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ABSTRACT

The Post Correspondence Problem was introduced by Emil Post in 1946. The prob-
lem considers pairs of lists of sequences of symbols, or words, where each word has
its place on the list determined by its index. The Post Correspondence Problem asks
does there exist a sequence of indices so that, when we write the words in the order
of the sequence as single words from both lists, the two resulting words are equal.
Post proved the problem to be undecidable, that is, no algorithm deciding it can ex-
ist. A variety of restrictions and modifications have been introduced to the original
formulation of the problem, that have then been shown to be either decidable or
undecidable. Both the original Post Correspondence Problem and its modifications
have been widely used in proving other decision problems undecidable.

In this thesis we consider some modifications of the Post Correspondence Prob-
lem as well as some applications of it in undecidability proofs. We consider a modi-
fication for sequences of indices that are infinite to two directions. We also consider
a modification to the original Post Correspondence Problem where instead of the
words being equal for a sequence of indices, we take two sequences that are conju-
gates of each other. Two words are conjugates if we can write one word by taking
the other and moving some part of that word from the end to the beginning. Both
modifications are shown to be undecidable.

We also use the Post Correspondence Problem and its modification for injective
morphisms in proving two problems from formal language theory to be undecidable;
the first problem is on special shuffling of words and the second problem on fixed
points of rational functions.

KEYWORDS: Post correspondence problem, undecidability, word shuffling, fixed
point
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TIIVISTELMÄ

Postin vastaavuusongelman esitteli alun perin Emil Post vuonna 1946. Ongelma kos-
kee merkkijonoista, tai sanoista, koostuvia listapareja, joissa sanojen indeksit merk-
itsevät niiden paikkaa listassa. Postin vastaavuusongelma kysyy onko olemassa in-
deksijonoa, jolla kahdesta annetusta listasta näillä indekseillä valitut sanat peräkkäin
kirjoitettuina tuottavat saman sanan. Post itse osoitti ongelman ratkeamattomaksi, eli
näytti ongelman ratkaisevan algoritmin olemassaolon mahdottomaksi. Alkuperäisen
ongelman asetteluun on vuosien saatossa esitetty erilaisia rajoituksia ja muunnelmia,
jotka on edelleen osoitettu joko ratkeaviksi tai ratkeamattomiksi. Sekä alkuperäistä Postin
vastaavuusongelmaa, että sen muunnelmia, on käytetty muiden päätösongelmien
ratkeamattomuuden osoittamiseen.

Tässä väitöskirjassa tarkastellaan joitakin Postin vastaavuusongelman muunnelmia
ja sovelluksia muiden ongelmien ratkeamattomuuden osoittamisessa. Tarkastelussa
on ongelman muunnelma indeksilistoille, jotka ovat äärettömiä sekä oikealle että vasem-
malle. Työssä tarkastellaan myös alkuperäisen vastaavuusongelman muunnelmaa,
jossa yhden indeksijonon sijaan sanojen on oltava samat kahdelle indeksijonolle,
jotka ovat toistensa konjugaatteja. Sanat ovat keskenään konjugaatteja, jos toisen
saa muodostettua toisesta siirtämällä jonkin mittaisen osan sanan lopusta sen alkuun.
Molemmat näistä muunnelmista näytetään ratkeamattomiksi.

Lisäksi Postin vastaavuusongelmaa ja sen muunnelmaa injektiivisille morfismeille
käytetään todistettaessa kaksi muuta ongelmaa ratkeamattomiksi; ensimmäinen kos-
kee sanojen sekoittamista ja toinen tietynlaisten funktioiden kiintopisteitä.

ASIASANAT: Postin vastaavuusongelma, ratkeamattomuus, sanojen sekoittaminen,
kiintopiste
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day. Hertta and Gösta, thank you for reminding me that laughter and play are a part
of every day.
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1 Introduction

The chapters in this thesis cover multiple different topics. All of these topics belong
to the field of formal language theory but the most prevalent unifying theme is the
presence of the Post Correspondence Problem, PCP for short, which we will intro-
duce a bit later. Basically in the PCP we are looking for a solution as a string of
symbols (or a word) to an equation where simple rules are applied to each symbol
on that string on both sides of the equation. The problem has turned out to be so
complex that it can in fact simulate any given computer algorithm. This thesis show-
cases this property of the Post Correspondence Problem as well as presents some
new constructions utilizing it and its computational power.

The theory of computability is an area in theoretical computer science which
studies computational problems and, in particular, the question whether a problem
can or cannot be solved by known models of computation. In the context of this
thesis computable is synonymous with Turing computable i.e., computation that can
be carried out by a Turing machine. Decision problems are a type of problems where
the answer is given as a ”yes” or a ”no” depending on the input to the problem.
Valid suitable inputs to these problems are called instances. A typical mathematical
decision problem asks whether some instance to the problem possesses or does not
possess a given property. If there exists an algorithm that decides the problem, that
is, it answers correctly to all instances of the problem, we call the problem decidable.
If on the other hand no such algorithm exists, we call the problem undecidable. The
existence of an algorithm means that one can construct a Turing machine simulating
it.

By the above one can show a problem to be decidable by laying an algorithm that
decides it or showing that an algorithm exists. To show a problem to be undecidable
one must prove that no algorithm deciding that problem exists. Usually showing the
undecidability of a given problem utilizes some other problem known in advance to
be undecidable. This method of proof is called reduction: an instance of a known
undecidable problem is effectively transformed into an instance of the problem at
hand. The transformation is such that if the problem at hand were to be decidable
then it would also simultaneously decide the undecidable problem, a contradiction
that forces the problem at hand to be undecidable as well. This method is used in
this thesis to prove undecidability results.

The main problem of interest in this thesis is the Post Correspondence Problem
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Figure 1. With a set of three dominoes a solution is found by lining them up in the order 1312.

introduced by Emil Post. An instance of the Post Correspondence problem consists
of two lists of words {𝑢1, . . . , 𝑢𝑛} and {𝑣1, . . . , 𝑣𝑛}, and it asks whether there exists
a non-empty sequence of indices 𝑖1, . . . , 𝑖𝑘 such that 𝑢𝑖1 · · ·𝑢𝑖𝑘 = 𝑣𝑖1 · · · 𝑣𝑖𝑘 or not.
Another equivalent formulation of the problem is by (monoid) morphisms: given
two morphisms ℎ, 𝑔 : 𝐴⋆ → 𝐴⋆ does there exist a non-empty word 𝑤 ∈ 𝐴⋆ such
that ℎ(𝑤) = 𝑔(𝑤). The problem is often illustrated with domino pieces having two
words on top of each other, one piece for each index on the lists above. In a domino
piece for a certain index the word on the top is the word with that index on the first
list and the bottom one is similarly from the second list. For each index you can use
as many dominoes as you wish. The dominoes are put next to each other so that the
tops and bottoms both will spell some word. If the dominoes can be laid next to each
other so that the top word is the same as the bottom word, we have a solution to our
problem (see the example in Figure 1). This problem can then be varied by giving
restrictions to the above-mentioned rules, for example that the domino set has only a
certain amount of dominoes or that you must make an infinite strip with them. In this
thesis we consider different variants of the Post Correspondence Problem as well as
use the PCP to show other problems to be undecidable.

The Post Correspondence Problem belongs to the category of problems that are
seemingly simple to solve. Indeed, if we were to search for a solution to a particular
instance of the PCP we first choose one domino to begin with. For that piece there
is most likely some factor that is left over after we match the words on the top and
bottom from the beginning (if there is no such overflow then the single domino is
a solution). Having this overflow we then search for a domino which allows us to
match this overflow with the (top or bottom word depending on where the overlap

11
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is) word on that domino making sure that everything matches after adding both the
top and bottom words. Adding a new domino may then create a new overflow. The
process of elimination of overflows continues until there is a perfect match or no con-
tinuation is possible. The problem becomes difficult when there are multiple choices
for continuation and the overflows increase in length with no signs of shortening.
Often there is no way to tell if searching for a solution becomes a lost cause after
a while because the possibility of matching perfectly cannot be predicted. Even for
”small” instances of the PCP the solutions can be very long: for the 3 pair instance
((𝑎𝑎𝑏𝑎, 𝑎), (𝑏𝑎𝑎𝑏, 𝑎𝑎), (𝑎, 𝑎𝑎𝑏)) the shortest solution is 252 pairs long (Zhao, [1])
and for the 4 pair instance ((𝑎, 𝑎𝑎), (𝑎𝑎𝑎𝑎, 𝑎𝑏𝑎𝑏), (𝑎𝑎𝑎𝑏, 𝑏𝑎), (𝑏𝑎𝑏, 𝑏)) the shortest
solution consists of 781 pairs (Rahn, [1]).

Emil Post proved undecidability of the PCP originally by a reduction from the
assertion (or decision) problem of normal systems which was earlier proved to be
an undecidable problem by Post himself. Nowadays, a standard textbook proof for
undecidability of the PCP is a straightforward reduction from the halting problem of
the Turing machines; see eg. [2] .

As with many other algorithmic problems, the aspect of bounds of undecidabil-
ity are of interest. By a bound we mean some threshold that once crossed turns the
problem from decidable to undecidable. With PCP this usually involves the number
of words in the lists (i.e., the number of dominoes in the analogy, also called pairs
when the words of the same index are paired) given above. It is known that the PCP
is decidable for the sets of two pairs; see [3; 4], and undecidable for sets of five pairs
by a proof by Neary [5]. Neary used a reduction from binary tag-systems to the PCP.
The proof uses a similar technique that Matiyasevich and Sénizergues used in their
proof for undecidability of the word problem for 3-rule semi-Thue systems in [6]
which led to undecidability of the PCP for 7 pairs of words using the construction
found by Claus [7] where the word problem of semi-Thue systems is reduced to the
PCP. This reduction by Claus is technically very clear and elegant and, therefore, for
many variants of the PCP, the simplest known undecidability proofs (usually imply-
ing rather good undecidability bounds) are modifications of Claus’s construction. In
this thesis modifications to Claus’s construction are also used in Chapters 3 and 4.

The infinite variant of the PCP asks if there exists a solution that has infinitely
many dominoes next to each other so that the resulting top and bottom pairs match
no matter how far you go. It is easy to see that if an instance of the PCP has a fi-
nite solution then it also has an infinite one by repeating one solution over and over
again infinitely many times. The question still remains meaningful as instances can
have only infinite solutions as the following trivial example shows: let us have a
PCP instance with the pairs (𝑎𝑏, 𝑎) and (𝑎𝑏, 𝑏𝑎). If the pairs were named 1 and 2
respectively, then the unique infinite solution is 1222 · · · . The instance has no finite
solutions as the same overflow is repeated and there are no alternative ways to con-
tinue after the forced beginning with the first pair. This one-way infinite PCP is also
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an undecidable problem with the undecidability following directly from the halting
problem for Turing machines; see [8] for the first proof. For a fixed set of pairs it
is known that the infinite PCP is decidable for instances of two pairs; see [4] for the
proof by Halava et al., and undecidable for 8 pairs of words; see [9] for the result
by Dong and Liu. In this thesis we consider the problem where the solutions are
required to be bi-infinite, i.e., they are infinite in two directions. For the matchings
in this case we require that some shift exists so that the images line up. Again a finite
solution implies also a bi-infinite one and an ultimately periodic infinite solution im-
plies a bi-infinite solution; say with a unique pair (𝑎𝑏, 𝑏𝑎). Still instances admitting
only bi-infinite solutions exist, for example in some cases where a starting pair for
possible finite solution does not even exist. A trivial two pair instance admitting only
bi-infinite solutions is the one with pairs (𝑎𝑏, 𝑏𝑎) and (𝑏𝑎, 𝑎𝑏). In fact any bi-infinite
sequence of these pairs is a solution to the bi-infinite instance but no finite or one-
way infinite solutions exist. The first proof for the undecidability of the bi-infinite
PCP was given by Ruohonen in [8]. We will look at this problem more in Chapter 3
and give a new construction to show the undecidability.

The structure of the thesis is the following: Chapter 2 is dedicated to preliminar-
ies and notations used and needed later in the thesis. In Chapter 3 we consider the
above mentioned bi-infinite variant of the PCP and give a new proof for its undecid-
ability by constructing a special semi-Thue system. A similar construction is then
used to show another variant of the PCP, the conjugate PCP, to be undecidable as
well. The conjugate PCP asks whether an instance of the PCP has a solution which
produces conjugate words under the morphisms, that is, whether the words to be
”matched” are of the form 𝑢𝑣 and 𝑣𝑢 respectively for some non-empty words 𝑢 and
𝑣. In the last two chapters we use the PCP as a tool to reduce other problems into it to
ensure their undecidability. Chapter 4 involves the operation of shuffling of words.
Two words are shuffled together by catenating factors from both words starting from
the beginning until both words are exhausted. In particular in this chapter we look
at a form of self-shuffling where a word is shuffled with itself under a letter-to-letter
substitution. In Chapter 5 a new problem is introduced. The problem involves ra-
tional transductions and fixed points of injective rational functions. Here another
variant of the PCP is needed: the injective PCP, a variant where the morphisms are
injective. The injective PCP is known to be undecidable as shown by Ruohonen
[10].
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2 Preliminaries

In this chapter we introduce some basic notations and results that are needed through-
out the thesis. Main part of the chapter consists of the most fundamental things
needed about words and formal languages. For a more comprehensive take on these
subjects the reader is directed to the vast literature that exists. Great books about for-
mal languages are Formal Languages [11] by Salomaa and Introduction to Formal
Language Theory [12] by Harrison. For books on words the recommended classics
are the M. Lothaire books Combinatorics on Words [13] and Algebraic Combina-
torics on Words [14]. Great all-around books are The Handbook of Formal Lan-
guages [15] Rozenberg and Salomaa, eds., and Introduction to Automata Theory,
Languages, and Computation [2] by Hopcroft and Ullman, which is a reference to
many results in this chapter. Other chapters on this thesis will also have introductory
segments where the prerequisites for that particular chapter are given.

2.1 Words
A set of symbols is called an alphabet. In this thesis all alphabets will be finite
with |𝐴| denoting the number of symbols or letters in the alphabet 𝐴. In literature
the most commonly used alphabets contain symbols from the Latin alphabet or the
Arabic numerals with the most common ones being the binary alphabets {0, 1} and
{𝑎, 𝑏}.

Let 𝐴 be an alphabet. A (finite) word over 𝐴 is a finite sequence of symbols
in 𝐴. The length of a word 𝑤 is the number of symbols in the sequence, denoted
by |𝑤|. The free monoid 𝐴⋆ on 𝐴 with the concatenation operation is the set of all
finite sequences of symbols from 𝐴, hence the set 𝐴⋆ denotes all finite words over 𝐴.
The sequence with zero symbols (and of length zero) is called the empty word and
denoted by 𝜀. The set of all non-empty words over 𝐴 is 𝐴+. Thus 𝐴+ ∪ {𝜀} = 𝐴⋆.
For the set of words of length 𝑛 we use the notation 𝐴𝑛.

