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As the amount of studies on the usage of machine learning in video games has
increased, few of these studies use curriculum learning. This thesis aims to show
the benefits that curriculum learning, even in an unoptimized state, can provide to
deep reinforcement learning when used with Unity ML-Agents toolkit. This thesis
contains two case studies of machine learning agents going through a maze. Both
of the case studies have two Agents: one which uses curriculum learning and one
which does not. First case study has the Agents use their inbuilt Vector Sensor
and in the second case study they use Raycast Perception Sensor. The data that
is gathered from the case studies is from the training of two Agent types and the
evaluation of the Agents. The results show that adding curriculum learning can
increase the stability of training and improve the results of the evaluation. On the
other hand, the training and evaluation results are unstable which makes getting
definitive results impossible.
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Videopeleissä hyödynnettävää koneoppimista käsittelevien tutkimusten määrä on
jatkanut kasvamista, mutta yhtä koneoppimisen osa-aluetta käytetään näissä tutki-
muksissa harvoin: opetussuunnitelman mukaista oppimista. Tämän tutkielman ta-
voitteena on osoittaa opetussuunnitelman käytön hyötyä syvävahvistusoppimiseen
Unity ML-Agents-työkalupakissa, vaikka kyseinen opetussuunnitelma ei ole opti-
moitu. Tässä tutkielmassa on kaksi tapaustutkimusta, joissa on kaksi koneoppimi-
sagenttia. Näiden agenttien tehtävä on löytää maalialue sokkelosta. Toisella agen-
tilla on opetussuunnitelma käytössä. Ensimmäisessä tapaustutkimuksessa agentit
käyttävät ML-Agents-työkalupakin agenteille sisäänrakennettua sensoria nimeltään
Vector Sensor ja toisessa tapaustutkimuksessa agentit käyttävät sensoria nimel-
tään Raycast Perception Sensor. Tapaustutkimuksissa data kerätään agenttien
koulutuksesta ja evaluaatiosta. Kerätyt tulokset osoittavat, että opetussuunnitel-
man mukaisen oppimisen lisääminen voi parantaa agenttien koulutuksen vakautta
ja evaluaatiossa saavutettuja tuloksia. Toisaalta molemmissa tapaustutkimuksissa
agenttien koulutus on epävakaata, mikä tekee opetussuunnitelman mukaisen oppi-
misen hyötyjen tarkan määrittelyn mahdottomaksi.

Asiasanat: Unity, opetussuunnitelman mukainen oppiminen, syvävahvistusoppimi-
nen, ML-Agents toolkit
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1 Introduction

The purpose of this thesis is to explore the effect of adding unoptimized curriculum

learning to a machine learning agent that has unoptimized hyperparameters. The

Unity project with which the study of this thesis is made can be found in GitHub

[1].

As a person who intends to enter the game development industry, I have had

interest in video game AI. One of discontent for video game players is the poor

quality of the game’s AI. One way to improve the video game AI that has been

offered is the usage of machine learning for the creation of the AI. This method

promises a way to create more complex and realistic behaviors. [2]

While this promise served as the initial spark of inspiration for this thesis, the

work that I have done for the creation of my own game served as the source from

which the concept of this thesis was born. As an independent solo developer there

are no hard deadlines for the publishing of my game, I can take as long as I want to

optimize the machine learning agent, but this is not true in more professional video

game development settings.

Often in professional video game development experience what is called "crunch",

which means a drastic overtime that goes for an extended period of time. This

practice can lead developers to make suboptimal choices in development. If these

developers use machine learning for a video game, this "crunch" can lead them into

trying to take shortcuts which can be poor optimization of the machine learning
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algorithm. This is why it is important to study how well machine learning algorithms

function in different settings when they are not optimized to those settings.

This thesis is structured into seven chapters and their descriptions are as follows:

• Chapter 2 has topics that are important to know in order to gain a better

understanding of the topic of this thesis.

• Chapter 3 describes how the training of the agents is made and how the training

and evaluation environments function.

• Chapter 4 consists of two case studies that have data from the training and

the evaluation. The contents of these case studies differ only in the way that

the machine learning agent in question gathers data from its surrounding en-

vironment.

• Chapter 5 has the analysis for the results of the training and evaluation and

it is also divided into two case studies like Chapter 4.

• Chapter 6 has my thoughts and opinions that came up during the making of

this thesis along with topics that could be pursued for further studies.

• Chapter 7 contains the final thoughts and a wrap up of this thesis.



2 Background

In this chapter, I go through certain topics that can help to provide background

information that are important to understand the topic of this thesis. These topics

are the game development environment used: Unity, machine learning, deep learn-

ing, reinforcement learning, deep reinforcement learning, curriculum learning and

the Unity ML-Agents toolkit.

2.1 Unity

Unity, previously also known as Unity3D, is a popular game engine that has been

used by both professional and amateur games. One of the reasons for Unity’s popu-

larity is its license. The license allows anyone to use Unity until their revenue and/or

funding reaches 100,000 US dollars. Only after that must the user upgrade from the

personal license. [3] This along with a large gallery of assets found on Unity’s Asset

Store and the large amount of tutorials and other help materials has also helped to

increase Unity’s popularity.

Even though Unity is mainly known for its use as a game engine, it has also

found usage in other fields. These fields range from industry to films and animation

all the way to architecture. Alongside these fields Unity is also used as a research

environment, most known for research on augmented reality, virtual reality and

machine learning. Some of this research is done by Unity Labs.
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2.2 Machine learning

According to M. I. Jordan and T. M. Mitchell [4] machine learning is a discipline

that focuses on two questions: "How can one construct computer systems that au-

tomatically improve through experience? and What are the fundamental statistical

computational-information-theoretic laws that govern all learning systems, includ-

ing computers, humans, and organizations?". Machine learning is nowadays used in

speech recognition, natural language processing, controlling robots, data processing

and other applications.

The large amount of different use cases for machine learning has been a driving

force in the creation of the different forms of machine learning. Many of the machine

learning algorithms used are focused on function approximation problems and the

machine learning algorithm’s task is to improve itself in a way that improves the

function’s accuracy.

There are three major paradigms of machine learning. These are supervised,

unsupervised and reinforcement learning. Out of these three paradigms, the interest

of this thesis is on reinforcement learning as that is the one paradigm that is used

the most when machine learning is studied with video games.

In order to learn, the machine learning algorithms can be given a volume of

training data. This data is in the form of paired input-output training samples with

the data labeled. When the data is in this form, the paradigm used is supervised

learning. [5] When the data is not labeled then the machine learning paradigm is

unsupervised learning. Reinforcement learning will be discussed in more detail later

in this chapter.
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2.3 Deep Learning

Deep learning is a type of representation learning. Representation learning refers to

methods that do not need their training data to be in the input-output pairs. The

training data can be given in a raw form from which the machine learning algorithm

can automatically start to classify these input-output pairs. When these representa-

tion learning methods are stacked to multiple layers then deep learning is born. An

important and intriguing aspect of deep learning is that these representation learn-

ing layers are not designed by humans. The layers emerge from the data through

the learning procedure.

It is due to this, that deep learning algorithms can solve problems that have been

problematic to solve with previous machine learning algorithms and deep learning

algorithms have managed to improve the results in areas like image and speech recog-

nition along with many other fields of study and usage. A more detailed description

of deep learning can be found in a paper by LeCun et al. called Deep learning [6].

One other description for deep learning comes from IBM [7]. According to IBM:

"Deep learning is a subset of machine learning, which is essentially a neural network

with three or more layers." The purpose of these neural networks is to emulate the

human brain thus allowing the algorithm to, in a sense, learn from the data it is

given. Based on these descriptions of deep learning, it is easy to conclude that

classical machine learning algorithms that are created with deep learning belong to

the unsupervised paradigm but deep learning has also been combined with semi-

supervised learning.

2.4 Reinforcement Learning

According to a book Reinforcement Learning: An Introduction [8] reinforcement

learning is a paradigm of machine learning alongside supervised and unsupervised
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learning. It can be summarized as a computational approach of learning from inter-

actions. With it the machine learning has no knowledge of the actions it has to do

and must discover the best series of actions to maximize its rewards via trial-and-

error.

