combined to produce
a final set of predictions for the test set.

Results and discussion

We conduct all of our experiments on the official devel-
opment set using the official evaluation script provided by
the organizers. Even though the data is annotated with
10 different relation types, the task only focuses on §
of themby defining the official performance metric as the
micro-averaged F-score of the five target classes. This is

Table 2. Performance of the systems on the development
set

Evaluation on development set Performance metrics

Precision Recall  F-score
SVM 64.55 54.72 59.23
ST-ANN 61.90 55.01 58.25
SVM + ST-ANN (OR, positive 58.45 63.99 61.09
classes)
SVM + ST-ANN (AND, positive 75.42 48.14 58.77
classes)
SVM + ST-ANN (OR, all classes) 65.82 55.55 60.25
SVM + ST-ANN (AND, all classes)  65.82  55.55 6025
SVM + ST-ANN (OR, eval classes)  56.47 65.07 60.46
SVM + ST-ANN (AND, eval 79.28 45.78 58.04
classes)

most likely due to the fact that there are much less training
examples available in the data for the excluded classes. We
first discuss the results of our participation in the shared
task (with the SVM and ST-ANN systems and their combi-
nation) and then focus on the improved results we obtained
using the [FANN and its combination with the SVM system.

Shared task results

In this section, we discuss all results we have achieved
during our participation in the shared task. Table 2 shows
the performance comparison of the SVM and ST-ANN
systems, evaluated on the development data.
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Figure 3. Predicting labels for CHEMPROT test set examples. The figure illustrates how the predictions of the I-ANN system and the SVM system
are combined to produce a final set of predictions for the test set. Each neural network in the I-ANN ensemble predicts a set of confidences for each
test set example. The confidences for each example are summed together and the label with the highest overall confidence score is selected as the
relation type for that example. This aggregation procedure produces the final set of predictions by the I-ANN ensemble. The SVM system also predicts
a set of confidences for each example, and the label with the highest confidence score is selected as the predicted relation type for that example. The
confidence scores of the I-ANN and the SVM system predictions are further normalized into 0-1 interval. Using one of the aforementioned system
combination methods (e.g. intersection or union), the two prediction sets are combined together, producing a combined set of predictions for the
test set. The same procedure is applied for predicting labels for the development set/test set examples.

As Table 2 shows, both the SVM and ST-ANN systems
have very similar performance on the task, with the SVM
having an F-score 1 pp above the ST-ANN. This might be
due to the fact that ST-ANN solely relies on the words
and edges seen on the shortest path and we suspect that
in many cases, the ‘trigger word’ (i.e. a token or sequence
of tokens that expresses the actual relation between the
two candidate entities) might be absent from this path.
Consequently, the ST"ANN might not get the chance to
see this information, whereas the SVM system generates
features based on all tokens and dependencies near the two
entities, as well as those on the shortest path connecting
them. The best SVM performance is achieved with the TEES
default settings, without using the DrugBank (44) features,
using the BLLIP+biomodel+Stanford CCProcessed pars-
ing approach and including all 10 CHEMPROT relation
types in the training data.

We highlight that the Stanford parsing conversion soft-
ware (38) can produce five variants of the SD represen-
tation: ‘basic’, ‘nonCollapsed’, ‘collapsed’, ‘collapsedTree’

and ‘CCprocessed’. As an optimization step, we tried all
aforementioned conversions for the CHEMPROT corpus:
we first performed constituency parsing using the BLLIP
(37) with the biomedical domain model of McClosky (40),
and then used the Stanford conversion tool to obtain dif-
ferent variants of dependency parse graphs. This resulted
in obtaining five variants of the parsed corpus. For each
variant, we trained the SVM system on the training data
and evaluated it on the development data. The evalua-
tion resulted in obtaining 57.13 (‘basic’), 57.47 (‘nonCol-
lapsed’), 57.92 (‘collapsed’), 57.82 (‘collapsedTree’) and
59.23 (‘CCprocessed’) F-scores. The ‘CCprocessed’ vari-
ant outperformed the other parsing conversion methods
by ~2 pp. Similarly, parsing the corpus with the Syn-
taxNet parser (39) resulted in 53.19 F-score on the devel-
opment set, ~6 pp below the best result. Consequently, we
used BLLIP+biomodel+Stanford_CCProcessed variant for
building the SVM, the ST-ANN and the [-ANN systems.
As Table 2 shows, for both SVM and ST-ANN systems,
recall is considerably lower than precision (for instance,
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recall is 10 pp below precision for the SVM system). Using
the OR operation in system combination considerably
improves the recall (~9 pp) while causing a comparatively
lower drop in precision, leading to an ~1-1.5 pp increase in
the resulting F-score. We observe that discarding negative
predictions and building the combination from all 10
positive classes result in the highest performance on the
development set.

For predicting the test set, we combine the training and
development data when training the SVM system. This is
a common approach when using classifiers such as SVMs.
However, training the neural networks on the combined
data for the ‘optimal’ number of epochs (found during
the optimization) might lead to under/over-fitting, because
more/less training epochs might be needed. Finding the
optimal number of epochs for training the network on the
combined data is challenging. In the shared task, participat-
ing teams were allowed to submit up to Sfive different test
set predictions. Hence, we submitted two sets of ST ANN
predictions: (i) predictions of the ensemble of networks
that are trained for 3 epochs (the optimal number found
in optimization), (ii) predictions of the ensemble when the
networks are trained for 4 epochs. We also combined these
two sets of predictions with the SVM system predictions
(using our system combination approach), resulting in a
total of five sets of test set predictions. Table 3 shows
the official results for our submissions on the test set, as
calculated by the task organizers.

As Table 3 shows, compared to the development set
results, our SVM system has approximately the same level
of performance on the test set, achieving an F-score of
60.99, with a similar imbalance between precision (66.88)
and recall (56.62). However, for the ST-ANN submissions
we notice a significant drop in recall (~11 pp) with a
small increase in precision (~1 pp), leading to an F-score
of 52.49 (when the networks are trained for 3 epochs) or
51.85 (when the networks are trained for 4 epochs), which
is ~6 pp below the F-score seen on the development set.
As a direct result, none of the two system combination
approaches have been able to produce a result better than
the SVM system alone. Hence, our best official shared task

Table 3. Performance of the systems on the test set

Evaluation on test set Performance metrics

Precision Recall ~ F-score
SVM 66.08 56.62 60.99
ST-ANN (trained 3 epochs) 63.73 44.62 52.49
ST-ANN (trained 4 epochs) 63.37 43.87 51.85
SVM + ST-ANN (3 epochs) 61.05 60.06 60.55
SVM + ST-ANN (4 epochs) 60.88 59.89 60.38

score (60.99 F-score) has been obtained using the SVM
system alone.

