

Developing web application and hybrid application;

How developing for different platforms

differentiated and how users experienced these

Teemu Tenkanen

University Of Turku

Department of Computing

May 2022

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

UNIVERSITY OF TURKU

Department of Computing

TEEMU TENKANEN: Developing web application and hybrid application; How developing

for different platforms differentiated and how users experienced these

Masters Thesis, 64 pages, 4 appendix pages

Interaction Design

May 2022

The mobile application development process is evolving rapidly, and new frameworks

are created every month. When choosing how to develop mobile application, there are

three main development platforms: web application, native application, and hybrid

application. These all have their positives and negatives, and they all have their own

strengths when chosen for right kind of project.

Previous research has been conducted but they have mixed results when comparing.

Thus, this research was made to investigate more closely how the development process

for web application and hybrid application differentiated and how the end product

applications differentiated, when analysing the experiences of the users. Two

applications were developed during this research: React.js application for web

development and React Native for hybrid development.

To analyse users experience, web and hybrid versions of the same application was given

to the participants. First the participants were asked to test the main functionalities of

the application, and after testing answering the survey. The survey tried to ask how

positive or negative some of the features of the applications were.

In conclusion, the study shows that the hybrid application version was superior. In the

survey hybrid application had slightly more positive answers and was clearly faster

version of the two. The development process for the web application was easier and had

better options for choosing the best suitable tools and libraries.

Keywords: React, React Native, Mobile application, Development platforms, Hybrid

application, Web application

TURUN YLIOPISTO

Tietotekniikan laitos

TEEMU TENKANEN: Developing web application and hybrid application; How developing

for different platforms differentiated and how users experienced these

Pro gradu -tutkielma, 64 sivua, 4 liitesivua

Vuorovaikutusmuotoilu

Toukokuu 2022

Mobiilisovellusten ohjelmointi prosessit kehittyvät nopeasti, ja uusia

ohjelmointityökaluja julkaistaan joka kuukausi. Mobiilisovelluksen kehittämistä

valittaessa on kolme pääkehitysalustaa: verkko-, natiivi- ja hybridisovellus. Näillä

kaikilla on positiiviset ja negatiiviset puolensa, sekä omat vahvuutensa, kun ne valitaan

oikeanlaiseen projektiin.

Aikaisempia tutkimuksia on tehty, mutta näiden tulokset ovat ristiriitaisia. Näin ollen

tämä tutkimus tehtiin tarkentamaan, miten verkko- ja hybridisovelluksen

kehitysprosessi eroavat ja miten lopputuotteet erottuivat käyttäjien kokemuksia

analysoitaessa. Tämän tutkimuksen aikana kehitettiin kaksi sovellusta: React.js -

sovellus verkkokehitykseen ja React Native hybridikehitykseen.

Käyttäjäkokemuksen analysoimiseksi osallistujille annettiin samasta sovelluksesta

verkko- ja hybridiversiot. Ensin osallistujia pyydettiin testaamaan sovelluksen

päätoimintoja ja testauksen jälkeen vastaamaan kyselyyn. Kyselyn tavoite oli mitata,

kuinka positiivisia tai negatiivisia jotkin sovellusten ominaisuudet olivat.

Tutkimus osoitti, että hybridisovellusversio oli parempi kuin verkkosovellusversio.

Kyselyssä hybridisovellus sai hieman enemmän myönteisiä vastauksia ja oli selvästi

nopeampi versio näistä kahdesta. Verkkosovelluksen kehitysprosessi oli helpompaa ja

siinä oli paremmat mahdollisuudet valita sopivimmat työkalut ja kirjastot.

Contents

1. Introduction 1

2. Development platforms 2

2.1 Web application 2

2.2 Native application 3

2.3 Hybrid application 4

3. Development technologies 6

3.1 React.js 6

3.1.1 JSX 6

3.1.2 Class and functional components 7

3.1.3 Lifecycle methods 7

3.1.4 Hooks 8

3.1.5 State and props 8

3.1.6 Virtual DOM 10

3.2 React Native 11

3.2.1 Similarities with React.js 11

3.2.2 Differences with React.js 12

3.2.3 Native and core components 12

3.2.4 Custom components 13

3.2.5 Platform specific code and platform-specific extensions 14

3.3 Node.js 15

3.4 Firebase Realtime Database 15

4. Pizza corner applications 17

4.1 Planning 18

4.2 Views 19

4.3 Version control 22

5. React application 24

5.1 Setting up the environment 24

5.2 Projects folder and file structure 26

5.2.1 Application.js 28

5.2.2 MainPage.js 31

5.2.3 RestaurantPage.js 32

5.2.4 CreateNewReview.js 33

5.2.5 RequestNewRestaurant.js 33

6. React Native application 35

6.1 Setting up the environment 35

6.2 Running the application on android phone 37

6.3 Projects folders and file structure 39

6.3.1 Application.js 40

6.3.2 MainPage.js 43

6.3.3 RestaurantPage.js 45

6.3.4 CreateNewReview.js 46

6.3.5 RequestNewRestaurant.js 46

7. Research and Testing the Applications 47

7.1 Methodology 47

7.2 Research Design 48

7.3 Description of the case study 48

8. Results and analysis 50

8.1 Expectations and Hypotheses 50

8.2 Development experience 51

8.3 Data presentation 53

8.4 Data analysis 59

9. Conclusions 61

9.1 Answers to the Research Questions 61

9.1.1 How did developing for two different platforms differentiated? 61

9.1.2 Was either one of the application versions better? 62

9.1.3 What factors did affect the experience of the applications? 62

9.2 Discussion 62

9.3 Future works 63

References 65

1

1. Introduction

This study examines how the development process for web and hybrid applications

differs, and how users experience these two versions. The motivation behind this study

is to examine is developing applications more beneficial with web or hybrid

technologies.

In this study two applications were developed with web and hybrid application

technologies. These two applications were tested, and survey was organized, which tried

to measure the experience of the users with both versions. Survey data was first

collected and then analysed, and applications data were compared to each other, to

found out which of the two versions the participants experience was better.

In the second section three main development platforms are explained, and examples of

using these different platforms are presented. Third section will introduce the main

technologies that were used in the develop process of the two applications. In the fourth

section the developed application’s different features are explained. Fifth section will

examine the main components and platform specific features of the web application.

Same is done for hybrid application in the sixth section. Seventh section will examine

the research’s methodology, the design of the research and summary of the case study

that was held. In the eight section results of the develop process, that researcher had,

and the survey data is analysed. In the final section conclusions are made and future

work improvements are discussed.

This research aimed to investigate how developing application for two different

platforms differed from each other and does the end users experience these two

application versions differently. To investigate preceding topics, an experiment was

made where participants tried these applications and after that opinion and experience

were examined under the consideration of the following research questions:

RQ1. How did the development for two platforms differed from each other?

RQ2. Was either one of the application versions better?

RQ2. What factors did affect the user experience of the applications?

2

2. Development platforms

When developing mobile application there are multiple different approaches and

platforms to choose. The most used and common approaches are web, native, and

hybrid application. In the following subsections, these approaches are explained and

briefly describe in what projects and cases they are best suitable.

2.1 Web application

A web application (or web app) is an application that does not run on locally on OS

(Operating System) of the device, such as computer or mobile device, but it runs on a

web server. User can access the application via a web browser with active internet

connection. Web applications are supported now days both in desktop and mobile

devices.

Technologies that are mostly used in web applications are HTML5, JavaScript, and

CSS. HTML (HyperText Markup Language) is the standard markup language for

documents to be displayed in a browser. HTLM is the building block which creates

containers for the content to show. JavaScript (often shortened JS) is a programming

language that is used to handle the logic of the web application. CSS (Cascading Style

Sheets) is a style sheet language that is used for adding styles and visual effects. To the

content these effects can be used, for example, font modifications, sizes, shapes, colors,

and layouts changes.

Web applications are considered as the cheapest option when developing applications

(Martin, S 2020). This is because developers can develop one project that can be used

on any OS, such as iOS, Android or Windows. Maintaining only one project instead of

two or three is cheaper and faster. There are also reasons why not to use web

applications. Good internet connection is needed for the application to work, and it is

executed in the browsers. Web applications have often worst user experience and can

have more performance issues compared to the native applications (Martin, S 2020).

In Sopegno’s case study (Sopegno, 2016) web application called AMAC (Agricultural

Machine App Cost Analysis) was developed for determining the machinery cost in field

operations. The mobile application platform was chosen because the application needed

3

to be easy to use, to be available free of charges and does not require any installations

on the end user’s device. AMAC was developed to be cross-platform application,

meaning that it can be operated in any device. The web application was ideal choice for

these reasons and performed great in this kind of use.

2.2 Native application

Native application is an application that needs to be installed on a device before it can

be used. These applications do not necessarily need internet connection to work and can

be operated when device is offline. These applications have been developed for specific

OS by using platform specific programming languages and IDE (Integrated

Development Environment). For Android the programming language is Java or Kotlin,

and for iOS it is Swift or Objective-C.

Native applications have often better performance than web applications. This can be

seen, for example, when using applications with heavy graphics or complex

calculations. Native applications have access to platform specific features such as GPS,

camera, microphone, and push notifications. Web applications have some of these

features and before they can be used user needs to give consent for the application to

access those. There are also big drawbacks why not to use native applications. A least

two different projects are needed to implement the applications, because, for example,

Android and iOS are using different programming languages. It also takes more time

and resources to create a native application. This is expensive when considering the

development and the maintenance of the project (Martin, 2020).

In Ajayi’s research (Ajayi, 2018) performance of native and hybrid Android

applications were evaluated. The goal of the research was to compare the performance

of both platforms and to explore the limitation of the mobile development frameworks.

The research concluded that the native application was superior to hybrid application in

all conducted tests. The bad performance of the hybrid application was the most likely

reason why user’s satisfaction of the application was lower. This research supports the

Martin’s hypothesis for native applications to have overall better performance,

compared to the other platforms (Martin, 2020).

4

2.3 Hybrid application

The separation in operating systems and programming languages of the Android and

iOS has pushed people to think development solutions that would be suitable for both.

Web application technologies are often used as a base for hybrid application

frameworks.

