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In this thesis, machine learning approaches, namely decision trees and random

forests, are discussed. A mathematical foundation of decision trees is given. It

is followed by discussion of the advantages and disadvantages of them. Further, the

application of decision trees as a part of random forests is presented. A real life

study of brain tumours is discussed regarding usage of random forests. The data

consists of six different types of brain tumours, and the data is acquired by Raman

spectroscopy. After the data has been curated, a random forest model is utilised to

classify the class of the tumour. At the current point, the results seem optimistic,

but require further experimentation.
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1 Introduction

Lately, healthcare and medicine has seen a huge increase in implementations of

machine learning in order to be more efficient in noticing patterns in huge datasets.

The idea itself is not new, but current methods and equipment have brought the

process to a new level. Artificial intelligence can be utilised to spot malignant tissue

in brain. This is supported by previous studies (Ellwaa et al., 2016; Sotoudeh et al.,

2019) on identifying tumour tissue.

Artificial intelligence has ties to computer science and mathematics. Mathemat-

ics is the main focus of this thesis, and it lays the foundation for various algorithms

that are used. First, the concept of decision trees is presented. Also, the history

behind the motivation for such concept is explained. They are the basis for random

forests, which are the main interests regarding the glioma study discussed in this

thesis.

The study discussed in this thesis is on glioma data. The goal is to find out

whether a random forest model could correctly classify brain tumours with signif-

icant accuracy. A baseline model architecture is introduced, and the goal is to

optimise it to produce better classification results. The results are acquired by con-

structing several different random forest model architectures which are applied on

the data that has initially been gathered by using Raman spectroscopy.

1



2 Decision Trees

Decision trees are used to find new information based on some given attributes.

Blockeel and De Raedt (1998) define decision trees to utilise the divide-and-conquer

strategy. The divide-and-conquer strategy divides given input into several smaller

parts, and then proceeds to find a solution to each of those parts. The solutions

of these smaller parts are combined into a single solution for the original problem.

Decision trees are heavily used to generalise information, however, the task of gen-

eralisation becomes an issue with huge trees (Kotsiantis, 2013).

Decision trees can be used to solve either classification or regression problems.

Classification and regression differ from each other by their predicted values. The

output of a decision tree defines whether the problem falls under classification or

regression. If the output is continuous or quantitative, the problem is defined as a

regression problem. If the output is discrete or nominal, the problem can be labelled

as classification problem.

There are three key parts to decision trees: a root node, decision nodes and

terminal nodes (Njoku, 2019). The root node is the initial node that starts the

decision process. Decision nodes are all the nodes between the terminal nodes and

the root node. Their purpose is to further make decisions. Terminal nodes are the

last nodes in the tree. Their values are the possible outcomes of the tree, and when

reached, it is the end decision.

Figure 1: Classification: an example of a decision.
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2.1 History of decision trees

In the last 60 years, there have been many groundbreaking publications in the field

of decision making and decision trees. One of the first essential publications is the

introduction of the first regression tree that includes the usage of impurity (Morgan

and Sonquist, 1963). They pointed out many issues about data that should be kept

in mind when handling it. One of the biggest concerns is the nature of the data: it

can be continuous, ordinal or categorical. This created the need to have flexibility in

how to analyse data. Analysing was not the only issue and despite having measures

to split the data in two, having a criterion to do so was a more difficult task.

In 1977 a method to implement both classification and regression trees was cre-

ated, namely CART (Breiman et al., 1984). The model was able to deduce which

type the variables were and split them accordingly. The nodes are split recursively

until no improvements to make a better decision are made. Seven years after the

first model of the CART algorithm, the model was published and is widely used

even nowadays.

The year 1986 brought light to decision trees that were not only binary (Quinlan,

1986). An algorithm called iterative dichotomiser 3 (ID3) was an introduction to

multivariate decision trees. An information gain was calculated in order to decide

which split was to be made on each node. This algorithm had its problems and

there were optimisations to be made.

Quinlan (1993) continued to develop the ID3 algorithm and after almost a

decade, a new, revised algorithm, C4.5, was published. Key improvements included

handling missing values and dealing with noise.

Despite both CART and ID3 being published around the same time, they were

independently developed. This reflects the need of such algorithms to model real

life decision making, and the phenomenon can be seen nowadays in the constantly

increasing need to predict outcomes in the business world.

2.2 Applications of decision trees

There are many use cases for decision trees in real life. They can be used to decide

day-to-day problems such as buying groceries or even planning holiday destinations.

They are also used in scientific research.

Decision trees are widely used in data mining. For example, data mining is used

in school environments in order to help students get better grades, to work on their

studying habits, and to generally have better quality of work (Al-Radaideh et al.,

2006). Overall, this process can be seen as making education systems better: those
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in charge are able to change course contents to focus on topics that the students are

less successful in. Also, it helps course creators and student counsellors to see what

kind of courses are needed to create comprehensive curricula.

Exploratory data mining, which is a method which uses decision trees, has been

utilised frequently in psychological research in behavioural sciences (McArdle and

Ritschard, 2013). Decision trees are used in psychological research because they are

easy to interpret. Despite being straightforward to interpret, they lose generalis-

ability because even small changes can alter the results tremendously (Jacobucci,

2018). Especially in psychology, it is important that the results would be replicable

when handling information about human behaviour.

Further usage of decision trees as a data mining technique can be seen in medicine,

for instance, in oral medicine (Khan et al., 2009). Medical databases contain massive

amount of information so gathering information by hand is not a feasible option.

Using decision trees can provide insight from the data, and find patterns. This can

help professionals deduce appropriate operations for patients.

The sensitive nature of medical actions requires accurate and well-informed foun-

dation and data. Decision trees have been shown to provide such reliability in

medicine (Podgorelec et al., 2002). Due to the simple interpretation of a single deci-

sion tree, professionals are able to interpret the results of the classification efficiently.

Another application of decision trees is in online learning by utilising demo-

graphic data (age, income, level of education, etc.) Rizvi et al. (2019) have con-

ducted a thorough analysis of demographic data used in decision trees, and how the

decisions can be used in creating courses for certain demographics. Furthermore, it

can provide more guided monetary decisions when funding online education. The

pitfall of this approach is that the decision trees tend to be biassed towards the ma-

jority demographic. Despite the possible bias, the results are sufficient for decision

making.

2.3 Common logical operators

Decision trees represent a logical way to reach conclusions. It is clear that they

can be used to express basic logical operators. Equivalently, same operators can be

expressed with truth tables. Basic logical operators AND, OR, and XOR can be

seen in Figure 2 below.
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Figure 2: Basic logical operators.

These decision trees can be interpreted in a similar manner as truth tables. To

consider the OR tree, the value for A is evaluated first. If A has a value True, then

the whole tree would branch to the left and output the value True. If the value for A

is False, then the whole process is repeated on the next node, B, until some output

is reached.

2.4 Supervised Learning

Both aforementioned classification and regression are forms of supervised learning.

The goal of a supervised learning algorithm is to predict an outcome from some

input variables. A key thing in supervised learning is that the labels (results) are

known initially. An example of a supervised learning problem is a simple image

classification: is this creature in a photo a dog or a cat? To formulate this idea on

a general level, let X and Y be the input and the output respectively. A predictor

function f , also known as the classifier, has some input and its result is the desired

prediction, i.e., the output:

f : X → Y .

The goal in supervised learning is to find the predictor function f . Crisci et al. (2012)

propose that in order to create a good predictor, the predictor function should be

selected from a set of all predictors: F = {f : X → Y}, but it is also needed to

define what makes a predictor good. The predictor should be as accurate as possible,

but it is borderline impossible to have a perfect predictor, therefore there will be

some loss. Let L be a loss function that takes f , X and Y as inputs. As mentioned

before, there is a best predictor f ∈ F . Denote this best predictor that minimises

the loss function L as f ∗ ∈ F such that
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f ∗ = arg min
f∈F

L(f,X ,Y) := {f ∈ F : L(f ′,X ,Y) ≥ L(f,X ,Y) for all f ′ ∈ F}.

However, Crisci et al. (2012) point out that the set of all predictors F can be massive.