This massive 6 pp drop in the F-score seen on the test
set for the ST-ANN system is clearly abnormal. After the
organizers published the test set labels, we performed a
comprehensive analysis of the results of this system and
discovered a critical mistake in the pipeline: the training
data had not been shuffled before each training epoch, an
important step preventing mini-batches of highly correlated
examples. Since the neural network objective functions are
non-convex, using different ordering of training samples
may lead to possibly different local minima. The gradient-
descent neural network training algorithms are susceptible
to becoming stuck in those local minima while a better
solution might exist. To summarize, shuffling training data
serves the purpose of reducing variance, increasing the
chance of obtaining mini-batches that are representative
of the overall dataset and thus, making sure the neural
network models remain general and overfit less. In the next
section, we discuss how shuffling the data changed the
results on the development and test sets for the ST-ANN
system.

Improved results

In this section we discuss the improved results we
obtained after the shared task. Table 4 shows the pre-
cision, recall and F-score for all approaches. Row 1
(scores of the SVM system) and Row 2 (scores for the
ST-ANN system, when the networks in the ensemble
are trained for 3 epochs) are from Tables2 and 3,
for the sake of comparison. The Corrected-ST-ANN system
(Row 3) is identical to the ST-ANN system (i.e. trained with
the exact hyperparameters, including the learning rate and
mini-batch size), except we have shuffled examples before
each training epoch. Row 4 shows the scores achieved by
our [FANN. Note that the networks in the L ANN systems
are trained with different learning rate and mini-batch
size (see Table 1), comparing to the ST-ANN system. In
addition, the networks in this ensemble have been trained
for 4 epochs (the optimal value based on optimization on
the development set). Finally, Rows 5-10 show the scores
achieved by combining the predictions of the SVM system
and the I-ANN system, using various aforementioned
system combination approaches. For prediction of the test
set, we have combined training and development data,
when training the SVM, ST-ANN, Corrected-ST-ANN and
I-ANN systems.

As Table 4 shows, by comparing the scores of the
ST-ANN and the Corrected-ST-ANN systems, we notice
that shuffling the examples before each training epoch
results in achieving ~1 pp increase of the F-score on the
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Table 4. Performance of the systems on the development set and the test set

Row System Development set Test set
Precision Recall F-score Precision Recall F-score

1 SVM 64.55 54.72 59.23 66.08 56.62 60.99
2 ST-ANN 61.90 55.01 58.25 63.73 44.62 52.49
3 Corrected-ST-ANN 60.51 58.01 59.23 61.55 53.93 57.49
4 I-ANN 63.18 56.25 59.51 62.39 57.81 60.01
N SVM + I-ANN (OR, positive classes) 58.70 63.78 61.14 61.65 66.66 64.05
6 SVM + I-ANN (AND, positive classes) 74.73 48.47 58.80 74.45 50.23 59.99
7 SVM + I-ANN (OR, all classes) 65.56 56.17 60.50 65.66 58.21 61.71
8 SVM + I-ANN (AND, all classes) 65.56 56.17 60.50 65.68 58.16 61.69
9 SVM + I-ANN (OR, eval classes) 57.65 65.81 61.46 59.05 67.76 63.10
10 SVM + I-ANN (AND, eval classes) 79.36 46.94 58.99 77.79 48.21 59.53

development set and +5 pp on the test set. We also notice
that the difference between the F-score on the development
set and on the test set is much smaller for the Corrected-ST-
ANN comparing to the ST-ANN system (~2 pp vs ~6 pp),
implying that neural networks in the Corrected-ST-ANN
system are more robust classification models.

The Corrected-ST-ANN system achieves the same per-
formance level as the SVM system on the development set
(59.23 F-score), but interestingly, it performs 3.5 pp below
the SVM system on the test set. This suggests the Corrected-
ST-ANN overfits more on the training data. Besides, the
Corrected-ST-ANN system solely relies on SDP features,
while the SVM system generates features based on all tokens
and dependencies near the two entities, as well as those
on the SDP connecting the two candidate entities. We thus
investigate the scores of the I-ANN system since it utilizes
whole sentence tokens, besides the features generated from
the SDP.

Comparing the I-ANN system with the Corrected-ST-
ANN system, we see 0.28 pp F-score increase on the devel-
opment set and a comparatively larger increase on the
test set (2.52 pp). This suggests that incorporating whole
sentence features—besides the SDP features—into the net-
works in the IZANN system actually helps achieving a better
performance for the task. This is also evident as the L ANN
system achieves a similar performance level with the SVM
system, both on the development set (59.51 vs 59.23 F-
score) and on the test set (60.01 vs 60.99 F-score), but
with the additional benefit that the I-ANN system requires
much less feature engineering than the SVM system. Still,
the recall is comparatively lower than the precision for the
SVM, Corrected-ST-ANN and [-ANN systems.

We further investigate the potential of different
approaches of combining the predictions of the SVM and
I-ANN systems for achieving a higher score for the task.
As Table 4 shows (Rows 5, 7 and 9), in all different
possible ways of taking the union of the predictions (OR),

the F-score on both development and test set improves over
the SVM and I-ANN systems alone. The best F-score on
the development set (61.46, Row 9) is achieved by first
removing the negative and non-evaluated predictions and
then taking the union of the predictions, and resolving
overlapping predictions with conflicting types by using
the normalized classifier confidence scores. This approach
results in an F-score of 63.10 on the test set, and hence, this
is our best F-score for the task, 2.11 pp higher than our best
test set submission during the shared task. This is also very
close to the highest F-score (64.10), achieved by Peng et al.
(36) in the shared task.

Finally, we notice that our best approach (Row 9) also
leads to the highest recall, both on the development set
(65.81) and the test set (67.76), whereas removing negative
and non-evaluated predictions and taking the intersection
of the predictions (Row 10) leads to the highest precision
of 79.36 on the developments set, and 77.79 on the test set.

Error analysis

In this section we perform an error analysis and compare the
performance of the SVM system with the I-ANN system on
the CHEMPROT test set that contains 800 article abstracts.
Although CHEMICAL-GENE pairs in the test set are anno-
tated with 10 possible positive relation types, only 5 of these
classes are taken into account in the task evaluation, with
the micro-averaged F-score of the five target classes as the
official metric for evaluation. However, since the SVM and
the I-ANN systems are trained to predict and assign one of
the 11 possible labels to each pair(10 positive classes and
a negative class), we find it more informative to consider
all predicted labels when examining and comparing the
performance of the two systems.

