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ABSTRACT 
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--------------------------------------------------------------------------------------------------- 

 

Microorganisms are present everywhere in the environment. They are present on and 

inside of all higher organisms and they can be harmful as well as useful for the host. 

Microorganisms play an important role in the evolution and thus make it important to 

study them. Microbiota is the name given for the totality of micro-organisms present in 

the environment and the microbiota of a particular habitat is known as the microbiome. 

Due to its presence in the biosphere and the human body, a large number of experiments 

including the human microbiome project (HMP) are carried out and a huge amount of 

data is produced.  

 

The gut microbiome is one of the most studied microbiota. Microorganisms living in the 

host gut play several important roles like metabolic activity, anti-cancer activity, and anti-

infection activity. A healthy individual has a balanced microbiota and any imbalance in 

them causes various diseases and health issues. Obesity or even certain cancers are caused 

by the imbalance of the microbes in the intestine.  

 

This project focuses on developing a bioinformatics pipeline to analyse the gut 

microbiome in a dietary intervention study. The data used for this project was collected 

from a study which was aimed to study gastric cancer where we were exploring the role 

and difference in composition of the gut microbiome. This thesis handles the entirety of 

the data processing and analysis through R involving: pre-processing of data; phyloseq 

object generation; statistical analysis and visualization; diversity indices calculation 

(alpha and beta) and composition analysis of microbiomes. After completion of the 

project, one would be able to analyse the gut microbiome data with minimal effort.  

 

Keywords 

16S rRNA sequencing, OTU, gut microbiome, phyloseq, alpha diversity, beta diversity, 

ALDEx2, Gastric adenocarcinoma, GIST 
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1. INTRODUCTION 

 

All multicellular organisms harbour diverse communities of microorganisms or 

microbes, collectively called microbiota. In this view, multicellular organism is considered as 

a holobiont, a combined entity of host organism and its associated microbial community (1). 

The microbial community serves different life-functions aiding in the survival of the host. 

Humans are no different and the number of microorganisms living on and inside humans are 

estimated to be 1. 3x times more than the somatic and germ cells of the host (2). In fact, the 

collection of genes of the microbial community known as the microbiome is considered as our 

second genome (3). An upsurge in human microbiome research in the past two decades has 

opened new vistas to many unanswered questions particularly pertaining to human health and 

diseases.  

 

Bioinformatics is one area of study leading to a greater understanding of the 

microbiome. In the field of microbiology, bioinformatics has become an essential tool. The use 

of bioinformatics is inherent to virtually every modern research project in biology, whether it 

is analyzing DNA or protein sequences or parsing the information in massive gigabyte-sized 

data sets. A particularly well-known example is the next-generation sequencing (NGS), which 

transformed fields such as molecular systems, population genetics, quantitative genetics and 

microbial ecology (4). Researchers can understand the microbiome's composition and 

metabolic activities by conducting data meta-analyses based using bioinformatics. The gut 

microbiome has a high density of microbes but has a relatively low proportion of culturable 

bacteria (5). Microbiomes were studied using individual bacteria or microbial communities in 

co-cultures in the early phases of the microbiome study. NGS made it possible to accurately 

identify most members of a complex microbial community. High-throughput sequencing 

technologies and bioinformatics analysis have revolutionized gut microbiome composition and 

function research (6).  

 

Bioinformatics tools help characterize the microbiome's impact on the evolution of a 

disease or the effect of an illness or intervention on the microbiome. When combined with 

statistical analysis, rapidly evolving bioinformatics tools provide insight into the association of 

microbiome with diseases (7). For these purposes, it is essential to develop a pipeline to analyze 
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the human gut microbiome which could shed light on the association between gut microbiome 

and diseases by comparing the gut microbiome of healthy people with the patients.  

 

Therefore, this thesis explores the relationship between the gut microbiome and gastric 

cancer by developing a pipeline to analyze the human gut microbiome. In this study, the gut 

microbiome of healthy people is compared with the gut microbiome of gastric cancer patients.  
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2. LITERATURE REVIEW 

 

2. 1 HUMAN MICROBIOME 

 

The term ‘human microbiome’ was introduced by Joshua Lederberg in 2001 (8). Since 

then, research has been carried out to find the holistic role of microbes in humans, their impacts 

on human health and what specific functions they have in each habitat, or more precisely in 

each organ system. The main habitats are mouth, oesophagus, stomach, small intestine, large 

intestine, ear canal, nasopharynx, oropharynx, skin, penis and vagina (Figure 1). The 

composition of dominant bacterial phyla also varies according to body habitats (9). The main 

functions contributed by the human microbiome are: maintains a healthy digestive tract, helps 

digestion, immunity against pathogens, regulates cardiovascular system, anti-inflammatory and 

anti-oxidant activities, supplement metabolic potential and maintains mental health (10). 

Dysbiosis in human microbiome lead to various diseases and some of the leading factors 

involved in altering microbiome composition are listed Table 1.  

 

Current knowledge on human microbiome is well advanced that not only the scientific 

world but also the common mass anticipates for the next step to understand how the human 

microbiome influences the digestive system or mental health. A human’s microbiome is formed 

from its birth and is highly influenced by the mode of delivery and feeding (11). Microbiota 

acquired during the first few years of life play a crucial role in maintaining health as an adult. 

The microbiota composition begins to be similar to adult in the first year of life and the 

phylogenetic diversity steadily increases over time (12). Individual microbiomes vary in 

composition (13); human genomes have a limited role and many of the characteristics of the 

microbial community are influenced by the environment. (14). This again brings in the fact that 

although microbiome is shaped according to the tissues where they reside, each human follows 

their own specific microbial composition in each tissue. The skin, for instance, has a unique 

microbial composition that is unique to each individual (15). In the same manner, despite long-

term physical oral interaction between humans influencing the composition of microbial 

communities over time, the oral microbiome has not unified in humans. (16). Hence, a healthy 

microbiome cannot be given a general definition, rather it is highly influenced by many factors 

and should be considered personalized to each individual.  
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A human body consists of 1.3x as many microbial cells as our own (2). Our 

understanding of a ‘healthy microbiome’ concept is evolving as well identifying the structure 

and composition of microbial community associated with each tissue or organ in the human 

body. Initial research to understand the ecology of healthy microbiomes have been to identify 

‘core’ taxa that can be related to healthy individuals in contrast to diseased individuals that lack 

them. However, several studies on ecological diversity in healthy individuals showed that the 

taxonomy of microbial community composition varied widely and hence determining ‘core’ 

taxa remains irrelevant (17).  

 

Regardless, from the observations from several studies, a recent article suggests five 

broad definitions on core microbiome – temporal, ecological, host-adapted, functional, and 

common core. Temporal, ecological, and common core relates to patterns in spatial, temporal 

and ecological microbiome dynamics, while the functional and host-adapted cores are related 

to the function of the host and its fitness (18). Therefore, with deeper investigation into human 

microbiome is widening our knowledge on how exactly it promotes human health.  
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Figure 1: Different habitat of human microbiota. Figure modified from  (19). The figure is licensed 

under CC BY 4. 0.  
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Table 1:  Factors affecting the dysbiosis of human gut microbiome. 

 

Causes Factors Effects References 

Environment

al factors  

Ethnicity and 

geographical location 

Variations in gut microbiome among different populations, 

affects neurologic disorders, diabetes and obesity  

(20–22) 

Exposure to 

pathogens 

and allergens 

Food intolerance Dysbiosis in the population of microbially responsive RORγt-

positive FOXp3-positive regulatory T cells causes food 

intolerance 

(23) 

Low microbial exposure 

during pregnancy period 

Allergic diseases such as atopic eczema, food allergy, asthma (24) 

Medicine and 

antibiotic use 

Antimicrobial drug use Decrease in microbial species diversity in gut environment.  (25) 

Exposure to 

pollutants 

Air pollution, ozone 

exposure 

Alterations in composition and function of gut microbiome (26,27) 

Diet Diet Diet mainly affects the gut and salivary microbiome and results 

in oral diseases, obesity, Autoimmune diseases, host 

metabolism and many chronic diseases 

(28–31) 

Intoxication Alcohol Affects gut microbiome composition and metabolism 

contributing to alcohol-induced oxidative stress and 

subsequently developing alcoholic liver disease (ALD) 

(32) 

Smoking Reduced gut microbiome diversity, increasing oxidative stress 

and changes in acid- base balance 

(33) 
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2. 2 GUT MICROBIOME 

 

Microbes residing in the human gut and their genes are collectively known as the gut 

microbiome and has a major role in behaviour of host, metabolism, nutrient absorption, 

development and immunity (34,35). The disruption of microbial composition known as 

dysbiosis has been associated with diabetes, obesity, inflammatory bowel diseases and 

autoimmune diseases (Table 2). An individual acquires gut microbiome from birth and linearly 

increases during the first three years of life. Several factors such as host genotype, age, sex, diet 

and disease determine gut microbiome composition (36). The adult gut microbiome is relatively 

stable and the dominant bacterial phyla include Bacteroidetes, Firmicutes and Actinobacteria 

(37).  

 

A huge understanding of human microbiome comes from research related to digestive 

system or the gastrointestinal tract. Most studies are contributed by investigating the structure 

and composition of microbiome in the intestinal tract or gut contributed by a vast diversity of 

microbes (38). It has been demonstrated that the human microbiome contains 3. 3 million 

unique genes, 150 times more than the sequence of human genome. A bacterial diversity 

analysis has revealed that about 1000 species of bacteria are found in the human gut, and most 

of these belong to Firmicutes and Bacteroidetes. Furthermore, most individuals share 50–100 

bacterial species regardless of the frequency of occurrence at the phylotype level, and the 

majority of human gut samples have shown to harbour as many as 6000 functional gene groups. 

Animal studies indicate that gut bacteria are essential for controlling gut metabolism and in 

contributing to the health of the host immune system (39). The interest in research of gut 

microbiome arose and is continuing from the fact it could be linked to several survival functions 

such as digestion and providing immunity against pathogens as well as several dysbiosis 

conditions such as obesity, diabetes, several inflammatory bowel diseases (IBD) and 

autoimmune diseases (37). Although host genotype, age and sex are factors affecting the gut 

microbiome, diet is the most influential factor on shaping gut microbiota. Thus, the gut 

microbiota is considered as a vital partner of human cells interacting with virtually all human 

cells (40).  

