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Abstract 

Introduction: Ischemia is defined as the restriction of blood flow to a body organ, such 

as the heart, resulting in a cutback in oxygen supply. Myocardial ischemia is characterized 

by an imbalance between myocardial oxygen supply and demand, causing cardiac 

dysfunction, arrhythmia, myocardial infarction, and sudden death. Positron emission 

tomography myocardial perfusion imaging (PET-MPI) is an examination for accurately 

evaluating blood circulation to the heart muscle at stress and rest. Images obtained from 

this technique can be interpreted by experts or potentially classified by deep learning for 

the diagnosis of cardiac ischemia. Although deep learning has proved to be effective for 

medical image classification tasks, the challenge of small medical image datasets for 

model training remains to exist. Transfer learning is a state-of-the-art technique for 

resolving this challenge by utilizing pre-trained models for a new task. Pre-trained models 

are deep convolutional neural networks (CNNs) trained on a vast dataset, such as 

ImageNet, capable of transferring learned weights to a new classification problem. 

Objective: To study the effectiveness of image classification using transfer learning and 

benchmarking pre-trained CNN models for the classification of myocardial ischemia 

from myocardial polar maps in PET 15O-H2O cardiac perfusion imaging. Subject and 

methods: 138 JPEG polar maps from a 15O-H2O stress perfusion test from patients 

classified as ischemic or non-ischemic were used. Experiments for comparing a total of 

20 pre-trained CNN models were performed. The results were compared against a custom 

CNN developed on the same dataset. Python programming language and its relevant 

libraries for deep learning were used. Results and discussion: Pre-trained models 

showed reliable performance compared to a custom-built CNN. VGG19, VGG16, 

DenseNet169, and Xception were superior among all pre-trained models. Ensemble 

learning improved overall performance, closest to the clinical interpretation level.   

Keywords: Transfer learning, Deep learning, Myocardial Ischemia, PET Imaging, 

Convolutional neural networks 
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1 Introduction 
 

1.1 Preface 

 

Artificial intelligence (AI) and its subclasses, such as machine learning (ML) and deep 

learning (DL), have become the trend of research in the past couple of years in most fields 

of science. ML applications include every aspect of human lives, ranging from self-

driving cars to intelligent health records and disease diagnosis techniques. It has been 

presumed that human intelligence cannot be conquered by machine intelligence for a long 

time because humans benefit from the power of intuition and emotions. However, during 

the last decade, groundbreaking advances in ML proved that AI, in general, can 

outperform human intelligence if provided with enough data and computation 

power.(1,2) Based on this premise, the research in medicine has shifted significantly from 

traditional methods towards AI techniques, specifically DL.(3) Unlike many other fields 

in the industry or science, the objective of AI is not to replace clinicians but rather to aid 

them with a confirmation of the diagnosis or treatment decisions.(1) 

 

Medical imaging has been an essential concept in medical research and clinical practice 

due to the high accuracy and quantitative analysis power in visualizing physiologic and 

pathophysiologic conditions.(4) Additionally, since medical imaging is about processing 

and interpreting images obtained from a myriad of modalities such as microscopy or more 

complex methods, namely, nuclear imaging, it can use various machine learning 

algorithms in any task dealing with image data.(5) 

 

This thesis is a study conducted at the intersection of computer science and medicine, 

where transfer learning is applied to a real-world problem in medicine: the classification 

of images obtained from nuclear imaging to diagnose myocardial ischemia. The results 

of this study will potentially provide insight into how transfer learning can be used in 

real-world practices by clinicians for a more accurate and effective diagnosis of diseases.  
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1.2 Thesis structure 

 

The body of this thesis is organized into five chapters, including chapter 1 

(introduction),  chapter 2 (background), chapter 3 (materials and methods), chapter 4 

(experiment design), and chapter 5 (results and discussion). Overall, the thesis begins 

with an introduction to the problem and the proposed solution, continues with the 

implementation section, and ultimately discusses the work results.  The detailed structure 

of each chapter of the thesis is as follows: 

 

Chapter 1 (Introduction) summarizes the main concepts discussed in this thesis. This 

chapter aims to familiarize the reader with the basic concepts of the study and introduce 

the key topics and aims of this research. Thesis structuring, problem definition, and 

approach positioning are the main contents of this chapter.  

  

Chapter 2 (Background) focuses on defining the main topics of the thesis, such as 

myocardial ischemia and transfer learning. Plus, this chapter aims to provide scientific 

evidence supporting the problem statement. Finally, it attempts to articulate how previous 

studies have contributed to this research field and how this research can add value to the 

existing knowledge.  

 

Chapter 4 (Materials and methods) discloses data gathering and processing details for this 

research while explaining the essential definitions in dataset preparation. 

 

Chapter 5 (Experiment design) elucidates a comprehensive and detailed report on the 

experiment design process of the thesis. Additionally, the challenges in the experiment 

design and the terminology of the methods used in the study are clarified.  

 

Chapter 6 (Results and discussion) unfolds the findings of this study and highlights the 

possible future directions in this research area.  
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1.3 Problem definition 

 

Every year, more than 4.5 million people die because of cardiac diseases.(6) Myocardial 

ischemia has been the most lethal disease globally during the last decade.(6,7) Unlike 

many diseases, statistics of heat-related illnesses are not in favor of developed countries, 

where more than 38% of deaths every year result from cardiac diseases.(8) Therefore, it 

is essential to manage heart problems, including myocardial ischemia. In this regard, the 

early diagnosis of the disease, primarily through advanced imaging techniques such as 

nuclear imaging, can be beneficial and life-saving. (9) 

 

Recently, nuclear imaging techniques such as PET imaging have gained significant 

attention in the diagnosis of myocardial ischemia.(9) The interpretation of PET-MPI 

images is typically performed by clinicians. With the help of AI techniques, clinicians 

can benefit from powerful computer-aided diagnosis (CADx) approaches in their 

interpretations.(10,11) In addition, AI approaches can be helpful in specific tasks, such 

as medical image classification, which is a critical problem in the diagnosis of diseases. 

For example, in the case of myocardial ischemia, "interpretation" of polar map images 

leading to a diagnosis decision is essentially a classification task. In such tasks, clinicians 

decide whether a specific polar map indicates healthy (high perfusion) or ischemic (low 

perfusion) condition.(9,12)  

 

The field of AI-based diagnosis in medical imaging is a broad domain. AI approaches 

can vary significantly in algorithms and implementation based on the problem they seek 

to solve. (13) 

 

In parallel, from the perspective of computer science, image classification is one of the 

fundamental problems that scientists have targeted to solve using AI methods. Because 

of the importance of image classification in various fields, from autonomous driving cars 

to medicine, considerable efforts have been made to develop more efficient and accurate 

AI techniques. As a result, advances in AI have led to significant paradigm shifts in image 

classification techniques, from classic ML methods to DL methods or, more precisely, 

CNNs.(10,11) 
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Starting from the ImageNet competition of the year 2012, CNNs have become one of the 

most popular techniques for image classification.(14) As a result, scientists in medical 

imaging have also tried to benefit from CNNs to solve medical image classification tasks 

for improved diagnosis accuracy.(15) A CNN is simply a predictive model that has been 

trained to understand and classify images from vast amounts of training data.(16,17) 

However, despite promising results of CNNs in most applications, they have been hardly 

adopted in practical medical image classification tasks where real-world data is often 

limited, and computing power is expensive. Additionally, accessing medical data from 

bioinformatic-related centers is ethically challenging.(15,18) 

 

Transfer learning can be alternatively employed to tackle the challenges of developing a 

custom CNN. In transfer learning, the predictive power of a pre-trained CNN model 

gained from huge amounts of data from one task is transferred to a new task.(19–21) 

Various studies in the literature have proposed that transfer learning can leverage the 

performance and efficacy of DL in medical image classification tasks.(22) However, 

since pre-trained models have been initially trained on natural images, the relevance and 

practicality of transfer learning in medical image classification remain an attractive and 

challenging research topic.(23)  

 

1.4 Motivation 

 

From the perspective of image classification and ML in medical imaging, current studies 

focusing on transfer learning-based techniques have been primarily conducted to evaluate 

the performance of one or a few available pre-trained models. The objective of the 

conducted studies in this field has been to assess the validity and reliability of transfer 

learning in medical imaging by targeting a limited number of pre-trained models.(23–25)  

 

Although previous studies have reviewed the feasibility of transfer learning in the 

classification of medical images, due to advances in the development of pre-trained 

models, an exciting research topic is to find the best pre-trained models from a medical 

imaging perspective.(23–29) In other words, existing studies have successfully addressed 

the viability of transfer learning in medical images, leaving many topics unaddressed, 

namely pre-trained model selection and benchmarking.  
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The novelty of this research is not limited to the implementation method and the 

methodology but also the imaging modality involved in the study. The field of nuclear 

medicine has been tied to DL, from image reconstruction and segmentation to image 

classification. However, as of mid-2022, unlike SPECT there is no research on PET-MPI 

polar map classification using transfer learning.(26) 

 

Apart from the scientific value of the topic mentioned above, another motivation for this 

thesis and hopefully a future publication based on the results of this work is to practically 

bring value to the clinical process of diagnosis of myocardial ischemia. As the diagnosis 

of this condition relies on the opinion of doctors interpreting medical images, transfer 

learning can potentially act as applicable leverage to help elevate the accuracy and 

efficacy of clinicians' decision-making in diagnostic measures. Notably, it is not 

suggested that transfer learning or, in general, AI will replace clinicians. Instead, it means 

that doctors will benefit from the power of AI in their decision-making as an assisting 

tool for confirmation.(1,3)  

 

1.5 Research questions 

 

Although the knowledge in the field of transfer learning in medical image classification 

and the use of CNN models in the classification of images obtained from the PET-MPI 

technique is growing fast, the existing knowledge is insufficient in some important 

research topics. According to this, this thesis aims to fulfill the following research 

questions (RQ):   

 

RQ1: Which pre-trained CNN models perform better in the binary classification of PET-

MPI polar maps? 