One of the bigger challenges of using reinforcement learning is the trade-off be-

tween the agent trying out new sequences of actions and the agent utilizing a se-

quence of actions that it has already learned. If the agent does not try out new

sequences it cannot find new and better solutions and on the other hand if it always

tries something new a stable result is impossible. This dilemma between exploitation

of existing action sequences and exploration of new sequences is one of the major

aspects that differentiates reinforcement learning from the other two major machine

learning paradigms.

The reinforcement learning agents have all these things: explicit goals, ability to

gain data from their environment and can choose which actions to do. Alongside

the agent and the environment there are four other main subelements of the rein-

forcement learning system. These are a policy, a reward signal, a value function and

a model of the environment.

Policy’s purpose is to define the agents behavior. In a sense it maps the environ-

mental inputs to actions. A reward signal is in essence the goal in the reinforcement

learning problem. In each step that happens in training the agent is sent a single

number by the environment. That number is the reward that the agent tries to max-

imise. For this reason the agent should not have the ability to affect the generation

of the reward signal in the environment.

The value function in reinforcement learning specifies the long term reward ac-

cumulation. While the rewards are an immediate good that the agent gains, value is

the amount of reward that the agent can expect to gain in the future starting from

a specific state. This allows the agent to choose an action that has a lower reward
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so that it can take another action with much higher reward. Due to the nature

of values they are much harder to define than rewards and that is why the most

important component of reinforcement learning is an efficient method for estimating

values.

The final subelement of reinforcement learning is the model of the environment,

the purpose of which is to mimic the behavior of the environment. This model is

used as a way to decide a course of action before it is experienced. This subelement

is technically optional as there are both model-free and model-based methods of

reinforcement learning.

Reinforcement learning is well suited for usage in machine learning studies re-

garding video games as video games serve as the environment for the agent and there

always is a set of actions that can be given to the agent. Examples of reinforcement

learning’s usage with video games are the Arcade Learning Environment [9] and

Unity ML-Agents toolkit [10]. Both of the systems can utilize reinforcement learn-

ing along with multiple different auxiliary learning methods like imitation learning.

2.5 Deep Reinforcement Learning

When the concept of deep learning is combined with reinforcement learning, deep

reinforcement learning is created. According to Arulkumaran et al. in their paper A

brief survey of deep reinforcement learning [11], deep reinforcement learning solves

two major problems that are present with regular reinforcement learning algorithms:

the lack of scalability and the limitation to low-dimensional problems due to memory,

computational and sample complexity.

Deep reinforcement learning has opened the study of machine learning to research

using machine learning in video games although this is often done in order to simulate

the real world in order to see how well the machine learning agent can adapt to the

real world. One major success for deep reinforcement learning happened when an
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algorithm was created that could play a variety of video games from the game

console Atari 2600. [12] The deep reinforcement learning agent could play most of

the games better than any human could and also played almost always better than

other reinforcement learning algorithms.

There are many different deep reinforcement learning algorithms but as this

thesis uses a Proximal Policy Optimization algorithm that comes with Unity’s ML-

Agents toolkit as the machine learning algorithm of choice. I will focus on the

Proximal Policy Optimization algorithm in this chapter but there are also other

major deep reinforcement learning algorithms such as Soft Actor Critic and deep

Q-learning.

Proximal Policy Optimization was created from policy gradient methods by Ope-

nAI [13], [14]. According to OpenAI [13], these policy gradient methods, while pro-

viding good results in a variety of different environments, have major disadvantages.

They often took a long time to learn simple tasks or they require a large amount of

processing power.

Proximal Policy Optimization is called either as an algorithm or as a family of

algorithms. No matter which definition is used, the key feature is the existence

of a surrogate objective. The purpose of this surrogate objective is to regularize

large policy updates in order to have each policy update step stay close to the

previous-iteration policy. [15] To learn more about the Proximal Policy Optimization

algorithm’s inner workings, please see the paper by Schulman et al. called Proximal

Policy Optimization Algorithms [14].

One of the most successful and high-profile uses for Proximal Policy Optimization

has been when an agent created with it managed to defeat world champions from

the video game Dota 2 in a best-of-three match. It took ten months of training for

the agent to complete its training. [16]
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2.6 Curriculum Learning

Curriculum learning arose with the advent of deep neural networks as deep neural

networks were inspired from the human brain [17]. It also brought forth the question:

What if we train machine learning models like we train a human? One of the first, if

not the first to formalize easy-to-hard training strategies into what would be known

as curriculum learning [17] was Bengio et al. [18]. The original paper on curriculum

learning was not made with reinforcement learning in mind as it refers to training

on sets of data [18].

The goal of curriculum learning is to make the training faster and more stable by

usually starting the training from easier and smaller subset of the problem and then

gradually expanding the subset until it is the whole training set. [18] There also exist

strategies where this easy-to-hard strategy is reversed and is started from the harder

and larger sets [19]. One of these methods is called hard example mining where the

hardest and most difficult examples are used to train the model [20]. While these

strategies might not be considered classic curriculum learning there have been studies

where they have been categorized into the same family of strategies citeCLsurvey2.

One way to create a curriculum for reinforcement learning is proposed by Narvekar

et al. in a paper called Source Task Creation for Curriculum Learning [21]. In the

paper the method they propose, the curriculum is divided into source tasks. They

then propose methods with which these source tasks can be found. These methods

can provide a framework from which one can start designing a curriculum for a

reinforcement learning agent.

Curriculum learning can be divided into two main categories: predefined and

automatic curriculum learning. Automatic curriculum learning can then be divided

into multiple subcategories. These subcategories are Self-Paced Learning, Transfer

Teacher and Reinforcement Learning Teacher. In Self-Paced Learning the difficulty

of training is changed depending on the failures of the trained model. In Transfer
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Teacher there is an already trained model that selects the difficulty of the training

for the trained model. In Reinforcement Learning Teacher, the "teacher" machine

learning model adapts itself and the training based on the results of the trained

model. There are also other methods of automatic curriculum learning that do not

fall into these four categories. [19]

2.7 ML-Agents toolkit

Unity ML-Agents toolkit [10] is an open source project for Unity with which it is

possible to train machine learning agents within the Unity game engine and cre-

ate learning environments for those agents. The toolkit comes with two deep re-

inforcement learning algorithms which are Proximal Policy Optimization [22] and

Soft Actor-Critic [23]. There are also two imitation learning algorithms: Behavioral

Cloning [24] and Generative Adversarial Imitation Learning [25]. These can be used

with the deep reinforcement learning algorithms. The toolkit also supports Self-Play

[26] as well as curriculum learning [18].

The ML-Agents toolkit comes with a Python package that is made out of two

components. First component is a low-level API. It can be used to directly interact

with the Unity environment. The second component is an entry point that allows

the training of the Agents in the Unity environment. [27] In terms of this paper the

second component is more important.

The ML-Agents toolkit has three main components within the learning environ-

ment inside Unity:

1. Academy. The Academy’s purpose in the learning environment is to manage

different parts of the toolkit within the environment. It keeps track of the

steps taken in the simulation and manages the agents within it. [10] The

Academy also serves as an interface between the learning environment inside
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Unity and the Python API. It can store and change environmental parameters

according to instructions written in a YAML-file that is used to configure the

machine learning algorithm used. These environmental parameters can then

be used to change aspects of the environment. For example environmental

parameters could be used to make the gravity change every fixed interval.

These environmental parameters are used to create the curriculum that can

then be used in curriculum learning.

2. Agent. The Agent is the component that makes a GameObject in Unity into

a machine learning agent. The Agent contains a labeled policy. This label

is called a behavior name. If that label is not found in the specified YAML-

file default settings for the training are used. This policy can be shared with

any number of agents by having them share the behavior name. This makes

the agents share the experience data during training. There can also be any

number of different behavior names for different policies. This allows creation

of scenes with multiple agents with different purposes. [10]

3. Sensors. Sensors are components that allow the Agent to gather data from the

environment. Each Agent has an inbuilt way to gather observation data as a

float through a Vector Sensor. Along with the Vector Sensor other sensors

can be added for the Agent’s use. These sensors include Raycast Perception

Sensor for both 2D and 3D, a GridSensor, a CameraSensor along with some

other. The toolkit also allows for the creation of custom sensors for situations

which are not covered by the sensors which come with the toolkit.