Hybrid application is an application that combines elements of both native applications

and web applications. They are essentially web applications that have been put in shell

of a native application. Hybrid application needs to be installed locally to work. The

same codebase can be used on both operating systems, and this makes it affordable

option to consider. Hybrid applications utilize same kinds of technologies that web

applications are using, HTML, CSS, and JavaScript. These are then encapsulated within

a native application, and using plugins these applications have same access, as native

applications, to the device’s platform specific features. Instead of the application being

shown within the user’s browser, it is run from within a native application and its own

embedded browser, which is essentially invisible to the user. For example, an iOS

application would use the WKWebView to display our application, while on Android it

would use the WebView element to do the same function. The code is then embedded

into a native application wrapper using solutions like Cordova or React Native. These

solutions create native container in which it will load the web application.

Combining web technologies with native building block of both Android and iOS is

another way to implement hybrid application. Instead of using web application

technologies, such HTML and CSS, these applications are written in JavaScript.

JavaScript is then translated into native application specific user interface elements.

Hybrid applications are quick to develop and with one codebase it makes distribution

for multiple platform easy. But hybrid applications are often low performing compared

to native applications. The performance of the application depends how powerful the

device is. If the device is fast, then the performance will be higher. Developing hybrid

applications can be slow for beginners because one needs to learn third party service

like React Native or Cordova and these frameworks have usually a large learning curve

(Martin, S 2020).

5

In Willocx’ (Willocx, 2015) research the benchmarks reveal that Cordova applications

use more device’s CPU (central processing unit) and memory compared to the native

applications. This affects the performance of the application, and the application might

feel slow. This is not the case when high-end devices are used, as these devices have

better components for processing, for example faster CPU and memory units. Mobile

devices are improving fast, and the limitation of the device might not affect as much in

the future.

6

3. Development technologies

In this chapter two development technologies for web and hybrid applications are

presented. The basic development process and the most important features of these

technologies are presented and explained.

3.1 React.js

React.js (also known as React or ReactJS), developed by Facebook, is a free open-

source JavaScript library that is designed for building user interfaces. It is one of the

most popular web development JavaScript libraries in the world (Liu, 2021), and the

reason for that is perhaps the component focused approach and that it is quick to learn.

The strength of the React.js is its size and simplicity because it is not a full framework

but only a JavaScript library. However, for creating fully functional React application

developers will need use of additional libraries for routing and client-side

functionalities. React.js can be used as a base for single-page application (SPA) or

mobile application development. Core features of React.js are explained in the

following subsections.

3.1.1 JSX

JSX (JavaScript XML) has similar syntax with HTML (Hypertext Markup Language)

and XML (Extensible Markup Language). It has all the same functionalities that

JavaScript has and the same opening and closing <> </> - symbols that XML has. It is

a syntax extension to JavaScript, and it describes what the UI (user interface) should

look like. JSX allows developers to write HTML elements or code similar syntax in

JavaScript and place them in the DOM (document object model) without any extra

methods. JSX converts everything to pure JavaScript code (see Figure 1).

Figure 1. Hello world-class component

7

Figure 1, presents a simple React.js component that displays the text “HelloWorld” to

the screen. The render() function handles the rendering to the users screen. We can

see that JSX uses HTML-tags <p></p> inside the JavaScript code. Other custom

JavaScript or lifecycle methods and hooks can be written top or under the render

method. JSX will throw error if the HTML is not correct or if the HTML misses parent

element.

3.1.2 Class and functional components

React.js components can be written two different ways. Using classes (see Figure 1) or

as a functional component which are basically normal JavaScript functions (see Figure

2).

Figure 2. Hello World- functional component

When writing function components, one gets more shorter and simpler approach (see

Figure 2). The method render()is not used in function components. Function

components are usually used when nested components are required or the component

itself does not include much logic. Class components are used when there is a need for

more logic. For example, when one needs to use lifecycle methods (explained in chapter

3.1.3) class component should be used, because the function components do not support

them.

3.1.3 Lifecycle methods

In applications with many components, it is important to free up resources taken by the

components when they are destroyed. Each component in React has a lifecycle which

can be monitored and manipulated during its three main phases. These phases are

mounting, updating, and unmounting. In class components, we can declare special

methods called lifecycle methods such componentDidMount() and

componentWillUnmount() when component mounts and unmounts. For example,

8

componentDidMount() runs after a component output has been rendered to the

DOM. This method can be used for doing requests to the server-side or update the state

object (explained in 3.1.5).

3.1.4 Hooks

Hooks are functional component specific feature that lets the developer to use state and

other React features without writing a class. There are three rules for hook.

1. Hooks can only be called inside React function components

2. Hooks can only be called at the top level of a component

3. Hooks cannot be conditional.

Figure 3. Example use of Hooks

Figure 3 shows how to use the useState() hook to keep track of the application

state. Without this hook there is no other way to update the state, when using functional

components.

3.1.5 State and props

React components have a built-in state object which can store property values. The state

object is initialized in the constructor and when the state value changes, the component

re-renders itself. State object can contain multiple properties, but every property needs

to have a unique name. If one wants to refer to a state object, it is required to use

this.state.propertyname syntax (see Figure 4). If the state needs updating,

9

setState() method is required. In functional components, we can use

useEffect() hook to update the state. This method is also used for initialization and

clean-up functions, so whenever changes are made to the state useEffect() hook is

needed.

Figure 4. Examples of state and props

Props are arguments that are passed into the React components. If the developer wants

to send props into some other component, they must use the same syntax as HTML

attributes (see Figure 5).

Figure 5. Props example (attribute in element)

In the component itself, the propss values work in a similarly to the state syntax,

this.props.attributename. One can send string or variables (between curly

brackets) to other components this way.

10

3.1.6 Virtual DOM

The virtual document model (VDOM) is a programming concept where a “virtual”

representation of the UI is kept in memory and synchronized with the “real” DOM by

using a library such as ReactDOM. This is implemented because VDOM is much faster

and efficient than the “real” DOM. When new elements are added to the UI, VDOM is

created. This is represented as a tree, and each element is a node on this tree. If any of

the element in the tree is changes or updated, a new tree is created. This new tree is

compared to the previous tree and then see what is different. After this VDOM

calculates the best solution method to make these changes to real DOM. This reduces

the performance costs and makes things faster.

In React, every user interface element is a component, and each component has its own

state. React listens for state changes and when the state of a component changes, React

updates the VDOM tree. After VDOM has been updated, it compares itself to the

previous version of the tree. This process is called diffing. When the comparison is

done, React updates only those objects/components that changed to the real DOM (see

Figure 6).

Figure 6.VDOM tree and the diffing process (Paypal, 2020)

11

All of these details are abstracted away from developers, and the developer only needs

to know how to update the state of react components. React takes care of the rest. This

makes learning to develop with React.js fast and easy.

3.2 React Native

React Native, developed by Facebook, is a free open-source UI software framework

designed to use for developing applications for Android, Android TV, iOS, macOS,

tvOS, Web, Windows and UWP. It allows developers to use React framework with

native platform capabilities. React Native is built on React.js, so most of the React.js

features are available also in React Native. Developing and the code syntax for React

Native is hence very similar with React.js. The following sections elaborate the basic

React Native fundamentals.

3.2.1 Similarities with React.js

Because React Native is built on React.js it has most of the same basic React concepts.

State and props are handled exactly the same way. One can use hooks to update the state

in functional components and use lifecycle methods like componentDidMount() in

class components. JSX is used in React Native same way without the need to use, for

instance, HTML tags.

Figure 7. React Native and React.js functional components

12

Figure 7 presents two simple functional components, implemented with React Native

and React.js. There is no difference in handling the state with hooks. We can also see

that there are some differences how JSX is written and how styles are handled.

3.2.2 Differences with React.js

The main difference between React Native and React.js is that React.js can be used on

every platform where web browsers is accessible, while React Native is only usable on

Android and iOS. Another key difference is that React.js offers more animation than

React Native. On web applications animation is done primarily on CSS, whereas React

Native needs separate API or library to produce animation. Components between these

two differ as well. In the next section, we compare the differences between React.js and

React Native components.

3.2.3 Native and core components

When developing for Android, developers are writing views in Kotlin or Java, and in

iOS development Swift or Objective-C is used. When developers are developing with

React Native they invoke these views with JavaScript and React components. When the

application is running React Native creates the corresponding Android and iOS views

for those specific components.

In Figure 7 we can see that React Native does not use <div>-tags, instead it uses

<View>-tags. View is the basic building block of the UI, and it is used like div or

<>-tags. View is a container that supports layout with flexbox, style, some touch

handlings, and accessibility controls. <Text>-tags were used also in Figure 7. This is

equivalent to the <p>-tags, and text can be displayed inside this component. These are

some ready to use building blocks that development team behind React Native created

for developers, and they are called core components. There are over twenty core

components but the most used ones are View, Text, Image, ScrollView

and TextInput, StyleSheet and Touchable. Image component is

straightforward, it is used for displaying an image. ScrollView works is like View,

but the container itself is scrollable. TextInput is used for text input field, and it

allows using on-screen keyboard to input text. Touchable is used for creating custom

13

button components or enables touch recognition features and StyleSheet is used for

writing styles that are similar to CSS (React Native 2022).

Figure 8. Compiling between two OS (React Native docs 2022)

For example, in Figure 7 <Text>-tags are used, when JavaScript code is compiled

into an application the Text component in translated into corresponding native text

components. For iOS, it is <UITextView>, and for Android, it is <TextView> (see

Figure 8). This way application gets the native look and feeling but can continue to br

developed with JSX and use only one project for two different OS.

3.2.4 Custom components

Creating React Native custom components are implemented by combining the basic

core and custom components. In every component import of the React library is

required (see Figure 7, row 3). In Figure 7, on the row 6 a functional component

Application is created. On the row 9 is a return statement that has imported core

component View wrapper and inside its Text and Button core components. Outside

the return statement, is created StyleSheet object that is part of core components,

and it is used to create style objects that are similar to CSS syntax. On the row 18, the

style object container is created and it has couple of style changes that impacts the

position of the items. On the row 10 the container style object is passed to the style

prop. In Figure 7 , the export statement is missing, but components must always be

14

exported if it wants to be imported into any other JavaScript file used in this project.

Export is done with command export default TheNameOfTheComponent.