The test set includes 5744 positive annotations for 5665
unique CHEMICAL-GENE pairs. Even though the major-
ity of the pairs are annotated with a single positive label,
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Table 5. Test set annotations

Class name Evaluated Relation types Number of
in the task annotations in

the test set

CPR:1 No PART_OF 215

CPR:2 No REGULATOR | DIRECT_REGULATOR | INDIRECT_REGULATOR 1743

CPR:3 Yes UPREGULATOR | ACTIVATOR | INDIRECT_UPREGULATOR 667

CPR:4 Yes DOWNREGULATOR | INHIBITOR | INDIRECT_DOWNREGULATOR 1667

CPR:5 Yes AGONIST | AGONIST-ACTIVATOR | AGONIST-INHIBITOR 198

CPR:6 Yes ANTAGONIST 293

CPR:7 No MODULATOR | MODULATOR-ACTIVATOR | MODULATOR-INHIBITOR 25

CPR:8 No COFACTOR 25

CPR:9 Yes SUBSTRATE | PRODUCT_OF | SUBSTRATE_PRODUCT_OF 644

CPR:10 No NOT (explicit mention of having no effects/interactions) 267

neg No Generated negatives for the pairs with no gold-standard annotations 10025

there are 79 pairs in the test set with more than one assigned
label. Since both SVM and I-ANN systems predict a single
label for each pair, we repeat the same predicted label for
these multi-label pairs for evaluation. Besides, there are five
cross-sentence annotations in the test set, but since the SVM
and the I-ANN systems only extract relations from single
sentences, we count these five pairs as false negatives. In
addition, we generate negatives (as gold-standard relations)
between any CHEMICAL and GENE entity mentions in the
‘same sentence’ if they do not have any corresponding gold-
standard annotations. Table 5 summarizes the information
about the annotations in the test set that we have used for
our internal evaluation and Table 6 shows the confusion
matrix, precision, recall and F-score for the SVM and the
I-ANN systems. We highlight that the evaluation numbers
in this section are based on the aforementioned evaluation
procedure (i.e. our internal evaluation) and could not have
been obtained using the official evaluation script provided
by task organizers. Hence, there is a slight difference in
the micro-averaged F-score of the target classes (the task
metric) between the numbers reported in Tables 4 and 6,
most likely due to possible differences in the evaluation of
cross-sentence and multi-label pairs (duplications).

As Table 6 shows, both systems have failed to predict
any CPR:7 (modulator) and CPR:8 (cofactor) labels, the
two rarest classes in the dataset by an order of magnitude.
Consequently, the F-score for these classes is zero for both
systems. All pairs with CPR:7 or CPR:8 true label are mis-
classified as having CPR:2, CPR:3, CPR:4, CPR:6, CPR:9
relations or not having any relation (neg), by both systems.

Even though the F-score for the negative class is
relatively high for both systems, all other classes are highly
confused with this class. For example, about 55%
(958/1743) and 43% (742/1743) of the relations having
CPR:2 relation are misclassified as being negative by the
SVM and I-ANN systems, dramatically dropping the recall

for the CPR:2 class. This indicates that the SVM and I-
ANN classifiers are not highly efficient in distinguishing
positive relations from the negative ones. Building a two-
step relation extraction system might be one idea to deal
with this problem. These systems are generally composed of
two classifiers, with the first classifier labeling each relation
as being positive or negative and the second classifier
detecting the type of relation for the pairs that are identified
as positive. As there is high imbalance between the number
of positives and negatives in the corpus, negative sub-
sampling or class weighting might be other promising
techniques to tackle this problem.

Considering the micro-averaged F-score of the target
classes as the overall evaluation metric, the two systems
have very similar performance for the task, with 60.10 F-
score for the SVM system and 60.15 F-score for the LANN
system. However, the precision and recall are much more
balanced in the L ANN system. For example, there is ~40 pp
difference between the precision and recall for the CPR:one
class in the SVM predictions, whereas the difference is
~12 pp for the IXANN system. Similarly, precision and recall
for the CPR:two classes have ~27 pp difference with the
SVM system, significantly higher that the ~3 pp difference
with the I-ANN system.

As Table 6 shows, and not surprisingly, the examples
with types CPR:2 (regulation), CPR:3 (upregulation)
and CPR:4 (downregulation) are more misclassified as
each other, but less as other relation types (CPR:S,
CPR:6, CPR:9 and CPR:10) that are semantically very
different. For instance, ~17% (119/667) of the examples
with CPR:3 (upregulation) true label are misclassified
as having CPR:4 (downregulation) label by the SVM
system whereas only five such examples are misclassified
as having CPR:5 (agonist) or CPR:6 (antagonist) relation.
A manual inspection of the CHEMPROT corpus sentences
revealed that the CPR:2 (regulation) is usually associated
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Table 6. Confusion matrix and evaluation metrics for the SVM and the I-ANN systems

SVM Predicted labels Total Precision  Recall F-score
system annotations
CPR1 CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 CPR9 CP1RO neg

True CPR1 64 11 4 3 0 0 0 0 2 0 131 215 70.33 29.77 41.83

labels CPR2 5 466 81 178 2 8 0 1 36 8 958 1743 53.69 26.74 35.70
CPR3 0 23 295 119 3 2 0 0 3 2 220 667 55.87 44.23 4937
CPR4 0 58 44 1175 0 3 0 0 7 7 373 1667 65.35 70.49 67.82
CPR5 0 14 1 19 74 3 0 0 1 3 83 198 73.27 37.37 49.50
CPR6 0 16 0 2 4 154 0 0 1 1 115 293 84.15 52.56 64.71
CPR7 0 7 1 5 0 2 0 0 2 0 8 25 0.00 0.00  0.00
CPR8 0 0 1 N 0 0 0 0 0 0 19 25 0.00 0.00 0.00
CPR9 0 10 4 28 0 0 0 0 233 1 368 644 67.15 36.18 47.02
CPR10 0 30 17 54 0 0 0 0 2 53 111 267 58.24 19.85 29.61
neg 22 233 80 210 18 11 0 0 60 16 9375 10025 79.71 93.52 86.06

Micro-averaged F-score (all classes): 75.39

Micro-averaged F-score (target classes): 60.10

I-ANN Predicted labels Total Precision Recall F-score

system annotations

CPR1 CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 CPR9 CPR10 neg

True CPR1 108 9 1 1 0 0 0 0 5 0 91 215 62.43 50.23 55.67

labels CPR2 4 731 71 139 13 11 0 0 18 14 742 1743 39.43 41.94 40.64
CPR3 0 52 326 84 1 1 0 0 5 1 197 667 52.84 48.88 50.78
CPR4 0 79 65 1107 2 9 0 0 35 7 363 1667 66.65 66.41 66.53
CPR5 0 18 4 9 102 11 0 0 0 0 54 198 60.00 51.52 55.43
CPR6 0 21 0 8 12 198 0 0 1 0 53 293 73.33 67.58 70.34
CPR7 0 9 4 6 0 2 0 0 0 0 4 25 0.00 0.00  0.00
CPR8 0 5 1 2 0 0 0 0 7 0 10 25 0.00 0.00  0.00
CPRY9 0 52 3 8 0 0 0 0 274 S 302 644 56.38 42.55 48.50
CPR10 0 23 16 30 0 4 0 0 9 94 91 267 48.45 35.21 40.78
neg 61 855 126 267 40 34 0 0 132 73 8437 10025 81.56 84.16 82.84

Micro-averaged F-score (all classes): 72.15

Micro-averaged F-score (target classes): 60.15

with words such as ‘regulation’, ‘interaction’, ‘binding’,
‘expression’, ‘relationship’, ‘involvement’, ‘change’ and
‘initiates’. The CPR:3 (upregulation) is associated with
words/phrases such as ‘induced’, ‘promotes’, ‘activates’ and
‘increases the activity of’ and the CPR:4 (downregulation)
is usually expressed with words/phrases such as ‘inhibits’,
‘blocks’ and ‘decreases the activity of. However, the
CPR:5, CPR:6 and CPR:9 relation types are usually
expressed with semantically very different words such as
‘agonist’, ‘antagonist’, ‘substrate’, ‘catalyzes’, ‘mediates’
and ‘metabolism’.