Thus, it’s not feasible to consider the whole set. Hence, a new set C is defined as

a set of predictors that can be computed in a feasible manner, not, for example,

exponential models. Now, defining the predictor that minimises the loss function L

can be stated as follows:

f ∗∗ = arg min
f∈C

L(f,X ,Y) := {f ∈ C : L(f ′,X ,Y) ≥ L(f,X ,Y) for all f ′ ∈ C}.

It is important to note that f ∗∗ might not be the same as the original best predictor

f ∗. Formally this can be expressed as

f ∗∗ = f ∗ if and only if f ∗∗ ∈ F .

A problem occurs since f ∗∗ is not practical in minimising L. This is because the

amount of all elements is too large for L. Hence, there is no concrete evidence of a

function minimising the loss function on C. As a result, the loss function is adapted

to correspond to some sample size n (Crisci et al., 2012; Devroye et al., 2013) in a

way that the predictor minimising this is also dependent on the sample size n:

f̂n = arg min
f∈C

L̂n(f,X ,Y) := {f ∈ C : L̂n(f ′,X ,Y) ≥ L̂n(f,X ,Y) for all f ′ ∈ C}.

This definition focuses on the conditions necessary to make it possible for the sample

dependent predictor, f̂n, to converge to the best choice for predictor, f ∗, when the

sample size gets arbitrarily big.

A risk for a function can be defined with the help of the loss function:

R(f̂n) =

∫︂
L̂n(f,X ,Y)dP (X ,Y),

where f ∈ C and P (X ,Y) is the joint probability distribution. In reality, knowing

the value for this distribution is not feasible. Thus, an empirical risk minimisation

is done by evaluating the integral using Monte Carlo integration (Kong et al., 2003)

(will be omitted), and reducing it to more a feasible form. Let Tn ∈ (X × Y)n be

a training set randomly chosen from n records. Now empirical risk minimisation is
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done by averaging loss over the training set can be denoted as (Cunningham et al.,

2008):

Remp(f̂n, Tn) =
1

n

n∑︂
i=1

L̂n(f, xi, yi),

where xi and yi are the ith values of a record’s features and targets in the training

set.

In very general terms, supervised learning is about modelling dependency be-

tween features and the targets, i.e., predicting target values for new data from given

features.

2.5 Mathematics of decision trees

Classification and regression trees have similar goals but different types of outcomes.

This is why there are different methods for the different trees to split the nodes.

Splitting a node is essential for decision trees. Splitting aims to achieve pure nodes.

Pure nodes are nodes that have all of their data belonging to one class. Whether

splitting a node in a regression or a classification tree, the split with the least

impurity is chosen.

2.5.1 Splitting a regression tree

When the target is a continuous variable (a real number), variance can be reduced

to make a better split. Variances of nodes determine the best one to split. That is,

the node with the lowest variance is the one to choose. Variance can be reduced in

two different ways: averaging and pruning. (Geurts and Wehenkel, 2000) state that

pruning increases bias but reduces complexity. Averaging does not increase bias but

loses in accuracy. Variance can be expressed as

V ar(X) =
1

n

∑︂
(X − µ)2,

where n is the sample size, X is the sample, and µ is the mean of the sample.

Starting from the root node, variance is calculated for each branching decision or

terminal node, i.e., child node. After choosing the split that has the lowest variance,

the variance is calculated again on the child nodes. This iterative process is carried

out until a decision is made, that is, a terminal node has been reached.
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2.5.2 Splitting a classification tree

For splitting a classification tree, there are two options: information gain and Gini

impurity.

Gini impurity (GI) is only an applicable method to split a node if the targets

are categorical. It describes how likely it is to incorrectly label a random element

(Yuan et al., 2021). Consider a learning sample L = {(x1, c1), (x2, c2), · · · , (xn, cn)},

where each ci represents a class and each xi represents a measurement. Let P =

(p1, p2, · · · , pn) be the set of probabilities for each class, where each pi = ci
L

(Tangi-

rala, 2020). The GI can be expressed as

GI(L) =
n∑︂

i=1

pi(1 − pi),

where indices i ∈ {1, 2, · · · , n} denote classifications, n denotes the amount of dif-

ferent classes, and pi denotes the probability of ith classification.

Some formatting can be made, influenced by Raileanu and Stoffel (2004):

GI(L) =
n∑︂

i=1

(pi − p2i ),

GI(L) = 1 +
n∑︂

i=1

−p2i ,

GI(L) = 1 −
n∑︂

i=1

p2i .

Here,
∑︁n

i=1 pi = 1 because summing all probabilities for all possible values for a

class will total in probability of 1.

When choosing a criteria to split, a weighted Gini impurity can be calculated.

This means calculating the GI for all splits of a node, and then comparing the

amount of samples to the total amount of samples in the origin node that is being

split, and multiplying those proportions with the GI value (Liu et al., 2018):

k∑︂
i=1

si
sp

∗GIi,

where i ∈ {1, 2, · · · , k} are the splits, k is the amount of splits, si is the amount of

nodes in the ith split, sp is the amount of nodes in the node being split, and GIi is

the Gini impurity of a ith split.

Since the GI measures how likely it is to incorrectly label random elements, it is
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the optimal case when the value for it is 0, i.e., there is no impurity.

To utilise Gini impurity in splitting a decision tree, its value is calculated for each

decision node including the root node. To compare different split criteria, weighted

GI is calculated, and the one with the lowest value is chosen. The process is repeated

until a terminal node is reached.

Information gain (IG) is another method to decide the best split for a decision

tree. The method is especially useful when the target is categorical. The idea behind

IG is based on entropy. Entropy can be expressed as the probability of a class and

multiplying it with the base 2 logarithm of that certain class. This is done for each

class and they are summed together (Tangirala, 2020).

Entropy(L) =
c1
L

log2(
c1
L

) +
c2
L

log2(
c2
L

) + · · · +
cn
L

log2(
cn
L

),

Entropy(L) = p1log2p1 + p2log2p2 + · · · + pnlog2pn,

Entropy(L) = −
n∑︂

i=1

pilog2pi.

There is a reason why there is a negative sign in front of the entropy summation.

Since for pi for any given i ∈ {1, 2, · · · , n} holds 0 ≤ pi ≤ 1, we have that log2pi ≤
0. Thus, pilog2pi ≤ 0, and even further

∑︁n
i=1 pilog2pi ≤ 0. It is more feasible

to concentrate on positive entropy, hence adding the negative sign in front of the

summation creates a non-negative number, that is:

Entropy(L) = −
n∑︂

i=1

pilog2pi ≥ 0.

Entropy directly reflects the purity of the node. The closer the entropy value

Entropy(P ) is to 0, the purer the node is. Information gain can be expressed

as

IG(L) = 1 −
n∑︂

i=1

pilog2pi.

It is important to note that the probability for any class i can not equal 0. This is

because limx→0+ log2n = −∞.

Weighted entropy is the value for the whole split decision. After calculating

entropies for the child nodes of a split, the values are multiplied with the proportional
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amount of samples compared to the parent node’s samples. This is done for each

child node of the split and these are summed together:

k∑︂
i=1

si
sp

∗ Ei,

where similarly as in weighted GI, i ∈ {1, 2, · · · , k} represents each child node, k is

the amount of child nodes in the split, si is the amount of samples in i, sp is the

amount of total samples in the parent node, and Ei is the entropy of ith child node.

To implement the information gain model to choose the split of a decision tree,

similar steps as variance reduction and Gini impurity methods are carried out. En-

tropy is calculated for each split’s resulting child nodes. To choose the criteria on

which to split by, weighted entropy is calculated, and the lowest one of those is cho-

sen. This process is repeated until a terminal node is reached. Note: also highest

IG value can be chosen instead of lowest entropy.

2.6 Implementing decision trees

There exists several algorithms to implement decision trees. Iterative Dichotomiser

3 (ID3) is an algorithm to classify binary problems. Classification And Regression

Tree (CART) can also be used for binary classification but are not limited to. CART

also works on more complex tasks.

2.6.1 ID3

ID3 is an algorithm that creates a decision tree out of the dataset. It utilises

entropy, −
∑︁n

i=1 pilog2pi, and information gain, 1 −
∑︁n

i=1 pilog2pi. The algorithm

creates the decision tree’s each node (Hssina et al., 2014). To choose the root node,

the algorithm chooses the feature that has the best result in classifying the training

data. The choice is made by calculating the entropy or information gain for each

feature (Quinlan, 1986). The one with the lowest entropy or the highest IG is chosen.