3.2.5 Platform specific code and platform-specific extensions

When developers are building application that is cross-platform there are cases where it

makes sense to have platform specific parts. Some visual UI elements can be

implemented differently for iOS and Android. React Native provides two ways to

separate it by platform.

React Native provides Platform module that detects which platform the application is

running on. One can use this detection logic to implement platform-specific code. This

method is particularly good when only small part of the component is platform specific.

Figure 9. Platform module

In Figure 9 we have example where iOS has platform specific styling. By using

Platform.OS === ‘ios’ we can distinguish iOS application runs from Android.

This way only the iOS devices are affected by this style change. For Android, the value

will be android. One can also use Platform.select method that detects which

platform is used dynamically and chooses the most fitting option. The options are ios,

android, native and default. Platform.Version method can be used to

detect the version of the Android or iOS platform.

When platform specific code is too complex to implement in conditional way, for

example the code looks crowded or unreadable, one should consider splitting the file

into two separate files. React Native will detect if the file has .ios or .android in

the files extension and this will load the relevant platform file. For example, if there is

BigButton.ios.js and BigButton.android.js, React Native will detect

which one to use when BigButton is used in some other component.

15

3.3 Node.js

Node.js is free open-source back-end JavaScript runtime environment that uses V8

engine, a JavaScript engine that executes JavaScript code outside a web browser.

Node.js lets developers to create command line tools with JavaScript and it is mostly

used for server-side scripting. Node.js enables developers to create independent

applications using JavaScript instead of running the code only in the browsers.

Installing Node.js developers get NPM (node package manager) that enables the

downloading and installing different JavaScript libraries (aka node modules) to the

projects (Node.js 2022).

3.4 Firebase Realtime Database

Firebase Realtime Database is a cloud hosted NoSQL database that stores and syncs

data between users in real-time. It is part of Firebase product family that is developed by

Google. Firebase is a Backend-as-a-Service (Baas) that provides developers variety of

different tools and services for development.

Instead of typical HTTP request, the Firebase Realtime Database uses data

synchronization. This means that every time data changes any connected device

receives the updated data in milliseconds. When device is offline Firebase Realtime

Database SDK persist the data to a disk, and once the connection is restored the client

device receives all the new changes that were made during offline period. The data is

stored in Firebase Realtime Database in JSON format.

16

Figure 10. SDK directly calls Firebase services (Stevenson, 2018)

When setting up the Firebase Realtime Database into project client SDKs are used,

provided by Firebase, and these interact directly with Firebase backend services that are

operated by Google. This means that there is no need to establish any middleware

between application and the service (see Figure 10), making back-end service

unnecessary, and that one can write code to query the database in the client application

(Google, 2022).

Figure 11. Firebase on() example

By using firebase.database.Reference developers can access the database

instance and do write and read operations. This reference works as a listener that is

triggered any time when the state of the data changes. With set() method basic write

operations can be made. set() saves data to a specified reference and replaces any

existing data at that path. To read data at path and listen for changes on() method is

used. When event is triggered the event call back is passed a snapshot containing all

data at that location. In Figure 11 the database reference is saved into constant, on the

17

row 73. And on the row 74 the method is used to trigger the listener and the row 75 the

current snapshot value is saved on the variable dbData. Database content is then

accessible in variable dbData in JSON format. push() method can be used to append

data to a list or replace value in the list (see Figure 12).

Figure 12. Firebase push() example

4. Pizza corner applications

Pizza corner application is anonymous food review application designed specially for

pizzerias. Motive behind this application was to do something new and mix it up with

something very popular. At the time when the application was developed, there were

not many review applications specific to pizzerias and the idea of restaurant review

application was born. Messaging application called Jodel was very popular at the time

when the application was developed, and Pizza Corner application got lots of inspiration

from it.

Jodel is application where people can anonymously send short messages or pictures to

the forum and other people can comment anonymously to them. These messages will

appear people near them, for example, "here" inside one kilometer, "very close" inside

two kilometres etc. Users can also follow some channels like "women", "confessions"

and "fantasies" (Jodel, 2022).

Inspired by the anonymous message feature of Jodel, idea of Pizza Corner was created.

There are two versions: web application and hybrid application. React.js JavaScript

library was used for the web applications front-end and React Native framework was

used for the hybrid application front-end. There was no need for implementing a back -

end, because Firebase Realtime Database was used, and those servers are called directly

18

from client. For the web application Material UI component library was used, and for

the hybrid application, the React Paper component library. These two had very similar

styling and, at the time, there was no component library that worked on both platforms.

Development process was done on two separate projects. The React application version

was developed first, and it was used as a base for the React Native version. In the

following sections, we explain these two projects development process. Development of

the two projects was done on the Windows operating system.

4.1 Planning

Adobe XD was used for designing the UI. Adobe XD is vector-based user experience

design tool for web and mobile applications. It is developed and published by Adobe

Inc. It enables website wireframing and creating interactive prototypes (Adobe, 2022)

(see example in Figure 13).

Figure 13. Pizza Corner UI protos in Adobe XD

Adobe XD was chosen for a UI design tool because it was free to use if one has only

one project ongoing. Other UI and UX tools were not free, or they had too limited set of

features to offer. The process of creating a prototype is straightforward. The designer

19

can drag and drop ready-made components like rectangles, ellipses, and text

components to the screens. Own pictures can be pasted directly to the screen and

modified to right fit. Transition effect can be made by choosing the element and

connecting it by transition arrow to the different screen, where to move. When the

design is ready the designer can run demo on computer or on the phone. For demoing

the application with mobile device, separate application is needs to be downloaded.

4.2 Views

Pizza Corner application has four different views. The main page, restaurant page,

review page and request new restaurant page. All the views have the quick link to the

main page (the home button), the “PIZZA CORNER” title and the drawer menu button

that opens drawer component from the right side. Drawer menu has only one link to the

“New restaurant request” page.

In the top of the main page is search and sort tools, which the user can use to filter with

the name of the restaurant or sort the data with values “All”, “Best reviews” and

“Favorites”. All the restaurants are shown in their own card style component. Cards are

used to display restaurant data because it groups information well and they provide

large and clear links to the user. In the top part of the card are restaurants name, address,

and the average review value. The most recent review’s picture is shown in the image

part of the card and under that are two most recent review texts and their review score

out of five (see Figure 14).

20

Figure 14. Pizza Corner main page

If the user pushes any of the restaurant cards in the main page, it will take them to

restaurant page and shows more information about it. Restaurant page shows the most

recent reviewer’s picture and lists the average review score, the opening hours, the

address, and the average price of pizza in that restaurant. Beside the name of the

restaurant is heart icon. When clicked, the heart changes its color to pink and adds this

restaurant to the user’s favourite list. In the top of the main page is dropdown box that

can be used to sort or filter restaurants. By choosing the “Favorites” value in the

dropdown box user can see favorite restaurants. Under the restaurant info section is the

“Comments and reviews” section, where each review is shown in card style. Review

cards consist of picture, time stamp of the time when the review was done and the

comment with the review score out of five. In the bottom of the screen is “Add a

review...” button that takes user to the restaurant review page (see Figure 15).

21

Figure 15. Restaurant page

Restaurant review page works as a form that the user can fill and send. From top to

bottom filled areas are the star score of the restaurant, the price of the pizza, comment

section and picture upload. When the picture is uploaded the preview of the picture is

shown. Picture needs to be uploaded in png or jpg format. After all form values are

filled the “Send review” button enables, and user can send the review (see Figure 16).

After sending the review, it will be almost immediately appear in the main page and

restaurant page.

Figure 16. Restaurant review page

22

Request new restaurant page works similar way that the Restaurant review page. The

user fills in the form with the name of the restaurant, the address, and the opening hours.

After request is sent, it will not automatically show in the main page. An administrator

needs to first go through the request and create the restaurant data to the database. In

this way, the administrator can filter false or spam restaurant requests (see Figure 17).

Figure 17. Request new restaurant

4.3 Version control

Git was chosen as the version control system, for this React.js project, and GitHub was

used to store the repository to the cloud. Git can be used from the command line and on

the UI powered tool. For this project the GitHub Desktop was used. GitHub Desktop is

Git UI tool that makes using Git more beginner friendly and visualizes the repository.

Adding an existing local project to the GitHub using the GitHub Desktop is easy.

GitHub account is needed, to use the application and authentication is done with this

account. After authentication click “File” in the top of the UI and choose “Create a new

repository”. Choose the projects root directory path and click “Create repository”. Now

the repository is created locally but it is not in the GitHub servers yet. To publish the

repository, click “Publish repository”. Name and Description fields are automatically

filled but other options needs to be filled. If one wants to keep the code private,

23

remember tap on “Keep this code private” option and Organization section can be left

on “None”. Finally click the “Publish Repository” and the project is in GitHub.

Whenever project is modified the GitHub detects these changes. Best practice in

development is to commit and push the changes to the version control every time

developer implements new feature. For example, new component MainPage.js is

created in the project and the first functionalities for that component are done. Those

changes should be pushed, so the progress is not accidentally lost.

Figure 18. GitHub Desktop UI

For doing the commit summary is required, and commit description is recommended.

Summary is usually short version of the description and in description section one can

write more detailed version. Check that every change that is shown in the “Change” tab

is valid and then commit change can be made to the master, by clicking “Commit to

master” button. After this the commit can be pushed to the GitHub servers by clicking

the “Push origin” section in the top. Now new code is safe in the cloud, and one can

continue to the next feature.

24

5. React application

React.js development requires text editor, browser, command line tool, Node.js and

NPM. There are many ways to create new React.js project and this is only one of them.

Visual Studio Code is good text editor to choose, and one can use favorite browser for

running the application. Operation systems own command line tool is good for

installing packages, no need to install any new one. In the next chapter is a definition

how Pizza Corner React.js project was configured.

5.1 Setting up the environment

Setting up React.js develop environment requires installation of some dependencies.

Node.js and NPM is needed when installing React.js and other JavaScript libraries. It

also enables other node packages to be installed. After Node.js installation is done we

need to install create-react-application node package. This node package makes it easier

to start new React.js project, and when used it creates skeleton React.js project. Use

command npm install -g create-react-application to install

create-react-application globally to local computer. Move to the directory

where application is developed. When in that directory, create new React.js application

with command npx create-react-application <your application

name>. After some time, there should now be project that looks like figure 18.