In this thesis as a rule (with exceptions) indexing of the letters in a word begins
with 1, that is, the first letter of the word has index 1 and the last letter of a word has
the index |𝑤|. We refer to the letter at index 𝑖 in word 𝑤 by 𝑤(𝑖). The concatenation
of two words 𝑢 = 𝑎1 · · · 𝑎𝑖 and 𝑣 = 𝑏1 · · · 𝑏𝑗 is the word 𝑢·𝑣 = 𝑢𝑣 = 𝑎1 · · · 𝑎𝑖𝑏1 · · · 𝑏𝑗
and the power 𝑢𝑛 is the word 𝑢𝑢 · · ·𝑢 where the word 𝑢 appears 𝑛 times. If two
words 𝑢, 𝑣 have exactly the same sequence of letters then they are equal and we can
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write 𝑢 = 𝑣. If there are non-empty words 𝑤, 𝑡 and for some (possibly empty) words
𝑢, 𝑣 we have that 𝑤 = 𝑢𝑡𝑣, then 𝑡 is called a factor of 𝑤. When 𝑡 is a factor of 𝑤 we
may denote it by 𝑡 ∈ 𝑤. If 𝑡 is a factor of 𝑤 such that 𝑤 = 𝑡𝑢 for a word 𝑢, then 𝑡 is
called a prefix of 𝑤. Similarly if 𝑤 = 𝑣𝑡 for a word 𝑣, then 𝑡 is called a suffix of 𝑤.
Two words are called prefix-comparable (resp. suffix-comparable) if one of them is
the prefix (resp. suffix) of the other. We call two words 𝑢, 𝑣 conjugates if there exist
factors 𝑠, 𝑡 such that 𝑢 = 𝑠𝑡 and 𝑣 = 𝑡𝑠. Conjugates of a word 𝑤 = 𝑎1 · · · 𝑎𝑛 can
be generated by cyclic 𝑘 shifts where a letter at the 𝑖th position is moved to position
𝑖 − 𝑘 (mod 𝑛). The cyclic nature of conjugate words is also behind the naming of
the circular PCP, a variant of the PCP where the matching is acquired via two words
that are conjugates (more on this in Chapter 3).

The deletion of a prefix or suffix 𝑢 from a word 𝑤 is denoted by 𝑢−1𝑤 or 𝑤𝑢−1

respectively. For example, when 𝑤 = 𝑎𝑏𝑏𝑎𝑏𝑎 and 𝑢 = 𝑎𝑏𝑎, we have 𝑤𝑢−1 = 𝑎𝑏𝑏.
Later we also use the notation 𝑎−𝑛 as a shorthand for (𝑎𝑛)−1. The reversal of a word
𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛−1𝑎𝑛 is denoted by 𝑤𝑅 = 𝑎𝑛𝑎𝑛−1 · · · 𝑎2𝑎1.

An infinite word over 𝐴 is a sequence of symbols of 𝐴 indexed by the numbers
in N, that is,

𝜔 = 𝜔(1)𝜔(2)𝜔(3) · · · ,

where 𝜔(𝑖) ∈ 𝐴 for all 𝑖 ∈ N. The set 𝐴⋆ contains all the words of finite length,
hence this set does not include any infinite words. The set of infinite words over
alphabet 𝐴 is denoted by 𝐴𝜔. For infinite powers of words we use the notation
𝑤𝜔 = 𝑤𝑤𝑤 · · · for a word 𝑤.

A bi-infinite word over 𝐴 is a sequence of symbols of 𝐴 indexed by the numbers
in Z, that is,

𝜔 = · · ·𝜔(−3)𝜔(−2)𝜔(−1)𝜔(0)𝜔(1)𝜔(2)𝜔(3) · · · ,

where 𝜔(𝑖) ∈ 𝐴 for all 𝑖 ∈ Z. We denote the set of all bi-infinite words over
𝐴 by 𝐴Z. We use a similar notation for bi-infinite powers: for example (𝑎𝑏)Z =

· · · 𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏 · · · = (𝑏𝑎)Z. For finite and infinite words the equality of words is
straightforward: two words are equal if the letters are the same on each index. For
bi-infinite words, on the other hand, we can shift one of the words we are comparing
and get a letter-to-letter matching.

Let 𝐴 and 𝐵 be alphabets. A mapping ℎ : 𝐴⋆ → 𝐵⋆ is a morphism if ℎ(𝑢𝑣) =
ℎ(𝑢)ℎ(𝑣) for all 𝑢, 𝑣 ∈ 𝐴⋆. Morphisms become defined by the images of the letters
as the images of words are concatenations of the images of its letters. We call a
morphism ℎ injective if for all 𝑢, 𝑣 ∈ 𝐴⋆, ℎ(𝑢) = ℎ(𝑣) implies 𝑢 = 𝑣. We say that
a word 𝑤 has an ℎ-cover if 𝑤 can be expressed as an image under morphism ℎ, in
other words, if there exists a word 𝑢 ∈ 𝐴* such that ℎ(𝑢) = 𝑤.

The next example illustrates the use of morphisms as well as the matching of two
bi-infinite words.
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Example. Let ℎ, 𝑔 be morphisms defined by

ℎ(𝑎) = 𝑎

ℎ(𝑏) = 𝑏𝑎𝑏

ℎ(𝑐) = 𝑏𝑏

𝑔(𝑎) = 𝑏

𝑔(𝑏) = 𝑎𝑏

𝑔(𝑐) = 𝑎𝑏𝑏

Let us write out the word (𝑎𝑏𝑐)Z = · · · 𝑎𝑏𝑐𝑎b𝑐𝑎𝑏𝑐 · · · , where one letter 𝑏 is
written in bold so that we can follow its image.

Now

ℎ((𝑎𝑏𝑐)Z) = · · · 𝑎𝑏𝑎𝑏𝑏𝑏𝑎bab𝑏𝑏𝑎𝑏𝑎𝑏𝑏𝑏 · · ·
𝑔((𝑎𝑏𝑐)Z) = · · · 𝑏𝑎𝑏𝑎𝑏𝑏𝑏ab𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑏𝑏 · · ·

with the images of this bolded 𝑏 also written in bold. Let the first letters of the bold
images be our reference point. With respect to this point the words do not match,
but if we shift the bottom word by one position to the left or five positions to the
right we have a matching. Here the matching is obvious everywhere because of the
periodicity of the bi-infinite word.

2.2 Languages
In formal language theory we are interested in languages that have some specific
common properties. These common formalisms or forms of definitions define differ-
ent families of languages that all have common characteristic properties inside their
family. There are typically two ways to define formal languages; with generators
or with acceptors. Generators are usually formal grammars with production rules
that tell how the words in the language are generated from a simple starting point.
Acceptors are automata of some type with no output such that words in a language
are the ones accepted by the particular machine. Different types of grammars gen-
erate different families of languages. In the 1950’s Chomsky described a hierarchy
of classes of formal grammars (dubbed the Chomsky hierarchy). The hierarchy is as
follows:

• Type-0 grammars: Recursively enumerable languages

• Type-1 grammars: Context-sensitive languages

• Type-2 grammars: Context-free languages

• Type-3 grammars: Regular languages

The lower the type number, the more expressive or general the languages are.
In this thesis we are mostly working with questions regarding regular languages, so

16



Preliminaries

on the bottom of the hierarchy. However, in Chapter 4 the context-free languages
also make an appearance. Note also that studying a decision question and proving
it to be undecidable, we actually prove that the sets of YES and NO instances are
not recursively numerable languages. Indeed, both YES and NO instances being
recursively enumerable languages is equivalent to the problem being decidable; see
[2].

Any set of words is called a language. Languages can contain a finite or an
infinite number of words. In particular the set 𝐴⋆ is the infinite language contain-
ing every word of finite length consisting of letters from 𝐴, sometimes called the
universal language over 𝐴. Every language (of finite words) over the alphabet (or
over a subset of 𝐴) is a subset of 𝐴⋆. As with alphabets the notation 𝐿⋆ is defined
as the language generated by the language 𝐿, that is, 𝐿⋆ is the set of all finite con-
catenations of words from 𝐿. Note that the empty word is always in 𝐿⋆ although it
may be absent in 𝐿. The star operation is often called the Kleene closure operation.
Other common operations on languages are the set operations union (𝐿 ∪ 𝑀 ) and
intersection (𝐿 ∩𝑀 ) as well as concatenation (𝐿𝑀 ).

Regular languages are the languages that can be defined by regular expressions.
Equivalently regular languages are those that can be generated by regular grammars
or accepted by finite automata (more equivalent definitions also apply). Here we will
give a recursive formal definition for regular languages over alphabet 𝐴 as follows:

1. The empty language ∅ is a regular language. For each letter 𝑎 ∈ 𝐴 the single-
ton language {𝑎} is a regular language.

2. If 𝐿1 and 𝐿2 are regular languages, then 𝐿1 ∪ 𝐿2, 𝐿1𝐿2 and 𝐿⋆
1 are regular

languages.

3. No other language over 𝐴 is a regular language.

In particular all finite languages are regular. When we are working with formal
languages we often want to use some operations on them and the resulting language
may not belong to the same family as the original language(s). We say that a family
is 𝑐𝑙𝑜𝑠𝑒𝑑 under an operation if by applying that operation to a member or members
of the family yields a member of that family. The regular languages are closed under
union, concatenation, Kleene star, complementation and intersection. First three of
these operations follow from the definition given above. For the complementation
(𝐿 = strings not in 𝐿 sharing the same alphabet) we recall that regular languages are
those accepted by finite automata. Taking a (complete)deterministic finite automaton
accepting 𝐿 and changing the accepting states to non-accepting states, and vice versa,
we get the finite automaton accepting 𝐿. Closure under intersection follows now for
example from de Morgan’s law: 𝐿1 ∩ 𝐿2 = (𝐿1 ∪ 𝐿2).

The context-free languages are the next class above regular languages in the
Chomsky hierarchy and they are unsurprisingly generated by context-free grammars.

17



Esa Sahla

The context-free languages also are exactly the languages accepted by pushdown au-
tomata. All regular languages are context-free but not all context-free languages are
regular. Where a regular language can ”keep count” of one thing, context-free lan-
guages can do that for two things. For example the language {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} is
context-free but not regular as regular languages cannot count the number of writ-
ten 𝑎′𝑠 and produce the same number of 𝑏′𝑠. It follows that the closure properties
of these two families of languages are not the same. For the operations considered
above for regular languages, the context-free languages are closed under union, con-
catenation and Kleene star, but are not closed under complementation or intersection;
see [2]. Even though the intersection of two context-free languages is not necessarily
context-free the next result is an useful one (see [2] for a proof):

Lemma 1. The intersection of a context-free language and a regular language is a
context-free language.

The result becomes obvious while considering pushdown automata. Both regular
and context-free languages are also closed under taking morphic and inverse morphic
images [2].

Typical decision problems faced in formal language theory are the membership,
emptiness and universality problems.

Problem (Membership). For a language 𝐿 ⊂ 𝐴⋆ satisfying certain properties, and
a word 𝑤 ∈ 𝐴⋆, is 𝑤 ∈ 𝐿?

Problem (Emptiness). Is a given language 𝐿 satisfying certain properties the empty
language, that is, is 𝐿 = ∅?

Problem (Universality). Is a given language 𝐿 over 𝐴 satisfying certain properties
the universal language, that is, is 𝐿 = 𝐴⋆?

To make the above problems algorithmical decision problems the languages 𝐿 in
them must be given effectively, usually either by an accepting automaton or defining
grammar. The universality and emptiness problems are connected: asking whether a
given language 𝐿 is empty is equivalent to asking weather the complement language
𝐿 is universal. For regular languages all of the three mentioned decision problems are
decidable: membership is decided by running the finite automaton on the input word,
emptiness is decided similarly by checking whether an accepting computation exists
for the given automaton and universality is decided by constructing an automaton for
the complement language and checking its emptiness.

For context free languages the emptiness and membership problems are decid-
able, while the universality problem is an undecidable problem [2]. The emptiness
problem for context-free languages is important for us, and therefore we will give it
as the following lemma.

Lemma 2. The emptiness problem for context-free languages is decidable.
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2.3 The Post Correspondence Problem
We will adopt the following formal definition for the Post Correspondence Problem
(PCP for short):

Problem (The Post Correspondence Problem). Given two morphisms ℎ, 𝑔 : 𝐴⋆ →
𝐵⋆, does there exist a non-empty word 𝑤 ∈ 𝐴⋆ such that ℎ(𝑤) = 𝑔(𝑤)?

A given pair of morphisms (ℎ, 𝑔) is an instance of the PCP. A word 𝑤 that satis-
fies ℎ(𝑤) = 𝑔(𝑤) is a solution to the instance (ℎ, 𝑔).

Numerous variants of the PCP exist where the solutions or the morphisms are
restricted by various conditions. We will mention here the variants that are used or
referred to later in this thesis. The first variant defined here was already discussed in
Chapter 1.

Problem (The Infinite Post Correspondence Problem). Given two morphisms ℎ, 𝑔 :

𝐴⋆ → 𝐵⋆, does there exist an infinite word 𝑤 ∈ 𝐴𝜔 such that ℎ(𝑤) = 𝑔(𝑤)?

The next variant is the main focus of Chapter 3. It expands the infiniteness of
solutions to two directions:

Problem (The Bi-infinite Post Correspondence Problem (ZPCP)). Given two mor-
phisms ℎ, 𝑔 : 𝐴* → 𝐵*, does there exist a bi-infinite word 𝜔 : Z → 𝐴 such that
ℎ(𝜔) = 𝑔(𝜔)?

Next we will define the injective PCP, first proved to be undecidable by Lecerf
in [16]; see also Ruohonen [8], and Karhumäki and Saarela [17].

Problem (The Injective Post Correspondence Problem). Given two injective mor-
phisms ℎ, 𝑔 : 𝐴⋆ → 𝐵⋆, does there exist a non-empty word 𝑤 ∈ 𝐴⋆ such that
ℎ(𝑤) = 𝑔(𝑤)?.

The next variant we present here is the circular PCP. Its undecidability was
originally also proved by Ruohonen in [8]. In fact the variant proved there was
even a stronger one, called the 𝑛-permutation PCP, where instead of conjugation
the operation between the words ℎ(𝑢) and 𝑔(𝑣) is an 𝑛-permutation. For the 𝑛-
permutation PCP see also the proof by Ernvall et al. in [18]. Recall that two words 𝑢
and 𝑣 are conjugates if there exist words 𝑠 and 𝑡 such that 𝑢 = 𝑠𝑡 and 𝑣 = 𝑡𝑠.

Problem (The Circular Post Correspondence Problem). Given two morphisms ℎ, 𝑔 :

𝐴⋆ → 𝐵⋆, does there exist two words 𝑢, 𝑣 ∈ 𝐴⋆ with 𝑢𝑣 ̸= 𝜀 such that ℎ(𝑢𝑣) =

𝑔(𝑣𝑢)?

Lastly we introduce the conjugate-PCP. This variant will be discussed further in
Chapter 4.

Problem (Conjugate Post Correspondence Problem). Given two morphisms ℎ, 𝑔 :

𝐴* → 𝐵*, does there exist a word 𝑤 ∈ 𝐴+ such that ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢 for
some words 𝑢, 𝑣 ∈ 𝐵*?
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Semi-Thue Systems and Claus Instances

One useful family on PCP instances are the Claus instances. To define Claus in-
stances we first consider the semi-Thue systems, a type of string rewriting systems
needed in the definition of the Claus instances.

