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Flooding is the most devastating natural hazard affecting tens of millions of people yearly and 

causing billions of USD dollars in damages globally. The people most affected by flooding 

globally are those with a high level of everyday vulnerability and limited resources for flood 

protection and recovery. Geospatial data from the Global South is severely lacking, and 

geospatial proficiency needs to be improved at a local level so that geospatial data and data 

analysis can be efficiently utilized in disaster risk reduction schemes and urban planning in the 

Global South. This thesis focuses on the use of automated global geospatial dataset analysis in 

disaster risk reduction in the Global South by using the Python programming language to 

produce an automated flood analysis and visualization model. In this study, the automated 

model was developed and tested in two, highly relevant cases: in the city of Bangkok, Thailand, 

and in the urban area of Tula de Allende, Mexico. 

The results of the thesis show that with minimal user interaction, the automated flood model 

ingests flood extent and depth data produced by ICEYE, a global population estimation raster 

produced by the German Aerospace Agency (DLR) and OpenStreetMap (OSM) data, performs 

multiple relevant analyses of these data, and produces an interactive map highlighting the 

severity and effects of a flooding event. The automated flood model performs consistently and 

accurately while producing key statistics and standardized visualizations of flooding events 

which offers first responders a very fast first estimation of the scale of a flooding event and 

helps plan an appropriate response anywhere around the globe. 

Global geospatial data sets are often created to examine large scale geographical phenomena; 

however, the results of this thesis show that they can also be used to analyze detailed local-level 

phenomena when paired together with supporting data. The advantage of using global 

geospatial data sets is that when sufficiently accurate and precise, they remove the most time-

consuming part of geospatial analysis: finding suitable data. Fast reaction is of utmost 

importance in the first hours of a natural hazard like flooding, thus, automated analysis 

produced on a global scale could significantly help international humanitarian aid and first 

responders. Using an automated model also standardizes the results removing human errors and 

interpretation from the results enabling the accurate comparison of historical flood data in due 

time. 
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Tulvat ovat luonnonilmiöihin liittyvistä riskeistä tuhoisimpia, ja ne vaikuttavat kymmeniin 

miljooniin ihmisiin vuosittain sekä aiheuttavat miljardien dollarien vahingot 

maailmanlaajuisesti. Tulvista kärsivät usein maailmanlaajuisesti ne ihmiset, jotka ovat jo 

ennestään haavoittuvia ja joilla on suhteellisesti heikoimmat keinot suojautua tulvilta ja 

selviytyä tulvan aiheuttamista tuhoista. Monissa globaalin etelän maissa on niukasti 

paikkatietoaineistoa ja paikkatieto-osaamista on syytä lisätä erityisesti paikallisella tasolla, jotta 

paikkatietoaineistoa ja analyysin hyödynnettävyyttä voidaan parantaa katastrofiriskien 

vähentämissuunnitelmissa sekä kaupunkisuunnittelussa globaalissa etelässä. Tämä 

opinnäytetyö keskittyy automatisoidun globaalin paikkatietoaineiston analyysin 

hyödyntämiseen katastrofiriskien vähentämisessä globaalissa etelässä käyttämällä Python-

ohjelmointikieltä automatisoidun tulva-analyysi- ja visualisointimallin tuottamiseen. Tässä 

tutkimuksessa automatisoitua mallia kehitettiin ja testattiin kahdessa tulvariskien kannalta 

erittäin relevantissa tapauksessa: Bangkokissa, Thaimaassa ja Tula de Allende:n 

kaupunkialueella, Meksikossa. 

Tämän tutkielman tulokset osoittavat, että automatisoitu tulvamalli osaa lukea ICEYE:n 

tuottaman tulvan laajuus- ja syvyysaineiston, Saksan ilmailu- ja avaruuskeskuksen (DLR) 

tuottaman maailmanlaajuisen väestönarviorasterin, sekä OpenStreetMap (OSM) -aineiston, 

suorittaa aineistolle tulvan tuhojen tulkinnan kannalta olennaisia analyyseja, ja tuottaa 

lopputuloksena interaktiivisen kartan, joka korostaa tulvatapahtuman laajuutta ja vaikutuksia. 

Automatisoitu tulvamalli toimii johdonmukaisesti ja tuottaa tilastoja sekä standardoituja 

visualisointeja tulvatapahtumista, mikä tarjoaa ensivastehenkilöille erittäin nopean 

ensimmäisen arvion tulvatapahtuman laajuudesta. Tämä auttaa kohdentamaan 

pelastustoimenpiteitä riskitilanteessa vaihtelevissa ympäristöissä eri puolilla maailmaa. 

Globaalit paikkatietoaineistot luodaan usein laajojen maantieteellisten ilmiöiden tutkimiseen, 

mutta tämän tutkielman tulokset osoittavat kuitenkin, että niillä voidaan analysoida myös hyvin 

paikallistason ilmiöitä, kun ne yhdistetään muihin relevantteihin tietolähteisiin. Globaalien 

paikkatietoaineistojen käytön etuna on, että ollessaan riittävän tarkkoja ne poistavat 

paikkatietoanalyysin aikaa vievimmän osan: sopivan tiedon löytämisen. Nopea reagointi on 

äärimmäisen tärkeää luonnonuhkien, kuten tulvien, ensimmäisinä tunteina ja kansainvälisen 

humanitaarisen avun ja ensivastetoimijoiden tulisi hyödyntää maailmanlaajuisia 

automatisoituja analyysejä. Automaattinen malli myös standardoi tulokset poistaen tuloksista 

inhimilliset virheet ja tulkinnat, mikä mahdollistaa historiallisten tulvatietojen tarkan vertailun. 
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1  Introduction 

 

” The flood came out. No one could see anyone else; they could not be recognized in the 

catastrophe. The flood roared like a bull, like a wild ass screaming in the winds. The darkness 

was total, there was no sun.” 

Excerpt of the epic of Atra-Hasis dated to the 17th century BC 

 

 

Floods have always existed and will always exist as long as there is water on Earth. They are a 

part of the ecosystems of our planet. Even though floods are often spoken of in a very negative 

light, floods are a natural phenomenon and they do not become natural disasters until they affect 

the physical and social vulnerabilities of people and societies (Jackson et al. 2017). A disaster 

is often defined as an unplanned event in which the needs of the affected communities outweigh 

the available resources (Furin 2018). The interaction between floods and humans has always 

captured the imagination of the human population and as a sign of this interest, floods are 

mentioned even in some of the oldest written texts found on Earth, including the epic of Atra-

Hasis, the epic of Gilgamesh, and the Bible. In ancient texts, floods are often depicted as 

devastating events brought on by the gods that wipe out all the life to punish the humankind 

and restart life on Earth. Although floods have never actually reached such biblical proportions 

that they would have covered the entire planet, floods are the most devastating natural hazards 

and the leading cause of death by natural hazards (Doocy et al. 2013; Mosavi et al. 2018).  

 

Understanding different perspectives to explain flooding as a phenomenon and to develop 

strategies for flood disaster reduction is important because flooding causes loss of human lives 

and extensive damage to infrastructure every year around the globe. The impacts of floods can 

also lead to physical and mental health problems such as infectious and parasitic diseases, 

nutritional diseases, diseases of the circulatory system, depression, post-traumatic stress 

disorder, and increased monthly health expenditure (Nomura et al. 2016; Puteh et al. 2019). 

Floodwaters carry around trash and sewage water and contaminate drinking water, causing 

cholera outbreaks (Penrose et al. 2010). Due to climate change floods have become more 

frequent, intensive, and more devastating than before and this trend is predicted to only get 

worse in the near future, affecting especially the poorest and most vulnerable areas (Depietri et 

al. 2011; Alfieri et al. 2016; Krellenberg et al. 2016; Hyndman & Hyndman 2017). Population 
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growth, increasing urbanization, and extensive changes in forest cover and land use are also 

contributing to the problem (Doocey et al. 2013). 

 

According to the Swiss Re Institute, floods caused economic losses amounting to USD 82 

billion globally in the year 2021, which means a 205 % increase from the USD 40 billion 

estimation in 2016 by the OECD (Financial Management…2016, Extreme flood 

events…2022). It can take years for affected cities and communities to recover from a flood 

disaster in developed countries, let alone in developing countries, or the countries in the so-

called Global South, especially since poor people cannot afford insurance against flood damage. 

Humans have always tried to mitigate, prevent, and predict flood disasters and other natural 

hazards. The strategies of flood disaster risk reduction have evolved; and include today 

intensified global cooperation, different kinds of civil-society and grassroots initiatives, 

sophisticated software systems, using new kinds of digital data, and geographic information 

systems (GIS) (Al-Tahir & Mahabir 2014). One global problem is that geospatial information 

is relatively scarcely available in many rapidly developing countries. This concerns especially 

information related to vulnerable informal settlements (Falco et al. 2019; Young et al. 2020).  

 

Mapping flood risk areas quickly and reliably is essential to reducing damages and loss of life 

caused by flooding. If maps of flooding extents are produced quickly enough, they can be used 

by first responders and humanitarian aid organizations, which help in efforts of recovery from 

large-scale disasters (e.g., the Red Cross). During times of crisis, accurate information is as 

vital as clean water and food (Meier 2011). If these flooding extent maps are produced with a 

similar template consistently, historical flood risk areas can be mapped for risk mitigation 

planners and city officials to be used in risk reduction strategies and urban planning. 

Simultaneously, the need and utility of more open-source geospatial data can be tracked. The 

critical risk areas can be identified for future improvements and essential services for these 

areas can be planned to withstand flooding either by reinforcing the buildings, constructing 

flood preventative measures, increasing people’s awareness of the risks, or by relocating the 

settlements just outside the critical risk area. 

 

The aim of this Master’s thesis is to utilize Python code and open-source geospatial web tools 

(e.g., Kepler.gl, Mapbox GL, and Leaflet) to create and deploy a dynamic web visualization 

model that ingests terrain data, population data, ground data, and flood analyses/predictions to 

assess impacted areas for adequate First Response efforts and timely action. This aim is planned 
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to be achieved by creating an automated, standardized, and rapid disaster mapping processes 

flow using digital global data and open-source tools. If implemented and used in real-life cases, 

this process would support the United Nation’s Sustainable Development Goal (SDG) 

#11: Make cities and human settlements inclusive, safe, resilient, and sustainable (Make 

cities…2021). The solution developed in this thesis uses the World Settlement Footprint (WSF) 

population data provided by the German Aerospace Center (DLR) to get estimations of how 

many people are affected by the flooding events, SAR satellite-based data of the space company 

ICEYE to obtain flooding extent and flood depths, and OpenStreetMap (OSM) data to link the 

flood and population information to essential services and the number of inundated buildings.  

 

 

The detailed research questions of this study are the following:  

1. How to combine multi-source geospatial data to produce automated flood risk 

assessments and visualizations in cities of the Global South? 

2. What is the accuracy and reliability of these spatio-temporal estimates? 

3. What is the practical value and challenge of the developed automatization approach 

in operative disaster risk reduction? 

 

The geovisualization to be created in this thesis will utilize three globally scalable data sources. 

The combination of using SAR satellite data from ICEYE, the WSF dataset from the DLR, and 

OMS data will make the process repeatable anywhere in the world. The final accuracy will 

depend mostly on how accurate and complete the OSM data from the region in question 

is. ICEYE can monitor the required conditions anywhere in the world with millimeter-level 

precision and the WSF data has been validated by crowdsourcing and using 900 000 validation 

samples. The accuracy and precision of OSM data are highly dependent on how actively the 

geographical location has been mapped. The automated geovisualization will be created by 

using the Python coding language to create a script that produces an interactive, locally hosted 

flood map of the flooding event. The process performs consistently, and it is repeatable 

anywhere in the world without any user input apart from inserting the population raster data 

and the flood raster data.  
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2    Theoretical framework 

2.1 Disaster Risk Reduction 

Disaster risk reduction (DRR) is a systematic approach that aims to identify, prevent, and reduce 

damage caused by natural hazards such as floods, earthquakes, droughts, and tropical cyclones 

(What is Disaster…2021; Disaster risk…2021). Although natural hazards are often considered 

as natural disasters, it is important to understand that “natural disasters” are not totally natural; 

rather, they are shaped by a dynamic interplay of biophysical and sociopolitical processes and 

have multiple economic, social, and psychological effects, especially on vulnerable urban 

neighborhoods and rural communities in the Global South (Goh, 2019). Understanding the 

different dimensions of flood disasters enables the identification of why these natural processes 

are so harmful especially to already vulnerable populations and how to mitigate or prevent their 

harmful effects (Silva & Mena 2020). 

 

In 2015 all the United Nations (UN) member states accepted the Sendai framework for disaster 

risk reduction for 2015–2030 (Sendai Framework…2015). The agreement defined four main 

priorities: 1) understanding disaster risk, 2) strengthening disaster risk governance to manage 

disaster risk, 3) investing in disaster risk reduction for resilience, and 4) enhancing disaster 

preparedness for effective response, and for “building back better” in recovery, rehabilitation, 

and reconstruction.  

 

In the academic literature, there has been considerable discussion and debate on how to best 

approach DRR. Currently, there are two main, somewhat different, and contradicting paradigms 

to explain it, including 1) the hazard paradigm and 2) the vulnerability paradigm (Gaillard & 

Mercer 2012). In the following, I will present the main similarities and the main differences 

between these approaches.  Natural hazards are extremely complex, and thus it is important to 

understand different perspectives to explain them and different methods to develop disaster risk 

reduction strategies (Tierney 2007). The focus of this analysis is mainly on the ways different 

approaches explain and understand the drivers of flood disasters and the role of disaster risk 

reduction in mitigating the effects of flooding events. 
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2.1.1 Hazard paradigm 

The hazard paradigm mainly considers that disasters are a result of insufficient preparation and 

people exposed to them do not take extreme natural hazards seriously enough (Gaillard & 

Mercer 2012). The hazard paradigm focuses mostly on the hazards themselves and how to 

prevent them by building better infrastructure and developing early warning mechanisms. The 

dominant DRR initiatives, grounded on the hazard paradigm, rely frequently on a fairly top-

down-style approach, with a heavy emphasis on technology, scientific research, and national 

government intervention.  

 

Examples of the flood management projects, grounded on the hazard paradigm, include huge 

projects of flood infrastructure, implemented in various parts of the Global South since the 

1950s, such as Cambodia, Laos, Mexico, and Bolivia (Molle 2009; Molle et al. 2009). Many of 

these projects were based on the idea of mastering natural hazards through environmental 

engineering and hard infrastructure, consisting of the construction of floodwalls, embankments, 

levees, and borders. Since the 1990s, such projects have been increasingly criticized for trying 

to control nature by technological means, without sufficiently taking into account the involved 

ecological and social aspects (Nygren 2016; Coates 2022). 

 

More recent examples of flood management methods developed based on the hazard paradigm 

are recent room for rivers initiatives and plans for sponge cities. Initially, many room for rivers 

projects were developed in the Netherlands and later on, they have been suggested to be used 

in the Global South situations, like in Dar es Salaam, Tanzania Transforming 

Tanzania’s…2019). The room for river flood prevention strategies aim to give rivers in urban 

areas space to extend more freely during the period of intensive flooding, by creating city parks 

and other kinds of green infrastructure on the flood plains (Klijn et al. 2018). This would reduce 

the devastating consequences of flooding for humans and infrastructure and reduce the 

probability of embankment failures (Figure 1).  
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However, in Dar es Salaam as well as in many other cities of the Global South, there is a risk 

that these kinds of strategies would indicate removing the densely populated informal 

settlements from the critical risk areas, which could then promote social exclusion and increase 

the everyday vulnerability of the poor population. It could also stimulate the building of new 

housing complexes with high-quality services and flood preventative infrastructure in such 

areas, pricing out even the middle-income residents from the area, while increasing already 

existing social segregation. 