This will be the root node. New dataset is created that excludes the decision made

on the root node. In other words, the feature on which the decision is made, can

be dropped from future calculations. This very decision is a split where a clear

classification can be made, say, where a set of samples can be chosen from the group

without choosing any other kind of sample. That is, the algorithm prefers splits

where one subset is much smaller compared to others. The process is repeated for

the next decision node to choose the best feature to split the dataset by.

Since there may be several features, the tree can branch off several times from
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the root node. The process is the same to decide how the split is made. Each tree’s

branch ends in a terminal node with a decision.

The ID3 algorithm has its advantages and disadvantages. It creates an easy to

understand tree purely based on the training data. The tree is short and it’s built

quickly (Slocum, 2012). Each time a terminal node is reached, the data can be

pruned to reduce the amount of features and hence making each following decision

quicker.

A negative side to ID3 is that small samples are easily overfit. Despite being able

to make decisions based on multiple features, the algorithm is only able to consider

them one at a time.

2.6.2 CART

CART algorithm is another algorithm that forms a decision tree out of the dataset.

Where ID3 bases its decision on entropy or information gain, CART utilises Gini

impurity, 1 −
∑︁n

i=1 p
2
i . CART creates a binary tree which means that from each

decision node including the root node, a node is split into two instead of many

possible splits (Denison et al., 1998). Consider a dataset D split on some feature F

into D1 and D2. To calculate the GI value for the split on feature F , it can be done

in parts for each subset of data:

GIF (D) =
|D1|
|D|

GI(D1) +
|D2|
|D|

GI(D2),

where |D|, |D1| and |D2| are the sizes of respective datasets. Define reduction in

impurity as:

∆GI(F ) = GI(D) −GIF (D).

The feature that has the smallest GI will be chosen to be the splitting feature as it

will create the biggest reduction in impurity. To create a whole tree, this process is

repeated until the tree has reached its maximum size (Questier et al., 2005). The tree

of maximum size, however, is prone to overfitting. The tree is optimised by pruning

branches that affect the accuracy the least. Questier et al. (2005) consider pruning

the trees by dividing the maximum size tree into subtrees and then calculating a

cost-complexity measure for it. Let Rα(T ) be the cost-complexity measure for a tree

T (Timofeev, 2004):

Rα(T ) = R(T ) + α|T |,
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where |T | corresponds to the amount of terminal nodes in the tree, α is a measure

that decreases the tree’s size. Increasing the value of this variable creates smaller

and smaller trees, all of which are optimal to their own size. For the whole tree,

the goal is to find the value that reduces the complexity of the tree the most while

losing as little accuracy as possible. R(T ) can be defined in two ways depending

on whether classification or regression tree is in question. For classification trees, it

is the rate of misclassification, which can be represented in terms of true positives

(TP ), true negatives (TN), false positives (FP ) and false negatives (FN):

MCR =
(FP + FN)

(TP + TN + FP + FN)
,

where MCR stands for misclassification rate. For regressions trees, R(T ) is defined

as residual sum of squares:

RSS =
n∑︂

i=1

(yi − ŷi)
2,

where yi is the ith variable considered by the algorithm and ŷi is the predicted value

of yi.

To choose the best value for α, a method called cross validation is utilised. Cross

validation is a method to evaluate performance of an estimator. It is used to reduce

overfitting. This is done by using some test set which is a part of the data, and

all remaining data is used on training. In optimising the CART algorithm, the test

set is one of the subtrees in the tree structure. The cost-complexity measure is

calculated for each tree in the training set, and the one with the lowest value is

chosen to be the best (Breiman et al., 1984). This results in a pruned decision tree

that has reduced complexity compared to the maximum sized tree.

The CART algorithm has several positives and negatives. Similarly as ID3,

CART is easy to interpret. Visualisations are clear and informative as there are only

two branches from each decision node. The algorithm is able to handle numerical

and categorical features and is able to prune the tree to have only the most important

features (Singh and Gupta, 2014).

As a general decision tree issue, changes in data can affect how the created tree

looks, i.e., change in data increases variance. The algorithm favours classes that are

more represented in the data, thus creating biased trees.
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2.6.3 Implementing a decision tree classifier in Python

Implementing a decision tree classifier in Python is simple by using ready-made

packages. Below is an example of how easily a simple decision tree classifier is

implemented in Python using scikit-learn, which provides machine learning focused

tools for data analysis.

Iris dataset is a popular dataset to display basic functionalities in different clas-

sifiers. It consists of 3 different species of Iris, and includes 4 different features for

each record: sepal length, sepal width, petal length and petal width. With the

loaded dataset come the actual classes for each record. Dataset is split into training

and testing sets using built-in functions. Then, the accuracy of predicted classes

will be calculated. The code used to run this example can be found in Appendix A.

Scoring a simulation run resulted in 0.94736..., which means that the predic-

tions were nearly 95% accurate. To showcase how the previously described classifier

makes the splits, a visualisation of the classifier in action can be seen in Figure 6 in

Appendix B.

As it can be seen, when the Gini impurity value (Gini in the graph) is 0, a

classification has been made. The classification process can get complex quickly

when the amount of features is increased. Based on the Figure 6, the iris species

setosa clearly separates from the two other species.

2.7 Advantages and disadvantages

The nature of decision trees proposes several advantages. However, with advantages

come disadvantages.

2.7.1 Advantages

The driving factor for usage of decision trees is the simplicity to interpret decision

trees. They split data in a clear, understandable manner whether it’s based on

some categorical variable (e.g., is it raining: yes, no), or a continuous variable in a

range (e.g., age < 30). Another reason why decision trees are so widely used is that

pre-processing of data does not require much effort (Al-Radaideh et al., 2006). The

data does not require standardisation or even processing of missing values, although,

handling missing values may improve performance (Saar-Tsechansky and Provost,

2007).

Missing values can be handled in different ways. Sometimes the whole record

for which the missing value occurs can be deleted, or the values can be deduced

from other variables by, for example, taking a mean value of the feature and using
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that value. Another way to handle missing data is to address that somehow in

each decision node. This way it can be ensured that a certain decision is always

reached for missing data. It is important to note that a data point can be missing

on purpose.

Decision trees are able to handle both regression and classification tasks. This

makes them versatile and an option for many tasks. In both cases, a visualisation of a

tree is highly encouraged. Depending on the given parameters, the trees can get quite

large to be visualised. In any case, each node of a decision tree provides information

regarding a certain feature. Decision nodes contain a mixture of possible classes,

and further splitting the node shows exactly which feature decided the splitting,

eventually yielding pure classifications.

Decision trees are used as a basis for other, more advanced algorithms, for in-

stance, random forests (Parmar et al., 2018). Random forests will be discussed in

more detail in a later chapter.

2.7.2 Disadvantages

One of the disadvantages becomes prevalent when the data gets more complex with

more features. Rokach and Maimon (2005) state that because decision trees utilise

divide-and-conquer methods, they work extremely well on few features but lose

accuracy with many complex features. However, despite decision trees not being so

accurate for one complex classification, many decision trees can be used together

to split the classification tasks into smaller parts in order to make more accurate

classifications. In other words, decision trees are not able to generalise data well

from large and complex datasets.

Overfitting is a problem, which means that the model is able to fit the training

data really well but fails to generalise any other data (Kotsiantis, 2013). Overfitting

happens easily if there is noise in the data. There are several ways to mitigate

overfitting, for example, feature selection and, in general, pre-processing of data.

Feature selection is about measuring how good a certain selection of a feature is.

The idea is to find features that have minimal effect on the outcome and then drop

those features for the selection. Feature selection creates a subset of the original

data with reduced complexity and is overall more generalisable. Feature selection

can be performed by, for example, ranking the features. A way to rank features is to

calculate Pearson correlation coefficient, which measures linear correlation (Chan-

drashekar and Sahin, 2014):

ri =
cov(xi, Y )

σxi
σY

,
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where xi represents the ith feature, Y is the labels of the classes, cov(xi, Y ) is the

covariance of the ith feature and the class label. Covariance describes how two

variables vary together. Positive covariance means that increase in one variable

implies the other variable also increases. Negative covariance means that increase

in one variable implies the other variable decreases. Variables σxi
and σY are the

standard deviations of respective variables. The closer the absolute value of ri is to

0, the less linearly correlated the two variables are. It is more interesting to consider

correlated variables as they can help generalise the data.
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3 Random Forests

Random forests are essentially a group of random decision trees. Simply, out of

all the decision tree classifiers, the most common prediction is chosen to be the

prediction of the random forest. Ho (1995) is credited to be the first to introduce

the general idea of random forests. She was able to show that using a collection of

random trees can help to increase accuracy of predictions. This is because the error

for each prediction can be averaged between the trees. Random forests follow divide-

and-conquer methods like decision trees. The random forests are based on bagging,

also known as bootstrap aggregation. This method aims to have low variance and

low bias by repeatedly randomly sampling with replacement using training data.

