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ABSTRACT 

In biomedical research, applied machine learning and bioinformatics are the 
essential disciplines heavily involved in translating data-driven findings into medical 
practice. This task is especially accomplished by developing computational tools and 
algorithms assisting in detection and clarification of underlying causes of the 
diseases. The continuous advancements in high-throughput technologies coupled 
with the recently promoted data sharing policies have contributed to presence of a 
massive wealth of data with remarkable potential to improve human health care. In 
concordance with this massive boost in data production, innovative data analysis 
tools and methods are required to meet the growing demand. The data analyzed by 
bioinformaticians and computational biology experts can be broadly divided into 
molecular and conventional clinical data categories. The aim of this thesis was to 
develop novel statistical and machine learning tools and to incorporate the existing 
state-of-the-art methods to analyze bio-clinical data with medical applications. The 
findings of the studies demonstrate the impact of computational approaches in 
clinical decision making by improving patients risk stratification and prediction of 
disease outcomes.  

This thesis is comprised of five studies explaining method development for 1) 
genomic data, 2) conventional clinical data and 3) integration of genomic and clinical 
data. With genomic data, the main focus is detection of differentially expressed 
genes as the most common task in transcriptome profiling projects. In addition to 
reviewing available differential expression tools, a data-adaptive statistical method 
called Reproducibility Optimized Test Statistic (ROTS) is proposed for detecting 
differential expression in RNA-sequencing studies. In order to prove the efficacy of 
ROTS in real biomedical applications, the method is used to identify prognostic 
markers in clear cell renal cell carcinoma (ccRCC). In addition to previously known 
markers, novel genes with potential prognostic and therapeutic role in ccRCC are 
detected. For conventional clinical data, ensemble based predictive models are 
developed to provide clinical decision support in treatment of patients with 
metastatic castration resistant prostate cancer (mCRPC). The proposed predictive 
models cover treatment and survival stratification tasks for both trial-based and real-
world patient cohorts. Finally, genomic and conventional clinical data are integrated 
to demonstrate the importance of inclusion of genomic data in predictive ability of 
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clinical models. Again, utilizing ensemble-based learners, a novel model is proposed 
to predict adulthood obesity using both genetic and social-environmental factors.  

Overall, the ultimate objective of this work is to demonstrate the importance of 
clinical bioinformatics and machine learning for bio-clinical marker discovery in 
complex disease with high heterogeneity. In case of cancer, the interpretability of 
clinical models strongly depends on predictive markers with high reproducibility 
supported by validation data. The discovery of these markers would increase chance 
of early detection and improve prognosis assessment and treatment choice. 

KEYWORDS: differential expression testing, machine learning, boosting 
algorithms, survival analysis, next generation sequencing, transcriptomics, clear cell 
renal cell carcinoma, metastatic-castration resistance prostate cancer, obesity  
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TIIVISTELMÄ 

Sovellettua koneoppimista ja bioinformatiikkaa käytetään biolääketieteessä 
tietoaineistojen analysointiin ja uusien analyysimenetelmien kehittämiseen. 
Analyysin tuloksista johdetaan uusia lääketieteellisiä käytäntöjä ja hoitoja sekä 
etsitään sairauksien syitä. Tässä väitöskirjassa kehitetään uusia laskennallisia ja 
tilastollisia koneoppimismenetelmiä, ja sovelletaan niitä biolääketieteellisiin ja 
kliinisiin aineistoihin. Saadut tulokset osoittavat, että kehitetyt menetelmät 
parantavat kliinisiä päätöksiä mm. potilaiden riskiluokituksen ja sairauksien 
vakavuuden arvioinnissa. 

Tämä väitöstutkimus sisältää viisi osatyötä, joissa käsitellään menetelmiä 1) 
genomiikalle, 2) kliiniselle datalle ja 3) näiden yhdistelmälle. Kehitetyt menetelmät 
hyödyntävät useita erilaisia lähestymistapoja kuten toistettavuuden optimointia, 
elinaika-analyysia ja ensemble-oppimista. Sovelluksina muun muassa tunnistetaan 
markkereita munuaiskarsinooman alatyyppiin, tuetaan kliinistä päätöksentekoa 
eturauhassyövän hoidossa ja ennustetaan aikuisiän ylipainoa.  

Väitöstyön päätavoite on esitellä bioinformatiikan ja koneoppimisen soveltuvuutta 
markkereiden tunnistamiseen heterogeenisestä datasta. Syöpätutkimuksen 
tapauksessa kliinisten mallien hyödyntäminen edellyttää robusteja markkereita, 
joiden luotettavuus on validoitu usealla riippumattomalla datalla. Tällaisten 
markkereiden löytäminen voi edesauttaa syövän varhaista diagnosointia, etenemisen 
ennustamista ja oikean hoitomuodon valintaa. 

AVAINSANAT: erilainen ekspressio, koneoppiminen, oppimisen tehostaminen, 
elinaika-analyysi, uuden sukupolven sekvensointi, transkriptomiikka, 
munuaiskarsinooma, eturauhassyöpä, ylipaino  
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1 Introduction 

1.1 Background and motivation 
Over the last two decades, the rate of biological data generation has been growing 
dramatically. The first consequence of encountering such a massive and complex 
data was an urgent demand for informatics facilities and specialists to optimally 
extract knowledge from the available raw data. Developing a new interdisciplinary 
filed, bioinformatics, was the biomedical community’s response to address their 
needs [1]. When first introduced, bioinformatics was defined as utilizing 
computational tools and hardware resources to store, manage and ultimately 
understand the information encoded in biological data. The advent of high-
throughput technologies was a turning point from traditional bioinformatics to the 
advanced computational biology and systems biology with deeper biomedical 
insight. It shifted the focus of bioinformatics tools from database management and 
query optimization algorithms to more sophisticated statistical learning and 
mathematical modeling approaches. Despite the remarkable theoretical and practical 
achievements, the field still lacks consensus in various aspects specially in 
development of rigorous data analysis tools and methods. In this thesis, I intend to 
elaborate some of the interesting while critical challenges of the field and the 
corresponding novel solutions to them I enjoyed dealing with during my PhD studies. 

In the field of computational biology, a large proportion of projects involve 
medical applications. These projects utilize applied mathematics to improve current 
level of knowledge about mechanism of complex diseases such as cancer. The 
information provided by prediction models assist healthcare experts and patients in 
deciding which treatment strategy to take or avoid. For instance, the developed 
models facilitate assessment of patient prognosis and overall survival, prediction of 
disease recurrence or evaluation of safety and efficacy of therapeutic strategies. 
More importantly, these models serve as an aid to early diagnosis of the disease 
which is a key point in treatment outcome. To achieve this insight, machine learning 
algorithms learn from a training patient cohort for whom clinically relevant 
information as well as outcome of interest are available. Traditional prediction 
models have typically relied solely on clinical features such as demographic data, 
laboratory tests, pathology and medical history, which are mainly collected under 
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two main categories: real-world electronic medical records (EMRs) and formal 
randomized clinical trials (RCTs). There are controversial opinions about usage of 
trial-based prediction models in everyday clinical practice. This is mainly because 
RCTs involve more homogenous cohort of patients compared to real-world 
situations [2]. Hence, assessing the reliability of trial-based prediction models in 
real-world cases is crucial. 

In addition to clinical data, accurate and cost-effective high throughput 
technologies have enabled us to incorporate molecular or genetic information into 
prediction models. While molecular data may cover a large set of different omics, 
this thesis uses information from gene expression and genetic variants to predict 
clinical outcomes. In case of gene expression data, a common research task is to 
identify genes which are differentially expressed across distinct biological 
conditions (e.g. healthy versus diseased). So far, various statistical tools have been 
developed to perform differential expression testing; however, there is no clear 
consensus about the choice of optimal tool; as available tools behave discordant 
under different experimental designs. Since the identified genes may further serve as 
potential biomarkers, development of an accurate differential expression analysis 
tool is an important challenge to be addressed. In this domain, efficient statistical 
tools require robust approach to precisely estimate expression variability between 
and within experimental samples. When studying complex diseases, data 
heterogeneity is a real threat to analysis reproducibility. One approach to dealing 
with this problem is to combine genetic and clinical data to provide deeper 
understanding of the disease mechanism. This way, we expect to improve model 
performance and generalizability. 

When the desired variables are collected, the next step is data preprocessing and 
standardization irrespective of the data type. This can be a challenging and time-
consuming step as often there is no domain-specific standard workflow for data 
curation [3] [4]. A basic preprocessing approach standardizes variables by curing 
noisy and outlier incidences and imputing missing data when necessary. In case of 
genetic data, biological and systematic technical biases need to get minimized. After 
preprocessing the data, the next step is to build the prediction model. So far, 
numerous machine learning approaches have been proposed to predict healthcare 
outcomes. To account for clinical data complexity, ensemble-based methods with 
ability to capture interactions and non-linear associations between the variables are 
attracting great interest [5]. Among the many ensemble-based methods, gradient 
boosting is one of the most powerful techniques with common utility in medical 
applications [6] [7]. The primary goal of gradient boosting is to combine many weak 
learners to produce a powerful model with optimally enhanced performance [8]. 
Internally, gradient boosting strategies perform feature selection and are capable of 
handling missing data. When a model is built, selected variables are reported in an 
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ordered format according to their relative influence to facilitate model interpretation. 
An efficient learning algorithm should establish a balanced approach between the 
training and the test error rates to avoid model overfitting. Various methods such as 
cross-validation techniques are used to control model complexity and stop the 
learning procedure before overfitting occurrence. Once a model is trained, it is 
necessary to validate the predictive performance using suitable metrics (e.g. 
accuracy, ROC curve-AUC score), more preferably by an independent external data.  

The general aim of clinical predictive models is to improve the patient quality of 
care; and today, medical bioinformatics is becoming a main part of every clinical 
study [9]. The risk stratification methods are used to elucidate the causal factors of 
the disease, prognosis and possible treatment outcome. The studies presented in the 
following sections demonstrate the practical utility of applied mathematics and 
computer science in medical applications.   

 

1.2 Objectives and outline of this thesis 
Given the significant role of computational techniques in medical applications 
advancements, this thesis aims to introduce novel tools and algorithms developed to 
extract clinically relevant information from the biomedical raw material. More 
specifically, it provides robust methods to identify bio-clinical markers with 
substantial role in disease development, prognosis and treatment outcome. As case 
studies, the developed methods are used to identify: 

a. prognostic biomarkers in clear cell renal cell carcinoma (ccRCC), 

b. clinical markers predicting treatment outcome in metastatic castration-
resistant prostate cancer (mCRPC), 

c. bio-clinical markers predicting adulthood obesity. 

Additionally, this thesis assesses the reliability of trial-based prognostic models in 
read-world patients with mCRPC. This is a clinically critical question as patient 
prognosis is one of the main indicators of treatment plan for these patients.  

My PhD studies started by investigating computational tools developed for 
detection of differentially expressed genes in transcriptomics studies. Considering 
the RNA-sequencing (RNA-seq) technology as the current standard protocol in 
transcriptome profiling, my first publication provides a practical guideline to assist 
researchers in choosing suitable method for different RNA-seq experimental 
designs. In particular, a comprehensive comparative study was launched to assess 
the performance of eight widely used methods in detection of differentially 
expressed genes in real-world datasets with relatively large sample sizes. The results 
of this study revealed a significant inconsistency among methods in case of their 
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differential expression detections and served as a proved demand for a robust method 
in the field. Inspired by the results from the first publication, in publication II, a new 
data-adaptive statistical method to detect differentially expressed features in RNA-
seq studies is introduced. The proposed method is Reproducibility Optimized Test 
Statistic (ROTS) which aims to maximize the reproducibility of detections by 
optimizing a data-driven modified t-test statistic. The performance of the method in 
terms of sensitivity and specificity was first verified using a spike-in dataset with 
controlled mixes of synthesized transcripts. Next, this method was utilized to detect 
novel prognostic biomarkers for ccRCC. As a result, I was able to stratify ccRCC 
patients into distinct groups of poor, moderate and better prognosis by feeding ROTS 
detections into tailored clustering and survival techniques. Further enrichment 
pathway analysis confirmed the potential possibility of employing some of the 
proposed novel biomarkers as drug target candidates. Throughout this thesis, the 
term “detection” refers to differentially expressed genomic features (most often 
genes) detected by the utilized tools.  

Despite the significant role of molecular markers in understanding and treatment 
of cancer, conventional clinical data is still the gold standard utilized in everyday 
clinical practice. Therefore, publications III and IV in this thesis focus on 
development of predictive models using clinical features. In publication III, a novel 
modeling approach to predict short-term discontinuation of chemotherapy in 
mCRPC was developed. This paper is a collaborative project between seven 
international teams and we successfully show that routinely collected clinical 
measurements can be used in early prediction of docetaxel-based treatment 
discontinuation due to adverse events in patients with mCRPC. From clinical point 
of view, these results can assist oncologists in clinical practice decision making and 
also future clinical trials design. 

In publication IV, the aim is to address a fundamental oncological question: how 
reliable are the trial-based prognostic models in mCRPC everyday practice? 
Generally, real-world patients are older with more comorbidities compared to trial 
eligible patients. Accordingly, it is a challenging oncology task to predict the patient 
overall survival on the basis of trial-based prognostic models. Here, the investigated 
prognostic models resembled the state-of-the-art methods of the field published in 
two separate studies by Guinney et al. [10] and Halabi et al. [11]. The performance 
of the models was evaluated using a real-world mCRPC cohort from Turku 
University Hospital. The result of this paper confirms the applicability and 
generalizability of trial-tailored prognostic models in mCRPC routine practice.  

In addition to developing methods for both molecular and clinical data in 
separate manner, I investigated the combined use of them in developing clinical 
predictive models as the final stage of my PhD studies. A complex disorder which 
has been heavily studied at both molecular and clinical levels is obesity. It is a major 
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public health issue that has been proved to be influenced by both genetic and social-
environmental factors. In publication V of this thesis, a novel data modeling strategy 
is proposed to predict adulthood obesity using both clinical and genetic risk factors. 
The results of this study confirm that combination of childhood clinical factors and 
genetic risk factors from the genome-wide association studies (GWAS) can 
significantly improve the prediction of adulthood obesity when compared to clinical 
factors alone. 

The current thesis is organized in five parts: the first part is the introduction and 
study background. The second part (chapter 2) describes the methods and algorithms 
developed or used for publications I and II focusing on computational challenges at 
molecular level. Specifically, it gives an overview about transcriptomics data and the 
proposed novel computational approaches to analyze this type of data. The third part 
(chapter 3) covers our machine learning and statistical learning solutions to predict 
crucial events in metastatic prostate cancer. In contrast to previous part, purely 
clinical variables rather than molecular variables were available for these analyses. 
Chapter 3 includes literature review, details of proposed predictive models, as well 
as data and results from publications III and IV. The fourth part (chapter 4) describes 
computational approaches to deal with medical questions using both molecular and 
clinical variables. As a case study, chapter 4 briefly introduces data, methodology 
and results published in the fifth study included in this thesis. The last part (chapter 
5) summarizes the novel proposed methods and clinically relevant findings of this 
work. The original publications included in this thesis are presented in the Appendix 
section. 
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2 Computational and Machine 
Learning Algorithms for 
Discovering Disease Markers from 
High-Throughput Gene Expression 
Data 

In a broad point of view, the field of molecular biology investigates the role of 
biomolecules in regulation of cellular activities that defines phenotypes in living 
organisms. A central concept of the field is to understand gene expression process 
and transcriptional mechanisms to control this process. High-throughput sequencing 
techniques have revolutionized the scope of our knowledge in various biological 
aspects including gene expression quantification and profiling. At molecular level, 
this thesis focuses on computational methods for the analysis of transcriptomics data. 
Starting with biological background, this chapter provides an overview of data 
producing technologies and computational pipelines for the analysis of high-
throughput transcriptomics data. The extended focus will be on statistical methods 
for measuring differential gene expression with RNA-seq data. Conducting a 
comparative study, the methodology behind the state-of-the-art tools for differential 
gene expression testing is elaborated. As a result, this study provides a practical 
guideline to assist RNA-seq users to choose the optimal method fitting to their 
experimental design. Additionally, a novel tool is proposed to perform RNA-seq 
differential expression analysis which aims to eliminate weaknesses of the field. The 
efficiency of our proposed method is confirmed in a complex biomedical application 
by identifying novel prognostic markers for ccRCC.  

2.1 General overview of gene expression 
The genome of living organisms carries the substantial heredity information encoded 
with primary biomolecules called deoxyribonucleic acid (DNA). Inside the cell 
nucleus, the massively long DNA strand is densely organized into a condensed 
structure called chromosome. Although almost all cells contain copy of the same 
DNA, different cell types vary in appearance and function. This difference is due to 
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the fact that each cell turns on or expresses specific parts of DNA called genes whose 
overall activity determines the cell fate. Genes pass their flow of information to 
program a cell in two steps. The first step includes transcription and the gene coding 
information is used to form ribonucleic acid molecules (RNA). The RNAs can be 
either the initial template for the second step of gene expression called translation; 
or, can be the final products called non-coding RNA. The RNA which is used for 
translation step is called messenger RNA (mRNA) and encodes the final product of 
gene expression and primary element of cell functions the so-called proteins [12]. In 
most studies involving bioinformatics analysis, the aim to address the question of 
interest through identification, quantification and exploration of DNA, RNA and 
proteins. More specifically, cellular activity and behaviour can be studied either 
directly by investigating cell’s proteins, or indirectly by exploring DNA or mRNA 
molecules as initiative and medium cell functioning products. In laboratory, high-
throughput technologies are used to translate the genetic information from 
macromolecules of interest into quantified raw data [13]. The term omics is added 
to the obtained quantified data referring to the comprehensive investigative strategies 
to study biological entity of interest [14]. For instance, the term genomics refers to 
the comprehensive study of genome, while genome includes the whole set of genes 
obtained from sequencing of DNA molecules of a cell or tissue. The same approach 
is followed to explain other high- throughput omics datasets such as transcriptomics, 
proteomics, epigenomics and metabolomics. Transcriptomics is the data type used 
in publications I and II and so sections 2.2 and 2.3 give brief overview about the data 
and corresponding methodology. 

2.2 Transcriptomics technologies 
The heredity information encoded in genes need to be transcribed into RNA 
molecules or transcripts which serve as the mediator to control cell functions. 
Transcriptome is the full set of these transcripts made of RNA molecules in a cell, a 
tissue or an organism. The RNA molecules vary based on their functional roles. 
Examples include mRNA molecules as protein production templates, rRNAs as 
ribosomal assemblers, tRNAs as protein synthesis regulators or non-coding RNAs 
that have potential epigenomic impact on certain phenotypes such as disease 
development. Transcriptome has a dynamic nature and can vary under different 
conditions including intracellular stages or environmental circumstances [12]. The 
ultimate goal of transcriptomics is to identify and quantify all types of transcripts 
available in a cell of a desirable tissue or organism. The rapidly evolving high-
throughput technologies have provided the possibility of transcriptome study via two 
primary approaches including DNA microarray and sequencing-based techniques. 
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With the history of more than two decades, microarray platforms serve as the 
initial tool in transcriptomics studies. This technique aims to detect intensity signals 
emitted from hybridization of predefined fluorescently labeled sequences to their 
complementary probes. The detected signals confirm the availability of transcripts 
and their intensities determine their corresponding expression levels. Microarray 
data highly rely on RNA molecules concentration and their binding affinities to 
complementary targets [15]. Due to their high-throughput capacity, microarray 
platforms allow cost effective analysis of thousands of probes simultaneously in a 
single experiment. However, the technology is superseding with sequence-based 
techniques due to several limitations. Microarray assays depend on prior knowledge 
about the genome of interest. Consequently, there is no possibility of investigating 
unknown genomes and detecting novel transcripts or fusion genes. In addition, they 
suffer from intrinsic properties which affect the reliability of differential expression 
analysis. These include high level of background noise due to cross-hybridization 
and inaccurate expression levels originated from sequence concentration and 
saturation biases [16]. Today, due to the significant decrease of costs and increase of 
precision in sequencing platform assays, number of newly produced microarray 
studies are declining dramatically [17] [18] [19]. Nevertheless, projects with the aim 
of data reusability still utilize previously produced microarray datasets either alone 
or in combination with sequencing data. Clinical diagnostic applications are also 
heavily relied on array-based platforms.  