 

The sponge cities approaches aim to reduce urban flooding by mimicking nature in urban 

planning and reducing the amount of gray infrastructure, such as roads, dams, pipes, and 

concrete walls, by replacing them with green infrastructures, like retention ponds, parks, 

wetlands, and natural waterways (Gies 2018). The concept is known as sponge cities in China, 

green infrastructure in Europe, and low-impact urban development in the United States. The 

idea is to remove the impermeable surfaces in urban environments and to increase natural 

surfaces, which allows water to soak into the ground while filtering pollutants from the water. 

This approach soaks water and holds it roughly in place like a sponge helping to reduce urban 

runoff which is a major reason behind urban flooding and water pollution. An example of this 

approach is a proposed park in Bangkok, Thailand which would collect and store excess water 

during the rainy season in a city where many of the canals have been paved over and flooding 

is a reoccurring problem (Gray 2018). 

 

Flood prevention measures and strategies developed and utilized by leaning on the hazard 

paradigm tend to focus heavily on protecting the economically most important areas and areas 

where the most influential and rich people live in. Flood protection projects such as dredging 

Figure 1. Proposed changes for the Msimbazi River Basin, Tanzania (Source: The Msimbazi opportunity 

2019) 
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and expanding canals or constructing flood barriers are often implemented on the lands that are 

inhabited by the poor, while plans to build such infrastructure on lands owned by the rich and 

the powerful are rejected (Win 2017). Flood prevention strategies such as blocking and 

diverting floodwaters to other areas often most heavily affect the local population that is the 

most vulnerable and like in the case of Bangkok, the inner city has been protected at the expense 

of the marginalized population living in the peripheries and in informal settlements (Marks 

2015). The focus on protecting the urban elites by water diverging channels often makes the 

floods even worse in the low-lying rural areas and near the water-transfer canals as water is 

diverted to these areas either intentionally or as an unintended and overlooked consequence in 

order to save the cities. 

 

Approaching DRR from the perspective, based on the hazard paradigm, requires considerable 

funding and expertise, and often excludes the most vulnerable populations. Local people and 

communities are often seen as helpless in facing natural hazards and there is a persisting attitude 

that they have nothing of value to give to DRR as they do not have sufficient scientific 

knowledge and qualifications and they lack the needed technical expertise and economic 

resources to be engaged in the planning and building of large-scale flood prevention structures. 

An important aspect to consider is also the fact that according to the recent evaluation by the 

Swiss Re Institute, in developing countries only 5 percent of severe flood losses were insured 

in 2021, compared to 34 percent in advanced economies (Extreme flood events…2022). 

Insurance is expensive and a luxury that poor people cannot afford, and, in some cases, they 

probably would not even be able to get it, due to the fact that they live in informal settlements 

in areas prone to flooding which are considered areas of high-risk liability and thus inhabitants’ 

applications for flood insurance are often rejected by insurance companies. 

 

2.1.2 Vulnerability paradigm 

According to the vulnerability paradigm, natural hazards often affect the population groups who 

are already the most vulnerable and least equipped to manage or mitigate natural hazards. These 

people are often poor and do not have access to resources, such as adequate flood prevention 

infrastructure, water and sanitation services, or early detection applications (Greater 

Impact…2017). In addition, these people often live in the areas most probable to be affected by 

floods because they cannot afford to live anywhere else, and the wealthier population does not 

want to live in these risk-prone areas (Uitto & Shaw 2016). 



12 
 

 

The vulnerability paradigm has emphasized the unequal distribution of effects of floods and 

other natural hazards in many parts of the Global South. This especially because due to rapid 

urbanization and growing population rates many cities have expanded into ecologically and 

hydrologically sensitive floodplains, low-lying areas, riverbanks, and coastal zones. This kind 

of urban expansion often occurs in the form of informal settlements, for example in many 

African cities, informal construction makes up most of the housing being built (Fekade 2000; 

Watson 2020). Cities in the Global South also often lack active city planning and enforced 

building and environmental regulations. In addition, many residents living in risk-prone areas 

usually cannot afford engineers or other kinds of experts and qualified professionals to help 

them carry out flood protection projects, but rather hire self-taught amateurs, who might not 

have adequate resources, expertise, or materials to build proper flood protection structures 

(Sakijege et al. 2014). In some cases, the structures built by the hired amateurs or by the 

occupants themselves, unfortunately, cause the damage to be even more severe or last longer 

by trapping the water inside the floodwalls for example. Furthermore, due to a lack of large-

scale coordination and supervision, “do-it-yourself”-flood protections built by individual 

households can make some areas overflow even more or cause the overall flooding to be much 

worse due to the cumulative effect. 

 

The vulnerability paradigm puts much emphasis on the active involvement of local residents in 

the DRR planning and implementation. It points out that in areas where flooding is a regular 

occurrence, the local people are not just passive bystanders nor completely powerless to prevent 

or mitigate the floods despite their lack of economic resources (Sakijege et al. 2012). Local 

residents often possess considerable knowledge concerning how to prevent, cope with, and 

recover from natural hazards, as the risk of such events is a significant part of their everyday 

lives. This aspect is even stated in the Sendai framework which recommends the inclusion of 

people from different social and economic backgrounds in the planning of DRR strategies, 

different people can then bring their own experiences and unique perspectives to the table 

(Sendai Framework…2015). The vulnerability paradigm highlights that including the local 

populations in the planning and design of DRR schemes is extremely important in order to 

avoid feelings of resentment and abandonment among the local population, who often see the 

outside experts as intimidating and condescending and lacking the detailed understanding of 

local contextually grounded problems, concerns, desires, and preferred ways of life (Marchezini 

2019). The supporters of the vulnerability paradigm also point out that many of the innovations 
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designed by Northern experts and high-ranked planners have, in fact, gotten many influences 

from local traditions. For example, the sponge city concept, promoted by those supporting the 

hazard paradigm, was, in fact, partly inspired by thousands of years-old water management 

practices used by Chinese farmers, and observed by the creator of the sponge city concept Yu 

Kongjian during his childhood (Gies 2018).  

 

Based on these issues, supporters of the vulnerability paradigm emphasize the importance of 

creating bridges and interconnection between scientific knowledge and local knowledge, in 

order to learn from one another. Otherwise, important local-based knowledge on disasters, and 

practices of disaster prevention and disaster recovery, as well as of remediation strategies might 

be lost. Furthermore, without relevant co-sharing and co-creation of knowledge, it might be 

difficult to get local residents committed to long-term disaster prevention. It has also proven 

impossible to simply relocate people living in critical flood risk areas as these people have 

nowhere else to go and they are prepared to live with the risk of flooding for a chance to survive. 

 

Approaching DRR from the perspective of the hazard paradigm also often includes scenarios, 

models, and predictions of the changes in physical geography and in the natural environment, 

in addition to active engagement of local residents and local traditions. Changes in climatic 

conditions are modeled and assessed for the future in 10-year intervals for example and these 

changes are then compared with data about socio-economic and demographic conditions in the 

present (Birkmann 2020). The demographic situation in many parts of the developed world 

especially is going through a big change in the population pyramid with a rapidly aging 

population, which means that elderly people will in the near future be a significant portion of 

the population. An extreme example of this is the looming population crisis in Japan (Sadafumi 

2017). Climate change also affects demographics and people with different socio-economic 

conditions in different ways. An example of this are heat waves, which will become more 

prevalent in several parts of the world due to the effects of climate change. Older people are 

much more susceptible to heat stress and people from minorities or with a low socioeconomic 

status have much less green infrastructure which cools local climates in their neighborhoods 

and offers shelter from the sun (Norton et al. 2013; Silva et al. 2018; Rowland-Shea et al. 2020; 

Venter et al. 2020; Schwartz 2021). Predictions and estimates of the change in demographics 

and socioeconomic development should also be included in the models which aim to predict 

the future of disaster susceptibility in any given geographic location. 
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According to the vulnerability paradigm, scientists and other professionals working in the field 

of DRR should also pay more attention to just disaster governance. Governance means a set of 

structured arrangements and institutional processes between all of the different actors involved 

in the decision-making and implementation of strategies planned (Tierney 2012). In disaster 

governance, this means cooperation between different actors working on disaster risk reduction 

or disaster response, including local government officials, NGOs, intergovernmental 

organizations, subcontractors, private companies, and local residents, as a single authority 

cannot command compliance from different groups of stakeholders  

 

According to the vulnerability approach, it is also important to note that disasters also do not 

respect administrative borders created by humans and management of DRR often requires 

cooperation between neighboring countries, international development cooperation agencies, 

and different kinds of non-governmental sectors.  Especially in the Global South, disaster 

response efforts are often run by NGOs or international development cooperation agencies, and 

without good governance, a vast amount of the aid money might be directed to bureaucracies 

or issues that are not the most relevant ones concerning disaster remediation. Thus, there is a 

need to follow the guidelines of transparency and accountability. The problem with such 

international aid agencies and NGOs which mobilize only shortly after a disaster is sometimes 

also that they might lack sufficient in-country experience and they usually do not provide long-

term projects of disaster recovery. Thus, much aid money is only going to immediate help, 

while affected people need to cope with long-term economic and social vulnerabilities on their 

own, as the first responders and organizations leave to other parts of the world to help in another 

catastrophe. 

 

The ideas involved in the hazard paradigm, especially those related to recent room for rivers 

and sponge cities initiatives provide better consideration of ecological aspects of natural 

hazards, and how to make technologies of risk prevention and mitigation more adaptable to 

them. The vulnerability paradigm, in turn, offers a more thorough understanding of how natural 

hazards often affect the groups of the population who are already the most vulnerable and least 

equipped to manage or mitigate natural hazards. It also provides guidelines to carefully consider 

local concerns and needs in disaster risk reduction and to seek ways to better involve local 

residents and local decision-makers in such projects. 
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2.2 Geospatial data and methods in disaster risk reduction 

2.2.1 Geospatial data and GIS in disaster risk reduction 

In this chapter, I will explain the geospatial data and the main methods used in most of the 

disaster risk reduction schemes throughout the world, and with specific relevance especially to 

the cases of the Global South. Geospatial data and geographic information systems (GIS) play 

a major role in DRR and are essential to all aspects of disaster management (Goodchild & 

Glennon 2010; Al-Tahir & Mahabir 2014; Young et al. 2020). GIS data can quickly pinpoint 

the areas most affected or probable to be affected by different disasters and is essential for 

navigating the areas and for getting a detailed understanding of different socio-spatial spaces in 

the affected areas. The intricacies of socio-spatial spaces are formed by the interaction between 

the different people and societies occupying the urban space and are defined by the social 

constructs created by the inhabitants living in these spaces (Zieleniec 2018). Satellite images 

give a birds-eye view of the scope of the disaster and can be processed relatively quickly to 

provide invaluable information to first responders. Action in the first hours after a disaster 

caused by a natural hazard is critical for saving lives and first responders need as much relevant 

information as possible as quickly as possible (Sudden Onsets 2022).  

 

Data used in disaster response efforts must be acquired and/or produced as quickly as possible, 

while also being as accurate and up-to-date as possible and examples of such services created 

to cater to this need are the Copernicus Emergency Management Service (CEMS) which is part 

of the European Union’s Earth observation program and the United Nations Institute for 

Training and Research - Operational Satellite Applications Programme (UNITAR/UNOSAT) 

Rapid Mapping Service.  

 

CMES provide rapid mapping services free of charge during natural hazard conditions, human-

made emergency situations, and humanitarian crises all over the globe by using satellite 

imagery and other geospatial data (The Emergency…2022). According to their website 

information: “The EMS process can only be triggered by or through an Authorized User (AU), 

which include National Focal Points in the EU Member States and countries participating in 

the Copernicus programme, as well as European Commission services and the European 

External Action Service (EEAS).” The service they provide depends on the urgency of the 

emergency response and at the fastest, they promise to produce their First Estimate Fast impact 

assessment ready-to-print-maps to be ready within three hours and vector data to be ready 
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within two hours from receiving the first usable images of the natural hazard-affected disaster 

in question (Rapid Mapping 2022). The First Estimate Products (FEP) are derived from the first 

suitable post-event images, and they are intended to be used to highlight possibly affected areas 

with more detailed products that include the extent of the impacted area and the damage grade 

being promised within 10-12 hours of the request. The Rapid Mapping service is available 24/7 

every day of the year and it has been activated 128 times for First Estimate products and 1,538 

times for Grading Products between 01.04.2012 and 24.04.2022 (Rapid Mapping 2022). 

 

UNOSAT has been operational since 2003 and it provides satellite image analysis during 

humanitarian emergencies, including both disasters caused by natural hazards as well as human 

conflict-situations (UNOSAT Rapid…2022). The Rapid Mapping service is operational 24/7 

every day of the year free of charge to UN sister agencies and humanitarian entities operating 

in line with UN policies. Deliverable products include maps, GIS-ready data, statistics, and 

reports. Phase 1 emergency response deliverables are promised within 24 to 72 hours of a 

disaster and include preliminary definition of scope, scale, severity of crisis & rapid assessment 

design of a disaster (UNOSAT Geospatial Catalogue…2022). This includes mapping the extent 

of a hazard, affected population estimates, humanitarian access, and raping damage estimation. 

 

A visual aid to the extent of a disaster is a powerful tool of communication and it helps make 

decisions informed by facts and data (The power of maps 2022). For example, through 

information on an Excel spreadsheet containing a list of addresses and a description of the 

damage done it is much more difficult to understand the magnitude of the disaster and its exact 

damages than through a map of the area that highlights all of the damaged buildings with 

different colors depending on the scope of damage to each particular building. Even graphs and 

charts cannot show the scope of a disaster as effectively as a map. It is extremely important to 

clean up and visualize data into easy-to-understand and informative packages, especially in 

times of crisis (Meier 2011). Humanitarian aid agencies and emergency management personnel 

work around the clock during times of crisis to rapidly collect, verify, process, and analyze data 

in order to generate up-to-date situational awareness information to be used by first responders 

and long-term humanitarian aid operations (Aman et al. 2014, Schröter et al. 2020). Geospatial 

data can also be used to analyze past trends for future risk areas and to develop early warning 

systems for imminent floods or other disasters. 
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2.2.2 Earth observation and remote sensing 

Earth observation (EO) consists of a myriad of methods for gathering various types of 

information about our planet Earth (Li 2021). The techniques may vary from different remote-

sensing methods to in-situ measurements on the ground, but they all share the same common 

goal of gathering data and mapping the planet’s physical, chemical, and biological systems. In-

situ observations have been around for centuries as humans have studied our planet and the 

longest-lasting continuous climate data has been recorded since 1767 and daily since 1815 by 

the Radcliffe Observatory of Oxford University (Met Office award…2015). In-situ 

observations are valuable and when spread through a large network of observation posts it is 

possible to monitor the weather and other phenomena in very large geographical areas. 