 

Most studies related to gut bacteria have been on Western populations in USA, Europe 

and Canada. These studies are now being expanded into non-western diets in order to 

investigate the impact of diet variation on gut microbial community. An interesting study found 
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that the gut bacteria Bacteroides plebeius carry a unique gene coding for the enzyme 

porphyranase that is unique to the Japanese population. It is speculated to have transferred from 

the marine Bacteroides spp. It has the capability to degrade seaweed and hence helps in its 

digestion in Japanese individuals who consume this seaweed in their diet (41). Research on the 

influence of the diet on the gut microbiota is fascinating since it has been identified they are 

both complementary. Modulating diet imposes change in gut microbiota and vice versa. New 

therapeutic approaches may come from this avenue of research (42). Another major influential 

factor on shaping human microbiome is lifestyle. Owning or close association with animals, 

physical interaction, exercise, sleep patterns, stress and occupation-related lifestyles are all 

some of the factors coming under lifestyle (14).  

 

The diversity of the human intestinal microbiota is very vast as it contains 1. 3x more 

cells than the body cells (2). The human gut microbiota contains 80% uncultivated and 60% 

new species (39). A total of 70 Bacterial divisions have been described so far, and thirteen 

Archaeal divisions, but the majority are Firmicutes and Bacteroidetes, i.e., of the 395 bacteria, 

301 are Firmicutes, 65 are Bacteroidetes, and the remaining 29 are scattered among eight other 

divisions (43–45). In one study, gut microbiome sequence data for 124 Europeans generated 

576.7 Gb of data. More than 3.3 million unique bacteria genes were assembled and 

characterized from it, which is 150 times as many as the human genome (46). From the ‘core 

gut microbiome’; a total of 6313 functional orthologous groups were found (39). Firmicutes, 

Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria are the most prevalent phyla in 

the oral cavity, accounting for more than 99% of all phyla and SR1, TM7, Tenericutes, 

Cyanobacteria, Synergistetes, and Spirochaetes are rare ones (47). The esophagus showed the 

presence Actinobacteria, Bacteroides, Firmicutes, Fusobacteria, Proteobacteria, and TM7. It 

was found that Prevotella, Veillonella, and Streptococcus were the most prevalent bacteria, and 

the distal esophagus community was similar to that of the oral microbiota (48). During study of 

the gastric tract, it was found that there are diverse groups of gastric microbes, mainly from 

Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Fusobacteria (49). As compared 

to the oral and esophageal microbial communities, this community was quite different. This is 

just a brief account to visualize the vast amount of data these microbiomes can provide us and 

the much more enormous information they will provide by their linkage to bodily functions. 

The three major questions in gut microbiome research to be answered are to: (1) characterize 

the microbial communities in different sites of the human body (e.g., skin, mouth, gut etc.), (2) 
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to determine the core microbiome of individuals based on health conditions, location, or 

ethnicity and (3) to study the relationship between changes in microbiome and disease (50).  

 

Knowledge about human microbiomes, especially gut microbiome has reached a critical 

inflection point. From descriptive studies on the composition of gut microbiome attempts are 

raving to associate them to functions and diseases, thus taking a clinical approach to find 

preventive or therapeutic measures (14). One of the major branches of research studied is the 

relation between gut microbiome and gastric cancer.  
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Table 2: Major gut microbiome related diseases summarized from other studies.  

 

DISEASE 
 

 

ASSOCIATION REFERENCE 

Crohn’s disease, liver cirrhosis, liver cancer, 

irritable bowel syndrome, obesity 

Imbalance in bile acid production by gut microbes (51) 

Infant asthma Growth of Enterobacteriaceae (52) 

Reduced relative abundance of bacterial genera Rothia, Veillonella, 

Faecalibacterium and Lachnospira 

(53) 

Obesity Disruption of gastrointestinal microbiota impacts insulin resistance, 

inflammation and adiposity via interactions with epithelial and endocrine cells  

(54) 

Decrease of relative proportion of Bacteroidetes (55) 

Gastritis, hypochlorhydria, duodenal ulcers, 

peptic ulcer and gastric cancer 

Helicobacter pylori pathogenesis (56) 

Parkinson’s disease Dysbiosis of gut microbiome may be a contributing factor causing loss of 

dopaminergic neurons 

(57) 
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DISEASE ASSOCIATION REFERENCE 

Ulcerative colitis in children Decreased diversity in gut microbiome (58) 

Type 2 diabetes Altered overall composition of bacterial community, for instance, reduction in 

butyrate-producing bacteria and Akkermansia municiphila.  

(59) 

Autoimmune diseases Caused by leaky gut as it causes deviation in gut microbiota leading to increased 

intestinal permeability.  

(60) 

Dementia Dysfunction in the brain-gut microbiota axis due to intervention of factors such 

as diet, stress-hormones etc.  

(61) 

Celiac disease (CD) Higher proportion of Bacterioides in CD patients compared to controls (62,63) 

Higher amounts of Proteobacteria (64,65) 
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2. 3 GASTRIC CANCER AND ROLE OF GUT MICROBIOME 

 

Disruption in microbial composition shifts the health of the host to a diseased state 

causing serious ailments such as cancer. Gastric cancer is one of the common types of cancer 

and the second leading cause of cancer death in humans (66). Studies show that the main causes 

of gastric cancer are diet, tobacco, infection with Helicobacter pylori (H. pylori) bacteria and 

familial history (67). Gastric inflammation and carcinogenesis are strongly associated with H. 

pylori infection. It has been recognized as a carcinogen in 1994, although specific mechanism 

of its action in causing cancer is not known until date. However, countries with high incidence 

of gastric cancers have high prevalence of H. pylori infection and decline in infection decreased 

gastric cancer rates (67).  

 

Few researches on the gut microbiome in gastric cancers focus on H. pylori and how its 

population affects other members of the gut microbiome. Individuals with H. pylori infection 

tended to decrease abundance of healthy gut microbiome community members of 

Bacteroidetes, Firmicutes and Actinobacteria (68). But further studies are required to find the 

exact mechanism to understand the connection of H. pylori and how it affects the composition 

of gut microbiome, how its impact on other members of the gut microbiome leads to gastric 

cancer. Hence, an account on the composition of gut microbial community could provide new 

insights into diagnosis and treatments of gastric cancer.  

 

Gastric cancer is fifth most common cancers in world with an estimated more than one 

million new cases per year. An estimated 769 000 patients died from gastric cancer in 2020 

(69). The main reasons for gastric cancer are aetiological factors, diet, use of tobacco, familial 

history of gastric cancer and infection with bacterium H. pylori. H. pylori infection is strongly 

linked to gastric inflammation and cancer (70,71). The most common type of gastric cancer is 

gastric adenocarcinoma. According to Lauren’s classification gastric cancer which is 

histologically grouped, into diffuse and intestinal subtypes, but some cases can exhibit both 

diffuse and intestinal features, denoted as 'indeterminate' or 'mixed' phenotypes (72). H. pylori 

infection is associated with both subtypes of gastric cancer, but it has more prevalence in the 

intestinal subtype (73). Both subtypes, however, have various carcinogenic pathways and 

pathogenesis. The development of intestinal adenocarcinoma is generally associated with 

stomach inflammation is preceded by numerous premalignant stages, like intestinal metaplasia. 

On the other hand, diffuse adenocarcinomas have poor cell differentiation often results in poor 
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outcome and survival compared to intestinal adenocarcinomas (74). Adenocarcinomas of the 

intestinal tract have higher levels of genetic imbalance which includes microsatellite and 

chromosome instability (75). Mutations of the E-cadherin gene (CDH1) lead to diffuse 

adenocarcinomas, which are genetically more stable (76). GIST (gastrointestinal stromal 

tumors) are very rare and distinct from gastric adenocarcinomas. Usually, they are mainly found 

in the stomach, but they are also present elsewhere in the gastrointestinal tract. The tumors arise 

from stromal cells and carry mutations in PDGRA or KIT (77). Patients with gastric 

adenocarcinomas exhibit altered microbiota (78), although there is very little information 

available regarding alterations to intestinal microbiota in patients with gastric adenocarcinoma 

and GIST.  

 

2. 4 ROLE OF BIOINFORMATICS IN ANALYSING MICROBIOME 

 

2.4.1 EARLY BIOINFORMATICS APPROACHES  

 

Human genome project helped us advance in understanding structure, function and 

genetics of the human race. However, it was later comprehended that critical functions related 

to the survival of the human host is possible only with the associated microbial community. 

After the completion of Human Genome Project, the study of human biology requires more 

than decoding the human genome, according to Julian Davies (79). More than 1,000 bacterial 

species dwells on and in the human body, with a serious impact on life. Despite the 30,000 

genes in the human genome, he suggested that these bacteria might harbor 2 to 4 million 

unidentified genes, and these two sets of genes might determine the health of the individual.  

(79). A complex, body-habitat specific microbial ecosystem has evolved as human beings have 

co-evolved with trillions of microorganisms living on or inside their bodies (80). A second 

human genome project to conduct a complete metagenome study on the bacterial communities 

present in skin, reproductive tract, intestinal tract, and mouth was called for in 2001 (81). An 

extensive analysis of the human microbiome was not started until 2007 despite its importance 

being overlooked in the massive limelight of analysis of the human genome (39).  

 

From the 1970s, isolation of human gut microbiota was by culturing samples in suitable 

growth media in laboratory aseptic conditions. However, it was possible to identify only around 

400 – 500 isolates. But with the advent of sequencing techniques and later with high-throughput 

sequencing it is now feasible to identify even strains that cannot be cultured in lab conditions. 
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Although several techniques have been developed nowadays the two main approaches in human 

microbiome studies are 16S rRNA gene targeted sequencing and whole genome sequencing. 

Most studies still favor the 16S rRNA gene sequencing over whole genome sequencing due to 

technical and economic constraints although it may compromise the amount of sequence 

information that can be retrieved. Once the sequences are obtained the data is analyzed 

statistically to interpret a biologically meaningful information (50).  