Figure 19. File directory after create-react-application command

25

The command line tool has some helpful information about the different commands that

can now be used in the React.js project. npm start command starts the

development server. This command checks that there are no existing errors and starts

the development servers. During server booting, browser will open new tab at

http://localhost:3000/ where the application will load after everything is done.

Remember to go first in project directory. npm build bundles the application into

static files for production. This is needed when the project is ready and developer wants

to publish the application to the world.

This project used Material UI (MUI) component library for most of the UI components.

Component libraries makes developing more fluent and is very recommended, so

developers do not need to do everything from the scratch. To install MUI make sure to

move in to the project directory and run npm install @mui/material

@emotion/react @emotion/styled command on terminal. This command also

installs emotion library that is designed for writing CSS styles with JavaScript and

works as a styling engine (Material UI 2022).

Firebase Realtime Database was used for the Pizza Corner project. Before it can be used

in the project one needs to have Google account and Firebase project configured and

register the application with that project. In the Firebase console

(https://console.firebase.google.com/) click “Add project” and follow the instructions in

the browser. The optional Google Analytics part can be skipped. After the process is

complete, the overview page of the Firebase project in the Firebase console is shown.

Now, one can register the application to the Firebase project. Click the web icon (</>)

to launch the setup workflow for the web application. Give the applications name (for

example, Pizza Corner) and click “Register application”. There are instructions how to

install Firebase to the project and some configuration values that is will be needed.

Make sure to copy those somewhere safe. Next install Firebase node packages to the

project with npm install firebase command. Add new folder in “src” called

“Firebase” to the project and in the new folder new file “Firebase.js”

26

Figure 20. Firebase configuration file

In the new file, add the configuration values like in Figure 20. This file initializes

Firebase to project and connects the application to right Firebase project. Now, Firebase

Realtime Database is accessible, but first we need to create the database in firebase

console.

Navigate in Firebase console to the Realtime Database section. One needs to select

existing project and then follow the database creation workflow. Remember to edit

“Rules” so that read and write sections have true values. This is not recommended if

there is big user base, and the application is globally used. One should configure

authentication for the project and modify rules to fit for the case. For smaller projects

like Pizza Corner, we can have these “test” rules set. After workflow is done the

Realtime Database is enabled and one can start using it in the project (Google 2022).

5.2 Projects folder and file structure

Projects file structure is very similar with the file structure that create-react-application

command creates.

27

Figure 21. Projects file structure

In Figure 21 the file structure of the project can be seen. In next chapter each folder and

its content are explained.

.firebase folder was automatically created after npm install firebase

command.

build folder is created with npm run build command and it has applications

production build in it.

node_modules folder contains all the JavaScript libraries (aka node modules) and

dependencies installed by npm commands.

public folder was automatically created with npx create-react-application

command. It contains static files such as index.html, images and other assets.

src folder consist of components folder, testPictures folder, index.css global styling file

and with index.js file that renders the Application component for the user.

components folder has all the front-end components that are either view component or

reusable component, like ReviewCard.js. The folder contains Firebase folder with

firebase.js initialization JavaScript file.

28

Rest of the root files are automatically created files created by npm install. Only

.env file has some additions. It contains all the Firebase configuration values that were

given in the installation of Firebase.

In the next chapters are explained the main functionalities of the most important

components and highlighted some technics that are usually used in React.

5.2.1 Application.js

In almost every React.js project the Application.js is the starting point of the

application, and so is the case in this project. Application.js functions as a main page

and parent component to other components. It has the most logic in it because most of

the data fetching and updating is needed to do here, so data can then pass to the child

components. When user comes to front page data is fetched from the Realtime Database

in componentDidMount() lifecycle method. Database reference is created for

Firebase and listener is initiated. Local variable dbData with snapshot of the Realtime

Database is created and restauranData with empty array is initiated. Because the

Realtime Database JSON data structure is difficult to use directly we need to create new

usable object structure. For loops are used to go through every object (see rows 77-106

in Figure 22) and new object is created for each restaurant, restaurant review and

restaurant request. For example, on rows 91-97 restaurant data object is created with

name, location, openHours, reviews and starAverage fields. These

fields are filled with the current for loop restaurant data from dbData array (the

snapshot of the Firebase Realtime Database). Then this new restaurantData object

is pushed to the array with push() method. Same logic is used for

restaurantRequest and reviews.

29

Figure 22. componentDidMount() method in Application.js

After the restaurantData and restaurantRequests data format is done, it is

set to the state object and lastly the favoriteList is checked if it exists. If not, it is

created to the local storage. This is done because if the favoriteList is not existing

in local storage other components will fail.

Application.js has two functions that are related to data manipulation. With

filterRestaurants() method restaurant data is filtered based on what the search

value is. With sortRestaurants() method restaurant data can be sorted based on

three values. “All”, “Favorites” and “Best reviews”. Application.js has one more

function that changes the Boolean value of the drawerOpen. If the value is true

drawer component is shown and false, the component is closed.

The rendered user interface is wrapped in <BrowserRouter> component which is

part of react-router-dom library. This component uses HTML5 history API to keep UI

in sync with the URL. <Grid> component is used widely in this project, and it works

as responsive layout that adapts to the screen size and orientation. Developers can use it

as a container or as an item. In Application.js the Grid component wraps the top

part of the application that has the home button, “PIZZA CORNER” title and side menu

drawer button. This top part is shown in every view and is fixed in the top of the screen,

meaning it will not move anywhere. <Route> component is used to define which

component is rendered when certain URL is accessed. Route component must be

inside the BrowserRouter component, or it will not function right. In Figure 19 if

30

for example .../CreateNewReview URL is accessed the RestaurantPage

component is shown, and props are passed into it (rows 199-204, in Figure 23).

Figure 23. Route setup in Application.js

In Route components we can specify the path of the component, and what component

it renders when this path is accessed. Exact and strict attributes are given in every

Route component, and it tells that the URL is needed to be the same as in the path

attribute. Inside render attributes we specify what components to render to the UI, and if

needed developer can specify what states and functions is needed to pass to this

component as props. For example, MainPage component has two states passed down,

restaurantData and loading. It also has two functions passed down. These

functions are passed down so we can use it also in MainPage component. <Link>

component is used to move between these routes. It has to attribute that tells which

URL to go. One can pass object, with fields pathname and state, to specify also

31

what data developer wants to pass to the component where the Link component is

pointing. There is example in the MainPage.js how this is used (in Figure 24).

5.2.2 MainPage.js

MainPage.js is the front page that opens when Pizza Corner is opened. It handles

showing the restaurant data and filtering it with search and sort operations. The

restaurant data is conditionally shown in the browser, depending on if the data is still

loading. The this.props.loading Boolean value tells the component when the

data is loaded and then data is rendered to the screen. When the data loading is still

ongoing the spinning circle is rendered with CircularProgress component.

Rendering multiple components is done with map() function. It is used to iterate the

array of data and in the call-back, it can return JSX. In MainPage.js map()

function is used this way. The this.props.restaurantData is iterated and it

returns card component where the props data is used (Figure 24). Card component is

wrapped inside Box component and Link component. This way when user touches the

card the link component is actually touched and will move user to restaurant page.

Figure 24. MainPage.js conditional rendering and card components rendering

We passed down in the Application.js sortRestaurants() and

filterRestaurants() functions as props (in Figure 23 rows 188-189).

MainPage.js uses these functions and this kind of functions are called call-back

32

functions. These call-back functions are available in this.props object. This is done

so the original state object is updated, and one do not need to create a copy of duplicate

state. The flow of the call-back functions is as follows. In the parent component the

function is created, it is passed as a props to the child component and lastly the child

component calls the parent call-back function using props and passes it to the parent

component (see Figure 25).

Figure 25. MainPage.js call-back functions to the Application.js

5.2.3 RestaurantPage.js

RestaurantPage.js renders the specific data about the one restaurant. It makes

use of this.state.restaurantData object’s data to render restaurant specific

information to the screen, for example the opening hours in

this.state.restaurantData.openHours or reviews in

this.state.restaurantData.reviews. Like in MainPage.js map()

function is used to render multiple <ReviewCard> components. ReviewCard

component is reusable component that renders card that has image, time stamp about

when the review was done and the comment with the review score out of five.

This page has hearth icon that functions as a button. When pushed it adds or removes

the restaurant name from the favoriteList in local storage. Local storage is a

property that allows JavaScript sites and applications to save key-value pairs in web

browsers without any expiration date. This makes possible to save something in browser

and when the browser is closed the data is still there when the site or application is used

again (MDN Web Docs 2022). First the local storage item favoriteList is fetched

33

with localStorage.getItem("favoriteList") function. favoriteList

is an array that contains restaurant names. The restaurant name is then added or

removed from the list. Updated favoriteList array is then pushed to the local

storage with function localStorage.setItem(“favoriteList,

favoriteList.toString()).

5.2.4 CreateNewReview.js

CreateNewReview.js renders a form with star rating, two input fields and picture

upload button. When the form is filled and the “Send review” button is pushed the

onSend() functions trigger. The form section is wrapped in <form> component that

has onSubmit attribute. This means that when enter is pushed or button with type

submit is pushed it will trigger onSubmit. In CreateNewReview.js the

onSubmit will call onSend custom function that sends form data to the firebase. To

send the data to the database firebase.database().ref("Restaurants/"

+ this.state.restaurantData.name + "/reviews").push() function

is used. Pushing the new review data to the correct place is done in ref() section. The

Restaurants/ tells firebase to go firebase list, find specific restaurant name with

this.state.restaurantData.name, and /reviews tells to push the data to

the reviews array of that restaurant. If the path is wrong or does not exist the firebase

will throw exception, so it is important to be precise when writing the path.

5.2.5 RequestNewRestaurant.js

RequestNewRestaurant.js renders a form with three text input fields and has

same kind of on send logic that CreateNewReview.js has. This component uses

snackbars, that provide brief notifications for the user. Message will vanish after some

time or when user clicks the “x” button (see Figure 26). Snackbars are also known as

toast.