 

The research field of EO was really revolutionized by the invention and utilization of airplanes 

and satellites. Now when people refer to EO they almost exclusively mean remote-sensing 

methods that include various sensors, like optical and multispectral cameras, synthetic-aperture 

radar (SAR), or LiDAR attached to satellites, airplanes, or drones for fast and efficient 

monitoring of the Earth and gathering of data (Tomás & Li 2017). The main reasons for remote-

sensing to be a revolutionary advancement for EO are that it enables the monitoring of the 

planet with higher frequency over long periods of time over large spatial extents, almost real-

time collection of data over these large spatial extents, the production of data is much more 

cost-effective, and the data the sensors provide is objective and independent (Palacios-Lopez et 

al. 2021). SAR and satellite images can cover hundreds of kilometers in one image and the 

entire planet can be scanned in a few days. Even areas previously physically inaccessible like 

the ocean floor or the bottom of lakes can be mapped with sonar systems and mountain regions 

are easily mapped by satellites. What people choose to do and represent with EO data is subject 

to different sorts of interpretation and even manipulation, yet the raw data collected by the 

sensors represents what is happening at the observed location and is not affected by human 

biases which makes it a relatively powerful source of information. In-situ observations on the 

ground are still necessary for the validation of remote-sensing data and combining in-situ 

observations with remote-sensing often provides context and validation of both types of EO 

data. 

 

The satellite industry was the playing field of large, government-funded projects for a long 

time, but in the 21st century, private companies have started to take an increasing position in 



18 
 

this field. For example, Maxar technologies produce over 3.8 million square kilometers of high-

resolution satellite imagery every day, and the Finnish microsatellite company ICEYE is 

capable of monitoring any place on Earth in any weather night and day with its microsatellite 

X-band synthetic aperture radar sensor constellation (Maxar is a leading…2022, Persistent 

monitoring…2022). ICEYE has recently grown its satellite constellation large enough to enable 

persistent monitoring of natural hazards worldwide 24/7 (Persistent monitoring by 

ICEYE…2021). There are still limitations on capacity and downlinking, so monitoring a place's 

exact time and location is not always possible, however, ICEYE’s core focus is flood capture 

and they have optimized their flood monitoring systems to capture flooding events and have 

meteorologists monitoring and predicting future flooding events across the globe (Kitajima 

2021; Rosen 2021). 

 

Synthetic aperture radar (SAR) data differs from optical images as it is an active data collection 

method (Moreira et al. 2013; What is Synthetic…2020).  SAR technology is based on remotely 

mapping the reflectivity of objects and environments with high spatial accuracy by sending 

electromagnetic waves toward the Earth and measuring the backscatter with their sensors 

(Ferro-Famil & Pottier 2016). This can be compared to bats using sound waves to navigate in 

dark caves. Different objects and surfaces reflect electromagnetic waves in different ways, and 

this makes it possible to differentiate objects and surfaces from the SAR data. Water and paved 

surfaces, such as roads or airports, produce a specular reflection making it appear very dark in 

raw SAR images, urban structures produce double-bounce scattering and appear bright white, 

while the majority of it consists of diffuse scattering which is produced by rough surfaces 

(Figure 2, Learn Synthetic…2021). Figure 2 shows the SAR imagery of the city center of 

Bangkok, Thailand and the region around Tula de Allende, Mexico derived from the ICEYE 

archives. The imagery looks very different from traditional optical satellite imagery; in these 

SAR images it is relatively easy to distinguish water (black color), paved roads, buildings, 

agricultural fields, and mountains. 
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The ICEYE SAR satellites operate in three different imaging modes, Strip Mode, Spot Mode, 

and Scan Mode (Completing the picture…2021). The resolution and area covered differ 

considerably, depending on the imaging mode, because the radar beam can be steered, and the 

illumination time can be altered. The longer the beams are fixed on one position, the higher the 

image resolution. Standard Strip mode images have a ground resolution of three meters and 

cover an area of 30km by 50km, standard Spot mode has a resolution of one meter but only 

covers an area of 5km by 5km, and Scan mode can cover an area of 100km by 100km, but with 

a reduced resolution (that is still at least better than 15 meters). SAR has many capabilities that 

are not possible with optical imagery, for example, clouds, smog, volcanic ash, or sandstorms 

do not affect X-band radars, and this enables SAR data to be collected regardless of the weather 

conditions on Earth, which is a huge advantage (Completing the picture…2021). Humanitarian 

aid organizations can follow the effects of natural hazards like hurricanes, forest fires, or 

erupting volcanoes without sunlight and without having to wait for the clouds and smoke to 

disappear which can take a relatively long time. By using SAR satellites, a flood caused by a 

hurricane can be immediately mapped and lava flows from volcanoes can be monitored before 

the volcanic ash dissipates. The accuracy of SAR sensors is also not affected by the distance to 

the ground, which makes it possible to get very high-resolution data even from space. This 

characteristic, paired with Coherent Change Detection (CCD) makes it possible to track 

changes on the ground in extremely high detail, even higher than a person on the ground would 

be able to detect. With ICEYE’s SAR satellites it is possible to see if a vehicle has been driven 

over a field if products have been moved around in a shipyard, or if a forest has been cut down. 

Figure 2. SAR imagery of the city center of Bangkok, Thailand (left) and the region around Tula de Allende, 

Mexico (right) from the ICEYE archives (Source: ICEYE Imagery Archive 2022). 
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CCD means taking high-resolution satellite images from precisely the same geographical area 

over time to detect the change (What is Coherent…2022). Another advantage of SAR imagery 

is the possibility to control the resolution and coverage of the imagery because the SAR 

illumination is controlled electronically. This also makes it possible to update the algorithms as 

they develop. SAR measurements are also extremely precise and when properly calibrated the 

geolocation is precise to the scale of single pixels. 

 

2.2.3 Global geospatial data sets 

The availability of geospatial data, like the one produced by Google Maps, ICEYE, and Maxar, 

or used by emergency professionals is often taken for granted in the Global North. However, 

this kind of geospatial data is often lacking in the Global South or at the very least lacking in 

detail and accuracy. Controlling information is and has always been a very significant source 

of authority and power during the human history and many political regimes in the world cling 

to every possible source of data, reluctant to make their data open-source or deliberately 

manipulating data given to the public (Fuentes 2019; Carlitz & McLellan 2020; Evans 2020). 

Many kinds of data are also managed and controlled by international organizations and private 

companies, such as Google, ICEYE, and Maxar, with legal copyrights to restrict the use of data 

without permission or payment. In addition, Google is highly protective of its data as it makes 

significant investments yearly to upkeep, gather, and systemize this data.  

 

For these reasons, open data is essential, especially for many parts of the Global South, where 

there is a considerable lack of GIS expertise, and a lack of highly sophisticated and expensive 

equipment for the collection of geospatial data, as well as a lack of systematically collected and 

analyzed data. An independent evaluation of the UNOSAT Raping Mapping service included 

an online survey which revealed that 78 percent of responders who rely on the service would 

use another open-source service if the UNOSAT Rapid Mapping service did not exist 

(Independent Evaluation…2018). Therefore, creating, maintaining, updating, and improving 

open-source data is essential for the efficiency and equality of global humanitarian aid, the 

development of DRR schemes, and improvement of geospatial preparedness (Hernaiz 2019). 

Many academics, international organizations, and NGOs have started to turn to volunteered 

geographic information (VGI) to help countries in the Global South to solve this problem. This 

especially because VGI data is free, large amounts are created continuously and it is often the 

only GIS data available in the Global South (Goodchild & Li 2012; Yilma 2019). 
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OpenStreetMap (OSM) is the most famous example of VGI data. OSM is an interactive web 

map and at the same time it is the most extensive open-source geospatial database in the world, 

thus, it is considered a valuable source of information that is used by thousands of websites, 

mobile apps, and hardware devices, as well as by NGOs and the United Nations in humanitarian 

aid and disaster response efforts (Anderson et al. 2019; Hernaiz 2019; OpenStreetMap: About 

2021). OSM basemaps are used by many big companies and raw OSM data is utilized for 

analysis and programming by companies like Apple, Lyft, and TeleNav and by Pokémon Go, 

a highly popular mobile game based on geospatial technology (Major OpenStreetMap 

Consumers 2022). OpenStreetMap can be described as the Wikipedia of maps as anyone can 

create an account and edit the map to contribute GIS data about roads, buildings, services, 

public transportation routes, waterways, natural parks, addresses, and many more aspects in any 

place in the world (About OpenStreetMap 2021). The map and its data are created and managed 

by a community of mappers who are all volunteers. By being based entirely on volunteer work 

OSM forms a certain kind of global community mapping effort that is based on co-creating and 

co-sharing of knowledge. OSM was created to offer an alternative and more importantly a free 

source of geographical data (FAQ 2021). OSM data can be freely downloaded, copied, 

distributed, transmitted, and built upon by anyone under the Open Data Commons Open 

Database License (ODbL) as long as OpenStreetMap and its contributors are credited. The 

documentation is licensed under the Creative Commons Attribution-ShareAlike 2.0 license (CC 

BY-SA 2.0). 

 

Recent years have seen major growth in the utilization of professional, paid editors of OSM by 

large corporations (Anderson et al. 2019). Companies like Apple, Microsoft, Amazon, Uber, 

TeleNav, and Mapbox have mobilized to map areas that are of special interest to their 

companies' strategies (Figure 3). Apple and Mapbox are active all around the globe as they are 

focused on updating maps for their projects, while companies like TeleNav and Amazon focus 

solely on areas most important to their company's success. Microsoft has invested significantly 

in deep learning, computer vision, and artificial intelligence to generate high-quality building 

footprints with the goal of increasing global building footprint coverage and it has released 

hundreds of millions of these building footprints as open data to be used by OpenStreetMap 

and humanitarian efforts (Building Footprints 2022). Amazon.com, Inc. employs over 400 paid 

editors, who edit road names, turn restrictions, directionality, and road connectivity to OSM in 
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several countries to improve the maps for their operations and for everyone else using OSM 

(Navigating OpenStreetMap…2020). 

 

 

Figure 3. World maps show where different companies are editing OSM (Source: Anderson et al. 2019). 

 

Another solution to the lack of geospatial data is organizing Mapathon events. Mapathons are 

coordinated mapping events by projects like Missing Maps, or the Humanitarian 

OpenStreetMap Team where particular groups of people comes together to map previously 

unmapped areas around the world using satellite imagery. This data is then used with disaster 

risk assessment and to update OpenStreetMap. These events can also be organized by local high 

schools, as has been done in Turku, Finland for example (Mapathon 2022). In this way, the high 

school students get experience in GIS, and they actually help map unmapped areas, often 

located in the Global South. The Resilience Academy has carried out similar work in Tanzania 

with university students. The Resilience Academy is a partnership between several Tanzanian 

universities, the University of Turku, the Government of Tanzania, the World Bank, and the 

Foreign, Commonwealth and Development Office (FCDO, UK) (About Resilience Academy 

2022). It aims to “equip young people with the tools, knowledge, and skills to address the 
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world’s most pressing urban challenges and ensure resilient urban development.” (Resilience 

Academy 2022). 

 

Despite all the positive sides of a crowdsourcing projects like OSM, they are not free of 

criticism either. Although OSM is an initiative to democratize data, it also contains certain risks 

of being used as a form or in service of data colonialism (Young et al. 2021). Data colonialism 

is defined as a process in which data that is produced by users and citizens is later appropriated 

by private corporations, governments, and/or NGOs for their own benefit and for profit-making, 

without the user necessarily even realizing how the profit is made and how thoroughly their 

lives are being surveilled (Thatcher et al. 2016). OSM was created in London, England, to map 

the world by using crowdsourcing and its success has led to the normalization of what a 

crowdsourcing project in the Global South should look like, based mostly on the views of what 

the developers in the Global North consider to be important (Young et al. 2021). Thus, there is 

a risk that without good collaboration with local people in the Global South as is strongly 

advocated in the organized editing guidelines, OSM mapping projects might focus solely on 

the topics that are of high interest to the Global North developers, corporations, and users 

(Anderson et al. 2019). Besides, most of the OSM mapping by users is carried out using satellite 

imagery produced by governments of the developed world or by high-tech companies based in 

the Global North or in the countries of rapidly emerging economies. Using satellites as an all-

seeing eye in the sky might also end up as being a certain form of a top-down view of the world, 

and thus a certain form of data colonialism. Data produced by these satellites are not owned by 

developing countries and the local populations have little possibility to decide what is being 

mapped and how it is mapped. In addition, if the mapping is done just by using satellite imagery, 

without any detailed understanding of the context, or situated knowledge of the complexities of 

local relations and practices, it can lead to severe consequences. There was such kind of conflict 

in 2010 called the “Google Maps war” between Nicaragua and Costa Rica when Google Maps 

published a borderline drawn in the wrong place by a US government official and Nicaraguan 

authorities used this data as a validation to occupy an island belonging to Costa Rica (Wilkinson 

2021). A similar interpretation of the disputed border between Pakistan and India by an official 

working in the Office of the Geographer in the United States in the late 1960s has led to decades 

of fighting that continues even today high in the region of the Himalayas between Pakistan and 

India. 
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There is also a very clear difference in the accuracy and amount of data available in OSM 

between Global North countries and those of the Global South. This is mostly because people 

with the technological means, know-how, expertise, and time to edit OSM live mostly in 

developed countries, thus logically they will focus on mapping their own neighborhoods first. 

Some scholars have also argued that the Global North governments and companies help digitize 

the Global South only to exploit the data for their own needs and to create new customers for 

their economic benefit (Young 2019). 

 

Well-founded criticism and skepticism can serve as a driving force for change and improvement 

as they can reveal vulnerabilities and weaknesses in proposed or existing solutions. In any case, 

despite the criticue, at its core, OSM is fundamentally an open-for-all approach to the lack of 

geospatial data, and it is in a constant search for solutions to develop better and more transparent 

forms of geospatial data. Anyone can map anything, and the representatives of the Global South 

are strongly encouraged to map everything they consider crucial and necessary. The “all-seeing 

eye” of satellites also sees everything in the Global North and excluding locations that are 

considered secret because of national security issues of a particular country, everything is 

mapped, often with even higher detail than in the Global South. With SAR technology even 

clouds are unable to provide cover from satellites. Thus, currently it is impossible to escape this 

exposure as this “Pandora’s box” has already been opened, and what is crucial now is to try to 

make the OSM project as transparent, accountable, and fair as possible.  

 

There are also challenges with data interoperability in DRR when there are many completely 

separate operators all working with their own separate data (Migliorini et al. 2019; Murnane et 

al. 2019). Data standards can vary immensely and data from separate sources often need to be 

integrated to work well together. Large-scale disaster response operations include actors from 

emergency services, politicians, healthcare services, NGOs, and different levels of government. 

These actors might use different languages, software, protocols, regulations, and decision-

making chains. There are often significant differences in the quality of metadata, 

documentation, and quality of the data. Every organization has its own standards, templates, 

and acronyms to use when producing geospatial data and without extensive metadata and 

documentation, these data sets can be problematic to use by others, as utilizing them without 

fully understanding them can easily lead to misinterpretation of the data. These problems stem 

from a lack of data interoperability and clear guidelines between all of the numerous actors 

involved in the DRR GIS scene. In fact, these are problems that will probably persist in 
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international DRR projects and operations also in the near future, for the reason that there are 

always numerous stakeholders, and they keep changing depending on the location of the 

disasters in case. OSM also sometimes suffers from the sometimes-extreme disparity in their 

data even in neighboring houses. As OMS is based on volunteer work, it is also important to 

recognize that different individuals editing the map have different editing habits and the 

attention to detail varies from user to user, despite some moderation and existing mapping 

guidelines documented by the OSM Foundation. 