 

2.4.2 CURRENT MICROBIOME ANALYSIS TECHNIQUES  

 

Designing and developing a comprehensive plan from raw data to final analysis and reporting 

depends on the several methods and concepts available in microbial ecology (82). 

Bioinformatics, nowadays more precisely defined for the tools used to gather information from 

sequencing data and provide statistical analysis on them are still novel to hardcore lab 

researchers. It is very perplexing for a biologist to be lost in the vast expansion of bioinformatics 

measures that can be used to manipulate sequence data. Therefore, designing a bioinformatics 

pipeline helps them through each and every step guiding on what to do next with the huge 

amounts of sequence data. However, it has been understood that a multi-disciplinary approach 

to answer a research question is most essential. Well-designed workflows involving best 

practices can supplement such an approach. It should involve accurate examples and guidance 

for the user to choose the methods not only maintaining flexibility but also providing possibility 

of customizing the workflow (82).  

 

Microbiome research involves data sets such as counts of taxonomic units, genes, or 

metabolites that are typical to this field of research. This information is comprehensively 

appreciated when complemented with other information such as taxonomic classifications, 

phylogenies and nucleotide sequences. Data packages can complement the algorithmic R 

packages. It may be larger than the standard algorithm packages. One of the advantages of data 

packages is that they come with well-documented model data sets facilitating the method 

development, unit tests, and tutorials. Although R data packages have long been used in 

bioinformatics, lately these data packages are widely utilized in the microbiome field as well. 

They are used to provide data from recent microbiome studies at taxonomic and functional 

levels (82).  
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The 16S rRNA gene sequencing is the most common method to study bacterial 

community in many hosts including the gut microbiome. The 16S rRNA gene is commonly 

present in all bacteria consisting of several conserved regions interspersed with non-conserved 

regions. The primers for PCR amplification are designed from these conserved regions and the 

non-conserved regions in between them are amplified. Diligent scrutiny of the sequences in the 

non-conserved region is required as these are specific to each bacterial species or genera. It is 

these regions that help in identifying taxonomy of the members in the bacterial community. 

Once all these sequences are obtained there is cleaning of data to ensure all sequences are 

complete and only rom microbiota and none from the host. After pre-processing, it needs to be 

sorted into their characteristic bins called Operational Taxonomic Units (OTUs). Sequences 

with a similarity of 97% are grouped together into an OTU and so on the sequences are clustered 

into several OTUs (83). The representative sequences are compared with databases containing 

sequences earlier identified from bacteria and the phylogenetic and taxonomic identity.  

 

Hence, each OTU can be potentially identified as that taxa although the taxonomic 

identity is not 100% sure. But this approach is very useful to compare microbiome composition 

under two conditions as it gives information on how different the two communities are devoid 

of any specific taxonomic identity. A statistical analysis of the proportions of microbial OTUs 

or organisms can be used to extrapolate the structure of bacterial communities (50).  

 

The main statistical analysis is to find out how diverse a community is. For instance, in 

the case of analyzing gut microbiome in reference to gastric cancer, the scientist is interested in 

finding out how far the gut microbiome has deviated from its healthy condition. In other words, 

he or she needs to know whether any bacterial species or genera has been lost or gained or are 

there huge differences in the relative abundance of organisms. The ecological measures or 

indices to understand diversity of macro organisms are used in microbiome studies as well. 

Several alpha and beta diversity indices can be used; the most suitable to answer one’s research 

question is selected.   

 

There are several limitations to any type of microbial sequence processing methods. 

From sequencing itself there are huge challenges. All next-generation sequencing techniques 

have been advanced but are still error-prone than traditional Sanger sequencing methods. The 

sequencing instrument can be another source of systematic errors (84). Pre- and post-analysis 

steps needs to be thoroughly checked to ensure only quality reads end up in analysis. Statistics 
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currently used in biomedical research are traditional, with some improvements that do not 

handle the intrinsic complexness of a biological system. They are also constrained by the 

presumption that predictor variables (e.g., gut microbes) are independent (50).  

 

As next-generation sequencing technologies emerge and become more widely available, 

bioinformatics and computational tools will be more useful for understanding the microbial 

community composition and capacity in the gut. The downward trend in sequencing costs will 

allow studies to be conducted on a larger scale, addressing statistical issues. It is imperative to 

design methods that include patients whose genotypes are well-defined in terms of 

environmental and dietary factors that affect the gut microbiome. Only by combining 

gastroenterologists, microbiologists, molecular biologists, computational scientists, 

bioinformaticians, and statisticians can we successfully address the many bewildering questions 

we would like to know about the gut microbiome.  

 

2.4.3 ROLE OF R IN BIOINFORMATICS  

 

The bioinformatics pipeline in this project to analyze the gut microbiome composition 

linked to different types of gastric cancer is designed from tools from three different R 

packages. They are Vegan, phyloseq and microbiome R packages (85–87). Vegan, was 

originally intended for community ecologists, it is now widely used by microbial ecologists. 

Vegan is not a stand-alone package; it is dependent on various packages in R and must be run 

in an R statistical environment. Vegan also offers tools for diversity analysis and multivariate 

analysis, as well as other potentially useful functions. Thus, it is tuned for microbiome data 

analysis, and is widely used in analyzing ecological communities (86). This study uses vegan 

R package to analyze microbial richness and diversity using the alpha diversity functions giving 

different alpha diversity indicators.  

 

Microbiome package in R is equipped with numerous tools and functions for analyzing 

microbiome profiling data. It has tools to analyze microbiome data sets and can integrate with 

other statistical packages. Microbiome package provides additional functionality to analyze 

microbiota composition, bistability, and other diversity indices on microbiome data sets as well 

as to fit linear models, compare pairs, and analyze associations. The package also contains tools 

for visualization of results in the form of graphs, plots on ordination axes, heatmaps and other 

utilities (88).  
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A number of different statistical packages can be integrated with phyloseq to perform 

statistical hypotheses testing and analysis. Phyloseq can analyze taxonomic diversity and 

perform statistical modelling in conjunction with many R packages, including DESeq, DESeq2, 

edgeR, and DESeq2. It also supports data interoperability with other packages and pipelines, 

such as QIIME2 and Mothur. Additionally, diversity metrics can also be analyzed by phyloseq 

(87,89). A user can perform basic analyses such as beta diversity analysis, alpha diversity 

analysis, k-table analysis, and differential analysis of microbiome data by importing the data 

into R. A variety of functions and tools are available to visualize microbiome data with phyloseq 

packages, including bar plots, box plots, density plots, motion charts, ordination plots, and 

clustering plots (86,89,90).  
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3. MATERIALS AND METHODS 

 

3. 1 SAMPLE COLLECTION 

 

Samples were taken from patients at Surgical and Meilahti Hospitals in Helsinki 

Uusimaa Hospital District, Finland. Stool samples from gastric cancer or GIST patients who 

had no antimicrobial medication during the last six months prior to sample collection and not 

yet started cancer treatment were collected. There were 23 GIST patients and 29 

adenocarcinoma patients in the study. Previously, a study on comparison of microbiota in 

patients based on location of tumor in gastrointestinal tract (stomach, colon and rectum) was 

conducted by the same research group (91). Thus, sequencing data 6 GIST and 25 

adenocarcinoma patients were also included in this study. A total of 13 stool samples from 

healthy Finnish adults were taken for controls and their sequencing data used in previous studies 

(91,92)  were included in the present study. Table 3 shows sample details. The collected samples 

were processed for DNA isolation and next generation sequencing (NGS) using IonTorrent 

technique.  

 

 

Table 3: Details of the subjects included in the study. Table taken from (72). 

 

GROUP  NO. OF. 

CASES  

AVERAGE AGE 

(YEARS) 

SEX 

(M/F) 

GASTRIC ADENOCARCINOMA  29 72 ± 11 14/15 

DIFFUSE ADENOCARCINOMA  12 69 ± 11 5/7 

INTESTINAL 

ADENOCARCINOMA 

 15 75 ± 10 8/7 

MIXED ADENOCARCINOMA  2 69 ± 11 1/1 

GIST  23 67 ± 14 11/12 

CONTROLS  13 44 ± 14 3/10 
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3. 2 16S rRNA GENE SEQUENCING 

 

From stool samples, DNA was extracted, and the quantity and quality of the DNA were 

determined. 3ng of DNA were used to prepare sequencing libraries. Using primer sets V2, V4, 

V8, and V3, V6-7, V9, six hypervariable regions of 16S rRNA gene were amplified in two 

reactions/sample. PCR was followed by end-repair, purification, and ligation of the samples to 

barcoded sequencing adapters. Samples were diluted to a 10 pM concentration after the libraries 

were quantified. Libraries were pooled and templates were generated. Afterwards, emulsion 

PCR was carried out on the libraries. Sequencing was performed on the emulsified libraries. 

The detailed method of 16S rRNA gene sequencing is explained in (72,92).  

 

3. 3 PIPELINE 

 

From the microbiome data obtained, a bioinformatics pipeline was designed to process 

and analyze the data. 16S rRNA gene sequenced data was processed after checking the quality. 

Raw data was filtered using Ion Torrent Suite software (Thermo Fisher Scientific, Waltham, 

MA, USA). The IonReporter v.5.10 and Metagenomics 16S pipeline w1.1, with default settings, 

were used to cluster operational taxonomic units (OTUs) from Curated MicroSEQ(R) 16S 

Reference Library v2013.1 and Curated Greengenes v13.5 databases. The general practice is to 

cluster sequences with 97% similarity. Here, it is highly advantageous that OTU clustering is 

computational considering millions of reads obtained from a single sequencing (93).  

 

After the cleaning the data, it is converted and then input to the software packages for 

analysis in R. The outputs are obtained as many files including sample data (metadata), OTU 

table (OTU abundance), and taxonomy table (taxonomic ranks) combined together to form the 

phyloseq object (Figure 2). It was combined using the Bioconductor package, phyloseq (87). 

Phylogenetic sequences based on taxonomic clustering as well as related data types are included 

in this package, making it very useful. Covariate information, abundance data, and 

phylogenetics are combined in phyloseq. The package has been built following the S4 object-

oriented framework of the R language. Data can then be transformed, plotted, and analyzed 

easily once they have been entered (87,89). The phyloseq object is then used as a template to 

analyze the microbiome data statistically.  
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Figure 2: R output showing the structure of the phyloseq object.  