 

RQ2: How does transfer learning perform for the same dataset and task compared to a 

custom CNN developed and trained from the ground up?  

 

RQ3: What is the optimum input image size of the PET-MPI polar maps for a pre-trained 

CNN model? Or, how does the size of input images for training relate to the performance 

of CNN models?  
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RQ4: How does an ensemble of best transfer learning models (found in RQ1 and RQ2) 

perform compared to every single model and the custom CNN trained on the same data?  

 

1.6 Research objectives 

 

According to the aforementioned research questions to be addressed, this thesis aims to 

achieve the following research objectives (RO): 

 

RO1: Comparing the current state-of-the-art CNN models with each other and with a 

custom CNN trained from scratch on the same dataset.  

 

RO2: Adjusting hyperparameters of available pre-trained CNN models and reviewing 

best settings in the architecture of models for improved performance in our task.  

 

RO3: Building a new CNN model using ensemble learning from best-performing transfer 

learning models based on RO1 and RO2.  
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2 Background 
 

2.1 Myocardial ischemia  

 

2.1.1 Introduction 

 

Even though the data suggest that myocardial ischemia is a lethal disease, it can be 

prevented and treated through practical approaches.(30–32) Given the significance of the 

global burden of coronary artery disease (CAD), developing accurate diagnostic 

techniques is of utmost importance. Non-invasive imaging techniques play an essential 

role in the CAD diagnosis and management and have demonstrated encouraging 

performance and results.(30,32–34) In the realm of cardiac imaging techniques, nuclear 

imaging modalities, including SPECT and PET, are modern approaches allowing for high 

specificity and high sensitivity myocardial perfusion imaging.(33,35) MPI technique 

provides anatomical and functional information about cardiac perfusion in patients with 

known or suspected CAD.(36) 

Advances in AI and ML techniques have expanded to medical imaging territory wherein 

the recent past, only human cognition could perceive and translate abstract medical 

images into clinical interpretation. Over the past decade, CADx has been aiding doctors 

in making decisions based on ML-derived medical image analysis. In recent years, ML 

methods have been extensively used in predictive modeling to satisfy particular tasks 

such as image classification and object detection in medical images. Particularly, DL 

algorithms have gained significant attention due to their higher accuracy outperforming 

human cognition.(1,2,37,38) The use of DL in nuclear imaging has seen significant 

growth, with diverse investigations conducted mainly on the brain and cardiac 

PET/SPECT images demonstrating the feasibility of employing DL methods in image 

classification-based predictive modeling.(2,39) Despite the popularity of DL and its 

effectiveness in image analysis tasks, the fact that DL  algorithms require massive training 

datasets for optimum performance restrains their usability in medical imaging tasks that 

suffer from a shortage of data. In addition to this, from the ground up training of DL 
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algorithms is computationally expensive and hardly accessible. The challenges of training 

from scratch have given rise to the implementation of transfer learning in medical image 

analysis with smaller datasets. (19–21,29) 

Transfer learning is an ML technique that relies on transferring knowledge gained from 

one task to a relatively similar task. This approach is beneficial to DL problems requiring 

immense computational power, large datasets, and lengthy episodes to train neural 

networks.(19–22) A class of neural networks is CNN that is most predominantly used in 

DL algorithms and has been widely applied to medical imaging tasks such as image 

classification showing promising performance.(24) Nevertheless, training CNNs for 

medical image analysis tasks faces the challenge of insufficient data. Transfer learning 

aims to tackle this challenge by employing pre-trained CNN models trained on a huge 

dataset of natural images, supplying learned features similarly found in medical 

images.(29,40) 

 

2.1.2 Pathophysiology 

 

Myocardial ischemia denotes heart conditions arising from the restriction of blood flow 

to the heart muscle through coronary arteries. Various clinical ischemic manifestations 

are caused by obstruction of coronary blood flow by coronary stenosis, thrombosis, 

and/or hyper-constriction (vasospasm) of epicardial and microvascular coronary 

arteries.(41) 

Myocardial ischemia is the consequence of unbalanced myocardial oxygen supply and 

demand. The reduced oxygen supply imputable to restricted myocardial blood flow 

causes reversible myocardial suffering. In chronic conditions, myocardial ischemia may 

cause irreversible injuries such as myocardial infarction and sudden death. The reason is 

that the myocardium suffers the loss of its full ability and capacity to pump 

blood.(12,30,41) 

As the leading cause of mortality worldwide, cardiovascular diseases (CVDs) are a class 

of heart and vessel disorders, including several heart conditions such as CAD. Amongst 

all CVDs, CAD is the primary cause of death.(6,8,42) 
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2.1.3 PET imaging in the diagnosis of myocardial ischemia 

 

A standard diagnostic test is cardiac imaging in patients with known or suspected CAD. 

Non-invasive cardiac imaging tests include magnetic resonance imaging (MRI), 

ultrasound imaging, computed tomography scan (CT), SPECT, and PET. All these tests 

can be carried out to demonstrate visual and interpretable information to evaluate 

myocardial perfusion.(9,12,33,36) 

During the last two decades, nuclear medicine imaging modalities, including SPECT and 

PET-MPI, have received significant attention as accessible medical exams in 

administering ischemic heart problems. PET-MPI is a cardiac imaging technique that  

provides for the calculation of nuclear stress test and analysis of myocardial blood flow 

(MBF) simultaneously.(5,12,32) 

PET imaging for diagnosing and managing CAD includes two main clinical applications. 

The first implementation concerns measuring MBF, while its second use is to evaluate 

myocardial metabolism in cases with the dysfunctional ischemic left ventricle. 

Interpretations obtained from both use cases of PET imaging in cardiology have 

contributed to a clearer insight into the characteristics of ischemia-associated heart 

diseases.(33,43,44) 

The idea behind SPECT and PET imaging lies in tracking a certain radiotracer in the 

target organ inside the body and its uptake. For ischemic heart diseases, a specific 

radiotracer associated with certain physiologic events of the heart (i.e., perfusion) is 

injected into the patient's body. The quantification of the heart's specific functions is then 

calculated from the emission of the injected radiotracer and its reactions. These are 

commonly visualized in a polar plot (e.g., a polar map). Among nuclear cardiology 

imaging modalities, PET imaging is of higher demonstrative capabilities due to its higher 

radioactive count rates, increased spatial resolution, and lower radiation burden.(43,45) 

To depict the physiological activity of a particular organ, short-lived PET radiotracers are 

injected into and tracked in the bloodstream of a patient. PET radiotracers consist of a 

positron-emitting radioisotope attached to an organic ligand which participates in a 

chemical reaction in the body, resulting in a characteristic distribution of the tracer 

throughout the tissue. PET imaging can produce 3D images of radionuclide distribution 

in the body.(45,46) 
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The name PET derives from the fact that the radioisotopes in the structure of radiotracers 

are unstable and decay by positron emission. An event of decay is when the radioisotope 

becomes stable. When the nucleus of the radioisotope decays, a positron is ejected, 

traveling only a short distance before encountering a nearby electron. The collision of a 

free electron with the emitted positron results in the annihilation of both particles, 

producing two high-energy gamma rays emitted in opposite directions. The detection of 

these high-energy emissions in opposite planes in a PET detector ultimately leads to the 

generation of images.(45–47)  

Commonly used PET tracers in the clinic are 13N ammonia, 15O water, and 82 

Rubidium. The selection of each tracer is based on the application and circumstances 

under which the imaging is operated. The reason is the different characteristics of PET 

tracers such as half-life time, manufacturing profile, uptake, and resolution of imaging 

induced by positron range.(48)  

For quantitative flow assessments using PET imaging, an optimal candidate is 15O water 

because its uptake is not compromised due to adjacent metabolic activities in the organ. 

Based on the study of Manabe et al., the high extraction fraction of this tracer makes it 

possible to use it with low doses in short periods of stress and rest. Additionally, with 

15O water, the exposure to radiation can be minimal. However, in clinical applications, 

15O water is not the most commonly adopted tracer due to its relatively noisy images.(49)  

 

2.1.4 Nuclear imaging and artificial intelligence 

 

With the advent of AI, cardiovascular imaging, and nuclear cardiology such as PET, 

myocardial perfusion has been proved to be favored with the utilization of ML in the 

realm of image processing and image analysis.(12,31,32,35)  

As a part of ML, DL uses multifold neural network layers to extract features from input 

data, including image data. DL algorithms have found special attention in nuclear 

cardiology image analysis due to direct cardiac image processing and myocardial 

ischemia identification and classification.(32,40,50) 

Neural networks in DL have been inspired by networks of brain neurons and their 

functionality in learning processes. The foundation of neural networks revolves around 

layers of neurons in the order of input, hidden, and output layers, respectively. As their 
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name suggests, input layers comprise an extensive set of raw input data, namely "values" 

representing image pixels. Hidden layers are placed between the input and output layers 

and apply weights to the inputs. The last set of layers in a neural network is the output 

layer, where the final results for the targeted problem are obtained. (Figure 1) This 

problem can be, for example, image classification or object detection, which are everyday 

tasks in medical images for diagnostic and predictive purposes.(14,51–53) 

A central factor in determining the preferred ML strategy for any task is the size of 

available data. Large datasets can benefit from a vast collection of algorithms for 

predictive modeling, while small datasets qualify to be engaged in fewer methods. 