Next generation sequencing (NGS) techniques have become the standard 
approach for gene expression analysis in biology and medicine. The technology 
overcome microarray limitations while proving reproducibility and low technical 
variation in real-world applications [20]. RNA-seq is a highly sensitive NGS-based 
technique for detecting and measuring RNA molecules. In contrast to microarray 
techniques, RNA-seq does not depend on a priori known genome to perform the 
sequencing task. Instead, RNA-seq allows de novo assembly of transcriptomes in the 
absence of a well annotated reference genome [21]. RNA-seq data de novo assembly 
provides the ability to identify alternative novel splicing, fusion genes [22] and 
allelic variations within the transcribed regions [23]. The widely used platforms 
available for RNA-seq include Illumina, SOLiD, Roche 454, Ion Torrent and 
PacBio. Despite the variation in platform protocols, independent studies have 
confirmed relatively inter-platform and intra-platform concordance in identification 
and quantification of targeted RNA molecules [24]. RNA-seq platforms are free 
from predefined expression detection ranges, supporting their sensitivity in detection 
of very lowly or very highly expressed genes [19].  

General approach in an RNA-seq workflow includes three main steps. The first 
step is called library preparation and starts by extracting and purifying RNA 
molecules from target cells or tissues. Next, the purified RNA strands will be 
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randomly sheared into smaller fragments and then reverse transcribed into their 
original complementary DNA (cDNA) libraries. At this stage, some unique sequence 
strands called adapters will be ligated to cDNA fragments to help starting the RNA 
strand elongation during sequencing process. Finally, PCR (polymerase chain 
reaction) amplification techniques are used to produce sufficient copy of adapter 
ligated fragments required for sequencing platforms. The second step in RNA-seq 
workflow is to sequence the amplified cDNA strands using the desirable sequencing 
platform. Although there are notable differences in the chemistry of available 
sequencing platforms, the overall trend and the output of the platforms remain very 
similar. Here, the common output contains millions of short reads and their 
associated sequencing scores usually in regular simple formats like fastq files. The 
generated files from sequencing machines are the basic material for the third step in 
RNA-seq workflow which is computational data analysis. The overview of a typical 
RNA-seq data analysis pipeline is provided in the next section. 

2.3 RNA-seq data analysis pipeline 
The enormous amount of data produced by RNA-seq technologies require 
specialized computational tools to be analyzed and interpreted. A typical RNA-seq 
data analysis pipeline involves the following parts: preprocessing and quality 
control, reads alignment, summarization and normalization; and, finally differential 
expression testing followed by complementary data mining and data enrichment 
analysis (Figure 1). The experimental design and study subject are the main factors 
to determine the workflow details. Several statistical tools and computational 
methods have been proposed for RNA-seq data analysis. These bioinformatics tools 
are commonly built using Python, C and R programming languages. Majority of R-
based software tools are freely available under Bioconductor project which is an 
open-source environment for computational biology. For instance, most of software 
tools utilized for data preprocessing and differential expression testing in publication 
I, are available as open source in Bioconductor.  
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Figure 1. RNA-seq pipeline: the general workflow for the analysis of RNA-seq data. Blue boxes 

represent analytical methods and gray boxes represent data materials. 

 Sequenced reads quality control 
Despite the considerable improvements, RNA-seq technology still suffers from 
systematic and random technical biases that affect the quality of sequenced reads. In 
order to obtain reliable downstream results, it is necessary to estimate the accuracy 
of data and correct for problematic detections. The quality control process checks 
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quality scores per base calls, the PCR amplification problems, guanine-cytosine 
(GC) content distribution, presence of adapters and high rate of short length motifs 
(k-mers) and duplicated reads detection. Several bioinformatics tools have been 
developed to address each of the mentioned potential error sources [25][26]. FastQC1  
is a common and user-friendly tool to generate quality control report from sequenced 
raw reads supporting by visualization graphs. MultiQC [27] is also a modular 
reporting tool which aggregates results from different analytic softwares into a single 
output. There are other application tools such as NGS QC Toolkit [28] that can be 
used for both quality check and quality improvement in NGS data. In addition to 
possibility to discard low quality reads and trimming adapters or poorly sequenced 
bases, NGS QC Toolkit contains format conversion and statistical tools to facilitate 
the general data analysis workflow. In publication I, the FastQC tool is utilized for 
controlling the quality of raw fastq files.  

 Read Alignment 
Following a typical RNA-seq pipeline, read mapping or alignment is the next step 
after quality control. Ideally a mapping algorithm intends to map all short-sequenced 
reads into a unique and identical location of a genome or transcriptome reference. 
However, this goal is not fulfilled in practice due to several intrinsic biological facts 
including alternative splicing, genome repetitive or mutated regions and existence of 
pseudogenes. In addition, RNA extraction method and PCR procedure have been 
proved to affect the performance of alignment algorithms [29]. Various alignment 
tools have been developed to address the available challenges, yet none of them are 
able to map all the input sequenced reads. MapSplice [30], ReadsMap , STAR 
[31] and TopHat2 [32] are among the most popular developed alignment softwares. 
With most of the available methods, the percentage of identical mapped reads is a 
determinant factor in evaluating the accuracy of results. TopHat2 and ReadsMap 
were used in publications I and II respectively. For publication I, the results from 
alignment step were acceptable if more than 70% of the reads were mapped to non-
redundant regions [33]. Recently, TopHat2 has been replaced by a new tool called 
HISAT2 [34] which was not available at the time of our studies.  

 Expression summarization and quantification 
Once the alignment phase is accomplished, the next step is to estimate the expression 
abundances by quantifying the number of mapped reads associated to genes or 

 
 

1  Andrews S. (2010). FastQC: a quality control tool for high-throughput sequence data. 
Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
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transcripts. Here, the most challenging issue is to deal with multireads that have been 
mapped to multiple transcripts. The simplest approach when encountering with 
multireads is to discard them. This approach has been used even in some widely used 
methods like HTSeq [35] which discards reads mapped to a specific number of 
regions determined by user. This way, a noticeable proportion of information will be 
lost which results in potential systematic biases in downstream analysis. 
Alternatively, some recently developed methods have tried to accommodate the 
challenge by replacing the alignment step with mapping step while accounting for 
multi-mapped reads (e.g., Salmon [36] and Kallisto [37, p.]). The current 
recommended state-of-the-art methods include Cufflinks [38], RSEM [39], Salmon 
[36], and Sailfish [40] which have proved rather similarly acceptable performance 
in independent comparative studies [41]. In this thesis, Cufflinks, HTSeq and RSEM 
have been extensively used to obtain the expression levels. 

 Preprocessing and normalization methods 
Normalization is an essential part of RNA-seq analysis workflow ensuring the 
accuracy of downstream analysis. Normalizing techniques aim to remove (or highly 
reduce) the data systematic technical biases and provide a uniform comparative 
circumstance within and between sequenced samples [42]. Most considerable within 
sample biases include gene length, RNA composition and GC content. With gene 
length bias, it is simply expected that longer genes comprise more sequenced reads 
compared to shorter ones which could provide more statistical power in false 
detection of long genes as differentially expressed genes. In particular, this can lead 
to misleading biomedical conclusions when performing enrichment analysis without 
a proper normalization strategy. RNA-seq technology is also biased towards 
detection of fragments with low or rich GC content [43]. More specifically, 
sequencing results from Illumina platforms are prone to under-represent the reads 
with GC content [44]. Several normalization methods exploiting quantile regression 
and linear modeling approaches have been proposed to account for RNA-seq GC 
content [45][46]. However, some model developers state that within sample effects 
can be ignored due to their consistency within all experimental samples.  

In case of differential expression analysis, state-of-the-art methods aim to 
standardize data by removing between samples biases. Here, sequencing depth, the 
determinant of total counts per sample (library size) is the most critical bias origin. 
When extracting RNA strands for sequencing, samples with more RNA molecules 
will end up with more reads compared to other samples; introducing rise to false 
positive differential expression detections. RPKM (Reads Per Kilobase per Million 
mapped reads) is a classic but still widely used method which provides an integrated 
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solution for both gene length and library size biases. For gene 𝑔 the RPKM value 𝑅# 
is calculated as  

 𝑅# = 	
10(𝑛#
𝑁𝐿#

, (1) 

where 𝑛# is the total number of reads mapped to gene 𝑔, 𝑁	is the total library size of 
the sample and 𝐿# is the length of gene 𝑔. Currently, RPKM values are most often 
used for expression level summarization rather than normalization similar as in the 
approach in publication I.  

In addition to library size, a practical normalization method has to tackle with 
skewness of read counts distribution in the presence of extremely varied expressed 
features before running any statistical tests. For instance, in experiments with few 
highly expressed genes, the proportional distribution of the reads for the remaining 
genes can be imbalanced or underestimated. In this thesis, TMM (Trimmed Mean of 
M-values) [42] method has been frequently used to reduce biases originated from 
RNA composition. TMM method assumes that the majority of genes are equally 
expressed among sample groups and aims to compute TMM scaling factors for each 
sample after trimming the genes with extreme absolute expression levels. To do so, 
one sample will be chosen as reference and the log ratios between other samples and 
the reference for all genes will be calculated. More specifically, the log ratio of gene 
𝑔 from sample 𝑖 to reference sample 𝑟 is calculated as  

 𝑀#,01 = 	 log5
𝑞#,0 𝑁0⁄
𝑞#,1 𝑁1⁄ , (2) 

where 𝑞#,0 is the observed expression level of gene 𝑔 from sample 𝑖; and 𝑁0 and 𝑁1 
are the total library size in sample 𝑖 and reference sample respectively. At this stage, 
30% of the most extreme 𝑀# values will be trimmed, and the weighted mean of the 
remaining log ratios will be used to calculate TMM scaling factors. This whole 
procedure is implemented in calcNormFactors() function in edgeR [47] 
Bioconductor package. 

In publication II, we employed log-counts per million (log-cpm) transformation 
implemented in voom (variance modeling at the observational level) [48] trend from 
Limma [49] package. The log-cpm method aims to transform the discrete 
distribution of count data to better fit the normal distribution; so that the normal-
based statistical methods become applicable in RNA-seq data analysis. For each 
experimental sample the expression levels of genes are transformed to log-cpm 
values 

 𝑦#,0 = 	 log5 9
𝑛#,0 + 0.5
𝑁0 + 1

× 10>? , (3) 
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where 𝑛#,0 is the total reads mapped to gene 𝑔 from sample 𝑖 and 𝑁0 is the total 
library size for sample 𝑖. Voom is more a non-parametric analysis approach rather 
than a normalization technique. It provides an analytic platform to model the data 
variance and facilitates downstream statistical analysis. Independent studies 
suggested that statistical methods which use voom transformation and TMM in their 
internal procedures produce comparably reliable results [50] [51]. Also, in 
publication II, comparably robust identifications were obtained when performing 
differential expression analysis over kidney cancer data.  

 Differential expression testing  
In RNA-seq experiments, the most common task is to identify transcribed genomic 
regions that are differentially expressed across two or more distinct biological 
conditions. The transcribed genomic regions can be exons, transcripts or genes. In 
this thesis, different genomic regions will be referred as genes for convenience. 
Bioinformatics community has proposed a considerable number of tools to perform 
differential expression analysis. A well performing tool has to optimally assess the 
technical and biological variations available in RNA-seq data. In general, differential 
expression testing tools can be divided into two categories of parametric and non-
parametric methods. As shown in publication I, non-parametric methods present 
limited statistical power in experiments with few replicates. A frequently used 
example of this class of methods is NOISeq [52] which produced very conservative 
results with lowest precision among tested methods in our comparative study. It is a 
data-adaptive method which performs differential expression testing in two steps. 
First, it empirically models the so-called noise distribution of expression levels out 
of the actual data by contrasting fold change differences and absolute expression 
differences of all available genes among samples within the same condition. In the 
second step, the modeled noise distribution is used to justify the significance of 
observed differences between the sample groups and distinguish the true positives.  

The early parametric differential expression testing methods, proposed Poisson 
models to account for RNA-seq discrete data. This class of methods fitted well to 
studies with technical replicates and low level of between-samples variability [20]. 
When taking a random read from an experiment, the probability that the taken read 
comes from gene 𝑔 from sample 𝑖 can be calculated as 

 𝜋#0 = 	
ABC
DC

, (4) 

where 𝑛#0 is the expression level of gene 𝑔 (proportion of counts mapped to gene 𝑔) 
from sample 𝑖 and 𝑁0 is the total mapped reads obtained for sample 𝑖 (library size). 
Assuming that the sequenced reads have been sampled independently, the 
sequencing process can be modeled as a simple random sampling from the binomial 
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distribution (success: if the sequenced read is from gene 𝑔, failure: otherwise). 
Accordingly, the number of reads mapped to gene 𝑔 from sample 𝑖, 𝑌#0, can be 
modeled as follow: 

 𝑌#0	~	𝐵H𝑁0, 𝜋#0I. (5) 

In the absence of biological replicates, considering that 𝑁0 is always very large 
and 𝜋#0 ≪ 1, the above distribution could be very well approximated by a Poisson 
distribution with mean and variance both equal to 𝜋#0. 𝑁0. Previous studies, have 
successfully confirmed the practicality of Poisson distribution in RNA-seq 
experiments with technical replicates [20] [53] . However, soon it was discovered 
that the Poisson models underestimate the elevated variability, referred as 
overdispersion [54], observed in RNA-seq data with biological replicates. In this 
case, the estimated values for 𝜋#0 vary between samples within same experimental 
group and an additional parameter is required to account for over-dispersed 
biological data (mean > variance) and better controlling of type I error. Hence, 
several commonly used tools employ negative binomial models (e.g. edgeR, DESeq 
[55]) or beta binomial models (e.g. BBSeq [56]) to estimate the distribution of 
expression levels.  

To model the expression levels as negative binomial distribution, the variance of 
𝑌#0 is computed as a function of mean 𝜇 

 𝑣𝑎𝑟H𝑌#0I = 	𝜇#0H1 + 𝜙#𝜇#0I, (6) 

where 𝜇#0 = 	𝜋#0. 𝑁0 and 𝜙# is the dispersion for gene 𝑔. Accordingly, one can 
estimate the distribution of 𝑌#0 is follows: 

 𝑌#0	~	𝑁𝐵H𝜇#0, 𝜙#	I,	 (7) 

where in case of 𝜙# = 0, then the negative binomial distribution is converted to 
Poisson model. 

Once the parameters are estimated, the likelihood ratio test is performed to 
compare the likelihood of the read counts with no differential expression under 
condition of interest (e.g., disease) against the likelihood of the data representing 
differential expression due to the same condition. In this case, thousands of 
hypotheses are tested simultaneously and so correction for multiple testing is a 
necessity to avoid encountering high rate of false positives. Therefore, most tools 
including ROTS, DESeq2 and Limma correct the obtained p values for multiple 
testing before reporting the final results.  

DESeq is a widely used parametric method in RNA-seq data analysis. 
Independent comparative studies have confirmed the strength of DESeq in precise 
estimation of variance especially in relatively highly or lowly expressed genes. Also, 
DESeq is capable of estimating data parameters in datasets with no replicates using 
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a so-called blind method. However, end users are warned about the potentially overly 
restrictive results that may be drawn from experiments with no replicates.  

In publication I, we concluded that Limma method outperforms other state-of-
the-art packages under a wide range of experimental designs tested in our study. 
Limma was first used to identify differentially expressed genes in microarray 
experiments but over the time, it has been modified so that it is compatible with other 
data types such as RNA-seq data. In contrast to parametric methods such as DESeq, 
Limma aims to model the mean-variance relationship rather than introducing the 
additional dispersion variable under negative binomial distribution assumption. This 
package provides two approaches to detect differentially expressed genes: the 
Limma-trend and the voom-trend [48]. The main difference between the trends is 
that the mean-variance modeling is performed at gene level for all samples in 
Limma-trend; while, the voom-trend models the variance at sample level 
individually.  

To control the library size bias, voom transformation is used to convert the raw 
expression levels to log-cpm values (refer to 2.3.4 for details). RNA-seq counts have 
shown to be heteroscedastic meaning that the variance fluctuation increases with 
increasing expression levels. Using log-cpm transformation, larger variances would 
be moderated with higher rate, stabilizing variance for relatively long or highly 
expressed genes. When the data is preprocessed, the mean-variance relationship is 
modelled using an empirical Bayes analysis pipeline. The voom-trend includes an 
additional step in which, it calculates the precision weights for each individual 
sample and incorporates these weights into the Limma analysis pipeline [57]. The 
expression levels are fitted into a linear model implemented in very similar way for 
both Limma-trend and voom-trend: 

 𝑌#0 = 	𝛽Q𝑥0 +	𝛽S + 𝜖#0, (8) 

where 𝛽S and 𝛽Q are the model slopes, 𝜖#0 is the model error and 𝑥0 is the 
differentiating covariates for experimental groups. Limma is freely available as a 
Bioconductor software package and the developers actively answer technical 
questions via Bioconductor community mailing list. The reader is referred to 
publication I for detailed information about the software packages available in our 
comparative study.  

2.4 ROTS 
In publication I, we focused on differential expression analysis and demonstrated 
that the performance of the state-of-the-art methods strongly depends on the data 
under analysis, and the field lacks a powerful method with capacity of fitting to real 
data. With parametric methods, opting a suitable distribution which can fully capture 
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the data heterogeneity seems a challenging task. To address the challenge, in 
publication II we propose our data-adaptive method called ROTS [58] [59] [60]. 
ROTS method avoids making a priori assumption about the data distribution by 
employing a test statistic learning directly from the data. More specifically, we 
utilize a dynamic t-type statistic as a core to optimize the reproducibility of 𝑘 top-
ranked candidate genes from group-preserving bootstrap datasets. Here, each 
resampling round and the corresponding list of top-ranked genes provide information 
to optimize the statistic parameters.  

Suppose that 𝑥#0
V  represents the normalized expression level of gene 𝑔 in sample 

𝑖 from condition 𝑗, ROTS estimates the mean and variance of gene 𝑔 within each 
condition respectively as follow: 

 �̅�#
V = 	 Q

AY
∑ 𝑥#0

VAY
0[Q  and H𝑠#

VI
5
= 	 Q

AY]Q
∑ ^𝑥#0

V −	 �̅�#
V`
5AY

0[Q , (9) 

where 𝑛V is the number of samples in condition 𝑗. Next, the rank of gene 𝑔 is 
calculated using the following modified t-statistic:  

 𝑑b(𝑔) = 	
ef̅B	g ]f̅B	h e
bgibhjB

, (10) 

where 𝛼Q 	∈ 	 [0,∞) and 𝛼5 	∈ 	 [0, 1] are the common parameters to be optimized, 
and 𝑠# represents the estimated pooled standard error:  

 𝑠# = 	p^
Q
Ag
+ Q

Ah
`
(Ag]Q)HjBgI

hi(Ah]Q)HjBhI
h

AgiAh]5
. (11) 

ROTS statistic is characterized by optimization and specification of 𝛼 
parameters. The predefined cases of 𝑑b(𝑔) include signal log-ratio (𝛼Q = 1, 𝛼5 =
0), ordinary t-statistic (𝛼Q = 0, 𝛼5 = 1) and SAM-statistic (𝛼5 = 1, 𝛼Q	a percentile 
of the standard deviations) [61]. Unlike these predefined forms, the ROTS statistic 
is determined directly from the input data through a reproducibility optimization 
procedure ensuring the accurate estimation of biological and technical variability. 
Accordingly, we optimize 𝑑b(𝑔) by maximizing its reproducibility 
(max	{𝑅u(𝑑b(𝑔))}) through pairs of bootstrap datasets estimated as follow: 

 𝑅u	(𝑑b) =
1
𝐵w𝑅ux

y

x[Q

	(𝑑b), (12) 

where 𝐵 is the predefined number of bootstrap rounds. Assuming that 𝐷Qx and 𝐷5x 
are the bootstrapped pairs resampled from the original dataset 𝐷 (with replacement 
while preserving the groups), one can calculate 𝑅ux as follow: 
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 𝑅u	(𝑑b) = 	
1
𝐵	w

#	|𝑔	|	(𝑟#H𝛼, 𝐷QxI < 𝑘, 𝑟#H𝛼, 𝐷5xI < 𝑘)		�
𝑘

y

x[Q

, (13) 

where 𝑟#H𝛼, 𝐷�xI is the rank of gene 𝑔 in 𝐷�x dataset and # denotes the number of 
genes that fulfill the above condition. Finally, we transform the reproducibility into 
a z-type statistic and maximize it to determine the optimal ROTS statistic: 

 𝑍u(𝑑b) = 	
𝑅u(𝑑b) −	𝑅uS(𝑑b)

𝑠u(𝑑b)
. (14) 

Here, we define 𝑅u(𝑑b) and 𝑅uS(𝑑b) as the reproducibility of the observed and 
random datasets, and the dominator,𝑠u(𝑑b), is the estimated standard deviation of 
the bootstrap distribution of the observed reproducibility. 𝑍u(𝑑b) is maximized over 
a dense lattice of 𝛼 parameters (𝛼Q, 𝛼5) and k as the optimal number of top ranked 
genes. For publication II, we defined the parameters so that 𝛼Q ∈ {0, 0.05,… , 5}, 
𝛼5 ∈ {0,1} and 𝑘 ∈ {5,… , 𝐺} where 𝐺 denotes the total number of genes available 
in the experiment.  