34

Figure 26. Snackbar component active in RequestNewRestaurant page

<Snackbar> component (see in Figure 27) is shown in the top of the UI when new

request is successfully created if the user’s restaurant name input already exist in the

database or user tries to submit restaurant request with some fields still empty. This

makes data validation easy and clearly informs users if there is something wrong in the

input.

Figure 27. Snackbar component use in NewRetaurant.js

35

6. React Native application

React Native development requires text editor, software/mobile device to run the

application, command line tool, Node, Chocolatey, Android Studio and Java SE

Development Kit (JDK). Chocolatey is a popular package manager for Windows. It was

used instead of NPM because it was recommended in the official React Native guides.

Same code editor (Visual Studio Code) and command line was used for this project as it

was in the web application. For debugging OnePlus 5T phone was used instead of

Android Studio. In the next chapters is a definition how Pizza Corner React Native

project was configured.

6.1 Setting up the environment

Setting up React Native develop environment requires installation of some

dependencies and tools. Node and Chocolatey are needed when installing packages.

React Native requires JDK, which can be installed with Chocolatey. Open and

administrator command prompt by right clicking the command prompt and select “Run

as Administrator”. Then in the terminal run command choco install -y

nodejs-lts openjdk11. This installs JDK version 11 to local computer.

Android Studio is optional for development, but it is recommended for beginners.

Android Studio’s purpose is to emulate the virtual device on computer where developer

can debug and run React Native application. It takes lots of RAM when emulating the

mobile device, and for low RAM computers it is recommended to use optional method,

that is running the application directly on physical phone. For this project Android

Studio was installed, but not used as emulator. Instead, physical phone was used for

testing. In Android Studio installation it will install also important SDKs that are

necessary for Android development. Install Android Studio from

https://developer.android.com/studio/index.html and make sure that “Android SDK”

and “Android SDK Platform” are checked. Follow the installation wizard to the end.

Android studio installed few important Android SDKs, however building a React

Native application with native code requires the “Android 10 (Q)” SDK. After

installation the “Welcome to Android Studio” window is opened, if not open Android

Studio application and click “Configure” button and select “SDK Manager”. Select tab

https://developer.android.com/studio/index.html

36

“SDK Platforms” and then check the box next to “Show Package Details”. Expand the

“Android 10 (Q) item, and make sure that “Android SDK Platform 29”, “Intel x86

Atom_64 System Image” or ”Google APIs Intel x86 Atom System Image” are checked.

Make sure that version “29.0.2” is selected in “Android SDK Build-Tools”. It can be

found in "SDK Tools" tab and check the box next to "Show Package Details".

Remember to click “Apply” so the SDK download and install will start.

React Native requires some environment variables to be set up correctly to build

applications with native code. For creating new environment variable and updating old

ones open Windows Control Panel, click the “User Accounts” and again “User

Accounts”. Then click “Change my environment variables” and lastly click “New...”

button. New window opens where the name and value of the environment variable can

be edited. For name field put “ANDROID_HOME” and for value give whole path to

Android SDK. SDK is installed by default at

“C:\Users\username\AppData\Local\Android\Sdk” directory. The actual location can be

found in the Android Studio’s “Settings” and under “Appearance & Behavior” →

“System Settings” → “Android SDK”. To verify that new environment variable is

created open new command prompt (PowerShell), write Get-ChildItem -Path

Env: \ to terminal and verify that “ANDROID_HOME” is there. Next add platform-

tools to the “Path” environment variable. Go to “Change my environment variables”

section like previously and select “Path” variable by clicking edit. Click “New” and add

the path to platform-tools to the list. Default location for this is

“C:\Users\username\AppData\Local\Android\Sdk\platform-tools”

Now everything is ready for creating new React Native project. Run npx react-

native init <your application name>. in command line. We can access

this command line interface without installing anything globally using npx, which ships

with Node.js. This creates working React Native application with basically one view

(see Figure 28).

37

Figure 28. Project structure after npx react-native init command

This project uses React Native Paper component library. In projects directory it can be

installed with command npm install react-native-paper in terminal. React

Native Paper also requires users to install react-native-vector-icons, so icon

related components are usable. With command npm install --save react-

native-vector-icons it can be installed to the project. React Native Paper was

chosen for this project because it was very similar with MUI component library that was

used in web application version.

For navigation react-navigation package was installed. In the project directory run

command npm install @react-navigation/native @react-

navigation/native-stack in terminal to install needed packages. Also bare

React Native projects needs to install dependencies with npm install react-

native-screens react-native-safe-area-context. In the following

chapters use of react-navigation is explained more detailed.

Firebase Realtime Database installation was identical with the web application version.

6.2 Running the application on android phone

Running the application physical android phone, one needs the phone and USB cable

that can be used to connect the phone to the computer. Most Android devices are only

able to install applications from Google Play application store by default. USB

38

Debugging is needed to be enabled on the phone to install the application during

development. USB Debugging can be enabled by going to the Settings → About Phone

→ Software information and then tapping the “Build number” row seven times. Then go

back to Settings and “Developer options” is where USB debugging can be enabled.

Connect Android phone to the computer by USB cable. For checking that device is

connected properly to the Android Debug Bridge (ADB) run command adb devices

in terminal. If device is visible on the right side of the random code, it means that

device is correctly connected (see Figure 29). Only one device can be connected at the

time, if more are connected it can lead to some errors. When in the project’s directory

run and install React Native application with command npx react-native run-

android (Facebook 2022).

Figure 29. adb command lists list of attached devices

For distributing the application, generating the Android Package Kit (APK for short) is

needed. APK is package file format, by Android OS, for installation and distribution. It

is similar to .exe files that are on Windows OS. This generated .apk file is not ready for

publishing and there are many things developer needs to do before the application can

be published on Google Play store. For testing purposes .apk file is perfect. Users need

to enable debugging options on their mobile phones to run the application. To generate

one, go to root of the project in the command line tool and run command react-

native bundle --platform android --dev false --entry-file

index.js --bundle-output

android/application/src/main/assets/index.android.bundle --

assets-dest android/application/src/main/res. Go to android

directory with cd android and run command ./gradlew assembelDebug there.

Gernerated .apk file is found under

/android/application/build/outputs/apk/debug/application-debug.apk (Facebook 2022).

39

6.3 Projects folders and file structure

Projects file structure is almost identical with the file structure that npx react-

native init <your application name>. created. components folder

and firebase.js being the biggest additions to the project. In Figure 30 the file

structure can be seen. In next chapter each folder and its content are explained.

__tests__ folder was automatically created in npx react-native init and it contains all

the UI tests for the project.

android folder contains all the specific native code for Android OS. It contains is

only edited if developer needs to write Android specific code in Java/Kotlin.

components folder contains all the custom-made UI components for the project.

ios folder contains same kind of files that in android folder except for iOS.

node_modules folder contains all the JavaScript libraries and dependencies installed

by npm commands.

Pictures folder contains two .png files that are used for default pictures if image is

not found on the server.

In the root files firebase.js contains the configuration, that is identical with the

web application version. .env file contains secrets and other configuration information

that are needed in firebase configuration but should not be published to git. Rest of the

root files are generated automatically by npx react-native init or with npx

react-native run-android.

40

Figure 30. Pizza Corner Native versions project structure

In the React Native version most of the JavaScript methods are reused from web version

of Pizza Corner. There are some cases where something that could be done in web

version are done a bit differently in native version. For repetition purposes

implementations that are done identical in web version are not mentioned. In the next

chapters are explained the main functionalities of the most important components and

highlighted some technics that are usually used in React Native.

6.3.1 Application.js

Application.js functions as a parent component to other components, and the

application starts here. Most of the data fetching, calculating and updates are done there.

Big functionality in Application.js is the navigation logic, and context providing.

This application uses React Context to pass data through the component tree without

having to pass props down each time. In Figure 31 the whole application is wrapped

between <PizzaContext.Provider> tags. PizzaContext is another

component that contains only one constant, export const PizzaContext =

41

React.createContext(). createContext() creates a Context object,

and when react renders a component that is using this Context object it will read the

current context value from the nearest matching Provider. PizzaContext does

not set any default values, it only provides the Context object. In

Application.js Provider is used that allows using components, in this case

every component, to subscribe to Context changes. Provider accepts value prop to

be passed to using components. restaurantData, restaurantRequests,

loading, filterRestaurants and sortRestaurants are passed with this

value prop (Facebook 2022).

Figure 31. Application.js context and navigator implementation

Native version of Pizza Corner uses React Navigation library to implement navigation

logic. In web applications when user clicks link the URL is pushed to the browser’s

history stack. When user clicks the back button, the browser gets the top item of the

history stack, so the previous page is now the active one. React Native does not have

this feature and that is why React Navigation is used. It provides a way for React Native

applications to transition between screens, manage navigation history and use gestures

42

and animations that are expected for native Android applications when moving between

views. Application is needed to wrap in NavigationContainer. Usually this is

done in projects entry file, such as index.js and Application.js. In Figure 32

we can see that the NavigationContainer is used on row 153 and it wraps

everything but the PizzaContext component. Drawer.Navigator is used

between NavigatorContainer. This creates screen where user can open new menu

by swiping right to left. MainPage component was set for default page to open in

initial prop. Navigator should contain Screen elements as its children to

configure for routes. Drawer.Navigator has two Drawer.Screens for

MainPage and RequestNewRestaurant components. Drawer navigator now

have access to these routes. This covered only the drawer navigation, but the application

still needs the basic navigation functionalities, like history tracking and moving between

them. These are implemented in StackNavigation constant, that is in

MainPage’s Drawer.Screen prop component. Like in Drawer.Navigator,

Stack.Navigator needs initial page to open and at least one Screen element.

Stack navigator provides a way to transition between screens where each screen is

placed on stack (see in Figure 32), where Drawer navigator only opened the side

menu. Each Screen takes a component and name props. Name prop works like

identifier that is checked when moving between screens. Component prop tells the

navigator what component it will open when its Screen is called (React Navigation

2022).

43

Figure 32. Stack.Navigator implementation in Application.js

In web application localStorage was used for saving the favorite restaurants, but

localStorage is not available in React Native. Instead AsyncStorage was used.

It is unencrypted, asynchronous, key-value storage system that is global to the

application. It is part of react-native library, so it is not needed to install separately. It

behaves almost identically with localStorage.