 

There are many other data formats that can be utilized according to the aim of the study, 

However, in our study the above-mentioned files were needed. The data in the phyloseq object 

is used as template to analyze and find the differences in composition or diversity of 

microbiomes of different samples in the study. Structure of phyloseq- class is shown in Figure 

3. 
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Figure 3: Summary of the structure of the phyloseq-class and its components.  The figure is taken from (94) and modified foe this thesis. The components 

with the highlighted red square are tackled in this thesis. The figure is licensed under CC BY 4. 0. 
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3. 4 MICROBIOME PACKAGE 

 

Next-generation sequencing studies have revolutionized ways of DNA sequencing and 

extracting massive amounts of biological information. Although the microbial community 

consists of bacteria, fungi, viruses and other prokaryotes, most of the studies look at the 

bacterial population. The 16S rRNA gene profiling technique is used to identify bacterial 

members in gut microbiome, or otherwise known as taxonomic profiling. Once the DNA 

sequences of 16S rRNA gene from bacterial members of the gut community is obtained from 

samples (e.g., stool samples), the raw data is polished, statistically analyzed and visualized 

using microbiome R package, version 1. 14. 0 (85). The microbiome R package has various 

functions to analyze different aspects of the microbial community.  

 

3. 4. 1 ALPHA DIVERSITY 

 

Alpha diversity refers to the species diversity within a habitat or ecosystem. In terms of 

species richness and evenness. Richness refers to the number of taxonomic groups of the 

organisms present in the habitat while evenness refers to the distribution of abundances of the 

groups. Hence alpha diversity metrics usually accounts for the structure of an ecological 

community in terms of these two components   (87). The alpha diversity function (‘alpha’) 

estimates various diversity indices for given data. They include Chao1, inverse Simpson index, 

Gini-Simpson index, Shannon diversity, Fisher’s, Camargo evenness, Pielou evenness, Bulla 

evenness, Evar evenness, absolute dominance, relative dominance, low abundance rarity and 

many more indices. The various diversity indices can be called out separately with specific 

functions. For instance, the ‘richness’ function returns observed richness with given detection 

thresholds. As the name implies, the dominance index is based on the abundance of species 

with the highest density. The rarity index measures taxa with low abundance and rarity.  A 

core_abundance function indicates the relative proportion of core species. The ‘evenness’ 

function returns a table of various evenness measures such as Camargo, Pielou, Simpson, Evar 

and Bulla.  

 

While Chao1 and Shannon diversity are the indices used in this study and in most studies 

to indicate alpha diversity, the alpha diversity function gives various indicators. For instance, 

another alpha diversity estimator is Simpson index. The Simpson index also integrates richness 

and evenness. Contrary to the Shannon-Wiener index, it emphasizes common species. Alpha 
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diversity varies in abundance from 0 to almost 1; the Simpson index is directly proportional to 

alpha diversity (88). Each researcher may select the index most suitable for their study. It is 

preferable to select an estimator that is precise and unbiased. In case of microbiota samples, 

one favours precision which is a simpler property to assess as an exhaustive microbiota 

sampling is nearly impossible. Since most ecological questions require only relative diversities, 

most microbiome studies are also answered using relative abundances data (95) and thus 

exhaustive sampling can be eliminated.  

 

The non-parametric estimators are however, considered most appropriate for studying 

microbial communities as it is ideal for classes with low abundance in data sets. In other words, 

in a very diverse community as with animal populations, the occurrence of seeing one species 

recurrently is rare. Conversely in a microbial community, it is more likely to observe a species 

repeatedly in a sample, and numerous species will appear multiple times. The Chao1 is non-

parametric estimator and uses the above statistical principle to estimate richness by adding a 

correction factor to the observed number of species (96). It cannot therefore reflect microbial 

abundance. Shannon-Wiener is a measure of both richness and evenness (97). Rare species are 

given more weight here, which means it's higher when there are more rare ones.  

 

Wilcoxon-Mann-Whitney test was used to test the significance of differences between 

the groups and Benjamini-Hochberg FDR was used to correct for multiple testing (72).  

 

3. 4. 2 BETA DIVERSITY 

 

After the initial tasks of OTU clustering and finding microbial richness and diversity, 

the goal of microbiome studies is to find out how different each sample are from each other. 

Microbiome studies are more meaningful in understanding whether the communities between 

groups vary significantly which is accounted by beta diversity. Microbial communities in an 

environmental context is usually analysed by multivariate statistical methods or models. The 

environment of the microbial community can be host tissues such as human, animal or plants, 

or any natural environments such as water bodies or soil. Thus, for analysing the association of 

any microbial community with its environmental covariates and outcomes, many multivariate 

statistical tools are available. The microbiome data on which statistical analysis needs to be 

performed is in the form of OTUs and taxa abundances and using these it is difficult to study 

the link between microbiome composition and environmental factors. This is because the data 
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is high dimensional, non-normal and has a phylogenetic structure. Thus, these limitations are 

highly overcome by multivariate analyses which uses a distance measure method and then 

performs an analysis of the estimated distances, where the distances between any two 

microbiome samples are defined as a distance measure (88).  

 

Beta diversity quantifies dissimilarity in community composition between samples. 

Dissimilarity can be also quantified by distance or divergence. The terms alpha, beta and 

gamma diversity were introduced by Whittaker in 1960. He defined beta diversity as “the extent 

of change in community composition, or degree of community differentiation, in relation to a 

complex-gradient of environment, or a pattern of environments”. In terms of diversity, beta 

diversity is defined as the ratio of gamma (regional) and alpha (local) diversity (98,99) or in 

other words, it is the number of distinctive compositional units in a region (100). For beta 

diversity analysis, the PERMANOVA is one of the most commonly applied nonparametric 

distance-based methods to identify the relationships between microbiome composition and 

covariates of interest in microbiome data. Permutation and distance matrices are used in 

PERMANOVA, which is accessible from the R package vegan by using the function adonis 

(86). The test statistics include P-value of the permutation test that checks the statistically 

significant difference in beta diversity between communities. R2 is a variable that shows the 

measure of the variance explained by a grouping factor (86). Beta diversity results were 

visualized using unsupervised principal coordinates analysis (PCoA) using Bray–Curtis 

dissimilarity index (87).  

 

As described, PERMANOVA is a distance-based statistical analysis. PERMANOVA 

results of microbiome data are visualized by principal coordinate analysis (PCoA). The reason 

for this is that PCoA is based on the distance between data points rather than principal 

component analysis (PCA). As a first step, the PCoA projects the distances into Euclidean space 

in a greater number of dimensions; for n data points, there are n-1 dimensions. In PCoA, the 

first point is placed at the origin, the second along the first axis, the third added along the second 

axis, and so on, until all the points are added. Users appreciate the understanding of beta 

diversity results visually for which PCoA is applicable. By plotting communities in different 

dimensions and superimposing the axes similar communities cluster together while distinct 

communities are separated. PERMANOVA is used to test this more formally (statistically). 

This helps in distinguishing visually whether the microbial communities in the gut are similar 

to each other in healthy individuals or similar to each other in diseased patients. The other 
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important aspect would be to visualize how different the gut microbial communities of diseased 

individuals are from healthy people. The concept of diversity indices is captured in Figure 4 

 

 

 

Figure 4: Alpha diversity provides the evenness and richness of units within a habitat (here Location 1 

and Location 2) while, beta diversity measures diversity between habitats (here diversity between 

Location 1 and Location 2).  

 

3. 4. 3 DIFFERENTIAL ABUNDANCE ANALYSIS  

 

As explained in the background (or introduction), numerous diseases are associated with 

changes that occur in the microbiome or microbial environment. Consequently, researchers are 

interested in understanding changes in the microbial composition under various conditions. 

ALDEx2 was used in this study to identify differentially abundant taxa that distinguished 

healthy gut microbial communities from microbial communities in the stool samples of 

adenocarcinoma and GIST patients.  A taxon in a sample is defined to be differentially abundant 

between two environments if its absolute mean abundance differs between the environments. 

Parameter selection for statistical analysis determines whether the differential abundance 

analysis is between absolute or relative abundances of the taxa. The most important criterion 

for differential abundance analysis is the sample size to be taken from the ecosystem. It takes 

into account the bias introduced by differences in sampling fractions between samples. 

Identification of taxa that differ in mean absolute abundance per unit volume between two or 



26 
 

more habitats answer intriguing questions as to the cause of disease, as in this case - gastric 

cancer. There are several methods for differential abundance analysis such as ALDEx2, edgeR, 

DESeq2 etc. Methods such as edgeR and DESeq2 tend to be sensible and suitable for gene 

expression data but ineffective with microbiome data. The reason behind this is they use 

normalization methods that assume an extremely small percentage of taxa are 

differentially abundant which is not always true for microbiome data. Therefore, these methods 

provide inherently biased test statistics under the null hypothesis. Hence, ALDEx2 is preferred 

for microbiome data as it is designed as a compositional data analysis tool for high-throughput 

sequencing data like 16S rRNA gene sequencing (101).  

 

The ALDEx2 R package has been shown to be a simple and robust tool when used with 

high-throughput sequencing datasets containing per-feature counts. It uses Bayesian method to 

deduce technical and statistical error. The approach of ALDEx2 was found suitable for human 

microbiome 16S rRNA gene data as it correctly identifies differential abundance of OTUs. 