When using the ML-Agents toolkit a configuration for hyperparameters is re-

quired. Hyperparameters are parameters that are used to control the learning pro-

cess. This configuration file is in YAML-format. In the configuration file the hy-

perparameters are divided into different categories, one of these categories is called
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hyperparameters. In this thesis the term hyperparameters refers to this category of

the configuration file. Some of these hyperparameters are universal in the ML-Agents

toolkit while some others are tied to the deep reinforcement learning algorithm that

the configuration file is for.

In this thesis the hyperparameters are the combination of the universal hyperpa-

rameters and the hyperparameters for the Proximal Policy Gradient algorithm. For

the description of these hyperparameters see the documentation of the ML-Agents

toolkit [28]. Their names are taken from the configuration file. The hyperparameters

are:

1. Learning rate. Universal.

2. Batch size. Universal.

3. Buffer size. Universal.

4. Learning rate schedule. Universal.

5. Beta. Proximal Policy Optimization exclusive.

6. Epsilon. Proximal Policy Optimization exclusive.

7. Lambd. Proximal Policy Optimization exclusive.

8. Num epoch. Proximal Policy Optimization exclusive.

The first four of the hyperparameters are universal in ML-Agents toolkit and are

present when either SAC or PPO algorithms are used. The beta, epsilon, lambd

and num epoch hyperparameters are specific to the PPO algorithm.

By changing these hyperparameters one can affect the speed of learning or the

randomness of the training. That is why it is important to find out good values

for them in order for the Agent that one is creating to have the desired outcome
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of training. For example, by increasing the value of the hyperparameter beta, the

"randomness" of the Agent, called entropy, decreases more slowly.

In the Unity Editor there are three components that are required for the Agent

to work. The descriptions of the components are based on the source code. These

components are:

1. BehaviorParameters’s purpose is to set the Agent’s behavior and brain. With

it one can set the amount of actions that the Agent can use and the amount

of vector observations that the Agent can receive.

2. DecisionRequester automatically requests decisions for the Agent at regular

intervals. It has two variables that can be changed in the Unity Editor. These

are the Decision period which is the amount of Academy steps between decision

requests and the other is a Boolean variable called Take Actions Between

Decisions. If this variable is set to be true the Agent repeats its previous

action until a new decision has been requested.

3. Agent is the actor that can observe its environment, and decide and execute

actions based on the observations it has gathered. In order to create an Agent,

one has to use it as a subclass for their own implementation of the Agent.

In order to follow how an active training session is going or how a completed

training session went, TensorBoard can be used. It can be started from a Python

terminal and then opened from a browser in order to view the statistics of the

trained models. Unity ML-Agents toolkit saves the statistics of the trained model

that can be viewed through TensorBoard, a TensorFlow utility. [29] With it, different

statistics from the trained models can be viewed. These statistics are categorized

into three main categories with two values that have their own categories. The main

categories are:
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1. Environment Statistics. These are statistics from the different environmental

parameters that are used in the training. By default there are three values

in this category: Cumulative Reward, which is the mean cumulative episode

reward from all of the agents in training, Lesson, which shows when the model

progresses to the next lesson during curriculum learning, and Episode Length,

which is the mean amount of steps for each episode of all of the agents.

2. Policy Statistics. This category contains a maximum of eleven different values.

The amount of values depends on which combination of machine learning

algorithms are used in the trained model. For this thesis, the only important

value is Entropy, which is the randomness of the model.

3. Learning Loss Functions. In this category there are a maximum of six values.

The amount saved for viewing depends on the combination of machine learning

algorithms.



3 Method

The goal for the study is to examine how well could curriculum learning improve

different aspects of an Agent that is simple in terms of its code by learning to find

its way through a maze with the least amount of steps. The aspects that curriculum

learning could improve are the quality of its training and the results in an evaluation.

As I had some problems with the Raycast Perception Sensor provided with

the ML-Agents toolkit during development I decided to create another version of the

Agent, which is also tested in this thesis. To achieve this goal I created a learning

environment with the help of a tutorial by Joseph Hocking [30]. This tutorial helped

me to create an environment where a maze is generated whenever the Agent has

finished a specified number of training episodes. For this study, the number of

episodes was set to five.

The reason for choosing five as the number of episodes is that it allows the

Agent to try each maze multiple times while still being a small enough number for

the Agent to experience many different mazes during training. A goal is placed at

the top right of the maze and the episode is completed, when the agent touches the

goal or after 1,000 steps have been taken. The maximum number of steps was chosen

as it is a large enough amount with which the Agent could clear the maze multiple

times thus allowing it to experiment with each episode. The learning environment

has eight instances of the Agent and each instance has a unique maze generated.
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3.1 Agent

The environment has two versions of the Agent. The first one uses Raycast Percep-

tion Sensor as the only way to gather observations of the environment. This sensor

is set to detect the walls of the maze and the goal object in straight lines that are

aligned with the Z- and X-axis. This is demonstrated in Figure 3.1. It is also set to

send five raycast results in a stack to the neural network allowing the Agent to have

a sort of memory. The second version of the Agent uses a normalized 8-bit bitmask

as a way to collect observations from its surroundings. The bitmask is created by

checking if there is a wall or a goal next to the Agent. For each of them, a bit shifted

value is then assigned and given to the sensor that comes with each Agent called

Vector Sensor.

Figure 3.1: Illustration of the direction to which the Raycast Perception Sensor

points its raycasts.

These results are then gathered and combined into a single variable, which is



3.1 AGENT 17

then divided by 255 thus normalizing it. Inspiration for usage of the bitmask was

taken from a paper by Goulart, Paes and Clua [31] where they tested different ways

to collect the observations for an agent inspired by the game Bomberman. No other

data is collected by the Raycast Perception Sensor using Agent. The bitmask

using Agent also collects its current position in relation to the environment. The

location data is not normalized. Although it could have improved the results, the

changing size of the maze during curriculum learning makes normalization of the

location data difficult and as such I decided that the improved results would not be

worth it.

Both types of the Agent contain BehaviorParameters and DecisionRequester

scripts. These two scripts are required for the successful usage of the Unity ML-

Agents toolkit. BehaviorParameters component serves as the brain of the Agent

it is connected to. The BehaviorParameters’ purpose is to set the behavior of the

Agent in the Unity Editor. In the BehaviorParameters user can set which trained

model is used and set which of the three modes is used during runtime:

1. Default mode is for training a new model and if no training is detected resets

to either of the two remaining modes.

2. Interference which only if BehaviorParameters has an active model in it as

interference uses the given model to choose the actions of the Agent.

3. Heuristics which allows the user to control the Agent in a manner that has

been specified in the Agent’s code.

The Agents have only five possible actions to take: stay put, move forward, move

back, move left and move right. These actions teleport the Agent one step to the

specified direction. The length of the movement step is equal to the width of the

maze’s corridors. The reason for this type of movement is to keep the code reserved

for movement as simple as possible and to use as few components for the Agent
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as possible. This type of movement could make the learning of the Agent more

unstable as the position of the Agent has more variance between each movement

step.

The goal for the Agents is to reach a goal object in the maze. Once the goal is

reached the Agent receives a reward which is calculated: StepsUntilZero/MaxSteps.

StepsUntilZero is a variable that counts down from the maximum number of steps

in an episode. Its value is reduced whenever a step is taken by the Agent. Reason for

this formula is to tie the Agent’s reward to the speed at which it can clear the maze.

This way the Agent can only receive bigger rewards by learning how to navigate the

mazes more efficiently.