A semi-Thue system 𝑇 is a rewriting system defined as a tuple (Σ, 𝑅) where
Σ = {𝑎1, 𝑎2, . . . , 𝑎𝑛} is a finite alphabet, the elements of which are called generators
of 𝑇 , and 𝑅 ⊆ Σ* ×Σ* is a finite relation. The elements of 𝑅 are called the rules of
𝑇 . The rules are extended to strings over Σ⋆ by allowing the rewriting of substrings
according to 𝑅. We write 𝑢 −→𝑇 𝑣, if there exists a rule (𝑥, 𝑦) ∈ 𝑅 such that
𝑢 = 𝑢1𝑥𝑢2 and 𝑣 = 𝑢1𝑦𝑢2 for some words 𝑢1 and 𝑢2. We denote by −→*

𝑇 the
reflexive and transitive closure of −→𝑇 , and by −→+

𝑇 the transitive closure of −→𝑇 .
Note that the index 𝑇 is usually omitted from the notation, i.e., we shall write −→,
when the semi-Thue system studied is clear from the context. If 𝑢 −→* 𝑣 in 𝑇 , we
say that there is a derivation from 𝑢 to 𝑣 in 𝑇 .

If the relation 𝑅 is symmetric, then 𝑇 is a Thue system and then 𝑇 corresponds
to a semigroup with generators Σ and relations 𝑅.

The following problem is an important and useful one:

Problem (The Word Problem for semi-Thue Systems). Given a semi-Thue system
𝑇 = (Σ, 𝑅) and two words 𝑢 and 𝑣, does there exist a derivation 𝑢 →*

𝑇 𝑣?

The first proofs for undecidability of the word problem of (semi-)Thue systems
were given independently by Post and Markov in 1947 [19; 20].

Given an instance (ℎ, 𝑔) of the PCP where ℎ, 𝑔 : Σ⋆ → Γ⋆ for Γ = {𝑎1, . . . , 𝑎𝑛}
we can transform it into an equivalent instance, where the images of the morphisms
are over the binary alphabet {𝑎, 𝑏}. For this we define a coding morphism 𝜑 : Γ⋆ →
{𝑎, 𝑏}⋆ by 𝜑(𝑎𝑖) = 𝑎𝑏𝑖+1𝑎. The morphism 𝜑 is injective and it is rather clear that the
instance (𝜑ℎ, 𝜑𝑔) has a solution if and only if the instance (ℎ, 𝑔) has a solution.

Let 𝐴 = {𝑎, 𝑏} and let 𝑑 = 𝑎𝑏𝑎. An instance (ℎ, 𝑔) where ℎ, 𝑔 : Σ⋆ → 𝐴⋆ is
called a Claus instance if Σ = {𝑎1, . . . , 𝑎𝑛} and for all 𝑖 = 2, . . . , 𝑛− 1

ℎ(𝑎𝑖) ∈ (𝑑𝐴)⋆, ℎ(𝑎1) ∈ (𝑑𝐴)⋆, ℎ(𝑎𝑛) = 𝑑𝑑

𝑔(𝑎𝑖) ∈ (𝐴𝑑)⋆, 𝑔(𝑎1) = 𝑑, 𝑔(𝑎𝑛) ∈ (𝐴𝑑)+𝑑.

The idea of Claus instances is to add the factor 𝑑 = 𝑎𝑏𝑎 between every letter.
Note that in the case of the instance (𝜑ℎ, 𝜑𝑔) the factor 𝑎𝑏𝑎 does not appear in the
images. It is clear from the definition that all possible solutions of Claus instances
must begin with the symbol 𝑎1 and end with the symbol 𝑎𝑛. Therefore it is easy
to see ([7]) that all of the non-empty solutions are of the form {𝑎1𝑤𝑎𝑛}+, where
𝑤 ∈ {𝑎2, . . . , 𝑎𝑛−1} and ℎ(𝑎1𝑤𝑎𝑛) = 𝑔(𝑎1𝑤𝑎𝑛).

The name for Claus instances comes from a construction by V. Claus where
from an 𝑛 rule semi-Thue system a size 𝑛+4 PCP instance is constructed such that,
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the existence of a solution to the PCP instance is equivalent to the existence of a
solution to the word problem of the semi-Thue system. We will outline the original
construction by Claus here, as we will use similar ideas in later chapters.

Let 𝑇 = {Γ, 𝑅} be a semi-Thue system with Γ = {𝑎, 𝑏} and 𝑅 = {𝑡1, . . . , 𝑡𝑛}
where 𝑡𝑖 = (𝑢𝑖, 𝑣𝑖). We may assume that the rules 𝑡𝑖 ∈ 𝑅 are encoded into binary
words by 𝜑, so that 𝑢1, 𝑣1 ∈ (𝑎𝑏2𝑏⋆𝑎)⋆. Recall that 𝑑 = 𝑎𝑏𝑎 and let 𝑓 = 𝑎𝑎

be a marker that is not an image of 𝜑. We define two desynchronizing morphisms
𝑙𝑑, 𝑟𝑑 : {𝑎, 𝑏}⋆ → {𝑎, 𝑏}⋆ by

𝑙𝑑(𝑥) = 𝑑𝑥,

𝑟𝑑(𝑥) = 𝑥𝑑

for 𝑥 ∈ {𝑎, 𝑏}. Now we add two new symbols 𝑐, 𝑒 to our alphabet and define a PCP
instance (ℎ, 𝑔) with ℎ, 𝑔 : ({𝑎, 𝑏, 𝑐, 𝑒}∪𝑅)⋆ → {𝑎, 𝑏}⋆. Let 𝑤0 →*

𝑇 𝑤 be an instance
of the word problem and set

ℎ 𝑔

𝑥 𝑙𝑑(𝑥) 𝑟𝑑(𝑥), 𝑥 ∈ {𝑎, 𝑏}
𝑡𝑖 𝑙𝑑(𝑣𝑖) 𝑟𝑑(𝑢𝑖), 𝑡𝑖 ∈ 𝑅

𝑐 𝑙𝑑(𝑤𝑓) 𝑑

𝑒 𝑑𝑑 𝑟𝑑(𝑓𝑤0)𝑑

Here the word 𝑤 ∈ {𝑎, 𝑏}⋆ is the input word and 𝑤0 is the given fixed word. The
instance described is by definition a Claus instance where 𝑎1 = 𝑐 and 𝑎𝑛 = 𝑒. It can
be shown ([7]) that the possible minimal solutions to the instance (ℎ, 𝑔) are of the
form

𝑐𝑤1𝑓𝑤2𝑓 · · ·𝑤𝑚𝑒

where
𝑤𝑖 = 𝑥𝑖0𝑡𝑖1𝑥𝑖1𝑡𝑖2𝑥𝑖2 · · · 𝑡𝑝𝑖

𝑥𝑝𝑖

for some words 𝑥𝑗 ∈ {𝑎, 𝑏}⋆ and 𝑡𝑗 ∈ 𝑅. Also, there is a derivation from 𝑤𝑖 to 𝑤𝑖+1

in the semi-Thue system 𝑇 for 𝑖 = 1, . . . ,𝑚− 1. From the forms of the solutions to
Claus instances we know that the minimal solutions here are of the form 𝑐𝑤𝑒, where
the word 𝑤 does not contain the symbols 𝑐 or 𝑒. It follows that an instance of the
PCP has a solution if and only if the instance of the word problem has a positive
answer. Therefore, the undecidability of the PCP follows from the undecidability
of the word problem for semi-Thue systems. The construction is such that for a
semi-Thue system with 𝑛 rules we get a PCP instance of size 𝑛+ 4.

Matiyasevich and Sénizergues showed in [6] that there exists a 3-rule semi-Thue
system with an undecidable individual word problem. From this result together with
the above construction by Claus we get the following theorem:

Theorem 1. The PCP is undecidable for Claus instances of size 7.
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3 The Bi-infinite Post Correspondence
Problem

In this chapter we study a variant of the PCP called the bi-infinite Post Correspon-
dence Problem (ZPCP), where it is asked whether or not there exists a bi-infinite
sequence of the indices for a given instance of the PCP such that the words agree. As
with most variants of the PCP it is beneficial to define the problem using morphisms.
Recall the formal definition of the ZPCP from Chapter 2:

Problem. Given two morphisms ℎ, 𝑔 : 𝐴* → 𝐵*, does there exist a bi-infinite word
𝜔 : Z → 𝐴 such that ℎ(𝜔) = 𝑔(𝜔)?

As defined in Chapter 2 equality of the images of bi-infinite words is defined in
the following way: ℎ(𝜔) = 𝑔(𝜔) if and only if there is a constant 𝑘 ∈ Z such that
ℎ(𝜔)(𝑖) = 𝑔(𝜔)(𝑖+ 𝑘) for all positions 𝑖 ∈ Z.

An instance of the ZPCP is therefore a pair of morphisms (ℎ, 𝑔) and a bi-infinite
word 𝜔 is a solution of the instance (ℎ, 𝑔) if it satisfies ℎ(𝜔) = 𝑔(𝜔).

Recall that the infinite PCP asks for the existence of an infinite solution in one
direction. In the one sided case the beginning of a solution is similar to the regular
PCP: the solutions have initial pairs where one of the words is the prefix of the other.
Adding a new domino never disrupts the matching of the previous ones. The chosen
pair might not lead to a solution but it will not change the matching of previously
added symbols.

The case of the ZPCP is more sophisticated. In the ZPCP the images of the let-
ters need not be comparable because the matching is achieved by shifting one of the
images by some constant 𝑘. Therefore to construct a solution we can take a pair of
dominoes where the first word from one pair matches to the second word from the
other pair and distance them by some constant 𝑘; see figure 2. The figure demon-
strates how after every new letter is added to 𝜔 we have to check that a covering by
images of letters under 𝑔 exists. Moreover this word 𝑎1𝑎2𝑎3 providing the cover must
be a factor of 𝜔. We see that there are more things to consider than a straightforward
matching of letters.

The undecidability of the ZPCP was originally proved by Ruohonen in [8] using
linearly bounded automata (LBA). A word is accepted by an LBA if it is accepted
by a Turing machine with a bounded length of tape, and the bound being linear to
the length of the input. The family of languages accepted with LBA’s coincides with
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ℎ(𝑎) ℎ(𝑏)

ℎ(𝑎) ℎ(𝑏)𝑔(𝜔)

ℎ(𝜔)

𝜔 𝑎 𝑏

𝑘

𝑔(𝑎1) 𝑔(𝑎2) 𝑔(𝑎3)

Figure 2. Constructing a pre-solution to the bi-infinite PCP.

context sensitive languages; see [2]. Ruohonen reduced the problem of existence
of circular/repetitive configuration of a given LBA into the ZPCP. In the circularity
problem it is asked whether or not there exists a configuration 𝛼 of the given LBA
such that if the computation starts from 𝛼, after finitely many steps the LBA returns
to the configuration 𝛼. Configuration here means the content of the tape and the
state of the machine. As the input word of the LBA is not fixed, Ruohonen uses
an extremely long word containing all reasonable configurations up to certain length
determined by the linear bound in his construction.

In this chapter a simpler proof for undecidability of the ZPCP is given. The proof
presented is simpler because of the following two reasons:

1. it uses the word problem of the special type of semi-Thue systems in the re-
duction instead of the LBA, and

2. we are able to fix a word where the solution begins in the constructed instance
of the ZPCP.

We use a modification to Claus’s construction from Chapter 2. Our modification
uses the ideas of Halava and Harju in [21] where it was proved that the infinite PCP
is undecidable for nine pairs of words. For the ZPCP we also need the word problem
of special type of semi-Thue systems, called deterministic semi-Thue systems.

Let 𝑇 = (Σ, 𝑅) be a semi-Thue system such that Σ = 𝐴 ∪ 𝐵 with 𝐴 ∩ 𝐵 = ∅.
Then 𝑇 is called 𝐵-deterministic, if

1. 𝑅 ⊆ 𝐴*𝐵𝐴*×𝐴*𝐵𝐴*, namely, if the rules contain a unique letter from 𝐵 on
both sides, and

2. for all words 𝑤 ∈ 𝐴*𝐵𝐴*, if there exists a rule in 𝑅 giving 𝑤 −→𝑇 𝑤′, then
the rule is unique in 𝑇 .
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Here we shall call a semi-Thue system deterministic, if it is 𝐵-deterministic for some
𝐵.

In [22] it was proved that the word problem is undecidable for deterministic
semi-Thue systems. The construction there is rather involved as the constructed
semi-Thue system is also reversible and the whole derivation starting from a fixed
initial word is remembered in the words of the (unique) derivation. Moreover, it was
proved in [22] that the circular word problem, asking whether or not there exists a
derivation 𝑢 −→+ 𝑢 for a given 𝑢 in 𝑇 , is undecidable using the construction in [23]
for deterministic semi-Thue systems. We shall now give a new simpler construction
for the circular word problem (of the 𝐵-deterministic semi-Thue systems), using the
halting problem of deterministic Turing machines. This construction is based on
the one by Huet and Lankford ([24]) for undecidability of the word problem of the
semi-Thue systems.

A Turing machine is a seven-tuple ℳ = (𝑄,Σ,Γ, 𝛿, 𝑞0, ⋆, 𝐹 ) where

• 𝑄 is a finite set of states.

• Γ is the tape alphabet.

• Σ ⊂ Γ is the input alphabet.

• 𝛿 : 𝑄× Γ → 𝑄× Γ× {𝐿,𝑅} is the transition function.

• 𝑞0 is the initial state.

• ⋆ ∈ Γ is the blank symbol.

• 𝐹 ⊂ 𝑄 is a set of final (accepting) states.

The Turing machine manipulates symbols on an infinite tape according to the rules
given by 𝛿. The machine reads the symbol on the tape at its current position and
according to the transition function writes a symbol on that position, changes the
state, and moves one position to the left or right of that position according to the
letter 𝐿 or 𝑅, respectively. A Turing machine is deterministic if for every state and
symbol pair in 𝛿 there is at most one transition.

Let ℳ = (𝑄,Σ,Γ, 𝛿, 𝑞0, ⋆, 𝐹 ) be a deterministic Turing machine with blank
symbol ⋆. Let the tape alphabet Γ = {𝑏0, 𝑏1, . . . , 𝑏𝑚} where 𝑏0 = ⋆ and let 𝑄 =

{𝑞0, 𝑞1, . . . , 𝑞𝑛}. As usual, 𝑄 is the set of states, Σ ⊂ Γ is the input alphabet, 𝛿 : 𝑄×
Γ → 𝑄× Γ× {𝐿,𝑅} is the transition function, 𝑞0 is the initial state and 𝐹 is the set
of final states.

Our first semi-Thue system is 𝑇 ′
ℳ = (𝐵′

ℳ,ℛ′
ℳ) for a Turing machine ℳ. Let

𝐵′
ℳ = {𝐿,𝑅} ∪ Γ ∪𝑄.
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The symbols 𝐿 and 𝑅 are used as the left and right end markers of the configuration
and are not to be confused with the left and right move directions of the Turing
machine. Without loss of generality, we assume that the set of final states is 𝐹 = {ℎ},
that is, the TM has a unique halting state ℎ.

The transitions of ℳ are transformed into rules of the semi-Thue system 𝑇 ′
ℳ in

the following way:
1. For each right move (move with direction 𝑅) (𝑞𝑖, 𝑏𝑗) −→ (𝑞ℓ, 𝑏𝑘, 𝑅) in ℳ, define

(𝑞𝑖𝑏𝑗 , 𝑏𝑘𝑞ℓ) ∈ ℛ′
ℳ,

and if 𝑗 = 0, i.e., 𝑏𝑗 = ⋆, we also add the rule

(𝑞𝑖𝑅, 𝑏𝑘𝑞ℓ𝑅) ∈ ℛ′
ℳ.