ALDEx2's design decreases the number of false positives that may arise when datasets consist 

of many features in a few samples (102). It benefits from the clr transformation for relative 

abundances to dismiss compositionality bias and delivers empirical p-values with Benjamini–

Hochberg FDR correction. In other words, since it uses the log ratio transformation methods to 

transform microbiome data removing the constraints caused by standard multivariate 

techniques for analysis. One of the problems of microbiome data is it is highly dimensional and 

multiple comparisons are used. For microbiome data, p-value adjustments are necessary if 

multiple groups or variables are compared to limit false positives. ALDEx2 tackles this problem 

of multiple comparisons by correcting the FDR, i.e., the expected proportion of type I errors or 

the proportion of false positives arising from all rejected null hypotheses. FDR is 5% if five out 

of every 100 hypothesis tests are false discoveries. The “Benjamini-Hochberg (BH) adjusted P-

values” favored over P-values in analyzing microbiome data. The test is considered to be 

significant when the adjusted P-value is smaller than the chosen FDR (103). A probabilistic 

sampling procedure is used to estimate the standardized effect size and p-value (73). With 

ALDEx2, you can analyze virtually any data produced by high-throughput sequencing and 

compare many different experimental designs, compared to previous statistical tools. The 

statistical analyses comprise of two-sample and paired t-test, ANOVA, and non-parametric 

tests, like Kruskal-Wallis test, Wilcoxon test, Welch’s t-test. A snapshot of the created pipeline 

is given in Figure 5.  
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Figure 5: Snapshot of the pipeline created for gut microbiome analysis.  
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4. RESULTS 

 

4. 1 MICROBIOTA DIVERSITY 

 

4. 1. 1 ALPHA DIVERSITY 

 

In this study, Chao1 was used to quantify species richness and Shannon diversity was 

used to find species diversity. Microbiota richness (Chao1) (Figure 6) was lower in stool 

samples for gastric adenocarcinoma and gastric GIST patients compared to controls. Significant 

differences were observed between adenocarcinoma patients and control samples as well as 

between GIST patients and controls, while no significant changes between adenocarcinoma and 

GIST patients.  

 

 

The microbial diversity indicated by Shannon index (Figure 7) was also lower for 

adenocarcinoma and GIST patients when comparing each group to control. However, the 

Figure 6: Microbiota richness in the gut microbiome of patients with gastric cancer types compared 

to control. P-values calculated by Wilcoxon test. Figure taken from (72). The figure is licensed under 

CC BY 4. 0. 
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changes were not significant. The diversity changes between cancer groups were also non-

significant.  

 

  

 

 

Figure 8: Microbiota richness in the gut microbiome of patients with carcinoma subtypes compared 

to control. P-values calculated by Wilcoxon test. Figure taken from (72). The figure is licensed under 

CC BY 4. 0. 

Figure 7:  Microbiota species diversity in gut microbiome of patients with gastric cancer types 

compared to control. P-values calculated by Wilcoxon test. Figure taken from (72). The figure is 

licensed under CC BY 4. 0. 
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Figure 9:  Microbiota diversity in the gut microbiome of patients with carcinoma subtypes compared 

to control. P-values calculated by Wilcoxon test. Figure taken from (72). The figure is licensed under 

CC BY 4. 0. 

 

Microbiota richness and diversity was studied for different subgroups (diffuse, intestinal, GIST 

and mixed) of diffuse adenocarcinoma patients. The richness was significantly lower for all the 

subgroups compared to control (Figure 8). Although diversity was lower for cancer subgroups 

compared to control, they were not significant (Figure 9). The richness and diversity did not 

show any significant differences between subgroups. 

 

4. 1. 2 BETA DIVERSITY 

 

The PERMANOVA analysis between controls and GC types showed that significant 

(p=0. 03) differences between control and GIST groups (Table 4). These observations are 

visualized in the PCoA graph wherein the GIST and adenocarcinoma samples deviating from 

the control group cluster (Figure 10).  
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Table 4: Results of PERMANOVA analysis showing significant changes in gut microbiome of cancer 

patients compared to control.  

 

Comparison      R2 Adjusted p-value 

Adenocarcinoma vs Control     0. 049     0. 03 

Adenocarcinoma vs GIST 0. 018 0. 55 

GIST vs Control 0. 046 0. 03 

 

 

Figure 10:  Principal Coordinate Analysis (PCoA) based on Bray-Curtis on gut microbiome in 

patients with gastric cancer types compared to control.  

 

 

The differences in microbiota composition between controls and GC subtypes were not 

significant (Table 5). Between GC subtypes, the variation in microbiota composition was 

checked at the genus level using Bray-Curtis dissimilarity index, but was not significant. This 

is clearly depicted in the PCoA graph (Figure 11).  
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Table 5: Results of PERMANOVA analysis comparing in gut microbiome of cancer subtypes. Table 

taken from (72). 

 

Comparison         R2 Adjusted p-value 

Control vs Diffuse adenocarcinoma       0. 08 0. 05 

Control vs GIST       0. 05 0. 05 

Control vs Intestinal adenocarcinoma       0. 07 0. 05 

Control vs Mixed adenocarcinoma       0. 13 0. 05 

Diffuse adenocarcinoma vs GIST       0. 02 0. 89 

Diffuse vs Intestinal adenocarcinoma                    0. 04 0. 58 

Diffuse adenocarcinoma vs Mixed       0. 07 0. 66 

GIST vs Intestinal adenocarcinoma       0. 03 0. 32 

GIST vs Mixed adenocarcinoma       0. 04 0. 54 

Intestinal vs Mixed adenocarcinoma       0. 08 0. 20 

 

. 

Figure 11: Principal Coordinate Analysis (PCoA) based on Bray-Curtis on gut microbiome of patients 

with carcinoma subtypes compared to control. Figure taken from (72). The figure is licensed under CC 

BY 4. 0. 
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4. 1. 3 DIFFERENTIAL ABUNDANCE ANALYSIS 

 

4. 1. 3. a. DIFFERENTIAL ABUNDANCE OF TAXA AT FAMILY LEVEL IN 

ADENOCARCINOMA, GIST AND CONTROL 

 

ALDEx2 differential abundance analysis was performed to find bacterial taxa that 

significantly differentiated groups in terms of relative abundance in pair-wise comparisons 

(Table 6). Bacteria belonging to Enterobacteriaceae was highly abundant in adenocarcinoma 

and GIST patients compared to control, while the Lactobacillaceae bacteria was relatively lower 

in the both the cancer groups compared to controls. In addition, Oscillospiraceae, 

Bifidobacteriaceae and Eubacteriaceae showed significant lower abundance in adenocarcinoma 

patients compared to control. In GIST patients, other than the above-mentioned taxa no other 

bacterial families were significantly detected. Visual representation was done by plotting the 

significant taxa against their centered log-ratio (clr) transformation (Figure 12).  

 

 

Family P-value Effect Groups compared 

Lactobacillaceae 0. 01 0. 64 Adenocarcinoma vs Control 

Enterobacteriaceae 0. 01 -1. 22 Adenocarcinoma vs Control 

Oscillospiraceae 0. 01 0. 64 Adenocarcinoma vs Control 

Bifidobacteriaceae 0. 03 0. 85 Adenocarcinoma vs Control 

Eubacteriaceae 0. 04 0. 71 Adenocarcinoma vs Control 

Lactobacillaceae 0. 03 -0. 75 Control vs GIST 

Enterobacteriaceae 0. 03 1. 01 Control vs GIST 

Oscillospiraceae 0. 05 -0. 47 Control vs GIST 

Table 6: Results of ALDEx2 differential abundance analysis showing most abundant family in gastric 

cancer types.  
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Figure 12: Bacterial taxa (Family level) with significant differences in pairwise comparison between 

controls, adenocarcinoma and GIST.  

 



35 
 

4. 1. 3. b DIFFERENTIAL ABUNDANCE BETWEEN ADENOCARCINOMA 

SUBGROUPS 

 

Microbiota composition between controls and adenocarcinoma subgroups (diffuse, 

intestinal and mixed) and between groups were compared. It showed taxa with significant 

differential abundance in various pair-wise groups (Table 7). Bacterial family 

Enterobacteriaceae was significantly higher in both the adenocarcinoma groups – mixed, 

diffuse and intestinal compared to controls. Similar trend was observed with significant higher 

abundance of Lactobacillaceae, Oscillospiraceae and Bifidobacteriaceae compared to controls 

(Figure 13).  

 

Table 7: Results of ALDEx2 differential abundance analysis showing most abundant family in gastric 

cancer subtypes.  

 

Family P-value Effect Groups compared 

Enterobacteriaceae 0. 02 1. 24 Control vs Diffuse adenocarcinoma 

Bifidobacteriaceae 0. 05 -1. 13 Control vs Diffuse adenocarcinoma 

Lactobacillaceae 0. 03 -0. 76 Control vs GIST 

Enterobacteriaceae 0. 03 1. 02 Control vs GIST 

Oscillospiraceae 0. 05 -0. 46 Control vs GIST 

Enterobacteriaceae 0. 04 1. 15 Control vs Intestinal adenocarcinoma 

Enterobacteriaceae  0. 05 1. 95 Control vs Mixed 
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Figure 13: Bacterial taxa (Family level) with significant differences in pairwise comparison between 

controls and gastric subgroups.  
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5. DISCUSSION 

 

5.1 BIOINFORMATICS IN MICROBIOME ANALYSIS 

 

Human genome project was a huge leap in various disciplines related to health (104). 

However, there had been certain grey areas where we could not understand the links between 

health or behaviour and certain gene functions. These knowledge gaps are now being filled in 

by the advances in human microbiome research. Microbiome studies has advanced our 

knowledge on human health and behaviour (17).  

 

This advancement in microbiome studies is owed to the rapid progress in DNA 

sequencing techniques. The commencement of next generation sequencing techniques has 

helped to capture a snapshot of the microbiome in any target tissue. The last two decades had 

been bombarded with numerous studies in human microbiome – related to different tissues 

mainly skin, mouth and gut. Sequencing the microbiomes in these tissues yielded more than 

half-a-million reads and huge data were derived from these sequences. The primary objective 

of these studies was to understand the structure and composition of the microbial community 

in a healthy person and how it differed in a patient with certain ailment. The crucial step is to 

identify the bacterial or fungal species associated with each tissue and what species are lost or 

gained when the tissue deviated from homeostasis (17). For instance, a patient with gastric 

cancer has gut microbiota different from a healthy person and this condition is referred to as 

dysbiosis. Hence, from sequencing studies, researchers are very much interested in identifying 

the taxonomy of microbes residing on human tissues.  