3.2 Learning Environment

The training scene in Unity contains one main GameObject called Controller that

serves as the manager of all of the environments and has all of the learning envi-

ronment instances as child objects. The Controller manages the creation of the

mazes for each instance of the learning environment. A new maze is generated after

the Agent has finished five episodes with its current maze. The maximum size of

the mazes during learning process is 21 tiles in width and 19 tiles in height. I choose

this size because this size allows complex enough mazes to provide challenge for the

Agent while still allowing all of the different variations of the Agent to complete

some of their training sessions successfully. During curriculum learning the width

and height of the mazes are increased by four for each lesson.

All of the visible child objects that are in the learning environment objects in

the Controller are illustrated in Figure 3.2. Here are more details descriptions for

them:

1. The MazeAgent is the GameObject that houses the Agent script along with
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the sensors that it can use.

2. The background is a plane that serves to provide a cleaner background for the

mazes and makes it easier to see the maze. As the concurrent learning envi-

ronments are stacked vertically, the background also serves to block the view

of the other learning environments. Reason for stacking the environments ver-

tically is to prevent the Raycast Perception Sensor that are in the Agents

from detecting the other environments.

3. Goals GameObject serves as a container for all of the possible goals that are in

the maze. Goals object is filled whenever a new maze is generated or whenever

a Goal has been reached. The Goal GameObjects are green cubes that fill a

single tile in the maze almost completely.

4. The maze is generated by first creating the layout of the maze into a two-

dimensional integer array. The algorithm used for the creation of the maze is

not named by the tutorial [30]. After the layout of the maze is generated it is

used to create a single 3D mesh that is the complete maze.

5. Start position is an invisible GameObject that is generated to the bottom left

of the maze whenever a maze is generated. It serves as the store of the location

to which the MazeAgent is sent when a new episode begins.

The hyperparameters that are used are the same for all of the Agents but due to

the fact that the ML-Agents toolkit would automatically use curriculum learning if

it is present in the configuration file, the curriculum learning Agents had their own

configuration file. The hyperparameters used for this study can be found in Table

3.1. The curriculum learning’s lesson plan is stored in the environmental parameter

section as a subsection which is called curriculum.

The evaluation environment is made out of four mazes, one for each of the

differently trained agents. These mazes are identical so that there cannot exist a
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Figure 3.2: Illustration of the learning environment and the editor hierarchy of the

Unity scene. 1) The MazeAgent that is currently at the start position; 2) The

background; 3) The Goal; 4) The maze

possibility of a simple maze being generated for one Agent while creating a complex

maze for any other Agent. The goal of the evaluation maze is the same as in the

learning environment.

Each agent is given one minute to go through the maze once after which the

time it took for the agent to finish is recorded. This kind of evaluation environment

allows each Agent enough time to find their way through the maze as if the Agent

could not complete the maze within a minute it is unlikely to clear it at all. Going

through the maze once is enough for the evaluation as that shows that the Agent

can navigate through a maze. After all four agents have finished or the time has run

out the evaluation is restarted. These times are then written into a CSV file called

ExaminationTimes.
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Table 3.1: Sample of the important hyperparameters that are used in this paper

Hyperparameter Value

Batch Size 100

Buffer Size 1000

Learning Rate 1.0 ∗ 10−5

Beta 5.03 ∗ 10−2

Epsilon 0.1

Lambd 0.95

Num Epoch 2

Learning Rate Schedule Linear

Normalize False

Hidden Units 128

Gamma 0.99

Strength 1.0

3.3 Training structure

The training consists of episodes that the Agent completes in order to improve its

learning. These episodes consist of steps maximum amount of which can be specified

in the Unity Editor. The Academy ticks these steps and the Agent chooses an action.

How many steps are between the actions of the Agent depends on the settings set

on the Decision Requester component.

In the beginning of an episode, the Agent is sent back to the start position which

is located in the bottom left corner of the maze. From there the Agent starts to

take actions in order to reach the goal. Once the goal is reached or a 1,000 Academy

steps are taken the episode ends. When curriculum learning is used, the size of the

maze is changed but the maze changes only when the generation of a new maze is

called. This means that the Agent can have a maximum of four mazes that are of
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a smaller size than what the curriculum would dictate.

The curriculum consists of four lessons. All but the last of these lessons have

Completion Criteria as a subsection. The first lesson’s Completion Criteria

can be found in Table 4.2. For the second and third lesson’s only differences are in

the Threshold parameter in their Completion Criteria and the Value parameter

of the lesson. The Threshold parameter increases by 0.1 in each lesson. The Value

parameter is the height of the generated maze. In the first lesson the Value is 7 and

it is increased by four for each lesson and in the final lesson the Value is 19.

Table 3.2: First lesson’s Completion Criteria subsection

Parameter Value

Measure Reward

Behavior MazeAgent

Signal Smoothing True

Min Lesson Length 100

Threshold 0.2



4 Results

In this chapter I go through the data gathered from the training of the Agents and

the evaluations. Firstly, I go through how the data is gathered. After that, I go

through the data that is divided into two case studies. The Agents in these case

studies use different sensors to gather observations from the surroundings.

4.1 Evaluation setup

The parts of training data that were collected for this study were:

1. The time it took to complete the training.

2. The amount of successful training sessions.

3. Average cumulative reward for each 10,000 steps.

4. Average entropy of the model for each 10,000 steps.

The time it took to complete was taken from a Python terminal after a training

session was completed and then saved to a Google Sheets document. Also after

each training session I also recorded whether it was a success. The success rate is

given as a percentage value of the successes. The session was treated as a success, if

the Agent managed to consistently reach cumulative reward values that were larger

than zero for longer than 200,000 steps at the end of the training session. This

also tells how well the Agent has managed to learn to explore the mazes. Both the
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entropy and the cumulative reward were gathered from the model itself by using

TensorBoard.

In order to see how well the usage of curriculum learning improves the learning

of the agents, each agent runs through a series of training sessions. Each session gets

stopped when the Agent completes 1.2 million steps. I chose such a large amount

of steps due to the instability of each session. This should allow each Agent to

have enough time for their training to stabilize. During these training sessions the

ML-Agents toolkit saves many details of the training that can be used to analyze

the training’s quality. The sessions are categorized by the type of the sensor used by

the Agent and whether or not that Agent used curriculum learning in its training.

As the computer I use to run the training sessions is the same computer that

I use daily the training times have larger variance than if run with a dedicated

computer. I reran any training which suddenly took significantly longer than the

others. This usually happened when I had software running which put a lot of strain

on my computer. The computer I use for the training of the Agent has a NVIDIA

GeForce GTX 1060 6GB as a GPU, AMD Ryzen 7 1700X Eight-Core processor and

32GB of RAM. For the training, I set the inference device in the Agent’s Behavior

Parameters component to default which defaults to Burst. Burst is the newer

method of using the computer’s CPU for training. The other options are using the

GPU or the legacy CPU inference device.

4.2 Results

4.2.1 Case Study 1

The first case study consists of the comparison of the results between using curricu-

lum learning and not using it in the Vector Sensor using Agents hereafter called

Vector Agents. Neither of the Vector Agents managed to successfully complete all
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of their training sessions but the Vector Agent using curriculum learning managed

to complete significantly more of its training sessions successfully. With curriculum

learning the success rate of training is 87.5% and without curriculum learning the

success rate is 40%. The training of the Vector Agent without using curriculum

learning took 48 minutes, 37 seconds and when using curriculum learning took 46

minutes, 37 seconds.

Vector Agent without curriculum learning

Most of the failures of the Vector Agent not using curriculum learning become

apparent once at least 200,000 steps have been completed. If the Vector Agent’s

cumulative reward value hits zero at or before 200,000 steps, the Vector Agent can

not recover and continues to gain no cumulative reward. However, a couple of times

Vector Agent’s cumulative reward hit zero after a period of otherwise successful

training. Despite this these Vector Agents recovered from the period of zero cumu-

lative reward and managed to complete the training successfully if the period was

shorter than 200,000 steps.