Transfer learning is an ML strategy that can build predictive models from small 

datasets.(15,19–22) 

 

2.2 Transfer learning for image classification 

 

2.2.1 Overview 

 

DL has proved to be a powerful tool for image classification tasks. Yet, to practically 

apply  DL to medical image classification tasks, the challenge of small datasets and hardly 

accessible powerful graphics processing units (GPUs) should be addressed. The problem 

with small datasets in DL is that the model, initiating with random weights for training, 

is not fed with enough data to learn the features of an image represented by the modified 

weights during the training. In other words, the event of "learning" of a model heavily 

depends on the size of the training dataset. In the bargain, "training" a model is essentially 

an immeasurable number of calculations, making it highly computation intensive. To 

address the challenge of insufficient data and computation, transfer learning was 

introduced. Shortly, in transfer learning, instead of training a CNN with random weights, 

a pre-trained model taking in previously learned weights from another task is 

utilized.(20,22,23,54) Figure 1 represents the scope of transfer learning in the realm of 

AI  and its subclasses. 
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Figure 1. An overview on the scope of transfer learning in AI. 

 

2.2.2 Artificial intelligence and machine learning 

 

AI  is not a new theory as it dates back to the 1950s when Alan Turing conceptualized 

the idea of human-level intelligence for machines in his literature,  "Computing 

Machinery and Intelligence".(55) Turing proposed an innovative testing algorithm called 

the "imitation game" to evaluate a machine's ability in mimicking human-level 

perception. For the machine to pass the Turing test, a human evaluator should have failed 

to distinguish the response of a human from a machine in a text-based communication 

exam. Although Turing was the pioneer of human-inspired intelligence for computers, 

the term "artificial intelligence" was first coined by American computer scientist and 

cognitive scientist John Mccarthy, also known as the father of AI.(56) Mccarthy clarified 

his definition of AI as the science and engineering of building intelligent machines by 

describing “intelligence” as the computational ability to achieve goals. Contemporarily, 

AI is a general term that implies using a computer to model intelligent behavior with 

minimal human intervention.  
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Over the past several decades, with the advances in computer science and breakthroughs 

in the computing hardware industry in the 2000s, AI  gained significant attraction and has 

evolved from simple "if-else" programming statements to intricate algorithms performing 

at a human level.(57) 

 

2.2.3 Artificial intelligence in medicine 

 

During the last 50 years, scientists have studied the prospects of applying AI in every 

possible healthcare domain. One of the first efforts in employing AI in a real-world 

medical problem was made in the diagnosis of abdominal pain through computer 

interpretation. In the last few decades, interest in AI  applications in medicine has boosted 

aggressively, making traditional approaches in every field of medicine to reconstitute. 

Modern medicine has benefited from AI in disease diagnosis, therapeutics, and 

treatment.  However, solving complicated problems in medical practice heavily relies on 

interpreting available medical data. AI aids in integral medical domains, including 

outcome prediction, treatment planning, and potentially preventive medicine and 

precision medicine. Ultimately, AI may improve diagnostic accuracy and facilitate 

disease treatment.(3,32,58)  

 

The exponential growth of AI applications in modern medicine is primarily a result of ML 

and DL methods taking over classic AI approaches.(57) ML is a subclass of AI which has 

become eagerly popular in medicine as well as other fields of science. The effectiveness and 

effortlessness of ML approaches have made this topic an exciting space for researchers. As 

its name suggests, ML is based on the notion of machines being capable of automatically 

learning from input data, identifying patterns, and predicting outcomes with minimum human 

intervention. The concept of ML resembles human learning that revolves around learning 

from experience as well as trial-and-error in making decisions. DL is a specialized subset of 

ML that has dramatically been exerted by medical research, especially on image analysis 

tasks that require accurate information extraction from medical images. In DL systems, unlike 

classic programming techniques that rely on defining the relationship between an input and 

its output, both input and output are given to the computer with numerous examples as 

training datasets so the computer would learn and formulate the input-output 

relationship.(59,60) 
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2.2.4 Machine learning 

 

ML is a class of AI  that enables a computer to learn from data and make predictions. ML 

revolves around building predictive models recognizing patterns in data by running 

various mathematical functions. ML can be described as automated programming with 

minimum human involvement. However, human supervision can be of high importance 

in defining the main methodology of applying ML to a specific problem. Provided that, 

ML algorithms can be divided into supervised and unsupervised learning. In supervised 

learning, not only the input data but also the desired output data are given during the 

training phase, and the model learns to generate those outputs from the given inputs. On 

the other hand, unsupervised learning deals with unlabeled data and aims to analyze and 

cluster data for fundamentally different purposes.(59,61) 

 

2.2.5 Machine learning and computer-aided diagnosis 

 

Immediately after the dominance of computers with the infinite opportunities and 

possibilities they offered, the idea of building systems for automated medical image 

analysis was envisioned. During the 1970s to 1990s, researchers developed simple 

algorithms for certain medical image analysis tasks. At that instant, most of the automated 

systems were rule-based such as low-level pixel processors in image processing that 

served in edge and line detection. However, the performance of these so-called "good 

old-fashioned AI" systems has been reported as unreliable. Still, the rapid growth in the 

use of medical imaging modalities, bringing more and more medical images on screens, 

as well as the proven supremacy of ML methods, makes the vision of automated medical 

image analysis possible.(62)  

 

One of the main areas in medical image analysis significantly affected by ML is CADx 

which aims to provide assistance and confirmation with disease diagnosis. During the last 

decades, classification tasks have been an exciting field for ML researchers to implement 

CADx algorithms in practice. It took 20 years for CADx systems to practically emerge in 

clinical applications and pipelines. One of the main issues associated with the CADx 

system has been the error of false-positive predictions compared to clinical interpretation. 

Because of this error, expenses and resources would be compromised. In other words, 

CADx systems would cause more expenses instead of decreasing costs of disease 
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management. However, with new advances in AI and the exponential growth in the power 

of computation, CADx systems are not far from reaching human-level 

interpretation.(62,63)  

 

Medical image interpretation has been performed chiefly by human experts such as 

radiologists and physicians in the clinic. However, given wide variations in pathology 

and the potential fatigue of human experts, researchers and doctors have begun to benefit 

from computer-assisted interventions. However, it is emphasized that AI has not achieved 

human-level interpretation yet. 

 

At present, the amount of medical data is enormous, but it is crucial to make good use of 

this substantial medical data to contribute to the medical industry. Although the amount 

of medical data is vast, there are still many problems: medical information is diverse, 

including maps, texts, videos, magnets, etc. Due to different equipment used, the quality 

of data varies considerably. Inconsistency in data types can be challenging for clinical 

interpretation.  

 

2.2.6 Deep learning for medical image classification 

 

2.2.6.1 Deep learning 

 

From the perspective of advances in image classification techniques, ML can be divided 

into conventional ML and DL. The former is a classic subclass of ML methods with 

approaches such as SVM (support vector machine), random forests, and naive Bayes 

classifiers. Conventional ML methods have been used for many years to solve complex 

problems such as image classification. Although the performance of traditional ML has 

been reasonably confident for small-scale problems, more extensive input image data 

would be challenging. Alternatively, Cutting edge DL techniques dramatically advanced 

ML practice. The central advantage of DL over conventional ML methods is that it 

benefits from a multi-layered architecture, capable of extracting features from images 

without converting all pixel values into 1D arrays.(40,59,62) 

The concept of DL dates back to the early 1940s when Walter Pitts and Warren 

McCulloch gave rise to a computer modeling system based on the human-inspired "neural 

networks".(64) However, the term "deep learning" was first introduced during research 

conducted in the Cognitive Systems Laboratory of the University of California by Rina 
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Decther in 1986.(65) Later in the early 2000s, the groundbreaking "artificial neural 

networks" were presented by Igor Aizenberg and colleagues to institute the very 

foundation of contemporary AI and DL.(66) The "deep" remark in “deep learning” 

denotes multiple layers of neural networks through which the data is transformed. 

In traditional ML techniques, the primary approach was to develop pattern recognition 

algorithms that simply perform a statistical calculation on the raw data. For an image 

recognition problem, with up to millions of pixels as data, which is not necessarily 

meaningful, it is a challenging task to design a feature extractor to solely rely on pixel 

values. However, some conventional ML methods are still actively used for specific 

domains in image classification or in companion with DL models.  

Since 2012, DL has become a popular branch of ML in computer vision problems. In DL, 

a multitude of layers stack up, building a predictive model empowered by connections of 

layers and input data.(14)  DL is employed in a myriad of industries and scientific 

domains, from natural language processing (NLP) to computer vision. In computer vision 

problems, DL has proved to be the ultimate solution in specific tasks such as segmentation 

and classification. Image classification tasks take advantage of a layered structure of DL 

architectures to transform raw data into features in images. At the heart of this 

transformation, procedure are ConvNet layers. A ConvNet is a layer made up of many 

nodes or neurons, performing convolution operation on the input image data. A 

convolution operation scans an image using a filter (kernel), capable of extracting specific 

features from the image. For example, a filter can be an edge detector. Filters are simply 

matrices of numbers that manipulate pixel values of the input image size, resulting in 

different pixel values, hence different images. Each feature in an image can be filtered 

out with a specific matrix of numbers, and it is DL’s task to find those values. The process 

in which the DL model learns the numbers of the filters is known as “training”.  During 

training, a model learns the values of the filters and stores feature extracting filters in each 

layer. The same process replicates in the subsequent layers, where the model finally learns 

to combine filters to extract high-level and complex features of an image. As an 

illustration, for an input image of a cat, the model first learns to extract basic features like 

colors and edges. Having learned basic features, the models learn to put together basic 

features to create patterns and then objects. (14,40,67) 

Exponential growth in hardware development has also contributed to the unprecedented 

success of DL. The process of learning in a DL pipeline is essentially a series of 
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calculations. Without powerful central processing units (CPUs) and GPUs, developing 

DL models was hardly possible. Along with the advances in hardware, data generation 

began to grow, resulting in the creation of huge datasets that DL could potentially learn 

from.(14)  

 

2.2.6.2 Image Classification  

 

Despite humans' natural ability in extracting features from images and classifying them 

into certain categories by nature, it is a challenging task for a computer to distinguish 

patterns in images and annotate them based on predefined and given labels. In computer 

vision, image classification is a foundational task as it can be an elementary measure in 

other computer vision problems like segmentation.(67,68) 

The emergence of Image processing provided diverse opportunities in the digital world 

where images can be considered as numbers and be subject to mathematical operations. 