 

The bacterial community is of particular interest to scientists since there is enough 

scientific literature available onto which new studies may be built up. In addition, the technique 

of sequencing microbiota using 16S rRNA gene is very convenient. However, from the 

commencement of studies using 16S rRNA targeted gene sequencing, it has become very clear 

that huge amounts of data are generated from microbiome sequencing.  

 

Microbiome data collected is mainly to characterize the association between 

microbiome characteristics and biological, genetic, and clinical conditions; and to determine 

factors associated with microbiome composition based on biological and environmental 
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influences. These studies aim to understand how genetic and environmental factors influence 

our microbiome (88) 

 

This data needs to be organized and statistically analysed to bring out meaningful 

interpretation, which brings in the necessity to convert biological data to computerized data, in 

order to operate on the data and finally retrieve a biologically meaningful. Therefore, there is a 

need for a pipeline to guide the researcher on how to proceed once the sequences are obtained.  

 

5.2 DATA INTERPRETATION FROM THE ANALYSIS  

 

The main aim of this project was to design a pipeline guiding on the steps to biologically 

interpret the gut microbiome sequences obtained from patients with gastric cancer. Samples 

were collected from patients with two types of gastric cancer – adenocarcinoma and GIST, 

which included five different subtypes of adenocarcinoma as well.  

 

One of the important parameters determining the structure and composition of a 

microbial community is species richness and diversity of its microbial members. The alpha 

diversity function gives several measures of microbial species richness and diversity. Chao1 

index takes into account microbiota richness. It considers the total unique species, the number 

of singleton taxa, and doubleton taxa. A healthy gut is characterized with higher microbial gene 

richness which is translated into higher microbial richness (105). Richness alone does not give 

an overall account of the gut microbiome; hence the diversity is also taken into consideration.  

 

The Shannon diversity index is relevant in this context since it correlates both species 

richness and evenness evaluating the species diversity. As the number of rare species rises, it 

has a greater weighting, which means it is higher. A higher value indicates greater alpha 

diversity. A high taxa diversity characterizes healthy gut microbiome (106), although later 

studies have proven that it can be a biased indicator (107). However, species diversity still 

remains a valuable indicator of healthy microbiome versus diseased microbiome. In our study 

also, the microbiota richness and diversity were significantly lower in patients with gastric 

cancer compared to healthy individuals. Lower alpha diversity has been observed in gut 

microbiome of breast cancer patients with human epidermal growth factor receptor 2 (HER2+) 

compared to HER2- (109). Not only with cancer, lower microbial richness and diversity has 
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been observed in other unhealthy conditions such as malnutrition, obesity or related to diseases 

such as type 2 diabetes, ADHD (Attention Deficit Hyperactivity Disorder) (105).  

 

The results in this study shows a decrease in richness and diversity in cancer patients 

compared to controls. The next logical step in understanding the structure and composition of 

microbial community in the gut is to find out whether this is due to loss or gain of bacterial 

species or vast difference in the abundances of certain microbial taxa when comparing with the 

gut microbiome of healthy individuals. This is relevant not only in gut microbiome studies but 

in most human microbiome studies. It is essential to find how much the microbial community 

composition has deviated from the healthy microbiome. These differences were statistically 

analysed using PERMANOVA (Permutational Multivariate Analysis of Variance) test. As in 

the present study, we find that the microbiome samples of adenocarcinoma and GIST patients 

significantly differed from control samples. Analyses of beta diversity also revealed that all 

cancer subgroups had significantly different microbiota compositions when compared to 

controls. A subsequent decrease in the richness of microbiota has been observed in early stages 

of gastric cancer with significant differences in GC samples compared to control (108,109) .  

 

PERMANOVA has been used in other studies related to gut microbiota such as to find 

the difference in the gut microbiota composition in omnivore versus vegans (110), to test for 

microbial variations among different populations (111), linking role of gut microbiota to food 

allergies namely egg (112) and cow’s milk (113), to determine the influence of ethnicity on gut 

microbiome of individuals sharing a geographical location (21) or identifying genetic variations 

from gut microbiome (114,115).  

 

The presence of biologically meaningful results does not always require increased 

sequencing depth. Modern sequencing methods enable researchers to discern differences 

between samples even at relatively low sequence coverage when they choose diversity 

measurements appropriate for their study (12).  

 

It is also important to identify microbial members that maybe relatively higher or lower 

in abundance in dysbiosis conditions. This is vital because they may be used as biomarkers for 

preventive or therapeutic approaches to identify gastric cancer at earlier stages. The differential 

abundance analysis in this study was analyzed using the ALDEx2 package. In the present study, 
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with differential abundance analysis significant bacterial taxa at the family as well as genus 

levels could be identified in GC types and subtypes compared to the controls.  

 

5.3 LIMITATIONS AND FUTURE PROSPECTS  

 

Even though the pipeline was able to find the microbiome association in gastric cancer 

patients which aligns with previous studies, it is important to understand that these analyses 

provide the association of the microbiome; not the cause of the disease. The fact that the analysis 

is done on the taxonomic level and not on a functional level is a limitation of this pipeline. 

Although 16S rRNA gene sequencing is widely used due to recent advances and benefits, 

aberrations are occurring at various stages of molecular experimentation, including error-prone 

PCRs, and biases introduced during data analysis, such as OTU clustering, reference databases, 

and specific software implementations (116,117). Taxonomic classification and microbiome 

analysis may be seriously affected by these methodological differences (118).  

 

Apart from standard microbiome analysis methods (alpha and beta diversity), I have 

used ALDEx2 for differential abundance analysis instead of popular methods like DESeq2, 

baySeq, ANCOM and edgeR. The advantages of ALDEx2 method were discussed in the material 

and methods part, but it also has some limitations.  The first disadvantage is the long runtime 

of ALDEx2 compared to edgeR and other methods because non-parametric analyses are 

replicated across multiple Monte Carlo instances. The second issue is that ALDEx2 lacks a 

recorded generalization to mixed models (119).  

 

Based on the study design, one needs to make minor adjustments to the pipeline. 

According to the source of the OTU clustering, the pre-processing stage must be modified. 

There is a wide variety of formats in which OTU tables are generated. The OTU table used here 

was created by IonReporter, which generated an OTU table for each sample, and then combined 

the OTU tables in the pre-processing stage. The microbiome analysis part is straightforward, 

and one can adjust the variables and plot settings according to their needs.  

 

As mentioned earlier, microbiome analysis is evolving, and as long as the standard 

analysis approach is utilized, this pipeline can be used. This pipeline is not limited to the 

analysis of gut microbes. As a pipeline uses standard microbiome analysis methods, it can 
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analyze the microbiome from any source after customization (such as stratification of samples 

into subsets, or updates in the study covariates). Access to the pipeline is available upon request.  

 

There are other sources of microbiome aside from gut, but further studies and 

benchmarking would need to be conducted in order to evaluate the efficiency of this approach 

in other microbiome studies. Further research is needed in order to find ways to extend the 

functionality of the pipeline in terms of pathways analysis, time series analysis, and community 

structure of microbiota  
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6. CONCLUSION 

 

This study creates a pipeline to identify the structure and composition of gut microbiota 

data related to gastric cancer. The pipeline has been designed using statistical tools from vegan, 

phyloseq and microbiome R packages. The created pipeline merges the relevant sections from 

each of these above packages for the convenience of the user or researcher. Allowing each user 

can select the statistical outputs and visualization plots most appropriate for their analysis.  

 

The pipeline streamlines the data analysis of a data set from pre-processing until the 

diversity analysis stage. The pipeline is divided into three main sections of analysis: alpha 

diversity, beta diversity, and composition analysis. For alpha diversity and beta diversity 

analysis, a variety of analyses are possible, allowing several estimators to be computed by the 

user. For the composition analysis, the differential abundance analysis is described in the thesis 

explaining how to find prominent bacterial taxa at the family and genus level.  

 

The pipeline described in this thesis will help upcoming researchers in the future as a 

simple tool for their analysis, allowing them to further their research smoothly.  

  



43 
 

7. REFERENCES 

 

1.  Salvucci E. Microbiome, holobiont and the net of life. Vol. 42, Critical Reviews in 

Microbiology. Taylor and Francis Ltd; 2016. p. 485–94.  

2.  Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in 

the Body. PLOS Biology. 2016 Aug 19;14(8): e1002533.  

3.  Grice EA, Segre JA. The human microbiome: Our second genome. Vol. 13, Annual Review of 

Genomics and Human Genetics. 2012. p. 151–70.  

4.  Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics. Briefings in 

Bioinformatics. 2019 Nov 27;20(6):1981–96.  

5.  Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of 

the human intestinal microbial flora. Science (New York, NY). 2005 Jun 10;308(5728):1635.  

6.  Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. 

Trends in microbiology. 2016 Nov 1;24(11):887.  

7.  Galloway-Peña J, Hanson B. tools for analysis of the microbiome. Digestive diseases and 

sciences. 2020 Mar 1;65(3):674–85.  

8.  LEDERBERG J, MCCRAY AT. `Ome Sweet `Omics--A genealogical treasury of words. The 

Scientist. 2001 Apr 2;15(7):8–8.  

9.  Fierer N, Ferrenberg S, Flores GE, González A, Kueneman J, Legg T, et al. From Animalcules 

to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. 

101146/annurev-ecolsys-110411-160307. 2012 Nov 5; 43:137–55.  

10.  Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral 

microbiome – an update for oral healthcare professionals. British Dental Journal 2016 221:10. 

2016 Nov 18;221(10):657–66.  

11.  Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and 

stabilization of the human gut microbiome during the first year of life. Cell Host and Microbe. 

2015 May 13;17(5):690–703.  

12.  Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutrition 

Reviews. 2012 Aug;70(SUPPL. 1).  



44 
 

13.  Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal 

analysis of microbial interaction between humans and the indoor environment. Science (New 

York, NY). 2014 Aug 29;345(6200):1048.  

14.  Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch S v., Knight R. Current understanding 

of the human microbiome. Nature Medicine. 2018 Apr 10;24(4):392–400.  

15.  Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, et al. Moving 

pictures of the human microbiome. Genome Biology 2011 12:5. 2011 May 30;12(5):1–8.  

16.  Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. Shaping the oral 

microbiota through intimate kissing. Microbiome 2014 2:1. 2014 Nov 17;2(1):1–8.  