2. For each left move (𝑞𝑖, 𝑏𝑗) −→ (𝑞ℓ, 𝑏𝑘, 𝐿) in ℳ, we define the rules

(𝑏𝑡𝑞𝑖𝑏𝑗 , 𝑞ℓ𝑏𝑡𝑏𝑘) ∈ ℛ′
ℳ for all 𝑡 = 0, 1, . . . ,𝑚, and

(𝐿𝑞𝑖𝑏𝑗 , 𝐿𝑞ℓ𝑏0𝑏𝑘) ∈ ℛ′
ℳ,

and if 𝑗 = 0, i.e., 𝑏𝑗 = ⋆, we also add the rules

(𝑏𝑡𝑞𝑖𝑅, 𝑞ℓ𝑏𝑡𝑏𝑘𝑅) ∈ ℛ′
ℳ for all 𝑡 = 0, 1, . . . ,𝑚, and

(𝐿𝑞𝑖𝑅, 𝐿𝑞ℓ𝑏0𝑏𝑘𝑅) ∈ ℛ′
ℳ.

It is rather straightforward to show that for a configuration 𝛼1𝑞𝛼2 ∈ Γ*𝑄Γ+ of
TM ℳ,

𝛼1𝑞𝛼2 ⊢ℳ 𝛼′
1𝑞

′𝛼′
2 ⇐⇒ 𝐿𝛼1𝑞𝛼2𝑅 −→𝑇 ′

ℳ
𝐿𝛼′

1𝑞
′𝛼′

2𝑅.

Moreover, 𝑇 ′
ℳ is clearly 𝑄-deterministic as ℳ is deterministic.

As the halting problem for Turing machines is undecidable (even for the empty
input word) we have

Lemma 3. The existence of derivations of the form 𝐿𝑞0⋆𝑅 −→* 𝐿𝑢ℎ𝑣𝑅 for some
𝑢, 𝑣 ∈ Γ* is undecidable for 𝑄-deterministic semi-Thue systems.

Proof. If the existence of such a derivation would be decidable then we could also
decide the halting problem for Turing machines on the empty input word, which is
well known to be undecidable.

Next we add the deletion rules to 𝑇 ′
ℳ for the circular derivation, that is, we define

two more ”state” symbols ℎ𝑙, ℎ𝑟 and add the following rules to ℛ′
ℳ for all 𝑎 ∈ Γ:

(𝑎ℎ, ℎ𝑙), (𝑎ℎ𝑙, ℎ𝑙), (𝐿ℎ, 𝐿ℎ𝑟), (𝐿ℎ𝑙, 𝐿ℎ𝑟), (ℎ𝑟𝑎, ℎ𝑟).
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The deletion rules have the effect that from every halting configuration there is a
derivation

𝐿𝑢ℎ𝑣𝑅 −→+ 𝐿ℎ𝑟𝑅.

and by adding a rule
(𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅), (1)

we have that
𝐿𝑞0⋆𝑅 −→+

𝑇 ′
ℳ

𝐿𝑞0⋆𝑅.

if and only if TM ℳ halts on empty input. Note that adding these rules preserves
the determinism of 𝑇 ′

ℳ

Theorem 2. The circular word problem is undecidable for the deterministic semi-
Thue systems.

Next we define our second semi-Thue system 𝑇ℳ = (𝐵ℳ,ℛℳ). Assume that
ℳ is a TM and 𝑇 ′(ℳ) = (𝐵′

ℳ,ℛ′
ℳ) is a semi-Thue system defined as above.

Let 𝐵ℳ = 𝐵′
ℳ ∪ {𝐿,𝑅} ∪ Γ ∪ 𝑄, where Γ and 𝑄 are copies of the sets Γ and 𝑄,

respectively, where the elements are overlined. We define ℛℳ in the following steps.
For our main theorem in the next section, we need to define rules for the overlined
copies of the letters in the alphabet 𝐵ℳ. We will make overlined copies of the rules
in the following way:

1. We denote 𝑆 = ℛ′
ℳ ∖ {(𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅)}. Clearly 𝑆 ⊆ ℛℳ.

2. For all the rules (𝑢, 𝑣) ∈ 𝑆 defined above we also add the overlined rules (𝑢, 𝑣) ∈
ℛℳ.
3. Finally we add the rules

(𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅) and (𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅)

to ℛℳ and denote these rules by 𝑡ℎ and 𝑡ℎ, respectively. For 𝐿𝑞0⋆𝑅 there exists a
unique rule (𝐿𝑞0⋆𝑅, 𝑣) ∈ ℛℳ and we denote it by 𝑡0.

It now follows that the TM ℳ halts on empty input if and only if there is a
derivation 𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅 in 𝑇ℳ. From the previous lemma we get

Lemma 4. The existence of derivations of the form 𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅

is undecidable for 𝑄-deterministic semi-Thue systems of the form of 𝑇ℳ.

3.1 The New Proof For Undecidability
In this section we construct an instance (ℎ, 𝑔) of ZPCP using the semi-Thue system
𝑇ℳ defined above. The idea behind the construction is that the morphisms simulate
the rules of the semi-Thue system: if there is a single step derivation 𝑥𝑢𝑦 −→ 𝑥𝑣𝑦 for
a rule 𝑡 = (𝑢, 𝑣), then ℎ(𝑥𝑡𝑦) corresponds to 𝑥𝑢𝑦 and 𝑔(𝑥𝑡𝑦) corresponds to 𝑥𝑣𝑦 (we
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will actually not have these exact images, but desynchronized copies of them using
special symbols). Then by forcing the initial configuration to appear in the solution
we end up with a word containing all configurations reached by 𝑇ℳ when started on
the initial configuration, as we shall see.

For the semi-Thue system 𝑇ℳ = (𝐵ℳ,ℛℳ) we can construct an equivalent sys-
tem ̂︂𝑇ℳ = (̂︂𝐵ℳ, ̂︂ℛℳ) that has an alphabet of size four (see [21]): when we denote
𝐵ℳ = {𝑎1, 𝑎2, . . . , 𝑎𝑘, 𝑎1, 𝑎2, . . . , 𝑎𝑘} and define a coding 𝜙 : 𝐵*

ℳ → {𝑎, 𝑏, 𝑎, 𝑏}⋆
with 𝜙(𝑎𝑖) = 𝑎𝑏𝑖𝑎 and 𝜙(𝑎𝑖) = 𝑎𝑏𝑖𝑎 for 𝑎𝑖 ∈ 𝐵ℳ. Then the new set of rules iŝ︂ℛℳ = {(𝜙(𝑢), 𝜙(𝑣)) | (𝑢, 𝑣) ∈ ℛℳ}. Now it is easy to see that the semi-Thue
system ̂︂𝑇ℳ = (̂︂𝐵ℳ, ̂︂ℛℳ) with ̂︂𝐵ℳ = {𝑎, 𝑏, 𝑎, 𝑏} has an undecidable circular word
problem if and only if 𝑇ℳ has. This follows from the fact that 𝑤 −→𝑇ℳ 𝑤′ if and
only if 𝜙(𝑤) −→̂︂𝑇ℳ

𝜙(𝑤′).

Note that the new system ̂︂𝑇ℳ is no longer 𝑄-deterministic. However, we can
extend the notion of 𝐵-determinism of semi-Thue systems from a set of symbols 𝐵
into a set of words 𝜙(𝐵) in a natural way. It follows that ̂︂𝑇ℳ is 𝜙(𝑄)-deterministic.

Define the morphisms 𝑙𝑠 and 𝑟𝑠, the left and right desynchronizing morphisms,
respectively, for a word 𝑠 by

𝑙𝑠(𝑎) = 𝑠𝑎 and 𝑟𝑠(𝑎) = 𝑎𝑠

for any letter 𝑎. In the following we use the notation 𝑎−𝑘 for erasing 𝑘 instances
of letter 𝑎. For example 𝑎−2𝑤 is the word where the word 𝑎𝑎 is erased from the
beginning of 𝑤 assuming that 𝑤 does have a prefix 𝑎𝑎 and 𝑤𝑏−1 is the word where 𝑏

is erased from the end of 𝑤 assuming that 𝑤 has the suffix 𝑏.

Let us now have the semi-Thue system ̂︂𝑇ℳ constructed from 𝑇ℳ via encoding
𝜙. In what follows, the set of rules ̂︂ℛℳ is considered also as an alphabet. From now
on the rules 𝑡𝑖 (and the special rules 𝑡ℎ, 𝑡0) are from this set of rules and are not to be
confused with the non-encoded rules ℛℳ. From 𝑇ℳ we define the morphisms ℎ, 𝑔 :

({𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑎1, 𝑎2, 𝑏1, 𝑏2,#,#,#1,#2}∪̂︂ℛℳ)* → {𝑎, 𝑏, 𝑑, 𝑒, 𝑓,#}* according
to the following table:
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ℎ 𝑔

𝑥1 𝑑𝑥𝑑 𝑥𝑒𝑒, 𝑥 ∈ {𝑎, 𝑏}
𝑥2 𝑑𝑑𝑥 𝑥𝑒𝑒, 𝑥 ∈ {𝑎, 𝑏}
𝑡𝑖 𝑑−1𝑙𝑑2(𝑣𝑖) 𝑟𝑒2(𝑢𝑖), 𝑡𝑖 ̸∈ {𝑡0, 𝑡ℎ}
𝑡0 𝑑−1𝑙𝑑2(𝑣0) 𝑟𝑒2(𝑢0)𝑒

−2𝑓3

𝑡ℎ 𝑑𝑟𝑒2(𝑣ℎ)𝑒
−2𝑓𝑓 𝑟𝑒2(𝑢ℎ)

# 𝑑𝑑#𝑑 #𝑒𝑒

𝑥1 𝑥𝑒𝑒 𝑥𝑑𝑑, 𝑥 ∈ {𝑎, 𝑏}
𝑥2 𝑒𝑥𝑒 𝑥𝑑𝑑, 𝑥 ∈ {𝑎, 𝑏}
𝑡𝑖 𝑒−2𝑙𝑒2(𝑣𝑖)𝑒 𝑟𝑑2(𝑢𝑖), 𝑡𝑖 ̸∈ {𝑡0, 𝑡ℎ}
𝑡0 𝑒−2𝑙𝑒2(𝑣0)𝑒 𝑟𝑑2(𝑢0)𝑑

−2𝑓3

𝑡ℎ 𝑟𝑑2(𝑣ℎ)𝑑
−2𝑓 𝑟𝑑2(𝑢ℎ)

# 𝑒#𝑒𝑒 #𝑑𝑑

#1 𝑓#𝑒𝑒 #𝑒𝑒

#2 𝑓𝑓#𝑑 #𝑑𝑑

These morphisms are modifications of the morphisms introduced in [21] where
the size of the domain alphabet is increased by adding overlined copies of all sym-
bols. For the letters of ̂︂𝐵ℳ we have two copies of each letter indexed with 1 and 2.
The purpose of this is to force exactly one re-writable term in configurations whose
leftmost symbols are indexed with 1 and rightmost symbols are indexed with 2. In
addition we add two new symbols #1 and #2 that aid in locating the transition be-
tween computation cycles. In the images we have three desynchronizing symbols
𝑑, 𝑒 and 𝑓 , where 𝑑 and 𝑒 are doing the main desynchronizing and 𝑓 is added to aid
the change in cycles. It is clear from the images of letters that if ℎ(𝜔) = 𝑔(𝜔) then
𝜔 must be bi-infinite. Using these morphisms we now state:

Lemma 5. The semi-Thue system ̂︂𝑇ℳ has a cyclic computation if and only if there
exists a bi-infinite word 𝜔 such that ℎ(𝜔) = 𝑔(𝜔).

Proof. For clarity we omit the encoding 𝜙 from the following considerations and
keep in mind that all of the symbols are actually encoded.

Assume that ̂︂𝑇ℳ has a cyclic computation. As the semi-Thue system is 𝜙(𝑄)-
deterministic we have the unique derivation

𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅 −→+ 𝐿𝑞0⋆𝑅.

We now code this computation into a bi-infinite word

𝜔 = (𝛼0𝑡0𝛽0#𝛼1𝑡1𝛽1# · · ·#𝛼ℎ𝑡ℎ𝛽ℎ#1𝛼0𝑡0𝛽0#𝛼1𝑡1𝛽1# · · ·#𝛼ℎ𝑡ℎ𝛽ℎ#2)
Z,

where 𝛼𝑖 ∈ {𝑎1, 𝑏1}*, 𝛽𝑖 ∈ {𝑎2, 𝑏2}* and 𝑡𝑗 ∈ ̂︂ℛℳ is the 𝑗th rule used in the
derivation. We note that

𝑑ℎ(𝛼𝑖𝑡𝑖𝛽𝑖)𝑑𝑑 = 𝑙𝑑2(𝛼𝑖𝑣𝑖𝛽𝑖)𝑑𝑑 = 𝑑𝑑𝑟𝑑2(𝛼𝑖+1𝑢𝑖+1𝛽𝑖+1) = 𝑑𝑑𝑔(𝛼𝑖+1𝑡𝑖+1𝛽𝑖+1)
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(similarly for overlined symbols), which means that the matching is acquired con-
figuration to configuration from the consecutive configurations in the derivation that
are overlined (resp. non-overlined). We set 𝛼0 = 𝛽0 = 𝛼ℎ = 𝛽ℎ = 𝜀, the empty
word. Also 𝑡ℎ = (𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅), 𝑡ℎ = (𝐿ℎ𝑟𝑅,𝐿𝑞0⋆𝑅) and 𝑡0 = (𝐿𝑞0⋆𝑅, 𝑣) for
some unique 𝑣 as before.

From the construction of ℎ and 𝑔 we have that ℎ(𝜔) = 𝑔(𝜔), where the images
are shifted by a constant 𝑘 in relation to each other in order get a matching. Here the
size of 𝑘 depends on the length of the derivation as well as the lengths of the words
in the derivation.

Assume then that we have a solution 𝜈 of the Z𝑃𝐶𝑃 instance (ℎ, 𝑔).
As it is in the proof for the one-way infinite PCP, the images of the rule symbols

𝑡𝑖 under ℎ split the desynchronizing words (𝑑𝑑 or 𝑒𝑒) on either side of the image
(on one side there is a single desynchronizing symbol and none on the other). Now
from the form of 𝑔 (either 𝑑𝑑 or 𝑒𝑒 appears between each pair of letters with the
exception of the factor 𝑓𝑓𝑓 ) it follows that the possible letters appearing before and
after the rule symbol must be indexed with 1 and 2, respectively. This guarantees
that between two #-symbols there is exactly one re-writing symbol 𝑡𝑖 as before and
after a #-symbol the letters (if any) must be indexed with 2 and 1, respectively.

The introduction of the new symbol 𝑒 eliminates the trivial solutions that we
would get with the morphisms in the proof of undecidability for one-way infinite
PCP. It is also clear that we cannot have a solution using only overlined or non-
overlined symbols because of the different desynchronizing symbols under ℎ and
𝑔.