Randomly sampling with replacement allows multiple samples to be used rather

than just one.

3.1 Bagging (bootstrap aggregation)

Bagging is used to create many versions of some predictor after which these pre-

dictors are aggregated to be one predictor (Breiman, 1996). Let L = {(yi,xi), i =

1, · · · , n} be a learning set, where yi is an ith true label, and xi is the ith input

that is used for a prediction. Denote a predictor by f(x,L). Consider a collection

of learning sets:

T = {Li, i = 1, · · · , k},

where k is the amount of learning sets. We have that |Li| = n for all i since each

learning set in the collection T consists of data from L with the same proportion of

learning data. For each learning set in Li ∈ T , there is a predictor f(x,Li). These

predictors create a set of predictors:

Tp = {f(x,Li), i = 1, · · · , k}.

Considering the predictor, the type of task matters: is classification or regression

in question? For classification, the resulting prediction is made by taking the most

frequent prediction from the predictions. Let j ∈ {1, ..., J} be a class that can be

predicted, and J the amount of all classes. Assume j is a prediction of the predictor

f(x,L). Consider the amount of different predictions. The amount of j predictions

from all predictors can be denoted as:

Qj = #{i : f(x,Li) = j}.
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The previous process is the aggregation process. The Qj with the highest value will

be chosen to be the final prediction:

fA(x) = arg max
j∈{1,··· ,J}

Qj := {j ∈ {1, · · · , J} : f(v) ≤ f(x) for all v ∈ {1, · · · , J}}.

For regression tasks where the predictions are numerical, an average value of the

predictions can be considered as the final prediction after aggregation (Quinlan

et al., 1996). Denote the aggregation of the predictor function as the expected value

of a prediction from a learning set:

fA(x) = EL[f(x,L)].

Let B be a bootstrap, i.e., a random sample with a replacement. This means that

some learning set has been selected from the available data but now some sample

will be replaced with another value from the data, possibly changing the set slightly.

The same datapoint can appear several times in the bootstrap. A bootstrap is taken

from the learning set repeatedly. From then is formed a set of predictors that use the

bootstrap samples instead of the learning sets. For classification, the most common

prediction is chosen from {f(x,L(B))}.

For regression, the values of {f(x,L(B))} can be averaged. Let ai be the value

of a prediction from an ith bootstrap sample L(B)
i . Now, the average value of the

predictions is:

fB(x) =
1

J

J∑︂
i=1

ai,

where J is the size of the predictor set. This sets the basis for random forests and

how they make predictions utilising a collection of decision trees.

3.2 Random forest training algorithm

The random forest algorithm relies on decision trees that are uncorrelated. This

is achieved by using bagging and random feature selection to create different trees

(Parmar et al., 2018). Initial algorithm by Breiman (2001) and further clarification

by Parmar et al. (2018) has provided an easy way to state the steps of the algorithm

for a classification task.

The training set is divided into subsets. Each subset contains a certain amount

of features, denoted by hyperparameter M . That is, each subset contains the same
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amount of features, but the features vary. Let k denote the amount of subsets, and

θi the ith subset. Each subset of features is chosen randomly from all the available

features. Randomness ensures that the subsets θi, i ∈ {1, · · · k} are independent

and not dependent on each other. The data is now trained with each of the feature

subsets, creating a decision tree classifier. For an input X , the classifier can be

denoted by h(X , θi) for the ith feature subset. The classifier is created for each k

feature subsets. Each classifier outputs a classification result, and after all results

are gathered, the most common of them is chosen.

To put the creation of a random forest classifier simply, first a training set is

randomised and split into subsets of features. From those subsets, decision trees are

made that act as a test set. Each decision tree results is a classification, and the

end result is chosen by voting the most common classification.

3.2.1 Hyperparameter tuning

The algorithm is affected by hyperparameter tuning. Different selection of hyperpa-

rameters can yield very different results but the algorithm should run in reasonable

time and perform efficiently. Probst et al. (2019) mentions several parameters that

have an important role in the random forest algorithm. They include but are not

limited to: amount of features in each sample and the number of trees in the forest.

In a comprehensive study by Fernández-Delgado et al. (2014) a significant amount

of 179 classifiers were analysed with various hyperparameters. They concluded that

increasing the number of trees in the forest mostly improved the accuracy of the

classifier. However, increasing the amount of trees arbitrarily isn’t the most optimal

solution. In general, it is thought that 26−27 trees should yield good enough results.

Oshiro et al. (2012) show in their study that on various data, having more than 27

trees does not increase the results significantly. Running time wise increasing the

amount of trees does not provide good enough improvement, so the amount of trees

is worthwhile optimising when handling lots of data.

Selecting only a few features for each subset will create trees with almost no

correlation but in the long term might lose accuracy in predictions (Probst et al.,

2019). This is a result of the likelihood of selecting only irrelevant features that

don’t contribute much to the prediction accuracy. However, if choosing almost all

the features there are in the whole data, the trees are more correlated and thus

less stable, but provide better prediction accuracy. When implementing a random

forest algorithm for classification, usually the default value of chosen features is
√
p,

where p is the amount of features in the whole data. Probst et al. (2019) evaluates

that increasing the amount of features increases the running time of the algorithm
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linearly.

Another criteria to consider when tuning hyperparameters isn’t necessarily a

hyperparameter but resembles one. To choose which splitting criteria to use when

splitting decision trees can yield vastly different results. To optimise the splitting

rules, Geurts and Wehenkel (2000) suggest that randomising the splitting criteria

for each tree would yield more efficient results. However, when considering just a

single tree regarding the results, no significant difference can be seen between splits;

randomising the split creates purely computational advantage.

3.2.2 Feature selection and importance

As in decision trees, not considering irrelevant features can improve results of the

algorithm. First, some way to determine the most relevant features has to be im-

plemented.

One way of considering whether a variable is relevant is to evaluate whether some

feature has correlation with the target label (Rogers and Gunn, 2005; Roobaert et al.,

2006). However, John et al. (1994) suggest that instead of evaluating relevance of a

single feature at a time, it is more beneficial to consider feature subsets.

As random forests utilise bagging, the features used in each decision tree are

randomly chosen with equal likelihood. Furthermore, as each decision tree aims to

maximise information gain for given features, a correlation of a feature to the target

label can be evaluated as this information gain. Rogers and Gunn (2004) propose

a node complexity measure to weight the IG as an optimisation method. Consider

a binary classification (0 or 1) with n samples and i classifications that result in 1.

Using binomial coefficient, the amount of possible orders for data is:

Cn
i =

(︃
n

i

)︃
=

n!

i!(n− i)!
.

This itself is not enough to evaluate information gain as the order is reflective to

itself, that is, each node would contain two ways to order the data. However, to

get insight from this approach, both of the orders should be the same. Denote

the amount of symmetrical ordering by Au. Those that are not symmetrical can

be calculated by Cn
i − Au. There are two possible options: symmetrical and non

symmetrical orderings. A probability for a symmetrical ordering, Ux, is P (Ux) = 1
Cn

i
,

and the probability for a non-symmetrical ordering, Nx, is P (Nx) = 2
Cn

i
. The value

of numerator is 2 because there are two ways to order the data at those nodes. With

the help of definition of information gain, the node complexity measure, NCM , can

be defined (John et al., 1994) for a single done s as
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NCM(s) = −Au

Cn
i

log2P (Ux) + (−Cn
i − Au

Cn
i

log2P (Nx)),

NCM(s) = log2C
n
i − (1 − Au

Cn
i

).