The average cumulative reward of the Vector Agent without curriculum learn-

ing increases as the amount of steps increases when accounting the failed training

sessions and continues to increase slightly until the end of the training. In the be-

ginning the cumulative reward average is below 0.03 with a value of 0.026. This

average cumulative reward looks quite stable but the reward value never increases

above 0.1 even though during training the Vector Agent’s cumulative reward values

reached above 0.3 and even above and often are in between 0.2 and 0.3. This is due

to the low success rate of training when not using curriculum learning. At the end

of the training the average cumulative reward has a value of 0.08.

When the failed training sessions are not accounted for the average, the cumu-

lative reward values are much more unstable and the increase of the cumulative
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reward with increase of the steps taken is much more clear. At the beginning the

average cumulative reward without failures is 0.045. When viewed this way the

average cumulative reward becomes too unstable to see any clear increase in value

after 600,000 steps and the average stays on both sides of 0.2. At the end of training

the average cumulative reward is 0.208. Both of these averages can be found in

Figure 4.1.

Figure 4.1: Average cumulative reward of the Vector Agents without curriculum

learning with and without the failed training sessions

The average entropy for the Vector Agent without curriculum started at 1.450

and increased to 1.558 where it then stabilized at 100,000 steps with a slight down-

wards trend. From there the average entropy slowly decreases and at 600,000 steps

the average entropy starts to decrease more rapidly. At the end of the training the

average entropy has fallen to 1.481 with a clear downwards trend.

When the failed training sessions are removed from the average, the average
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entropy starts lower than the total average and is 1.422. Then the average entropy

rises and reaches its peak at 170,000 steps with a value of 1.558 but starts to decrease

immediately after. This downwards trend continues until the end of the training and

starts to decrease more rapidly at 960,000. At the end of the training the average

entropy reaches 1.376. Both of these averages can be found in Figure 4.2.

Figure 4.2: Average entropy of the Vector Agents without curriculum learning with

and without the failed training sessions

Vector Agent with curriculum learning

For the Vector Agent using curriculum learning it is harder to spot the step count

from which the training can be considered a failure as only five out of the forty

training sessions were failures. After 320,000 steps every failed training session

starts to have no cumulative reward and does not recover except for one successful

training session where it managed to recover at 810,000 steps.
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The average cumulative reward when using curriculum learning starts at just

below 0.4 at a value of 0.3996 and starts to rapidly decrease due to the complexity

of the maze increasing quickly and reaches its bottom at 150,000 steps with a value

of 0.117. After this the average cumulative reward starts to increase and starts

to stabilize to a value below 0.2 at around 400,000 steps. The average cumulative

reward finished at a value of 0.173.

When the failed training sessions are not counted in the average, the average

cumulative reward is similar to the total average but contains slightly higher reward

values. At the start the average cumulative reward is at 0.401 and starts to decrease

reaching the lowest point at 150,000 steps with a value of 0.111. From there the

average cumulative reward starts to increase and fluctuates on the both sides of

0.2 peaking with a value of 0.253 at 870,000 steps. At the end of the training the

average cumulative reward is just below 0.2 with the value of 0.197. These values

can be seen in Figure 4.3.

The average entropy for the Vector Agent using curriculum learning starts at

1.543 and slowly rises reaching its peak at 260,000 with a value of 1.545. From that

point the average entropy starts to decrease. At 680,000 the average entropy starts

to increase again reaching its peak at 710,000 with a value of 1.474. After that the

entropy continues to decrease reaching a value of 1.363 at the end.

Without the failed training sessions the average entropy follows closely the aver-

age entropy of all of the training sessions starting with a value of 1.541 and starts to

increase. This increase reaches its peak at 180,000 with a value of 1.544 and stays

at the same level until 260,000 steps are reached after which the average entropy

starts to decrease. As with the average entropy of all of the training sessions the

decrease in average entropy stops at 680,000 with a value of 1.456 and reaches its

peak at 710,000 with a value of 1.461. Afterwards the average entropy continues to

decrease and at the end reaches a value of 1.338. These values can be seen in Figure
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Figure 4.3: Average cumulative reward of the Vector Agents with curriculum learning

with and without the failed training sessions.

4.4.

4.2.2 Case Study 2

The second case study consists of the comparison of Raycast Perception Sensor

using Agents hereafter called Raycast Agents when curriculum learning was used

and when it was not used. When curriculum learning is used the Raycast Agent

completes all of its training sessions successfully while when not using curriculum

learning results in some of the training sessions to be completed unsuccessfully. The

resulting success rate when not using curriculum learning is 77.5%. The training of

the Raycast Agent without using curriculum learning took 55 minutes, 53 seconds

and when using curriculum learning took 56 minutes, 37 seconds.
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Figure 4.4: Average entropy of the Vector Agents with curriculum learning with and

without the failed training sessions

Raycast Agent without curriculum learning

The point from which the Raycast Agent not using curriculum learning can no longer

recover and succeed in its training is difficult to spot as many successful training

sessions go for a long time with no cumulative reward. One of these sessions started

to succeed in its training episodes after failing for 830,000 steps.

At the start of the training the average cumulative reward of all of the training

sessions is 0.0008. The average cumulative reward then stays at really small values

until at 100,000 steps with a value of 0.008 and after which the average cumulative

reward starts to steadily increase until at 700,000 with a value of 0.210. After this

point the average cumulative reward shows no clear increase and starts to become

unstable fluctuating between 0.161 and 0.226 with a final value of 0.187.

When the failed training sessions are taken away from the average cumulative
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reward starts at 0.001. The average cumulative reward stays low until at 100,000

with a value of 0.010 when the average cumulative reward starts to increase. This

increase stops at 700,000 steps when it has a value of 0.271 and the average cumula-

tive reward starts to become unstable and stays as such until the end. During this

period the average cumulative reward fluctuates between 0.207 and 0.292. In the

end the average cumulative reward reaches a value of 0.242. These values can be

seen in Figure 4.5.

Figure 4.5: Average cumulative reward of the Raycast Agents with curriculum learn-

ing

The average entropy of the Raycast Agent not using curriculum learning with all

of the training sessions starts at 1.609 and starts to slightly decrease. The decrease

of the average entropy increases at 190,000 steps with a value of 1.598. Once 800,000

steps are reached the average entropy starts to decrease slower. At this point the

average entropy is 1.483. The decrease of average entropy continues to slow down
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until the end. The final value of the average entropy of all of the training sessions

is 1.461.

When the failed training sessions are removed from the average entropy it starts

at 1.609. It then starts to slowly decrease. At 190,000 steps with a value of 1.600

the average entropy starts to decrease faster and continues to decrease with this new

rate until 800,000 steps when the average entropy reaches a value of 1.456. This

slower descent of the average entropy continues to the end. The final value of the

average entropy without failed training sessions is 1.428. Both of these can be seen

in Figure 4.6.

Figure 4.6: Average entropy of the Raycast Agents with curriculum learning

Raycast Agent with curriculum learning

When using curriculum learning in the training of Raycast Agent the average cumu-

lative reward starts with a high value of 0.566 but starts to decrease shortly after
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the beginning reaching its lowest value at 50,000 steps with a value of 0.210. After

this the average cumulative reward varies until at 140,000 when the value reaches

0.361 and starts to then decrease in a stable manner. At 230,000 steps the decrease

of the average cumulative rewards stops at a value of 0.244. After this point the

average cumulative reward stay stable until after 100,000 steps after which the av-

erage cumulative reward shows greater variance reaching values between 0.222 and

0.287. At the end of the training the average cumulative reward is at 0.250. This

can be found in Figure 4.7.

Figure 4.7: Average cumulative reward of the Raycast Agents with curriculum learn-

ing

The average entropy of the Raycast Agent using curriculum learning starts at

1.609 and starts to decrease at a slow pace until 80,000 steps with a value of 1.604

after which the average entropy starts. The decrease in entropy starts to slow down

at 330,000 steps with a value of 1.471. After this point the average entropy starts to
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slightly increase reaching a value of 1.465 at 580,00 steps. Once this small increase

has stopped the average entropy continues to decrease until the end reaching a value

of 1.438. This can be seen in Figure 4.8

Figure 4.8: Average entropy of the Raycast Agents with curriculum learning

4.2.3 Evaluation results

The criteria for an Agent to be chosen for the evaluation is that it has the lowest

entropy of the successful training sessions. The evaluation of the Agents is repeated

for a total of two hundred times and out of the 40 training sessions completed for

each Agent the Agent with the lowest entropy value at the end of training and has

completed the training successfully is selected to complete the evaluation. From the

evaluation three data points are collected from the four different Agent variations.