The most valuable effect of mathematical operations in image processing is that 

information and data can be extracted, analyzed, and used for different purposes. One of 

the ways in which data is extracted and used for various applications is image 

classification. 

Considering that the nature of a classification problem is predicting the image class, ML 

techniques can be employed to perform the classification operation. Given that, image 

classification is a problem in both image processing and ML that relies on the extraction 

of features from an image to predict its class conclusively. Mathematically, a prediction 

is simply the probability of an event which in this case is if a given image falls under a 

specific class. A class is practically a label such as 'animal', 'car', 'red', etc. 

As an example, for an image classification task, a popular project is "handwritten image 

recognition," which is a multi-label classification problem. In this task, a dataset of 

handwritten numbers in various shapes is used to train a model. In this phase, handwritten 

digits are labeled with the desired output, which is the actual number each digit 

represents. The training images as well as their labels, are fed into the model for training. 

Having learned the features of handwritten images, the model then predicts what number 

is represented by an unknown given image. In other words, it calculates the probability 

of an unknown input image being a specific number from 0 to 9. In this example, each 

number represents a 'class'.(69) 
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Classification techniques developed during the years have shifted from classic ML 

methods, namely SVM, decision trees, and K-nearest-neighbor, towards artificial neural 

networks and, more specifically, DL methods. The turning point in the classification 

methods is the development of a deep convolutional neural network model called 

AlexNet that won the first prize in the ILSVRC (ImageNet Large Scale Visual 

Recognition Competition in the year 2012. AlexNet achieved an outstanding reduced top-

5 error rate of 15/3% in the image classification task of the competition, outperforming 

the runner-up model by more than 10% improved performance. AlexNet was named after 

Alex Kirzhevsky, who published the paper "ImageNet Classification with Deep 

Convolutional Neural Networks" with his colleagues Ilya Sutskever and Geoffrey Hinton. 

This paper has been counted as the turning point of image classification techniques and a 

major milestone in CNN-based methods. As of mid-2022, the AlexNet paper has been 

cited more than 107 thousand times according to the google scholar database, making it 

one of the most influential publications in the history of computer vision. To explain the 

outstanding performance of their model, Kirzhevsky et al. primarily concluded that the 

depth of the CNN model was the key factor that resulted in the most accurate 

classification. Along with that, the possibility of training huge data on a deep CNN model 

was attributable to the fast GPU utilization for model training.(14,67,70) 

In traditional ML techniques, the model could not learn neighbor information of a 

distinctive feature in an image, making the model inefficient for complex object 

recognition tasks. On the other hand, DL employs multiple deep and hidden layers of 

neural networks (i.e., CNNs) to learn high-level features of an image by comprehending 

neighbor information of pixels in an image.(14,40,57) 

 

2.2.6.3 Convolutional neural networks 

 

The power of DL in image classification tasks has peaked at a human-level interpretation 

that has roots in the architecture of CNNs. A CNN is a class of artificial neural networks, 

most commonly aimed at computer visual comprehension tasks. As their name suggests, 

CNNs apply a mathematical function called convolution operation to the images for 

“learning” not only from single pixels but also from surrounding pixels. Through 

consecutive convolutional operations, the model learns and extracts specific features in 



 

19 

 

an image and ultimately, based on the given input labels, classifies any given image into 

a certain class.(17,70,71) 

A CNN model has a multi-layered architecture, including an input layer, convolution 

layers, max-pooling layers, fully connected layers, and the output layer. All layers before 

the fully connected layer are in charge of extracting features from images. Fully 

connected layers and the output layer are the classifier head of a CNN model. The 

performance of a CNN model relies on the arrangement of all layers involved in its 

architecture.(14,40)  

 

Figure 2. A schematic view on the architecture of a CNN model. On the left, feature 
extractor section of the model and  on the right, the classifier top of the model is shown. 

 

2.2.7 Transfer learning 

 

The idea of transfer learning is originated from how humans learn. Prior knowledge 

stored in our memory accelerates the process of learning a new skill or subject. Typically, 

the more a new skill is related to our prior experiences, the faster learning transpires. For 

example, learning a musical instrument such as a guitar shrinks the learning curve of 

another related instrument like a violin. In other words, knowledge stored from one task 

is transferable to another task.  

In ML, the learning process is defined by storing the correct values (weights) in feature 

extracting layers corresponding to a specific feature in the data. Therefore, the knowledge 

or weights learned from one task can be stored, and transferred to another task, hence 

transfer learning.(19–22) 



 

20 

 

Especially in DL, transfer learning has been adopted quickly because of the effortlessness 

it offers. DL algorithms are difficult to train. Firstly, training a model requires extensive 

resources from hardware and software to time and expert engineers with a deep 

understanding of mathematics and statistics behind DL algorithms. Secondly, in specific 

domains, accessing data is limited or available data is inadequate. To overcome the 

limitation of time and cost of training an entire model, transfer learning can be used. 

Figure 4 illustrates a general workflow of an image classification task using transfer 

learning compared to a conventional DL pipeline.(54,72,73) 

 

2.2.7.1 Pre-trained models 

 

Pre-trained models are simply CNN models developed on one task and available to 

deploy for a new task. The power of pre-trained models stems from the huge dataset 

provided to feed their hidden layers and the computation power on which they were 

trained.  

Pre-trained models (sometimes referred to as networks) are open access and can be 

downloaded from online repositories such as Keras applications and TensorFlow hub. 

These networks can be applied to a range of ML problems, from image recognition to 

audio classification. Pre-trained models are evaluated based on their performance in the 

ImageNet competition. Every year, scientific teams from across the world participate in 

this competition to propose a CNN architecture for image recognition results on the 

ImageNet dataset. 

 

 

2.2.7.2 ImageNet dataset 

 

ImageNet dataset is a huge dataset of more than 14 million images in 20,000 classes. 

Each image in the dataset is “hand-annotated”. The annotation process aims to tag images 

with specific labels, so the class of the image is identified.(74) In the ImageNet 

competition, the target task is to classify images correctly and accurately in this database.  

As of mid-2022, pre-trained networks trained on this dataset have reached an 85.7% top-
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1 accuracy and 97.5% top-5 accuracy (EfficientNetV2L).(75)  Example of images in 

ImageNet dataset is presented in Figure 3. 

 

 

Figure 3. Sample images from ImageNet dataset. 
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Figure 4. Training a custom CNN versus using a pre-trained model. The pipeline at the top 
represents the architecture of a CNN model, and the image on the bottom side represents transfer 
learning using ImageNet weights in the feature extractor base model.  

 

 

2.3 Similar investigations  

 

Owing to the development of DL, the shortcut approach to the same technique, transfer learning 

has also found an essential role in many applications including bioimage analysis. Several studies 

have been conducted on the use of transfer learning in medical image classification. For instance, 

two pioneering investigations were made on chest X-Rays using ResNet, DenseNet networks, 

and another work was done on ophthalmology using InceptionV3ResNet on images from the 

retina.(76) The latter was successfully able to receive the approval of  FDA. Other investigations 

using transfer learning in the medical field include skin cancer identification and early diagnosis 

of Alzheimer's.(28) 

In a recent study on SPECT myocardial perfusion imaging, transfer learning was used for the 

classification of abnormalities such as infarction and ischemia. Several pre-trained networks were 

employed in the research including AlexNet, DenseNet-201, GoogleNet, NASNetLarge, ResNet, 

VGG16, and VGG19. Researchers concluded that the results from transfer learning 

implementation were close to expert interpretation and could be used for second 

confirmation.(77) 
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Recently, a comprehensive study compared 15 available pre-trained networks in the 

identification of COVID-19 samples from chest X-Ray images. VGG pre-trained models 

performed best in that work with more than 89% accuracy in classification results.(78) 
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3 Materials and methods 
 

3.1 introduction  

 

ML techniques are intrinsically data-driven. For a model to learn and extract features 

from images, it is crucial to be supplied with enough data. In transfer learning, though, 

the size of a dataset can be relatively small because the pre-trained models are supposed 

to carry the learned weights from a previous task on a huge dataset. In this thesis, a total 

of 138 polar maps obtained from PET-MPI imaging using a PET/CT hybrid scanner were 

used. As this thesis requires data set organization for the training of the pre-trained 

models, the dataset configuration should be performed. Shortly, the arrangement of 

images in the dataset was set up entirely based on the original paper "Classification of 

ischemia from myocardial polar maps in 15O–H2O cardiac perfusion imaging using a 

convolutional neural network" by Teuho et al. where a custom CNN model was 

developed for the same polar map images. The purpose of mirroring the dataset 

arrangement from the work of Teuho et al. was to effectively compare the performance 

of pre-trained models in transfer learning against a custom CNN model with the same 

images and dataset preparation scenario. The rest of this chapter presents the details of 

image acquisition and data preparation.  