To perform analysis, ROTS takes matrix of normalized data for input (columns: 
experimental samples, rows: genomic features) along with vector of sample labels 
and groups. For each gene, the package reports ROTS statistic, fold change, p value 
and FDR estimate for assessing differential expression. Additionally, the general 
validity of the analysis depends on the optimized Z-score and reproducibility values. 
In practice, the reliability of detections cannot be confirmed in experiments with Z-
score below 2. The ROTS package and detailed manual is freely available through 
Bioconductor: (http://bioconductor.org/packages/ROTS).  

2.5 Functional enrichment analysis and biological 
interpretation  

Once the list of differentially expressed genes is obtained, it is essential to 
biologically characterize the concluding list and infer their associative role with the 
study subject. For example, we are interested to see how and to what extent the 
differentially expressed genes or their interactions would affect the biological 
condition under study. In RNA-seq data analysis pipelines, investigating the 
functional significance of differentially expressed genes can be performed using two 
different approaches. The first standard approach is gene category over-
representation analysis which classifies the original list of differentially expressed 
genes into smaller gene sets based on their association with a priori annotated 
pathways; and, determines whether a significant over-representation of differentially 
expressed genes in certain pathways is observed. Here, appropriate statistical tests 
such as hypergeometric test are applied to compare the significance of difference 
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between distribution of detected differentially expressed genes and distribution of all 
sequenced genes within a desirable gene set. The most commonly used a priori 
annotated pathway databases include Gene Ontology (GO) [62], Database for 
Annotation, Visualization an Integrated Discovery (DAVID) [63] and Kyoto 
Encyclopedia of genes and genomes (KEGG) [64]. In publication II, the Ingenuity 
pathway analysis (IPA), a commercial web-based tool, was used for functional 
enrichment analysis. IPA includes both automated and manually annotated ingenuity 
ontology to identify the list of over-represented gene sets and can be applied to all 
types of high-throughput omics data. In publication II, our objective was to identify 
significantly changed pathways with potential impact on developing severe form of 
ccRCC with poor prognosis. To this aim, the list of differentially expressed genes 
detected by ROTS was uploaded to IPA software; and the Core Analysis function 
was applied to identify pathways and gene networks relevant to poor prognosis. The 
significance of detections was tested by the Fisher’s exact test p value and the final 
pathway candidates were scored on the basis of number of genes over-represented 
in each pathway (see publication II, supplementary table S3).  

Gene set enrichment analysis (GSEA) is the alternative popular approach to 
detect the enriched functional gene sets. Similar as in previous enrichment profiling 
approach, a gene set is a module of genes that share common functions with 
underlying impact on certain pathways or diseases. GSEA-based methods rank the 
differentially expressed genes or transcripts according to their differential expression 
measurements (e.g. FDR and fold change), and then run Kolmogorov family tests to 
assess their enrichment significance level. Several GSEA-based software tools like 
SeqGSEA [65] combine differential expression information and splicing strength for 
each gene before adopting the statistical tests to improve the analysis outcome [66].  

2.6 RNA-seq databases and public repositories 
Today, most of high-profile journals require the study materials to be publicly 
available by authors before publishing their research results. This policy ensures 
reproducibility of the results and provide a valuable source to the whole research 
community. In bioinformatics, data serves as the fundamental necessity in method 
development and due to their cost effectiveness, many bioinformatics publications 
depend on data sources stored in public data portals. Currently, many public data 
repositories have been developed to fulfill the growing demands of data sharing and 
reusability. While some databases are specialized in one type of data or a specific 
organism (e.g. Integrated Microbial Genomes (IMG) for microbes), many of them 
include multiple omics data levels focusing on several topics like various cancer 
types or mental diseases. In practice, it is very common for computational projects 
to demand combining data from different databases which can cause technical 
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challenges due to the databases’ inconsistencies. In this case, the technical challenges 
include different naming conventions used by different databases, incomparable data 
preprocessing approaches (in case of absence of raw data) or significant variation in 
data collection time which can yield to utilization of different data format and 
production technologies. Accordingly, most data repositories use an embedded or 
stand-alone tool to automatically homogenize data from different resources. BioMart 
application provided by Ensembl is one of the widely used tools to address some of 
the challenges originated from databases inconsistency. The studies in this thesis 
utilized data from public data portals including ReCount [67], TCGA, European 
Genome-phenome Archive (EGA) [68] and Project data Sphere [69]. Among the 
utilized data portals by this dissertation, TCGA is perhaps the most studied data 
repository in computational biology projects. It is a joint program between the 
National Cancer Institute and the National Human Genome Research Institute which 
was launched in 2006. TCGA utilizes high-throughput sequencing techniques to 
produce multi-level genomic data for more than 30 types of most prevalent cancers 
with poor prognosis. The program ultimate goal is to develop a multi-dimensional 
comprehensive atlas of genomic profile of selected cancers. In addition to 
biomedical sciences, TCGA is an invaluable resource in bioinformatics as a source 
of real-world data with huge sample size, freely available for research purposes. The 
large volume and diversity of the TCGA datasets can significantly assist in 
developing accurate and well-tolerating tools when coping with heterogenous data 
[70]. For transcriptome studies, the NCBI Gene Expression Omnibus (GEO)[71] and 
the EBI ArrayExpress (AE) [72] also provide public repositories for gene expression 
data. 

2.7 Differential expression testing comparative 
study: Publication I 

As described in section 2.3.5, in most RNA-seq experiments the primary goal is to 
detect the differentially expressed transcript products. Validation and reproducibility 
of this type of analysis ensure the implementation of utilized statistical approaches 
in real-world conditions. Bioinformatics community has proposed a considerable 
number of tools to perform differential expression analysis. However, in practice, 
there is no clear guideline about how to select the best fitted methods to organize an 
optimal experimental design and obtain reliable results. Of note, several comparative 
studies including publication I have demonstrated the determinative impact of choice 
of method in final reporting results [73][74][75]. This publication is very important 
as it shows a significant inconsistency between results from different pipeline 
analysis. It also provides a practical guideline for selecting the right method for 
organizing an optimal RNA-seq experiment. The main advantage of our study over 
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the preceding similar works is the utilization of two relatively large real datasets with 
biological replicates rather than either small or simulated data. Under optimal 
experimental design conditions, it is expected to obtain a close set of differentially 
expressed features using different computational methods. However, our analysis 
demonstrated a notable level of variation and inconsistency among the significant 
detections of methods under study.  

 Methods and material 
Data. Two datasets from mouse and human experiments (with relatively large 
sample sizes at the time of this study) from publicly available repositories are 
employed in publication I comparative analysis. The mouse RNA-seq data consists 
of the striatum samples of 21 mice, 10 of the C57BL/6J strain and 11 of the DBA/2J 
strain [76]. Gene expression profiling was performed to identify differences between 
the two strains. The human data includes lymphoblastoid cell lines of 56 unrelated 
Nigerian individuals, 28 males and 28 females [77]. We identified differentially 
expressed genes between males and females. Both datasets were sequenced using 
Illumina Genome Analyzer II and TopHat aligner with default parameters was used 
to assemble the sequenced reads. For all comparisons except CuffDiff2, the genes 
abundance levels were inferred using HTSeq software. In mouse data, samples are 
divided into more homogenous groups with significantly higher within-strain 
correlation values (Wilcoxon test, P < 0.01) compared to human data.  

Methods. This study presents a systematic practical comparison of eight state-
of-the-art software packages including edgeR [47], DESeq [55], baySeq [78], 
NOISeq [52], SAMseq [79], Limma [49], Cuffdiff2 [80] and EBSeq [81]. The 
performance of the methods was assessed using 1) the number of significant 
detections for different sample sizes, 2) detections consistency within and between 
methods, 3) false discovery detection rates and 4) methods running times. Data 
preprocessing and normalization was performed following the approaches 
recommended by the software manuals. In order to investigate the relation between 
gene expression level and their appearance in differential expression results, genes 
were divided into four categories on the basis of their RPKM values: very lowly or 
not expressed, lowly, medium or highly expressed genes. The Bioconductor package 
easyRNASeq [82] was used to calculate the RPKM values and the categories were 
organized as follow: genes with an average RPKM value across samples below 0.125 
were considered as very lowly or not expressed, genes with an average RPKM value 
between 0.125 and 1 were considered lowly expressed, between 1 and 10 medium 
expressed, and above 10 highly expressed [83].  
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 Results and conclusions 
As expected, with most of the software tools, we observed a positive correlation 
between the number of detected differentially expressed genes and the number of 
replicate samples (exceptions included NOISeq and Cuffdiff2) which implies the 
auxiliary effect of large sample size when estimating dataset statistics. Despite of 
this similar increasing trend, a remarkable variation was observed when comparing 
the number of detections at each sample size from different packages. For instance, 
when considering the whole sample size, number of significant detections varied 
from zero to few hundreds or couple of thousands in mouse and human datasets 
respectively (Figure 2A). Regarding the expression levels of detected genes, in both 
human and mouse datasets a relatively high proportion of detected genes belonged 
to very lowly and lowly expressed categories (Figure 2B). This observation can 
originate from technical limitations of RNA-seq technology in accurate 
quantification of expression levels especially for lowly expressed genes. Currently, 
filtering out the very lowly expressed genes is a common approach in practical RNA-
seq studies to avoid expression level-based biases. 

Finally, we examined the within methods consistency of the detections for both 
human and mouse datasets. Accuracy of variance estimation is a key factor ensuring 
the reliability the of statistical testing. However, with many of RNA-seq studies, 
variance estimation has remained a challenging issue due to few or no replicates 
condition. In this publication, we assumed that detections from complete datasets 
comparisons should have highest precision and so were used as validating reference 
to check the consistency of the results from smaller sample size comparisons. 
Accordingly, the precision of the methods was calculated as the overlap between 
detected genes in the subset of different sizes and significant detections in the 
complete data for both human and mouse datasets (Figure 2C). Robust methods are 
expected to detect relatively consistent features for different subsample sizes with 
lower level of variation in number of significant detections. However, with most of 
software packages (except Limma and DESeq) our analysis revealed the necessity 
of algorithm improvements especially with the more heterogenous human dataset. 
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Figure 2. The effect of sample size and expression level on differential expression analysis using 

eight software packages in mouse and human data (upper and lower panel 
respectively). (A) Number of differentially expressed genes (y axis) with different sample 
size (x axis) for each software tool. The points correspond to average number of 
significant detections and the error bars represent the standard deviation. (B) The 
proportion of differentially expressed genes with respect to their expression abundance 
categories: very lowly expressed, lowly, medium and highly expressed genes. (C) 
Precision of calling differentially expressed genes (y axis) with regard to sample size (x 
axis). Number of detections in the complete data (N = 10 and N = 28 for mouse and 
human data respectively) were used as the reference to calculate the precision of 
methods. The points correspond to averages over 10 randomly sampled subsets; the 
error bars show the standard error of the mean. The figure is adapted with permission 
from publication I.  

Methods’ power in controlling type I error is another key metric to assess the validity 
of differential expression analysis findings. Calculating the false positive discovery 
rate is not straight forward for real datasets when the truth of the results is unknown. 
For this publication, we suggested performing artificial differential expression 
analysis within the same sample groups (i.e. same mouse strain or same human sex). 
The comparative arms included 10 times random sampling without replacement for 
different numbers of replicates for each sample group. A powerful method is 
expected not to detect any significantly differentially expressed features in such 
mock experimental design. In order to make comparable results across different 
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methods, for each sample size, number of mock detections were divided by the 
average number of detections in the actual comparisons. In general, false discovery 
detections decreased when the sample size increased and the methods’ performances 
were more promising with mouse dataset (Figure 3). We concluded that in the 
absence of data distribution knowledge, more restrictive false discovery rate control 
methods and cautious when reporting the results are needed especially with more 
heterogeneous datasets (e.g. human dataset in this study). 

Following the significant variation observed between the methods’ detections, 
additional analysis was performed to investigate the methods’ similarities and 
differences. More specifically, for each method, the genes were ranked based on their 
level of significance in differential analysis and Spearman correlation values were 
calculated to reflect the methods’ relation. This type of analyses can provide a useful 
guideline for studies which use more than one method to validate their findings. As 
could be expected, methods that shared similar data distribution assumptions were 
highly correlated. After a carful comparative investigation, we suggested Limma 
method as a robust tool to perform differential expression analysis. 

 
Figure 3.  False discovery rates for the eight software tools on the basis of mock comparisons in 

(A) mouse and (B) human data. The points correspond to averages over 10 randomly 
sampled subsets; the error bars show the standard error of the mean. The figure is 
adapted with permission from publication I. 
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2.8 Practical issues and potential pitfalls of RNA-
seq differential expression analysis 

In publication I, the aim was to guide the selection of a suitable package to ensure 
the validity of differential expression analysis in terms of accuracy and robustness at 
various sample sizes. It was shown that different methods can produce widely 
contrasting results under similar study design. Of note, most of the investigated 
methods were sensitive to number of replicates meaning represented inconsistent 
results when the study sample size varied. In this comparative study, Limma and 
DESeq presented persistent results for different sample sizes and more importantly 
when the sample size was below 5. In addition to sample size, methods presented 
different levels of sensitivity when the input data was relatively heterogeneous (e.g., 
human dataset in current analysis). In fact, with RNA-seq data, the main difficulty 
that method developers are facing is to accurately estimate the variance. In this case, 
we are dealing with three main sources of variability including technical variation, 
biological variation and the systematic NGS inherent biases. The technical and 
biological variations originate from experimental replicate types. As we are dealing 
with count data, we can safely use Poisson distribution to model technical replicates 
and simply assume that the variance of samples is equal to their mean. However, this 
assumption does not hold when the biological replicates are introduced to the 
analysis. In experiments with biological replicates, the main challenge is to 
accurately estimate the variance of over-dispersed data. A parametric solution to 
account for biological variation is to use negative binomial distribution which poses 
additional parameter for variance. Although parametric methods with negative 
binomial distribution outperform Poisson bases methods, their accuracy in 
estimation of biological variation in experiments with relatively large sample size 
(e.g., sample size ≥ 10) is under question. For instance, edgeR is a popular method 
which utilizes negative binomial distribution to model count data. However, several 
studies have confirmed that the ability of edgeR in controlling type I error decreases 
when the sample size increases [73] [51] [84]. Here, one solution is to apply non-
parametric approaches with no a priori assumption about the variance.  

Majority of differential expression methods employ normalization and 
preprocessing techniques to account for NGS inherent biases [85]. Filtration of very 
lowly expressed genes with the aim of improving the statistical power is a common 
preprocessing practice [86]. This is mainly because most methods assume a large 
proportion of data noise is available among the lowly expressed genes as a result of 
RNA composition bias. Although several studies confirm the necessity of filtration 
operation, careful considerations should be taken into account to minimize the loss 
of potentially interesting expression changes. In our comparative study, we 
concluded that choice of normalization method does not have a strong impact on the 
final results (refer to Supplementary Figure S4 and Table S1, publication I for 
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details). However, it should be mentioned that evaluating the effect of normalization 
techniques was not the main aim of our study and so further complementary analysis 
are required to rule it out.  

Under special circumstances that the choice of suitable method is ambiguous, a 
typical approach is to perform differential expression analysis using couple of 
selected methods and take the overlapping results for enrichment analysis. Although 
this can be an efficient solution for some scenarios, it is very probable to obtain none 
or very few overlapping detections which is a big barrier for further analysis steps 
(refer to Figure 4 publication I for details). In publication I, it was concluded that 
Limma method is the safest choice among other tested methods based on our study 
design. Nevertheless, it was emphasized that the field lacks a standard method 
capable of creating reproducible and robust results under wide range of experimental 
design. To address this essential demand, ROTS method is proposed in publication 
II as a data-adaptive and powerful approach to perform differential expression 
analysis.  

2.9 Robust identification of prognostic markers for 
ccRCC: Publication II 

In publication II, a comprehensive study was launched to assess the efficiency of 
ROTS in real-world medical applications. In particular, I aimed to extract a robust 
and reproducible gene signature for risk stratification of patients with ccRCC. In 
cancer studies, prognostic markers are used to estimate the tumor progression and 
patient survival outcome. They are the principle factors in clinical decision making 
and clinical trials eligibility criteria. Accordingly, identification of robust biomarkers 
supported by biological validity play key role in development of efficient and 
personalized therapeutic agents.  

Renal Cell Carcinoma (RCC) is the most common type of kidney cancer 
accounting for more than 90% of the diagnosed cases. With a steady rise in annual 
incidence, RCC is the seventh and ninth leading cancer in men and women 
respectively. Locally it originates from renal epithelium with high metastatic 
potential especially with possibility to spread into lung, liver, bone and lymph nodes 
system. Most of the non-metastatic diagnosed cases can benefit from surgical 
treatments with five years overall survival. However, the prognosis is poor for later 
stages. In respect of biology and genetics, RCC tumors are proved to be highly 
heterogenous with distinct histological subtypes. This genetic diversity is the 
underlying factor for necessity of subtypes-specific therapeutic strategies and 
consequently the disease outcomes. The most frequent histological subtypes of RCC 
include clear cell (75-80%), papillary (10-15%) and chromophobe (<5%). In clinical 
practice, it is still a challenge to predict patient progression and decide on proper 
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treatment options. In this thesis, a novel data-driven approach was proposed to 
identify prognostic markers for ccRCC, the most common type of RCC with the 
highest morbidity rate.  

 Materials and methods 
Spike-in data. The spike-in data were downloaded from GEO with accession 
number GSE49712. The RNA group samples A (pooled cell lines) and B (human 
brain) were from SEQC (MAQC- III) project spiked with 92 synthetic RNA 
molecules from the External RNA Control Consortium (ERCC) [1]. The ERCC 
spike-in controls were spiked to have 0.5, 0.67, 1 or 4 fold changes between the 
mixtures groups A and B. Samples were sequenced using Illumina HiSeq 2000 
platform and TopHat (V 2.0.3) and HTSeq (V 0.5.p3) were applied for read 
alignment and expression level estimation respectively.  

ccRCC datasets. The ccRCC datasets were from TCGA [70] [88] and a 
Japanese cohort published by Sato et al. [89]. In particular, we were interested in 
datasets with large heterogeneity and sample size to examine ROTS performance. 
Of note, the selected datasets were among the largest datasets publicly available at 
the time of our study (2015). The TCGA data (N = 442) was used to detect candidate 
prognostic markers and the dataset by Sato et al (N = 93; referred to as validation 
data in the following) was used as a completely independent data to validate the 
results. The TCGA dataset was directly downloaded from TCGA portal and the 
Japanese ccRCC cohort was downloaded from EGA under the accession number 
EGAS00001000509. The reader is referred to the original papers for the detailed 
information regarding the ccRCC datasets.   