We performed an error analysis on incorrect test
set predictions made by the two systems. We noticed
that in many cases that the CPR:2, CPR:3 and CPR:4
labels are misclassified as each other, the sentences are

either complex, or if the sentence is simple, the SDP
(or the full sentence) contains words that are usually
associated with different classes. For example, in the
‘<CHEMICAL>Xanthohumol </CHEMICAL>
and 2-hydroxychalcone induced apoptosis by
<GENE>Bcl-2</GENE> downregulation.’
ing a CPR:4 (downregulation) interaction between the
‘Xanthohumol’ and ‘Bcl-2’ entities, the relation is
misclassified as CPR:3 (upregulation) by both SVM and
I-ANN systems. The SDP in this sentence (Xanthohumol,
induced, downregulation, Bcl-2) the
word ‘induced’ (usually associated with CPR:3) and
‘downregulation’ (associated with CPR:4). Similarly,
there are three CPR:4 (downregulation) relations between
the chemical ‘Cholesterol’ and the three genes in the

sentence

hav-

contains
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‘<CHEMICAL>Cholesterol</CHEMICAL>
also increases <GENE>Amyloid B</GENE>
(<GENE>Af</GENE>) deposition and <GENE>
tau</GENE> pathology.’. All the three relations are
misclassified as upregulation by both systems, and the sen-
tence contains the word ‘increases’, mostly associated
with upregulation. In some cases, the sentences contain
a mixture of positive and negative regulations, confusing
the classifiers. For example, in the sentence ‘Although,
<CHEMICAL>imatinib</CHEMICAL> primarily

sentence

inhibits <GENE>tyrosine kinases</GENE>,
it also stimulates the activity of <GENE>
EGFR</GENE> <GENE>tyrosine kinase</GENE>
in head and neck squamous tumors.’, the chemi-
cal entity ‘imatinib’ downregulates the (first mention of)
‘tyrosine kinases’, but upregulates the ‘EGFR’ and the
second ‘tyrosine kinases’ entity mention. However,
all three relations are assigned CPR:3 (upregulation) label
by the I-ANN system.

It is also interesting to note that some examples
with CPR:9 type (substrate/product of) are misclassified
as having regulation, upregulation or downregulation
relations. These usually belong to long and very com-
plicated sentences that might be hard even for a non-
expert human to distinguish. For example, the sen-
tence ‘As discussed in this review, various
progestogens including dydrogesterone and
its 20alpha-dihydro-derivative, medroge
stone, promegestone, nomegestrol acetate
and norelgestromin can reduce intratissular
levels of estradiol in breast cancer by
blocking sulfatase and 17beta-hydroxy
steroid-dehydrogenase type 1 activities.’
contains chemical entities (‘progestogens’,
‘dydrogesterone’, ‘medrogestone’, ‘Promegestone’,
‘nomegestrol acetate’, ‘norelgestromin’, ‘estra-

diol’, ‘17beta-hydroxysteroid’) and two gene entities

eight

‘17beta-hydroxysteroid-dehyd-
All CHEMICAL-GENE  pairs
have CPR:4 relation (inhibitor), except (‘estradiol’,
‘sulfatase’), ‘17beta-hydrox-
ysteroid-dehydrogenase type 1°) which
have CPR:9 (substrate) relation. Both classifiers have
assigned CPR:4 label to all pairs and failed to detect that
‘estradiol’ is the substrate of the genes.

The class label CPR:10 is also very challenging
since it is used for pairs with ‘explicit mention of not

(‘sulfatase’,
rogenase type 1°).

(‘estradiol’,
pairs,

having any effects on’ relation, which is semantically
different from the negative class (‘no information about
having relations/interactions’). For example, in the sen-
tence ‘The induction of <GENE>HO-1</GENE>
by EIH was inhibited by <CHEMICAL>SB203580

</CHEMICAL> but not by <CHEMICAL>SP600125
</CHEMICAL>, <CHEMICAL>PD98059</CHEMICAL>,
nor <CHEMICAL>LY294002</CHEMICAL>.’, the
(HO-1,SB203580) pair has CPR:4 (inhibitor) relation,
whereas the other three chemicals have CPR:10 relation
with ‘HO-1" gene. As Table 6 shows, the F-score for this
class is low (29.61 with the SVM and 40.78 with the I-
ANN classifier) and this class is highly confused with all
other classes. For example, in the simple sentence ‘Neither
<CHEMICAL>oxycodone</CHEMICAL> nor its
metabolites activated <GENE>PXR</GENE>,
<GENE>CAR</GENE>, or <GENE>AhR</GENE>.’,
all three CHEMICAL-GENE pairs with CPR:10 true label
are mistakenly assigned CPR:3 (upregulation) labels by
our classifiers, most likely because the word ‘activated’
(strong indicator of upregulation) is inside the sentence.
Generally, detecting such relations is a major challenge in
relation extraction and while the I-ANN system performs
better than the SVM system on this class, there is clearly
room for improvement.

We further manually analyzed and compared the mis-
classifications made by the SVM system with the L ANN sys-
tem in order to check if certain syntactic/semantic patterns
can be linked to only one of the classifiers. We did not find
any particular patterns that can be exclusively attributed
to only one of the systems. In addition, we systematically
compared the two systems based on the average length of
misclassified sentences (in terms of the number of tokens) to
check if one system better deals with longer sentences and
found out both systems have similar performance levels on
long sentences.

Comparison with other methods

In this section, we concisely compare our methods with the
top performing relation extraction methods that are evalu-
ated on the CHEMPROT corpus. Even though 13 teams
participated in the shared task, only 6 teams (including
us) achieved an F-score higher than 50. Table 7 lists the
performance measures of the top performing methods on
the CHEMPROT test set.