 

3.2 Patient population 

 

This study includes a total number of 138 subjects who had manifestations of obstructive 

CAD and were admitted to Turku University Hospital during the years 2007 to 2011. 

Symptoms of the patients were counted as stable chest pain or equivalent clinical 

manifestations. Plus, pre-test probability prediction for obstructive CAD was also made. 

Informed consent from all patients was collected. Additionally, the study was conducted 

based on the ethical instructions of the Declaration of Helsinki as well as securing the 

approval of the local ethics committee of the Hospital District of Southwest Finland.  
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Additional details on the study population can be found in the work of Stenström et al.(79) 

From the original 189 patients in the study, a selection of 138 cases was made who had 

available ICA and PET perfusion data in the form of polar maps from the stress imaging 

test. The dataset will be divided into subsequent training/validation and test datasets 

randomly.  

3.3 PET/CT imaging and acquisition methods 

 

In the first instance, the imaging device Discovery VCT PET/CT scanner (GE Healthcare 

Co., US) was used. The imaging protocol was computed tomography coronary 

angiography (CTA) plus MPI through PET/CT hybrid technique. Immediately after a CT-

based attenuation correction, an adenosine stress perfusion PET was executed. Adenosine 

was launched 2 minutes before the start of the scan and was infused at 140 μg/kg body 

weight per minute. Oxygen-15 labeled water (900 to 1100 MBq) was administered 

(Radiowater Generator, Hidex Oy, Finland) as an IV bolus over 15 seconds. 

Subsequently, A dynamic mode acquisition for perfusion assessment of the heart was 

performed (14×5 seconds, 3×10 seconds, 3×20 seconds, and 4×30 seconds). Ultimately, 

image reconstruction was done on obtained images using a two-dimensional ordered 

expectation-maximization algorithm (2D-OSEM) applying a 35 cm field of view, 

128x128 matrix size, 2 iterations, 20 subsets, and a 6.0 mm Gaussian post-filter. 

3.4 Invasive coronary artery angiography 

 

In a part of data gathering by clinicians, ICA or invasive coronary angiography was 

performed. Also, a measurement of FFR was executed for stenoses with intermediate 

severity, which is 30-80%. An experienced reader performed a quantitative analysis of 

ICA angiograms using automated edge-detection software. Thereby, obstructive CAD 

was defined as either >50% stenosis on ICA or FFR < 0.8. With FFR available, stenosis 

with FFR > 0.8 was classified as non-significant, regardless of the degree to which the 

coronary artery was narrowed.  
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3.5 Analysis of the cardiac perfusion data 

 

For quantitative analysis of dynamic PET perfusion images, Carimas 2.9 software (Turku 

PET Centre, Finland) was used by a single reader blinded to the ICA results. Having 

defined the orientation of the heart manually, the myocardium was recognized 

automatically by the software. Plus, when required, the resulting regions of interest 

(ROIs) were manually adjusted.  To obtain quantitative polar maps of stress MBF values 

in units of ml/g/min15, mathematical modeling was carried out, based on a single tissue 

compartment model. Additionally, having defined the threshold for ischemic stress MBF 

(< 2.3 ml/g/min), stress MBF values in polar maps were equally scaled from 0 to 3.5 

ml/g/min using the Rainbow color scale. 

3.6 Polar map and label dataset description  

 

In the evaluation, a total of 138 polar maps for stress MBF along with corresponding ICA 

labels will be used. ICA data will be used as a gold standard in assigning the reference 

labels. Each polar map will be classified as ischemic (1) or non-ischemic (0) based on the 

ICA-defined obstructive CAD. 

Polar map images were obtained from Carimas software in a high-resolution 2D JPEG 

format. Images were originally exported from Carimas with a size of 1024×1024 pixels, 

followed by automatic cropping and shrinking to 256×256 pixels in the processing 

pipeline. The pixel values were scaled and normalized between [0,1]. Polar maps were 

three-color RGB channeled, and all channels were used as input. Additionally, on the 

subject of image size, the input image sizes during model training, to meet the objectives 

of the research, the input image size for each experiment was set to be modified 

accordingly. The details of input image size modification, as well as other training 

hyperparameters, are discussed in chapter 6. Examples of polar map images are shown in 

Figure 5. 
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Figure 5. Example images of polar maps after processing. Red and yellow colors represent 
non-ischemic. Blue and green colors represent ischemic conditions.  

 

Having polar maps processed, they were labeled as ischemic or non-ischemic. Labeling 

images is an essential step in supervised learning classification tasks. Each polar map was 

annotated with a label of 0 and 1 based on the ICA reference data. The labels were written 

in order as a .txt file. 

3.7 Dataset configuration  

 

In any standard DL process, one of the most important steps is to prepare the dataset. The 

dataset configuration is an essential setting required to be applied to the available data. 

The general purpose of the dataset is to avoid common errors in training, such as 

overfitting and data snooping. 

In overfitting, the model returns significantly accurate results on the training data but the 

actual performance of the model on new and unknown data is meaningfully low. Data 

snooping or data fishing is another bias in which the data is misused to artificially create 

outstanding performance on the task.(80) To avoid such common statistical data 

exploitation practices, the dataset should be configured with appropriate portions of data 

in specific sets, namely the training set, validation set, and test set.  

The training set is a set of data that is used during model training. This segment of the 

data is normally the biggest set of the whole available data. Training data is fed to the 

model consecutively. Thus, the model learns the patterns in the data. The provided 

training set should be diverse enough so that the model learns both image classes and 

their corresponding features.   
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The validation set is another segment of data involved in the model training. This means 

that using the validation set, the model performance is observed and monitored during 

the training process after each epoch. The validation set aims to provide information on 

the learning and loss function of the model during training. Training hyperparameters can 

be tweaked for better performance based on the learning information from loss function 

during the training, owing to the use of a validation set. Besides, the monitoring of 

validation set results during training can help avoid overfitting. In cases where the 

accuracy of a model on training data is significantly higher than the results on the 

validation set, there is a chance that the model is overfitted.   

The test set or hold-out set is the third portion of the data, which is used completely after 

training, solely for testing the performance of the model. All the results demonstrating 

the performance of a model are obtained from the test set, which is unknown and unseen 

to the model.  

In this thesis, 138 polar map images were split into a training set and validation set with 

92 images in total and a test set with 46 images. The test set was only used during the 

evaluation of the models and was shown to the models during training. The training and 

validation split ratio of 1/3 was used, leaving 61 images in the training dataset and 31 

images in the validation set. Figure 6 illustrates the workflow and organization of the 

polar map datasets and their role in each part of the experiments.   

 

Figure 6. Dataset configuration workflow. 1) Whole dataset is split to training and test (hold-
out) dataset. 2) The training and validation data splits applies. Training and validation sets are 
used during training. 3) test set is only used for performance evaluation.   
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4 Experiment design  
 

4.1 Preface  

 

In this chapter, the experiment design of this thesis is discussed. The experiment design 

of this thesis aims to fulfill the research objectives and research questions of the study 

that were described in chapter 1. A summary of the questions the experiments seek to 

answer is demonstrated in table 1.  

Table 1. A summary of research questions. 

Research question 

RQ1. Which pre-trained models perform best for binary classification of PET-MPI 

polar maps?  

RQ2. How does transfer learning perform compared to a custom CNN?  

RQ3. What is the most optimum image size for pre-trained CNN models? 

RQ4. How does an ensemble of best pre-trained CNN models perform for PET-MPI 

polar map classification? 

 

The experiment design of the study should be formulated on certain principles to fulfill 

the mentioned research questions, establishing a reliable relationship between the 

variables in question and their result. The principles considered in this process are as 

follows:  

1. In the experiment design process, the input image size as a dependent variable 

which is to be measured in terms of the effect on model performance, is separated 

from other hyperparameters making up the constant variables.  
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2. Other hyperparameters, including batch size, epoch number, fine-tuning, and 

optimizer selection, require tuning and adjustment to ensure optimum 

performance.  

 

4.2 Challenges 

 

The challenging section in the organization of experiments in this thesis was the number 

of variables in question. As the objective of this thesis was primarily to find the best pre-

trained CNN model  and the best input image size (roughly 4 image sizes for each of 20 

models), the number of code executions excluding the remaining hyperparameters to be 

tuned would be supernumerary. 

The other challenge of this study is about tuning hyperparameters of the models as well 

as finetuning the models for our task with their specific traits. Hyperparameters and 

network architecture values for each model sum up to a myriad of possible settings 

making it hardly possible to study all of the scenarios in one investigation. Each of the 

hyperparameters and network architecture values can be a separate subject of research, 

but since the objective of this research is to benchmark all models on a specific task and 

explore the effect of image size on the model performance, the remaining values and 

hyperparameters should be constant. Yet, the models must be tuned for the binary 

classification task and the dataset of this study.  

 

4.3 Workflow 

 

To tackle the challenges of experiment design, a pre-execution step was added to the 

study where the constant hyperparameters and the architecture of the models were tuned. 

This stage was performed on a trial-and-error basis, consequently, the best parameters 

and network settings were chosen for the rest of the study. As a result, the process and 

the results of each trial-and-error for this section of the experiments were eliminated from 

the research. After the pre-execution step, which is the hyperparameter adjustment stage, 

all the pre-trained models with different input image sizes are evaluated by consecutive 

executions of a unified code. Finally, the performance of each model with a specific input 
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image size is evaluated and reported. A summary of the experiment design workflow is 

demonstrated in Figure 7.  