 

The World Settlement Footprint 2019 Population dataset (WSF2019-Pop) has been created by 

the German Aerospace Agency (DLR) to combat the lack of accurate population census data 

all around the globe, especially in the Global South. The data is already being used by the World 

Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR) to map the 

population at risk to urban hazards (Palacios-Lopez et al. 2021). Recent research has also shown 

that large geospatial data sets such as the WSF2019-Pop dataset can 

help support, implement, and monitor at least 11 out of 17 Sustainable development goals 

(SDGs) and play a major role in disaster risk reduction (Qui et al. 2019; Kuffer et al. 2020; 

Kavvada et al. 2020; Palacios-Lopez et al. 2021). A global dataset with a sufficiently accurate 

spatial resolution like the WSF2019-Pop data (~10m spatial resolution at the Equator) can be 

used as a single proxy for population modeling making disaster mapping less time-consuming 

which is critical in the first hours after the disaster when time is of the essence. Other global 

population data sets, such as WorldPop and GHS-Pop, have been found to be too coarse for 

accurate population estimates at local scales and have performed poorly in several studies 

(Smith et al. 2019). 

 

Testing the WSF2019-Pop creation process for the entirety of Africa, Palacios-Lopez et al. 

achieved accuracy assessments of “reliable” for 25 to 36 countries, medium reliability for 15 

countries, and poorly reliable for only two countries (Palacios-Lopez et al. 2021). Even though 

this method is not without errors and cannot be seen as 100 % accurate in any scenario, the 

WSF2019-Population data has multiple advantages over other global population products since 

it provides a weighting framework that is calculated independently of other geospatial layers. 

In addition, it has a much higher spatial resolution for more accurate local analysis, and it 

smooths the changes between administrative units, which eliminates visibly abrupt changes in 

the data. Furthermore, it is easier to update and replicate around the globe, as the model does 

not require the acquiring of multiple geospatial layers of equal quality, extent, spatial resolution, 
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and spatiotemporal coverage. As there are no other geospatial data sets involved in the 

production, there is no need to worry about endogeneity issues either. 

 

EO and geospatial data can be used to monitor phenomena at varying scales from very local 

locations such as construction sites or mining operations to data sets covering the entire planet 

(E.g., Google Earth, human population extents, OSM). Combining precise local data sets with 

global data sets allows for the monitoring of geohazards faster and more accurately. Accurate 

and precise local data sets can be used to verify and correct global data sets and global data sets 

can be used to quickly create very accurate estimations of geographical phenomena in rapidly 

changing landscapes (e.g., urbanization, deforestation, ice loss). Local data sets are often more 

precise, but they require much more work by skilled GIS professionals to be created and many 

countries of the Global South do not have the necessary funding or know-how to create and 

update GIS databases in their countries or cities or to build and launch their own satellite 

constellations (Sala & Dendena 2015).  
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3 Study sites 

Two Global South cities, Bangkok in Thailand, and Tula de Allende in Mexico were selected 

for this study. The criteria for selection were that both cities are located in the Global South and 

have suffered from severe pluvial and fluvial flooding combined with certain mistakes made in 

flood management and preparedness (Marks 2015; Raziel 2021; Guillén 2021). Furthermore, 

both cities have a river flowing through the city center and flooding in both places usually 

affects the poorest part of the population the most. Importantly, these sites are also very 

different in size, location, and infrastructure, so it puts the automatization process to the test 

and shows the difference in OSM data in these two areas. Comparing data from in some certain 

respects different, but in other aspects similar areas it is possible to see how effectively the 

automated process works with significantly different amounts of OpenStreetMap data available 

and with different sized flood extents. 

 

ICEYE’s SAR satellites were able to capture flooding in Bangkok, Thailand and Tula de 

Allende, Mexico in August of 2021 and ICEYE has provided flood data from these two flooding 

events to be used in this study from their extensive library of data on captured flooding events. 

The German Aerospace Agency (DLR) created completely new data from the two study sites 

upon request. These two study sites were selected for this thesis in cooperation with ICEYE, 

the World Bank, and the Resilience Academy. 
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Figure 4. Map of Bangkok, Bangkok showing the extent of the study area and the extent of the data used. 

Bangkok (กรงุเทพมหานคร in Thai) is the capital of Thailand and has a population of 10.9 million 

inhabitants which is ~15.7 percent of the entire population of Thailand (Figure 4, Thailand 

2022). Bangkok is one of the most popular tourist destinations in the world year after year and 

it is financially, culturally, and politically the most influential and important city in Thailand 

and as such Bangkok can be classified as a clear primate city. It suffers from similar problems 

as many rapidly growing megacities in the Global South, such as Dar es Salaam in Tanzania; 

Jakarta in Indonesia; or Mumbai in India, that it has a considerable number of informal 

settlements growing at an uncontrolled rate. All of these cities also suffer from frequent severe 

flooding which affects the informal settlements most severely. The Bangkok metropolitan area 

had an estimated informal settlement population of 1.1 million inhabitants in 2010, and this 

number has surely only grown since then (Yap & De Wandeler 2010). People living in informal 

settlements are very poor and they do not have the economic means to relocate to safety from 

flooded areas and in the case of heavy flooding, they can only wait for the waters to recede 

while living in wet and unsanitary homes severely affected by floodwaters (Berquist et al. 

2014). The. 2021 flood in Bangkok covered in total an area of 46 746 km2 of land, but in order 

to be able to test the automatization process in an extremely large and populous city, this data 

has been clipped to the extent of the city limits of Bangkok (Figure 4). 
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Tula de Allende is a town in the State of Hidalgo in Mexico. It had a population of ~115 000 

inhabitants in 2020 (Tula de Allende 2020). Tula de Allende is internationally most famous for 

its large archeological site, containing important artifacts and information about the 

Mesoamerican pre-colonial society and culture. Figure 5 presents the area of interest around 

Tula de Allende relevant for this study. 

 

 

The main reason for Tula de Allende was selected as a part of this study is that it is very different 

in size compared to Bangkok, Thailand, while simultaneously sharing important similarities 

with Bangkok, as it suffered from a devastating flood in 2021. In addition, it is a city in the 

Global South, with very little geospatial open data available. The flooding event in Tula de 

Allende covered in total a territory of 30 km2, focused especially on the surroundings of the 

river that runs through the city. A flood in September of 2021 led to the death of 17 people and 

damaged 2 000 houses as the riverbank burst and flooded the city with water (Seventeen 

people…2021).  

 

Figure 5. Map of Tula de Allende, Mexico showing the extent of the study area and the extent of the data used. 
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4  Data and methods 

4.1 Research approach 

An automated flood analysis and visualization model was developed in this study using Python 

and Kepler.gl. The aim of the model is to automatically access, edit, analyze, and visualize 

flood disaster data as a solution to get faster first assessments of local flooding events using 

global data sets. This solution is developed particularly for cities in the Global South, for 

situations, where sophisticated early warning systems are missing and geospatial data about 

natural hazards and their effects on the local infrastructure and population are scarce.  

 

Global geospatial data sets were used as data to make the automatization model global and 

repeatable anywhere in the world and to save time. The developed model calculates flood depth 

classes and the number of people affected by different flood depths in the area of interest. 

Building footprints are extracted from OpenStreetMap to get an estimation of the number of 

buildings and essential services (hospitals and pharmacies in this case) that have been inundated 

by different floodwater depths. The model was thoroughly tested and repeated to get average 

processing times for different segments of the model and to examine its reliability and the 

consistency of results. The planned use cases for this model are to get first assessments of the 

extent and effects of natural hazards such as floods, especially in the Global South where 

geospatial data and expertise is lacking. The Python coding language was chosen to perform all 

of the analysis and mapping as it is an open-source method, it enables the automatization of the 

process, and the produced code is easy to share openly for anyone to use. 

 

4.2 Geospatial data sets 

The following data was used to develop the automated model: the World Population Footprint 

2019 data produced by the German Aerospace Agency (DLR), flood depth and extent data 

produced by ICEYE, and open-source OpenStreetMap data (Table 1). 

 

The flood extent and depth data set used in this thesis were provided by ICEYE, a New Space 

company that manufactures and operates the world’s largest SAR satellite constellation. ICEYE 

monitors global weather 24/7 to predict floods and provides clients access to near real-time 

SAR satellite data to respond to natural hazards more accurately and quickly and to improve 

decision-making (Flood Monitoring 2022). While ICEYE’s data is often produced by 
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monitoring very local-level phenomena, its satellite constellation has a global reach, making it 

a producer of global geospatial data. The population data for this thesis was produced and 

provided by the DLR. It has been created to offer an improved global population dataset 

compared to existing ones. It is aimed to be used for population estimations and to monitor 

urbanization along with population growth globally. Finally, global open-source data from 

OpenStreetMap was used to get building footprints and the locations of hospitals and 

pharmacies. 

 

Both the flood and population data were delivered as raster files in a GeoTIFF format. TIFF is 

an abbreviation from “Tagged Image File Format”, which is a high-quality image format that 

does not lose any image quality (TIFF files. 2022). A GeoTIFF also contains geographic data 

embedded as tags within the file, which allows it to be plotted accurately with Python or GIS 

software into a world map accurately. The building footprints were extracted from 

OpenStreetMap using the OSMnx Python module. The data is extracted into JupyterLab as a 

GeoPandas GeoDataFrame which can be plotted on a map based on the geometry column which 

stores the coordinates of the subject. The existence of the geometry column is what 

differentiates GeoDataFrames from Pandas DataFrames, a much better-known Python format. 

A GeoDataFrame resembles an Excel spreadsheet or an Esri shapefile attribute table. 

GeoDataFrames can be created, accessed, edited, and manipulated with Python to find 

correlations, gain insights, analyze patterns, perform geospatial analysis, and highlight 

important aspects of data. Table 1 briefly explains the characteristics of the data used. 
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Table 1. Geospatial data sets used in the development of the automated flood map model and geovisualization 

solution. 

Name Provider Format Extent Precision CRS Attributes 

No-Data 

(raster) / 

Geometry 

(vector) 

ICEYE flood depth 

and extent (Bangkok, 
Thailand) 

ICEYE GeoTIFF Local 
2.81m x 2.81m 

resolution 
EPSG:32647 Band 1 3.40282e+38 

ICEYE flood depth 

and extent (Tula de 

Allende, Mexico) 

ICEYE GeoTIFF Local 
2.81m x 2.81m 
resolution 

EPSG:6369 Band 1 3.40282e+38 

WSF2019-Pop 

(Bangkok, Thailand) 
DLR GeoTIFF Global 

8.98m x 8.98m 

resolution 
EPSG:4326 

Band 1: 

red_nir_max 
n/a 

WSF2019-Pop (Tula 

de Allende, Mexico) 
DLR GeoTIFF Global 

8.98m x 8.98m 

resolution 
EPSG:4326 

Band 1: 

red_nir_max 
n/a 

Building footprints OSM 
GeoData
Frame 

Global 

Precise based 

on visual 
inspection, but 

incomplete 

EPSG:4326 

Geometry, 

building type, 

name, OSMid 

MultiPolygon, 
Point 

Essential services 
(Hospitals & 

pharmacies) 

OSM 
GeoData

Frame 
Global 

Precise based 

on visual 

inspection, but 

incomplete 

EPSG:4326 54 columns  
Multipolygo, 

Point 

 

 

4.2.1 Flood extent and depth data 

Synthetic-aperture radar (SAR) satellite images were provided by the Finnish company ICEYE 

to be used in this thesis. The company provided flood extent data captured by their SAR satellite 

during 2021 floods in Bangkok, Thailand and Tula de Allende, Mexico in 2021 (Figure 6).  The 

data has been preprocessed by ICEYE so that flood depth values have been extracted from raw 

SAR data and converted into a GeoTIFF (Table 1). Pixel values in the delivered GeoTIFF equal 

flood depth in meters. No data values are -3.40282e+38 and they have been filtered out in the 

Python script. 
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4.2.2 Global population data 

The population estimation dataset for this thesis was provided by the DLR. The specific data 

product used in this thesis is called the World Settlement Footprint 2019 Population dataset 

(WSF2019-Pop). It is a dataset of population estimates and it is a preliminary internal version 

that is being used at the DLR and that is planned to be released as a global dataset.  

 

Figure 7. WSF2019-Pop data from Bangkok, Thailand (left) and Tula de Allende, Mexico (right). The lighter areas 

represent a higher concentration of the human population in the area. Note that the data has been mapped using 

a sequential colormap which means that Bangkok has significantly more population than Tula de Allende even 

though Tula de Allende has much brighter spots in the example images.  The numbers around the images are 

coordinates in WGS84 (EPSG:4326). 

Figure 6. Flood depth data captured by ICEYE related to Bangkok, Thailand (left) and Tula de Allende, 

Mexico (right). The numbers around the images represent coordinates in WGS84 (EPSG:4326). 
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By request, they have created two rasters that cover the study areas of this thesis’s: Bangkok, 

in Thailand and Tula de Allende, in Mexico (Table 1, Figure 7). The main advantage of using 

a global data product is that it makes the mapping process considerable faster. Because there is 

no need to search for population data, this data can act as a single proxy for population 

modeling. 

 

The WSF2019-Pop data has been created by first analyzing the percentage of the impervious 

surface or density in a 10m pixel (Palacios-Lopez et al. 2021). This is done by first computing 

the maximum temporal NDVI from Sentinel 2 optical imagery, which is an effective 

approximation of the presence of vegetation on the ground. The resulting maxNDVI is then 

compared to available imperviousness surfaces from OpenStreetMap by extracting data from 

OSM and rasterizing it to 10m spatial resolution and passed through support vector regression 

modules to produce a percentage imperviousness surface (PIS) of the pixels marked as human 

settlements globally at a 10m spatial resolution. The pixel values in the imperviousness layer 

are from 0 to 100 and represent the percentage of impervious surface, or density. The population 

estimates are then calculated from the open archive of the WorldPop Global Project and data 

provided by Center for International Earth Science Information Network (CIESIN). Population 

data has been standardized and categorized into administrative units (e.g., blocks, counties, or 

municipalities) and an estimated population count for every pixel within the administrative 

units is defined using the following formula: 

 

The values are disaggregated in proportion to the 0-100 values and the end result is a population 

dataset that depicts residential populations adjusted to the UN national total estimates as pixel 

values in a raster file. The spatial resolution is ~10m at the Equator and each pixel value 

represents the number of people per pixel. In the data that was delivered the pixel count was 

multiplied by 1,000 to save the file as an integer so the values have been divided by 1,000 in 

the Python script. Non-settlements have a value of -1 and pixels where no resident population 

is estimated have been set to a value of 0.  
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4.2.3 OpenStreetMap 

In this study, OSM data has been gathered only from the study area using area the of interest 

polygons calculated in the script and the OSMnx Python package created by Geoff Boeing 

(Boeing 2017). The visual comparison of different data sets and the reality show that OSM is 

lacking many building footprints in each study site (Figure 8). The snapshots are from the city 

centers, which are almost always the most extensively mapped due to the high concentration of 

economically, strategically, and socially important locations, thus data lacking from these areas 

suggests that most probably the situation is even worse in more peripheral rural regions. 

Figure 8. Visual comparison of the amount of mapped OSM data (first row), Google Maps data (second row), 

and Google satellite imagery (third row) between Bangkok, Thailand (left), and Tula de Allende, Mexico 

(right). 
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Overlaying the extracted OSM building footprints over satellite imagery from Bangkok, 

Thailand reveals that a very small percentage of buildings have been mapped, which is a re-

occurring problem in the Global South (Figure 9). 

 

 

Figure 9. ICEYE flood data and OSM inundated buildings overlaid on top of satellite imagery highlight the lack 

of mapped buildings in OSM in Bangkok, Thailand. 