These data points are:
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1. Average completion time of the evaluation.

2. Average completion time of the evaluation without the failed evaluations counted.

3. Success rate of the evaluation.

These data points are collected from a CSV-file created in the evaluation envi-

ronment. The CSV-file contains the time it took for each Agent to complete the

evaluation and the number of the round. The success rate is calculated from the

completion times by dividing the successful evaluations with the total evaluation

count. Evaluation is counted as a success if the time it took to complete is less than

one minute.

The success rate for the Vector Agent when not using curriculum learning is

31.5% and when curriculum learning is used the success rate is 22.5%. For the

Raycast Agent the success rate when not using curriculum learning is 52% and

when the curriculum learning is used the success rate is 53.5%.

The average completion time of the evaluation for the Vector Agent when not

using curriculum learning is 47.07 seconds and when the failed evaluations are taken

out of the average the time is 18.97 seconds. When curriculum learning is used with

the Vector Agent the average completion time of the evaluation is 49.94 seconds

and when the failed evaluations are taken out the average completion time is 15.30

seconds.

For the Raycast Agent when not using curriculum learning the average comple-

tion time of the evaluation is 40.39 seconds and when the failed evaluations are taken

out of the average the completion time is 22.29 seconds. When curriculum learning

is used the average completion time of the evaluation is 38.89 seconds and when the

failed evaluations are taken out of the average the completion time is 20.53 seconds.
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4.3 Summary

The training sessions for Vector Agent that does not use curriculum learning takes

on average 48 minutes, 37 seconds and has a success rate of training is 40%. For the

Vector Agent that uses curriculum learning, the training sessions take on average 46

minutes, 37 seconds and the success rate of training is 87.5%. The Raycast Agent

that does not use curriculum learning takes on average 55 minutes, 53 seconds to

complete its training sessions and has a 77.5% success rate of training. For the

Raycast Agent that uses curriculum learning, the training sessions take on average

56 minutes, 37 seconds and it has a success rate of training of 100%. These can also

be seen in Table 4.1 and Table 4.2.

Table 4.1: Raycast Agent data gathered from the evaluation

Type Raycast Raycast Curriculum

Training times 55 minutes, 53 seconds 56 minutes, 37 seconds

Training success rate 77.5% 100%

Evaluation times 22.29 seconds 20.53 seconds

Evaluation success rate 52% 53.5%

Table 4.2: Vector Agent data gathered from the evaluation

Type Vector Vector Curriculum

Training times 48 minutes, 37 seconds 46 minutes, 37 seconds

Training success rate 40% 87.5%

Evaluation times 18.97 seconds 15.30 seconds

Evaluation success rate 31.5% 22.5%

In the first case study, the average cumulative reward without the failed training

sessions for the Vector Agent that does not use curriculum learning starts at just

below 0.05 with a value of 0.045 increasing from there, and at the end of the training
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the value is 0.208. The average entropy without the failed training sessions for the

Vector Agent that does not use curriculum learning starts at 1.421 and then quickly

increases and after the value has started to plateau starts to decrease and ends with

a value of 1.376.

For the Vector Agent that uses curriculum learning, the average cumulative

reward without the failed training sessions starts at a value of 0.401, and at the end

of the training, the average cumulative reward has a value of 0.197. The average

entropy without the failed training sessions for the Vector Agent that uses curriculum

learning starts at 1.541 and ends with a value of 1.338.

In the second case study, the average cumulative reward for the Raycast Agent

that does not use curriculum learning starts at a value of 0.0008 and reaches a value

of 0.242 at the end of the training. For the average entropy, the start value is 1.609

and after a smooth decrease the average entropy’s final value is 1.428.

The Raycast Agent that uses curriculum learning has a value of 0.566 for the

average cumulative reward at the beginning and then decreases really quickly and

after 230,000 steps the decrease ends. The final value of the average cumulative

reward is 0.250. The average entropy of the Raycast Agent that uses curriculum

learning starts at a value of 1.609 and starts to quickly decrease and at around

330,000 steps the decrease starts to slow down. In the end the value of average

entropy is 1.438.

In the evaluation, the Vector Agent that does not use curriculum learning has an

average completion time of the successful evaluations of 18.97 seconds and completes

31.5% of the evaluations. The Vector Agent that uses curriculum learning completes

the successful evaluations on average in 15.30 seconds and has a success rate of

22.5% of the evaluations. The Raycast Agent that does not use curriculum learning

completes the successful evaluations on average in 22.29 seconds and completes 52%

of the evaluations. The Raycast Agent that uses curriculum learning has an average
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completion time of 20.53 seconds for the successful evaluations and completes 53.5%

of the evaluations successfully. These can also be seen in Table 4.1 and Table 4.2.



5 Analysis

In this chapter, I compare and analyze the results gained in both of the case studies.

The two case studies are not compared to each other. When comparing the results

of the successful training sessions only a subset of the results are taken. This subset

is the size of successful training sessions of the Agent not using curriculum learning.

This is done in order to make the results more comparable. From the Agent that are

using curriculum learning the training sessions that are removed are the ones that

have the lowest cumulative reward at the end of the training. From the remaining

training sessions both the cumulative reward and entropy are collected and then put

into an average.

The results from both of the case studies show that implementing an intentionally

unoptimized curriculum learning in the training stabilized the training significantly

and increased the success rate the Agent has in the evaluation and in training. The

curriculum used in this study is taken almost completely from the documentations

of the ML-Agents toolkit. Only the threshold values and the measure are changed

from the original example provided in the documentation.

In both case studies, the average cumulative reward started to become unstable

after 600,000 steps. In this context, unstable means that the difference between

nearby values is high. This can be more clearly seen when the failed training sessions

are removed. Even in the case of the Raycast Agent with curriculum learning the

average cumulative reward starts to fluctuate more after the 600,000 steps mark.
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This indicates that 600,000 steps is a good cutoff point for the training of these

Agents as continuing the training for any longer will only slightly improve the results.

5.1 Case Study 1

5.1.1 Training results

In the first case study, the Vector Agent without curriculum learning the average

cumulative reward stays below 0.1 through the training due to the large number of

failed training sessions but it seems to try and reach 0.1. When the failed training

sessions are removed from the average the cumulative reward values start to reach

a value of 0.2 and are quite unstable towards the end of the training. This is likely

due to the prevalence of cumulative reward values of zeros that are in the successful

training sessions of the Vector Agent. This makes the early parts of the average

look more stable.

When viewing the average cumulative reward for the Vector Agent not using

curriculum learning the value of the average continues to increase right up to the

end of the training. This indicates that the average cumulative reward has yet to

completely stabilize but as the increase is quite slow and unstable, it seems unlikely

that prolonging the training any more would provide much better results.

When curriculum learning is used the average cumulative starts to decrease right

from the start and the reason for this behavior is due to the way rewards are given

to the Agent. As stated in Chapter 3 the reward is calculated by dividing the

maximum steps for an episode with the amount of steps taken at that point. This

results in the Agent gaining higher rewards at the beginning as the maze is smaller

and simpler.

The average cumulative reward’s value with the Vector Agent using curriculum

learning stabilizes at around 400,000 at around a value of 0.2. This indicates that
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when using curriculum learning the Vector Agent reaches its maximum reward value

much earlier than when not using curriculum learning. This is in accordance with

one of the hypotheses given by Bengio et al. [18], which states that the training of

the machine learning model would be faster when using curriculum learning.

Unlike when curriculum learning was not used, the value of average cumulative

reward starts to become unstable after 800,000 steps and not after 600,000 steps.

This also strengthens the hypothesis that using curriculum learning makes the train-

ing more stable.