From the consideration above it follows that a solution must have symbols that
are not overlined and symbols that are. From the forms of ℎ and 𝑔 follows that the
only way to get from non-overlined symbols to overlined ones is via transition 𝑡ℎ,
swapping 𝑑 and 𝑒. Because ℎ(𝑡ℎ) ends in 𝑓𝑓 and 𝑓 appears in the image under 𝑔 only
in factor 𝑓3, we have that 𝑡ℎ is followed by #1 in 𝜈 (and preceded by a letter that
is not overlined and whose image ends in 𝑑). Now ℎ(𝑡ℎ#1) = 𝑑𝑟𝑒2(𝑣ℎ)𝑒

−2𝑓3#𝑒2

and the image is not in conflict with the form of the images under 𝑔, in particular
ℎ(𝑡ℎ#1) = 𝑑𝑔(𝑡0#). Similarly, to swap from 𝑒 to 𝑑 we must have 𝑡ℎ#2 in 𝜈 (pre-
ceded by an overlined letter whose image ends in 𝑒2 as there are no letters whose
image ends in 𝑑2 under ℎ) as ℎ(𝑡ℎ#2)𝑑 = 𝑟𝑑2(𝑣ℎ)𝑑

−2𝑓3#𝑑2 = 𝑔(𝑡0#). This swap
needs to happen infinitely often as after finitely many swaps the desynchronizing
symbols to the right of the last swap are different in the images of ℎ and 𝑔.

By these considerations we can deduce that the transition symbol 𝑡ℎ must appear
in 𝜈 infinitely many times both as non-overlined and overlined versions. Because
ℎ(𝑡ℎ#1) = 𝑑𝑔(𝑡0#) and because 𝑢0 appears desynchronized only in the image of
𝑔(𝑡0) we have that 𝑡0 must be in 𝜈 as many times as 𝑡ℎ. Similarly 𝑡0 must be in 𝜈.
Now by the desynchronizing property of ℎ and 𝑔, between consecutive symbols 𝑡0
and 𝑡ℎ in 𝜈 are only symbols 𝑡𝑖 that are not overlined. Similarly between consecutive
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symbols 𝑡0 and 𝑡ℎ are only overlined transition symbols.
The image ℎ(𝑡0) is a word 𝑑−1𝑙𝑑2(𝛼𝑢′𝛽) where by the 𝜙(𝑄)-determinism of ̂︂𝑇ℳ

there is a unique rule 𝑡′ = (𝑢′, 𝑣′) ∈ ̂︂ℛℳ. The only way to get a copy of 𝛼𝑢′𝛽
desynchronized with 𝑑 in 𝑔(𝜈) is to have 𝛼𝑡′𝛽 in 𝜈. This in turn means that there is a
word 𝛼′𝑡′′𝛽′ in 𝜈 such that ℎ(𝛼𝑡′𝛽) = 𝑙𝑒2(𝛼𝑣

′𝛽)𝑒𝑒 = 𝑒𝑒𝑟𝑒2(𝛼
′𝑢′′𝛽′) = 𝑒𝑒𝑔(𝛼′𝑡′′𝛽′)

for a unique rule 𝑡′′ = (𝑢′′, 𝑣′′). The case is similar for ℎ(𝑡0) which shows that 𝛼𝑡′𝛽
is in 𝜈 and so forth. Inductively we can see that 𝜈 contains all configurations and
transitions done by ̂︂𝑇ℳ when started on the word 𝐿𝑞0⋆𝑅. It remains to be shown
that the computation that begins with 𝑡0 actually ends up using the rule 𝑡ℎ.

Because ℎ(𝜈) = 𝑔(𝜈), there is the smallest constant 𝑘 such that shifting, say 𝑔(𝜈),
𝑘 positions to the left, we have a matching. Now consider a factor 𝑢 of 𝜈 containing
a factor 𝑡0 · · · 𝑡ℎ and all the symbols before and after this factor in 𝜈 having 𝑑 in
their image under ℎ. Let us take 𝑢 such that |𝑢| is as small as possible. The image
ℎ(𝑢) is desynchronized with 𝑑 with the exception of the first and last symbols also
containing the symbol 𝑒. To get a matching for the factor of 𝑢 desynchronized with 𝑑

we also must have a corresponding factor 𝑢′ having the same factor desynchronized
with 𝑑 under 𝑔. Note that 𝑢 and 𝑢′ do not overlap in 𝜈. If we assumed that the
shifting of 𝑔(𝜈) is to the left, then 𝑢′ is to the right of 𝑢. Because the image 𝑔(𝜈) is
shifted to the left so is the factor 𝑔(𝑢). It follows that we have also 𝑢′ to the left of
𝑢. Inductively we have that 𝑢 and 𝑢′ appear infinitely often in 𝜈 and are always the
same distance from each other. The steps above are visualized in figure 3. Moreover
the words separating 𝑢 and 𝑢′ must also be equal everywhere, that is we can write
𝜈 = (𝑢𝛼𝑢′𝛽)Z for some words 𝛼 and 𝛽. As the word 𝑢𝛼𝑢′𝛽 is finite it also contains
finitely many configurations. Earlier we concluded that 𝜈 contains all configurations
when started on input 𝐿𝑞0⋆𝑅. It follows from this and the determinism of ̂︂𝑇ℳ that
after a finite number of derivation steps the rule 𝑡ℎ is used.

𝜈 : 𝑢 𝑢′ 𝑢𝛼 𝛽

ℎ(𝜈) : ℎ(𝑢) ℎ(𝑢′)

𝜏𝑘(𝑔(𝜈)) : ℎ(𝑢) ℎ(𝑢′)

𝑔(𝜈) : ℎ(𝑢) ℎ(𝑢′)

Figure 3. Visualization of how factors repeat in the solution. The arrows follow the steps
described in the text.
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We have concluded that there is a derivation 𝐿𝑞0⋆𝑅 −→ 𝐿𝑞0⋆𝑅. A similar rea-
soning shows that continuing the derivations we will be using rule 𝑡ℎ. It follows
that there is a derivation 𝐿𝑞0⋆𝑅 −→* 𝐿𝑞0⋆𝑅 −→* 𝐿𝑞0⋆𝑅 that is, ̂︂𝑇ℳ has a cyclic
computation.

Combining the previous lemmas 4 and 5 with the fact that ̂︂𝑇ℳ has a cyclic com-
putation if and only if 𝑇ℳ has, we have proved:

Theorem 3. The bi-infinite Post Correspondence Problem is undecidable.

In the construction of the semi-Thue system 𝑇ℳ the addition of overlined letters
was done to force a cyclic computation. The morphisms ℎ and 𝑔 were constructed in
a way that the change between non-overlined and overlined letters is only possible
in solutions containing the ”description” of a cyclic computation in the semi-Thue
system. In Chapter 4 this same idea is used in the context of another variant of the
PCP.
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4 The Conjugate Post Correspondence
Problem

Two words 𝑥 and 𝑦 are conjugates if they can be written in the form 𝑥 = 𝑢𝑣 and
𝑦 = 𝑣𝑢 for some words 𝑢 and 𝑣. Recall from Chapter 2 that the problem whether
there exist conjugate words with the same image under a pair of morphisms is known
as the circular Post Correspondence Problem, or CPCP for short. More formally the
CPCP asks for given morphisms ℎ and 𝑔, whether there exist words 𝑢 and 𝑣 with
𝑢𝑣 ̸= 𝜀 such that ℎ(𝑢𝑣) = 𝑔(𝑣𝑢). Here we give a new variant of the problem by
requiring that the images are conjugate words with the same pre-image. We call this
problem the conjugate-PCP and give it the following formal definition:

Problem (Conjugate Post Correspondence Problem). Given two morphisms ℎ, 𝑔 :

𝐴* → 𝐵*, does there exist a word 𝑤 ∈ 𝐴+ such that ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢 for
some words 𝑢, 𝑣 ∈ 𝐵*?

The conjugate-PCP was originally proved undecidable by Ruohonen in [8]. In
this chapter we shall give a new simpler proof based on the semi-Thue system intro-
duced in Chapter 3.

The behaviour of the instances of the conjugate-PCP differ vastly from the more
traditional variants of the PCP where a valid presolution (prefix of a possible solu-
tion) can be verified by a matching of the images. Working out a possible solution to
a conjugate-PCP instance is much less intuitive and more similar to the ZPCP from
Chapter 3.

For example, let us have some morphisms ℎ, 𝑔 and a guess that a solution 𝑤

begins with the letter 𝑎. Then the situation is the following:

ℎ(𝑤) = ℎ(𝑎) · · · 𝑔(𝑎) · · ·

𝑔(𝑤) = 𝑔(𝑎) · · · ℎ(𝑎) · · ·
𝑢 𝑣

𝑣 𝑢

The validity of the presolution to the conjugate-PCP beginning with 𝑎 cannot be
verified because no matching needs to happen between ℎ(𝑎) and 𝑔(𝑎). Moreover the
factorization of the images to 𝑢 and 𝑣 need not be unique even for minimal solutions:
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Example. Let ℎ, 𝑔 : {𝑎, 𝑏}* → {𝑎, 𝑏}* be morphisms defined by

ℎ(𝑎) = 𝑎𝑏𝑎, 𝑔(𝑎) = 𝑏𝑎𝑏,

ℎ(𝑏) = 𝑏, 𝑔(𝑏) = 𝑎.

Now 𝑎𝑏 is a minimal solution for the conjugate-PCP instance (ℎ, 𝑔) having two fac-
torizations: 𝑢 = 𝑎, 𝑣 = 𝑏𝑎𝑏 or 𝑢 = 𝑎𝑏𝑎, 𝑣 = 𝑏.

The construction

We recall shortly the construction of the semi-Thue system 𝑇ℳ in Chapter 3. The
construction used the structure of a given Turing machine ℳ. We can simplify our
presentation by acknowledging the existence of such a system and declaring that our
new system has the same properties.

Let 𝑇 = (Σ,ℛ) be our semi-Thue system with the following properties:

1. Σ = 𝐴 ∪ 𝐴 ∪ 𝐵 ∪ 𝐵 with pairwise disjoint alphabets 𝐴,𝐴,𝐵,𝐵. Notably
𝐴 = {𝑎, 𝑏, 𝐿,𝑅} where 𝐿,𝑅 are markers for the left and right border of the
word, respectively.

2. 𝑇 is (𝐵 ∪𝐵)-deterministic in the following way:

(i) ℛ ⊆ (𝐴*𝐵𝐴*×𝐴*𝐵𝐴*)∪(𝐴*𝐵𝐴*×𝐴*𝐵𝐴*)∪(𝐴*𝐵𝐴*×𝐴*𝐵𝐴*)∪
(𝐴*𝐵𝐴* ×𝐴*𝐵𝐴*).

(ii) If there is a rule 𝑡𝑖 in ℛ where all symbols are non-overlined, then the
corresponding overlined rule 𝑡𝑖, where all symbols are overlined is also
in ℛ, and vice versa.

(iii) For all words 𝑤 ∈ (𝐴 ∪ 𝐴)*(𝐵 ∪ 𝐵)(𝐴 ∪ 𝐴)*, if there is a rule in ℛ
giving 𝑤 −→𝑇 𝑤′ then the rule is unique.

(iv) There is a single rule from 𝐴*𝐵𝐴* × 𝐴*𝐵𝐴* and a single rule from
𝐴*𝐵𝐴* × 𝐴*𝐵𝐴*, moreover these rules are such that they re-write ev-
erything between the 𝐿 and 𝑅 markers, namely if there are rules giving
𝑢 −→𝑇 𝑤0 and 𝑢 −→𝑇 𝑤0 for a 𝑢 ∈ 𝐴*𝐵𝐴* then the rules are (𝑢,𝑤0) and
(𝑢,𝑤0), respectively.

3. 𝑇 has an undecidable circular word problem. In particular it is undecidable
whether 𝑇 has a circular derivation 𝑤0 −→*

𝑇 𝑤0 where 𝑤0 ∈ 𝐴*𝐵𝐴* is the
word appearing in rules of 2(iv). Note that 𝑤0 and 𝑢 in case 2(iv) are fixed
words from the construction of the semi-Thue system 𝑇𝑀 for a TM 𝑀 , and
𝑤0 ̸= 𝑢.
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The special (𝐵 ∪ 𝐵)-determinism of 𝑇 can be interpreted as derivations being
in two different phases: the normal phase and the overlined phase. Transitioning
between phases is via the unique rules from 2(iv). It is straightforward to see that all
derivations do not go through phase changes and that the phase is changed more than
once if and only if 𝑇 has a circular derivation. The system considered is now clear
from the context and we write the derivations omitting the index 𝑇 simply as −→.

We now add a few additional rules to 𝑇 : we remove the unique rule (𝑢,𝑤0) and
replace it with one extra step by introducing rules (𝑢, 𝑠) and (𝑠, 𝑤0) where 𝑠 is a
new symbol for the intermediate step. The corresponding overlined rules (𝑢, 𝑠) and
(𝑠, 𝑤0) are added also to replace the rule (𝑢,𝑤0). These new rules are needed in
identifying the border between words 𝑢 and 𝑣, and adding them has no effect on the
behaviour of 𝑇 .

By Theorem 2 we have the following lemma.

Lemma 6. Assume that the semi-Thue system 𝑇 is constructed as above. Then 𝑇 has
an undecidable individual circular word problem for the word 𝑤0.

We now reduce the individual circular word problem of the system 𝑇 to the
conjugate-PCP.

Let ℛ = {𝑡0, 𝑡1, . . . , 𝑡ℎ−1, 𝑡ℎ}, where the rules are pairs 𝑡𝑖 = (𝑢𝑖, 𝑣𝑖). We denote
by 𝑙𝑥 and 𝑟𝑥 the left and right desynchronizing morphisms defined by

𝑙𝑥(𝑎) = 𝑥𝑎, 𝑟𝑥(𝑎) = 𝑎𝑥

for all words 𝑥. In the following we consider the elements of ℛ as letters. Denote
by 𝐴𝑗 the alphabet 𝐴 where letters are given subscripts 𝑗 = 1, 2. Define morphisms
ℎ, 𝑔 : (𝐴1 ∪ 𝐴2 ∪ 𝐴1 ∪ 𝐴2 ∪ {#,#, 𝐼} ∪ ℛ)* → {𝑎, 𝑏, 𝑑, 𝑒, 𝑓,#, $, £}* according
to the following table:

ℎ 𝑔

𝐼 $𝑙𝑑2(𝑤0#)𝑑 £𝑒𝑒,
𝑥1 𝑑𝑥𝑑 𝑥𝑒𝑒, 𝑥 ∈ {𝑎, 𝑏}
𝑥2 𝑑𝑑𝑥 𝑥𝑒𝑒, 𝑥 ∈ {𝑎, 𝑏}
𝑡𝑖 𝑑−1𝑙𝑑2(𝑣𝑖) 𝑟𝑒2(𝑢𝑖), 𝑡𝑖 ̸∈ {𝑡ℎ−1, 𝑡ℎ}
𝑡ℎ−1 𝑑𝑠𝑓𝑓 𝑟𝑒2(𝑢#)

𝑡ℎ 𝑓$£𝑙𝑒2(𝑤0#)𝑒𝑒 𝑠𝑓𝑓𝑓£$𝑑𝑑
# 𝑑𝑑#𝑑 #𝑒𝑒

𝑥1 𝑥𝑒𝑒 𝑥𝑑𝑑, 𝑥 ∈ {𝑎, 𝑏}
𝑥2 𝑒𝑥𝑒 𝑥𝑑𝑑, 𝑥 ∈ {𝑎, 𝑏}
𝑡𝑖 𝑒−2𝑙𝑒2(𝑣𝑖)𝑒 𝑟𝑑2(𝑢𝑖), 𝑡𝑖 ̸∈ {𝑡ℎ−1, 𝑡ℎ}
𝑡ℎ−1 𝑠𝑓 𝑟𝑑2(𝑢#)

𝑡ℎ 𝑓𝑓£ 𝑠𝑓𝑓𝑓$

# 𝑒#𝑒𝑒 #𝑑𝑑
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Here the re-writing rules are of the form 𝑡𝑖 = (𝑢𝑖, 𝑣𝑖), for some 𝑢𝑖, 𝑣𝑖. The following
rules play important roles:
𝑡ℎ−1 = (𝑢, 𝑠), where 𝑢 is the unique word such that (𝑢,𝑤0) ∈ 𝑅, and
𝑡ℎ = (𝑠, 𝑤0).