 

4.3 Automating flood analysis and visualization with Python 

Python is free for anyone to use and one of the most popular and most used programming 

languages by data analysts and researchers in the world. It is a very powerful programming 

language, relatively easy to learn, and available for macOS, Windows, and Linux (General 

Python FAQ 2022). Python comes with a very large standard library and there are many very 

powerful and useful third-party Python libraries, packages, and modules that have been 

developed by people or groups for anyone to use for free use, which enables any almost any 

type of data to be created, manipulated, analyzed, and visualized using Python. 
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All of the analysis in this thesis was achieved using the Python coding language using, version 

3.9.0 of Python (Figure 13). The Python script developed in this thesis used several open-source 

Python libraries, packages, and modules that require installation (Table 2). 

Table 2. List of Python libraries, packages, and modules that were used in this thesis. 

Name Version Information 

Pandas 1.4.1 https://pandas.pydata.org 

Geopandas 0.10.2 https://geopandas.org/en/stable/ 

Matplotlib 3.4.2 https://matplotlib.org 

Kepler.gl 0.3.2 https://docs.kepler.gl/docs/user-guides 

Shapely 1.8.1.post1 https://shapely.readthedocs.io/en/stable/ 

OSMnx 1.1.2 https://osmnx.readthedocs.io/en/stable/ 

Rasterio 1.2.10 https://rasterio.readthedocs.io/en/latest/ 

PyCRS 1.0.2 https://github.com/karimbahgat/PyCRS 

Os - https://docs.python.org/3/library/os.html 

Mapclassify 2.4.3 https://pypi.org/project/mapclassify/ 

Seaborn 0.11.2 https://seaborn.pydata.org 

Pyproj 3.3.0 https://pyproj4.github.io/pyproj/stable/ 

Utm 0.7.0 https://pypi.org/project/utm/ 

 

The Python script was written and run using JupyterLab, a web-based interactive development 

environment for Jupyter notebook documents, code, and data (JupyterLab 2022). Jupyter is a 

completely free coding environment that has been developed by Project Jupyter, a non-profit, 

open-source project. JupyterLab supports over 40 programming languages and focuses on 

making coding, data science, scientific computing, and machine learning fast, efficient, and 

user-friendly.  

 

The raster data was first read into JupyterLab and reprojected to the World Geodetic System 

(WGS84, EPSG:4326) coordinate reference system (CRS). The raster data of the flood captured 

by ICEYE’s SAR satellites was polygonized (the process of creating vector polygons from the 

pixels of a raster layer) so that flood depth classes could be created by classifying the flood 

depth polygons into seven user-defined flood classes (Table 4). The floodwater depth classes 

were chosen based on the effects of water depths on humans and buildings according to studies 

(Table 3. R&D Outputs…2006; Pistrika et al. 2014; Huizinga et al. 2017). 
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A Python function (“findtheutm”, see Appendix 1, page 5) was used to get accurate area 

calculations of flood extents. This was achieved with a function that takes latitude and longitude 

points from the centroid of the chosen data and then calculates in which UTM zone (Figure 10) 

the latitude point is in and chooses the correct Coordinate Reference System (CRS) for the area 

calculation. The result is then converted to km2.  

Using this function, the script can automatize an area calculation anywhere on Earth with 

minimal distortion. Using a layer projected to WGS84 (EPSG:4326) the area calculation would 

be extremely distorted the further away an area of interest is from the equator, and the area 

calculations would be in degrees instead of meters making it extremely difficult to interpret the 

results. 

 

4.4 Preprocessing geospatial data sets 

The OSMnx Python package makes it easy to download boundaries, building footprints, data 

points, and street networks from OpenStreetMap (Boeing 2017). This eliminates the time-

Figure 10. Map that shows the UTM zones and is the basis of how the correct CRS is chosen in the 'findtheutm' 

Python function. Läntmäteriet (2022) 

<https://www.lantmateriet.se/contentassets/379fe00e09d74fa68550f4154350b047/utm-zoner.gif> 
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consuming process of finding freely available data from the flooded areas. In this thesis, using 

the OSMnx “ox.geometries.geometries_from_polygon()” feature, OSM data was downloaded 

using polygon masks created from the polygonized flood data in order to get data only from 

within the boundaries of the flooded area (see Appendix 1, page 4). This method was chosen to 

enable the script to work automatically anywhere in the world as the flood class MultiPolygons 

contain the geolocation information and the OSM data is always downloaded from the correct 

geographical area without user intervention required. The Python script gets the geographical 

location information and the correct coordinate system from the reprojected version of the 

original raster file provided by ICEYE (Figure 11). 

 

Figure 11. Flowchart visualizes the automized OSM data extraction without the need for user intervention to 

determine where the data needs to be downloaded from. This process can be used with data from anywhere in the 

world and the OSM data will always be extracted from the correct location. 

 

This method was also used to make the processing manageable on normal laptops as the city 

limits of Bangkok contained over 100 000 building polygons at the time of writing this thesis 

and this number will hopefully rise as OSM is edited and updated in the years to come. The 

data was trimmed to make it lighter and easier to process by removing unnecessary columns. 

The raw data had over 200 columns with varying amounts of information and from this, only 

the “geometry”, “building”, and “name” columns were kept. Some of the buildings were also 

extracted as point and linestring features by OSMnx and these were removed to keep only the 

polygon footprints of buildings. The hospital and pharmacy data were also extracted using the 

flood polygon masks but the polygons were converted into point features used to highlight their 

location instead of polygons since all the building footprints had already been extracted. Icons 

were used to visualize the points to make them stand out more on the map and to provide such 

visual cues that most people are familiar with. Points are also much easier and faster to process 

than polygons. The hospital and pharmacy data had to be searched for using two different OSM 

tags since OSM data can be mapped in different ways depending on which tags the editing user 

decides to use. Each OSM element has a tag that consists of a key and a value. The tags describe 
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OSM elements; the key (the column name) describes the topic, category, or type of feature and 

the value provides detail for the key-specified feature. For example, the hospitals were searched 

for using the tags “building=hospital” and “amenity=hospital” and to find all the inundated 

buildings the tag “building=True” was used. In this thesis OSM data for hospitals was extracted 

using the following line of code: 

hospital = ox.geometries.geometries_from_polygon(osm_aoi, 

tags={'building':'hospital', 'amenity':'hospital'}) 

 

Inundated buildings were extracted by first dividing the flood depth into two classes: under 0.5 

meters of floodwater and over 0.5 meters of floodwater. The building footprints were then 

extracted from within these polygons into two variables: slightly inundated buildings and 

severely inundated buildings. This method was chosen based on global depth-damage curves 

which point to the fact that at around ≥ 0.5 meters of floodwater buildings start to suffer critical 

structural and interior damage (R&D Outputs…2006; Pistrika et al. 2014; Huizinga et al. 2017). 

The amount of damage is highly dependent on what materials are used in the construction of 

the building, how well the buildings are built, how fast the water is flowing, and many, many 

other factors, but crude estimates can be made and were considered in the analysis. However, 

for an unknown reason, this method did not extract all of the inundated building footprints and 

a third class had to be created that includes all of those building footprints that fell in-between 

the two classifications. This group of buildings was named “inundated buildings” and was 

found by extracting all of the buildings from the entire flood extent area and then searching for 

duplicates between all the buildings, the slightly inundated buildings, and the severely 

inundated buildings. It is not a case of invalid geometry in the flood classes as the validity of 

the MultiPolygon geometries was checked using the “geopandas.GeoSeries.is_valid” function. 
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4.5 Overlay analysis 

Overlay analysis of the vector and raster data was used 

to achieve results on the impact of the floods. Overlay 

analysis is the process of superimposing different data 

sets to identify relationships between them and thus 

producing new information. Overlay analysis is a part 

of almost all spatial analysis processes and is the core 

of GIS projects as the end product is almost always a 

map that shows different information laid on top of 

each other in separate layers (Figure 12). In this thesis, 

overlay analysis was used to overlay flood depth data 

on top of the WSF2019-Pop and OSM building 

footprint data to find out how many people lived in 

areas affected by different water depths and how many 

buildings had been inundated by the floodwaters.   

 

The affected population estimates were achieved by 

using overlay analysis of the flood data and the 

population estimation dataset. The population count per 

flood class was calculated with Rasterio using each 

flood class MultiPolygon as masks to clip the WSF2019-Pop raster data. This method not only 

returns results of the total population affected by a flooding event but also divides it by flood 

classes to reveal the number of people affected by extreme water depths and thus in dire need 

of immediate assistance. All the pixel values inside the individual masks were then summed up 

by flood class and inserted into a new column called “population” using the following code:  

Figure 12. Overlay analysis visualized 

(Westfield State University, 2013, 

<http://wiki.gis.com/wiki/index.php/File:

Gis_layers.png>) 
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# Modified from: Lau & Um (2021) Using GeoSpatial Data Analytics: A Friendly 

Guide to Folium and Rasterio 

# URL: https://omdena.com/blog/geospatial-data-analytics/ 

# 

# ------------------ 

 

# Creating an empty list for storing values 

results = [] 

 

# Looping through flood classes in dataframe and using them as masks for 

extracting values 

for i in iceye_breaks['flood_class']: 

         

    roi = iceye_breaks[iceye_breaks.flood_class == i] 

 

    # Using the mask.mask Rasterio module for specifying the ROI 

    gtraster, bound = rio.mask.mask(wsf_raster, roi['geometry'], crop=True) 

     

    # Using values greater than 0 to get population data from the WSF2019-

Imp raster pixels 

    results.append(gtraster[0][gtraster[0]>0].sum()) 

 

# Saving results in new column 

iceye_breaks['population'] = results 

 

# Dividing by 1000 because the WSF2019-Pop data has been multiplied by 1000 

to save the file as integer 

iceye_breaks['population'] = iceye_breaks['population'].div(1000) 

 

 

4.6  Plotting data with Kepler Gl 

Several different geospatial data visualization libraries were tested aside from Kepler.gl 

including Folium, Leafmap, Plotly, IpyLeaflet, and Geemap, but ultimately Kepler.gl was 

chosen as the most suitable for this thesis. It offers very easy visualization tools, processes data 

very efficiently, and performs very well. 

 

Kepler.gl is a high-performance open-source web-based application for visualizing large 

geospatial data sets (Kepler.gl 2022). It is built on top of Mapbox GL and deck.gl which are 

services that provide custom online maps and complex visualizations possibilities. Kepler.gl is 

able to render millions of datapoints on the fly and performs very well with large data sets. 
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Creating a map in JupyterLab by using the Kepler.gl library allows the user to add data with a 

few lines of code and opens an interactive view of Kepler.gl where it is possible to edit the 

visualization by using only a computer mouse. Icon names for hospitals and pharmacies had to 

be inserted into new columns in the corresponding GeoDataFrames (‘plus-alt’ for hospitals and 

‘heart’ for pharmacies) so that these string values could then be recognized by Kepler.gl to 

import them from the Kepler.gl icon database. Once satisfied with the visualization the 

configurations can be saved as a variable (variable named “config” in this script) and used with 

other data that is named exactly the same and is in the same format. The Kepler.gl map 

visualizations can also be changed while viewing the maps, but these changes are not saved. To 

save edited visualizations for later use, the user has to edit the configurations, call the 

configurations with the “map_1.config” function, and save the configurations as a variable in 

the script (see Appendix 1, page 7). 

 

In this script, ICEYE flood data and OSM data were added to the map and then visualized using 

the Kepler.gl configurations. Latitude and longitude values extracted from the flood extent data 

were used to zoom the map to the flooded area, so users do not have to search for the flood on 

a world map. The saved visualization configurations were added to the data and the map. The 

maps from Bangkok and Tula de Allende were then saved as local HTML files which can be 

opened with a web browser if the file is downloaded to the computer in use. This was done 

because Kepler.gl is a client-side only application, which means that it does not send or store 

any data to any backends, limiting the saving and sharing of maps. The advantage of saving the 

map as an HTML file is that once downloaded it can be viewed and used normally by opening 

the file with a web browser. The map can also be shared by sending just the HTML file to 

another user. 
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5 Results 

5.1 Automated flood analysis and visualization model 

The automated flood analysis and visualization model was created by progressing through the 

analysis and visualization phases step by step and tying it all together into a model that works 

without user intervention by using previous outputs as inputs in the next process (Figure 13). 

 

 

Figure 13. Workflow map visualizing the Python code process. The flow chart contains the GIS data used, the 

most important steps, and the end result of the Python script. 
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The maps from Bangkok and Tula de Allende produced by this script (see Appendix 1) can be 

viewed by going to: https://seafile.utu.fi/d/ea2fcc03a4d147c58da0/ and downloading the two 

.html files and then opening them in a browser. The files should open in the default browser 

where the user can then interact with the maps. 

 

The code is presented in its entirety in Appendix 1, and it can also be found in the following 

GitHub repository: https://github.com/resilienceacademy/-flood-automapping. Running the 

script on the computer in use will produce an interactive map as a .html file, a bar chart of the 

affected population by flood classes, and print information related to the number of buildings 

inundated and of essential services (hospitals and pharmacies) inundated. Running the script 

requires access to either the two raster data sets used in this thesis (ICEYE flood depth and 

WSF2019-Population data) or raster data that is similar. 

 

The script was created and tested using a 2017 13-inch MacBook Pro that has a 2,3 GHz Dual-

Core Intel Core i5 processor, 8GB of memory, and an Intel Iris Plus Graphics 640 1536 MB 

graphics card and is using macOS Monterey Version 12.3.1. In 2022 this is not a particularly 

powerful computer, but it performed fairly well in processing the script and by far the longest 

time processing data in Bangkok was to extract the OSM data which is more dependent more 

on internet speeds and OSM server requests limitations (Table 3).  
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Table 3. Processing times and averages for both study areas. The script performed fairly consistently in the 5 test 

runs per study area that were used to gather this information. 

  Time in seconds (Bangkok, Thailand)   

Process 1st test 2nd test 3rd test 4th test 5th test Average 

Importing modules 8.21 7.92 7.3 6.03 4.39 6.77 

Raster transformations 0.846 0.776 0.571 0.62 0.272 0.617 

Vector transformations 108 95 90 91 89 94.6 

Raster clipping 27 25.7 27.3 26.3 25.7 26.4 

Getting OSM data 492 460 453 456 441 460.4 

Results 26.2 25.3 26.3 26.6 24.7 25.82 

Kepler.gl 32.6 14.073 15.193 15.176 16.065 18.621 

Total time 694.856 628.769 619.66 621.726 601.127 633.228 

  Time in seconds (Tula de Allende, Mexico)   

Process 1st test 2nd test 3rd test 4th test 5th test Average 

Importing modules 6.95 6.53 3.04 3.94 4.53 4.998 

Raster transformations 0.272 0.55 0.314 0.442 0.31 0.378 

Vector transformations 18.7 18.6 18.1 19.4 19.9 18.94 

Raster clipping 1.24 1.15 1.35 1.14 1.64 1.304 

Getting OSM data 21.8 10.2 10.2 11.3 10.8 12.86 

Results 1.71 2.00 1.98 2.42 2.55 2.132 

Kepler.gl 1.525 1.338 0.962 0.882 0.93 1.127 

Total time 52.197 40.368 35.946 39.524 40.660 41.739 
 

The data from the two study sites were consistently mapped to the correct location despite the 

different coordinate reference systems in the source data. This means that the reprojection 

process in the code works automatically without the user having to worry about projecting the 

data correctly, a somewhat regular headache in GIS work. The area calculations are also 

accurate, despite the geographic location of the flood changing as the “findtheutm” function 

(see Appendix 1, page 5) finds the correct CRS to use for the area in question. The final map 

also automatically zooms to the correct area of interest without user interaction. These functions 

were tested by running the script with data from the two study sites, located on the opposite 

sides of the Earth. 