 

Figure 7. The entire workflow of the experiment design 1) Image acquisition and dataset 
configuration. 2) Hyperparameter adjustment and classifier architecture design. 3) Model 
selection and input image size definition for the main experiment to obtain prediction results. 4) 
Evaluating the results of experiment. 5) Ensemble learning.  
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4.3.1 Definitions 

 

To better understand the process of experiment design in this thesis, it is helpful to inspect 

the representative terminology of transfer learning in a DL image classification task, used 

extensively in the literature as well as in this study.  

I) Trainable weights: in the workflow of developing a CNN or using a pre-

trained one, the knowledge of the model gained during the training is called 

weights. Trainability is an attribute of the weights in a CNN model. Usually, 

all weights are trainable (except for specific layers like the batch 

normalization layer) unless they are set to be non-trainable.  

II) Freezing and unfreezing: the term freezing in DL denotes the act of locking 

knowledge stored in one or a set of ConvNet layers. By freezing a layer, the 

weights and biases learned through an initial learning process are locked and 

will not be compromised during a following backpropagation in training. In 

freezing, the weights of a layer are not updated, hence non-trainable.  

III) Base model: the model trained with source data set on the source task, in this 

case being the ImageNet dataset for the image classification of natural images, 

is called the base model. Examples of base models are VGG19 and Xception 

models. To transfer the knowledge (weights) learned from the source task to 

the target task, the base model is used and modified by removing the top layers 

acting as classifiers. The top layers are task-specific layers, including neurons 

for as many classes as involved in the classification task.  

IV) Fine-tuning: an optional step in a transfer learning workflow is to fine-tune 

the base model. Fine-tuning aims to improve the performance of a pre-trained 

model for the target task by unfreezing all or some ConvNet layers of the base 

model. However, for tasks with relatively small datasets, having layers frozen 

is the recommended approach.  

V) Feature extraction: this term can be referred to as a method in transfer 

learning as well as a term in DL, meaning literally the act of using algorithms 

for dimensionality reduction to extract information from images. On the other 

hand, in transfer learning, feature extraction is considered an approach where 

the base model weights are respected, frozen, and not fine-tuned for the target 

task. Feature extraction is a fairly lightweight approach compared to fine-

tuning a base model. 
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6.3 Implementation  

 

In this section, the implementation of transfer learning for the classification of ischemia 

from polar map images is described. Overall, after choosing a selection of pre-trained 

models for this study, a unified python code taking in all 20 pre-trained models and the 

relevant libraries for training and evaluation of the models was developed. Afterward, the 

architecture of the final models, as well as training hyperparameters, were adjusted and 

finalized for the code execution. Eventually, after running the code, the results were 

evaluated and visualized. In the following, the process of each phase of the 

implementation is elucidated.  

 

6.3.1. Model selection  

 

The first step in applying transfer learning to any ML problem is pre-trained model 

selection. In this case, the pre-trained CNN models must be trained on an image 

classification source task. Pre-trained models for image classification are available in a 

myriad of libraries and open-access websites. Tensorflow Hub and Keras Applications 

are the two popular repositories building in a collection of state-of-the-art pre-trained 

models for image classification. 

In this thesis, pre-trained models were downloaded from the Keras Applications 

repository. Based on published literature, specific models such as VGG16, VGG19, and 

Inception have been reported to demonstrate satisfying performance in medical image 

classification tasks. On the other hand, some models have received less attention in this 

domain, such as DenseNet and EfficientNetB family. Table 2 shows the selected pre-

trained models and an overview of their top-5 and top-1 accuracy on the source task.  
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Table 2. A summary of selected pre-trained models from Keras website. 

 

 

  

Model 
Size (Mb) Top-1 

Accuracy 

Top-5 

Accuracy 

Parameters 

Xception 88 79.0% 94.5% 22.9M 

VGG16 528 71.3% 90.1% 138.4M 

VGG19 549 71.3% 90.0% 143.7M 

ResNet50 98 74.9% 92.1% 25.6M 

ResNet101 171 76.4% 92.8% 44.7M 

ResNet152 232 76.6% 93.1% 60.4M 

InceptionV3 92 77.9% 93.7% 23.9M 

InceptionResNetV2 215 80.3% 95.3% 449 

MobileNetV2 14 70.4% 90.1% 3.5M 

DenseNet201 80 75.0% 93.6% 20.2M 

DenseNet121 33 76.2% 92.3% 8.1M 

DenseNet169 57 76.2% 93.2% 14.3M 

EfficientNetB0 29 77.1% 93.3% 5.3M 

EfficientNetB1 31 79.1% 94.4% 7.9M 

EfficientNetB2 36 80.1% 94.9% 9.2M 

EfficientNetB3 48 81.6% 95.7% 12.3M 

EfficientNetB4 75 82.9% 96.4% 19.5M 

EfficientNetB5 118 83.6% 96.7% 30.6M 

EfficientNetB6 166 84.0% 96.8% 43.3M 

EfficientNetB7 256 84.3% 97.0% 66.7M 
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6.3.2 Code development 

 

Due to a large number of selected models, and the need for adjusting training 

hyperparameters, equivalently for all pre-trained models, a unified code encompassing 

all the models and the settings was developed.  

The main framework for implementing the neural network layers, hyperparameters, and 

architecture modification of models was the Tensorflow library. Plus, the Keras library 

was also utilized for essential settings applied to pre-trained models. Python (version 3.8) 

and Anaconda were used as an interpreter and environment managers. Accordingly, all 

pre-trained models were called from the Keras Applications repository and imported into 

one .Py file. Necessary python packages, namely Tensorflow, Pandas, Numpy, and 

Sklearn, were used for training and evaluation of models using Anaconda as Python 

environment manager. The code was executed and developed on PyCharm community 

edition IDE and Windows 11 operating system.   

Along with the necessary libraries, Argparse, a python command-line parsing module 

from the standard python library, was used. On top of Argparse, a user-friendly 

command-line interface was created in a batch (.bat) file. The batch file provided ease of 

use in changing hyperparameters and CNN model settings for the trial-and-error phase of 

the experiment as well as the final code execution. Figure 8 shows the interface of the 

batch file used for the experiment execution.  

 

Figure 8. The interface for experiment execution. A batch file designed as a dashboard for 
running one code to execute all the scenarios. 
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The overall code structure for the implementation of pre-trained models is as follows:  

a) Importing the libraries and downloading the desired models 

b) Reading data 

c) Feature extraction 

d) Training the classifier layers  

e) Evaluating models on the test data 

f) Saving the experiment results  

 

4.3.2 Training parameters and layer Adjustment 

 

 

I. Weights: to import weights learned from the source task where pre-trained 

models were trained on, the base model has to convey the learned ImageNet 

weights.  

 

II. Activation function: In the heart of CNNs are neurons. A neuron calculates a 

weighted sum of inputs from training and directs the results through an activation 

function, creating an output that either is the input for the subsequent layer or the 

probability distribution for each class as a final prediction. 

 
Pre-trained models have been originally trained to classify natural images in the 

ImageNet competition. Consequently, the activation function to classify the final 

output of the whole CNN architecture was set to classify images into 1000 classes. 

Instead, for our task, a binary classification problem, it is critical to overwrite the 

most suitable activation function on the original setting. Among a variety of 

activation functions, including ReLU, Softmax, and Sigmoid. The standard 

activation function for binary classification to output the prediction from the last 

fully connected layer is the Sigmoid activation function, also called the logistic 

function. Sigmoid is a non-linear activation function that guarantees the output to 

be between 0 to 1. Also, a SoftMax activation function could be used by defining 

two classes. However, the results from the trial-and-error phase of the experiments 

showed higher classification accuracy while using the Sigmoid activation 

function.  
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III. Fine-tuning: In general, transfer learning approaches vary based on the number 

of CNN layers that are decided to be frozen in feature extraction and 

classification. In all strategies taken in transfer learning scenarios, the top layers 

acting as classifier layers are trained. Conversely, the extent to which the base 

model layers are trained, i.e., unfroze, defines the fine-tuning approach. Given 

that, there are three possible approaches to practice transfer learning:  

 

a) Freezing all layers in the feature extractor convolutional base model.  

b) Freezing a portion of the base model and training some layers of the convolutional 

base for feature extraction. 

c) Unfreezing all layers of the base model to extract features through 

backpropagating down to the bottom layers of the CNN, relying solely on the 

model architecture and depth. 

 

Picking the suitable strategy for the application of transfer learning depends on 

the similarity of the task dataset and source dataset as well as the size of the 

dataset. For a small dataset of 138 polar maps in this study, many trial-and-error 

experiments were done to achieve the best settings for fine-tuning of models.  

 

During the trial-and-error phase, models were tested for performance by changing 

only the “trainable” attribute. The purpose was to determine if fine-tuning the base 

model could improve the performance of the test dataset. Based on the results of 

the trial-and-error phase, the best strategy was freezing all layers in the base model 

and only training the classifier.  

 

IV. Optimizer: Pre-trained models are originally optimized for the source by the 

agency of various optimizers. For this thesis, though, one single optimizer is to be 

selected so the effect of different optimizers would not affect the evaluation of in 

question variables. To achieve a single best-performing optimizer, in a series of 

trial-and-error experiments, three optimizers suggested by recent publications 

were tested for performance. SGD, Adam, and RMSProb competed in our task, 

introducing Adam as the best generalizing and least overfitting optimizer. 