For defining custom fonts and other changes to texts in React Native

setCustomText method is used from react-native-global-props library.

In Application.js start of the componentDidMount lifecycle method

setCustomText(customTextProps) is called. customTextProps is

constant in JSON format, and it has CSS like structure. In this constant is defined that

fontFamily is Roboto. With setCustomText method this change is globally

changed in the application. In web application the font family is globally changed in the

applications main CSS file.

6.3.2 MainPage.js

MainPage.js is the front page of the application and visually user sees this

component first. This component handles showing the restaurant data in card format,

and one can filter data with search and sort operations. Component is wrapped inside

ScrollView component that enables scrolling the screen. Without this component the

44

screen would only show what is viewable in the top of the screen. This application uses

Context to pass data, so props are never used when passing data. In MainPage.js

Context is used in this.context.contextname format (see Figure 33). Using

call-back functions works similar way. For example calling filterRestaurants in

Application.js use this.context.filterRestaurant(input).

Figure 33. Use of Context and Navigation objects in MainPage.js

Moving between screens are handled with navigate() method. When navigate

function is called the application moves to specific page and moves the previous one to

the navigate stack. Navigation stack is available in this.props.navigation. On

row 79 navigation is used in onPress function (see Figure 33). restaurantData

is passed to RestaurantPage in this navigate method, so Context is not needed in

that component. Navigate function needs the specific name of the page (for example

RestaurantPage) and optional params object, which is used like prop (for

example { restaurantData: restaurant }) (React Navigation 2022).

For all views UpperBar component is used and is rendered first on the top of the

component. This component consists of the home button, Pizza Corner title text and

drawer opener button. On the time of making this application I did not know how to

render part of screen in everywhere constantly, like in the web version. This seemed to

be only way to implement the same feature.

Using CSS styles in React Native is made easier with StyleSheet. Instead of

creating new style object over again, StyleSheet can help to create style objects

with an id (see Figure 34), which can then be referenced in the component (see Figure

45

33). StyleSheet is used outside the render method and it makes it easy to manage. It is

sent only once for rendering, unlike normal style objects that are in render method.

Figure 34. Use of StyleSheet in MainPage.js

6.3.3 RestaurantPage.js

RestaurantPage renders specific data about one restaurant. On MainPage.js

specific restaurant data was passed on, via navigation params object, and it can be

access in this.props.route.params.restaurantData. Restaurant data is

rendered almost identical as in web version but using React Native Paper components.

map() function is used to render multiple ReviewCard components on each other.

Like in web version these are reusable components that renders information about one

review. Review consists of image, time stamp and the review score out of five.

Adding restaurant to favorites is handled with the hearth icon button and updating the

favorite restaurant list is handled by AsyncStorage. Like in web sites local storage,

AsyncStorage allows React Native applications to save key-value pairs in phones

memory and when the application is closed the data will not expire, and when user

comes back the data is on the memory again. Getting items from AsyncStorage can

be done with getItem function. For example, calling await

AsyncStorage.getItem('favoriteList') returns the favorite restaurant list.

And for updating the storage, setItem function is used. First, update is done locally in

variable the key-value pairs and then it is set with

46

AsyncStorage.setItem('favoriteList',

favoriteList.toString()).

6.3.4 CreateNewReview.js

CreateNewReview.js component renders View component, that works like a

form. Form consists of star rating, two input fields and picture upload button. Uploading

the image for the form is done with react-native-image-picker library’s

launchImageLibrary. It enables to have secure access to file systems in mobile

applications. With launchImageLibrary mobile device opens devices own image

library application and user can choose wanted image there. If picture was choose the

images uniform resource identifier (URI) is set to this.state.image. To make the

URI to base 64 form RNFS library’s readFile function is used. RNFS is short for

React Native filesystem. When the file is read to base 64 form,

this.state.imagerUrl is updated in state. this.state.imageUrl is needed

for uploading the image in right form to the firebase. Sending the new review to

firebase is done same way as in web version.

6.3.5 RequestNewRestaurant.js

RequestNewRestaurant.js component renders similar way, like in the

CreateNewReview.js, View component, that works like a form. Form consists of

three TextInput components. For informing user that restaurant request was

successful or not, Snackbar component was used. They function similar way that the

web application’s Snackbar, showing brief informatic notification for the user. In

React Native Paper styling the component is done in components props. For instance,

changing the default colour of Snackbar is done in theme prop. This prop take

object with colors variable that has values onSurface and accent. Inline styling

is also available, but it does not work as well as build in styling options.

47

7. Research and Testing the Applications

The main focus for this research was to examine how people’s experiences differed

when using two different version of the same application. This research was designed to

be one time study case and the goal was to see are there any differences between web

based and hybrid-based applications, when measuring users experience using these

applications.

Participations consist of voluntary non-randomly chosen friends and relatives. This

group of testers was chosen because most of them owned Android device and the

testing time schedule was convenient for them. In total there were thirteen participants

(eight men and five women) from nineteen to fifty-nine years of age. All the

participants had their own smartphones, but three of them did not own an Android

device and they needed to borrow one from the test organizer. The application test and

survey were both anonymous and the identities of the participants were hidden, so no

sensitive or personal information was collected and the GDPR guidelines were

followed.

7.1 Methodology

In the context of this research, the design science approach was chosen to be most

suitable research method. Design science research is defined as designing and testing an

information system artifact in order to test or solve an existing unsolved problem

(Hevner, 2004). Combination of qualitative and quantitative data collection approach

was chosen to analyze and describe the different views and experiences from

participants survey replies. In the case of this research, design science methods aligned

perfectly with the goals of this research, which was to test and then evaluate two

differently developed application versions.

Hevner mentions (Hevner 2004), that design science is both process and a product. The

process consists of analysing and constructing, and the product is the related

information system artifact. In this research the two applications represented the

artifacts that were constructed and analyzed. The construct part was done in the

development process of the applications and the steps and details of this were described

48

in the previous chapters. The analyzing part consisted of testing these two applications

and then answering the survey

7.2 Research Design

For this research survey, with multiple items, was arranged. Major part of the questions

was based on the five point Likert scale approach. Answer options were in most of the

cases 1 being the most positive option and 5 being most negative. In two control

questions these were vice versa. Liker scale approach was chosen because it offers to

the participants the opportunity to reflect their experience.

Designing the Likert Scale questions is difficult, because they need to be simple enough

that the participant understands it, yet it needs to be informative. If the questions are too

complex or there are too many of them, the participants might skip the whole survey.

Having too little questions also leads to inaccuracy. Finding the right number of

questions, and balance between informative and simple questions is very precise work.

That is why planning the survey is recommended to be made carefully and patiently.

For collecting abstract subjects, such as participants opinions and feelings, the

qualitative questions are good tool for this research, to get more enhance and detailed

findings, open end questions were used in the survey. In the open-ended question

participants could report more detailed versions of their experience and to provide

additional authentic data for the researcher. Because of the open nature of these

questions the answers are depended on the participant’s motivation to answer truthfully

or the understandability of the questions. Participant’s answer might be completely

irrelevant to the question, and that is why qualitative data is suspect to be with errors.

7.3 Description of the case study

For this study instructions were made, so the participants had clear picture what to do

and in which order. Instructions explained why the test was conducted and clear

description what kind of device to use, how to access the web application, how to install

the hybrid application to device, and to-do list what to test in the application. Picture of

pizza was also linked to the instruction, so that participant could use it in the testing

process. In the end there was notice where participants were asked to fill the survey and

49

they needed to enable back the installation protection. The hybrid application needed

temporal setting change in participant’s phone, so that they can install an application

that is not from the Google Play Store.

Two versions of Pizza Corner application were used for testing: React.js and React

Native version. Participants were asked to first test the web and then hybrid versions.

Four tasks were asked to do in both applications.

1. Use search by restaurant name feature on the main page, to filter the restaurants

to one that the participant is trying to search.

2. Add one restaurant to favorite list, by going to restaurants restaurant page and

tapping the hearth icon, so the icon turns pink and indicates that the restaurant is

now in the favorites.

3. Create new review for restaurant.

4. Send one new restaurant request.

Doing all of these tasks’ participant will go through the whole application and will test

every feature available.

After the testing of the applications, participants were asked to fill the survey. Survey

had three different parts. First part consists of demographic questions (such as age,

gender), what phone tester used, and two questions related to testers preferences to

application versions. First question was “if there is download version of the application

available, would the tester download it” and the second was follow-up question “what

made you to install or not to install the application”.

Second part of the survey was about web-based application. Total of six multiple option

questions, in five step Likert scale, were asked and two free space questions. Likert

scale questions asked how the tester experienced the application. For example,

questions like “how easy it was to create review”, and the options for that question were

very easy, quite easy, easy, not so easy, not easy. Two free space question were “if you

experienced problems, describe them here” and open space for feedback.

Third and the last part of the survey was about the hybrid application, and it had the

same six multiple option questions and the two open questions as the second part, but

they were related to hybrid application.

50

8. Results and analysis

The survey data was collected after the testing the two versions of the Pizza Corner

application. The survey was arranged in the Google Forms, which is a survey

administration software offered by Google. In the following sections the gathered

qualitative and quantitative data is presented and discussed. The testing of the

application and filling the survey happened under no surveillance. The remote nature of

the study made observation of the researcher impossible, so the data that is presented is

based entirely on the survey’s results.

8.1 Expectations and Hypotheses

Researcher had previous experience from the React.js, by doing couple small projects

with it and participating to one online course related to topic. Researcher did not have

any experience with React Native or any hybrid application development tools. It would

be very plausible, that the web version would be easier to implement because the

previous knowledge. Reading articles about the React Native and hearing other

developers experience with it, gave researcher such a picture that the React Native

would be very similar to the React.js and would be very easy to learn and use.

The performance of the application is one of the most essential parts when keeping the

user engaged. Hybrid applications has in the past research proven to be more efficient in

performance wise, but that depends on the device where the application is running

(Martin, 2020). Taking this to account, it is very plausible that the hybrid version of the

application will get more positive results, when comparing it to the web applications

performance. Processing power of the mobile devices can also affect how user will

experience these two versions. In this research, participants had principally their own

devices, and these devices age, processing power and overall condition varied. If the

device had more processing power the hybrid application should have the advantage

(Jobe, 2013).