 

As expected, the longest processing time by the model in the study site of Bangkok was to 

extract the over 12,000 building footprints of inundated buildings. In Tula de Allende there 

were only 36 OSM building footprints in the flooded area, and it took only 12.86 seconds on 

average to extract the data compared to 7 minutes and 40 seconds on average in Bangkok. In 

Tula de Allende the longest average processing time was taken by the vector transformations 

which include polygonizing the raster and breaking it down by flood depths. There is a 
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significant difference in the total average processing time between the two study areas with 10 

minutes and 33 seconds for Bangkok and only 41.739 seconds for Tula de Allende. This is 

logically explained easily by the massive difference in the flood extent, 718.76 km2 in Bangkok 

and only 2.2 km2 in Tula de Allende, and the massive difference in the amount of OSM data 

from these two areas. The visualization configurations transfer over without issue and as such 

the visualization of the flood and different buildings are identical in both study sites. There are 

also no issues with producing the bar chart or the prints of the number of inundated buildings 

and essential services (hospitals and pharmacies) (see Appendix 1, page 6). 

 

Compared to the delivery times promised by the CEMS Raping Mapping program (ready in 2 

to 3 hours after the first imagery) even the 10 minutes and 33 seconds of processing time in 

Bangkok by this script is significantly faster. In smaller areas like Tula de Allende, the map is 

practically instantly ready and depends only on the time it takes ICEYE to process raw SAR 

imagery into a product that can be used by this model. The data used in this model does not 

have to be flood data produced by ICEYE, the only requirements are that it has been geolocated 

and it is a raster with values that correspond to flood depths. The same applies to the population 

estimates, any population data that is in a raster format that has been geolocated and has pixel 

values corresponding to population estimates can be used to get results with this model. 
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5.2 Model accuracy and reliability in the cases of Bangkok and Tula de Allende 

5.2.1 Bangkok, Thailand 

The total flooded area in Bangkok was 718.76 km2 covering an area where over 1.4 million 

people live and over 13 000 buildings were inundated with floodwater (Figure 14, Table 4). 

The overlay analysis of the flood depths and WSF2019-Pop pixels showed that there were 

approximately 1,440,977 people were affected by the flooding (Table 5).  

 

 
Figure 14. The flood map of Bangkok, Thailand created using the Python script. Creating this map does not need 

any user input apart from changing the file path to the raster of a flooding event and the WSF2019-Pop data. 

 
Table 4. Flood classes defined in this thesis, their corresponding floodwater depths, and how many square 

kilometers the floodwaters covered in Bangkok, Thailand. 

Flood class Flood depth Flooded area (718.76 km2 

in total) 

Population affected 

0 0 ≥ 0.1m 40.62 km2 175,192 

1 0.1 ≥ 0.25m 66.04 km2 251,923 

2 0.25 ≥ 0.5m 104.54 km2 328,273 

3 0.5 ≥ 1m 208.25 km2 397,039 

4 1 ≥ 2m 261.46 km2 248,873 

5 2 ≥ 2.5m 23.00 km2 22,462 

6 2.5m ≥ 14.92 km2 18,477 
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Of these people, 685,989 live in areas that were inundated by over 0.5 meters of water according 

to the flood zones calculated from the ICEYE SAR data, which indicates that their buildings 

were severely inundated. The homes of people living in at least a second floor of a high-rise 

building would not be inundated, but it could be extremely dangerous for these people to exit 

their building while the floodwaters are high. According to several studies, standing still in 

waters of 1.5m or more is impossible for adults (depending on the height of the person) and if 

the water is flowing with high velocity, as it usually does during floods, it could be impossible 

to stand in water depths of just 0.3m if the velocity of water flow is high (R&D Outputs…2006). 

The flooding in August of 2021 in Bangkok, Thailand was so extensive that 1,013,859 people 

were living in areas that had flood depths of over 0.25 meters during the flooding event. 

 

Table 5. Bar chart from the number of people affected by the flood in Bangkok, Thailand. This bar chart is 

produced automatically by the Python script. 
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The people severely affected most likely had little or no chance to go outside during this 

flooding event and the water levels that were captured by ICEYE would have caused first 

responders significant trouble to reach these people in urgent need of assistance.  

 

According to the overlay analysis of the flooded area, there were 5,112 buildings inundated by 

over 0.5 meters of water, 6260 buildings inundated by a maximum of 0.5 meters of water, and 

1,786 buildings that fell in-between the two categories, bringing the total number of inundated 

buildings to 12,843 based on the OSM data during the writing of this thesis. Of these buildings, 

74 were hospital buildings and 11 were pharmacies. This does not mean that 74 separate 

hospitals in Bangkok were inundated as hospitals usually consist of multiple separate buildings. 

Most of the mapped buildings in OSM in the area of Bangkok are strategically, societally, or 

economically important big buildings. The OSM data in the area of Bangkok lacks many 

buildings, which makes the situation much direr in reality, especially in the poor neighborhoods 

that are often overlooked in favor of mapping more affluent and economically important areas. 

These results might change considerably even in a short span of time as OSM is constantly 

changing and updating by nature. 
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5.2.2 Tula de Allende, Mexico 

The total flooded area in Tula de Allende was ~2.20 km2, covering an area where 4,908 people 

live and 36 buildings were inundated with floodwater (Figure 15, Table 6). The overlay analysis 

of the flood depths and WSF2019-Pop pixels showed that there were approximately 4,908 

people who were affected by the flooding (Table 7). Of these people, 3,956 lived in areas that 

were inundated by over 0.5 meters of water according to the flood classes calculated from the 

ICEYE SAR data.  

 

 

Figure 15. The flood map of Tula de Allende, Mexico created using Python. Creating this map does not need any 

user input apart from changing the file path to the raster of a flooding event and the WSF2019-Pop data. 

 
Table 6. Flood classes defined in this thesis, their corresponding floodwater depths, and how many square 

kilometers the floodwaters covered in Tula de Allende, Mexico. 

Flood class Flood depth Flooded area (2.20 km2 in 

total) 

Population affected 

0 0 ≥ 0.1m 0.05 km2 151 

1 0.1 ≥ 0.25m 0.08 km2 284 

2 0.25 ≥ 0.5m 0.13 km2 517 

3 0.5 ≥ 1m 0.26 km2 1,195 

4 1 ≥ 2m 0.42 km2 1,664 

5 2 ≥ 2.5m 0.14 km2 368 

6 2.5m ≥ 1.11 km2 729 
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Of the 36 inundated buildings in Tula de Allende, two were hospital buildings. There were no 

inundated pharmacy buildings, which also proves that the script does not cause an error if there 

is no data from the area of interest. The OSM data in the area of Tula de Allende, Mexico lacks 

a majority of buildings, like in the case of Bangkok, which makes the number of inundated 

buildings much higher in reality. The results show a severe lack of data in these Global South 

cities and reveals the need to increase the pace of mapping OSM data in these areas. The results 

are from the time of writing this thesis as OSM data might and hopefully will change over time 

when more data is added. 

 

Table 7. Bar chart from the number of people affected by the flood in Tula de Allende, Mexico. This bar chart is 

produced automatically by the Python script. 

 

 

The results of produced by the model are produced in the exact same format for both case study 

cities and there are no issues with the model when changing locations despite a geodesic 

distance of over 15,600 kilometers between the study cites. Based on the results, it can be 
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concluded that the model works consistently and as planned. It produces key information of the 

effects of natural hazards that are relevant to first response teams and humanitarian aid 

organizations considerably faster than other rapid mapping services such as the Copernicus 

Emergency Management Service (CEMS) and the United Nations Institute for Training and 

Research - Operational Satellite Applications Programme (UNITAR/UNOSAT) Rapid 

Mapping Service. 

 

One function that was missing from all of these libraries was the ability to easily and accurately 

overlay raster files that have no data values. Also, the ability to upload the visualization to an 

online server for sharing would have been very useful, but there are so many costs involved in 

running a server that services with this option are subscription-based with monthly costs. 
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6 Discussion 

6.1 The value of automated models in disaster risk reduction operations 

The results of this thesis show that the automatization of analysis and visualization processes is 

possible and that it can speed up crisis mapping and increase situational awareness in disaster 

response efforts. The model can be run repeatedly as new SAR imagery of the disaster is 

acquired to produce up-to-date maps and the progression of a flooding event can be mapped 

with high precision and in a consistent format from start to finish. A timeline of the flooding 

event can then be analyzed after the disaster has passed to study how it progressed and how 

effects of similar natural hazards can be mitigated in future disaster risk reduction schemes and 

in the development of early warning systems. The model is open-source and free to use for 

everyone, especially in the Global South as in the developed countries most re-occurring natural 

hazards have been mapped. An example of this is the flood map service produced by the Finnish 

Environment Institute (SYKE) where the entirety of Finland has been mapped in regard to flood 

risk zones of yearly floods all the way to 1,000-year floods (Tulvakarttapalvelu 2022). 

 

Creating an operational automated model is extremely time consuming and should only be done 

when working with extremely large amounts of geospatial data sets or with repetitive tasks. 

Automating parts of the analysis operations allows workers more time to focus on other tasks, 

such as acquiring new data and getting the information to the people in charge. Automated 

models reduce the dependence of experienced workers, and reduce the delay caused by data 

exchange, workflow construction and human error (Qi et al. 2017). Visual guidelines produced 

in cooperation with the crisis management community and experienced cartographers ensures 

that the crisis mapping is as efficient as possible and automated models will produce this 

predetermined and approved visual look perfectly every time when the model is configured to 

these requirements (Divjak & Lapaine 2018). 

 

Previous studies have mainly focused on automating the early warning systems and flooding 

forecasting (Rodda 2005; Nguyen et al. 2019; Sinagra et al. 2020; Sarafanov et al. 2021). There 

is a lack of automated flood models that predict and analyze the effects of an on-going flooding 

event which is equally important as early warning systems rarely reach the most vulnerable 

people in society and these people often cannot or will not relocate from harm’s way even if 

they were aware of approaching natural hazards. People will persist to live in high-risk areas as 
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these people have no alternatives and even if residents move out, new residents will move in to 

fill the voids (Panman et al. 2018). Ensuring that first responders and global humanitarian aid 

is focused on the most critically affected areas, and urgently reaches the most vulnerable and 

most in need of help, saves countless lives in times of crisis and may give these people, who 

have nothing to lose besides their lives, some hope for the future and assurance that they have 

not been completely forgotten. 

 

6.2 Advantages and challenges of automated analysis and visualization 

Using a Python script instead of a desktop GIS software (e.g., ArcGIS Pro by Esri, QGIS) to 

analyze the data and produce a map as an output enables the process to be automatized to an 

extent. The script does not have any triggers based on real-life measurements or parameters 

from external data sources, so it has to always be opened and run by a user. However, using 

this script, the user only has to change the raster files of the flood data and the population data. 

In the future, the WSF2019-Population data will hopefully be released as a GeoTIFF covering 

the entire globe which would eliminate the need to change the population raster data as the 

script calculates the extent of the flooded area and clips the population raster calculations to fit 

the extent of the captured flooding event. Automatizing the analysis and mapping process saves 

the user a lot of time and standardizes the output eliminating human errors from the process. 

 

The output data can also be saved as a local file, using the Geopandas 

“geopandas.GeoDataFrame.to_file()” function if the user wants to select pieces of data for 

further analysis on desktop GIS software, as this script is intended to be used as a fast, first 

estimate of the scope of a disaster caused by a natural hazard. Data can also be saved for the 

creation of a historical geospatial database of flooding events. The HTML map produced by 

this script is also interactive, which provides crucial extra value compared to a static PDF or 

image, as users can zoom in very close and examine the entire flood event in much higher detail 

without being hampered by the visualization and image quality limitations of static maps. The 

basemap has been set to satellite imagery to allow for visual inspection of the real-world 

surroundings and to see where OSM data is lacking. Due to the lack of mapped OSM data, the 

estimation of inundated buildings in the two study sites is very imprecise. However, OSM is 

still the best readily available source of building footprints, and in a city of the Global North 

like Helsinki or London, where OSM data matches reality much more accurately, the estimation 

would be highly reliable. Thus, the need to map regions that are highly susceptible to natural 
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hazards in the Global South is very relevant and urgent, as urbanization increases, and new 

informal settlements are constructed in many of these rapidly expanding cities. The satellite 

imagery basemap used in the Kepler.gl map compensates for some of the weaknesses in using 

OSM data for building footprints. 

 

The challenges of using Python automatization as the method of analysis include the possible 

future deprecations of certain Python modules which then require the script to be updated. There 

is also a possibility of Python libraries not being compatible with each other following future 

updates. Fixing these problems and incompatibilities requires knowledge of Python coding as 

does installing all of the Python libraries required to run the script. Lack of internet access or 

expensive internet contracts also limits the use of downloading OSM data and the downloading 

of Python libraries for installation or updating.  

 

Performing accurate area calculations on a global map, mapping the data precisely to the correct 

geographical location, and focusing the interactive map on the correct geographical location 

was a challenging task to automatize, as this usually requires extensive knowledge of coordinate 

reference systems by the user and user input to match the data to the correct CRS. Successfully 

automatizing this process also eliminates user error from this part of the analysis and mapping 

which is important as the use of an incorrect CRS displaces the data very easily and can cause 

extreme distortions to calculations and analysis. Mapping a flood to a wrong country, 

calculating the flood extent incorrectly, or calculating the affected population inadequately 

would cause misinterpretations of data and possibly inadequate or excessive initial reactions to 

disasters caused by natural hazards. 

 

Even though this automated flood mapping model was created with the intention of helping 

countries in the Global South to gain access to geospatial analysis and benefit from GIS, this 

model, like all the mapping of disasters caused by natural hazards, requires access to high-

quality satellite data. Even if it is possible to edit and analyze this data using only open-source 

methods, it is impossible to escape the need for highly sophisticated and extremely expensive 

space technology to map the extent and depth of the floodwaters. Even though ICEYE provided 

their SAR data for this thesis free of cost, ICEYE is a private company and operates by selling 

their data to customers. For the purpose of openly sharing this model for further use, this is a 

major issue as up-to-date, preprocessed flood data from ICEYE is not open-source data. One 

option is to use SAR data from the Sentinel-1 satellite constellation operated by the European 
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Space Agency (ESA). It is free of charge to the general public, scientific and commercial users 

and can be delivered within an hour of reception for emergency response (Data Products 2022). 

The drawback is that Sentinel-1 data is not as precise as ICEYE’s SAR data, and the revisit 

time is not as frequent as ICEYE’s whose constellation is capable of persistent monitoring of 

the entire globe. ICEYE can also deliver data that is pre-processed and ready to use with the 

model developed in this thesis, while Sentinel-1 delivers raw SAR data or less processed data. 

Another option is to use flood depth and extent data that has been procured by other means. As 

long as it is in a geolocated raster format, it can be used as input data in this thesis. The model 

developed can also be quickly modified to accommodate flood data that does not have flood 

depth data but does show the extent of the flooding event. 

 

To quickly acquire data in the Global South, affordable drones that fly a few hundred meters 

above the area can possibly be used, but using drones requires expertise and calm weather for 

acquiring needed images, considerable computer storage for storing the images, and a lot of 

time to process the images into a usable format. Countries in the Global South remain highly 

dependent on data that is only commercially available often with a high price, and usually 

available for free only long after the most urgent need has passed. Another option for them to 

get the needed data is through the certain humanitarian aid projects, provided to them for free 

in the form of raw data or as a result of analysis carried out to be used by them. 