Therefore, for the rest of the study, Adam optimizer was employed.   
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V. Batch size: The number of training images fed to the model in every iteration 

(epoch). For DL tasks, defining the right batch size has remained to be challenging 

for researchers. Some studies in the literature have shown that bigger batch sizes 

help overcome overfitting and lead to higher generalization. Conversely, 

particular studies have proven the opposite for specific cases, suggesting that 

smaller batch sizes with corresponding learning rates for the training can improve 

generalization while avoiding overfitting.  

 
In this thesis, different batch sizes of 30, 20, and 5 were tested in the trial-and-

error phase. Bigger batch sizes were bound to misclassifying one class or 

compromising specific metrics such as F1-score while learning another class with 

high accuracy. On the contrary, the mini-batch size of 5, because of the increased 

chance of containing images from both classes during all iterations, therefore, 

increasing the chance of the model learning both classes, displayed more 

consistent results. As a result, the batch size for the rest of the work was set to 5.  

 

VI. Epochs and early stopping: The number of epochs in ML is described by the 

number of times the entire training dataset is fed to the model. In a learning 

process of 30 epochs, each image sample has 30 chances to update the learned 

weights of the model during training. Excessive epochs can cause overfitting, 

meaning that the model memorizes the features of an image instead of learning 

them. This results in meaningful decreased accuracy in the test dataset. For this 

thesis, we set the epochs to 30, mirroring the settings of a custom CNN built for 

the same dataset in a study by Teuho et al. However, due to the fact that pre-

trained models have different architectures. For instance, VGG16 is a 

significantly deeper model than other models. For a deep network with 

significantly richer parameters, learning can continue to advance with excessive 

epochs, unlike smaller models. In order to tackle the challenge of overfitting and 

underfitting while assigning one epoch number for all models, early stopping was 

used.  

 

Having an early stopping technique in charge, the model does not iterate the 

training based on the pre-defined number of epochs but instead stops to run more 

epochs at a specific point. Early stopping benefits efficacy in training by 
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constantly monitoring accuracy on validation dataset and training dataset with 

reference to extra epochs. At a specific epoch, the performance on the validation 

set begins to degrade. This event is a signal for the model to stop training the 

remaining epochs to avoid overfitting.  

 

 

VII. Dropout: Another technique to combat overfitting in a DL problem is to use 

dropout regularization, especially when training data is insufficient. In this 

approach, a number of neurons in the network are ignored and disconnected from 

other neurons, hence dropout. Using this method enables the network to improve 

its generalization capability by randomly adding noise to the layers. As a result, 

during each update of the layer on every training iteration, a different "view" of 

the layer is introduced to incoming connections. Srivastava et al. in their 

publication "Dropout: a simple way to prevent neural networks from overfitting" 

concluded that dropping out some neurons can break the "co-adaptations" of 

training data and weight because of the backpropagation process. Accordingly, in 

this study, given the small dataset for training and the arrangement of layers in 

the classifier head of the proposed architecture, the dropout approach was 

adopted. Dropout was applied to all fully connected layers before the last dense 

layer with the Sigmoid activation function. The dropout rate was set to 0.5. Figure 

9 illustrates the arrangement of classifier layers, including the dropout layer. 

 

VIII. Shuffle: To avoid overfitting due to small mini batch size used in the study, a 

shuffling regularization was also added to the previously discussed tactics. 

Through shuffling, data fed to the model in every epoch shuffle, so it would better 

represent the whole data population. 

 

IX. Classifier: Having pre-trained models and the training parameters set up for the 

primary code execution, the final step is to configure the classification layers. The 

proposed arrangement of layers acting as classifiers on top of base models is as 

follows: 
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Figure 9. The arrangement of classifier layers on top of base pre-trained models. 

 

4.3.3 Evaluation metrics 

 

To measure the performance of different pre-trained models, it is essential to define the 

evaluation methodology for a binary classification problem. Relying solely on the 

"accuracy" of a model in classifying input data does not yield a fair and thoroughly 

conclusive judgment of its performance. For example, with a data set containing 10% of 

training images labeled "unhealthy" (negative) and 90% labeled "healthy" (positive), a 

model predicting all unseen data as "healthy" is 90% accurate. Yet, this model totally 

misclassifies the "unhealthy" class, producing significant false-negative predictions. 

Considering a clinical interpretation being made based on this model, patients suffering 

from a disease remain undiagnosed and sent home without further examination and 

treatment.  

In a predictive modeling problem, an important consideration is to calculate performance 

measurement parameters such as false negative (FN), true negative (TN), false positive 

(FP), and true positive (TP). Each parameter includes the terms “true” or “false” to 

represent the prediction result as well as “positive” or “negative”, indicating the predicted 

class. Furthermore, to demonstrate the prediction results from an ML  model, a confusion 

matrix can be used. In a binary classification problem, a confusion matrix is a matrix of 

2 × 2, including TP, FP, TN, and FN predictions made by a model. In a confusion matrix, 

rows are representative of classes, and columns display predictions. Figure 10 shows an 

example of a visualized confusion matrix.  
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To avoid misinterpretations caused by substandard evaluation of a model's performance, 

several standard evaluation metrics are introduced in the literature. In this thesis, 

evaluation metrics were selected based on similar investigations, as well as the task 

domain, being a binary classification of ischemic and non-ischemic images. In such 

problems, where a disease diagnosis is based on the predictions made by an ML model, 

avoiding false-negative cases is of utmost importance. In other words, sometimes, it is 

more effective to select a model with lower accuracy because of the predictive power for 

a specific problem. Accordingly, the metrics presented in table 3 were selected for the 

study to test the pre-trained models' performance.  

 

Table 3. A description on evaluation metrics and their formula. 

 

Metric Question to be answered Formula 

Accuracy  
How many total predictions were correct 

from all predictions? 

𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Precision  

How many predictions were correctly 

predicted as positive from all positive 

predictions? 

 

(e.g., from all ischemic predictions, how 

many are truly ischemic?) 

𝑇𝑃 𝑇𝑃 + 𝐹𝑃 

Recall 

How many predictions were correctly 

predicted positive from all actual positive 

inputs? 

 

(e.g., from all ischemic images in the test 

set, how many are correctly predicted as 

ischemic?) 

𝑇𝑃 𝑇𝑃 + 𝐹𝑁 

F1-score 

How good the quality of predictions are 

and how completely the model predicts 

the labels from inputs? 

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  
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Figure 10. A schematic representation of a confusion matrix. 

 

 

4.3.4 Ensemble learning 

 

After obtaining the results from the experiment, based on the research objectives, a final 

step is to evaluate the effect of ensemble learning using the best pre-trained models.  

Ensemble learning is an ML method that combines the predictive power of several 

models. Studies in the literature suggest that ensemble learning has proved to be 

beneficial in improving model performance. Based on ensemble learning, a combination 

of several models can perform better than any of the models used alone. Over the years, 

with the development of models and data pipelines for each ML technique, ensemble 

learning strategies have also become diverse. Stacking, boosting and meta ensemble 

learning are examples of common techniques in this domain.(81) 

To assess the premise of “together” better than “one” in ensemble learning, this thesis 

aims to use 4 best pre-trained models to combine as one classifier and evaluate its 

performance.  

Ensemble learning techniques used in this section include stacking techniques and meta 

learning techniques, such as logistic regression, decision tree, KNN and naïve Bayes.  
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5 Results and discussion  

 

5.1 Results 

 

5.1.1 Introduction 

 

In this chapter, the results of all experiments (excluding the intensive trial-and-error code 

executions) are presented. To satisfy the research objectives mentioned in the first chapter 

of this thesis results from the experiments are reported in three sections. Firstly, 

performance results from all pre-trained models are presented and compared. Secondly, 

having introduced the best pre-trained models, the practicality of transfer learning is 

questioned by comparing pre-trained models to a custom CNN. Lastly, based on the 

results from the first section, the validity of ensemble learning using the 4 best pre-trained 

models is reviewed.  

 

5.1.2 Pre-trained models  

 

A total of 20 pre-trained models were selected for this study. Each of the models was 

trained on different input image sizes every time, from small sizes (32 × 32 and 64 × 64) 

to bigger images (128 × 128 and 256 × 256). However, in some cases, some image sizes 

would not fit the architecture of pre-trained base models due to pooling layers and the 

depth of the models. Also, since each model was originally trained on a specific image 

size, an additional input image size for each model was added to the experiments. Plus, 

From the entire EfficientNetB family, the EfficientNetB0 model was selected during the 

trial-and-error part of the experiment design. As a result, a total of 64 setups for 20 pre-

trained models were tested for performance.  

Visualizations of the results was done using Seaborn library which is a powerful tool 

among Python libraries for plotting graphs. In the following, the results of all pre-trained 
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models are presented and compared using scatter plot diagrams and tables. Additionally, 

Because of the large number of experiments (64 different model setups), benchmarking 

all models in one unambiguous illustration is challenging. Therefore, among all the 

different setups of every pre-trained model, the one with the best performing input image 

size is selected for visualization.  

To compare the performance of models on test dataset and validation dataset (during 

training), the results from both training metrics and test metrics are presented.  

   

5.1.2.1 Accuracy  

 

As demonstrated in Figure 11, VGG19 with input image size of 128 × 128 pixels 

achieved 85% accuracy on test dataset, followed by, Xception (input image size of 71 × 

71), VGG16 (input image size of 128 × 128), DenseNet121 (input image size of 128 × 

128), DenseNet169 (input image size of 32 × 32) and DenseNet201 (input image size of 

224 × 224) with 83% accuracy on test dataset.  

Interestingly, regarding the input image size variable, no meaningful trend in terms of 

accuracy was observed.  