Pizza Corner application is primarily application that consumes content. In the past

research has found that web applications are the most suitable for these kinds of use

cases (Jobe, 2013), and are viable substitutes for hybrid and native applications.

Additionally, web applications do not need to install anything to user’s device and can

51

be easily accessed in the device’s web browser. Counting all these advantages and

disadvantages, it seems that web application should be easier to use and should get

overall better scores from the survey, comparing it to the hybrid application.

8.2 Development experience

Researcher implemented two versions of the Pizza Corner applications. Web application

that was implemented with React.js and hybrid application that was implemented with

React Native. Researcher had previous experience already with the React.js but React

Native was totally new platform to develop with. At the time of the development, the

researcher had studied computer science for six year and had jobs related to industry for

one and half years’ worth.

When researcher was planning the application, he wanted to have identical or very

similar end products. That is why researcher tried to find component library that was

usable with both platforms. At the time of the development of the applications, there

was no component library that could have been used with both platforms. Researcher

chose Material UI component library for the React.js version and React Native Paper

library for React Native version. These two had very similar looking components and

both had lots of customization options. Researcher chose Firebase Realtime Database,

because it can be used in every platform, and had very similar setup instructions.

Development with React.js was familiar to researcher. Setting up the development tools

were already done, because researcher had React.js projects already implemented on the

computer, that was used to develop the React.js application. Some tools and node

packages needed updates, and the used component library Material UI was only new

thing to install. Writing the React.js code was effortless and fun for researcher.

Researcher struggled a lot with the Firebase data structure. The data was saved and

fetched as JSON. This made it difficult to use the raw data in components that needed

for example specific restaurant data. Researcher decided to map JSON data to array

format to make it more usable. Making the application available on the internet was

moderately easy with Firebase Hosting, and it took about a half day to researcher to

have working public web page live.

52

Developing with React Native was completely new to researcher. Researcher assumed

that it would be very similar to code with but in reality, researcher needed to go trough

multiple guides to understand how to implement React Native application. Fortunately,

all of the JavaScript functions in React.js project could be used also in the React Native

project. Only few changes were needed, for example using “” marks instead of ‘’ when

writing a string. Implementing the rendering components were more difficult to reuse.

Basically, everything needed to be code from the start, and copying the code straight

from the React.js project was no option. Researcher was surprised how much different it

was to write the rendering code with React Native. Still there was lots of logic which

could be used, and only the writing the rendering code was different. For example, div-

tags needed to be replaced with View-tags and of course implementations that used the

Material UI components needed to be replaced with React Native Paper library

components. Researcher struggled with the navigation implementation because it was

completely differently designed. Sharing the data trough components turned out to be

also difficult task for researcher. Mix of Context library’s and the Navigation library’s

state manipulations were used, and afterwards looking back to the project this could

have been implemented using only either one. The researcher did not fully understand

how to use these libraries but managed to implement something that was usable in the

project. Publishing the application to Google Play Store was not an option for the

researcher. The application was not planned to be used widely, because the Firebase

Realtime Database had data retention limitations. However, the researcher studied how

the android and the iOS applications could have been published to the application

stores. It seemed that the Apple Store had much stricter rules that the Google Play Store

had.

Comparing these two different development platforms, researcher came to that

conclusion that developing for React.js was easier and more productive. Researcher had

previous knowledge from the React.js and that is why it was easier to implement the

application. Researcher had expectations that the React Native would be as easy to use

and would extend the React capabilities. Researcher felt that the React Native only

narrowed the options to develop, and for this project it did not gave any extra features or

tools that would made it easier to develop with React Native. Neither of the applications

53

could not have been published to application stores because it did not meet the

conditions that both Play Store and Application store required.

8.3 Data presentation

Overall participants enjoyed using both applications and the feedback was positive.

Participants were enthusiastic to test the application, perhaps because the participant

group consisted of friends and relatives.

Getting the application to work was easier with the web application, and every

participant got the application to run on their web browser. One participant had

problems with the installation of the hybrid application and did not get the application

to work. The reason for the failed installation related to compatibility problems between

the application and the devices software version. When investigating this error, the most

common reasons for this is that the Android-version is not compatible, the devices own

security software does not trust the application or during the download of the

application some random connection error happened.

In the first part of the survey, participants were asked if there are available

downloadable (native or hybrid application) version would they use it over web

application version. Follow up question was asked for the participants reason to install

the native application or not to install it. These questions were designed to see

participants presumptions towards hybrid applications. Eight participants answered yes

and four answered no (see Figure 35). The biggest reasons to not to install the hybrid

application was to keep the phones memory free as possible, and if the application does

not bring any new features compared to web version, there is no reason to install it.

Cyber security was also one important feature, that couple of participants were

concerned. If the security of the application was verified and the publisher of the

application was popular, it made participant to install the application more easily. One

participant mentioned that the web applications are so well made that most of the time

they perform as good as the native or hybrid versions. Biggest reasons to install the

hybrid applications were related to performance. Two participants mentioned that

hybrid applications are usually quicker and more fluent to use.

54

Figure 35

Five of the participants did not understand the question and answered off topic.

Analysing the answers, it seemed that the participants that answered off topic

understood the question so that it was related to the researchers two applications. For

example, one participant gave feedback in this section and thus answered off topic.

Even though five of the nine participants answered yes to the question if they would

install native or hybrid version of the application, there was more answers to not to

install it in the follow up question section. Four out of nine participants that answered

yes to question answered off topic in the follow up question and one participant stated

that he did not get the hybrid application to install. This made it difficult to researcher to

analyse this sections answers. In the following charts one participants’ answers were not

take into a count, because participant did not get the hybrid application to work and thus

cannot give comparison between two applications

In the first section also the phone model of the participants was asked. This was because

researcher wanted to see if there are any older phone models that might not work with

the applications that well or if there were phones that had significantly lower processing

power. Unfortunately, there was no devices like mentioned before so research cannot

investigate the correlation between devices processing power and the performance of

the applications.

When asking how easy it was to start using the applications, both had very positive

answers. In both versions of the application there was five “very easy” answers and in

0

2

4

6

8

10

No Yes

Do you use downloadable versions of
the applications, if there is one

available?

55

“quite easy” there was five answers in web application and six answers in hybrid

application (see Figure 36). Only one participant answered “not so easy” for the hybrid

application. Downloading the hybrid application did not seem to affect most of the

participants experience to start using the application.

Figure 36

When asking about how easy it was to use the applications overall, both versions had

very positive answers. Hybrid application had slightly more positive answers and got

two more answers for “very easy” than web application. Web application got two more

answers in “quite easy”. In both versions “easy” got one answer. It seems that the

hybrid application had slightly more positive answers, but the overall experience was

very positive in both application (see Figure 37).

0

1

2

3

4

5

6

7

Very easy Quite easy Easy Not so easy

How easy it was to start using the
application?

Web Hybrid

56

Figure 37

Asking how easy it was to do a review with the applications the hybrid application had

slightly more positive answers. Hybrid application got six answers in both “very easy”

and “quite easy”, where the web application got four in “very easy” and seven “quite

easy” and one answer in “easy”. It seems like using the native features of the phone the

hybrid application had better experience when doing the review (see Figure 38).

Figure 38

When asking how fast the applications run the hybrid application had more positive

results. The hybrid application answers distributed evenly between "easy”, “quite easy“

or “very easy”, getting four answers in each section. Web application got three answers

in “quite easy“ and “very easy”, five answers in “quick” and one participant answered

“not so quick” (see Figure 39). The one participant that answered “not so quick”

0

2

4

6

8

Very easy Quite easy Easy

How easy it was to use the application?

Web Hybrid

0

1

2

3

4

5

6

7

8

Very easy Quite easy Easy

How easy it was to do a review?

Web Hybrid

57

experienced the web application to crash during the create of a review. This was due to

small data update that the researcher did at the same time as the participant was trying to

test the application. This affected negatively to the participants experience and could

have been avoided by doing the data update later.

Figure 39

Survey had one control question about how hard it was to use the application. This

control question was same kind of question as the how easy it was to use the

application. Seven participants answered “not difficult to use at all” in both versions.

“Not difficult to use” was answered five times in web version and four times in native

version. Only one participant answered “quite difficult to use” in native version. When

comparing this to result of how easy it was to use applications, it can be seen that the

answers are quite similar. The control section had slightly more positive results but the

difference is marginal (see Figure 40). Biggest change was in the web application

answers where three answers moved to the most positive answer option.

0

1

2

3

4

5

6

Very quick Quite quick Quick Not so quick

How fast the application run?

Web Hybrid

58

Figure 40

Most of the participants did not experience any problem or very few problems with both

applications. Only one participant experienced many problems with both application

versions and one participant quite a few times (see Figure 41).

Figure 41

Problems that users experienced in the web applications related mostly on the

performance side, saying that the application was slow. Problems that users experienced

in the hybrid applications related to installation of the application. They either had hard

difficulties or didn’t manage to install the application at all. One user reported that when

doing restaurant review the application crashed and that he did not manage to take

0

1

2

3

4

5

6

7

8

Not difficult to use at all Not very difficult to use Quite difficult to use

How hard it was to use the application?

Web Native

0

2

4

6

8

10

None Not so many
times

Quite a few
times

Many times

Did you have any problems during use?

Web Hybrid

59

picture, and only the picture gallery was available. One participant experienced

application to crash in both versions. This was due to data update that was done at the

same time, and it was mentioned in the previous sections.

8.4 Data analysis

After the data was collected from the survey, it was converted from Google Forms to

the excel. The data was used to generate graphs and detailed statistics, that helps to find

out the possible correlations amongst the results. Data can help to confirm or prove

wrong the hypotheses and expectations that the researcher made before the survey.

By comparing the survey results of the web application and hybrid application, the

researcher did not get verification for the hypothesis that the web application should be

better version of the two overall, but the hypothesis that the hybrid applications

performance should be better was confirmed.

The survey result pointed the hybrid application had more positive answers almost in

each question. When analyzing the data from Figure 37 we can see that the hybrid

application had two more answers, than the web application in the “very easy” option

when asking how easy it was to use the applications. It seems that the hybrid application

was easier to use and run-on average smoother than the web application. These results

receive support from the open answer section where participants could leave comments.