 Results and conclusions 
Spike-in dataset analysis. ROC (Receiver operating characteristic) curves and 
AUC (Area under the ROC curve) values are widely used to evaluate methods’ 
performance in detection of differentially expressed features. In this study, 
calculating ROC analysis parameters was straight forward as a spike-in dataset with 
known differentially and non-differentially expressed features was utilized to assess 
ROTS performance over the selected state-of-the-art methods of the field. 
Accordingly, true positives (TP), false positives (FP), true negatives (TN) and false 
negatives (FN) were calculated by comparing significant detections of each method 
and a priori known ERCC spike-in controls. Next, ROC analysis was performed, and 
AUC values were calculated to assess the methods’ sensitivity and specificity in 
detection of differentially expressed features. The results showed the outstanding 
performance of ROTS comparing to other benchmarking methods (Figure 4A; AUC 
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= 0.941; DeLong’s test P < 0.01 compared to all other methods except for baySeq 
for which P = 0.077). Non-differentially expressed ERCC controls (fold change = 1) 
were further used to test methods power in controlling type I error rate. It is expected 
that methods report high FDR values (i.e., FDR > 0.05) for non-differentially 
expressed features. Among 23 non-differentially expressed spike-in controls, ROTS 
identified only one false positive at FDR < 0.05, whereas with other methods this 
number varied from 3 to 18 at the same FDR threshold (Figure 4B). Altogether, the 
AUC values and false discovery detection rates in spike-in dataset demonstrated the 
significant performance advantage of ROTS over the tested methods. 

 
Figure 4.  Differential expression analysis using spike-in data. (A) ROC curves and AUC values 

for detection of DE ERCC spike-in controls. Statistical methods were expected to detect 
ERCC controls with 0.5, 0.67 or 4 fold changes between the experimental mixtures 
groups. (B) False discovery rate values of non-differentially expressed ERCC controls. 
Statistical methods are expected to report FDR values greater than 0.05 for ERCC 
controls with fold change = 1. The figure is adapted with permission from publication II. 

ccRCC risk stratification. Inspired by promising results from spike-in dataset, 
a complementary study was launched to assess the efficiency of ROTS in real world 
medical applications. This study aimed to identify ccRCC prognostic biomarkers 
using gene expression data. Among 442 patients of TCGA data, 40 patients with 
poor prognosis (survival time < 12 months) and 40 patients with better prognosis 
(survival time > 60 months) were selected for differential expression analysis. The 
expression level of 2208 genes differed significantly between the comparative 
groups at FDR < 0.05 (ROTS reproducibility parameters: R = 0.57, Z = 5.27). To 
minimize the intrinsic technical noise and improve stringency, additional filtration 
criteria were taken into account. Hence, significant genes with absolute log2 fold-
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change below 1.6 (∼3-fold change) and average expression level below the lowest 
30% of data were filter out remaining 152 genes for downstream analysis.  

Unsupervised hierarchical clustering of the differentially expressed genes 
between pooled TCGA samples identified four ccRCC prognostic clusters (Figure 
5A). Although the clustering analysis proved promising results, I was looking for a 
more stabilized risk stratification approach to ensure the reproducibility of findings.  
Accordingly, a supervised risk scoring system was developed to assess patient 
survival outcome. For each patient, prognostic score was defined as the difference 
between the average log2-transformed expression levels of up and down regulated 
genes in the prognostic signature of 152 ROTS detections. The risk scores were then 
clustered into four risk groups, named C1 to C4, using K-means clustering analysis 
(Figure 5B). Kaplan-Meier (KM) analysis (refer to section 3.3.1 for details) revealed 
a significant difference in the survival of patients; presenting the best and worst 
prognosis for C1 and C4 groups respectively while remaining the two other groups 
in between (Figure 5C; log rank test 𝑃 < 	10]Q�).  For low risk patients (C1 group) 
the five-year survival rate was around 80%, whereas the percentage dropped to 
below 20% for patients categorized in high risk group (C4 group).  

Finally, a completely independent dataset of 100 ccRCC patients was used to 
evaluate the generalization ability of the proposed model. Figure 5D shows the 
corresponding scatter plot for signal log ratios of 152 ROTS detections between the 
best and poorest survived patients from TCGA and validation data. Notably, over 
90% of the tested genes showed a significant pattern of regulation association which 
ensures practicality of validating analysis (Pearson correlation 0.796, 𝑃 < 	10]Q�). 
Next, the validation data samples were divided into 4 risk groups (high risk, 
intermediate risk and low risk) and the association between risk groups and survival 
was estimated using KM analysis. Of note, a similar highly significant association 
between the classified risk groups and overall survival time (Figure 5E; log rank test 
𝑃 < 	10]�) was observed as in TCGA data. The spike-in and ccRCC data analyses 
confirmed the efficiency of ROTS in RNA-seq differential expression analysis. All 
in all, these analyses confirmed the reliable performance of ROTS on large and 
heterogenous real world data. 

Clinical findings. The differentially expressed genes detected by ROTS were 
categorized into nine biochemical functioning groups by manual annotation (Figure 
6A). The largest category comprised the genes from the cellular transporter and 
solute carrier (SLC) groups (∼26%). Dysregulation of SLC genes and their 
association with ccRCC prognosis have been reported in several studies [90] [91] 
[88]. SLC family members regulate nutrient transporter proteins which are essential 
in both promotion and suppression of tumors growth. Among 26 differentially 
expressed SLC genes identified in this study, 19 genes were exclusively detected by 
ROTS. For instance, SLC38A5 is a previously undetected gene which fuels cancer 
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cell by transporting glutamine required to build amino acids and consequently rapid 
proliferation of ccRCC tumors (Figure 6B). Accordingly, this study supports the 
theory of using SLC genes as potential therapeutic targets in ccRCC.  

 
Figure 5.  Identification of novel biomarkers to predict survival of patients with ccRCC. (A) Patients 

were clustered into four risk groups using unsupervised clustering analysis on the basis 
of differentially expressed genes detected by ROTS. (B) Frequencies of patient-specific 
risk scores for TCGA data. The red vertical lines show the cutoffs determined by K-
means clustering to define ccRCC risk categories. The risk categories significantly 
overlapped with the similarly colored clusters in panel A (69, 92, 78 and 92 percent of 
overlap with C1, C2, C3 and C4 survival groups respectively; Fisher’s exact test P-value 
< 0.01). (C) Kaplan-Meier plots of overall survival in TCGA data for different risk groups 
defined by risk scoring system presented in panel B. The risk groups indicating colors 
correspond to the colors in panel A and B. (D) Scatterplot of signal log-ratios of 
differentially expressed genes in TCGA (x axis) and validation (y axis) data for the 
patients with best (overall survival > 5 years) and poorest (overall survival < 1 year) 
survival. A highly significant Pearson correlation of 0.796 was observed (p value < 
10]Q�). (E) Kaplan-Meier plots overall survival in validation data. The four illustrated risk 
groups (C1, C2, C3 and C4) were identified on the basis of prognostic scoring system 
developed by TCGA data analysis. The figure is adapted with permission from 
publication II.  
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Figure 6.  Biological insights from ccRCC prognostic markers. (a) Manually annotated functional 

groups of differentially expressed genes detected by ROTS. (b) Selected examples from 
list of 152 differentially expressed genes detected by ROTS. Boxplots show the median 
and the interquartile range (IQR) of normalized expression levels of selected genes for 
poor and better prognosis patients in training (TCGA) and validation data. The figure is 
adapted with permission from publication II. 

The next major fraction of detected genes involved in regulating cellular metabolism 
confirming their well-known role in ccRCC progression [88] [92] [93]. Several 
previously reported markers such as the key glucose metabolism regulators ALDOB, 
G6PC and PKLR (Figure 6B) were among the 152 ROTS detections. Additionally, 
new interesting metabolism regulating markers such as the glucose 
transporter/sensor SLC2A2, and the central gluconeogenesis regulator PCK1 were 
identified (Figure 6B). Unlike several other cancer types (e.g. colon, lung and skin), 
glucose metabolism mediator genes can act as tumor suppressor in kidney cancer 
and have been shown to be correlated with better prognosis [94] [95]. It was also the 
case with ROTS detections as up-regulation of six glycolytic genes were observed 
in better prognosis group (ALDH1L1, ALDOB, G6PC, PCK1, PKLR, SLC2A2). 
For example, PCK1 contributes in regulation of gluconeogenesis pathway by 
catalyzing transforming of non-carbohydrate molecules into glucose. In kidney 
cancers, increased expression of PCK1 mediates death of glucose-starved cells and 
inhibits cancer proliferation [96]. Finally, the Ingenuity Pathway Analysis (IPA) was 
performed to find canonical pathways and relating genes interactions. The top 
affected pathways included molecular transport, small molecule biochemistry, and 
amino acid and lipid metabolism (𝑃 < 0.05). In line with earlier studies [88], 
network analysis revealed several interactions between better prognosis genes linked 
to cellular metabolism (Supplementary Figure S5, publication II). The poor 
prognosis genes were enriched in a variety of cell growth signaling molecules (e.g., 
phosphatases), extracellular matrix and remodeling proteins (collagens, 
metalloproteins) and acute phase/immune response genes (CRP, SAA family) 
(Supplementary Figure S4, publication II). For further information regarding the 
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clinical insights the reader is referred to publication II, TCGA [88] and EGA [89] 
papers. 
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3 Computational and Machine 
Learning Algorithms for Predicting 
Prognosis and Treatment Outcome 
Using Clinical Data 

Conventional clinical markers constitute a main resource in clinical decision making. 
This class of markers span a wide range of clinical aspects including demographic, 
pathology, laboratory and diagnosis and treatment history information. In addition 
to their reliability, clinical factors are mostly cheaper and easier to collect compared 
to molecular and omics data. Centralized data collection and storage systems provide 
possibility to distribute and integrate different levels of data for data mining 
applications. In biomedical sciences, computational techniques are applied to 
translate raw data into actionable knowledge that can benefit clinical practice. 
Conventional data analytical methods have proved to be inefficient when tackling 
with large volume, variation and complexity of new biomedical data. Accordingly, 
it is essential to develop more sophisticated computational algorithms to overcome 
data-oriented challenges of the field. This chapter reviews publications III and IV 
that propose novel computational approaches to model clinical data and predict 
treatment outcome in advanced metastatic prostate cancer. Furthermore, I evaluated 
the reliability and generalizability of trial-tailored prognostic models in real-world 
patients.   

Prostate cancer is estimated to be the most common type of cancer in men and 
among the three top leading causes of cancer death in 2020 [97]. Treatment options 
vary based on the stage of the disease, risk of recurrence and patient overall 
characteristics including age and ECOG (Eastern Cooperative Oncology Group) 
performance status. The treatment strategy may include surgery, radiation therapy, 
hormonal therapy, chemotherapy and immunotherapy, or most possibly a 
combination of these options [98]. Surgery or radiation therapy combined with 
androgen depletion therapy (ADT) is the standard care for locally advanced 
diagnosed patients. However, majority of patients develop resistance to hormonal 
therapy and eventually enter into the inevitably fatal metastatic castration-resistant 



Fatemeh Seyednasrollah 

46 

state with estimated median survival of three years [99]. During this state, the 
prostate-specific antigen (PSA) serum levels continue to increase and new lesion 
sites especially bone lesions emerge. Currently, the treatment strategy for metastatic 
castration-resistance prostate cancer (mCRPC) is very complicated with unclear 
clinical outcome. Cytotoxic medicines, anti-androgens, immunotherapeutic and 
radiopharmaceutical agents are the available options with proved survival 
prolongation effect [100]. Among the cytotoxic drugs, docetaxel is one of the first-
line approaches in treating mCRPC; but the drug efficacy is still controversial as 
many patients die while experiencing a lower quality of life due to developing 
adverse events without any survival benefit. Accordingly, at clinic, oncologists 
struggle to find target patients who could benefit from docetaxel without putting 
those who may suffer, at risk of treatment failure. Computational biology can assist 
in clinical decision making by risk stratifying patients and providing reliable 
estimates about their clinical outcome following different treatment strategies. This 
thesis comprises two papers focusing on predicting the clinical outcome of mCRPC 
patients treated with docetaxel. Publication III presents the prostate cancer DREAM 
challenge top performing method and the postchallenge ensemble-based model for 
predicting early docetaxel treatment discontinuation due to adverse events. 
Publication IV systematically evaluates the reliability of trial-based prognostic 
models in mCRPC real-world patients. This is a crucial question to answer specially 
since there is evidence that real-world patients have shorter overall survival with 
more severe adverse events compared to clinical trial patient cohorts [101]. The 
ultimate goal in both papers is to provide practical advances in treatment decision 
making for everyday clinical routine.  

3.1 Clinical data sources and types 
Clinical data is mainly collected under two different categories: randomized 
clinical trials (RCTs) and electronic medical records (EMRs). RCTs are research-
based studies that recruit a well-defined target group of patients to evaluate new 
drugs or other newly developed medical interventions. Clinical trials are launched 
just after the drug efficacy and safety has been proved using in vitro and in vivo 
models. The ultimate goal of preclinical research is to test the new drug behaviour 
in a comparable experimental design as in human subjects. Once the preclinical 
studies suggest promising results in animal models, the proposed drug becomes a 
potential candidate for clinical trial investigations. According to FDA requirements, 
a new therapeutic compound should successfully pass phases 0 to 3 of clinical trials 
to be approved for safety and efficacy. Phase 1 trials usually involve a small number 
of volunteers (e.g., 20-80 healthy and/or diseased cases) and focus on testing the 
safety and toxicity of the new drug. The aim is to find the maximum tolerated dose 



Computational and Machine Learning Algorithms for Predicting Prognosis and Treatment 
Outcome Using Clinical Data 

 47 

that can be safely prescribed and investigates the possibilities of developing adverse 
events. Once a new compound has been proved safe in phase 1, it will be subjected 
for exploratory investigations in phase II trials. Recruiting volunteer patients with 
the target disease, this phase aims to find out the drug efficacy in fulfilling its 
therapeutic goals. In addition, phase II trials provide preliminary suggestions on 
effective dosage and treatment strategy. Finally, a new compound requires to pass 
phase III trial as final stage to confirm its safety and efficacy in a large patient cohort 
to ensure adequate statistical power. The final results elaborate the drug efficacy 
compared to placebo and/or standard available therapies by randomizing patients to 
different comparative arms. In publication III, clinical data from four phase Ⅲ 
prostate cancer RCTs were utilized to develop the proposed model for early 
prediction of adverse event induced by chemotherapy in mCRPC patients.  

The other primary source of clinical data, EMRs, are collected during the routine 
patients care at healthcare centers or hospitals and significantly improve healthcare 
quality in comparison with paper-based documents. In particular, the electronically 
stored data is utilized to assist in real-time treatment decision making and 
consequently advances patients final outcome. In addition to their positive impact on 
patients’ care strategies, EMRs provide a valuable source in clinical research. 
Typically, the collected records are noticeably large, incomplete and heterogeneous 
and demands heavy preprocessing strategies to make the data suitable for research 
purposes. Currently, there is no established pipeline to systematically remove 
undesirable heterogeneity, address the data incompleteness and ultimately cure and 
summarize the data for further analytical steps. One general preprocessing approach 
includes versatile standardizing, transforming and imputing techniques to address 
the data complexities [102] [103].  

The reliability of RCTs final outcomes are evaluated using internal and external 
validity metrics. High internal validity is obtained by appropriate experimental 
design and ensures that the medical intervention under study is the source of 
observed differences across comparative arms. While the internal validity is critical 
for proving the efficacy of a new therapy; however, it is not clear how well the results 
may be extrapolated to real-world clinical settings. Hence, the metric external 
validity determines to what extent the RCTs results can be generalized. Cancer 
clinical trials are the final stage to evaluate the efficacy of new therapies on patient 
survival and quality of life. However, it is estimated that less than 5% of cancer 
patients get the chance of participating in a clinical trial and others are either unaware 
of this opportunity or if they are aware, they fail to be recruited as their overall 
clinical condition do not meet clinical trials tight eligibility criteria [104]. In general, 
clinical trials exclude or underrepresent patients with advanced age, poor prognosis 
or multiple comorbidities. Here, the highly restricted patient recruitment criteria may 
violate the study external validity and recruited patients are no longer true 
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representors of real-world patients in term of medication benefit and overall survival. 
This issue has been addressed thoroughly in publication IV. 

3.2 Statistical data exploratory methods 
Routinely, predictive analyses for medical applications start with a comprehensive 
data exploration and curation phase using the so called descriptive statistics and 
statistical learning techniques. The term exploratory data analysis (EDA) was first 
introduced by Tukey [105] which involved examining the data and producing new 
insights to it. He compared EDA procedure with detective work where the data 
analyst has specific question to answer but has to take completely unbiased and data-
driven steps to solve the problem. These steps are integrated as a computational 
toolkit to summarize and visualize data before developing any modeling hypothesis 
[106]. The EDA toolkit covers wide range of approaches from data quality control 
to descriptive and analytical statistics. Ultimately, EDA aims to reveal the overall 
data description as the preparation step for model formation [107].  

Descriptive statistics provide extensive data summarization and visualization 
focusing on data variability and central tendency. In addition, a powerful data 
screening approach is needed to determine data distribution and quality, data 
missingness and potential outliers. The data exploration step demands close 
collaboration with domain experts like biologists or clinicians. Graphical figures and 
representing tables are utilized to detect potentially primary interesting patterns and 
variables. In practice, EDA might be the last chance to diagnose data collection 
errors and assist in data cleaning or data refinement. In biological and medical 
studies, missing values are almost inevitable and are considered as potential threat 
to statistical validity and precision. In publication III, variables with missing values 
in at least 2/3 of the patients or absent in test data were removed from the analysis 
(refer to Table 1 and Supplementary Table S3 publication III). In publications III and 
IV missing at random variables were imputed using median values (refer to 
Supplementary Table S3 publication III and Supplementary Table 1 publication IV). 

Identification and correction of potential outliers is another fundamental task 
during data exploratory phase. With clinical variables, outlier management 
procedure is unique and context specific. For instance, with laboratory values, the 
outlier observations may origin from patient lifestyle, medications in use or simply 
be the result of measuring equipment error. Accordingly, data specific approaches 
are required to specify the normal range and coping with outlier values while 
avoiding losing potentially interesting cases. The task of detection and handling of 
outlier values can be performed using conventional graphical displays (e.g. boxplots 
or histograms), appropriate statistical tests (e.g. Grubb’s test [108] for normally 
distributed data and chi-square test both implemented in R package “outliers” and 
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Hample test and Quantile method for both clinical and molecular variables [109])  or 
multivariate analysis such as PCA (see section 3.2.4 for details). In publication III 
and IV, graphical displays and PCA method were utilized to detect highly skewed 
variables. When necessary, outliers were log transformed or discarded to obtain 
robust modeling results.  

 Clustering analysis 
Cluster analysis is a data exploratory technique that aims to classify data into 
homogeneous subsets (clusters) in such a way that subjects within the same cluster 
have maximum similarity with each other and minimum similarity with other 
clusters. Clustering methods assess each data point based on its measurements and 
relation to the other data points and eventually discover hidden patterns between 
subjects without any predefined rules or information. In most cases, detecting the 
relation between the discovered clusters also provides valuable insight to the 
question of interest. This relation can be shown by grouping more similar clusters 
into the same level of hierarchy such that the distance between each hierarchy class 
resemble the difference between them. The primary goal of all clustering techniques 
is to calculate a similarity metric between individual subjects to provide a reduced 
notation of the data. There are extensive range of clustering algorithms which are 
very close in theory but may vary in final grouping results. In the context of 
computational biology, hierarchical clustering algorithms and partitioning clustering 
algorithms are the most popular approaches in use.  