As Table 7 shows, the highest F-score (64.10) in the
shared task has been achieved by Peng et al. (36), with a sys-
tem combination approach. Their method is composed of
three separate systems: (i) a CNN-based relation extraction
system that utilizes separate convolutional layers to simul-
taneously learn SDP representation and full sentence rep-
resentation and uses a six-dimensional decision layer (for
the five positive target classes and the negative class) with
softmax activation; (ii) an RNN-based relation extraction
system that utilizes a bidirectional LSTM network and max-
pooling and learns full sentence representation and uses a
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Table 7. Top performing methods on the chemprot test set

Row Method summary Authors Task metrics
Precision Recall F-score

1 An ensemble of CNN, RNN and SVM -based systems Peng et al. (36) 72.66 57.35 64.10

2 SVM + I-ANN (our best approach) this paper 59.05 67.76  63.10

3 A deep learning-based method composed of a ‘pretraining’ network anda ~ Corbett and Boyle (55) 56.10 67.84 61.41
‘recognition’ network, utilizing bidirectional LSTMs and CNNs

4 An ensemble of Tree-LSTM networks Lim and Kang (56) 67.04 51.94 58.53

N A feature-based method with gradient-boosted trees classifier and a Lung et al. (57) 63.52 5121 56.71
feature-selection component for optimization

6 Bidirectional LSTM networks Matos (58) 57.38 47.22  51.81

five-dimensional decision layer (only for the five positive
target classes) with a linear activation; (iii) an SVM-based
system that generates features based on the SDP and tokens
in the full sentence. To combine the predictions and build
an ensemble of the three systems, they use either majority
voting or stacking. For stacking they train a random forest
classifier that uses the confidence scores (obtained from the
CNN, RNN and SVM systems) as features to assign a label
to each example. They build SVM, CNN and RNN models
using 80% of total data (training + development) and build
the ensemble using the remaining 20% of the total data.
In addition, they use 5-fold cross-validation using different
partitions of the data to reduce variability. Hence, they
obtained five SVMs, five CNNs and five RNNGs in total.
For participation in the shared task, they submitted five
runs (i.e. five sets of predictions for the test set), two based
on majority voting and three based on the aforementioned
stacking approach, each run using one SVM, CNN and
RNN from one cross-validation iteration. Their best F-
score (Row 1 in Table 7) has been achieved with one of the
submissions based on the stacking approach.

The I-ANN system and the CNN-based system devel-
oped by Peng et al. (36) are similar in terms of simul-
taneously learning full sentence representation and SDP
representation. However, the I-ANN system utilizes LSTM
networks whereas their CNN model uses separate convolu-
tional layers for this purpose. For learning full sentence vec-
tor representation, both - ANN and the RNN-based system
of Peng et al. (36) use a bidirectional LSTM network. The
I-ANN system is trained to assign 1 of the 11 possible labels
to each example, whereas their CNN/RNN models assign
either one of the five target class labels or the negative label
to each example. The other difference is that the L ANN
system utilizes an additional dense layer after the LSTM
layers. As discussed in the previous section, these choices
are made based on the optimization process we performed
on the development set. We highlight that unfortunately
Peng et al. (36) have not published the performance mea-
sures of their individual systems, thus we cannot directly

compare the performance of the I-ANN or the SVM system
with their individual systems. As Table 7 shows, our system
combination approach and their best approach perform
closely on the task, achieving 63.10 and 64.10 F-score,
respectively. Their system has higher precision (72.66 vs
59.05), but lower recall (57.35 vs 67.76), compared to our
system.

Corbett and Boyle (55) achieved 61.41 F-score on the
task, 1.69 pp below our best approach, and 2.69 pp below
the best score, with a deep learning-based approach. Their
system is composed of two neural networks: a ‘pretraining’
network that utilizes a bidirectional LSTM network for
transfer learning, and a ‘recognition’ network that utilizes
bidirectional LSTMs and CNNs. The pretraining net-
work—which is trained on all the titles and abstracts from
PubMed records from 1809 to the end of 2015—has three
inputs and two outputs. The inputs are the original sentence
sequence, the ‘substituted’ sequence shifted one token to the
right, and the ‘substituted’ sequence shifted one token to
the left. In the substituted sequences, each token has a 50%
chance of being replaced by a token randomly sampled
from the lines read in that sub-epoch. The pretraining
network has two outputs, one for each of the substituted
shifted sequences, consisting of a sequence of numbers —1
if the token in the substituted sequence is from the original
sequence, or 0 if it was randomly selected. The recognition
network is trained only on the CHEMPROT data and uses
the same LSTM layers that are pre-trained in the pretraining
network and two additional convolutional layers and a
bidirectional LSTM network. They train the pretraining
and the recognition networks with series of epochs, with
the first 5 epochs composed of training both networks, and
the rest only training the recognition network. Although
their system has a lower F-score and recall compared with
our system and the system developed by Peng et al. (36),
its main advantage is the ability to work on raw texts
for extracting CHEMICAL-GENE interactions, e.g. no
sentence parsing is required. Parsing is usually one of the
most time-consuming steps in relation extraction system
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pipelines, thus eliminating this step may considerably
improve the run-time performance of large-scale real-world
applications.

Lim and Kang (56) participated in the shared task with
an ensemble of Tree-LSTM networks (59) that process
the sentence parse graph. Each node in the Tree-LSTM
architecture is a word in the graph, represented by con-
catenating embeddings of its words, relative positions to the
two entities and a subtree containment feature. The subtree
containment feature for a node is simply ‘True’ when one
of the target entities exists in the leaves of the current
node, and is ‘False’ otherwise. These two values are further
mapped into two 10-dimensional embeddings: if the value
is “True’, every element of a vector is +1; otherwise, every
element in a vector is 0. In contrast with normal LSTM
networks in which each unit receives the input only from the
previous unit (i.e. the previous word in the sentence or SDP),
in the Tree-LSTM network, each node in the tree receives
the input from multiple child nodes (leaves) and updates the
hidden state of current node using those inputs. Similar to
the I-ANN system, they also train an ensemble of the neural
networks and aggregate their predictions by simply taking
the sum of the confidence scores to deal with the variance
caused by random initialization of network weights. Their
method achieved an F-score of 58.53 on the task, 4.57 pp
below our F-score and 5.57 pp below the highest F-score
achieved by Peng et al. (36) during the shared task.

Lung et al. (57) achieved an F-score of 56.71 using a
feature-based method that relies on manually engineered
features, extracted from both semantic pattern and
dependency parse graph of the sentence. The semantic
pattern reveals whether/how chemical-protein interactions
are stated in the sentence, whereas the dependency graph
provides the information on how words are interconnected
in the sentence. To analyze the semantic pattern, they
have manually built an extensive list of words (including
the ‘trigger’ words) and check whether these words are
found in the sentence or not. In addition, they employ
a set of features previously found to be beneficial for
protein—protein relation extraction from biomedical texts.
For example, a binary feature captures whether negative
words (e.g. ‘not’, ‘incapable’ and ‘unable’) are in the region
covered by the candidate pair and a binary feature shows
if sentence breaking words (e.g ‘although’, ‘therefore’,
‘whereas’) exist in the region. They have reported these
features are helpful in chemical-protein relation extraction
as well. To analyze the sentence structure, they only target
and extract a set of features from the SDP. These features
include the number of tokens in the SDP, as well as binary
features for checking the presence of different DT edges in
the SDP. They use gradient boosted trees for classification
and feature selection to optimize their system.