Except for ResNet50, ResNet101, and EfficientNetB0 models that performed poorly on 

the test dataset, achieving accuracies below 60%, other networks showed acceptable 

results of up to 80% accuracy.  

Comparing the test and validation datasets, a slight difference can be observed in the 

accuracy achieved by several models. Overall, since most models were trained using 

regularization techniques such as dropout and early stopping, they are not prone to 

overfitting. The accuracy results of all models with all input image sizes involved, on 

both test dataset and validation dataset, are presented in the following graphs. 
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5.1.3 Comparison of transfer learning and a custom CNN 

 

In this section, a selection of transfer learning models performing better than the rest are 

selected to be compared with a custom CNN developed on the same dataset and dataset 

configuration. The network architecture developed by Teuho et al. at Turku PET Centre, 

used a 256 × 256 input image size to train images in the batch sizes of 20 through 35 

epochs. 

Teuho et al. evaluated their proposed model based on accuracy, the area under curve 

(AUC), F1-score, sensitivity (recall), specificity, and precision. Having run their model 

over the data for 100 times, the reporting values for each metric are based on the 

calculated median. Table 4 briefly reports on the custom CNN performance.  

 

Table 4. Evaluation metrics and CNN evaluation results from the study of Teuho et al. 

Accuracy 83% 

Precision 92% 

Recall 65% 

F1-score 76% 

AUC 80% 

Specificity 96% 

 

To simplify the comparison between transfer learning models and the custom CNN 

model, similar metrics are compared. Additionally, to avoid complexity and repeating 

non-informative results, some evaluation metrics were not included in the transfer 

learning approach. In the following, an overall comparison between transfer learning 

models and the custom CNN is made in terms of accuracy, precision, sensitivity (recall), 

and F1-score.  

The work of Teuho et al. included comparing the developed CNN model to the clinical 

diagnosis by doctors on the same test dataset, including 46 images. Based on this 

comparison, as well as detailed results achieved during all runs of test data, a CNN 

classifier proved to be in close agreement with clinical interpretation. However, in terms 
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of F1-score and recall, which is clinically valuable, the CNN model performs inferior to 

the clinical interpretation. 

 

Table 5 reveals how transfer learning performs compared to the conventional custom 

CNN and clinical interpretation.  

 

Table 5. Comparison between transfer learning, a custom CNN and clinical interpretation in 
myocardial ischemia classification results. 

Approach  Accuracy Precision Recall F1-score 

Transfer 
learning 

VGG19  
(128 × 128) 85% 92% 75% 80% 

VGG16 
(128 × 128) 83% 71% 75% 76% 

DenseNet201 
(224 × 224) 83% 79% 80% 80% 

Xception 
(71 × 71) 

83% 93% 65% 76% 

Custom CNN 83% 93% 65% 76% 

Clinical interpretation 87% 94% 75% 83% 

 

 

As it can be understandable from the table, all approaches demonstrated a compactly 

similar result on the task. Xception model represented the exact same results from the 

custom CNN. The DenseNet201 and VGG16 also performed relatively close to the 

custom CNN. However, VGG19 network showed slightly improved performance 

compared to other models, including the custom CNN. Although each network has shown 

a higher peak in performance under specific settings, in a series of experiments, 

evaluation metrics are in favor of clinical interpretation. 

 

 

 

 



 

51 

 

5.1.4 Ensemble learning  

 

Results from the comparison phase of the experiment revealed that the four models to be 

combined for ensemble learning are VGG19, VGG16, Xception, and DenseNet169. The 

input image size for all models was set as 128 × 128.  

The results from most ensemble learning techniques were not informative due to 

similarity in performance. To report the results of this section of the experiment, from 

each category of ensemble learning techniques, one method was selected. From the 

stacking methods, max-voting showed excellent performance, and from meta-learning 

approaches, all methods yielded similar results. Tables 6 and 7 represent the best results 

of ensemble learning methods employed in this thesis. 

 

Table 6. Performance results from ensemble learning on training dataset. 

Method 
Training 
accuracy 

Training 
precision 

Training 
recall 

Training     
F1-score 

Max-voting 89% 79% 97% 87% 

Meta learning 94% 89% 97% 93% 

 

 

Table 7. Performance results from ensemble learning on test dataset. 

Method Test accuracy Test precision Test recall Test F1-score 

Max-voting 86% 93% 75% 83% 

Meta learning 84% 93% 70% 80% 

 

Comparing the results from ensemble learning and clinical interpretation results from the 

study of Teuho et al., it can be concluded that ensemble learning can leverage the power 

of pre-trained models. Max-voting achieved the closest results to clinical interpretation 

in terms of accuracy and precision and achieved the highest F1-score of 83%, similar to 

clinical interpretation.  
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5.2 Discussion 

One of the main objectives of this thesis was to compare pre-trained models for the 

classification of ischemia from polar maps. Having accomplished this objective, a number 

of superior pre-trained models were introduced. The best performing pre-trained model 

was the VGG16 model with input images of 128 × 128 pixels. Conversely, the 

EfficientNetB family exhibited unacceptable results for our task, despite their outstanding 

results on the source task. 

To answer the second research question of this study, a selection of best pre-trained 

models was compared against a custom CNN developed on the same dataset. 

Interestingly, Xception network with a small input image size of 71 × 71, showed similar 

performance to the custom CNN. VGG19, marginally outperformed the custom CNN in 

most metrics. Yet, the majority of other pre-trained models performed inferior to the 

custom CNN model. 

Changing input image size for the models did not meaningfully affect the overall 

performance of pre-trained models.  According to several studies investigating the effect 

of image resolution on CNN performance, bigger image sizes were assumed to bring 

improved performance.(82–84) However, in our study, no meaningful trend was 

observed. In some networks (i.e., Xception), training on smaller images yielded better 

performance on most metrics. On the contrary, other networks such as InceptionV3 and 

InceptionResNetV2 performed more satisfactorily using larger input image sizes. 

Ensemble modeling was used to aggregate the prediction power of each pre-trained 

model. The ensemble model outperformed all pre-trained models as well as the custom 

CNN, submitting the closest to human performance.  

With reference to the comparison made between a custom CNN and pre-trained models, 

although some pre-trained models outperformed the custom CNN in most metrics, there 

are still some questions left to be addressed. Firstly, it is important to explain why pre-

trained models with a multitude of layers and millions of parameters failed to perform 

close to a custom CNN. One explanation is that domain similarity between the source 

task to our task is not at an optimum level. However, this assumption can be challenged 

by VGG19's decent performance. Another assumption is that, due to the differences in 

the architecture of pre-trained models, some models performing better in extracting low-

level features such as colors and edges were superior in our task. In polar map images, 
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low-level features are the dominant features of the images, therefore, models with more 

weights in the bottom layers of their architecture would perform better.  

 

5.3 Conclusion 

In this thesis, specific research questions were raised to fill the research gap in the domain 

of transfer learning in medical imaging. First, an introduction to the problem was 

provided, followed by an extensive literature review on the background of the study. 

Based on the previous investigations in applying transfer learning to medical image 

classification tasks, the viability of benchmarking a pre-trained model for the 

classification of myocardial ischemia was discussed. Later, the process of experiment 

design for the thesis, as well as the challenges of implementing a myriad of models into 

one unified code, was explained. Finally, In the last chapter, the results of the experiment 

were demonstrated.  

The transfer learning approach proved to be feasible for the classification of ischemia. 

Some pre-trained models, such as VGG19 performed superior to other pre-trained 

networks as well as a custom CNN. Besides, with reference to the evaluation metrics, 

both training a CNN from scratch and transfer learning marginally performed at the 

human level performance. Yet, it failed to outperform clinical interpretations in specific 

metrics such as F1-score.  

An advantage of employing transfer learning in image classification tasks is the 

effortlessness of its implementation. Developing CNN models from the ground up can 

benefit the performance due to the specific architecture design for the available dataset. 

On the flip side, the process of developing and training CNNs adds up to the time and 

resources. Alternatively, with transfer learning, a CNN model can be downloaded and 

tuned for a classification task in a matter of minutes. By using pre-trained models, the 

computation power for intensive base model training is not required, leaving more space 

and accessibility for researchers to implement DL even on low-end hardware. Therefore, 

transfer learning, not only because of the potential higher performance but also due to the 

ease of access, can be employed instead of developing a custom CNN. 

According to the experiment results, in a medical image classification task, it is 

challenging to choose a pre-trained model as a predictive model to aid the end-point 

clinical decision. This is because the unfavorable domain similarity between the source 
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data in transfer learning models and medical image datasets compromises the 

performance of pre-trained models. Therefore, model selection is a hindrance in 

employing transfer learning for medical image classification tasks. We have shown that 

an ensemble of pre-trained models that performs at a clinical interpretation level is a good 

candidate to use instead of a single model. Accordingly, one way to tackle the challenge 

of selecting the appropriate architecture for a medical image classification task is using 

ensemble modeling.  

Although it was previously emphasized that DL, in general, does not aim to replace 

doctors with regard to diagnosis purposes, once again, it was demonstrated that CNN 

models are not alternative systems to clinical interpretation. Rather, it can be concluded 

that doctors may possibly use DL  methods for second confirmations or partially automate 

tasks in clinics. Especially with transfer learning's plug-and-play fashion, high-resolution 

images can be passed through automated classification models for predictive analysis in 

any stage of disease management.  

In this thesis, all research questions were addressed, and the research objectives were 

accomplished. However, based on the results of this work, more questions are raised. One 

of the interesting topics to cover in the future is the effect of image augmentation 

techniques on transfer learning performance during the dataset preparation. Additionally, 

the effect of domain similarity in transfer learning for medical image classification is an 

interesting topic to be addressed.  
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