 Hierarchical clustering 
This family of algorithms output a hierarchical cluster tree such that each level of 
hierarchy is formed by combining its lower level clusters. Agglomerative algorithms 
are the most popular hierarchical clustering technique in bioinformatics. They follow 
a bottom-up approach to develop the data hierarchy. The algorithm starts with 
assigning individual data points as a singleton cluster at the lowest level. Next, at 
each step successively the most similar clusters are merged (agglomerated) into a 
new cluster and build the next upper hierarchy level. The merging procedure 
continues until all the clusters are combined into one cluster which comprises the 
whole dataset at the highest level of hierarchy. In order to find and fuse the closets 
(least dissimilar) clusters at each step, a dissimilarity metric should be predefined 
[110]. There are versatile approaches to calculate the clusters similarity. For 
instance, R language supports the following schemes in measuring the distance 
between the clusters: ward, single [111], complete, average (UPGMA), mcquitty 
(WPGMA), median (WPGMC) and centroid (UPGMC).  
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In the single-link method (also called nearest neighbor method), the similarity 
between two clusters is defined as the similarity between their closest observation 
pairs and clusters with minimum similarity measure are combined together. 
Complete-linkage method estimates the clusters distance by calculating similarity 
between the most dissimilar observation pairs and clusters with distance are merged 
together. As the name suggests, the average-linkage uses the average distance 
between all members of the two clusters and combines clusters with smallest average 
distance. For Ward’s method, the distance between two clusters are defined as cost 
of losing information when combining them. The clusters with smallest cost will 
merge together. The merging cost is calculated as sum of squared errors.  

In contrast with different linkage methods that focus on similarity/dissimilarity 
measures, the Ward algorithm aims to minimize the loss of information when 
merging two clusters. To do so, this algorithm computes the sum of squared errors 
(SSE) between the elements of two clusters and merges the clusters with minimum 
increase in their SSE value. This way the algorithm is able to minimize heterogeneity 
or variation within the merged clusters and preserves maximum unity among the 
combined observations. In publication III, hierarchical clustering was performed 
using Ward’s method and Manhattan distance for risk stratification of mCRPC 
patients suffering from docetaxel adverse events.   

 Partitioning clustering 
Partitioning clustering algorithms divide the data into a flat set of distinct clusters. 
The algorithm initially decomposes elements of data into predefined number of 
clusters and then iteratively moves the data points between the clusters until the 
algorithm criterion function is optimized. K-means algorithm is the most common 
and simplest example of partitional clustering techniques. The method starts with 
defining one centroid for each cluster and then assign all other data elements to their 
closest centroid (cluster).  

 Data dimensionality reduction 
Current biological and clinical datasets are commonly high-dimensional with 
significant number of redundant variables or irrelevant to the study purpose. 
Dimensionality reduction is a vital step to ensure the feasibility of computational 
analysis while improving the accuracy and power of the developed models.  
Feature selection and feature extraction are the most common techniques to reduce 
data dimension. Feature selection techniques aim to detect a subset of the most 
relevant features with potential high power in predicting the outcome variable. 
Depending on data type and model development strategy, feature selection 
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techniques are divided into three main categories: filter based, wrapper based and 
embedded feature selection methods. Filter based methods are independent from 
model development and are usually performed during the preprocessing phase. 
These methods utilize statistical tests or metrics to assess the association between 
input variables and model outcome and filter features with low-ranked association. 
Wrapper based methods follow an iterative searching approach which perform 
feature selection and model learning simultaneously. In each iteration step, a model 
is trained using a specific subset of features and the model performance determines 
the relevance of selected features to the outcome variable. When all the designed 
iterations with intended features subsets are performed, the most accurate model with 
its associated features are selected. Embedded feature selection methods are 
integrated within the model development procedure and the candidate features are 
selected during the model training phase. Decision trees employed in boosting 
algorithms Lasso method are the widely used learning algorithms that perform 
feature selection as embedded task.  

Feature extraction is a data transformation technique which aims to reduce the 
data dimension by aggregating the potentially informative variables into a new 
reduced format. Here, the main focus is to decrease the features space while 
preserving the meaningful data variation and maximizing the accuracy of the 
learning algorithm [112]. In publication III, we extracted some additional features 
from the core table (refer to 3.6.1 for detailed information about core table) to predict 
early discontinuation of chemotherapy in mCRPC patients. These included 
LESIONS, DRUGS, DISEASES and PROCEDURES, which were defined as 
arithmetic sums of the numbers of lesions, medications, diseases and medical 
interventions respectively. These newly proposed features were representors of 54 
separate variables which their solo usage could have smaller effect on our proposed 
learning algorithm.   

Principal component analysis (PCA) is a non-parametric method widely used for 
dimensionality reduction with molecular and clinical data. PCA performs the 
dimensionality reduction task by transforming a class of correlated variables into a 
smaller set of uncorrelated components (also called principal components) 
representing the linear combination of the original variables. The computed principal 
components are ordered on the basis of amount of variance they explained about the 
data. For instance, the first principal component (PC1) accounts for the largest 
possible proportion of variance in the input data. Additionally, PCA is a powerful 
technique for exploring data distribution and detecting outlier units or observations 
[113]. In publications III and IV, PCA was widely used for both feature extraction 
and data distribution exploration purposes.  
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3.3 Survival analysis 
In Survival analysis, the focus is to assess the time duration until an event of interest 
occurs. For medical studies, the event of interest is mostly time to death or time to 
development or progression of a disease. One practical example are the clinical trials 
that aim to benchmark the efficacy of a new medication on patients’ survival 
prolongation. Since the data is mostly collected prospectively, it is important to have 
consistent starting and ending points for all the data subjects to have a robust 
experimental design. In survival analysis, if for an observation the information 
regarding the time to event is not available, the situation is called censoring and 
usually specific tools and graphical methods are demanded to deal with the situation. 
The more common censoring type in medical studies is right censoring which 
includes observations that do not experience the study outcome or experience it after 
the study ends. For instance, if the project aims to assess the cancer patients’ survival 
in five years, the patients who abandoned the study before its completion or died 
after the study period; are counted as the right censored observations. Censored data 
is one type of data incompleteness which is a barrier to estimate data distribution 
parameters and so typical regression algorithms are not applicable in this context. 
One common approach to deal with the situation is to utilize semi-parametric and 
non-parametric algorithms.  

 Non-parametric survival methods 
Non-parametric survival methods maximize the utilization of dataset information by 
using censored observations till their censoring time point. Here, the survival 
probability is calculated as a time dependent function. Let’s assume that 𝑇	 ≥ 0 is a 
random variable denoting the survival time, then 𝑆(𝑡) represents the probability that 
an observation survives beyond time 𝑡 
 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) =		
𝑁𝑜	𝑜𝑓	𝑎𝑙𝑖𝑣𝑒𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠��	(�[	S) − 𝑁𝑜	𝑜𝑓	𝑑𝑒𝑎𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠��	(�[�)

𝑁𝑜	𝑜𝑓	𝑎𝑙𝑖𝑣𝑒𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠��	(�[	S)
. ( 15) 

If the aim of analysis is to calculate the survival probability during a certain 
follow-up period rather than an individual time point, then 𝑆(𝑡) can be calculated 
using Kaplan-Meier (KM) method: 

 𝑆(𝑡0) = 	𝑆(𝑡0]Q) �1 −	
𝑑0
𝑛0
� 	𝑤ℎ𝑒𝑛	𝑡S = 0, 𝑆(0) = 1,	 (16) 

where 𝑆(𝑡0]Q) is the probability of surviving at 𝑡0]Q time interval, 𝑑0 denotes number 
of dead observations and 𝑛0 corresponds to number of alive observations, both at 
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𝑡0]Q. By plotting the survival probabilities against follow-up time, a step-like KM 
curve will be obtained. In biomedical applications, KM curves are widely used to 
illustrate censored data, especially when comparing survival probability of two or 
more experimental conditions [114] [115]. Log-rank test is used to test whether the 
differences between certain survival distributions are statistically significant or not. 
In this thesis, I have frequently used KM analysis to evaluate the association between 
risk categories and patients’ prognosis.   

 Semiparametric proportional hazard models 
Precise assessment of patient prognosis is a key factor in oncological decision 
making. Cox proportional hazard model is the most widely used survival analysis 
method to predict cancer prognosis and recurrence. The model is used to examine 
the potential relationship between the study covariates (e.g. clinical features and 
tumor characteristics) and time-dependent clinical outcome of interest. For example, 
it evaluates whether a new medication is associated with survival prolongation. Cox 
proportional hazard models are classified in semiparametric proportional hazard 
models as the method does not make any assumption about the distribution of the 
baseline hazard function. Suppose we are interested in studying time to outcome of 
interest in a cancer patient cohort with sample size = n and 𝑥 = 	H𝑥Q, 𝑥5, … , 𝑥�	I as 
vector of potential covariates. One can denote each patient’s information as a vector 
(𝑡, 𝛿, 𝑥) where the study outcome at time 𝑡 is complete if 	𝛿 = 1 or is right censored 
if 	𝛿 = 0. Following this setting the hazard function for Cox proportional hazards 
function at time 𝑡 is defined as: 

 ℎ(𝑡; 𝑥) = 	ℎS(𝑡) exp�w𝛽0𝑥0

�

0[Q

�, (17) 

which can be simplified as 

 ℎ(𝑡; 𝑥) = 	ℎS(𝑡) exp(𝑥�𝛽), (18) 

where 𝛽 = 	H𝛽Q, 𝛽5, … , 𝛽�, I is the vector of regression coefficient for 𝑝 covariates 
and ℎS(𝑡)  is the baseline hazard function of the underlying survival distribution 
when all the covariates are assumed to be zero. Since ℎS(𝑡) is unspecified, the 
regression coefficient 𝛽 can be estimated using partial likelihood approach rather 
than other likelihood methods. Accordingly, 𝛽 is estimated by maximizing 𝑙(𝛽) as: 

 𝑙(𝛽) = 	w𝛿0
A

0[Q

 𝑥0�𝛽 −	 log� w 𝑒𝑥𝑝H𝑥u�𝛽I
u∈¡(�C)

�¢, (19) 
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where 𝑅(𝑡0) = {𝑖 ∶ 	 𝑡0 	≥ 	𝑡} denotes a risk set at time 𝑡0 [116]. 
 Traditional maximum likelihood estimators aim to determine the vector of 
coefficients such that they maximize the probability of the observed data. With high 
dimensional data, developing a model with highest likelihood may require all 
covariates incorporation leading to a low-level generalization ability. Accordingly, 
methods that produce non-zero estimation for all covariates are inapplicable as the 
final model is difficult to interpret and suffers from overfiring. Here, the main 
challenge is to detect an efficient subset of covariates with substantial contribution 
on hazard function. Penalized likelihood estimation is a solution to reduce model 
complexity by shrinking some covariates to zero. A family of penalizing methods 
are proposed by Fan and Li [117] that performs variable selection and coefficient 
estimation simultaneously. Although the proposed method was designed for 
parametric models, it is applicable to semi-parametric Cox model using appropriate 
transformations.   

Suppose 𝑋 =	H𝑥Q, 𝑥5, … , 𝑥�	I denotes a vector of covariates,  𝛽 =
	H𝛽Q, 𝛽5, … , 𝛽�I represents the vector of corresponding regression coefficient and let 
𝑦 denotes the study response. The penalized regression problems are commonly 
formulated as  

 𝛽¥ = 𝑎𝑟𝑔min
¨
�‖𝑦 − 𝑋�𝛽‖5 + 	𝜆w𝑃(𝛽V)

�

V[Q

� , (20) 

where 𝜆 is a tuning parameter and 𝑃H𝛽VI is the penalty function. The choice of the 
penalty function is the underlying difference among regularization methods. The 
Lasso (Least absolute shrinkage and selection operator) method [118] [119] and 
Elastic net [120] are the well-known members of this family penalizing approach. 
The Lasso utilizes the 𝑙Q penalty to shrink the negligible coefficients to zero and 
produce a sparse solution for high dimensional data. The simplified sparse models 
are easier to interpret with reduced risk of overfitting. The Elastic net method 
combines 𝑙Q penalty and 𝑙5 penalty to solve the model regularization problem. Both 
Lasso and Elastic net and their variations (e.g., adaptive Lasso) are widely used in 
predicting cancer prognosis. In publication IV, all the benchmark models utilize 
regularization approaches including Lasso, adaptive Lasso and Elastic net to predict 
overall survival in patients with advanced prostate cancer.  

3.4 Boosting algorithms 
Boosting is one of the most powerful machine learning techniques which is 
extensively used in medical applications. The boosting original idea was to combine 
many weak learners to produce a powerful model with optimally enhanced 
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performance. Besides enabling flexible non-linear solutions, the benefits of the 
boosting strategy include its capability of feature selection, capacity of handling 
missing values, as well as relatively low run times. The first practically successful 
algorithm was Adaboost (Adaptive boosting) proposed by Freund and Schapire 
[121] for binary classification problems with the possibility to expand into multiclass 
problems. Adaboost is an iterative algorithm which predicts a sample class using the 
weighted combination of weak learners produced at each iteration step. Here, a weak 
learner is expected to achieve accuracy slightly better than random chance (50%). 
Suppose a training set of size 𝑁 as (𝑥Q, 𝑦Q), … , (𝑥D, 𝑦D) where 𝑥0 represents the 
vector of predictor variables and 𝑦0 	∈ 	 {−1, 1} represents the binary outcome, the 
Adaboost algorithm is described as follows: 

• Initialize the weight for each observation as:  

𝑤0 = 	
1
𝑁 , 𝑖 = 1, 2, … ,𝑁 

• For 𝑚 = 1	𝑡𝑜	𝑀 do: 

a. Fit weak learners to the training data and select the learner 𝐺­(𝑥) with 
lowest error rate computed as: 

𝑒𝑟𝑟­ = 	
∑ 𝑤0	𝐼(𝑦0 	≠ 𝐺(𝑥))D
0[Q

∑ 𝑤0D
0[Q

 

b. Calculate the weight for the selected weak learner: 

𝛼­	 = 	
1
2	ln �

1 −	𝑒𝑟𝑟­
𝑒𝑟𝑟­

� 

c. Update the weights for each member of training set for the next 
iteration: 

𝑤­iQ = 	𝑤­	. exp°𝛼­	. 𝐼H𝑦0	 ≠ 	𝐺­(𝑥0)I± , 𝑖 = 1, 2, … ,𝑁 

• Output the final prediction function: 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛 ²w 𝛼­𝐺­(𝑥)
³

­[Q
´ 

Here, 𝐺(𝑥), the final learning function combines the weak learners (𝐺­(𝑥)) while 
incorporating their respective weights (𝛼­) to make decision about the class label of 
the test data. Initially, the weights of all data points are set to 𝑤0 = 	

Q
D

 but the weights 
get updated on the basis of previous iteration learner accuracy. More specifically, at 
each iteration 𝑚, a weak learner is trained using the samples receiving their weights 
from the iteration 𝑚− 1. This trained weak learner 𝐺­(𝑥0) should have the lowest 
error rate as computed (line a. Adaboost algorithm). Next, the weak learner weight 
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𝛼­	 is calculated in such a way that a learner with lower error rate receives higher 
weight and consequently has greater impact on the final prediction function (line b. 
Adaboost algorithm). Finally, the observations weights are updated as a result of 
applying the developed weak learner to all data points (line c. Adaboost algorithm). 
At this step, the aim is to increase the weights of misclassified observations while 
decreasing the weights of correctly classified samples. Accordingly, the 
misclassified samples from iteration 𝑚 receive more exploration considerations 
when training the 𝐺­iQ. After 𝑀 iteration, the prediction of an unseen sample is 
obtained by summing up the weighted votes of all weak learners. The original 
Adaboost algorithm returns a discrete value as the predicted class label. 
Modifications to algorithm return value yields to generalization of the method to 
wider range of problems including regression problems [110].  

 Forward stagewise optimization  
For both classification and regression problems, boosting algorithms fit an 
additive model with linear combination of weak learners as 

 𝑓(𝑥) = 	 w 𝛽­𝑏­
³

­[Q

(𝑥; 𝛾­), (21) 

where 𝑥 denotes the input vector,  𝛽­ and 𝛾­ are the model parameters to be 
optimized and 𝑏­ are the arbitrary modeling functions of input 𝑥. Here, the task is 
to estimate the optimized values of 𝛽­ and 𝛾­ by minimizing a general loss function 
𝐿 averaged over the input data 𝑥 for individuals 𝑖 = 1, 2, … ,𝑁 as follow 

 〈𝛽­, 𝛾­〉Q³ ← argminw𝐿
D

0[Q

º𝑦0, w 𝛽­𝑏­(𝑥; 𝛾­)
³

­[Q

». (22) 

With most common loss functions, direct optimization of above phrase could be a 
complicated task. One alternative solution to minimize the loss function in () is using 
an iterative approach called forward stagewise additive modeling (FSAM) [122]. 
Following this approach, it is possible to approximately solve equation 23 starting 
by single base function  

 𝑚𝑖𝑛¨,¼w𝐿
D

0[Q

H𝑦0, 𝛽𝑏­(𝑥; 𝛾)I (23) 

and then sequentially adding new basic functions (𝑚 = 1	𝑡𝑜	𝑀) and their 
corresponding coefficients without updating parameters of previous models. More 
specifically, the FSAM algorithm finds the optimal loss function via solving a series 
of subproblems in a greedy approach while preserving the parameters of previously 
added sub-functions. In practice, many of boosting methods with adjusted Adaboost 
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algorithm can be simply fit into a forward stagewise approach using an exponential 
loss function. The reader is referred to [110] for more details on the topic.   

 Gradient boosting machines 
The boosting algorithms building on Adaboost can be extremely powerful and 
highly robust especially when decision trees serve as base learner [123]. As 
mentioned earlier, efficient estimation of loss function is the main difficulty for this 
class of learners. In 2001, Friedman introduced a gradient decent based function 
estimation method, called gradient boosting machine (gbm), which utilizes the 
stagewise additive manner similar as in FSAM algorithm [124]. The proposed GBM 
algorithm, is a greedy function estimation approach which is capable of minimizing 
a rich set of arbitrary differentiable loss functions. GBM performs the learning task 
by consecutively adding a new step or boost to the sequence of successive 
expansions while minimizing the prediction error rate of the previous steps. At each 
iteration, the new boost or base learner is developed so that it is fitted to the gradient 
of residuals calculated on the basis of previous predictions. This way, gradient 
boosting algorithms convert a model fitting problem into a parameter optimization 
task. Hastie et al. [110] modified the gradient boosting algorithm proposed by 
Friedman for regression problems with decision trees as choice of base learner as 
follows: 

1. Initialize 𝑓S(𝑥) = arg𝑚𝑖𝑛¼ ∑ 𝐿(𝑦0, 𝛾)D
0[Q  with a constant. 

2. for 𝑚 = 1 to 𝑀 do: 

3. Compute the negative gradient for all the 𝑁 training samples 

𝑟0­ = − ½¾¿HÀC,Á(fC)I
¾Á(fC)

Â
Á(f)[ÁÃÄg(f)

							∀𝑖 ∈ {1,… ,𝑁}. 

4. Fit a regression tree to the targets 𝑟0­ giving terminal regions  

𝑅V­, 𝑗 = 1,2, … , 𝐽­. 

5. Find the optimal step length gradient decent: 

𝛾V­ = argmin∑ 𝐿(𝑦0, 𝑓­]Q(𝑥0) + 𝛾)fC∈¡YÃ 														∀𝑗 ∈ {1,… , 𝐽­}. 

6. Update the function estimate: 

𝑓­(𝑥) = 	𝑓­]Q(𝑥) +w 𝛾V­𝐼(𝑥 ∈
ÇÃ

V[Q
𝑅V­). 

7. end for. 