Finally, Matos (58) achieved 51.81 F-score on the task
(11.29 pp below our F-score), using relation extraction
systems composed of three to six bidirectional LSTM net-
works. All of their networks utilize three bidirectional
LSTMs for processing the words, POS tags and DTs along
the SDP. However, they also experiment with using up to
three additional bidirectional LSTMs, for processing the
words before/between/after the two entities. Unfortunately,
a few important details are missing from their paper that
are necessary for a correct comparison of their system
with the ST-ANN/I-ANN systems. For example, it is not
clear how the outputs of the bidirectional LSTMs are com-
bined together in their networks (e.g. in the [-ANN system,
max pooling is first applied and SDP and full sentence
vector representations are further concatenated). Similarly,
no details about the output dimensionality and the acti-
vation function of the decision layer in their networks is
mentioned, hence it is not clear whether they assign one of
the five target class/the negative label to each example, or
similarly to the STANN/I-ANN systems, they assign one
of 11 possible labels. On the development set, they achieved
54.70 F-score (with the system that uses all six bidirectional
LSTMs), 56.64 F-score (with the system that uses three
bidirectional LSTMs for the SDP) and their highest F-score
of 59.19 has been achieved with a system utilizing three
bidirectional LSTMs for the SDP and a bidirectional LSTM
for the words between the two entities. However, on the
test set, the network with all six LSTMs has achieved a
lower F-score of 51.81 (with ~7 pp increase in the precision,
but 14 pp drop in the recall, compared to the results on
the development set). The F-score for the system with the
three bidirectional LSTMs (for the SDP) has dramatically
dropped to 34.18, and for the system with the four bidirec-
tional LSTMs to 36.77. As mentioned in their paper, further
error analysis is needed to give some indication on how
generalization could be improved.

Runtime performance and technical details

We implement the systems using the Python programming
language (v2.7) with the Keras (60) deep learning library
and the Theano tensor manipulation library (61) (as the
backend engine for Keras) for implementing the neural net-
work models. All neural network parameters not explicitly
discussed in this paper were left to their defaults in Keras.
All computations were run on a single server computer
equipped with 64 gigabytes of memory, one 8-core CPU
and one NVIDIA® TESLA® K80 GPU (with 4992 CUDA
cores). Parsing and all python processing, including e.g. file
manipulation, the TEES pipeline and system combination
were run on the CPU, whereas all neural network related
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calculations (training, optimization and prediction) were
run on the GPU, using the CUDA toolkit version 7.5.

The CHEMPROT corpus contains 2432 PubMed
abstracts (1020 abstracts in the training set, 612 abstracts
in the development set and 800 abstracts in the test set) (1).
Parsing the corpus and conversion into the TEES XML
format takes about 1 hour and 35 minutes. Training the
SVM system takes about 40 minutes, whereas training each
of the four neural models in the I-ANN ensemble takes
~6 hours, on the combined training and development sets.
These times include feature generation, but the training
and development sets are already converted into the TEES
XML format and parsed. Prediction of the test set using
the SVM system takes ~4 minutes, and with each of the
four neural networks in the L ANN ensemble, ~6 minutes.
Aggregating the predictions of the networks and running
the system combination code takes less than a minute.
Consequently, the prediction time for each abstract is
in average ~2.2 seconds, assuming that the abstract has
already been parsed.

We highlight that the number of neural networks in the
I-ANN system is implemented as an input parameter in
our software, with 4 being the default value and 1 as the
minimum possible value. Hence, training an ensemble is
optional. However, because of the reasons discussed earlier,
we recommend to train an ensemble of networks when
training/optimizing our system on a new corpus, if sufficient
computational resources are available.

Conclusions and future work

In this study, we presented three different systems capable
of extracting relations between CHEMICAL and GENE
entities, as a part of our participation in the BioCreative VI
Task 5 (CHEMPROT) challenge. Our SVM system relies on
a rich set of features generated from all tokens and depen-
dencies in the SDP and near the two candidate entities.
Unlike the SVM system, our ST-ANN and I-ANN systems
are based on deep learning and require less feature engineer-
ing. The ST-ANN system solely relies on the SDP features,
whereas the IF-ANN system utilizes features generated from
the whole sentence, besides the features generated from the
SDP. The ST-ANN system has lower performance compared
to the SVM and I-ANN systems, while the I'-ANN and
SVM perform equally well on the development and test
sets, suggesting that incorporating features gathered from
the full sentence actually helps achieving better scores for
the task, regardless of the classification method.

We also experimented with basic methods of combining
the predictions of the SVM and either the ST-ANN or
I-ANN systems (e.g. taking the union/intersection of the
predictions of two systems) and noticed system combina-

tion achieves the highest F-score of 63.10 on the test set,
2.11 pp higher than our best test set submission during the
shared task. Our best F-score is 1 pp below the highest score
achieved by Peng et al. (36) in the shared task.

There are many interesting future directions that we
would like to explore. As we discussed in the previous
section, the SVM and I-ANN systems are not highly effi-
cient in distinguishing positive examples from the negative
examples, i.e. the examples of other classes are highly
misclassified as being negative, lowering the recall of non-
negative classes. We would like to investigate whether two-
stage classification and/or negative sub-sampling or class
weighting can diminish this problem.

Although the ensemble method we used in the I-
ANN system addressed the problem of variance in the
performance (caused by random initialization of network
weights), it does not improve the overall F-score, because
the ensemble acts like an average neural network, but
robust and indifferent to the initial random weights used to
train the individual networks. We would like to try better
ensemble methods. One idea is to train the ensemble but
instead of taking the sum of the ‘all’ networks confidences,
we take the sum of N top-performing networks. Even
though this approach might seem to be very promising,
it can lead to heavy overfitting on the development set
and consequently, poor generalization for unseen data. We
think that heavy regularization and/or cross-validation [as
used by Peng et al. (36)] will be necessary in that case. In
addition, in this work we used basic methods (e.g. taking
union/intersection) for combining the predictions of the
SVM and [-ANN systems. As a future work, we would like
to investigate better system combination approaches [such
as the stacking approach used by Peng et al. (36)], and see
to what extent the overall performance of our method can
be improved.

Even though we used pre-trained word embeddings for
the I-ANN system, other embeddings (e.g. the POS tag and
DT embeddings) were initialized randomly and learnt from
scratch. Similar to using pre-trained word embeddings, we
would like to investigate whether pretraining the other
embeddings can improve the performance of the ILANN
system. One idea is to train the I-ANN system on other
biomedical relation extraction corpora (such as DDI-2013)
and use the learnt embeddings to train/optimize the L ANN
system on the CHEMPROT training data.