 

Models help us understand complex systems and are an especially effective approach to 

working with large-scale systems such as the Earth’s climate. Once created, models can be used 

over and over without having to manually perform each individual step of the analysis and 

visualization. An individual step of a model can also be edited afterwards to examine different 

scenarios or to adjust it to new data. However, a model is also always a simplification of 

complex systems and a representation of some aspects of the world based on the model’s 

creator’s understanding of the relationships in question. Models are also only as good as the 

data it is based upon, meaning that the lack of OSM data is the biggest weakness of this model. 

It also has to be considered that when the situation with regards to lack of OSM data gets better 

and more data is available, it will also slow down the model as there will be more data to extract 

and process. Extracting OSM data from the entire extent of the province of Bangkok already 

takes 7 minutes and 40 seconds and only a marginal percent of buildings have been mapped in 

that area. 
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Possible future developments of this model could include adding road networks from OSM to 

highlight inundated sections of the road networks. This would help first responders in planning 

how to reach the affected area most efficiently and to plan efficient and safe evacuation routes. 

The inundated sections could be exported as shapefiles to be used as routing obstacles in 

network analyst tools like the one produced by Esri. It would also be better if the map could be 

uploaded automatically to an internet server for easier sharing of the flood map. This would 

eliminate the need to send or download any files between users. Making the map into a 

dashboard would also enable the adding of charts to the visualization to aid with the 

interpretation of the flooding event. After some historical data collection from several floods, 

it would be extremely interesting to try to automatize the flood model to produce early warnings 

of potential floods. This could probably be done by connecting to a feed of meteorological data 

sources, defining the parameters that would trigger the predictive analysis (e.g., a certain 

amount of rainfall in one hour), and by producing estimations based on historical flood data. 

 

6.3 Geospatial data and proficiency in disaster risk reduction  

Everything happens somewhere and that is the essence of GIS. Like the world-renowned 

geographic information system company Esri’s slogan says, GIS is “The Science of Where” 

(Dangermond 2017). A vast majority of data is geospatial as it is tied to a certain place, no 

matter how feebly, which has most likely led to the famous quote that floats around in the field 

of geospatial work and research: “80 % of all data is geographic” (Dempsey 2012). If you 

imagine hearing about a flood event or any kind of disaster, the first questions often are: “Where 

did this happen? How many people are hurt? Can it have an affect where I live?” 

 

In fact, all of these questions are geographic in nature and can be answered with the approaches 

and methods used in geospatial science. The flood can be predicted with an early warning 

analysis, the flood can be monitored with satellite imagery, such as SAR images, the number 

of people affected can be estimated using census data, estimates by the first responders at the 

scene, or existing GIS analyses of human populations (e.g., WSF data, WorldPop, High-

Resolution Settlement Layer), while the extent of the flood or otherwise affected area can be 

mapped. Even if you tried your best, it would be impossible to organize disaster responses 

without using or creating any kind of geospatial data. Finding and focusing on the essential data 

for each use case is extremely important and valuable. Approaches focusing on digital data 

often tend to get enamored and swept away by all the available data and the result is a mishmash 
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of too much data drowning away any clear conclusions and points of action to focus on. Finding 

the real problems and relevant issues and focusing on highlighting them and on the resolutions 

of defined problems is what GIS analysis needs to be about. GIS is not a solution in itself, but 

rather an invaluable tool for discovering information and visualizing it in ways that are not 

possible by any other means. This is why it is extremely important to optimize and maximize 

the use of geospatial scientific knowledge and methods in disaster risk reduction, response, and 

recovery.  

 

The Resilience Academy project, Ramani Huria community-mapping project in Dar es Salaam, 

Tanzania, and the Open Cities projects have produced excellent results by training university 

students and local community members to collect, create, and edit geospatial data (Käyhkö et 

al. 2018; Msilanga et al. 2021; About Open Cities Africa 2022; About Open Cities South Asia 

2022; Ramani Huria 2022). There are multiple benefits to these approaches. They create new, 

urgently needed geospatial data relevant for the countries of the Global South, equip university 

students with geospatial skills, competencies, and abilities to increase future employment 

opportunities, and provide these countries with professionals who have the skills to push for 

sustainable transformations with information-based decision-making. As per Tobler’s first law 

of geography that states “near things are more related than distant things” (Tobler 1970), people 

are most likely to voluntarily map areas closer to where they live in. Having more geospatial 

proficiency in the Global South, would provide OSM with data that has been produced with the 

crucial knowledge of local context and its rapidly changing landscapes. This thesis also 

showcases many of the possibilities and advantages of using only Python for GIS analysis and 

the need to also include Python coding also in advanced-level GIS courses at the universities in 

the countries of the Global South.  
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7 Conclusion 

This thesis aimed at developing an automated global geospatial dataset analysis in disaster risk 

reduction in the Global South, by using the Python programming language to produce an 

automated flood analysis and visualization model. The model ingests raster data of a flooding 

event and of population estimates provided by the user and produces ready to use GIS data, 

statistics of the effects of a disaster caused by flooding, and an interactive map of the scope of 

the disaster. By using global geospatial data sets, the model can produce analysis from 

anywhere in the world in minutes to be used by first response efforts and global humanitarian 

aid. The combination of commercially produced SAR satellite data by ICEYE, open-source 

population estimation data by the German Aerospace Agency (DLR) and volunteered 

geographic information (VGI) from the OpenStreetMap (OSM) project, this model can be seen 

as a combination of approached from the two paradigms of disaster risk reduction: the hazard 

paradigm and the vulnerability paradigm. 

 

The automated flood analysis and visualization model developed in this thesis works as 

planned. It performs consistently and the accuracy is only dependent on the accuracy of the data 

used. With minimal user input, the room for human error has been minimized and the results 

are standardized. This model is suitable to be used to create the first assessment of a flooding 

event anywhere in the world, as long as it is understood and accepted that the population 

estimates are never 100 percent correct and that the accuracy of the number of inundated 

buildings is highly dependent on the amount of OSM data from the affected area. The model 

provides essential information for decision-makers; the geographical extent of the flood, 

floodwater depths and their geographical location, an estimation of the total number of people 

affected and how severely their homes have been inundated, and how severely other kinds of 

buildings and essential services have been inundated. Using global data sets or quickly 

acquiring new local data with satellites that have a global reach eliminates the most time-

consuming part of GIS analysis, which is how to find suitable data. Automating the analysis 

and visualization with Python also eliminates the other most time-consuming parts: cleaning up 

the data and visualizing all the separate data sets.  

 

The model is aimed to be used at organizations with a global reach and influence and sufficient 

knowledge of GIS and Python. A GIS expert working only locally might have easy access to 

better data that can be used and analyzed with higher precision and accuracy and can probably 
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contact relevant authorities with estimates at almost equal speeds to the model created in this 

thesis. However, in countries of the Global South, this expertise and data are often lacking, and 

humanitarian aid organizations working on a global scale often depend on global geospatial 

data sets for needed information and analysis. Geospatial approaches to disaster risk reduction 

must be collaborative efforts by global and local stakeholders in order to utilize the newest, 

most efficient technology and methods while taking into consideration the complex needs and 

concerns of local inhabitants most affected by disasters caused by natural hazards. 
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Appendices 

 

Appendix 1. Automated flood analysis and visualization model code 

 

Automating Global Geospatial Data Set Analysis 

 

Visualizing flood disasters in the cities of the Global South 

 

This code will turn raster data into an interactive local Kepler.gl web map displaying the extent of flooding 

events and its effects on the local population and infrastructure. 

The script is used as the research method in the Master's thesis of Ohto Nygren for the Department of 

Geography at the University of Turku, Finland. 

Flood data has been provided by the new space company ICEYE and the world settlement footprint 

(WSF) population data that was used was provided by the German Aerospace Agency (DLR). The script 

has been optimized for these data sets, but similar data can most likely be used with the script. 

The OSMnx module is used to pull data from OpenStreetMap (OSM) to get estimations of inundated 

buildings, with an emphasis on hospitals and pharmacies. 

Estimations provided by the script are not completely accurate due to the lack of mapped OSM data, 

but flood depths captured by ICEYE's SAR satellites are very accurate and the population data created 

by the DLR is very accurate for a global dataset.  

The main idea is to provide quick first estimations via Python automatization of the extent of flood 

damage and the number of people affected by a flooding event to first responders and international 

humanitarian aid. 

 

 

import pandas as pd 

import geopandas as gpd 

import matplotlib 

import matplotlib.pyplot as plt 

import osmnx as ox 

import shapely 

from shapely.geometry import Point, LineString, Polygon, shape 

from shapely.geometry import box 

from shapely import speedups 

import rasterio as rio 

import rasterio.features 

from rasterio.plot import show 

from rasterio.plot import show_hist 

from rasterio.features import shapes 

from rasterio.mask import mask 

from fiona.crs import from_epsg 

import pycrs 

import os 

import mapclassify 

import seaborn as sns 

import utm 

from pyproj import CRS 
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Raster transformations 

 

# Filepath for WSF raster file 

wsf_fp = 

r'/Users/ohtonygren/Yliopisto/Gradu/Data/WSF/Tula_WSF2019population_10m.tif

' 

wsf_raster = rio.open(wsf_fp) 

 

# Filepath for ICEYE raster file 

iceye_fp = 

r'/Users/ohtonygren/Yliopisto/Gradu/Data/ICEYE/ICEYE_tula_wd_v_2_r_01_ws_1.

tif' 

iceye_orig = rio.open(iceye_fp) 

 

from rasterio.warp import calculate_default_transform, reproject, 

Resampling 

 

# Getting CRS from the WSF data 

dstCrs = wsf_raster.crs 

 

# Calculate transform array and shape of reprojected layer 

transform, width, height = calculate_default_transform(iceye_orig.crs, 

dstCrs, iceye_orig.width, iceye_orig.height, *iceye_orig.bounds) 

 

# Working of the meta for the destination raster 

kwargs = iceye_orig.meta.copy() 

kwargs.update({'crs': dstCrs, 'transform': transform, 'width': width, 

'height': height}) 

 

iceye_raster = rio.open(iceye_fp, 'w', **kwargs) 

 

# Reproject and save raster band data 

for i in range(1, iceye_raster.count +1): 

    reproject( 

        source=rio.band(iceye_orig, i), 

        destination=rio.band(iceye_raster, i), 

        src_crs=iceye_raster.crs, 

        dstCrs=dstCrs, 

        resampling=Resampling.nearest) 

 

# Close destination raster     

iceye_raster.close() 

 

print('Progress: Raster reprojection done.') 

 

# Reopening the raster that is now projected to EPSG: 4326 

iceye_wgs84 = rio.open(iceye_fp) 

 

Vector transformations 

 

# Polygonizing the raster file 

mask = None 

with rio.Env(): 
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    with rio.open(iceye_fp) as src: 

        image = src.read(1) # first band 

        results = ( 

        {'properties': {'raster_val': v}, 'geometry': s} 

        for i, (s, v)  

        in enumerate( 

            shapes(image, mask=mask, transform=src.transform))) 

         

geoms = list(results) 

 

# Creating a GeoDataFrame from the polygonized raster 

iceye_breaks = gpd.GeoDataFrame.from_features(geoms) 

 

# Get indexes where 'raster_val' column has value 'min' 

indexNames = iceye_breaks[iceye_breaks['raster_val'] == 

iceye_breaks['raster_val'].min()].index 

# Delete 'min' rows indexes from dataframe as they are Null values in the 

raster file 

iceye_breaks.drop(indexNames, inplace=True) 

 

print('Progress: Polygonizing done.') 

 

# Rounding up unnecessary decimals 

iceye_breaks['raster_val'] = iceye_breaks['raster_val'].round(3) 

 

# Removing all rows with the value of zero 

iceye_breaks[iceye_breaks.raster_val != 0.000] 

 

# Classifying the data by flood hazard levels 

breaks = mapclassify.UserDefined(iceye_breaks['raster_val'], bins=[0.1, 

0.25, 0.5, 1, 2, 2.5]) 

iceye_breaks['flood_class'] = iceye_breaks[['raster_val']].apply(breaks) 

 

# Dissolving the data into the 6 classified breaks 

iceye_breaks = iceye_breaks.dissolve(by='flood_class', as_index=False) 

 

Raster clipping and affected population estimation 

 

# Modified from: Lau & Um (2021) Using GeoSpatial Data Analytics: A 

Friendly Guide to Folium and Rasterio 

# URL: https://omdena.com/blog/geospatial-data-analytics/ 

# 

# ------------------ 

 

# Creating an empty list for storing values 

results = [] 

 

# Looping through flood classes in dataframe and using them as masks for 

extracting values 

for i in iceye_breaks['flood_class']: 

         

    roi = iceye_breaks[iceye_breaks.flood_class == i] 
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    # Using the mask.mask Rasterio module for specifying the ROI 

    gtraster, bound = rio.mask.mask(wsf_raster, roi['geometry'], crop=True) 

     

    # Using values greater than 0 to get population data from the WSF2019-

Imp raster pixels 

    results.append(gtraster[0][gtraster[0]>0].sum()) 

 

# Saving results in new column 

iceye_breaks['population'] = results 

 

# Dividing by 1000 because the WSF2019-Pop data has been multiplied by 1000 

to save the file as integer 

iceye_breaks['population'] = iceye_breaks['population'].div(1000) 

 

Getting OSM data from flooded area 

 

# Splitting the flood areas into > 1m and < 1m flood depth areas 

flood = iceye_breaks.from_features(iceye_breaks[0:3]) 

severe_flood = iceye_breaks.from_features(iceye_breaks[3:7]) 

 

# Creating a constant value to use for dissolve 

iceye_breaks['dissolve'] = 1 

flood['dissolve'] = 1 

 

# Dissolving all the flooded polygons into flooding extents for the 

geometries_from_polygon feature 

flood_aoi = iceye_breaks.dissolve(by='dissolve') 

flood_area = flood.dissolve(by='dissolve') 

 

# Turning the GeoDataFrames into a shapely polygons for OSMnx 

osm_aoi = flood_aoi.iloc[0]['geometry'] 

flood_shape = flood_area.iloc[0]['geometry'] 

sos_aoi = severe_flood.iloc[0]['geometry'] 

 

# Getting OpenStreetMap data from the flooded area 

hospital = ox.geometries.geometries_from_polygon(osm_aoi, 

tags={'building':'hospital', 'amenity':'hospital'}) 

pharmacy = ox.geometries.geometries_from_polygon(osm_aoi, 

tags={'building':'pharmacy', 'amenity':'pharmacy'}) 

sos_build = ox.geometries.geometries_from_polygon(sos_aoi, 

tags={'building': True}) 

low_flood = ox.geometries.geometries_from_polygon(flood_shape, 

tags={'building': True}) 

buildings = ox.geometries.geometries_from_polygon(osm_aoi, 

tags={'building': True}) 

 

# Removing unnecessary columns 

sos_build = sos_build[['geometry', 'building', 'name']] 

low_flood = low_flood[['geometry', 'building', 'name']] 

buildings = buildings[['geometry', 'building', 'name']] 

 

# Removing buildings that are point data 

sos_build = sos_build.loc[sos_build.geometry.type=='Polygon'] 
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low_flood = low_flood.loc[low_flood.geometry.type=='Polygon'] 

buildings = buildings.loc[buildings.geometry.type=='Polygon'] 

 

# Removing the dissolve column 

del iceye_breaks['dissolve'] 

del flood['dissolve'] 