This estimates the average value for the IG on a single node. Also, this method

does not allow any overlapping for the data, thus in this form it is not suitable for

random forests. For random forests, the data is overlapping due to bagging. Because

duplicate data points are possible in each node, possible orderings of data points

are reduced. Rogers and Gunn (2005) point out that due to this fact, the expected

IG can have a lower and an upper bound. The middle point of these thresholds

give a realistic estimation for the average expected IG. When the imbalance is the

greatest, i.e., a node is split in a way where only one record of of each feature is

chosen, Rogers and Gunn (2004) state that the lower bound for the estimated IG in

regard to the node size, n, is:

E[IG] ≥ 1

n
− n− 1

n
log2

n− 1

n
.

For the upper bound in the most balanced case, i.e., the amount of features is equal

on the node, can be estimated to be

E[IG] ≤ (
n

2
)−0.82,

which is a visual approximation of a graph of a simulation (Rogers and Gunn,

2004). When choosing the average information gain, the middle point of these two

estimations is considered.

An average over many trees helps deducing whether a feature is relevant or not.

Those features with high average IG would be kept and those with low average IG

could be scrapped to make the overall splitting process more efficient and the results

more stable. It depends on a task at hand what is redeemed a suitable threshold to

count a feature as relevant.

3.3 Usages

In real life, random forests have several use cases and they are used widely in various

fields. For example, banks use random forests to evaluate whether to give a customer

a loan. They are interested in the customer’s prior behaviour in terms of whether

they have paid previous loans back in time, do they have steady income, or even
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credit score if that is applicable. The evaluation could result in whether the customer

would be likely to pay a loan back and based on this, a human makes a decision to

grant it or not. Random forests can also be used to detect credit card frauds when

customer name, transactions, credit card number and other related information

(Jebaseeli et al., 2021).

In medical research, random forests can be used to make classifications based

on medical data Alam et al. (2019). They can be implemented to predict whether

a patient has, for instance, a diabetes (Zou et al., 2018) or breast cancer (Nguyen

et al., 2013) based on their existing patient data. It is important to note that these

predictions might not be accurate but rather give insight to doctors if some cases

are worth looking into.

3.4 Advantages and disadvantages

Random forests provide increased prediction accuracy compared to decision trees.

As a random forest is a collection of decision trees, each tree counts and the end

result is the most common decision made among the trees. On top of that, the

prediction error can be averaged between trees. Similarly as decision trees, random

forests can be utilised for both classification and regression, and handles missing

values well. In general, random forests incorporate many advantages of decision

trees such as different types of variables and the splitting of data.

Comparing random forests to decision trees, it is clear that the amount of re-

sources needed for random forest algorithms is a lot more than for decision tree

algorithm. This is due to the fact each decision tree needs to traverse through. A

key improvement over decision trees regarding random forests is that overfitting is

not as significant issue. Even if individual trees may overfit, a forest of trees mit-

igates that issue when the amount of trees is increased. Where decision trees are

easily interpreted, random forests are not. It is easy to figure out the outcome of

one decision tree but doing so for possibly hundreds of different trees simultaneously

is not as simple a task.
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4 Raman Spectroscopy

Raman spectroscopy is a technique to study chemicals based on their fingerprints

without destroying the chemicals. The procedure can used on any substance. The

fingerprints can be thought as identifiers for the chemicals, and they are unique

(Rostron et al., 2016). The technique is based on inelastic scattering of photons.

In the process a continuous wave (or a pulsed) laser is pointed to a photon which

scatters the light. The scatter is considered in two parts. The first part is called

Rayleigh scatter which is not useful as the scattering is the same wavelength as

the incoming light. This is because there is no change in energy which lets the

light to reform back into its original form after the initial scattering happens. The

other part is called Raman scatter. It is the other part of the scattering which is

a minimal part of the light source. This part is of some other wavelength than the

source. The different wavelength is dependent on the chemical that is targeted, thus

creating unique, identifiable feature. The Rayleigh scatter is filtered out and the

Raman scatter is collected with some detector, for instance, a spectrograph, that

stores data in a form of different wavelengths of light.

The actual process to create Raman spectra involves hitting a sample with a

precise laser. A sample is hit in different spots without killing the cell, thus making

this method non-destructive. As the laser hits the tissue of the sample, the molecules

inside the cell vibrate. The actual laser that scatters depends on how the molecules

vibrate. It is substance dependent how the molecules vibrate. Previously mentioned

spectrograph captures the vibrations resulting in a spectrum of intensities.

The method of Raman spectroscopy provides a more efficient, cheaper and time

saving way to study chemicals. The data provided by this method is not difficult to

understand for those not specialised in such data.

4.1 Data offered by Raman spectroscopy

The data created by Raman spectroscopy is due to vibrations in a molecule, and

it provides a lot of data about chemicals. Information about chemical structure

and chemical identity can be gathered using Raman spectroscopy (Movasaghi et al.,

2007). Their research shows that the technique is very suitable to find structural

properties in biological tissues. There is previous literature on usage of Raman

spectroscopy on brain tumours. (Gajjar et al., 2013) and (Kowalska et al., 2020)

have shown that Raman spectroscopy is an efficient way to separate tumour from

normal tissue. The vibrations caused by the laser create differences in the tissue so

that this separation is possible.
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The technique can be used to analyse particles in a solution. This is espe-

cially relevant in polymorphism, which means that there are several possibilities

for different forms in a single compound, and these forms can be distinguished by

characterisation (Tuschel, 2019).

Raman spectroscopy is used in microbiology in order to identify microorganisms.

Jarvis and Goodacre (2004) provide a comprehensive analysis how it can be utilised

to quickly characterise and fingerprint bacteria with repeatable results. Generally,

there are many use cases for Raman spectroscopy in biology (Butler et al., 2016),

but also in medical field. It can be used to spot and correctly identify uncontrollable

growth of tissues (neoplasia) in different parts of a human body such as brain (Meyer

et al., 2011) and lungs (Huang et al., 2003).

4.2 Hyperspectral imaging

Hyperspectral imaging provides two-dimensional images of the spectrum of electro-

magnetic radiation. Based on the absorption of light, it can be utilised to define

different characteristics of a photon (Lu and Fei, 2014). With different amounts of

absorption occurs different amount of scattering of the light. Raman spectroscopy

can be thought as a basis for hyperspectral imaging when thinking about efficiency

and mapping of spectra (Maybury et al., 2018). The images created by hyperspec-

tral imaging are combined into a hypercube which consists of each wavelength from

ultraviolet to near-infrared. Humans perceive colour in three bands: red, green and

blue. The wavelengths of the hypercube can be seen as a continuous range of val-

ues, and the human scale as discrete values. Raman spectroscopy and hyperspectral

imaging can be performed on a same sample, and Raman spectroscopy is a driving

factor whether hyperspectral imaging has provided a correct identification. That

is, if identification of hyperspectral imaging differs from identification of Raman

spectroscopy, the identification can be faulty (Maybury et al., 2018). Hyperspectral

imaging works more efficiently than Raman spectroscopy but the latter is thought

to have more reliable results in that sense.
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5 Random forest application: brain tumour clas-

sification

The project at hand is on glioma data. The results from this project would be to

help detect tumours early enough to increase the chances of a successful surgery and

prolong the life expectancy of a patient.

The data is provided by the National Institution of Health located in The United

States. A sample tissue is cut off of a patient’s tumour. It is scanned using Raman

spectroscopy. A common sample size is 60∗60∗1738 (width, height, frequency), but

the size varies from sample to sample; only the frequency is constant. The frequency

of 1738 is the result of modifying the original data which can contain even 5000

frequencies. The tumour has frequencies over a certain threshold. Using the Raman

spectroscopy, a laser is used to hit the tumour in different position horizontally and

vertically. In the case of a 60 x 60 size tumour, it is hit in 60 positions in both

directions. Each spot that is hit with the laser is fingerprinted. Scanning samples

is time consuming. A single sample can even take 24 hours to scan.

The data consists of 58 samples, and some samples can be from the same patient.

In terms of the number of patients, it might sound like a low number. Regarding

the project, the data seems sufficient. The data of a sample is curated before it is

used in making predictions utilising a random forest classifier. A sample might not

be only tumour, but can also contain healthy tissue, blood vessels, dead tissue or

even plastic from a container the sample is placed in.

A question arises: can machine learning be applied to separate tumour from non

tumour parts? It is a difficult question to answer but at the current point of the

project, the separation can be done. A hypothesis regarding the whole project is

that Raman fingerprints characterise a tumour type. In other words, is it possible

to learn a tumour type from Raman spectra?