As stated earlier, the set of results for the Vector Agent using curriculum learning

is reduced to be the same size as with the version of the Agent not using curriculum

learning. In this case, the size of the subset of samples is 16. When comparing the

average cumulative reward of both of the Vector Agents, the comparison shows that

when curriculum learning is implemented in the Vector Agent the average cumulative

reward values are consistently above the Vector Agent not using curriculum learning.

This indicates that curriculum learning even in an unoptimized state can increase

the cumulative reward that an Agent receives during training.

With only a subset of the successful training sessions of the Vector Agent using

curriculum learning, they look more unstable at the end than with the Vector Agent

not using curriculum learning. But as with the whole set of successful training

sessions, the instability of the average cumulative reward of the Vector Agent using

curriculum learning starts to become apparent only after 800,000 steps. The averages

for both sets of the average cumulative reward can be seen in Figure 5.1.

When looking at the average entropy of the Vector Agent not using curriculum

learning, it starts at a value that is almost lower than where it ends up in. This

behavior where the entropy starts at a lower value and then increases happens with

almost all of the training sessions and the reason for its appearance is unclear. I

can only speculate for the reason of this kind of behavior and finding out why it
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Figure 5.1: Average cumulative reward for both of the Vector Agents with a sample

size of 16.

happened is left for further studies. Most likely the reason for this kind of behavior

is in some way due to the simplicity of the Vector Agent that only happens when it

is put into the maximum sized training maze.

In the average entropy for the Vector Agent not using curriculum learning, there

is no clear sign of entropy becoming more unstable. This might be because the

average entropy is somewhat unstable for the whole duration of the training and as

such more instability is difficult to notice. This is shown by the average entropy’s

downward trend is not smooth meaning the Agent is reducing the randomness of its

actions more often than it is increasing it. Also the average entropy stays quite high

meaning in the end of the training the Agent is not sure which action is correct and

still chooses options quite randomly.

When curriculum learning is used a clear downwards trend is seen in the aver-
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age entropy and this time the average entropy becomes clearly more unstable after

700,000 steps. It even starts to go upwards before 600,000 steps are reached. The

reason for this is a large amount of training sessions which have suddenly increased

their entropy around that point. The reason for this is unclear but it might be a

result of a series of mazes that were too difficult or complex for the Vector Agent to

successfully complete.

When comparing both of the Vector Agents’ average entropy, the Vector Agent

using curriculum learning has its average entropy almost for all of the training lower

than with the Vector Agent not using curriculum learning. This indicates that

when curriculum learning is used the Vector Agent’s actions are less random but

only slightly as the difference in the values is less than 0.1. The averages for both

sets of the average entropy can be seen in Figure 5.2.

Figure 5.2: Average entropy for both of the Vector Agents with a sample size of 16.

Even though the difference in average cumulative reward and entropy are low
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between the two Vector Agents, the Vector Agent which used curriculum learning

managed to have a significantly higher success rate of training. It has a success

rate of 87.5% and when curriculum learning is not used the success rate is 40%.

This indicates that curriculum learning can increase the probability of a training

session ending with an Agent learning a functional strategy even if the Agent does

not appear to fare better in the training data.

5.1.2 Evaluation

The Vector Agent that uses curriculum learning has reached better results in both

average cumulative reward and average entropy than the Vector Agent that does not

use curriculum learning. This indicates that when curriculum learning is used the

evaluation results will be better than when curriculum learning is not used although

the training data from both Vector Agents are unstable which makes each training

session’s result in the evaluation hard to predict.

In the evaluation of the training results, the Vector Agent which used curriculum

learning has a success rate of 22.5% and when curriculum learning is not used

the success rate is 31.5%. When compared to the increase of the success rate of

training, the Vector Agent using curriculum learning actually fared worse in terms

of the success rate of the evaluation. This could indicate that the introduction of

curriculum learning to the Vector Agent actually worsens the performance of the

Agent but this can also indicate that using entropy as a sole factor for deciding

which Agent to use can lead to the utilization of a subpar Agent.

In terms of the average completion time of the evaluation from total, the Vector

Agent not using curriculum learning managed to clear the evaluation almost three

seconds faster than the Vector Agent using curriculum learning but when the failed

evaluations are taken out of the total the Vector Agent using curriculum learning is

a little over three and a half seconds faster.
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In order to understand this behavior I firstly compare only the 45 best from

both of the Vector Agents. This amount is chosen because that is the amount of

successful evaluations that the Vector Agent using curriculum learning has. With

this limitation set the Vector Agent which does not use curriculum learning has an

average completion time of 9.72 seconds and when curriculum learning is used the

average completion time stays the same.

This leaves a question regarding the evaluation results: How does the Vector

Agent that does not use curriculum learning have better total average completion

time but lower average completion time without failed evaluations? In order to

answer them I collect two additional data points from the evaluation data. These

data points are:

1. Amount of evaluations that are under 15 seconds

2. Amount of successful evaluations that are over 15 seconds

The Vector Agent not using curriculum learning has 36 evaluations that are under

15 seconds and with the Vector Agent using curriculum learning the amount is 29.

This is the reason why the Vector Agent not using curriculum learning has almost

six seconds faster average evaluation completion time than the Vector Agent using

curriculum learning as 80% of the evaluations used in the equalized comparison can

be considered as fast completions of the evaluation for the Vector Agent not using

curriculum learning.

On the other hand, out of all the successful evaluations the Vector Agent that uses

curriculum learning has only 16 evaluations that are over 15 seconds. This comes out

as this Vector Agent has 35.6% of the successful evaluations that are longer than

15 seconds. The Vector Agent not using curriculum learning has 26 evaluations

that are completed in over 15 seconds. This comes out as the Vector Agent not

using curriculum learning has 42.9% of the successful evaluations that are longer
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than 15 seconds. This means while the Vector Agent that does not use curriculum

learning has more quickly completed evaluations these make up a smaller part of the

successful evaluations than the Vector Agent that uses curriculum learning indicating

that this specific Vector Agent that does not use curriculum learning is better suited

for a larger variety of mazes while this specific Vector Agent that uses curriculum

learning is on average better at the mazes it has completed.

5.2 Case Study 2

5.2.1 Training results

The average cumulative reward for the Raycast Agent starts at almost zero but

then starts a clear climb upwards with the climb plateauing to around 0.25. After

600,000 steps the values of the average cumulative reward starts to become more

and more unstable and after 800,000 steps the average starts to reach maximum

instability. This reinforces the notion that a good stopping point for the training of

these Agents is at around 600,000 steps and at latest 800,000 steps. This instability

is much clearer when the failed training sessions are removed from the average.

As there are no failed training sessions for the Raycast Agent that uses curriculum

learning, it continues to reinforce the result that introduction of curriculum learning

will stabilize the training results. The quick drop in the average cumulative reward

at the beginning is due to the way rewards are given to the Agent as it gives much

higher rewards when a maze is smaller. The instability that is evident in the average

cumulative reward before 200,000 steps are reached is due to the different Agents

having reached a different part of the curriculum. After 200,000 steps, most of the

training sessions have reached the final lesson of the curriculum and at 300,000 steps

every training session has reached the final lesson.

The average cumulative reward of the Raycast Agent that uses curriculum learn-
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ing starts to plateau at around 300,000 steps around a reward value of 0.25. Slightly

after 400,000 steps are reached there is a period of instability after which the average

cumulative reward values start to stabilize. The average starts to slightly destabi-

lize again after 600,000 steps are reached with the instability becoming clearer after

800,000 steps and becoming even stronger once 1,000,000 steps are reached. This

indicates a good cutoff point for the training of somewhere between 400,000 and

600,000 steps. Continuing the training after 600,000 steps are reached would only

serve to destabilize the training while not providing any increase in the cumulative

reward values that the Raycast Agent would gain.

Changing the cutoff point would also require more information than just what is

available with this will require optimization of the training’s hyperparameters as the

entropy of the Agent might not reduce at an acceptable pace in a shorter training

making the Agents actions too random.