Additionally, we would like to investigate different
methods of incorporating the information in the whole
parse graph into the neural networks. Although the
[-ANN system utilizes the words/POS tags/DTs in the SDP,
other word-dependencies far outside the SDP can play a
critical role, considerably affecting the meaning of the
relations expressed in the sentence. As discussed in the
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error analysis section, in the simple sentence ‘Neither
<CHEMICAL>oxycodone</CHEMICAL> nor its
metabolites activated <GENE>PXR</GENE>,
<GENE>CAR</GENE>, or <GENE>AhR</GENE>.’,
all CHEMICAL-GENE pairs with CPR:10 true label
were mistakenly assigned CPR:3 (upregulation) labels
by our classifiers. In this sentence, the key negation
words (‘Neither’ and ‘nor’) are not part of the SDP
connecting the CHEMICAL to the GENE entities, and most
likely because the word ‘activated’ (strong indicator
of upregulation) is in the sentence, the relations are
misclassified. One approach for incorporating the whole
parse graph into neural networks is the Tree-LSTM
neural architecture (59), used by Lim and Kang (56) for
relation extraction. Unfortunately, they achieved 58.53 F-
score on the task, 4.57 pp below our F-score. We would
like to investigate whether/how the Tree-LSTM network
architecture can be modified to obtain higher scores for the
task. Finally, we want to explore different possible ways
of incorporating DT n-grams (i.e. ‘paths’ in the sentence
parse graph) into neural networks as embeddings for this
aim.

We highlight that the systems we presented in this study
are not applicable only to the BioCreative VI Task 5 and can
be effortlessly re-trained to extract any types of relations of
interest, with no modifications of the source code required,
if a manually annotated corpus is provided as training data
in the Interaction XML format (15).
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Abstract. We introduce a new approach for training named-entity pair
embeddings to improve relation extraction performance in the biomedical
domain. These embeddings are trained in an unsupervised manner, based
on the principles of distributional semantics. By adding them to neu-
ral network architectures, we show that improved F-Scores are achieved.
Our best performing neural model which utilizes entity-pair embeddings
along with a pre-trained BERT encoder, achieves an F-score of 77.19 on
CHEMPROT (Chemical-Protein) relation extraction corpus, setting a new
state-of-the-art result for the task.

1 Introduction

The significant amount and the increasing publication rate in the biomedical
domain make it difficult for biomedical researchers to acquire and maintain all
information that is necessary for their research. Biomedical relation extrac-
tion systems aim to address this problem. These systems can periodically scan
the whole publicly available literature (PubMed article abstracts and PubMed
Central Open Access (PMCOA) full article texts) and extract relations and
interactions of biomedical named entities from the texts and build up-to-date
relation databases or molecular interaction networks to facilitate biomedical re-
search. A number of shared task challenges have been organized to promote the
development and evaluation of such systems. For example, the BioCreative VI
shared task [1] was recently organized, which provided the CHEMPROT cor-
pus for chemical-protein relations extraction. Since the CHEMPROT corpus is
fairly new, relatively large and carefully annotated, it has become an important
benchmark for evaluating modern relation extraction systems.

So far the best results for relation extraction have been achieved using system
ensemble approaches. On the CHEMPROT corpus, the best result during the
BioCreative VI challenge was obtained by Peng et al. [2] (an F-score of 64.10)
by using an ensemble system consisting of a recurrent neural network system,
a convolutional neural network system and a support vector machine system.
Recently, the introduction of transformer-based language representation mod-
els such as BERT [3], impacted the field and resulted in unprecedented jumps
in F-score on many data sets. The state-of-the-art result on CHEMPROT is
recently achieved by Lee et al. [4] (an F-score of 76.46), by pre-training the
BERT encoder on PubMed sentences and fine-tuning it with a decision layer
on the CHEMPROT data for relation extraction. This 12 percentage points
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increase in F-score is substantial and raises the question to what extent further
improvements on top of BERT can be achieved.

Biomedical literature includes a lot of information about the relations and
interactions of biomedical named entities (e.g. genes, proteins, chemicals, and
drugs). We aim to leverage this literature-wide information using unsupervised
methods and for every unique named-entity pair (E;, E;), capture all stated in-
formation about Ej and E; and their relations and build embeddings (vector
representations) of entities and entity pairs. Similarly to word2vec [5] for ordi-
nary words, our objective is for similar proteins, chemicals and protein-chemical
pairs to obtain similar embeddings. We are especially interested in investigat-
ing the possible effects of incorporating these entity and entity-pair embeddings
into neural models, in order to improve the performance in relation extraction
tasks in the biomedical domain. Given that manually annotated training data
for such tasks is usually limited, the domain is an obvious target for transfer
learning through pre-trained embeddings. We hypothesize that by pre-training
and incorporating the entity-pair embeddings into neural networks, we can im-
prove the performance in relation extraction tasks at hand, potentially better
than using individual entity embeddings alone.

In this paper, we explore different approaches for pre-training vector repre-
sentations for biomedical entities and entity pairs. We concentrate on the chem-
ical and protein named entities in the CHEMPROT corpus and train different
types of entity and pair embeddings. We show that when these embeddings are
added into BERT-based neural architectures, they can boost the performance of
relation extraction. Our approaches are inspired by the work of Levy and Gold-
berg [6], using richer contexts to extend the skip-gram architecture of word2vec
model introduced by Mikolov et al. [5].

2 Method

‘We propose to pre-train embeddings for named entities and named-entity pairs
using a word2vec skip-gram style training, whereby the named entities, or entity
pairs are given as the focus terms, and elements from their contexts are predicted.
We will investigate two ways to define the context: a simple linear context of
words as in the base word2vec, and as an alternative a rich set of features
extracted from the context. These features have previously been shown to be
useful in supervised relation extraction and one might therefore expect they
result in embeddings informative for relation extraction. More specifically, we
will rely on the Turku Event Extraction System (TEES) [7] to generate these
features, a system that has achieved numerous top ranks in biomedical relation
extraction tasks.

2.1 Entity and entity-pair embeddings pre-training

We obtain the list of all chemical-protein pairs in the CHEMPROT corpus and
find all sentences in PubMed and PMCOA texts [8] that contain at least one pair.
For simplicity, we use exact matching approach when searching for the entities
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in the texts. We then extract a set of features for each pair using the TEES sys-
tem, including (1) word/lemma/POS-tag and dependency-type N-grams along
the shortest path connecting the two entities in the sentence dependency parse
graph, (2) word/lemma/part-of-speech N-grams of the words that are located
within [-3,+3] words of the two entities, and (3) type and location of all biomed-
ical entities occurring in the sentence. We use the word2vecf toolkit [6] for train-
ing the embeddings and use either surrounding words as the context or TEES
features. Since simultaneous training of embeddings for entities and entity pairs
can impact the final model (due to the shared output layer in the word2vec
model), we train separate embedding models that include only entity pairs, only
entities, or both pairs and entities, resulting in six models (see Table 1).

Model Content Context for training

P_TEES only pair embeddings TEES features

union of the words surrounding the
two entities

union of TEES features for every
pair that includes the entity
E_Words only entity embeddings words surrounding the entity
PE_TEES pair and entity embeddings | TEES features

PE Words | pair and entity embeddings | surrounding words

P_Words only pair embeddings

E_TEES only entity embeddings

Table 1: Description of the different embedding models.