We begin by examining the form of the images of ℎ and 𝑔. The morphisms are
modifications of the ones in Chapter 3 with slight alterations made such that it is pos-
sible to have (finite) solutions to the conjugate-PCP instance with easily identifiable
borders between the factors 𝑢 and 𝑣 using special symbols $ and £. The symbols 𝑑, 𝑒
and 𝑓 function as desynchronizing symbols. The desynchronizing symbols 𝑑 and 𝑒

make sure that in the solution 𝑤 the factors that will represent the configurations of
the semi-Thue system 𝑇 are of the correct form, that is of the form where the deter-
minism is kept intact. This follows from the forms of ℎ and 𝑔: under 𝑔 all images are
desynchronized by either 𝑒2 (non-overlined letters) or 𝑑2 (overlined letters). To get
similarly desynchronized factors in the image under ℎ we note that in the pre-image
the words between two #-symbols (similarly for overlined symbols #) are of the
form 𝛼𝑡𝛽 where 𝛼 ∈ {𝑎1, 𝑏1}, 𝛽 ∈ {𝑎2, 𝑏2} and 𝑡 ∈ ℛ (with end markers 𝐿 and
𝑅 omitted from 𝛼 and 𝛽). The symbol 𝑓 is not really used in desynchronizing but
making sure that the change between phases is carried out correctly.

The following lemma is useful in our proof:

Lemma 7. The images ℎ(𝑤) and 𝑔(𝑤) are conjugates if and only if ℎ(𝑤1) and 𝑔(𝑤2)

are conjugates for all conjugates 𝑤1 and 𝑤2 of 𝑤.

Proof. If ℎ(𝑤1) and 𝑔(𝑤2) are conjugates for all conjugates 𝑤1 and 𝑤2 of 𝑤 then
ℎ(𝑤) and 𝑔(𝑤) are conjugates.

Assume then that ℎ(𝑤) and 𝑔(𝑤) are conjugates and let 𝑤1 and 𝑤2 be conjugates
of 𝑤. We may now write 𝑤1 = 𝑥𝑤𝑥−1 and 𝑤2 = 𝑦𝑤𝑦−1. Denote 𝑤𝑥−1 = 𝑤′ and
𝑤𝑦−1 = 𝑤′′. Now ℎ(𝑤1) = ℎ(𝑥𝑤′) = ℎ(𝑥)ℎ(𝑤′) is a conjugate of ℎ(𝑤′)ℎ(𝑥) =

ℎ(𝑤′𝑥) = ℎ(𝑤) and 𝑔(𝑤2) = 𝑔(𝑦𝑤′′) = 𝑔(𝑦)𝑔(𝑤′′) is a conjugate of 𝑔(𝑤′′)𝑔(𝑦) =

𝑔(𝑤′′𝑦) = 𝑔(𝑤). By our assumption also ℎ(𝑤1) and 𝑔(𝑤2) are conjugates.

Next we will show that a circular derivation beginning from word 𝑤0 exists in 𝑇

if and only if there is a solution to the conjugate-PCP instance (ℎ, 𝑔). We will prove
the claim in the following two lemmata.

Lemma 8. If there is a circular derivation in 𝑇 beginning from 𝑤0, then there exists
a non-empty word 𝑤 such that ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢 for some words 𝑢 and 𝑣.

Proof. Assume that a circular derivation exists. The derivation is of the form 𝑤0 =

𝛼1𝑢1𝛽1 → 𝛼1𝑣1𝛽1 = 𝛼2𝑢2𝛽2 → · · · → 𝑢 → 𝑠 → 𝑤0 = 𝛼1𝑢1𝛽1 → · · ·𝑢 → 𝑠 →
𝑤0. This derivation can be coded into a word

35



Esa Sahla

𝑤 = 𝐼𝑤1#𝑤2#𝑤3# · · ·#𝑡ℎ−1𝑡ℎ𝑤1#𝑤2#𝑤3# · · ·#𝑡ℎ−1𝑡ℎ,

where 𝑤𝑖 = 𝛼𝑖𝑡𝑖𝛽𝑖 for each 𝑖 and where we recall that 𝑡𝑖 = (𝑢𝑖, 𝑣𝑖) is the unique
rewriting rule used in each derivation step. The rules 𝑡ℎ−1 and 𝑡ℎ appear right before
the transition to overlined derivation as they correspond to the final and intermediate
steps before the transition. Let us consider the images of 𝑤 under the morphisms ℎ
and 𝑔:

ℎ(𝑤) = $𝑙𝑑2(𝑤0#𝛼1𝑣1𝛽1#𝛼2𝑣2𝛽2# · · ·#𝑠)𝑓𝑓𝑓$£𝑙𝑒2(𝑤0#𝛼1𝑣1𝛽1 · · ·#𝑠)𝑓𝑓𝑓£)

and

𝑔(𝑤) = 𝑟𝑒2(£𝛼1𝑢1𝛽1#𝛼2𝑢2𝛽2# · · ·#𝑢#)𝑠𝑓𝑓𝑓£𝑟𝑑2($𝛼1𝑢1𝛽1 · · ·#𝑢#)𝑠𝑓𝑓𝑓$).

These images are indeed very similar. The images match at all positions that do not
contain a desynchronizing symbol (𝑑 or 𝑒) or a special symbol ($ or £). Thus, if
we erased all of these non-matching symbols we would have images that are equal
(and of the form 𝑞2 for a word 𝑞). Also the non-matching symbols are such that 𝑑
is always matched with 𝑒 and $ is always matched with £. It is quite clear that the
factors in both ℎ(𝑤) and 𝑔(𝑤) beginning and ending in the same special symbol are
the same, that is, the factors 𝑢 = $ · · · $ and 𝑣 = £ · · · £ appearing in both images are
equal. It follows that ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢, which proves our claim.

Lemma 9. If there exists a non-empty word 𝑤 such that ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢

for some words 𝑢 and 𝑣, then there is a circular derivation in 𝑇 beginning from 𝑤0.

Proof. Firstly we show that the factor 𝑓3 must appear in ℎ(𝑤) and hence 𝑡ℎ−1𝑡ℎ or
𝑡ℎ−1𝑡ℎ is a factor in 𝑤. Assume the contrary: there is no factor 𝑓3 in ℎ(𝑤).

From the construction of 𝑔 we know that also ℎ(𝑤) is desynchronized so that
between each letter there is either a factor 𝑑2 or 𝑒2. Conjugation of 𝑔(𝑤) does not
break this property except possibly for the beginning and the end of ℎ(𝑤). Note ℎ(𝑤)
could start and end in a single desynchronizing symbol.

Take now the first letter 𝑐 of 𝑤. We can assume that it is a non-overlined letter as
the considerations are similar for the overlined case. The letter 𝑐 cannot be 𝑡ℎ−1 as
it would have to be followed by 𝑡ℎ: 𝑓2 does not appear as a factor under 𝑔 without
𝑓3, and 𝑡ℎ−1𝑡ℎ produces 𝑓4, which is uncoverable by 𝑔. From the construction of ℎ
we see that the letters following 𝑐 must also be non-overlined, otherwise the desyn-
chronization would be broken. Thus the desynchronizing symbol is the same for all
these following letters. But as we can see from the form of the morphisms ℎ and 𝑔,
we have a different desynchronizing symbols under 𝑔 for 𝑐 and its successors. It is
clear that ℎ(𝑔) must contain both 𝑑 and 𝑒 and so 𝑤 must have both non-overlined and
overlined letters. If there is a change in the desynchronizing symbol in ℎ(𝑤) then it
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contradicts the form of the images under 𝑔. Hence we must have the factor 𝑡ℎ−1𝑡ℎ in
𝑤 to make the transition without breaking the desynchronization.

The images of the factor 𝑡ℎ−1𝑡ℎ are as follows:

ℎ(𝑡ℎ−1𝑡ℎ) = 𝑑𝑠𝑓𝑓𝑓$£𝑙𝑒2(𝑤0#)𝑒𝑒

and
𝑔(𝑡ℎ−1𝑡ℎ) = 𝑟𝑒2(𝑢#)𝑠𝑓𝑓𝑓$£𝑑𝑑.

As we can see the desynchronizing symbols do not match. Hence we also must
have the overlined copy of this factor in 𝑤, that is, the factor 𝑡ℎ−1𝑡ℎ𝐼 , the images of
which are as follows (the letter 𝐼 is a forced continuation to the overlined factor to
account for the special symbols $ and £):

ℎ(𝑡ℎ−1𝑡ℎ𝐼) = 𝑠𝑓𝑓𝑓£$𝑙𝑑2(𝑤0#)𝑑

and
𝑔(𝑡ℎ−1𝑡ℎ𝐼) = 𝑟𝑑2(𝑢#)𝑠𝑓𝑓𝑓$£𝑒𝑒.

Either one of these factors has one swap between symbol 𝑑 and 𝑒. From the above
we concluded that we need an even number of these swaps as for every factor 𝑡ℎ−1𝑡ℎ
we must also have the factor 𝑡ℎ−1𝑡ℎ𝐼 and vice versa. It is possible that ℎ(𝑤) ends
in the letter 𝑓 . In this case the swap happens ”from the end to the beginning”, i.e.,
the prefix of a factor doing the swap is at the end of 𝑤 and the remaining suffix is
at the beginning of 𝑤. The following proposition shows that we can in fact restrict
ourselves to the case where the factors 𝑡ℎ−1𝑡ℎ and 𝑡ℎ−1𝑡ℎ are intact, that is, the swap
does not happen from the end to the beginning of ℎ(𝑤) as a result of the conjugation
between ℎ(𝑤) and 𝑔(𝑤).

Proposition. It may be assumed that the first and last symbols of ℎ(𝑤) are $ and £.

Proof of proposition. If ℎ(𝑤) is not of the desired form then it has £$ as a factor (by
above the symbols from 𝑡ℎ−1𝑡ℎ𝐼 are in 𝑤). Images of the letters under ℎ do not have
£$ as a factor so there is a factorization 𝑤 = 𝑤1𝑤2 such that ℎ(𝑤1) ends in £ and
ℎ(𝑤2) begins with $ (𝑤1 ends in 𝑡ℎ and 𝑤2 begins with 𝐼). By Lemma 7, ℎ(𝑤) and
𝑔(𝑤) are conjugates if and only if ℎ(𝑤2𝑤1) and 𝑔(𝑤2𝑤1) are, where now ℎ(𝑤2𝑤1)

has $ as the first symbol and £ as the last symbol.

Now by the above proposition we may assume that 𝑤 begins with 𝐼 and ends
with 𝑡ℎ. From this it also follows that when ℎ(𝑤) = 𝑢𝑣 and 𝑔(𝑤) = 𝑣𝑢 the word
𝑢 has $ as the first and the last symbol and 𝑣 has £ as the first and the last symbol.
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It follows that 𝑤 = 𝐼 · · · 𝑡ℎ · · · 𝑡ℎ, where the border between 𝑢 and 𝑣 is in the image
ℎ(𝑡ℎ):

ℎ(𝑤) = $𝑙𝑑2(𝑤0#)𝑑 · · · 𝑓$£𝑙𝑒2(𝑤0#)𝑒𝑒 · · · 𝑓𝑓£

𝑔(𝑤) = £𝑒𝑒 · · · 𝑠𝑓𝑓𝑓£$𝑑𝑑 · · · 𝑠𝑓𝑓𝑓$

𝑢 𝑣

𝑣 𝑢

Here the border between 𝑢 and 𝑣 need not be in the image of the same instance
of 𝑡ℎ. Nevertheless we know by above that in the image under 𝑔 the word 𝑢 begins
with $𝑙𝑑2(𝑤0#)𝑑. To get this image as a factor of 𝑔(𝑤) we must have 𝑡ℎ𝛼1𝑡1𝛽1# in
𝑤, where 𝑡1 = (𝑢1, 𝑣1) is the first rewriting rule used and 𝑤0 = 𝛼1𝑢1𝛽1. Now

ℎ(𝑡ℎ𝛼1𝑡1𝛽1#) = 𝑓$£𝑙𝑒2(𝑤0#𝛼1𝑣1𝛽1#)𝑒𝑒

which shows that
𝐼𝛼1𝑡1𝛽1#𝛼2𝑡2𝛽2# ∈ 𝑤 (2)

where by the (𝐵 ∪𝐵)-determinism of 𝑇 rule 𝑡2 ∈ ℛ is the unique rule and 𝛼1, 𝛼2 ∈
{𝑎1, 𝑏1}*∪{𝜀} and 𝛽1, 𝛽2 ∈ {𝑎2, 𝑏2}* ∪{𝜀} are unique words such that 𝑔(𝛼2𝑡2𝛽2) =

𝑟𝑒2(𝛼2𝑢2𝛽2) = 𝑟𝑒2(𝛼1𝑣1𝛽1). Again,

ℎ(𝐼𝛼1𝑡1𝛽1#𝛼2𝑡2𝛽2#) = $𝑙𝑑2(𝑤0#𝛼1𝑣1𝛽1#𝛼2𝑣2𝛽2#)𝑑

which as also a factor of 𝑔(𝑤) gives that

𝑡ℎ𝛼1𝑡1𝛽1#𝛼2𝑡2𝛽2#𝛼3𝑡3𝛽3# ∈ 𝑤 (3)

for a unique 𝑡3 ∈ ℛ and 𝛼3 ∈ {𝑎1, 𝑏1}* ∪ {𝜀}, 𝛽3 ∈ {𝑎2, 𝑏2}* ∪ {𝜀}.
It is easy to see that the words given by this procedure beginning with 𝐼 or 𝑡ℎ (as

in 2 and 3, respectively) contain derivations of the system 𝑇 starting from 𝑤0 where
configurations are represented as words between #-symbols and consecutive config-
urations in these words are also consecutive in 𝑇 (as is explained in the beginning of
the proof), that is, we get from the former to the latter by a single derivation step.

From the finiteness of 𝑤 it follows that long enough factors of 𝑤 with the forms
as in 2 and 3 represent cyclic computations: the configuration/symbol 𝑠 is reached
eventually and from there we have the rule (𝑠, 𝑤0) which starts a new cycle. We
conclude that 𝑇 must have a cyclic computation starting from configuration 𝑤0.