8. return 𝑓³(𝑥). 
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Here M is the number of iterations and 𝐿(𝑦, 𝑓) is the selected loss function. The 
optimal function is initialized with a single node tree 𝑓S(𝑥) as a constant starting 
guess (line 1). Next, the algorithm estimates the model parameters following an 
additive approach to obtain the final function 𝑓³(𝑥) implemented in lines 2-7. Line 
3 calculates (negative) gradients 𝑟0­ for every sample in the training set using their 
fitted values from the successive predictions. The 𝑟 values, also known as pseudo 
residuals, are then used to determine the direction and corresponding parameters of 
the next base learner (line 4). At this step, the steepest decent which gives least error 
will be chosen to compute the new base learner parameter (line 5) and this new 
estimate will be added to the ensemble solution (line 6). Finally, the optimized 
function is produced using the sum of all the estimated base learners from the M 
iteration step (line 8). Following this approach, the gradient boosting algorithm can 
be compatible with considerable selection of both loss functions and base learner 
models required for regression and classification problems. This thesis utilizes 
adapted version of gradient boosting algorithms for survival analysis. In this case, 
the negative gradients of partial likelihood for Cox model are used to fit the base 
learners. The algorithm explained in this section is implemented in R package gbm 
which is used for analysis in publications III and V. 

 Gradient boosting regularization 
For all model development procedures, regularization is an essential part ensuring 
that the model is not overfitted to the training data. Gradient boosting is highly prone 
to overfitting due to its greedy manner while expanding the weak base learners. The 
number of boosting iterations (𝑀) is a primary parameter that can affect 
generalization properties of a GBM-based predictive model. Controlling or early 
stopping of the 𝑀 value plays as a tradeoff between minimizing the error rate and 
model regularization ability. Friedman suggested to estimate the optimal 𝑀 value by 
monitoring the prediction error curve versus a wide range of 𝑀 values using an 
independent validation data or cross-validation techniques.  

Shrinkage is the next widely considered technique for controlling the model 
complexity. It aims to scale the impact of additive expansions by penalizing their 
weights using an additional learning rate 0 < 𝑣	 ≤ 1 parameter. This can be simply 
implemented in the gradient boosting algorithm by modifying line 6 as follow 

 𝑓­(𝑥) = 	𝑓­]Q(𝑥) + 𝑣	.w 𝛾V­𝐼(𝑥 ∈
ÇÃ

V[Q
𝑅V­). (24) 

This way, the algorithm mitigates the negative effect of error rate corresponding to 
each base learner at their subsequent iteration step. It should be noted that, 𝑀 and 𝑣 
are correlated parameters and should be optimized with respect to each other. In 
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practice, smaller values of 𝑣 parameter may give smaller error rate, but this would 
simultaneously increase the value of 𝑀 and computation costs. For an optimal 
composition, Friedman suggested a 𝑣 −𝑀 tradeoff strategy which aims to define 
small value for 𝑣 while optimizing the 𝑀 value early stopping approach. With real-
world data, it is common to have very small learning rate, often in the range between 
0.05 and 0.1.  

Additional procedure with direct impact on model regularization and 
computational efficiency is subsampling. Applying this method, a random subset of 
training data rather than complete dataset is utilized for development of the base 
learners. Here, the main goal is to prevent base learners fitting to data noise and 
consequently improving the accuracy by introducing randomness via data sampling. 
However, it is important to establish a balance when setting the sampling ratios as 
the insufficient sample size may reduce the power of analysis. In practical 
experiments, subsampling coupled with appropriate shrinkage approach may lead to 
better performing models [5]. The ratio of selected subsets is specified by an extra 
parameter called bag fraction which is dependent to the problem sample size. For 
example, Hastie et al. [110] suggested the bag fraction equal to Q

5
 can be a reasonable 

ratio for typical datasets with moderate sample size. Of note, subsampling can 
significantly reduce the burden of computational efforts by decreasing the sample 
size into Q

5
 or even Q

É
 for very large datasets.  

 Relative importance of selected variables 
With tree ensemble models, interpretation of the fitted model in term of 
specifying the selected predictive variables and their influence is different from 
typical regression analysis. More specifically, this class of models describe the 
relation between the selected variables and the response through relative importance 
of selected variables rather than reporting variable coefficients [125] [124]. For 
selected variables, the relative importance measures the average influence of that 
variable in decreasing the prediction error rate over all the decision trees. More 
specifically, this measure of influence is proportional to the number of times a 
variable has been chosen to form a split; and also, to the average impact this split has 
had in minimizing the loss function. Breiman et al. [125] proposed a heuristic 
approach to calculate the relative influence of a variable 𝑙 for a single decision tree 
𝑇 with 𝐽 splits as follow: 

 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒Ì	(𝑇) = 	w𝑖�5	𝐼(𝑣� = 𝑙)
Ç]Q

�[Q

, (25) 

where all the 𝐽 − 1 non-terminal nodes of the tree are evaluated to calculate the 
variable effect. 𝑣� represents the current splitting variable under evaluation and so 
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expression 𝐼(𝑣� = 𝑙) will determine the number of times the selected variable 𝑙 is 
utilized as splitting point; and, 𝑖�5 is an empirical coefficient representing the squared 
prediction improvement corresponding to the examined split. This approach can be 
simply expanded to calculate the relative influence of a variable over all the trees by 
averaging its influence on single trees  

 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒Ì = 	
1
𝑀 w 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒Ì	(𝑇­)

³

­[Q

. (26) 

When the relative influences of all variables are obtained, the variable with largest 
influence serves as reference value and the influence of the remaining variables are 
represented relative to the reference variable.  

3.5 Power analysis 
The reliability of statistical hypothesis testing is strongly dependent to controlling 
type I and type II errors. Typically, type I error can be avoided by fixing the 
significance level during the experimental design (e.g., P-value = 0.05). Unlike type 
I error, controlling type II error is not straight forward in biomedical applications 
and requires more considerations. Sufficient sample size is a key factor in controlling 
type II error without threatening type I error justification criteria. Power analysis are 
performed to obtain the optimal sample size and consequently avoid false negative 
results. The statistical power is defined as the probability of detecting a true 
difference between comparative groups using an appropriate statistical test. Similar 
as in justifying the significance level, power is an arbitrary value which is most often 
set to 80% to 90%.  

The secondary objective of publication III was to establish a quantitative 
benchmark to plan more efficient clinical trial design by optimizing patient selection 
and recruiting criteria. For clinical trials used in this study, high number of patients 
discontinued docetaxel treatment due to adverse events could lead to clinical trial 
failure, while detection of at-risk patients during trial design could enhance success 
rate and cost effectiveness. Accordingly, we conducted a simulation study aimed to 
assess justified number of patients which is adequate to obtain statistically significant 
results while possessing the ability to refuse enrolment of patients with high risk of 
treatment discontinuation. More specifically, we aimed to demonstrate the 
determinant role of prespecification of statistical power and sample size in final 
clinical trial results. In this simulation analysis, we assumed a balanced two-arm trial 
with patients randomly assigned to each arm (e.g. treatment and control groups) and 
the primary end point was overall survival. In order to establish a realistic setting, 
the ENTHUSE33 trial (the challenge validation data), was used to inform simulation 
parameters. The survival times were generated from an exponential distribution and 
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the comparator arm had consistent hazard ratio between patients that did and did not 
discontinue docetaxel as in ENTHUSE 33 trial. For the control arm we assumed 0% 
of patients discontinued treatment early while this rate was set to 10.4% for the 
treatment group as reported in ENTHUSE 33 trial. Using the estimated parameters, 
100 randomized trials were simulated, each with 10,000 total patients. Within each 
of 100 simulated datasets, randomly sampled subsets (with replacement) of patients 
at a ratio of 1:1 from control and treatment groups were selected to estimate the 
required sample size to detect a survival difference between the comparator arms at 
80% statistical power and a false positive rate of 0.05. The survival difference was 
examined on the basis of hazard ratios (Hazard ratio = {1.30, 1.40, 1.50, 1.60, 1.70, 
1.80, 1.90, 2.00}) representing a significant decrease in the risk of death in the treated 
group. The baseline prediction models were defined as the models with accuracy of 
0%, 25%, 50%, 75% and 100% in detecting patients at risk of early discontinuation. 
For each baseline model, the at-risk patients were excluded from the randomization 
and the model with 0% accuracy in identifying true discontinuation cases was used 
as a reference benchmark for comparison with baseline prediction models with 25%, 
50%, 75% and 100% accuracy at detecting true at-risk patients. 

3.6 An ensemble-based prediction model for short-
term discontinuation of docetaxel in mCRPC 
patients: Publication III 

Publication III represents a collaborative study between 34 international teams to 
build a prediction model for early treatment discontinuation in patients with 
advanced metastatic prostate cancer. Docetaxel is a chemotherapy agent which has 
been proved to have survival benefit for mCRPC patients. However, about 20% of 
patients would eventually discontinue docetaxel because of sever adverse events 
before completion of the treatment plan. In this paper, an ensemble-based model is 
proposed for prediction of at-risk patients using routinely collected clinical features.   

 Materials and Methods 
mCRPC data. The aim of this study was to identify risk factors associated with 
development of adverse event in mCRPC patients treated with docetaxel. The study 
was designed as an international crowdsourced DREAM (Dialogue for Reverse 
Engineering Assessments and Methods) challenge and my developed model was 
selected as top performer among 34 international teams. In total, the clinical record 
of 2070 patients were selected from four phase Ⅲ prostate cancer randomized 
clinical trials with identical experimental design (ASCENT2: n = 476; VENICE: n 
= 598; MAILSAIL: n = 526; and ENTHUSE 33: n = 470). Following the predefined 
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study design ruled by the challenge organizing team, three of the trials (ASCENT2, 
MAINSAIL and VENICE) were utilized as training dataset for model development 
and the remaining ENTHUSE 33 trial was used as test dataset for independent model 
validation. All the patients were chemotherapy-naïve with progressive disease and 
treated with docetaxel as their first-line chemotherapy treatment. The trials’ records 
were carefully curated and transformed into a homogenous standardized format for 
further analysis by the DREAM challenge organizers. More specifically, the 
standardized data were divided into five tables of laboratory values, lesion 
measurements, prior medications, medical history, and vital signs with trials follow-
up details. In addition, a so-called core table from integration of the above tables 
with baseline values (day 0) were generated to be utilized as the analysis main 
reference. In total the core table included 129 baseline variables plus study outcomes 
and patients’ follow-up time or outcome incidence. Figure 7 illustrates the detailed 
study design. The primary steps of data collection and curation strategy and process 
was designed and performed by the challenge organizers as an independent work 
which is beyond the scope of this thesis. The data and detailed information about 
collection and curation is provided at data supplement of publication III.  

 

 
Figure 7.  Prostate Cancer DREAM Challenge overview. Three of the trials including ASCENT2, 

MAINSAIL and VENICE served as training data, while ENTHUSE 33 trial was used for 
model validation. The figure is adapted with permission from publication III.  

 TYTDream Challenge model 
The model proposed by my team, the TYTDreamChallenge, was selected as the top-
performing model to predict early chemotherapy treatment discontinuation due to 
adverse event in mCRPC patients. The procedure of model development was 
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implemented in three main steps: data preprocessing, model training and model 
evaluation. Initially, the data were preprocessed to filter out variables with 1) had 
missing values in at least 2/3 of the patients (including testosterone), 2) were absent 
in the test dataset (including blood urea nitrogen, glucose) or 3) were highly collinear 
(including alanine transferase). The remaining laboratory variables (except PSA 
values that were only 𝑙𝑜𝑔5 transformed) were scaled to their normal range references 
as  

 𝑥j = 2 ×
𝑥 − 𝛼
𝛽 − 𝛼 − 1 (27) 

where 𝑥 is the observed value of the laboratory test and 𝛼 and 𝛽 are the 
corresponding lower limit and upper limit of the reference range. Next, the remaining 
highly skewed variables were truncated and/or logarithm transformed to mitigate the 
data providers batch effects (including neutrophils and alkaline phosphatase). 
Furthermore, we considered extracting additional variables from binary variables 
including lesions, prior medications, prior diseases and prior surgical procedures. 
The extracted variables are called LESIONS, DRUGS, DISEASES and 
PROCEDURES risk scores and represent the arithmetic sum of the presence of the 
individual variable in their corresponding class. In addition to reduce the data 
dimensionality, the proposed risk scores were proposed to minimize the effect of 
study dependent missingness that was observed in the four selected binary variable 
classes.  

For model training, the gradient boosting algorithm implemented in R package 
gbm was utilized. The study outcome consists of two variables: 1) a binary variable 
indicating the status of treatment discontinuation which was equal to “1” if the 
treatment was discontinued within three months due to development of adverse event 
and “0” if the treatment was tolerated for more than three months, and 2) a discrete 
variable that measures treatment discontinuation period in days. Accordingly, the 
outcome was modelled as a survival problem, where time (in days) to treatment 
discontinuation is employed for right censoring. The model performance and its 
regularization ability were evaluated and improved following a two-step strategy. 
First, a preliminary set of models was built using ten-fold cross-validation over the 
MAILSAIL study and the models were validated on the VENICE study. Variables 
with higher relative influence among all the preliminary models were selected for 
final modeling. Second, the final predictive model was built using all of the three 
input datasets (ASCENT2, MAILSAIL, VENICE) and selected variables.  
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 Results 
TYT markers in order of relative influence. The initial aim of the prostate 
cancer DREAM challenge was to identify patients who are expected to develop 
adverse events and discontinue docetaxel regimen therapy on the basis of baseline 
clinical variables. The novel model developed by my team (TYTDream Challenge) 
significantly outperformed other DREAM challenge proposed models (BF > 3). The 
final trained model had a slow learning rate of 0.07 and the optimized maximum 
depth and number of trees were 3 and 232 respectively. Figure 8 represents the 
relative importance of the identified predictive factors associated with development 
of adverse event in mCRPC patients. More specifically, my top performing model 
identified five laboratory values including PSA (prostate-specific antigen), 
neutrophils (NEU), hemoglobin (HB), alkaline phosphatase (ALP) and aspartate 
aminotransferase (AST) as critical factors in predicting docetaxel adverse event. 
Furthermore, the ECOG performance status, analgesic use and risk scores derived 
from prior medications and therapeutic procedures, medical histories and lesion sites 
proved to have deterministic role in pre-identification of at-risk patients.  

 
Figure 8.   Bar graph illustrating the important clinical features ranking on the basis of their 

influence to predict early treatment discontinuation. 

Post challenge Analysis results. After the completion of the challenge, 
postchallenge collaboration between top performing teams and challenge organizers 
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was formed and novel results were obtained from the meta-analysis. In order to 
explore correlations between top performing models’ predictions, hierarchical 
clustering analysis was performed on the rank-normalized risk scores using Ward’s 
method and Manhattan distance. Three subgroups emerged from the cluster analysis 
(Figure 9A): patients consistently at high risk of early discontinuation (concordant 
high risk; n= 50), patients consistently at low risk of early discontinuation 
(concordant low risk; n = 170) and patients with discordant risk scores (discordant 
risk; n = 234 patients). There was approximately two-fold increase in risk of 
developing adverse events for concordant high-risk group compared to concordant 
low risk and discordant risk groups. As expected, a similar trend was observed when 
evaluating death as competing risk event (Figure 9B). Further analysis investigating 
association of baseline characteristics and identified risk groups showed a significant 
difference in the distribution of several key variables (adjusted p-value <0.05). In 
case of laboratory values, albumin (ALB), HB, lactate dehydrogenase, PSA, sodium, 
red blood cells (RBC), ALP, calcium, AST, creatinine clearance, and total protein 
had significantly different distribution across risk groups (Figure 9C). Compared to 
concordant low risk and discordant groups, patients clustered in concordant high-
risk group had significantly poorer ECOG performance status and most often 
required opioid analgesics and ace inhibitors. Additionally, the incidence of liver 
metastases and medical history of genetic disorders were evident approximately four 
times higher in the high-risk group (Figure 9D).  

Furthermore, the postchallenge collaborative analysis contributed to 
development of an ensemble-based model with improved performance in 
comparison with individual top performing teams. The ensemble-based model was 
generated as the weighted sum of the individually predicted risk scores from the 
seven top performing models (Figure 10A). To calculate teams’ weight, the training 
data, 𝐷, was split into two random subsets of 𝐷ÍS (contained 70% of patients from 
training data; n= 1120) and 𝐷ÉS (contained 30% of patients from training data; n = 
480). Next, the top performing teams were asked to train their learning algorithms 
𝐿0(. )	on 𝐷ÍS and report their new predictors (𝐶0ÍS(. ), 𝑖 = 1,… , 7). Finally, the newly 
produced models 𝐶0ÍS , were used to estimate the early docetaxel discontinuation risk 
for patients in 𝐷ÉS. The accuracy of 𝐶0ÍS models in estimating discontinuation risk 
of 𝐷ÉS patients was set as the teams’ weights (𝑤0ÍS) in developing the ensemble-
based model. In particular, the ensemble-based learner was proposed as the linear 
combination of weighted classifiers trained on 𝐷 data as follow: 

𝐶Ð(𝑟) = 	w 𝑤0ÍS
Í

0
𝐶0(𝑟) 
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Finally, the ensemble-based classifier 𝐶Ð(𝑟) was applied to the validation trial 
(ENTHUSE 33) and resulted in an AUPRC of 0.23 (Figure 10B) which significantly 
outperformed the top individual classifiers (BF > 2.75).  

Although this study primarily aimed to develop a risk prediction model for 
identifying treatment discontinuation, the results are very likely to be useful in the 
area of clinical trial design by assisting in efficient selection of eligible patients. In 
general, patients with baseline chronic conditions are at risk of developing treatment 
adverse events and their condition can introduce confusions when assessing the new 
treatment efficacy. Furthermore, when testing the efficacy of a drug, patients’ quality 
of life and potential treatment toxicity effects should be carefully considered. 
Accordingly, making the reasonable recruitment criteria is a challenging part for 
most clinical trials determining their success or fail in demonstrating the treatment 
efficacy. Here, we conducted a comprehensive simulation study to estimate the 
ability of ENTHUSE 33 trial design in demonstrating the efficacy of docetaxel while 
incorporating the information regarding the patients with high risk of developing 
adverse event during the trial recruitment phase. The simulation analysis revealed 
that when the risk of early discontinuation was considered in trial eligibility criteria, 
fewer patients were required for the trial without loss of statistical power. For 
example, without information about discontinued patients, around 1,548 patients 
were required to detect an HR of 1.30 at 80% statistical power and false discovery 
rate of 0.05. However, when selection into the trial was based on the postchallenge 
ensemble-based model, 1,306 patients were sufficient to detect an HR of 1.30 with 
similar power and significance level.  
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Figure 9. Meta-analysis of risk scores reported by the seven top-performing teams. (A) 

Unsupervised clustering of the patients’ risk scores (columns) from the validation data 
(ENTHUSE 33, n=470) computed across the seven top-performing teams. (B) KM 
curves representing the association between risk groups and study outcome (death or 
treatment discontinuation). (C) Boxplots representing the distribution of laboratory test 
values found to be significantly different among the risk groups. (D) Distribution of binary 
predictors including prior medical and medications found to be significantly different 
among the risk groups. ACE, angiotensin-converting enzyme; ALB, albumin; ALP, 
alkaline phosphatase; Ca, calcium; CREACL, creatinine clearance; HB, hemoglobin; 
LDH, lactate dehydrogenase; MHGEN, medical history: general disorders and 
administration site conditions; Na, sodium; PSA, prostate-specific antigen; TPRO, total 
protein. The figure is adapted with permission from publication III. 