17.  Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human 

Microbiome Project. Vol. 449, Nature. Nature Publishing Group; 2007. p. 804–10.  

18.  Risely A. Applying the core microbiome to understand host–microbe systems. Vol. 89, Journal 

of Animal Ecology. Blackwell Publishing Ltd; 2020. p. 1549–58.  

19.  Chowdhury S, Fong SS. Computational modeling of the human microbiome. microorganisms 

2020, Vol 8, Page 197. 2020 Jan 31;8(2):197.  

20.  Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human 

microbiome composition and diversity. Frontiers in Microbiology. 2017 Jun 23;0(JUN):1162.  

21.  Dwiyanto J, Hussain MH, Reidpath D, Ong KS, Qasim A, Lee SWH, et al. Ethnicity influences 

the gut microbiota of individuals sharing a geographical location: A cross-sectional study from 

a middle-income country. Scientific Reports. 2021 Dec 1;11(1).  

22.  Ahn J, Hayes RB. Environmental influences on the human microbiome and implications for 

noncommunicable disease.101146/annurev-publhealth-012420-105020. 2021 Apr 2; 42:277–

92.  

23.  Bunyavanich S, Berin MC. Food allergy and the microbiome: current understandings and future 

directions. The Journal of allergy and clinical immunology. 2019 Dec 1;144(6):1468.  

24.  Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: The importance of the 

pregnancy period. Pediatric Research 2015 77:1. 2014 Oct 13;77(1):214–9.  



45 
 

25.  Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as 

major disruptors of gut microbiota. frontiers in cellular and infection microbiology. 2020 Nov 

24; 10:731.  

26.  Bailey MJ, Naik NN, Wild LE, Patterson WB, Alderete TL. Exposure to air pollutants and the 

gut microbiota: A potential link between exposure, obesity, and type 2 diabetes. Gut Microbes. 

2020 Sep 2;11(5):1188.  

27.  Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC, Fodor AA, et al. Air pollution 

exposure is associated with the gut microbiome as revealed by shotgun metagenomic 

sequencing. Environ Int. 2020; 138:105604.  

28.  Davis CD. The gut microbiome and its role in obesity. Nutrition today. 2016;51(4):167.  

29.  Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut 

microbiome and implications for human health. Journal of Translational Medicine. 2017 Apr 

8;15(1):73.  

30.  Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 

2014;23(6):518.  

31.  Eshriqui I, Viljakainen HT, Ferreira SRG, Raju SC, Weiderpass E, Figueiredo RAO. 

Breastfeeding may have a long-term effect on oral microbiota: Results from the Fin-HIT cohort. 

International Breastfeeding Journal 2020 15:1. 2020 May 15;15(1):1–11.  

32.  Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. the gastrointestinal microbiome: 

Alcohol effects on the composition of intestinal microbiota. Alcohol Research: Current 

Reviews. 2015 Jun 27;37(2):223.  

33.  Savin Z, Kivity S, Yonath H, Yehuda S. Smoking and the intestinal microbiome. Archives of 

Microbiology. 2018 Jul 1;200(5):677–84.  

34.  Erkosar B, Storelli G, Defaye A, Leulier F. Host-intestinal microbiota mutualism: “Learning 

on the Fly.” Cell Host & Microbe. 2013 Jan 16;13(1):8–14.  

35.  Cabreiro F, Gems D. Worms need microbes too: Microbiota, health and aging in caenorhabditis 

elegans. EMBO Molecular Medicine. 2013 Sep;5(9):1300–10.  



46 
 

36.  Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the 

human gut microbiome: An International Review. Digestive Diseases and Sciences 2020 65:3. 

2020 Feb 14;65(3):723–40.  

37.  Xu Z, Knight R. Dietary effects on human gut microbiome diversity. The British journal of 

nutrition. 2015 Jan 1;113 Suppl (Suppl 0): S1–5.  

38.  Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd_Allah EF. Exploring the human 

microbiome: the potential future role of next-generation sequencing in disease diagnosis and 

treatment. Frontiers in Immunology. 2019;0(JAN):2868.  

39.  Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Vol. 1, 

Protein and Cell. Higher Education Press; 2010. p. 718–25.  

40.  Cani PD. Human gut microbiome: Hopes, threats and promises. Vol. 67, Gut. BMJ Publishing 

Group; 2018. p. 1716–25.  

41.  Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of 

carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010 

464:7290. 2010 Apr 8;464(7290):908–12.  

42.  Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term 

dietary patterns with gut microbial enterotypes. Science. 2011 Oct 7;334(6052):105–8.  

43.  Hayashi H, Sakamoto M, Benno Y. Fecal microbial diversity in a strict vegetarian as 

determined by molecular analysis and cultivation. Microbiology and Immunology. 2002 Dec 

1;46(12):819–31.  

44.  Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ. Assessment of microbial diversity in human 

colonic samples by 16S rDNA sequence analysis. FEMS Microbiology Ecology. 2002 Jan 

1;39(1):33–9.  

45.  Wang X, Heazlewood SP, Krause DO, Florin THJ. Molecular characterization of the microbial 

species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. 

Journal of Applied Microbiology. 2003 Sep 1;95(3):508–20.  

46.  Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial 

gene catalog established by metagenomic sequencing. Nature. 2010;464(7285):59.  



47 
 

47.  Ahn J, Yang L, Paster BJ, Ganly I, Morris L, Pei Z, et al. Oral microbiome profiles: 16S rRNA 

pyrosequencing and microarray assay Comparison. PLoS ONE. 2011;6(7):22788.  

48.  Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal 

esophagus. Proceedings of the National Academy of Sciences. 2004 Mar 23;101(12):4250–5.  

49.  Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, et al. Molecular analysis 

of the bacterial microbiota in the human stomach. Proceedings of the National Academy of 

Sciences. 2006 Jan 17;103(3):732–7.  

50.  Dave M, Higgins PD, Middha S, Rioux KP. The human gut microbiome: Current knowledge, 

challenges, and future directions. Vol. 160, Translational Research. Mosby Inc.; 2012. p. 246–

57.  

51.  Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic 

assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic 

capabilities in inflammatory bowel disease. Microbiome 2019 7:1. 2019 Oct;7(1):1–18.  

52.  Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-

mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of 

Enterobacteriaceae. Cell Host & Microbe. 2007 Oct;2(2):119–29.  

53.  Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early 

infancy microbial and metabolic alterations affect risk of childhood asthma. Science 

Translational Medicine. 2015 Oct;7(307).  

54.  Ley RE. Obesity and the human microbiome. Current Opinion in Gastroenterology. 2010 

Oct;26(1):5–11.  

55.  Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. 

Nature 2006 444:7122. 2006 Oct;444(7122):1022–3.  

56.  Sheh A, Fox JG. The role of the gastrointestinal microbiome in Helicobacter pylori 

pathogenesis104161/gmic26205. 2013 Aug 19;4(6).  

57.  Elfil M, Kamel S, Kandil M, Koo BB, Schaefer SM. Implications of the gut microbiome in 

Parkinson’s Disease. movement disorders. 2020 Jun 1;35(6):921–33.  



48 
 

58.  Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut 

microbiome of children with severe ulcerative colitis. Inflammatory bowel diseases. 2012 

Oct;18(10):1799.  

59.  Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment 

of hyperglycaemia in type 2 diabetes: From current human evidence to future possibilities. 

Diabetologia. 2017 Jun 1;60(6):943.  

60.  Mu Q, Kirby J, Reilly CM, Luo XM. Leaky Gut as a danger signal for autoimmune diseases. 

Frontiers in Immunology. 2017 May 23;8(MAY):598.  

61.  Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: The links with dementia 

development. Protein & Cell. 2017 Feb 1;8(2):90.  

62.  de Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, et al. Intestinal 

dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in 

children. BMC Microbiology. 2010; 10:63.  

63.  Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal 

bacterial groups associated with paediatric coeliac disease. Journal of clinical pathology. 2009 

Mar;62(3):264–9.  

64.  Wacklin P, Kaukinen K, Tuovinen E, Collin P, Lindfors K, Partanen J, et al. The duodenal 

microbiota composition of adult celiac disease patients is associated with the clinical 

manifestation of the disease. Inflammatory Bowel Diseases. 2013 Apr 1;19(5):934–41.  

65.  Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal 

bacteria associated with celiac disease in children. Applied and Environmental Microbiology. 

2013;79(18):5472.  

66.  van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Vol. 388, The 

Lancet. Lancet Publishing Group; 2016. p. 2654–64.  

67.  Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, van Cutsem E. Gastric cancer. Vol. 

71, Critical Reviews in Oncology/Hematology. 2009. p. 127–64.  

68.  Brawner K, Morrow C, Smith P. Gastric microbiome and gastric cancer. Cancer journal 

(Sudbury, Mass). 2014;20(3):211–6.  



49 
 

69.  Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer 

Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 

185 countries. CA: A Cancer Journal for Clinicians. 2021 May 1;71(3):209–49.  

70.  Ernst PB, Gold BD. The Disease Spectrum of Helicobacter Pylori: The immunopathogenesis 

of gastroduodenal ulcer and gastric cancer. 101146/annurev. micro541615. 2003 Nov 28; 

54:615–40.  

71.  Coussens LM, Werb Z. Inflammation and cancer. Nature 2002 420:6917. 2002 Dec 

26;420(6917):860–7.  

72.  Sarhadi V, Mathew B, Kokkola A, Karla T, Tikkanen M, Rautelin H, et al. Gut microbiota of 

patients with different subtypes of gastric cancer and gastrointestinal stromal tumors. Gut 

Pathogens 2021 13:1. 2021 Feb 17;13(1):1–9.  

73.  Wang X, Wei M, Sun Z. An association study of histological types of gastric carcinoma with 

Helicobacter pylori infection. Cell Biochemistry and Biophysics 2014 70:2. 2014 Jun 

5;70(2):1283–7.  

74.  Kunz PL, Gubens M, Fisher GA, Ford JM, Lichtensztajn DY, Clarke CA. Long-term survivors 

of gastric cancer: A California population-based study. 

https://doi.org/101200/JCO2011358028. 2012 Sep 4;30(28):3507–15.  