 

# Reseting the index of OSM data 

low_flood = low_flood.reset_index() 

sos_build = sos_build.reset_index() 

buildings = buildings.reset_index() 

 

# Removing duplicate buildings from low flood area 

low_flood.osmid.isin(sos_build.osmid) 

~low_flood.osmid.isin(sos_build.osmid) 

low_flood = low_flood[~low_flood.osmid.isin(sos_build.osmid)] 

 

# Removing duplicate buildings 

buildings.osmid.isin(sos_build.osmid) 

~buildings.osmid.isin(sos_build.osmid) 

buildings = buildings[~buildings.osmid.isin(sos_build.osmid)] 

buildings.osmid.isin(low_flood.osmid) 

~buildings.osmid.isin(low_flood.osmid) 

buildings = buildings[~buildings.osmid.isin(low_flood.osmid)] 

 

# Removing unnecessary columns 

del low_flood['element_type'] 

del sos_build['element_type'] 

del buildings['element_type'] 

 

RESULTS 

 

Reprojecting the data to a CRS that uses a metric system instead of degrees 

for the buffering 

hospital = hospital.to_crs(epsg=3857) 

pharmacy = pharmacy.to_crs(epsg=3857) 

 

# Calculating the centroids of all the points & polygons in the pharmacy 

dataset 

hospital['geometry'] = hospital['geometry'].centroid 

pharmacy['geometry'] = pharmacy['geometry'].centroid 

 

# Reprojecting the data back to a CRS that is better for plotting 

hospital = hospital.to_crs(epsg=4326) 

pharmacy = pharmacy.to_crs(epsg=4326) 

 

# Getting x and y coordinates of hospitals for mapping 

hospital['x'] = hospital['geometry'].apply(lambda geom: geom.x) 

hospital['y'] = hospital['geometry'].apply(lambda geom: geom.y) 

 

# Getting x and y coordinates of pharmacies for mapping 

pharmacy['x'] = pharmacy['geometry'].apply(lambda geom: geom.x) 

pharmacy['y'] = pharmacy['geometry'].apply(lambda geom: geom.y) 
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# Creating a list of coordinate pairs 

hospitals = list(zip(hospital['y'], hospital['x'])) 

pharmacies = list(zip(pharmacy['y'], pharmacy['x'])) 

 

# Adding icon columns for kepler gl visualization later on 

hospital['icon'] = 'plus-alt' 

pharmacy['icon'] = 'pin' 

 

# Setting a coordinate system to the data 

iceye_breaks.crs = 'EPSG:4326' 

 

# Function modified from: https://gis.stackexchange.com/questions/429601/ 

def findtheutm(aGeometry): 

    """A function to find a coordinates UTM zone""" 

    x, y, parallell, latband = utm.from_latlon(aGeometry.centroid.y, 

aGeometry.centroid.x) 

    if latband in 'CDEFGHJKLM': 

#https://www.lantmateriet.se/contentassets/379fe00e09d74fa68550f4154350b047

/utm-zoner.gif 

        ns = 'S' 

    else: 

        ns = 'N' 

    crs = "+proj=utm +zone={0} +{1}".format(parallell, ns) 

#https://gis.stackexchange.com/questions/365584/convert-utm-zone-into-epsg-

code 

    crs = CRS.from_string(crs) 

    _, code = crs.to_authority() 

    return int(code) 

 

epsg = findtheutm(iceye_breaks.geometry.iloc[0]) 

 

# Calculating the area of flood extents in km2 

iceye_breaks['area'] = iceye_breaks.to_crs(epsg).area / 10**6 

 

# Creating a new column 

iceye_breaks['flood_depth'] = '' 

 

# Creating labels for the flood depths of the different flood classes 

iceye_breaks.loc[0, 'flood_depth'] = '0 ≥ 0.1 meters' 

iceye_breaks.loc[1, 'flood_depth'] = '0.1 ≥ 0.25 meters' 

iceye_breaks.loc[2, 'flood_depth'] = '0.25 ≥ 0.5 meters' 

iceye_breaks.loc[3, 'flood_depth'] = '0.5 ≥ 1 meters' 

iceye_breaks.loc[4, 'flood_depth'] = '1 ≥ 2 meters' 

iceye_breaks.loc[5, 'flood_depth'] = '2 ≥ 2.5 meters' 

iceye_breaks.loc[6, 'flood_depth'] = '2.5 ≥ meters' 

 

# Barplot of people affected by flood 

fig, ax = plt.subplots(figsize=(12,10)) 

sns.barplot(y='population', x='flood_depth', palette='rocket_r', 

data=iceye_breaks, ax=ax) 

ax.set_title('Amount of people living in the flooded area according to the 

WSF2019-Pop data', fontsize=15) 
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ax.bar_label(ax.containers[0]) 

ax.set_ylabel('Population', fontsize=15) 

ax.set_xlabel('Flood depth', fontsize=15) 

 

plt.tight_layout() 

plt.savefig('flooded_population.jpg') 

 

# Printing some results 

print(len(sos_build), 'buildings in the flooded area are severely inundated 

and', len(low_flood) + len(sos_build) + len(buildings), 'buildings have 

flooded in total according to existing OpenStreetMap data.') 

print('There are',(len(pharmacy)), 'pharmacies within the flood danger 

area.') 

print('There are',(len(hospital)),'hospitals within the flood danger 

area.') 

print('The total flooded area is', iceye_breaks['area'].sum().round(2), 

'km2.') 

 

Kepler.gl 

 

from keplergl import KeplerGl 

map_1 = KeplerGl(height=1000) 

 

kepler_flood = iceye_breaks.to_json() 

sos_j = sos_build.to_json() 

low_j = low_flood.to_json() 

build_j = buildings.to_json() 

hospitals = hospital.to_json() 

pharmacies = pharmacy.to_json() 

 

map_1.add_data(data=hospitals, name='Hospitals in flood area') 

map_1.add_data(data=pharmacies, name='Pharmacies in flood area') 

map_1.add_data(data=sos_j, name='Severely inundated buildings') 

map_1.add_data(data=build_j, name='Inundated buildings') 

map_1.add_data(data=low_j, name='Slightly inundated buildings') 

map_1.add_data(data=kepler_flood, name='Flood depth') 

 

# Setting a CRS that uses meters 

flood_aoi.crs = 'EPSG:3857' 

 

# Getting the lat and lon data of building vectors for automatical zooming 

to AOI in interactive map 

flood_aoi['lon'] = flood_aoi.centroid.x 

flood_aoi['lat'] = flood_aoi.centroid.y 

 

# Getting coordinates for map zoom 

lat = flood_aoi['lat'].values[0] 

lon = flood_aoi['lon'].values[0] 

 

config = {'version': 'v1', 

 'config': {'visState': {'filters': [], 

   'layers': [{'id': '6blfkxe', 

     'type': 'icon', 
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     'config': {'dataId': 'Hospitals in flood area', 

      'label': 'Hospitals in flood area', 

      'color': [218, 0, 0], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'lat': 'y', 'lng': 'x', 'icon': 'icon', 'altitude': 

None}, 

      'isVisible': True, 

      'visConfig': {'radius': 35, 

       'fixedRadius': False, 

       'opacity': 0.8, 

       'colorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'radiusRange': [0, 50]}, 

      'hidden': False, 

      'textLabel': [{'field': None, 

        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': None, 

      'colorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear'}}, 

    {'id': 'cacpee', 

     'type': 'icon', 

     'config': {'dataId': 'Pharmacies in flood area', 

      'label': 'Pharmacies in flood area', 

      'color': [82, 163, 83], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'lat': 'y', 'lng': 'x', 'icon': 'icon', 'altitude': 

None}, 

      'isVisible': True, 

      'visConfig': {'radius': 50, 

       'fixedRadius': False, 

       'opacity': 0.8, 

       'colorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'radiusRange': [0, 50]}, 
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      'hidden': False, 

      'textLabel': [{'field': None, 

        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': None, 

      'colorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear'}}, 

    {'id': 'fnd5s2d', 

     'type': 'geojson', 

     'config': {'dataId': 'Severely inundated buildings', 

      'label': 'Severely inundated buildings', 

      'color': [245, 153, 153], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'geojson': '_geojson'}, 

      'isVisible': True, 

      'visConfig': {'opacity': 0.2, 

       'strokeOpacity': 0.8, 

       'thickness': 0.5, 

       'strokeColor': [218, 0, 0], 

       'colorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'strokeColorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'radius': 10, 

       'sizeRange': [0, 10], 

       'radiusRange': [0, 50], 

       'heightRange': [0, 500], 

       'elevationScale': 5, 

       'enableElevationZoomFactor': True, 

       'stroked': True, 

       'filled': True, 

       'enable3d': False, 

       'wireframe': False}, 

      'hidden': False, 

      'textLabel': [{'field': None, 
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        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': None, 

      'colorScale': 'quantile', 

      'strokeColorField': None, 

      'strokeColorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear', 

      'heightField': None, 

      'heightScale': 'linear', 

      'radiusField': None, 

      'radiusScale': 'linear'}}, 

    {'id': 'fr0h2g', 

     'type': 'geojson', 

     'config': {'dataId': 'Inundated buildings', 

      'label': 'Inundated buildings', 

      'color': [255, 152, 51], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'geojson': '_geojson'}, 

      'isVisible': True, 

      'visConfig': {'opacity': 0.2, 

       'strokeOpacity': 0.8, 

       'thickness': 0.5, 

       'strokeColor': [239, 93, 40], 

       'colorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'strokeColorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'radius': 10, 

       'sizeRange': [0, 10], 

       'radiusRange': [0, 50], 

       'heightRange': [0, 500], 

       'elevationScale': 5, 

       'enableElevationZoomFactor': True, 

       'stroked': True, 

       'filled': True, 
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       'enable3d': False, 

       'wireframe': False}, 

      'hidden': False, 

      'textLabel': [{'field': None, 

        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': None, 

      'colorScale': 'quantile', 

      'strokeColorField': None, 

      'strokeColorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear', 

      'heightField': None, 

      'heightScale': 'linear', 

      'radiusField': None, 

      'radiusScale': 'linear'}}, 

    {'id': 'xcowcw', 

     'type': 'geojson', 

     'config': {'dataId': 'Slightly inundated buildings', 

      'label': 'Slightly inundated buildings', 

      'color': [255, 228, 102], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'geojson': '_geojson'}, 

      'isVisible': True, 

      'visConfig': {'opacity': 0.2, 

       'strokeOpacity': 0.8, 

       'thickness': 0.5, 

       'strokeColor': [246, 218, 0], 

       'colorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'strokeColorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 

         '#FFC300']}, 

       'radius': 10, 

       'sizeRange': [0, 10], 

       'radiusRange': [0, 50], 

       'heightRange': [0, 500], 
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       'elevationScale': 5, 

       'enableElevationZoomFactor': True, 

       'stroked': True, 

       'filled': True, 

       'enable3d': False, 

       'wireframe': False}, 

      'hidden': False, 

      'textLabel': [{'field': None, 

        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': None, 

      'colorScale': 'quantile', 

      'strokeColorField': None, 

      'strokeColorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear', 

      'heightField': None, 

      'heightScale': 'linear', 

      'radiusField': None, 

      'radiusScale': 'linear'}}, 

    {'id': 'e7iibuv', 

     'type': 'geojson', 

     'config': {'dataId': 'Flood depth', 

      'label': 'Flood depth', 

      'color': [77, 193, 156], 

      'highlightColor': [252, 242, 26, 255], 

      'columns': {'geojson': '_geojson'}, 

      'isVisible': True, 

      'visConfig': {'opacity': 0.8, 

       'strokeOpacity': 0.8, 

       'thickness': 0.5, 

       'strokeColor': [119, 110, 87], 

       'colorRange': {'name': 'ColorBrewer Blues-7', 

        'type': 'singlehue', 

        'category': 'ColorBrewer', 

        'colors': ['#eff3ff', 

         '#c6dbef', 

         '#9ecae1', 

         '#6baed6', 

         '#4292c6', 

         '#2171b5', 

         '#084594']}, 

       'strokeColorRange': {'name': 'Global Warming', 

        'type': 'sequential', 

        'category': 'Uber', 

        'colors': ['#5A1846', 

         '#900C3F', 

         '#C70039', 

         '#E3611C', 

         '#F1920E', 
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         '#FFC300']}, 

       'radius': 10, 

       'sizeRange': [0, 10], 

       'radiusRange': [0, 50], 

       'heightRange': [0, 500], 

       'elevationScale': 5, 

       'enableElevationZoomFactor': True, 

       'stroked': False, 

       'filled': True, 

       'enable3d': False, 

       'wireframe': False}, 

      'hidden': False, 

      'textLabel': [{'field': None, 

        'color': [255, 255, 255], 

        'size': 18, 

        'offset': [0, 0], 

        'anchor': 'start', 

        'alignment': 'center'}]}, 

     'visualChannels': {'colorField': {'name': 'flood_depth', 

       'type': 'string'}, 

      'colorScale': 'ordinal', 

      'strokeColorField': None, 

      'strokeColorScale': 'quantile', 

      'sizeField': None, 

      'sizeScale': 'linear', 

      'heightField': None, 

      'heightScale': 'linear', 

      'radiusField': None, 

      'radiusScale': 'linear'}}], 

   'interactionConfig': {'tooltip': {'fieldsToShow': {'Hospitals in flood 

area': [{'name': 'addr:street', 

        'format': None}, 

       {'name': 'name', 'format': None}, 

       {'name': 'name:en', 'format': None}], 

      'Pharmacies in flood area': [{'name': 'addr:street', 'format': None}, 

       {'name': 'name', 'format': None}, 

       {'name': 'name:en', 'format': None}], 

      'Severely inundated buildings': [{'name': 'name', 'format': None}], 

      'Inundated buildings': [{'name': 'name', 'format': None}], 

      'Slightly inundated buildings': [{'name': 'name', 'format': None}], 

      'Flood depth': [{'name': 'area', 'format': None}, 

       {'name': 'flood_class', 'format': None}, 

       {'name': 'flood_depth', 'format': None}, 

       {'name': 'population', 'format': None}]}, 

     'compareMode': False, 

     'compareType': 'absolute', 

     'enabled': True}, 

    'brush': {'size': 0.5, 'enabled': False}, 

    'geocoder': {'enabled': True}, 

    'coordinate': {'enabled': True}}, 

   'layerBlending': 'normal', 

   'splitMaps': [], 

   'animationConfig': {'currentTime': None, 'speed': 1}}, 
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  'mapState': {'bearing': 0, 

   'dragRotate': False, 

   'latitude': lat, 

   'longitude': lon, 

   'pitch': 0, 

   'zoom': 10.650982495801145, 

   'isSplit': False}, 

  'mapStyle': {'styleType': 'satellite', 

   'topLayerGroups': {}, 

   'visibleLayerGroups': {'label': True, 

    'road': True, 

    'border': False, 

    'building': True, 

    'water': True, 

    'land': True, 

    '3d building': False}, 

   'threeDBuildingColor': [9.665468314072013, 

    17.18305478057247, 

    31.1442867897876], 

   'mapStyles': {}}}} 

 

map_1.save_to_html(data={'Hospitals in flood area' : hospitals, 

                                   'Pharmacies in flood area' : pharmacies, 

                                   'Severely inundated buildings' : sos_j, 

                                   'Inundated buildings' : build_j, 

                                   'Slightly inundated buildings' : low_j, 

                                   'Flood depth' : kepler_flood}, 

                   config=config, 

                   file_name='Kepler_flood_map.html') 
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