2.2 Relation extraction with entity and entity-pair embeddings

‘We incorporate the pre-trained embeddings into the following neural network
architectures: (1) BERT_MASK: this architecture is developed by Lee et al. [4] and
has achieved the state-of-the-art on CHEMPROT corpus. A BERT encoder
pre-trained on PubMed sentences is fine-tuned on the CHEMPROT training set
with a decision layer for relation extraction task. This layer predicts one of the
five possible relation types between the two entities, or a negative label for no
relation. We replicate the method as well as use the pre-trained BERT model
of Lee et al. [4]. In the BERT_MASK method, the entities are replaced with pre-
defined tags (e.g. @PROTEINS) to inform the classifier where the two entities
are located in a sentence; (2) BERT_MARK: the BERT_MASK model hides all infor-
mation about the two entities in the sentence as a consequence of its masking
strategy. Since the entity and pair embedding vectors we pre-train provide infor-
mation about the entities, an improvement on top of the BERT_MASK model might
be due to this fact. Therefore, as a fairer baseline, we introduce the BERT_MARK
model (identical to the BERT_MASK) except we mark the two entities using the
special “unused” symbols in BERT vocabulary! (e.g. [unused1]17B-estradiol
benzoate[unused2]); (3) BERT+Pairs: this model is similar to the BERT_MARK

1This provided better results compared to using normal characters to mark entity spans
(which was used by Lee et al. [4]) since the pre-trained BERT has no notion of the unused
symbols.
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model, except the pair embedding vector is concatenated to the BERT sentence
representation vector (/CLS] token), transformed through a 1024-dimensional
dense layer with tanh activation, and then presented to the decision layer. The
dense layer with the non-linear activation function learns to combine BERT fea-
tures with the pair embedding features; (4) BERT+Entities: this model is similar
to the BERT+Pairs model, except we concatenate the chemical and the protein
embedding vectors (not the pair vector); (5) BERT+Pairs+Entities: This model
is similar to previous models, except we concatenate chemical, protein, and pair
vectors. In all models, we use the exact hyper-parameters used by Lee et al. [4]
and optimize the learning-rate by grid search on the development set.

3 Evaluation and results

We evaluate all approaches on the CHEMPROT corpus which contains 4,157
training examples, 2,416 examples in the development set and 3,458 examples
in the test set. Chemical-protein pairs can have one of 5 positive relations (e.g
up-regulation) or no interaction at all (negative). We use the official evaluation
script provided by the task organizers which calculates the micro-averaged F-
score of the positive classes as the task metric. Since initial random weights of
a neural model can slightly impact the final F-score, we repeat each experiment
(training on the training set and predicting development or test set) for 10
times which results in obtaining 10 F-scores for each approach. We report the
average and standard deviation of the F-scores. We use the two-tailed two-
sample independent t-test (Welch’s t-test) to establish statistical significance.

3.1 Model selection

Table 2 summarizes the results on the development set, reporting statistical sig-
nificance at p = 0.1. BERT_MARK outperforms BERT_MASK, suggesting that marking
should be preferred over the masking approach. In fact, based on column G1, all
models that utilize marking (rows 2-9) outperform the approach of Lee et al. [4].
However, as discussed previously, for us BERT_MARK is considered the baseline and
as column G2 shows, the models that used only entity embeddings (rows 3,4),
do not achieve statistically better results than the baseline. Similarly, the model
that used pairs (trained with words contexts, row 5) does not achieve a better
result, in contrast to the model that used pair embeddings (trained with TEES
context, row 6). All models that utilized pre-trained entity and pair embeddings
(rows 7,8) achieve statistically better results than the baseline. We further con-
duct another experiment and test the effect of randomly initializing entity and
pair embeddings instead of using pre-trained embeddings, to check if the neural
model can efficiently learn these embeddings from scratch. However, this model
is not able to outperform the baseline (row 9). Thus we conclude pre-training
embeddings on the literature is indeed useful. Based on these development set
results, only 3 approaches outperform the baseline (rows 6-8).
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Embed- F-score | F-score

# | Neural model dings Gl | G2
(mean) (std)

model
1 BERT_MASK - 78.41 0.53 - Yes
2 BERT_MARK - 78.96 0.41 Yes -
3 BERT+Entities E_Words 79.23 0.43 Yes | No
4 BERT+Entities E_TEES 79.15 0.42 Yes | No
5 BERT+Pairs P_Words 79.27 0.43 Yes | No
6 BERT+Pairs P_TEES 79.36 0.32 Yes | Yes
7 BERT+Pairs+Entities | PE_Words 79.47 0.37 Yes | Yes
8 BERT+Pairs+Entities | PE_TEES 79.55 0.40 Yes | Yes
9 BERT+Pairs+Entities 3al?d?m1¥ 79.05 0.46 Yes | No

initialized

Table 2: Results on CHEMPROT development set. Columns G1 and G2 show if based
on the statistical test, the F-score mean is significantly different from the F-score mean
of BERT_MASK and BERT_MARK models respectively.

3.2 Final evaluation

We compare our best models selected on the development set (rows 6-8 in Ta-
ble 2) with the best previous result of Lee et al. [4] (an F-score of 76.46) on
the test set. To assess the statistical significance, we use the one-sample t-test
(p = 0.05). We also evaluate the BERT_MASK model to check how well we have
been able to replicate the method of Lee et al. [4].

Embed- F-score | F-score
# | Neural model dings G1
model (mean) (std)
Lee et al. [4] - 76.46 - -
1 BERT_MASK - 76.41 0.72 No
2 BERT+Pairs P_TEES 77.13 0.53 Yes
3 BERT+Pairs+Entities | PE Words 76.71 0.77 No
4 BERT+Pairs+Entities | PE_TEES 77.19 0.49 Yes

Table 3: Results on CHEMPROT test set. Column G1 shows if based on the statistical
test, F-score mean is significantly different from the F-score of Lee et al. [4].

The test set results (Table 3) validate our replication of the Lee et al. method
(row 1). The model that uses surrounding words as the context (row 3) does
not outperform the baseline (at p = 0.05), however the models that use TEES
features (rows 2,4), outperform the best previous result, suggesting that pair-
embeddings with rich feature-based context can improve upon a strong BERT-
based baseline. Our best model (row 4) sets a new state-of-the-art for the task,
improving the best previous score by 0.73 percentage points.
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4 Conclusion and future work

‘We compared different approaches for pre-training entity and entity-pair embed-
dings to improve relation extraction performance in the biomedical domain. We
have shown that (1) incorporation of these embeddings into neural models helps
in achieving better performance, (2) using rich features as context (instead of
using the surrounding words, i.e. the normal word2vec approach) leads to better
results; (3) using pair embeddings with/without entity embeddings leads to bet-
ter results compared to using entity embeddings alone. Our best model achieves
an F-score of 77.19, improving the best previous result by 4+0.73pp over a strong
baseline, and setting a new state-of-the-art for the task. As future work, we aim
to investigate the effect of entity and entity-pair embeddings on other biomedical
relation extraction data sets.
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