75.  Kim K-M, Kwon M-S, Hong S-J, Min K-O, Seo E-J, Lee K-Y, et al. Genetic classification of 

intestinal-type and diffuse-type gastric cancers based on chromosomal loss and microsatellite 

instability. Virchows Archiv 2003 443:4. 2003 Aug 15;443(4):491–500.  

76.  Vauhkonen M, Vauhkonen H, Sajantila A, Sipponen P. Differences in genomic instability 

between intestinal- and diffuse-type gastric cancer. Gastric Cancer 2005 8:4. 2005 

Nov;8(4):238–44.  

77.  Oppelt PJ, Hirbe AC, Tine BA van. Gastrointestinal stromal tumors (GISTs): Point mutations 

matter in management, a review. Journal of Gastrointestinal Oncology. 2017 Jun 1;8(3):466.  

78.  Iizasa H, Ishihara S, Richardo T, Kanehiro Y, Yoshiyama H. Dysbiotic infection in the stomach. 

World Journal of Gastroenterology. 2015 Oct 28;21(40):11450.  

79.  Davies J. in a map for human life, count the microbes, too. Science. 2001 Mar 

23;291(5512):2316–2316.  



50 
 

80.  Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Vol. 8, Genome 

Medicine. BioMed Central Ltd.; 2016.  

81.  Relman DA. New Technologies, Human-Microbe Interactions, and the Search for Previously 

Unrecognized Pathogens. The Journal of Infectious Diseases. 2002 Dec 1;186(Supplement_2): 

S254–8.  

82.  Shetty SA, Lahti L. Microbiome data science. Journal of biosciences. 2019 Oct 1;44(5):1–6.  

83.  Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. 

Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere. 2021 Feb 

24;6(1).  

84.  Degnan PH, Ochman H. Illumina-based analysis of microbial community diversity. The ISME 

Journal. 2012 Jan;6(1):183.  

85.  Lahti L, Shetty S. Introduction to the microbiome R package. 

http://microbiome.github.com/microbiome. 2017.  

86.  Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Package “vegan” 

Title Community Ecology Package Version 2.5-7. 2020.  

87.  McMurdie PJ, Holmes S. Phyloseq: A bioconductor package for handling and analysis of high-

throughput phylogenetic sequence data. Pacific Symposium on Biocomputing. 2012;235–46.  

88.  Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Vol. 4, Genes and 

Diseases. Elsevier; 2017. p. 138–48.  

89.  Callahan BJ, Sankaran K, Fukuyama JA, Mcmurdie PJ, Holmes SP, Lahti L, et al. Bioconductor 

Workflow for Microbiome Data Analysis: from raw reads to community analyses [version 2; 

peer review: 3 approved] report. 2016.  

90.  Thioulouse J. Simultaneous analysis of a sequence of paired ecological tables: A comparison 

of several methods. 101214/10-AOAS372. 2011 Dec 1;5(4):2300–25.  

91.  Youssef O, Lahti L, Kokkola A, Karla T, Tikkanen M, Ehsan H, et al. Stool Microbiota 

Composition Differs in Patients with Stomach, Colon, and Rectal Neoplasms. Digestive 

Diseases and Sciences. 2018 Nov 1;63(11):2950.  



51 
 

92.  Sarhadi V, Lahti L, Saberi F, Youssef O, Kokkola A, Karla T, et al. Gut microbiota and host 

gene mutations in colorectal cancer patients and controls of Iranian and Finnish origin. 

Anticancer Research. 2020 Mar 1;40(3):1325–34.  

93.  Nguyen NP, Warnow T, Pop M, White B. A perspective on 16S rRNA operational taxonomic 

unit clustering using sequence similarity. Vol. 2, npj Biofilms and Microbiomes. Nature 

Publishing Group; 2016.  

94.  McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and 

Graphics of Microbiome Census Data. PLOS ONE. 2013 Apr 22;8(4): e61217.  

95.  Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM. Counting the Uncountable: Statistical 

Approaches to Estimating Microbial Diversity. Vol. 67, Applied and Environmental 

Microbiology. 2001. p. 4399–406.  

96.  CHAO A, YANG MCK. Stopping rules and estimation for recapture debugging with unequal 

failure rates. Biometrika. 1993 Mar 1;80(1):193–201.  

97.  Borcard D, Gillet F, Legendre P. Community Diversity. 2018;369–412.  

98.  Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological 

Monographs. 1960 Jul 1;30(3):279–338.  

99.  Jost L. PARTITIONING DIVERSITY INTO INDEPENDENT ALPHA AND BETA 

COMPONENTS. Ecology. 2007 Oct 1;88(10):2427–39.  

100.  Tuomisto H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. 

Defining beta diversity as a function of alpha and gamma diversity. Ecography. 2010 

Feb;33(1):2–22.  

101.  Lin H, Peddada S das. Analysis of microbial compositions: A review of normalization and 

differential abundance analysis. npj Biofilms and Microbiomes 2020 6:1. 2020 Dec 2;6(1):1–

13.  

102.  Fernandes AD, Reid JN, Macklaim JM, Mcmurrough TA, Edgell DR, Gloor GB. Unifying the 

analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene 

sequencing and selective growth experiments by compositional data analysis. Vol. 2. 2014.  



52 
 

103.  Qian XB, Chen T, Xu YP, Chen L, Sun FX, Lu MP, et al. A guide to human microbiome 

research: Study design, sample collection, and bioinformatics analysis. Vol. 133, Chinese 

medical journal. NLM (Medline); 2020. p. 1844–55.  

104.  Hood L, Rowen L. The Human Genome Project: Big science transforms biology and medicine. 

Genome Medicine 2013 5:9. 2013 Sep 13;5(9):1–8.  

105.  Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nature Reviews 

Microbiology 2020 19:1. 2020 Sep 4;19(1):55–71.  

106.  Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, 

function and diversity of the healthy human microbiome. Nature. 2012 Jun 14;486(7402):207–

14.  

107.  Falony G, Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots 

of the gut microbiota. Nature Microbiology 2018 3:5. 2018 Apr 24;3(5):526–8.  

108.  Gantuya B, el Serag HB, Matsumoto T, Ajami NJ, Uchida T, Oyuntsetseg K, et al. Gastric 

mucosal microbiota in a Mongolian population with gastric cancer and precursor conditions. 

Alimentary pharmacology & therapeutics. 2020 Apr 1;51(8):770–80.  

109.  Wang Z, Gao X, Zeng R, Wu Q, Sun H, Wu W, et al. Changes of the gastric mucosal 

microbiome associated with histological stages of gastric carcinogenesis. Frontiers in 

Microbiology. 2020 May 29; 11:997.  

110.  Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, et al. Comparative 

metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota 

metabolite production. Gut. 2016 Jan 1;65(1):63.  

111.  Smith CC, Snowberg LK, Gregory Caporaso J, Knight R, Bolnick DI. Dietary input of microbes 

and host genetic variation shape among-population differences in stickleback gut microbiota. 

The ISME Journal 2015 9:11. 2015 Apr 24;9(11):2515–26.  

112.  Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, et al. Early-life gut 

microbiome and egg allergy. Allergy: European Journal of Allergy and Clinical Immunology. 

2018 Jul 1;73(7):1515–24.  

113.  Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. Early-life gut 

microbiome composition and milk allergy resolution. Journal of Allergy and Clinical 

Immunology. 2016 Oct 1;138(4):1122–30.  



53 
 

114.  Russell JT, Roesch LFW, Ördberg M, Ilonen J, Atkinson MA, Schatz DA, et al. Genetic risk 

for autoimmunity is associated with distinct changes in the human gut microbiome. Nature 

Communications. 2019 Dec 1;10(1).  

115.  Stevens BR, Roesch L, Thiago P, Russell JT, Pepine CJ, Holbert RC, et al. Depression 

phenotype identified by using single nucleotide exact amplicon sequence variants of the human 

gut microbiome. Molecular Psychiatry. 2020.  

116.  Sze MA, Schloss PD. The Impact of DNA Polymerase and Number of Rounds of Amplification 

in PCR on 16S rRNA Gene Sequence Data. mSphere. 2019 Jun 26;4(3).  

117.  Edgar RC. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ. 

2018;2018(4).  

118.  Sierra MA, Li Q, Pushalkar S, Paul B, Sandoval TA, Kamer AR, et al. The Influences of 

Bioinformatics Tools and Reference Databases in Analyzing the Human Oral Microbial 

Community. Genes. 2020 Aug 1;11(8):1–12.  

119.  Quinn TP, Crowley TM, Richardson MF. Benchmarking differential expression analysis tools 

for RNA-Seq: Normalization-based vs. log-ratio transformation-based methods. BMC 

Bioinformatics. 2018 Jul 18;19(1):1–15.  

  

 

 


	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2. 1 HUMAN MICROBIOME
	2. 2 GUT MICROBIOME
	2. 3 GASTRIC CANCER AND ROLE OF GUT MICROBIOME
	2. 4 ROLE OF BIOINFORMATICS IN ANALYSING MICROBIOME
	2.4.1 EARLY BIOINFORMATICS APPROACHES
	2.4.2 CURRENT MICROBIOME ANALYSIS TECHNIQUES
	2.4.3 ROLE OF R IN BIOINFORMATICS


	3. MATERIALS AND METHODS
	3. 1 SAMPLE COLLECTION
	3. 2 16S rRNA GENE SEQUENCING
	3. 3 PIPELINE
	3. 4 MICROBIOME PACKAGE
	3. 4. 1 ALPHA DIVERSITY
	3. 4. 2 BETA DIVERSITY
	3. 4. 3 DIFFERENTIAL ABUNDANCE ANALYSIS


	4. RESULTS
	4. 1 MICROBIOTA DIVERSITY
	4. 1. 1 ALPHA DIVERSITY
	4. 1. 2 BETA DIVERSITY
	4. 1. 3 DIFFERENTIAL ABUNDANCE ANALYSIS


	5. DISCUSSION
	5.1 BIOINFORMATICS IN MICROBIOME ANALYSIS
	5.2 DATA INTERPRETATION FROM THE ANALYSIS
	5.3 LIMITATIONS AND FUTURE PROSPECTS

	6. CONCLUSION
	7. REFERENCES