The data consists of 6 different categories, namely LGm-1 to LGm-6. LGm-1

includes data from 5 different patients. LGm-2 type of tumour includes data from

11 different patients. Type LGm-3 has data from 4 different patients, however, there

are 9 different data points from them. This means that there are several samples

from the same patient. This is counted as the same tumour from a patient. LGm-4

type tumour includes 10 patients with a total of 13 samples. Type LGm-5 contains

15 sample points from 11 different patients. Lastly, LGm-5 type has 5 samples from

a total of 4 patients.

Currently, the classification task can be performed on 2 or 3 categories with

decently high scores but as the optimal goal would be to accurately classify 6 cate-
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gories, the model falls short. It is entirely possible that with more data at hand the

classification would perform better.

When processing the sample with deep learning techniques, it is important to

note that a part of the tumour might look like a different tumour than it actually is.

Hence, using a random forest classifier to get a prediction by a vote is our approach

to tackle that issue. However, the deep learning approach for tumour classification

should not be neglected in general, and it is, in fact, a method that is being worked

on in parallel to my approach. In literature, there are deep learning applications

in classifying brain tumours (Nazir et al., 2021) as well as in Raman spectroscopy

(Jinadasa et al., 2021). Even though deep learning can be used in analysing brain

tumours, the current techniques are redeemed lacklustre due to their complexity,

and hence losing efficiency. Deep learning is successfully used in our processing of

the Raman spectra when separating the malignant tissue from the healthy tissue.

At the current moment, our random forest approaches are yielding similar results

to the deep learning methods. Deep learning methods will not be discussed in more

detail as they exceed the scope of this thesis.

As each sample consists of 1738 frequencies, they can be visualised in a graph.

The original data is three dimensional. In order to visualise it in a two dimensional

graph, some form of combination of dimensions has to be done. As each sample’s

dimensions contain information about width, height and frequency, for the plotting

width and height are combined by multiplying them together. Below is a plot of the

whole spectra for a sample from patient HF-868.

Figure 3: Patient HF-868: original spectra.

Each sample contains 3 clusters, labelled as -1, -2 and -3. The label -1 is for the
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majority cluster, which is kept for the purposes of further analysis. Clusters with

labels -2 and -3 are discarded. To discard clusters -2 and -3, their values are set

to 0 while -1 is kept unchanged. It is known from the providers of data that the

high peaks on the left side of the plot are not interesting to analyse. I do not have

further explanation for this. Following is a plot that contains only the majority

cluster. Minority clusters have been discarded. It can be seen that there are still a

couple high peaks on the left, so further cleaning is probably required. Compared

to the original spectra, this is much cleaner.

Figure 4: Patient HF-868: spectra with label -1.

Similarly, the sample can be visualised as an image. It shows clearly where there

are clusters. The goal is to keep the yellow area, and to get rid of the darker, smaller

cluster in the middle. This helps to understand more precisely what removing the

certain clusters in the sample does.
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Figure 5: HF-868: cluster.

5.1 Model architecture

The progress discussed along the way will be mainly focusing on classification into 6

categories. Most of the testing is done by utilising only one training cycle instead of

proper leave-one-out cross validation cycle to gain insight into how training and val-

idation accuracies change as different hyperparameters are changed for the random

forest model. The parameters defined for the model are: bootstrap, class weight,

criterion, max depth, min samples leaf, min samples split, n estimators, random -

state, warm start, n job, and max features.

Bootstrap parameter defines whether whole data is used to build each individual

tree. Setting this value to true allows the usage of bootstrap samples.

Parameter class weight describes whether different classes have different weights.

Setting class weight to balanced subsample determines the used weights for every tree

based on a bootstrap sample.

The random forest model utilises one of the two splitting criteria: gini or en-

tropy. These criteria are discussed more in detail in an earlier chapter. In short, gini

chooses the split based on Gini impurity, and entropy bases the split on information

gain.

Max depth defines the maximum depth of a tree in a forest. If a value is given,

all the leaves might not end up being pure, but with a big dataset this simplifies the

model and reduces the running time.

Min samples split simply determines what is the minimum number of samples

on any given node in order to split it. This parameter can be met before the max -

depth, which would stop expansion of the leaves further.
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Min samples leaf determines the minimum amount of samples in a leaf. If at

any point the amount of samples in a leaf after a split is smaller than min samples -

leaf, no further splits will be done.

Parameter n estimators defines the amount of trees in the forest. Considering

the size of our dataset, this value can be sufficiently large while keeping the usage

of the model feasibly computable.

Random state is defined to have consistent results every run. This predeter-

mines randomness for reproducibility.

Warm start determines whether previous fit is used to expand it, or whether a

new forest is fit altogether.

N job defines how many jobs are allowed to run simultaneously. This essentially

defines how many CPUs are allowed to be used.

Max features is used to limit the amount of maximum features that are used

when deciding on a split. This value can be base 2 logarithm, square root of the

amount of features, or it is possible to utilise all features.

5.1.1 Our model

Our random forest classifier model architecture involves previously mentioned pa-

rameters. The architecture is used for all the training done for the data. When

looking into how different values affect the training and validation, several parame-

ters are kept the same over different individual runs of training.

The parameters that won’t be changed when testing different values are: boot-

strap, class weight, random state, warm start, and n jobs. Bootstrap is set to True,

as we are utilising bootstrap samples. Class weight is balanced subsample. This

allows each tree created from a bootstrap sample to have a different weight. Ran-

dom state is set to be a constant to control randomness so the results are repro-

ducible over many runs. Warm start is set to False. This forces a new tree to be fit

on each round rather than expanding the previously fit tree. N job’s value is set to

be -1. This makes it possible to utilise all CPUs while running the code.

The following parameters’ values are applicable for balanced training using all

available features.

The parameters that are changed over different runs to find the best values are:

criterion, max depth, min samples leaf, min samples split, n estimators, and max -

features. Criterion is chosen to be either gini or entropy. Values for max depth range

from 8 to 18. For min samples leaf values ranging from 50 to 150 are considered.

Min samples split has a value at least twice as great as min samples leaf so after a

split is made, the resulting leaf will have enough samples to be kept. The amount
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of trees in the forest, n estimators, is between 50 and 1500. Because of the large

amount of features in the dataset, the max features parameter is defined to have a

subset of the features contained in the dataset. The value is set to be either sqrt to

take the square root of the amount of features, or log2 to take a base 2 logarithm

of the amount of features.

5.2 Progress

Before discussing the results that I gathered during the process, few terms need to

be defined. Results are derived from confusion matrices. The metrics found in a

confusion matrix are accuracy, precision, recall, and f1-score. Accuracy is the total

amount of correctly predicted samples over all data. This is, the amount of true

positives and true negatives over the amount of true positives, true negatives, false

positives and false negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
.

Precision is defined as the amount of true positives divided by the combined amount

of true positives and false positives:

Precision =
TP

TP + FP
.

Recall is defined as the amount of true positives divided by the combined amount

of true positives and false negatives:

Recall =
TP

TP + FN
.

In this context, true positive value reflects the amount of correctly predicted positive

class, i.e., whether a sample is correctly predicted to its real class. False positive

value describes that a sample is incorrectly predicted to a certain class. False neg-

ative means that a sample has been classified to a class which is not its true class.

F1-score considers both precision and recall. It is defined as double of the multipli-

cation of the two over addition of the two:

F1 = 2 ∗ Precision ∗Recall

Precision + Recall
.

This part of model experimenting was performed on a remote cluster, Dione,

which is a super computer. This was utilised due to lack of local resources. Due

to behaviour of random forests, the running will not be significantly affected by

using this cluster as it is ran on CPUs. Each time the training is carried out, it is
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submitted to a node within the cluster.

When I was given the initial model, the changeable parameters were as follows:

splitting was determined to be made using entropy, maximum depth of a tree is

10, each leaf has a minimum of 100 samples, and at least 250 samples in a leaf are

required to make a split. The initial model had 1000 trees in the forest, and the

maximum amount of features was determined by base 2 logarithm. This run of a

balanced training took approximately 30 minutes, and it yielded a R2 training score

of 0.73. Classification report on training results in accuracy of 0.82, precision of 0.80,

recall of 0.83, and f1-score of 0.81. Results for validation only result in accuracy of

0.20, precision of 0.24, recall of 0.18, and f1-score of 0.19. Let this run and these

results be referred as run1.