A B

C

Patient rank

Low High

Time (months)

C
um

ul
at

iv
e 

in
ci

de
nc

e

D

Present in the patient medical history 

Absent in the patient medical history 

P
C

 L
E

A
R

N

Ja
yH

aw
ks

B
rig

ha
m

 Y
ou

ng
U

ni
ve

rs
ity

TY
TD

re
am

C
ha

lle
ng

e

A 
B

av
ar

ia
n

D
re

am jls

Yu
an

fa
ng

G
ua

n

0

20

40

60

80

100

Fr
eq

ue
nc

y(
%

)

2

0.1

0.0

0.2

0.3

0.4

10 3 4 5

ALB HB LDH PSA

NA

RBCALP

CA ASTTPRO CREACL

Analgesics Ace inhibitors Liver lesion MHGEN

D
is

co
nt

in
ue

d

C
lu

st
er

Death
Treatment Discontinuation

Survival and Discontinuation of Patient Clusters

Concordant high-risk Discordant Concordant low-risk

C
on

co
rd

an
t 

hi
gh

-r
is

k
D

is
co

rd
an

t
C

on
co

rd
an

t l
ow

-r
is

k

Concordant high-risk Discordant Concordant low-riskConcordant high-risk Discordant Concordant low-risk



Fatemeh Seyednasrollah 

68 

 
Figure 10. Postchallenge ensemble model development workflow and its performance compared 

to top-performing teams. (A) Schematic workflow illustrating the different required steps 
to develop the post-challenge ensemble-based prediction model. (B) AUPRC values 
from applying the top-performing and postchallenge ensemble models to the validation 
data (ENTHUSE 33, n=470). Diamonds represent the observed AUPRC and the 
horizontal boxplots and corresponding whiskers represent the distribution of AUPRC 
values from applying the models to 5000 bootstrap samples from the validation data. 
The vertical dotted line represents the performance a totally random model. The figure 
is adapted with permission from publication III. 

3.7 Assessing the generalizability of trial-based 
prediction models in real-world data: 
Publication IV  

The utility of trial-tailored prognostic markers in everyday practice is controversial. 
The DREAM Challenges community has proposed robust prognostic models to 
predict the survival of patients with mCRPC. Using a real-world cohort from Turku 
University Hospital, I evaluated the reliability of proposed prognostic models in 
clinical practice. Precise prediction of survival is a key factor in treatment plan and 
patient quality of life in mCRPC.  

 Materials and methods 
Data. In this manuscript, we evaluated the reliability of trial-based prognostic 
models in real-world mCRPC patients. The prognostic models were trained using 
three clinical trials data (n = 1600 patients) and validated in an independent 
validation trial (n = 470 patients). The performances of the developed models were 
evaluated using the integrated time dependent area under the curve (iAUC) by the 
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challenge organizers (Figure 11A). Next, we validated the DREAM challenge top 
three models and a previously developed model by Halabi and colleagues (referred 
as the challenge reference model) using an in-house real-world data (Figure 11B). 
Turku University hospital granted us the unique opportunity of accessing to a real-
world (RW) dataset corresponding to the trial-based DREAM dataset. The data was 
classified into separate eight tables of ICD10 diagnosis values, laboratory values, 
hospital admissions, pathology records, demographics, chemotherapy and 
radiotherapy courses and clinical procedures. Patient cohort inclusion criteria 
included clinical diagnosis of prostate carcinoma (ICD10:C61), antiandrogen 
therapy (ACT code G03HA) as prior medication and docetaxel-based regimens as 
first-line chemotherapy treatment. After exclusion of patients with several 
malignancies, 289 eligible patients were identified for further analysis. In line with 
the trial-based cohorts, the baseline laboratory values were defined as the last test 
result within four weeks before chemotherapy administration. Missing laboratory 
values including lactate dehydrogenase and aspartate transferase were imputed using 
median values. The missing data from EMR documents was manually collected and 
confirmed by a physician. 

 
Figure 11. Study design. (A) Baseline clinical variables from three phase Ⅲ RCTs (ASCENT2, 

VENICE, and MAINSAIL, n = 1600) were used to develop prognostic models for patients 
with mCRPC. The developed models in addition to the study reference model (Halabi 
model) were evaluated using an independent RCT (ENTHUSE 33, n = 470) and their 
performances were reported as iAUC values. (B) Three top-performing teams and study 
reference model were selected as the state-of-the-art mCRPC prognostic models and 
their performance was evaluated using a real-world cohort (n = 289) from Turku 
University Hospital.  
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 Results 
Patient baseline characteristics and overall survival. The main goal of this 
study was to assess the utility of clinical trials tailored prognostic models in real-
world patients with mCRPC. As expected, patients in real-world cohort were 
significantly older and had worse ECOG performance status compared to clinical 
trial patients. PCA was performed to examine similarities and differences between 
the real-world and clinical trial cohorts. More specifically, PCA was conducted for 
the variables from reference model by Halabi and colleagues including analgesic use, 
metastasis site (defined as lymph node only, bone metastases with no visceral 
involvement, or any visceral metastases), ECOG performance status, LDH, ALB, 
HB, ALP, and PSA were used to assess the patients composition in PCA analysis 
(Figure 12A). Of note, the distribution of key variables was very similar across both 
real-world and clinical trial cohorts, confirming the reliability Halabi model 
variables in various cohort groups. Kaplan-Meier analysis revealed that no 
significant difference in the overall survival rates was observed between the real-
world and trial cohorts (log rank P = 0.11, Figure 12B).  

Validation and calibration of prognostic models. The top performing 
prognostic models from the prostate cancer DREAM challenge were externally 
validated using the Turku University Hospital cohort. For the clinical trial datasets, 
all the selected prognostic models outperformed the Halabi reference model as 
confirmed by integrated AUC (iAUC) values (Figure 13A). In real-world data 
validation analysis, there was not a significant outperforming model (BF < 3 for all 
comparisons) but all the models including the Halabi reference model performed 
similarly well (Figure 13B). In general, the performances of models were slightly 
lower in real-world data with iAUC values ranging from 0.743 to 0.792 but the 
performance remained steady over time which is a positive sign in term of model 
reliability. Furthermore, the models’ calibration was performed by comparing the 
predicted with the observed survival at 18, 24, 30 and 36 months follow-up times. 
The calibration plots demonstrated a relatively high agreement between predicted 
and observed survival proportions especially at 24 and 30 months (Supplementary 
Figure 2, publication IV). Despite the significant differences in some critical 
predictors including age and ECOG performance status, the discriminative potency 
of models was still acceptable ensuring that the recent trial-based prognostic models 
can be safely used for survival stratification in real world mCRPC patients. 

Next, I assessed the generalizability of the prognostic models in terms of the 
availability of utilizes features and the way they were collected in real-world cohort. 
Notably, the number of utilized features markedly varied from eight features to 91 
features in Team 3 and Team 1 models respectively (Table 1). Clinical trials follow 
a restrict conventional setting for data collection which will be implemented for all 
the recruited patients. However, with real-world data, clinical features are collected 
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or recorded based on the patient individual condition and healthcare provider routine. 
For example, while LDH was utilized by all the tested prognostic models, it was 
fully missing from the real-world data as LDH test has not been among the routine 
tests for prostate cancer in Turku University Hospital. Another example is the 
significantly lower incidence of lymph node metastases in real-world cohort 
compared to clinical trial data (26% vs. 48%, 𝑃 < 0.001). However, it should be 
noted that this comparison is meaningless as lymph lesion evaluation is a routine 
practice in clinical trials but for the real-world patients it was measured only through 
pathological examination. Missing data and incompatible data collection strategies 
are potential source of bias and could adversely affect the statistical power and model 
performance.  

Finally, I reassessed the performance of the prognostic models in trial eligible 
real-world patients. Following the recruitment criteria derived from clinical trial 
design protocol, 245 (85%) real-world patients were identified to be eligible for trial 
inclusion. Most ineligible patients were older and had additional comorbidities. With 
this RCT eligible subset data, Team 2 model achieved an iAUC of 0.739 and 
significantly outperformed the other three models (BF > 3, Table 1). Interestingly, 
during the first follow-up year, there was a significant drop in performance of models 
(except for Team 2 model) utilizing the new RCT eligible sub cohort compared to 
the whole real-world data. It was speculated that the performance drop was linked to 
exclusion of patients with worse overall condition at higher risk of early death 
consequently easier to predict. In concordance with this hypothesis, a significant 
drop in survival rate during the first follow-up year was observed 72 % versus 62 % 
deaths in RCT non-eligible and eligible patients, respectively (𝑃 < 0.01). 
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Figure 12. Comparison of distribution of RCT and real-world data in terms of predictive variables 

and overall survival. (A) PCA of the four RCT datasets and real-world cohort using 
predictive variables from the Halabi reference model including ECOG performance 
status, albumin, alkaline phosphatase, hemoglobin, lactate dehydrogenase, prostate 
specific antigen, analgesics use, metastasis site (defined as lymph node only, bone 
metastases with no visceral involvement, or any visceral metastases). (B) KM curves 
representing the overall survival of in RCTs and real-world cohorts. No significant 
differences were observed between the overall survival of RCTs and real-world patients 
(log-rank test 𝑃 = 0.70). The figure is adapted with permission from publication IV. 
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Figure 13. (A) Performance of the RCT based state-of-the-art prognostic models (including three 

top-performing models from the prostate cancer DREAM challenge in addition to the 
halabi reference model evaluated by real-world cohort from Turku University Hospital (n 
= 289). (B) Performance of the RCT based state-of-the-art prognostic models (including 
three top-performing models from the prostate cancer DREAM challenge in addition to 
the halabi reference model evaluated by the prostate cancer DREAM challenge 
validation data (ENTHUSE 33, n = 313). The figure is adapted with permission from 
publication IV. 

Table 1. Number of predictive variables and performance of selected models including the prostate 
cancer DREAM challenge top-performing teams (Teams 1-3) and the study reference 
model (Halabi model). 
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Team Model Number of 
employed 
features 

iAUC (6-30 months)  

in ENTHUSE 33 trial 

iAUC (6-30 months) 

 in RW cohort 

iAUC (6-30 months)  

in RCT eligible RW 
cohort 

Team 1 Penalized Cox 
regression with 
Elastic net 

91 independent 
features plus all 
their 
interactions 

0·792 0·724 0·721 

Team 2 Weighted 
Penalized Cox 
regression 

22 0·779 0·731 0·739 

Team 3 Penalized Cox 
regression 

8 0·778 0·728 0·710 

Halabi Penalized Cox 
regression with 
Lasso 

10 0·743 0·729 0·712 
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4 Predicting Disease Risks Using 
Genetic and Clinical Data 

Chapters 2 and 3 exploit molecular (genomic) and clinical data as separate sources 
for development of computational tools in biomedical research. The availability of 
versatile types of data motivates development of integrative strategies which may 
potentially improve the performance of proposed mathematical models. This can 
include integration of same type of data at different levels (e.g. integration of 
different levels of omics data) or combination of data from different sources such as 
clinical and genomic data. Generally, with genomic data, preprocessing is more 
complex and computationally intensive compared to clinical data. Hence, in case of 
combining genomic and clinical data, effective data curation and standardization is 
required prior to initiating model development. Differences in volume and 
dimension in addition to inconsistency across data representations are the further 
factors which require bioinformatic solutions when combining different data types. 
When the data is efficiently integrated, appropriate statistical and machine learning 
methods are applied to extract information from the well-structured multi-level data. 
In order to better explaining the methodology, in this chapter we propose an 
ensemble based predictive model which utilizes early life clinical and genomic 
measurements to predict adulthood obesity. The methods and results from this study 
are presented in publication V of this thesis.  

During the last two decades, the prevalence of obesity has markedly increased 
worldwide [126]. Obesity is an underlying risk factor for several chronic 
comorbidities including type 2 diabetes, cardiovascular diseases and cancer [127] 
[128] [129]. Unhealthy dietary habits and lack of physical exercise are the well-
known risk factors in developing obesity. For a large proportion of cases with 
excessive weight, the problem originates from childhood time. Of note, the risk of 
becoming an overweight adult could be 3-fold higher among obese children (body 
mass index (BMI) > 80th percentile) compared with nonobese children [130]. 
Statistical models have been used for risk stratification of children on the basis of 
their genetics and clinical and environmental factors. Currently, genome-wide 
association studies are performed to identify obesity susceptibility genetic variants 
in different population cohorts [131]. Early detection of at-risk children and 
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precautionary health actions play crucial role in treatment and prevention of 
adolescent obesity. This aim is followed in publication V where we examine the role 
of genetic risk factors coupled by childhood clinical and environmental factors in 
developing adulthood obesity in the Cardiovascular Risk in Young Finns Study 
(YFS). The YFS is a multi-center, on-going follow-up study initiated in 1980 which 
aims to study the cardiovascular risk factors and their consequences from childhood 
to adulthood. The participants were randomly selected from five different cities in 
Finland (Helsinki, Kuopio, Oulu, Tampere, and Turku) and aged 3 to 18 years old. 
During the study follow-up time the conventional risk factors have been 
systematically collected at certain time points at 1983, 1986, 2001, 2007 and 2011. 
This included health surveys and self-reported questionnaires (e.g. assessing general 
wellness and health status, life-style factors, diet, alcohol and smoking habits, 
physical activity and socioeconomic status), physical measurements (e.g. height, 
weight, blood pressure) and blood tests (e.g. C-reactive protein (CRP), insulin and 
serum lipoproteins). Additionally, genome-wide association study was performed 
for individuals participated in 2007 follow-up. The YFS data has been widely used 
to assess whether chronic health issues such as type 2 diabetes, hypertension and 
obesity originate from early life stage [132].  

In the following sections, first I will give a brief introduction about genome-wide 
association studies (see section 4.1) as the genomic data source in current predictive 
analysis. Next, I will give brief overviews about data integration methods (see 
section 4.2) and obesity associated risk factors as well as materials and methods 
utilized in publication V (see section 4.3). In particular, gradient boosting algorithm 
was utilized over the most updated list of obesity-related genetic variants combined 
with clinical and environmental factors (confirmed by Juonala et al. [133]) to predict 
adulthood obesity. The findings of this study were validated with an independent 
dataset. Finally, the last section presents the novel clinical findings of this study (see 
section 4.4). Compared to previous similar studies [133], this study includes larger 
sample size and longer follow-up time contributing to a higher confidence level and 
more statistical power. Additionally, we used the most updated list of genetic risk 
factors from the largest GWAS experiment at the time of our study [134]. This gives 
us better possibility of detecting interactions between genetic risk factors responsible 
for development of obesity. Finally, we utilized boosting algorithms as one the most 
powerful machine learning tools for model training and the study novel results 
confirms the importance of our methodology. 
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4.1 Genome-wide association studies 
Whole-genome sequencing (WGS) allows to study the complete set of an organisms’ 
genome at the DNA base level in a robust and cost-effective way. Genome-wide 
association studies (GWAS) aim to investigate the population-specific genetic 
variants associated with complex traits and diseases. In this case, frequently occurred 
single base differences in DNA sequence of an organism, commonly referred as 
single nucleotide polymorphisms (SNPs), are supposed to be the variant causative 
for developing a phenotypic difference when compared to control population. In 
human, SNPs have two alleles or variant forms (one from each parent) and so in 
respect of each gene, a person is either homozygous with identical alleles or 
heterozygous with two different alleles. Once the DNA is sequenced, statistical 
methods are required to confirm the difference in the frequency of each allele 
between the case and control groups. In practice, GWAS experiments include 
relatively modest effect size; therefore, the study sample size can be a determinant 
factor to obtain the desired statistical power. Moreover, the power of a GWAS 
analysis is directly affected by the frequency of candidate alleles associated with a 
trait of interest. For common diseases (e.g. type 2 diabetes) or common disorders 
(e.g. obesity), GWAS assume that the causative allele should be also very commonly 
observed across the case sample group [135]. Accordingly, if GWAS discovers a 
genetic variant which is not as common as the associated trait, it may be concluded 
that a group of (relatively few) SNPs rather than a single one with overall higher 
frequency has caused the trait. However, it should be considered that the discovered 
trait-associated SNPs might be false positives in linkage disequilibrium (LD) with 
true trait-associated SNPs that are not detected by GWAS analysis. LD is a genetic 
phenomenon stating that two SNPs from same chromosome with short distance from 
each other remain physically in the same location within a population. Therefore, the 
LD between the detected genetic variant and the possibly undiscovered variant can 
reveal an indirect association which requires further considerations.  

When the experimental and computational prerequisites are settled, association 
analysis are performed to assess the relationship between a trait or a disease and 
genetic variants. With GWAS design, often logistic regression algorithms (due to 
binary outcome e.g. disease or healthy) are applied to estimate the significance of 
variant-trait associations. In this case the variant-trait association is evaluated using 
the regression coefficients (𝛽: log (odds ratios)) and their corresponding level of 
significance. Some publications report odds ratios (coupled with chi-squared test) 
rather than 𝛽 values as the main measure of association and SNPs effect size. For 
example, for patients with type 2 diabetes, the odds ratios for hypothesized SNPs 
associated with this disease are estimated as ratios between patients with and without 
the particular SNPs. Of note, in most GWAS experiments (except for studies 
focusing on rare traits or diseases) the general odds ratios reported for final list of 
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associated SNPs are close to 1 (although they may include highly significant p 
values). To avoid confusing issues influencing the reliability of acquired results, 
three factors should be taken into account. First, complex diseases or disorders (e.g. 
obesity studied in publication V) are supposed to be polygenic meaning that the trait 
is subjected to cause by a network of interacting genes (SNPs) rather than a single 
variant. Hence, the cumulative effects from detected SNPs are evaluated to make 
conclusions about the study findings. The second important factor when interpreting 
the results is the experimental sample size. Studies with large sample size represent 
improved statistical power by detecting larger number of associating SNPs. For 
example, when investigating association of genetic variants and body mass index, 
Locke et al. [134] were able to increase number of detections from 32 SNPs in their 
previous study [136] to 97 SNPs associated with obesity when they increased the 
sample size from 249,769 to 339,224 in their latest study. Finally, always it should 
be reminded that the detected SNPs with very small odds ratios could simply 
represent the population heterogeneity which have no effect on the trait under study 
[137] [138]. 

4.2 Methods to combine molecular and clinical 
features 

The predictability role of non-genetic factors such as clinical, environmental and 
socioeconomic variables has been extensively proved in various medical 
applications. For example, laboratory measurements, diagnostic imaging and 
pathological staging are the main traditional factors in cancer prognosis [139]. 
Although highly informative, these factors are not sensitive enough for a 
personalized and accurate adjuvant therapy plan. One solution to achieve a more 
accurate estimation of patient outcome, is to integrate genetic data into their clinical 
profile. Several studies suggest combination of clinical and genetic factors play 
complementary role in better understanding of the disease state and characteristics 
[140] [141] [142]. With majority of integrative studies, the aim is to combine the 
often high-dimensional data into EMRs collected for clinical trials or from hospitals 
and healthcare systems. The information combination task can be done following 
two approaches. During the first modeling approach, separate models for clinical and 
genetic data are developed and the patient final risk score is obtained by fusion of 
the individual models. A simplest way to fuse the individual risk scores is to calculate 
the average risk from the separate prediction models [143]. The second common 
integrative strategy is to treat clinical and molecular variables uniformly to develop 
a single predictive model. A well-known example are studies that combine data 
dimension reduction step to their modeling workflow. This way, the often high 
dimensional genetic data can be transformed into a genetic risk score or signature 
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and then will be incorporated to the clinical variables set to develop the prediction 
model [144]. In publication V, I proposed a weighted genetic risk score to be added 
to the clinical features before building the predictive model.  

4.3 Predictive value of obesity associated risk 
factors: Publication V 

Previous studies have categorized obesity as a multifactorial trait with several 
causing factors correlating or interacting with each other. These factors can broadly 
be divided into two main categories: genetic risk factors and clinical and 
environmental risk factors. From genetic point of view, obesity is a polygenic 
heritable trait meaning that several alleles with small individual and considerable 
cumulative effect are involved in becoming obese. The most updated human GWAS 
study by Locke et al. [134] has identified 97 BMI associated loci of which 41loci 
have been previously shown to be associated with obesity. The main childhood 
clinical risk factors include parental obesity, increased birth or childhood BMI and 
early puberty. Imbalanced total calorie intake, low physical activity, maternal 
smoking and low socioeconomic status are the well-known environmental risk 
factors. In publication V, the aim was to answer the question of whether the 
integration of genetic risk factors into predictive analysis can improve our capacity 
to detect onset of adulthood obesity. To answer this question, the SNP values and 
their corresponding 𝛽 coefficients were transformed to weighted genetic risk scores 
suitable to integrate with clinical and environmental risk factors. In this study, I 
utilized gradient boosting algorithms to create our predictive model and validate it 
with an independent validation set. It was based on the hypothesis that the updated 
genetic variants list together with longer follow-up time will increase the statistical 
power and performance of the proposed predictive model.  