Lemmas 6, 8 and 9 together yield our main theorem:

Theorem 4. The conjugate-PCP is undecidable.
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This result does not generalize using this same construction by say, adding more
desynchronizing symbols and border markers for each element in the permutation.
The generalization of the conjugate-PCP would be the following problem:

Problem (Image Permutation Post Correspondence Problem). Given two morphisms
ℎ, 𝑔 : 𝐴* → 𝐵*, does there exist a word 𝑤 ∈ 𝐴+ and an 𝑛-permutation 𝜎 such that
ℎ(𝑤) = 𝑢1𝑢2 · · ·𝑢𝑛 and 𝑔(𝑤) = 𝑢𝜎(1)𝑢𝜎(2) · · ·𝑢𝜎(𝑛) for some words 𝑢1, . . . , 𝑢𝑛 ∈
𝐵*?

The reason the construction does not work for the general 𝑛-permutations is that
allowing more factors to be permuted can make solutions that do not describe TM
computations. This is because of special cases for different values of 𝑛 and 𝜎, but
also by the fact that the permutated factors may be single letters. In fact any solution
𝑤 that produces Abelian equivalent words ℎ(𝑤) and 𝑔(𝑤) also has a permutation that
makes one of the words into the other. A ”simple” proof using the techniques in this
chapter is for now deemed unlikely, and some other approach may prove to be more
fruitful.

As a related result we note that PCP instances where one of the morphisms is a
permutation of the other are undecidable. Indeed, it was shown by Halava and Harju
in [25] that the PCP is undecidable for instances (ℎ, ℎ𝜋), where ℎ : 𝐴* → 𝐵* is a
morphism and 𝜋 : 𝐴* → 𝐴* is a permutation.
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5 A Problem In Word Shuffling

In formal language theory the study on the shuffling operator goes back at least to
the 1960s; see Ginsburg and Spanier [26]. The shuffle operation appears in different
types of applicational problems like concurrency of processes ([27; 28]) and multi-
point communication ([29]), to mention a few. The applicability to these problems
led to a lot of theoretical research on shuffling in the 70’s and 80’s (see for example
[30; 31]). Since then, the operation has occurred in many contexts including formal
languages, computability, and process algebras; see e.g. [32; 33]. Therefore, it is fair
to say that shuffling is an important topic in formal language and automata theory;
see [34].

Let 𝐴 be an alphabet. The shuffle operation� on words over 𝐴 is defined recur-
sively as follows: for words 𝑢, 𝑣 ∈ 𝐴* and letters 𝑎, 𝑏 ∈ 𝐴,

𝑎𝑢� 𝑏𝑣 = 𝑎(𝑢� 𝑏𝑣) ∪ 𝑏(𝑎𝑢� 𝑣) ,

𝜀� 𝑢 = 𝑢� 𝜀 = {𝑢}.

Note that a shuffle of two words is always a set of words. For languages 𝐿1, 𝐿2 ∈ 𝐴*,
the shuffle is defined by

𝐿1� 𝐿2 =
⋃︁

𝑢∈𝐿1,𝑣∈𝐿2

𝑢� 𝑣 .

We give the following well-known results as propositions, the proofs can be
found in [35].

Proposition 1. For two regular languages 𝐿1 and 𝐿2, also 𝐿1� 𝐿2 is regular.

Proposition 2. The family of the context-free languages is not closed under the shuf-
fle operation, but 𝐿�𝑅 is context-free for context-free 𝐿 and regular 𝑅.

Proposition 3. It is undecidable for context-free languages 𝐿 whether there are
context-free languages 𝐿1 and 𝐿2 with 𝐿1, 𝐿2 ̸= {𝜀} such that 𝐿 = 𝐿1� 𝐿2.

The shuffle of equal length words 𝑢 and 𝑣 is called perfect, denoted by �𝑝, if
the letters of the two words alternate starting from the first letter of 𝑢 (in the lit-
erature also the term interleaving is used to refer to the perfect shuffle, and is de-
noted by 𝐼(𝑢, 𝑣)). Formally, if 𝑢 = 𝑎1𝑎2 · · · 𝑎𝑛 and 𝑣 = 𝑏1𝑏2 · · · 𝑏𝑛 then 𝑢�𝑝 𝑣 =
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𝑎1𝑏1𝑎2𝑏2 · · · 𝑎𝑛𝑏𝑛. The perfect shuffle can also be defined for words that are not
of equal length by simply catenating the remaining suffix of the longer word as the
suffix of the shuffle word when all the letters of the shorter word have been ex-
hausted. Note also that the prefect shuffle of two words is a single word. Indeed
𝑢�𝑝 𝑣 ∈ 𝑢� 𝑣. In our considerations the equal length definition is sufficient as we
are only shuffling words of equal length.

In Henshall et al. [36] the authors considered the following four self-shuffles:
𝑤 � 𝑤, 𝑤 � 𝑤𝑅, 𝑤 �𝑝 𝑤 and 𝑤 �𝑝 𝑤𝑅. In fact these notions were extended
in [36] to languages rather than single words. In this chapter we consider a special
type of shuffle which can be thought of as a type of a self-shuffle where we look at
words that are shuffled with their own images under a letter-to-letter morphism 𝜑. In
particular, we are interested in the existence of such words in the context of regular
languages: given a regular language 𝑅 and a morphism 𝜑 can we find a word 𝑤 so
that 𝑅 contains a word in 𝑤� 𝜑(𝑤)?

We prove that, for given a regular language 𝑅 and a letter-to-letter morphism 𝜑,
it is undecidable whether or not there exists a word 𝑤 such that 𝑤� 𝜑(𝑤) ∩𝑅 ̸= ∅.
This result was already presented by Engelfriet and Rozenberg in [37], where the
authors showed that it is undecidable whether or not 𝑀 ∩𝐿{0,1} = ∅, where 𝑀 is an
arbitrary regular language and 𝐿{0,1} =

⋃︀
𝑤∈{0,1}⋆ 𝑤�𝑤. We present a more direct

proof of this result in this chapter. In [37] overlined letters serve the same purpose
as the substitution 𝜑 here. In the rest of the chapter overlined symbols are not to be
confused with the ones in the problem formulation from [37].

5.1 Perfect shuffle
In the case of the perfect shuffle, the above problem is rather straightforward. Indeed,
for a given word 𝑤, the language 𝑤�𝑝 𝜑(𝑤) is a singleton, and the language

𝐿 =
⋃︁

𝑤∈𝐴*

𝑤�𝑝 𝜑(𝑤)

is regular. To see this, let ℎ be the morphism defined by ℎ(𝑎) = 𝑎𝜑(𝑎) for all 𝑎 ∈ 𝐴.
For a word 𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛 we have

ℎ(𝑤) = ℎ(𝑎1𝑎2 · · · 𝑎𝑛) = 𝑎1𝜑(𝑎1)𝑎2𝜑(𝑎2) · · · 𝑎𝑛𝜑(𝑎𝑛).

We then have 𝐿 = ℎ(𝐴*). It follows that 𝐿 ∩ 𝑅 is regular for all regular 𝑅, and we
can effectively check the emptiness of 𝐿 ∩𝑅.

The case of perfect shuffle with the image of the reversed word (or image of the
word reversed, as 𝜑(𝑤𝑅) = 𝜑(𝑤)𝑅 for letter to letter morphisms) can also be seen to
be decidable by modifying the results in [36]. It was shown there that the language
𝐿′ =

⋃︀
𝑤∈𝐿𝑤�𝑝𝑤

𝑅 is context-free for all regular languages 𝐿. In a similar fashion
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it can be shown that also the language 𝐿′′ =
⋃︀

𝑤∈𝐴* 𝑤�𝑝 𝜑(𝑤
𝑅) is context-free; see

the proof in [36]. From Lemma 1 it follows that 𝐿′′∩𝑅 is context-free for all regular
languages 𝑅, and by Lemma 2 the emptiness is decidable for these languages.

Therefore, we have

Theorem 5. Given a regular language 𝑅 and a letter-to-letter morphism 𝜑, the fol-
lowing problems are decidable:

1. does there exist a word 𝑤 such that 𝑤�𝑝 𝜑(𝑤) ∩𝑅 ̸= ∅.

2. does there exist a word 𝑤 such that 𝑤�𝑝 𝜑(𝑤
𝑅) ∩𝑅 ̸= ∅.

5.2 Regular shuffle
As opposed to the perfect shuffle, regular shuffle has a lot more freedom in terms
of the lengths of the factors alternating between the words. This freedom is indeed
enough to make our problem undecidable.

In the proof of Theorem 6 we reduce our shuffle problem to the Post Correspon-
dence Problem.

Theorem 6. Given a regular language 𝑅 and a letter-to-letter morphism 𝜑, it is
undecidable whether or not there exists a word 𝑤 such that 𝑤� 𝜑(𝑤) ∩𝑅 ̸= ∅.

Proof. Let (ℎ1, ℎ2) be an instance of the Post Correspondence Problem (PCP) with
ℎ1, ℎ2 : 𝐴

* → 𝐴*.
We build a new alphabet using the letters from 𝐴. For each letter 𝑎 ∈ 𝐴, we

will have two colours: colour 𝑎 and colour 𝑎. Now for each letter 𝑏 ∈ 𝐴, we will
take copies of that letter coloured with 𝑎 and 𝑎 for all 𝑎 ∈ 𝐴 denoted by 𝑏𝑎 and
𝑏𝑎, respectively. We denote the alphabets of these coloured letters, coloured by 𝑎

and 𝑎, respectively, by 𝐴𝑎 and 𝐴𝑎. The sets of underlined and overlined colours are
𝒞 = {𝑎 | 𝑎 ∈ 𝐴} and 𝒞 = {𝑎 | 𝑎 ∈ 𝐴}, respectively. Let also

𝐴𝒞 =
⋃︁
𝑎∈𝐴

𝐴𝑎 and 𝐴𝒞 =
⋃︁
𝑎∈𝐴

𝐴𝑎

denote the full sets of underlined and overlined coloured letters, respectively. Let
𝑒 : (𝐴𝒞 ∪ 𝐴𝒞)

* → 𝐴* be the eraser morphism that deletes the colours from the
coloured letters returning them as letters in 𝐴. For a word 𝑤 ∈ 𝐴*, we denote by
𝑤(𝑎) the word 𝑤 with the colouring 𝑎 of each of its letters so that, 𝑒(𝑤(𝑎)) = 𝑤. If
a word 𝑤 is coloured with (possibly) multiple colours from 𝒞 without specifying the
colouring we write it as 𝑤(𝒞), which is equivalent to 𝑤 ∈ 𝐴*

𝒞 (and similarly for 𝒞).
Now, define 𝑅 = 𝐿1 ∩ 𝐿2, where

𝐿1 = {𝑢𝑣 | ∃𝑎 ∈ 𝐴 : ℎ1(𝑎) = 𝑒(𝑢), 𝑢 ∈ 𝐴*
𝒞 , 𝑣 ∈ 𝐴*

𝑎}+ (4)
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ℎ1(𝑎1) ℎ1(𝑎2) ℎ1(𝑎𝑛)

ℎ2(𝑎1) ℎ2(𝑎2) ℎ2(𝑎𝑛)

· · ·

Figure 4. Colouring of e(w).

and
𝐿2 =

(︀
𝐴*

𝒞 · {𝑤 | ∃𝑎 ∈ 𝐴 : ℎ2(𝑎) = 𝑒(𝑤), 𝑤 ∈ 𝐴*
𝑎}
)︀+

. (5)

The words in 𝐿1 are of the form 𝜔 = 𝑢1𝑣1 · · ·𝑢𝑘𝑣𝑘, where each 𝑢𝑖 is an image
of a single letter from 𝐴 under ℎ1, say 𝑏𝑖, with any colouring of its letters from the
set 𝒞, and 𝑣𝑖 is a word coloured with 𝑏𝑖 where ℎ1(𝑏𝑖) = 𝑒(𝑢).

In 𝐿2 the words are of the form 𝜎 = 𝑠1𝑡1 · · · 𝑠𝑙𝑡𝑙 where the factors 𝑠𝑖 have any
colouring from the set 𝒞, and 𝑡𝑖 are images of single letters from 𝐴 coloured with
overlined colours corresponding to their pre-images.

It is clear that the language 𝑅 = 𝐿1 ∩ 𝐿2 is regular as an intersection of two
regular languages.

Let then 𝜑 : 𝐴𝒞 → 𝐴𝒞 be a letter-to-letter substitution that recolours the under-
lined words: for all 𝑎, 𝑏 ∈ 𝐴, let

𝜑(𝑏(𝑎)) = 𝑏(𝑎).

Claim 1. There exists a word 𝑤 ∈ 𝐴𝒞 such that 𝑤 � 𝜑(𝑤) ∩ 𝑅 ̸= ∅ if and only if
there exists a word 𝜐 = 𝑎1𝑎2 · · · 𝑎𝑛 such that 𝑒(𝑤) = ℎ1(𝜐) and ℎ1(𝜐) = ℎ2(𝜐).

Proof. Assume first that such a word 𝜐 exists and thus

𝑒(𝑤) = ℎ1(𝜐) = ℎ1(𝑎1)ℎ1(𝑎2) · · ·ℎ1(𝑎𝑛).

Language 𝑅 is over 𝐴𝒞 ∪ 𝐴𝒞 which means that 𝑤 has a colouring, which is defined
in the following way:

Take 𝑒(𝑤) = ℎ1(𝜐). By the assumptions 𝑒(𝑤) also has a ℎ2-cover. Colour each
letter of 𝑤 with the corresponding colour of the letter that covers it under ℎ2 (see
Figure 4 for the coloring under morphism ℎ2). For example, if an occurrence of
the letter 𝑎 is covered by ℎ2(𝑎𝑘) then 𝑎 will be of colour 𝑎𝑘. Therefore with this
colouring, we have

𝑤 = ℎ1(𝑎1)
(𝒞)ℎ1(𝑎2)

(𝒞) · · ·ℎ1(𝑎𝑛)(𝒞) = ℎ2(𝑎1)
(𝑎1)ℎ2(𝑎2)

(𝑎2) · · ·ℎ2(𝑎𝑛)(𝑎𝑛)

and
𝜑(𝑤) = ℎ2(𝑎1)

(𝑎1)ℎ2(𝑎2)
(𝑎2) · · ·ℎ2(𝑎𝑛)(𝑎𝑛).
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It follows that the word

ℎ1(𝑎1)
(𝒞)ℎ2(𝑎1)

(𝑎1)ℎ1(𝑎2)
(𝒞)ℎ2(𝑎2)

(𝑎2) · · ·ℎ1(𝑎𝑛)(𝒞)ℎ2(𝑎𝑛)(𝑎𝑛)

belongs to both 𝑤� 𝜑(𝑤) and 𝑅, which proves the claim from right to left.

Let us prove the other direction. Assume that there exists a word 𝑤 such that
𝑤 � 𝜑(𝑤) ∩ 𝑅 is not empty, and choose a word 𝜏 ∈ 𝑤 � 𝜑(𝑤) ∩ 𝑅. From the

construction of 𝑅 = 𝐿1 ∩ 𝐿2 it follows that 𝜏 = 𝑢
(𝒞)
1 𝑣

(𝒞)
1 𝑢

(𝒞)
2 𝑣

(𝒞)
2 · · ·𝑢(𝒞)𝑘 𝑣

(𝒞)
𝑘 , for

some 𝑢𝑖, 𝑣𝑖 and 𝑘 > 0. Moreover for each 𝑢𝑖 with 𝑖 ∈ {1, . . . , 𝑘} the word 𝑒(𝑢𝑖)

is an image of a letter from 𝐴 under the morphism ℎ1. Denote by 𝑎𝑖 the letter
corresponding to 𝑢𝑖, that is, 𝑒(𝑢𝑖) = ℎ1(𝑎𝑖).