5.2.1 Optimisation of criterion and max depth

My aim in the following balanced training runs is to optimise the various parameters

by increasing the results step-by-step. Each consecutive run mentions only the

changed parameters compared to the previous run. My approach to this was to

only consider parameters criterion and max depth. I tried different combinations of

these two values while keeping other parameters the same as in the initial model.

For each tested value of max depth both gini and entropy criteria are evaluated.

Run2 introduces only one change. The criterion changes from entropy to gini,

and the max depth stays the same with a value of 10. The different criterion does

not provide much change to the R2 training score or classification reports. In fact,

the R2 training score decreased from 0.73 to 0.72, and there is no change in accuracy,

precision, recall or f1-score values when considering them to two decimal places.

Parameter max depth’s increase to 12 in run3 introduces a slight improvement

in training accuracy. The R3 training score for run3 is 0.74, which is a slight

improvement compared to run1. Training accuracy increases to 0.84, precision to

0.82, recall to 0.85, and f1-score to 0.83. However, results for validation don’t see

any change and stay the same.

Run4 keeps the max depth at 12, but sees the change of criterion to entropy.

This change doesn’t provide any visible changes to classification or validation met-

rics, but the R2 training score increases to 0.75. I regard this as the best run so far

in terms of numbers, and running time is only approximately 5 minutes longer than

on run1.

For the fifth run, namely Run5, the max depth is increased to 14. This yields no

visible changes in the classification reports as R2 training score, and all the metrics

are the same as in run4.
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The next run, run6, keeps the max depth of 14 but incorporates the gini splitting

rule. A little improvement can be seen in training precision and recall as they

increase to 0.83 and 0.86 respectively.

Run7 keeps the gini splitting rule but has increased in max depth; the new

value is 16. No changes compared to previous can be noticed. The next run, run8,

incorporates entropy splitting criterion. This is the first time the results get a

little bit worse compared to previous rounds while only increasing the max depth

parameter and changing criterion from gini to entropy and vice versa. For run8 the

training precision decreases back to 0.82, but otherwise all the values are the same.

As increasing the max depth further didn’t seem to improve the results, I tested

if decreasing the value from run1 could yield better results. Having criterion as

entropy and max depth as 8, run9 yields so far the worst results. With a R2 training

score of 0.67 and training accuracy of 0.78, other metrics are weaker too. Training

precision is 0.77, recall is 0.79, and the f1-score is 0.77.

Run10 shows another similar decrease in results when using gini splitting cri-

terion compared to run1. With R2 training score of 0.64 and training accuracy of

0.77 and similar other metrics as in run9, it is sufficient to say that decreasing the

parameter max depth from 10 is not a suitable option.

5.2.2 Optimisation of n estimators and max features

For the next part, I selected the model architecture from run4, even though run6

yielded slightly better results. I do not think the choice of architecture plays a

significant role at this point, so I chose the slightly faster option. The architecture

looks as follows for the next runs that aim to optimise parameters n estimators and

max features : criterion is set to entropy, max depth is 12, min samples leaf is 100,

min samples split is 250, n estimators is 1000, and max features is set to be base 2

logarithm.

Run11 aims to see how decreasing the amount of trees in the forest affects the

training and validation accuracies. Decreasing the amount of trees, n estimators,

to 750 shows no change in either training or validation or accuracies or any other

metrics. The very same results were yielded when n estimators was set to 500 on

run12. This gave me some insight that this many trees might not be necessary for

the model, and can, in fact, be lowered even further.

To further test this, on run13 I tried with 1250 trees in the forest. This, indeed,

did not yield any better results than 500 trees. In fact, the results were on par

with the results from run4. Hence, lowering the amount of trees in the forest is

something I want to keep in mind when I combine different results, and test the
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model further.

Since the last few rounds proved to be useful in terms of reducing the parameter

n estimators, next I looked into changing the amount of maximum features in a

considered split. Run14 determines max features to be sqrt, i.e., a split is done

based on the square root of the amount of features. This yields the first bigger

change in metrics. With a R2 training score of 0.80 and accuracy of 0.89, this

seems to be the best so far. Training precision is 0.86, recall is 0.89, and f1-score is

0.88. However, validation results decrease a little. Validation accuracy is now 0.17,

precision is 0.22, recall is 0.17, and f1-score is 0.17.

As run14 shows the change of max features affects positively to training score,

I wanted to check whether now using gini criterion would show a similar trend as

entropy. As a result, R2 training score is 0.79 and accuracy is 0.88. It is not quite

as good as on run14. Nevertheless, it is better than the results on run4.

5.2.3 Optimisation of min samples leaf and min samples split

To continue looking for changes in parameters that improve the training score, the

baseline will be as follows, according to run14: criterion is set to entropy, max -

depth is 12, min samples leaf is 100, min samples split is 250, n estimators is 1000,

and max features is sqrt. Parameter n estimators is kept at 1000 despite decreasing

it, it shows improvements, but I want to utilise many trees, so many splits can be

observed when the amount of samples required in a leaf and to do a split is changed.

For run16 I kept the min samples split as 250 but decreased min samples leaf

to 50. Letting the leaves expand with a smaller threshold this first experiment shows

positive results as the metrics improve a little. The R2 training score is 0.81 with

accuracy of 0.89. The training precision increased to 0.87, recall to 0.90, and f1-score

remains 0.88. There is no change in validation metrics.

Run17 introduces a decrease in the parameter min samples split. It is reduced

to 200, so the maximum depth of a tree is more likely reached. This change further

improves the training score to 0.82. The accuracy for the model with this change is

0.90. Compared to run16, the only other change in metrics is that the f1-score for

training is 0.89 instead of 0.88.

On the run18 the min samples split is further reduced to 175. Still, without

changes in validation metrics, the R2 training score increases to 0.83. Now, with

0.90 accuracy, the precision is 0.88, recall is 0.91, and the f1-score is 0.89. After

these several sounds of experimenting of decreasing the threshold when a leaf is

split further, there is a clear indicator that the training score improves.

As a test, I was curious to see whether the previous conclusion that decreasing
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the number of trees improves the score still holds. Run19, run20 and run21 saw

an increase in n estimators. Each result did not yield any better results. However,

the results didn’t get worse either. For the next runs, run22 and run23, I decreased

the amount of trees in the forest to 750 and 500 trees respectively. To my surprise,

these results decreased the training accuracy by a little. My assumption for this

behaviour is that there are not enough trees to get enough votes from in order to

form the final classification.

5.2.4 Further optimisation and testing

Going forward, I tried some modifications to run18, as well as testing some arbitrary

values. Run24 introduced a drastic decrease in the amount of trees in the forest.

The original value of 1000 for this run is 50. The biggest change is in the running

time. Where run18 took over 2 hours to perform the balanced training, run24

took under 10 minutes. There is barely any difference in the classification reports.

Comparing run24 to run18, the R2 training score drops from 0.83 to 0.82. Accuracy

remains 0.90 as well as precision of 0.88. Another slight decrease can be seen in the

recall metric as it drops from 0.91 to 0.90. The f1-score remains the same on both

runs: 0.89.

For run25 I changed parameters min samples leaf and n estimators to 75 and

100 respectively. This change yielded no differences in any of the metrics. Further

increasing the max depth parameter to 14 for run26 also provided no changes. Out

of these three runs, run24 was the quickest with a time of just under 10 minutes

whereas run26 was nearly 15 minutes.

Run27 introduces the change of criterion from entropy to gini, while leaving

max depth at 14. Parameters min samples leaf and min samples split are changed

to 50 and 150 respectively. This run has 100 trees in the forest. No bigger changes

in metrics can be seen, however, training recall score increases from 0.90 to 0.91.

Run28 can best be compared to run24. Criterion is changed from entropy

to gini, and min samples split is reduced from 175 to 100. The R2 training score

increases to 0.83, but none of the metrics change. The key change in this run is the

running speed. The run28 took just over 4 minutes to run.

This is all the testing I did for the different values, and along the way I proceeded

to implement certain models to the whole cross-validation training cycle.