 Materials and methods  
Data. A total of 2262 participants with complete set of genotype data and 
baseline clinical and environmental variables were selected from the YFS. The study 
outcome, adulthood obesity was defined as BMI ≥ 30 (kg/m2) and the baseline 
explanatory variables included age, gender, baseline BMI (calculated as weight (kg) 
divided by height in meters squared and adjusted for age and gender), parental BMI, 
family income and childhood CRP measurements. It should be noted that, although 
previous studies have shown significant effect of CRP in predicting adulthood 
obesity, it was not among our final list of predictive variables as we did not observe 
any performance improvement while utilizing CRP measurements. The reader is 
referred to Table 1 publication V for detailed information about baseline clinical 
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variables. The follow-up time for this manuscript data was 31 or 32 years. The SNP 
genotyping was performed with the Illumina BeadChip 670K and the Illumina 
clustering algorithm was used for genotype calling [145]. Imputation of genotypes 
was performed using IMPUTE2 software package [146] and the 1000 Genome Phase 
1, Version 3 as reference panel [147]. The genetic risk factors utilized in this study 
included the 97 significant genome-wide SNPs that have been reported by Locke et 
al. [134] in their latest study using data on 339,224 individuals. The participant 
cohort was randomly split into training (n=1625, 72%) and validation (n=637, 28%) 
subsets to avoid overfitting and ensure the generalization ability of the final model.  

Methods. In publication V, I examined the contribution of clinical factors 
integrated with a genome-wide polygenic score with adulthood obesity. Differences 
in the distribution of obese and nonobese participant characteristics were determined 
using Wilcoxon rank-sum test and 𝜒5 test for continuous and categorical variables 
respectively. The explanatory effect of the genetic risk factors was integrated into a 
weighted genetic risk score which was defined as the arithmetic sum of SNP values 
(𝑥) weighted by their corresponding 𝛽 scores as follow 

𝑊𝐺𝑅𝑆 = 	∑ 𝛽0𝑥0A
0[Q , 

where 𝛽 scores were derived from the original study by Locke et al. For this 
publication, we calculated two weighted genetic risk scores 𝑊𝐺𝑅𝑆97 and 𝑊𝐺𝑅𝑆19, 
where 𝑊𝐺𝑅𝑆97 denoted the weighted risk score depending on the whole 97 SNPs 
reported in the original study and 𝑊𝐺𝑅𝑆19 utilized a subset of 19 SNPs out the 97 
SNPs we found more relevant using univariate regression analysis (Supplementary 
Table 1, publication V).  

The gradient boosting algorithm implemented in the R package gbm was used to 
develop the prediction model. The reader is referred to section 3.4 for detailed 
method description. In order to reduce overfitting effects, regularizing parameters 
including learning rate and subsampling fraction were fine-tuned. To capture 
interaction effects between up to two variables, the decision stumps was set to three. 
Five-fold cross validation was used to penalize model overfitting. The AUC values 
were used to assess the performance of predictive models. The effect of 𝑊𝐺𝑅𝑆19 
on BMI trajectories was further explored for different age groups. More specifically, 
the participants were divided into four groups based on their 𝑊𝐺𝑅𝑆19 quartiles and 
comparative analysis using Wilcoxon rank-sum test was performed to examine the 
age-related effect of genetic variants. Here, the BMI trajectory plots represented the 
mean BMI of all study participants with measured BMI values at each given age in 
each defined quartile.  
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 Predictive analysis results 
When examining the association of childhood clinical factors and adulthood obesity, 
it was observed that obese participants had significantly higher childhood baseline 
BMI, maternal BMI and WGRS19 compared to nonobese participants (P<0.0001). 
Out of 97 SNPs reported by Locke et al., 19 SNPs had P values < 0.1 in the univariate 
regression analysis and were selected as an independent covariate in the form of 
weighted genetic risk score WGRS19 (Table 3). Gradient boosting algorithms were 
utilized to investigate the association of genetic and childhood clinical risk factors 
with adulthood obesity. Comparison of AUC values demonstrated that combining 
the genetic risk factors (WGRS19) and clinical characteristic improves prediction 
accuracy also in validation data (AUC=0.769 versus AUC=0.747, P=0.026) when 
compared with clinical factors alone (Table 2). Next, the study participants were 
divided into 3-year age groups for further age-wise model performance evaluation. 
When the genetic risk factors were incorporated to the model, the model performed 
significantly better in the youngest age group (3-6 years) also in the validation data 
(AUC=0.771 versus AUC=0.700, P=0.002). However, combination of clinical and 
genetic risk factors did not significantly improve the model performance in older age 
groups when the model was tested in the validation data.  

Finally, the association of the genetic risk scores WGRS19 and WGRS97 with 
early onset of excessive BMI incidence was investigated (Figure 14). The 
participants were divided into quartiles based on their WGRS19 and WGRS97 scores 
and participants from the highest and lowest quartiles were selected as BMI 
trajectory groups for further analysis. The comparative analysis revealed that the 
genetic risk scores act as significant stratifying factors across BMI trajectory groups. 
More specifically, BMI trajectory groups were significantly different starting from 
age of 9 and 6 for WGRS19 and GWRS97 respectively (P<0.05, Kruskal–Wallis 
test). These results of this study support our hypothesis about association of genetics 
and childhood baseline characteristics with adulthood obesity. 

Table 2. Performances of the developed models  

Training data (n=1625) 

Age 

WGRS19 and 
clinical factors 
AUC 

WGRS97 and 
clinical factors 
AUC 

Clinical 
factors 
AUC 

WGRS19 vs. 
clinical 
p 

WGRS97 
vs. clinical 
p 

All 0.787 0.782 0.744 <0.0001 <0.0001 

3-6 y 0.754 0.736 0.692 <0.0001 <0.0001 

9-12 y 0.809 0.805 0.777 0.002 <0.0001 

15-18 y 0.793 0.795 0.752 0.001 <0.0001 
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Table 3. Univariate logistic regression analysis for SNPs with P < 0.1. 

 

Validation data (n=637) 

Age 

WGRS19 and 
clinical factors 
AUC 

WGRS97 and 
clinical factors 
AUC 

Clinical 
factors 
AUC 

WGRS19 vs. 
clinical 
p 

WGRS97 
vs. clinical 
p 

All 0.769 0.749 0.747 0.026 0.785 
3-6 y 0.771 0.742 0.700 0.002 0.020 

9-12 y 0.799 0.767 0.786 0.293 0.049 

15-18 y 0.734 0.738 0.740 0.743 0.922 

SNP Chr Position Gene OR P Ranking in 
Locke et al. 

rs2207139 6 50,953,449 TFAP2B 1.326 0.001 6 

rs16951275 15 65,864,222 MAP2K5 0.727 0.004 15 

rs2112347 5 75,050,998 POC5 0.809 0.006 17 

rs1558902 16 52,361,075 FTO 1.203 0.014 1 

rs492400 2 219,057,996 USP37 0.835 0.015 56 

rs11688816 2 62,906,552 EHBP1 0.889 0.019 73 

rs7239883 18 38,401,669 LOC284260 1.321 0.035 69 

rs9400239 6 109,084,356 FOXO3 1.171 0.042 71 

rs16851483 3 142,758,126 RASA2 1.082 0.0491 44 

rs9641123 7 93,035,668 CALCR 1.183 0.0762 42 

rs17724992 19 18,315,825 PGPEP1 0.847 0.078 89 

rs2245368 7 76,446,079 PMS2L11 0.855 0.079 87 

rs1460676 2 164,275,935 FIGN 1.134 0.081 96 

rs11727676 4 145,878,514 HHIP 0.845 0.0849 79 

rs7164727 15 70,881,044 LOC100287559 1.197 0.088 53 

rs13078960 3 85,890,280 CADM2 1.134 0.09 21 

rs9374842 6 120,227,364 LOC285762 1.145 0.0906 81 

rs11057405 12 121,347,850 CLIP1 1.05 0.0922 74 

rs12885454 14 28,806,589 PRKD1 0.881 0.096 41 
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Figure 14. The BMI trajectories in YFS participants for low-risk and high-risk groups according 

during the whole study period. A) The BMI trajectories of high-risk and low-risk groups 
based on WGRS19 score and B) the BMI trajectories of high-risk and low-risk groups 
based on WGRS97 score. The figure is adapted with permission from publication V. 

 

 

4.4 Clinical findings 
Early life properties and conditions may affect individuals’ health and disease 
risk in older ages. In this study, we observed that genetic factors are better 
representors of obesity in younger children for longer follow-up periods. Also, this 
analysis revealed the significant contribution of childhood BMI, maternal BMI and 
family income in development of adulthood obesity. When using weighted GRS, 
higher prediction accuracy was achieved using the reduced 𝑊𝐺𝑅𝑆19 form rather 
than the complete 𝑊𝐺𝑅𝑆97 risk scores. It was concluded that 𝑊𝐺𝑅𝑆97 score may 
include variants whose effects have been revealed already during childhood time; 
therefore, its predictive ability decreases compared to clinical factors. Considering 
the refined 𝑊𝐺𝑅𝑆19 score, its influence on BMI was manifested between 9 to 12 



Predicting Disease Risks Using Genetic and Clinical Data 

 83 

years of age; whereas, for 𝑊𝐺𝑅𝑆97 score the effect was manifested at 6 years of 
age. This is in line with previous findings that the influence of genetics on adulthood 
obesity is already manifested during childhood [148] [149]. For instance, Hakanen 
et al. [150] showed that the influence of a very well-known obesity related gene, 
FTO, is already manifested at age of 7 years which supports findings of current 
study. In contrast, the effect of genetic factors in older children is mitigated; and 
clinical factors play stronger role in predicting adulthood obesity for individuals 
between 12 to 18 years of age. Now that we know genetic data may assist in early 
identification of individuals with high risk of obesity, this information can be used 
to propose personalized precautionary plans. In fact, the decreasing trend in genome 
sequecning experiments costs may result in utilization of genetic variants in clinical 
practice in near future. Accordingly, studies similar to ours, can be implemented in 
everyday routine for identification of susceptible individuals and providing them 
clinical preventive services. 
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5 Discussion 

Early prediction of diseases developmental stages has direct effect on treatment 
decision-making and outcomes. In this thesis, I developed several statistical and 
machine learning methods for patient risk stratification with case studies in cancer 
and obesity. Despite the significant advancements in management and therapy, 
cancer has remained a leading cause of death worldwide. The field of computational 
biology has invested remarkable efforts to address the challenges of the field. 
Bioinformatics software tools provide crucial insights into genetic and epigenetic 
mechanisms of tumorigenesis and cancer progression. Various types of 
mathematical models are developed to predict metastasis, patient prognosis as well 
as drug resistance and response with significant clinical impact. The gene expression 
profiles provided by high throughput technologies are a central source of information 
in cancer research. The dynamic nature of transcriptome can explain major 
differences with causal effect on disease development and state. More specifically, 
genetic mutations and dysregulation of gene expression profiles may disrupt the 
cellular function and increase the chance of developing malignancy. Gene expression 
profiles are mainly used to classify patients into distinct phenotypic subtypes with 
specific treatment plans. Publications I and II in this thesis, focused on task of 
transcriptome profiling and biomarker discovery using RNA-seq data.  

Today, RNA-seq technology is the standard approach for transcriptome 
characterization. This technology is extensively used for global quantification of 
gene expression in all bioscience areas including cancer research. From 
bioinformatics point of view, a large set of software packages are developed for 
detection of differential expression in RNA-seq studies. Here, the expression levels 
are represented in the form of integer read counts. Accordingly, most of the state-of-
the-art methods (e.g. DESeq2, edgeR and baySeq) use negative binomial distribution 
to model the expression levels. Another practically appropriate approach is to apply 
suitable transformation strategies so that the transformed data would fit in a normal 
distribution system (e.g. Limma); and then model the gene counts on the basis of 
normal distribution assumptions. When the model is fit, appropriate statistical tests 
(e.g. modified t-test in ROTS and Wald test in DESeq2) are utilized to assess the 
differences in expression levels across sample groups. Finally, the significance of 
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detections is corrected for multiple testing to control the false discovery rate (e.g., 
using Benjamini–Hochberg method). The processed list of significant detections 
from differential expression testing may further serve as disease biomarkers or 
predictive signatures in diseases studies. Unfortunately, it is very likely to obtain 
inconsistent set of biomarkers using different statistical testing methods as observed 
in publication I. This particularly can be a challenging issue if the study sample size 
is small or high level of heterogeneity exists between replicate samples. 
Additionally, careful considerations are required when including very lowly 
expressed genes in a predictive signature as they are at higher risk of being false 
positives induced by RNA-seq technical biases and limitations.  

The significant inconsistency observed among the available statistical methods 
demonstrated the need for a data-adaptive method to ensure the reproducibility of 
findings in sensitive medical applications. The problem of selecting a suitable 
statistic was addressed by proposing ROTS in publication II. In contrast to the 
parametric methods tested in publication I, ROTS statistic is optimized directly 
based on the input data by maximizing the reproducibility of the selected genes (or 
transcripts) across bootstrap samples. In order to prove the efficacy of ROTS in real 
biomedical applications, the method is used to identify prognostic markers in 
ccRCC. ccRCC tumors are highly heterogenous and always there is a risk that the 
expression profile of an identified marker may vary from patient to patient. In 
treatment plan of ccRCC patients, disease stage and patient prognosis are the main 
deterministic elements. With the aim of assisting clinicians to make advance 
treatment plans, I proposed a prognostic signature for survival stratification of 
ccRCC patients using ROTS method and complementary statistical procedures. In 
addition to known markers such as key genes in glucose metabolism (e.g. 
ALDOB, G6PC and PKLR), the proposed signature includes novel markers with 
potential prognostic and therapeutic effects. These include, for instance the genes 
regulated by the pVHL-HIF pathway (EPO, REN, IGFPB1 and FABP1) known to 
be dysregulated in ccRCC and several solute carrier family members (e.g. SLC38A5) 
which are known to supply crucial glutamine to cancer cells and contribute in 
malignant growth. Utilizing this gene expression signature, I was able to classify 
patients into poor (< 12 months) and better (> 60 months) prognosis groups. To 
account for tumor heterogeneity and assess the reproducibility of the findings, the 
proposed signature was validated using an independent cohort of ccRCC patients.  

Despite the increasing trend of demanding genetic-based markers in cancer 
management, traditional clinical parameters are still appeared to be the main index 
to rule out treatment strategy. In mathematical modeling of cancer-specific 
outcomes, machine learning algorithms are becoming an increasingly popular 
approach to capture linear and non-linear relations between clinical variables. For 
these studies, limited sample size is a big barrier in development of accurate and 
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generalizable predictive models. While the current systematic workflow of data 
management coupled with new data sharing policies could assist in obtaining a 
suitable sample size, many models still lack sufficient statistical power to support 
their claims. This is specially challenging if we are dealing with an imbalanced 
cohort where the target subjects (e.g. patients with clinical outcome of interest) 
belong to the rare class. Here, maximizing the global accuracy is not necessarily 
valuable as it may downweigh the model performance in detection of truly 
interesting subjects. A common approach to handle the problem of imbalanced data 
is utilizing boosting techniques to develop an ensemble learner rather than a single 
model with high global accuracy. In publication III, an ensemble-based model is 
proposed to predict the clinical event of interest for an imbalanced cohort.  

Participating in Prostate Cancer DREAM Challenge, provided me the 
opportunity of accessing and analyzing clinical data from a relatively large cohort of 
mCRPC patients. The utilized data were from the comparator arms of four phase III 
clinical trials in first-line mCRPC with a total of 2,070 patients. For these patients, 
the challenge participants had access to laboratory values, lesion measurements, 
prior medications, medical history, and vital signs with trials follow-up details. With 
the aim of improving the survival rate and quality of life, these patients were treated 
with a docetaxel-based chemotherapy regimen. However, as discussed in chapter 3, 
around 20% of mCRPC patients experience toxicity-induced adverse events and 
have to prematurely discontinue their treatment plan. The Prostate Cancer DREAM 
Challenge aimed to develop predictive models to estimate the survival and risk of 
early docetaxel discontinuation in mCRPC. The publication III of this thesis 
provided a community-based approach to predict patients with higher risk of 
developing adverse events. Early identification of high-risk patients for short-term 
treatment discontinuation is crucial for enhancing their quality of life. As only 10% 
of patients were at risk of developing early adverse events, the problem was 
approached as an imbalanced situation and an ensemble learner was proposed to 
predict high risk patients. The proposed model utilizes the baseline clinical variables 
to assess treatment discontinuation. The main predictive features included ECOG 
status, liver lesions, use of analgesics and angiotensin-converting enzyme inhibitors 
and laboratory values of HB, ALB, LDH, PSA, RBC, calcium, AST, creatinine 
clearance, and total protein. Although the performance of the proposed model was 
modest, our results can serve as an initial step in development of similar tools in 
clinical practice.  

In addition to early treatment discontinuation, the Prostate Cancer DREAM 
Challenge aimed to improve the prediction of survival in patients with mCRPC. 
Precise estimation of survival is an important factor that influences the choice of 
treatment and patient's quality of life. Since the survival models were developed 
using trial-based data, a critical question was how reliable are the proposed models 
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in real-world patients. This is a serious oncology concern as a large proportion of 
real-world mCRPC patients are of advanced age with severe extra comorbidities and 
so very likely different from RCT eligible patients. Accordingly, it is not clear if the 
RCT participants can represent the entire mCRPC patients or not. On the other hand, 
validation of trial-based models in real-world setting is a challenging issue due to 
various limitations associated with data properties. In order to fairly validate the 
prediction models, medical records of real-world patients should be standardized to 
have a uniform format as RCT data. With data standardization, imputation of missing 
data is a challenging task where either entire or fraction of values for a predictor are 
not measured or accessible. Publication IV of this thesis provides an example for 
validation of trial-based prediction models in read-world data. Interestingly, our 
results suggested the strength and generalizability of examined methods [10] in real-
world patients. In an optimal setting, real-world and trial-based data could be used 
as complementary sources for development of prediction models.  

The prediction models in publications II-IV were developed for better 
management of cancer as a complex disease. Typically, complex diseases are caused 
or influenced by a combination of genetic and non-genetic risk factors such as 
clinical and environmental factors. Considering this multifactorial nature, it is 
expected to obtain better performance when integrating genetic and non-genetic 
variables in model development. In practice, however, combination of genetic and 
non-genetic factors is not straight forward [151]. The first challenging issue in 
integrative frameworks is data heterogeneity. In non-genetic features, the 
heterogeneity may arise from data collection and registration protocols. A very well-
known example in medical applications is the inconsistency observed in self-report 
surveys [152]. Similar problematic issue may occur when defining specific clinical 
conditions or outcomes. For instance, different studies may use various time intervals 
to define early treatment discontinuation. Additionally, missing data, outlier values 
and measurements with non-uniform scales are common barriers to data integration. 
Therefore, precise standardization procedures are required to have a uniform data for 
model development. For genetic data, the main source of heterogeneity is biological 
variation which should be estimated precisely before data modeling. Moreover, 
suitable dimensionality reduction methods are required to handle sparse or large-
scale genetic data. Publication V of this thesis provides a successful example of 
combining genetic and environmental factors to improve the prediction ability. In 
this paper, I proposed a novel ensemble-based model to predict adulthood obesity 
using both genetic and social-environmental factors. Using gradient boosting 
machines, the significant contribution of genetic risk factors, childhood BMI, 
maternal BMI and family income in development of adulthood obesity was 
confirmed.  
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Overall, the main goal of biomedical modeling projects is to translate the often 
high dimensional and noisy molecular and clinical data into medically enriched 
findings. Despite significant advancements in model development, clinical utility of 
identified markers and predictive signatures is still unclear. Obviously, traditional 
data analysis methods are not sufficient to process today’s large and complex data 
and advanced statistical and machine learning methods are required to address the 
challenges of the field. 
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