Since 𝜏 ∈ 𝐿1 each 𝑣𝑗 is coloured with the overlined colour corresponding to 𝑎𝑗
determined by 𝑢𝑗 . Also, since 𝜏 ∈ 𝐿2, for each 𝑣𝑗 we actually have that 𝑒(𝑣𝑗) =

ℎ2(𝑎𝑗). It follows that

𝜏 = ℎ1(𝑎1)
(𝒞)ℎ2(𝑎1)

(𝑎1)ℎ1(𝑎2)
(𝒞)ℎ2(𝑎2)

(𝑎2) · · ·ℎ1(𝑎𝑘)(𝒞)ℎ2(𝑎𝑘)(𝑎𝑘)

for some letters 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝐴.
On the other hand 𝜏 ∈ 𝑤� 𝜑(𝑤). Here 𝜑 is length preserving with domain 𝐴𝒞

and range 𝐴𝒞 . This implies that

𝑤 = ℎ1(𝑎1)
(𝒞)ℎ1(𝑎2)

(𝒞) · · ·ℎ1(𝑎𝑘)(𝒞)

and
𝜑(𝑤) = ℎ2(𝑎1)

(𝑎1)ℎ2(𝑎2)
(𝑎2) · · ·ℎ2(𝑎𝑘)(𝑎𝑘).

All that 𝜑 does is change the colouring of the letters. Hence in terms of the underlying
alphabet 𝐴 the words do not change. This leads to

𝑒(𝑤) = 𝑒(𝜑(𝑤))

which implies
ℎ1(𝑎1𝑎2 · · · 𝑎𝑘) = ℎ2(𝑎1𝑎2 · · · 𝑎𝑘)

and proves Claim 1.

Now, by Claim 1, a word 𝑤 exists if and only if the instance (ℎ1, ℎ2) of the PCP
has a solution. From this it follows that the existence of a word 𝑤 is also undecidable.

The above is a direct proof for our result using a reduction to the PCP. In [37] the
result is a corollary of a number of other results on the representation of recursively
enumerable languages. It is debatable whether or not the proof in this chapter is more
simple. Nevertheless the reduction to the PCP is an interesting one.

The last remaining case for shuffling a word with its letter-to-letter substitution
is the following:
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A Problem In Word Shuffling

Problem. For a regular language 𝑅 and a morphism 𝜑, does there exist a word 𝑤

such that 𝑤� 𝜑(𝑤𝑅) ∩𝑅 ̸= ∅?

This case remains open for now. We conjecture that it is also an undecidable
problem.
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6 The Fixed Point Problem For Injective
Rational Functions

The problem of interest in this chapter is the fixed point problem of functions. For
functions on finitely generated word semigroups, the problem is formulated in the
following way:

Problem (The fixed point problem for word semigroups). Let 𝐴 be a finite alphabet
and 𝑓 : 𝐴* → 𝐴* be a function. Does there exist a word 𝑤 such that 𝑓(𝑤) = 𝑤.

We shall prove that the fixed point problem is undecidable for injective rational
functions. Rational functions are functions that are realized by rational transductions,
i.e., functions that are defined by finite transducers (defined formally in Section 6.1
below). As a corollary we also acquire a result for computable (recursive) functions
over natural numbers. Our proof applies the undecidability of the injective PCP
introduced in Chapter 2.

For general functions the undecidability of the existence of a fixed point follows
easily from the basic computability results on Turing machines. We can see this by
giving a modification of the classical diagonal argument or by the halting problem,
i.e., by defining a function 𝑓 in a way that it checks for any input 𝑖 whether the 𝑖th
Turing machine halts on its code, we can transform 𝑓 into a function ℎ having a fixed
point 𝑖 if and only if the 𝑖th Turing machine halts on input 𝑖. In this construction the
function ℎ is clearly noncomputable. In this chapter we construct a function which
is computable and has undecidable fixed point problem.

In automata theory the fixed point problem has been studied for cellular au-
tomata; see [38; 39]. There it is shown that it is undecidable whether a cellular
automaton converges to a pattern from a given finite configuration or from any con-
figuration. In particular, it is undecidable whether there is a configuration that is
fixed by the given cellular automaton.

6.1 Rational Transductions
A finite transducer is in essence a finite nondeterministic automaton with an output.
Formally a transducer is a 6-tuple

𝒯 = (𝑄,𝐴,𝐵,𝐸, 𝑞, 𝐹 )
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where

• 𝑄 is the set of states with an initial state 𝑞 ∈ 𝑄 and the set of final states
𝐹 ⊂ 𝑄,

• 𝐴 and 𝐵 are the input and output alphabets, respectively,

• 𝐸 is a finite relation of transitions 𝐸 ⊂ 𝑄×𝐴* ×𝐵* ×𝑄.

We also write 𝑞
𝑢,𝑣−−→ 𝑝 for (𝑞, 𝑢, 𝑣, 𝑝) ∈ 𝐸, where 𝑢 ∈ 𝐴* is the input word and

𝑣 ∈ 𝐵* is the output word. Finite transducers can be presented (similarly to finite
automata) as directed graphs with edges labelled with ordered pairs (𝑢, 𝑣) stating the
input and output of the transition between states.

A computation of a transducer is a sequence of transitions

𝛼 : 𝑝1
𝑢1,𝑣1−−−→ 𝑝2

𝑢2,𝑣2−−−→ · · · 𝑢𝑛,𝑣𝑛−−−→ 𝑝𝑛+1,

where 𝑢1𝑢2 · · ·𝑢𝑛 is called the input word and 𝑣1𝑣2 · · · 𝑣𝑛 is called the output word.
We can simply write 𝑝

𝑢,𝑣−−→ 𝑞 if there exists a computation 𝛼 from 𝑝 to 𝑞 with input
𝑢 and output 𝑣. A computation is accepting if it begins at the initial state and ends in
a final state.

The relation realized by a transducer 𝒯 is

𝜏 = {(𝑢, 𝑣) | there is an accepting computation in 𝒯 with input 𝑢 and output 𝑣}.

A relation realized by a finite transducer is called a rational transduction. A
rational transduction 𝜏 ⊂ 𝐴* × 𝐵* may also be considered as a function 𝜏 : 𝐴* →
2𝐵

*
, where 𝜏(𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝜏}. The domain of 𝜏 is defined to be the set

dom(𝜏) = {𝑤 | 𝜏(𝑤) ̸= ∅}.
In the rest of the chapter we are mostly interested in rational (partial) functions.

These are rational transductions that are functions 𝜏 : dom(𝜏) → 𝐵*, i.e., 𝜏(𝑤) is
single valued for all 𝑤 ∈ dom(𝜏). A rational partial function 𝜏 is a rational function
if dom(𝜏) = 𝐴*.

The family of the rational transductions is closed under compositions; see e.g.
Berstel [40]. For closure properties of rational transductions we give the following
theorem:

Theorem 7. Assume 𝜏1 and 𝜏2 are rational transductions. Then

1. the union 𝜏1 ∪ 𝜏2, and

2. the composition 𝜏1𝜏2 = {(𝑢, 𝑣) | ∃𝑤 : (𝑢,𝑤) ∈ 𝜏1 and (𝑤, 𝑣) ∈ 𝜏2} are
rational transductions.
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The following two theorems give us characterizations of the rational transduc-
tions. Our first characterization (Theorem 8; see [41]) by Nivat is given using a
regular language, intersection, morphism and inverse morphism. The second char-
acterization (Theorem 9; see [42]) by Latteux and Leguy gives a purely morphic
characterization of the rational transductions except for the marker function.

Theorem 8 (Nivat). A mapping 𝜏 : 𝐴* → 2𝐵
*

is a rational transduction if and only
if there exist a regular set 𝑅 and two morphisms 𝑔 and ℎ such that

𝜏(𝑤) = 𝑔(ℎ−1(𝑤) ∩𝑅) .

Theorem 9 (Latteux-Leguy). A mapping 𝜏 : 𝐴* → 2𝐵
*

is a rational transduction if
and only if there exist morphisms ℎ𝑖 and a marking 𝜇 (with 𝜇(𝑤) = 𝑤𝑎 for some
fixed letter 𝑎) such that

𝜏 = ℎ4ℎ
−1
3 ℎ2ℎ

−1
1 𝜇 .

There are many results on the form of the compositions for various different
kinds of transductions. It was shown by Turakainen [43] that the compositions of
morphisms and inverse morphisms without the markings, are exactly the rational
transductions realized by simple transducers, i.e., transducers that have a unique final
state that is also the (unique) initial state.

Theorem 10. The family of rational transductions realized by simple transducers is
equal to the set of all compositions

𝜏 = ℎ4ℎ
−1
3 ℎ2ℎ

−1
1 ,

where ℎ𝑖 is a morphism for all 𝑖 = 1, 2, 3, 4.

6.2 The Fixed Point Problem
We shall employ the undecidability of the injective PCP introduced in Chapter 2 and
have it at work in our next theorem.

Theorem 11. The PCP is undecidable for injective morphisms.

Let 𝐴1 = {1, 2, . . . , 𝑘 − 1} for some 𝑘 ∈ N and choose 𝐴 = 𝐴1 ∪ {0}. Assume
now that 𝑔, ℎ : 𝐴*

1 → 𝐵* are injective morphisms.
Since the regular languages are closed under taking morphic images, inverse

morphic images and taking complements, the languages

𝑅 = 𝑔−1ℎ(𝐴+
1 ) and 𝑅 = 𝐴+ ∖ 𝑔−1ℎ(𝐴+

1 )

are both regular. Let ⊕ and ⊖ be new symbols. Then also the marked language
⊕𝑅 ∪ ⊖𝑅 is regular.
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The mapping

𝜒𝑔−1ℎ(𝑤) =

{︃
⊕𝑤, if 𝑤 ∈ 𝑅,

⊖𝑤, if 𝑤 ∈ 𝑅 .

is rational. Indeed, we can apply Theorem 8 to the morphisms 𝑔′, ℎ′ and the regular
language ⊕𝑅 ∪ ⊖𝑅, where 𝑔′ and ℎ′ are identity functions except that ℎ′(⊕) = 𝜀 =

ℎ′(⊖).
Next we shall define transductions 𝜇ℎ−1𝑔 from ⊕𝑅 to 𝐴+and 𝜇𝐶 from ⊖𝑅 to 𝐴+.

We begin with 𝜇ℎ−1𝑔.
A word 𝑤 belongs to 𝑅 = 𝑔−1ℎ(𝐴+

1 ) if and only if 𝑤 = 𝑔−1ℎ(𝑢) for 𝑢 =

ℎ−1𝑔(𝑤). (Recall that 𝑔 and ℎ are injective.) The image 𝜇ℎ−1𝑔(𝑤) for 𝑤 ∈ ⊕𝑅 is
then defined by

𝜇ℎ−1𝑔(⊕𝑤) = 𝑢, if 𝑔(𝑤) = ℎ(𝑢).

Obviously, this mapping is a rational function as 𝑔 and ℎ are injective.
The transduction 𝜇𝐶 from ⊖𝑅 is defined by

𝜇𝐶(⊖𝑤) = 𝑤01.

Clearly, 𝜇𝐶 is an injective rational function. Now also 𝜇ℎ−1𝑔 ∪ 𝜇𝐶 is a rational
function from {⊕,⊖}𝐴+ to 𝐴+, and it is injective.

Finally, consider the composition 𝜏(𝑔,ℎ) = (𝜇ℎ−1𝑔 ∪ 𝜇𝐶) ∘ 𝜒𝑔−1ℎ. By Theorem 7
it is a rational transduction. By the above constructions,

𝜏(𝑔,ℎ)(𝑤) =

{︃
ℎ−1𝑔(𝑤), if 𝑤 ∈ 𝑅,

𝑤01, if 𝑤 ∈ 𝑅.

Lemma 10. The mapping 𝜏(𝑔,ℎ) is an injective rational function from 𝐴+ to 𝐴+.

Proof. We need to show that 𝜏(𝑔,ℎ) is injective, that is, if 𝜏(𝑔,ℎ)(𝑤1) = 𝜏(𝑔,ℎ)(𝑤2),
then 𝑤1 = 𝑤2. There are three cases:

(1) If 𝑤1, 𝑤2 ∈ 𝑅 (= 𝑔−1ℎ(𝐴+
1 )), then 𝜏(𝑔,ℎ)(𝑤1) = ℎ−1𝑔(𝑤1) = ℎ−1𝑔(𝑤2) =

𝜏(𝑔,ℎ)(𝑤2) if and only if 𝑔(𝑤1) = 𝑔(𝑤2) by injectivity of ℎ. By injectivity of 𝑔 this is
possible if and only if 𝑤1 = 𝑤2.

(2) For 𝑤1 ∈ 𝑅 and 𝑤2 ∈ 𝑅, we have 𝜏(𝑔,ℎ)(𝑤1) ̸= 𝜏(𝑔,ℎ)(𝑤2) as 𝜏(𝑔,ℎ)(𝑤2)

contains symbol 0.
(3) For 𝑤1, 𝑤2 ∈ 𝑅, 𝜏(𝑔,ℎ)(𝑤1) = 𝑤101 = 𝑤201 = 𝜏(𝑔,ℎ)(𝑤2) if and only if

𝑤1 = 𝑤2.
This proves the claim.

Lemma 11. Let 𝜏(𝑔,ℎ) be as in the above. Then 𝜏(𝑔,ℎ)(𝑤) = 𝑤 if and only if 𝑤 is a
solution of the instance (𝑔, ℎ) of the injective PCP.
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Proof. It follows by the above construction that 𝜏(𝑔,ℎ)(𝑤) = 𝑤 if and only if 𝑤 ∈
𝑔−1ℎ(𝐴+

1 ) and ℎ−1𝑔(𝑤) = 𝑤, in other words, if and only if 𝑤 ∈ 𝐴+
1 and 𝑔(𝑤) =

ℎ(𝑤).

Therefore, we have proved our main theorem.

Theorem 12. The fixed point problem is is undecidable for injective rational func-
tions.

6.3 Fixed points in computable functions over N
Next we transform our result on fixed point of rational transduction into a result on
computable functions over the natural numbers. For that we shall use the injective
mapping 𝜎 : 𝐴* → N where a word 𝑤 ∈ 𝐴 is considered as a 𝑘-adic number. More
formally, for a word 𝑤 = 𝑎𝑛 · · · 𝑎0 ∈ 𝐴*, with each 𝑎𝑖 in 𝐴 = {0, 1, . . . , 𝑘 − 1},

𝜎(𝑤) = 𝜎(𝑎𝑛𝑎𝑛−1 · · · 𝑎0) =
𝑛∑︁

𝑖=0

𝑎𝑖𝑘
𝑖.

It is clear that 𝜎 is injective. It is also clear that the functions 𝜎, 𝜎−1 and 𝜏(𝑔,ℎ)
(as constructed in the previous section) are computable (by Turing machines or by
any equivalent model of computability). As a corollary to Theorem 12 we get the
following result by considering the functions 𝑓 = 𝜎𝜏(𝑔,ℎ)𝜎

−1 : N → N for injective
morphisms 𝑔 and ℎ.

Theorem 13. The fixed point problem is undecidable for injective computable func-
tions over N.

Indeed, as the class of the Turing computable functions is equal to the class of
recursive functions, we have proved that the fixed point problem is undecidable for
injective recursive functions over N.
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