5.2.5 Full cross-validation cycle

The full cross-validation cycle is a time consuming process. It takes several days

to fully run. It implements leave-one-out cross-validation for 6-class classification.
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To be more specific, the form of cross-validation is leave-one-subject-out cross-

validation. This means that given an iteration of the cross-validation, data from

a certain tumour does not appear in training, validation and testing sets at the

same time. If this happened, there would be data leakage. This would create highly

optimistic results and would not be accurate for our objective.

The leave-one-subject-out cross-validation, more generally leave-cluster-out cross-

validation, works in similar ways as leave-one-out cross-validation, and has shown

relevancy in regards to proteins (Kramer and Gedeck, 2010). Essentially, let n be

the amount of patients in the data set. The data is split into n clusters such that

each cluster contains only data from one patient. Note, that there can be several

occurrences of the same tumour from the same patient. Therefore, these need to be

validated at the same time. A model is trained on all data but some ith subject

that is left out for testing. Training data is further split into a new training set and

a validation set. Then the output is predicted for the test data. Lastly, the model’s

performance is evaluated.

5.2.6 Full cross-validation results

The first full cross-validation run acts as a basis for the classification. This process

is tedious to run and can take even days. However, the model architecture plays a

role in the running time and having a smaller architecture can significantly affect

the time to run the cross-validation cycle.

The first full run, labelled CV1, was given to me when I received the code. The

parameters to this are as follows: criterion is set to gini, max depth is 6, n esti-

mators is 50, and max features is set 0.25, i.e., to one fourth of the total features.

Parameters min samples leaf and min samples split are omitted, thus using the de-

fault values 1 and 2 respectively. Classification report on full data yields results

that are comparable to purely guessing the type of tumour. The accuracy is 0.17,

precision is 0.12, recall is 0.18, and f1-score is 0.13. This architecture has the best

precision to classify LGm-2 type of tumours. The run CV1 took around 40 hours

to run, which I think purely is caused by each tree reaching the maximum depth

due to no amount of samples were defined to be in a leaf, or to be split.

The second run, CV2, incorporated some results that I gathered from the bal-

anced training. The criterion parameter is gini, max depth is 12, min samples leaf

is 100, min samples split is 225, n estimators is 50, and max features is sqrt. The

running time is slightly less than on CV1, but the results are worse. In fact, the

accuracy is 0.14, precision is 0.09, recall is 0.11, and f1-score is 0.10.

The next full run, CV3, sees few more changes including results from balanced
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training. The criterion parameter is set to entropy, max depth is 12, min samples -

leaf is 50, min samples split is 100, n estimators is 50, and max features is sqrt. This

run took around 20 hours to run, which is significantly less than the two previous

runs. The classification metrics are quite similar to run CV1. The accuracy is 0.16,

precision is 0.12, recall is 0.14, and f1-score is 0.13.

Next, I tried for curiosity whether decreasing the depth of each tree would affect

the results in a similar way as in balanced training. That is, in balanced training

the results got worse when the depth of the trees is reduced. The run CV4 sees

only two changes to run CV3: the parameter max depth is reduced to 8 from 12,

and criterion is set to gini. Compared to 20 hours of running time, this took around

7 hours with more consistent metrics. The accuracy is 0.17, precision is 0.16, recall

is 0.17, and f1-score is 0.16.

The run CV5 sees a change of only one value compared to CV4. The amount of

trees in a forest, n estimators, is increased from 50 to 75. This improves the metrics

a little bit, but also decreases the running time. The running time for this run is

around 4 hours. The accuracy is 0.19, precision is 0.17, recall is 0.18, and f1-score

is 0.17.

What is common in all these runs is that the tumour types LGm-1, LGm-2

and LGm-5 are the most accurately predicted. The LGm-3 type is never classified

correctly in any of the runs.

5.2.7 Discussion about balanced training and cross-validation results

The balanced training runs provided promising scores overall. The training classi-

fication metrics varied quite a bit depending on the model architecture. Approx-

imately 0.10 increase was present in all of the metrics as the model got smaller.

The model saw several key modifications along the way. The criterion parameter

switched between gini and entropy. During the balanced training, entropy seemed

to be the slower option compared to gini on otherwise similar models. However, this

wasn’t the case for full leave-one-subject-out cross-validation. The cross-validation

cycle didn’t seem to have much difference in gini or entropy criterion.

The full cross-validation yielded the best results with max depth of 6 or 8, which

wasn’t the case for the balanced training. The balanced training provided the best

results with slightly deeper trees: either 12 or 14. Along with the parameters min -

samples leaf and min samples split, this value could increase the running time by a

significant amount. If the latter two parameters allowed the splitting to happen in

the leaves until the maximum depth, the results did not improve or worsen. Only

the running time increased for no real gain. Thus, limiting the depth of the trees
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creates more optimal results in a reasonable time.

The amount of trees in the forest, n esimators, works in a similar way in both

cases, the balanced training and the cross-validation. A common factor in both

cases is that the results did not seem to change when the amount of trees exceeded

the value of 100. Too large values seemed to only complicate the model. Therefore,

most optimistic results were yielded by values between 50 and 100.

The parameter max features set to sqrt seemed to work the best for both cases.

Value of base 2 logarithm seemed to perform worse on each run I tried. For full

cross-validation, selecting one fourth of the features gave decent results but were

barely surpassed by the square root amount of maximum features.

In conclusion, the model architecture from the balanced training does not fully

reflect into the full cross-validation cycle. Some further testing is required. The

main difference in results came from the max depth parameter. Smaller values work

better for the full cross-validation. It is a possibility that with more available data

deeper trees would provide more realistic results.

When it comes to our original hypothesis, these results leave quite a lot of room

for improvement, whether machine learning could be applied to consistently separate

tumour tissue from non tumour tissue. Again, more data, even synthetic data, could

help to tackle this problem. At the time of writing this, some ideas revolving around

synthetic data are being contemplated.
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6 Conclusion

Decision trees are a strong tool to make decisions. They are simple to interpret,

and they split data in a well-informed manner. A split is made using either Gini

impurity or entropy. Decision trees are prone to overfitting. Where decision trees

fall short, random forests try to find improvement. Random forests are less easy to

interpret, but they yield more accurate results in classification opposed to a single

decision tree. Due to the voting aspect of the random forests, overfitting of the data

is less likely.

Random forests show potential as a method of classification for brain tumours. In

other words, applying machine learning algorithms on Raman spectra is a promising

approach in detecting malignant tumours. Decision trees evidently provide a strong

basis for this method. In a six class tumour classification problem, improvement can

be made by tuning the hyperparameters of the model. A lot is yet to be done, but

this is a beginning.

During the process of the medical study on six class classification of brain tu-

mours, I found out optimising a random forest model in a balanced training envi-

ronment does not necessarily reflect a cross-validation cycle. However, optimising

the balanced training provided gives insight to which hyperparameters affect the

results.

Currently, a possible issue regarding classification can be related to the amount

of data. Hence, creating synthetic data could provide more optimistic results. This

is out of the scope of this thesis but the approach is being worked on.

As a result, I was able to improve the efficiency of the random forest model.

When applied on the complete data and running the whole cross-validation cycle, a

massive time save was achieved. The optimisation resulted in achieving merely one

tenth of the original running time with similar results.

Despite no proper improvements regarding the classification results were made,

I count this as a success. In the long run, the time saved makes further classification

much more efficient.
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A Python code for a decision tree classification

# Imports.

import pandas as pd # To handle dataframes.

from sklearn.datasets import load_iris # Iris dataset.

iris = load_iris () # Load the iris dataset

# Creating column labels.

columns = ['sepal_length ', 'sepal_width ', 'petal_length ', '

petal_width ']

# Creating a dataframe of iris data set with created column labels.

df = pd.DataFrame(iris.data , columns = columns)

# Adding a target column with known target data.

df['target '] = iris.target

# Makes creating training and testing splits easy

from sklearn.model_selection import train_test_split

# Creating training and testing data by splitting the data.

# Creating training and testing sets. 25\% data is used for testing

.

X_train , X_test , y_train , y_test = train_test_split(df.drop(['

target '], axis = 'columns '), iris

.target , test_size = 0.25)

# Decision tree classifier.

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier () # Create a classifier.

# Fit the training set into the classifier.

clf.fit(X_train , y_train)

# Score the classifier and see how accurately it has predicted the

targets.

clf.score(X_test , y_test)
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B Iris dataset: decision tree splits

Figure 6: Iris dataset’s decision tree splits.
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