One participant said that the hybrid application run more quicker and that it was easier

to use when comparing the web application. The data in Figure 39, where how fast the

application is run is presented, also supports the Figure 37 results. The hybrid

application has more positive results and is clearly stated faster version by the

participants.

Figure 38 shows the data for how easy it was to do a review. This data also had more

positive answers in hybrid application. It had fifty percent of the answers in the “very

easy” where the web application had 33,3 percent. Hybrid application had in this data

only “very easy” and “quite easy” answers where the web application had one “easy”

answer.

Only section where the web application had slightly more positive result, was in the

Figure 36 and Figure 40. In Figure 36 data related with the starting to use the

60

application, where one participant answered “not so easy”. This participant did not

manage to get the native application to install and used different device where the native

application was successfully downloaded. The installation process of the native

application did not apparently affect a major part of the participant start of use. Figure

40 was control question and was reversed version of the question in Figure 36. Results

in Figure 40 had even more positive answers than in the Figure 36. In both version most

of the participants answered either “not difficult to use at all” or “not very difficult to

use”. Only one answer was given to “quite difficult to use” option, and it was the same

participant that did not get the native application to install answered.

The survey had open answer section where problems that happened during testing can

be listed. When analysing these answers, the web application seems to have more bugs

and problems than the hybrid application. Web applications biggest problems were the

slowness of the application and usability problems. Usability problems like using back

button to return to previous page created problems and clicking the send button twice

was possible. Hybrid application’s problems related mostly in the installation process or

similar usability problems that the web application also had.

61

9. Conclusions

When taking a retrospective look at the research, everything went quite well. The

researcher was able to develop the two applications successfully and the testing of the

applications was implemented okay. This chapter answers to the research questions that

were presented in section 1.1 and topics and problems of the research’s results are

discussed.

9.1 Answers to the Research Questions

This chapter answers to the research questions that were presented in the beginning of

this research.

9.1.1 How did developing for two different platforms differentiated?

The development tools that research used for both development platforms were quite

similar. In both versions the same IDE and version control tool was used. Testing and

debugging the code was very different. The web application code was run directly in the

localhost and could be interacted in the web browser. In the hybrid application physical

smartphone was used to interact and test the application.

The syntax of the code was different between platforms. React.js and React Native had

their own syntax to write the UI elements, but the logic was written in JavaScript in

both. Both platforms used their own dedicated component libraries and for example

React Native’s React Paper component library could not be use in the React.js project.

Researcher felt that developing for these two different platforms did first feel very

different. But after researcher learned the React Native’s basics and started to develop

the last half of the React Native application, he felt that developing for these two were

in the end very similar. The basic logic for writing the code was identical and did not

differentiate much. For example, the core parts of creating the component in both

consisted of the rendering part where JSX was used, the logic was implemented with

JavaScript and styling was implemented similar way in both. Only the syntax of the UI

elements was different, but they still resembled each other and had similar kind of

62

expression. Such differences like div tags were replaced with View tags in React

Native.

9.1.2 Was either one of the application versions better?

The survey results pointed out that the hybrid application version was better of these

two. The hybrid application got more positive answers in almost every question and was

praised more in the open question section. The survey results pointed that the hybrid

application was faster (see Figure 39), was easier to use (see Figure 37) and did not

have as many bugs and problems that the web application had.

The web application’s biggest problems were the slowness of the whole application and

the technical problems that the participants had during testing. Even tough some of the

participants had problems with hybrid application’s installing process, it did not seem to

affect the over all experience.

9.1.3 What factors did affect the experience of the applications?

The biggest factors that affected the experience of the applications were related to the

performance of the application. In the survey results the participants under lined that the

hybrid application was faster (see Figure 39) and did not have as many bugs as the web

version (see Figure 41). Participant reported more problems in the web version and that

may have affected the results the most.

9.2 Discussion

When taking a retrospective look at the research, over all everything went well. The

researcher managed to develop two versions of the Pizza Corner application

successfully and the case study setup was success. The number of participants was quite

low, but it was enough for this scale of research.

This research pointed out that developing two versions of the application for two

different platforms can be very similar. The choose of using technology that the

63

researcher had previous experience for creating the applications prove to be very helpful

for the researcher, that did not have any experience developing for the hybrid platform.

The learning curve for React Native was very fast because the previous experience from

React.js. Choosing different technologies for the developing would most likely impact

negatively to the end product that was created, or at least it would have been take more

hours to learn the technologies and there for the developing the applications would have

been harder and slower process.

The survey results pointed out that the hybrid application version was the better one.

Most of the participants had better experience with the hybrid version and commented

that the performance was clearly better in it. Particularly the fastness of the hybrid

version was praised compared to the web version.

9.3 Future works

The number of participants in the case study was quite low and the choosing of the

participants could have been done more better. Because the participants were

researcher’s relatives and friends the surveys results might have over positive results.

Different method of choosing the participants could have give better or at least more

reliable data. Of course, there are always the risk of choosing too similar participants.

For example, if the participants were chosen from the university by asking volunteers,

there would have been most likely people that are interested with similar things, are

studying the same major and also have similar ages. The number of participants would

have been better, because then there might have been more deviation.

The comparison of these two applications suffered from the fact that the applications

were so identical. The participants first time using the Pizza Corner application was in

the web version, and the participant had no previous knowledge of the user interface

and how to use the application. When the participant started testing the native version,

they know where things were and how the application worked. In the future works

either make different applications or structure clear instructions to use the whole

application before testing phase. Also dividing the participants to two different groups,

64

where one group starts with the web version and other group starts with the native

version, could help to have more reliable data.

Using different technologies for developing the applications for similar research, would

be interesting. Because React Native is developed based on React.js, the applications

are also very similar. Using technologies that are not based on each other and are very

different, for example Vue.js for the web application and Ionic Framework for hybrid

application, could give different results. Also, the developing process would have been

more different.

65

References

Martin, S, 2020 Native vs. Hybrid vs. Web Application, [referenced 14 July 2021]

Available: https://betterprogramming.pub/native-vs-hybrid-vs-web-application-

f95c054a3c02

Shanhong Liu, 2021, Most used web frameworks among developers worldwide, as of

2021, [referenced 31 January 2022] Available:

https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-

frameworks-web/

Facebook, 2022, Main Concepts, referenced 31 January 2022] Available:

https://reactjs.org/docs/hello-world.html

Paypal 2020, 10 Main Core Concept You Need to Know About React

[referenced 31 January 2022] Available:

https://payalpaul2436.medium.com/10-main-core-concept-you-need-to-know-about-

react-303e986e1763

React Native docs 2022, Core Components and Native Components

[referenced 1 February 2022] Available:

 https://reactnative.dev/docs/intro-react-native-components

Node.js, 2022, About Node.js and Node.js documentation

[referenced 1 February 2022] Available:

https://betterprogramming.pub/native-vs-hybrid-vs-web-app-f95c054a3c02
https://betterprogramming.pub/native-vs-hybrid-vs-web-app-f95c054a3c02
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://reactjs.org/docs/hello-world.html
https://payalpaul2436.medium.com/10-main-core-concept-you-need-to-know-about-react-303e986e1763
https://payalpaul2436.medium.com/10-main-core-concept-you-need-to-know-about-react-303e986e1763
https://reactnative.dev/docs/intro-react-native-components

66

https://nodejs.org/en/docs/ and https://nodejs.org/en/about/

Doug Stevenson 2018, What is Firebase? The complete story, abridged

[referenced 1 February 2022] Available:

https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-

bcc730c5f2c0

Google 2022, “Add Firebase to your JavaScript project“and “Firebase Realtime

Database”

[referenced 1 February 2022] Available: https://firebasfor

exampleoogle.com/docs/web/setup and https://firebasfor

exampleoogle.com/docs/database

Jodel 2022, What is Jodel?

[referenced 1 February 2022] Available:

https://support.jodel.com/hc/en-us/articles/360009688653-What-is-Jodel-

Adobe 2022, Design the incredible

[referenced 1 February 2022] Available:

https://www.adobe.com/fi/products/xd.html

Material UI 2022, Installation

[referenced 1 February 2022] Available:

https://mui.com/getting-started/installation/

https://nodejs.org/en/docs/
https://nodejs.org/en/about/
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://firebase.google.com/docs/web/setup
https://firebase.google.com/docs/web/setup
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database
https://support.jodel.com/hc/en-us/articles/360009688653-What-is-Jodel-
https://www.adobe.com/fi/products/xd.html
https://mui.com/getting-started/installation/

67

MDN Web Docs 2022, Window.localStorage

[referenced 1 February 2022] Available:

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Facebook 2022, Setting up the development environment

[referenced 1 February 2022] Available:

https://reactnative.dev/docs/environment-setup

Facebook 2022, Running On Device

[referenced 1 February 2022] Available:

https://reactnative.dev/docs/running-on-device

Facebook 2022, Generating the release AAB

[referenced 14 March 2022] Available:

https://reactnative.dev/docs/signed-apk-android

Facebook 2022, Context

[referenced 14 March 2022] Available:

https://reactjs.org/docs/context.html#dynamic-context

React Navigation 2022, Docs

[referenced 15 March 2022] Available:

https://reactnavigation.org/docs/getting-started

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://reactnative.dev/docs/environment-setup
https://reactnative.dev/docs/running-on-device
https://reactnative.dev/docs/signed-apk-android
https://reactjs.org/docs/context.html#dynamic-context
https://reactnavigation.org/docs/getting-started

68

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information

systems research. MIS quarterly, 75-105.

Jobe, W. (2013). Native Applications vs. Mobile Web Applications. International Journal

of Interactive Mobile Technologies, 7(4).

Sopegno, A., Calvo, A., Berruto, R., Busato, P., & Bocthis, D. (2016). A web mobile

application for agricultural machinery cost analysis. Computers and electronics in

agriculture, 130, 158-168.

Ajayi, O. O., Omotayo, A. A., Orogun, A. O., Omomule, T. G., & Orimoloye, S. M. (2018).

Performance evaluation of native and hybrid android applications. Performance Evaluation,

7(16).

Willocx, M., Vossaert, J., & Naessens, V. (2015, June). A quantitative assessment of

performance in mobile app development tools. In 2015 IEEE International Conference on

Mobile Services (pp. 454-461). IEEE.