When comparing the two Raycast Agents’ average cumulative rewards the Ray-

cast Agent that uses curriculum learning has its successful training sessions reduced

to 31. In the comparison it becomes clear that the Raycast Agent that uses cur-

riculum learning plateaus at around 0.25 almost 400,000 steps before the Raycast

Agent that does not use curriculum learning but on the other hand the Raycast

Agent that uses curriculum learning has more instability in the earlier portions of

the training. This indicates that instability starts to occur in an increasing manner

after a certain amount of steps from which the cumulative rewards start to plateau.

The graph with both of the Raycast Agents’ average cumulative reward compared

can be found in Figure 5.3.

The average entropy of the Raycast Agent that does not use curriculum learning

shows no signs of instability and after a plateauing until at around 200,000 steps

it starts a steady decrease right up until the end of training where it once again

starts to plateau. As also seen in the first case study it seems that even though the
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Figure 5.3: Average cumulative reward for both of the Raycast Agents with a sample

size of 31.

average cumulative reward starts to become unstable after a certain point, no such

behavior is to be seen in the average entropy.

For the Raycast Agent that uses curriculum learning, the average entropy starts

to decrease quickly in the beginning and then at around 400,000 steps the average

entropy starts to plateau with no significant changes until after 600,000 steps. At

that point the average entropy starts to once again decrease but this time slowly.

This reinforces the notion that the cutoff point for training is somewhere between

400,000 and 600,000 steps.

When comparing the two Raycast Agents’ average entropy, the size of the used

subset is 31. With this it is clear to see the difference in average entropy. While the

Raycast Agent that uses curriculum learning reaches its plateau much earlier both

of their average entropy values reach around the same value in the end. This value
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is still quite high meaning the Raycast Agents have a high randomness of actions.

This comparison can be seen in Figure 5.4. With these results it is clear that in case

of the Raycast Agent, using curriculum learning makes the cumulative reward gain

more stable and makes the training take significantly less time.

Figure 5.4: Average entropy for both of the Raycast Agents with a sample size of

31.

5.2.2 Evaluation

Overall the difference between the training data of both of the Raycast Agents is

greatly different shortly after the beginning of the training but when the training

starts to reach its end both the average cumulative reward and average entropy start

to converge to the same point meaning both of the Raycast Agents should have quite

similar evaluation results.

In the evaluation of the training results of the Raycast Agents, the Raycast Agent
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that uses curriculum learning has a success rate of 53.5% and the Raycast Agent

that does not use curriculum learning has a success rate of 52%. As can be clearly

seen with these success rates, there is not much of a difference between the two with

a 1.5 percentage point difference in favor for the Raycast Agent that uses curriculum

learning.

This small difference continues with the average completion times of the evalua-

tions as the difference in total average completion times is only 1.51 seconds in favor

of the Raycast Agent that uses curriculum learning. When the failed evaluations are

taken out from completion time average the difference is 1.76 seconds in the same

direction as before.

When the amount of successful evaluations is made to similar sizes, the difference

in completion times becomes bigger but still stays quite small. In this situation the

Raycast Agent that does not use curriculum learning has the same completion time

as when the failed evaluations are removed and the Raycast Agent that uses cur-

riculum learning has a completion time of 19.49 seconds. This makes the difference

between the completion times to 2.81 seconds.

In light of this data, it is clear that despite the fact that curriculum learning

made the Raycast Agent succeed in all of the training sessions it did not make the

Raycast Agent better in a meaningful way in the evaluation. Then again this is to

be expected when looking at the average cumulative reward and the average entropy

of both of the Raycast Agents as both of those data points end up with nearly the

same values. In this case the only advantage of using curriculum learning is that

with it the training can be done in a shorter time.

5.3 Summary

The difference between using and not using curriculum learning is most clearly seen

in the training data. In the first case study, the Vector Agent that uses curriculum
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learning fares consistently better in terms of the training data indicating that cur-

riculum learning even in an unoptimized state can make the training more stable.

On the other hand, the Vector Agent that uses curriculum learning fared worse in

the evaluation in almost every way although this is most likely due to the fact that

both of the Vector Agents have high instability of their training.

In the second case study, the difference between the two types of Raycast Agents

is less clear as both the average cumulative reward and average entropy for both of

them start to converge on the same value. The main difference with the two Raycast

Agents in results of the training is that the Raycast Agent that uses curriculum

learning has its average cumulative reward and average entropy plateau much earlier

than the Raycast Agent that does not use curriculum learning. This means that

the usage of curriculum learning in this situation does not improve the quality of

the training significantly but does on the other hand shorten the time needed for

training. For the evaluation, both Raycast Agents fared similarly and the Raycast

Agent that uses curriculum learning fated only slightly better but this can also be

attributed to the individual differences that appear in each training session.



6 Discussion

In this chapter, I discuss three main topics. Firstly I will discuss what this thesis

proved and how it could be improved for further studies. Secondly I will discuss the

Unity ML-Agents toolkit’s usage in studies and video games. The final topic is about

the different ways that machine learning could be used in video game development.

6.1 Postmortem

This thesis proved that curriculum learning even in an unoptimized state helped

to stabilize the training and that it can improve the results of the trained Agent.

Although in the case of the first case study, the results of the Vector Agent’s train-

ing are too unstable to be able say with any certainty if using curriculum learning

improves the evaluation. Even if using curriculum learning would always give worse

results in the evaluation the improvements in training stability can still make im-

plementing curriculum learning be worth it in certain scenarios.

The results of this thesis highlight the importance of having hyperparameters

that are optimized for the specific scenario where it is used. Even though the results

of this thesis were positive for unoptimized curriculum learning, the final results

were still unstable in both of the case studies. Having optimized hyperparameters

and curriculum learning would have made the end result of the training stable but

that would have made the point of this thesis moot.

The fact that this study had two case studies that had different ways to gather
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observations serves to show that curriculum learning, while it often improves the

quality of the training, is not something that will guarantee that the improvements

from it will be what were expected. That is why it is important to experiment more

with curriculum learning so that best practices appear and use cases for it become

clearer.

One way that the results of this thesis could have been improved was by creating

a more complex environment. More complex in this context means that the envi-

ronment has more way for the Agent to interact with it. For example there could

have been certain tiles in the maze that stop the Agent for a certain amount of

steps. While this thesis serves as to show the effects of curriculum learning, a more

complex environment would have been a better example for someone who would

want to use machine learning for an actual video game. There is only so much that

one can learn from simple environments.

The effects of unoptimized curriculum learning would have been even better

showcased with even more case studies. There are two more sensors in the Unity

ML-Agents toolkit that could easily be added to the Agent and made into new case

studies: Camera Sensor and Grid Sensor. The reason why these were not added

to this thesis was time constraints. As stated in Chapter 3, the Agents were trained

on my only computer and the 40 training sessions that were done for one case study

took on average little over 34 and a half hours. This means that for almost three

days per one case study, I could not use my computer for almost anything else. But

as the project with which the study of this thesis was made is available in GitHub,

these additional case studies can be added later by anyone interested in studying

this topic further.
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6.2 Thoughts on Unity ML-Agents toolkit

The Unity ML-Agents toolkit is a good tool for those interested in studying machine

learning. The documentation for it are quite comprehensive but there are some

problems. One of these problems is that some parts of the documentation expect

the reader to already understand the terminology of machine learning and the some

other parts are written for someone whose just beginning to learn about machine

learning. As an example, the documentation page that contains information on

the hyperparameters [28] has parts of it written in a way that expects the reader

to already know about the inner workings of their machine learning algorithm of

choice.

If Unity ML-Agents toolkit is used in development of a product and the Agent

that is trained fails its training session irregularly can make it hard to gather mean-

ingful statistical data from the training. In this kind of situation, the entropy of

the Agent often does not decrease but instead it actually increases. If the fix is

not apparent and the lessons for the curriculum are easy to discover in the training

environment, using curriculum learning can help to debug the training. With this

I propose a topic for further studies: the usage of curriculum learning to assist in

debugging the training of a machine learning agent.

The amount of studies done using Unity ML-Agents toolkit has been increasing

over the years and will most likely to continue increasing as the toolkit improves,

however there is a lack of studies that utilize curriculum learning. This along with

the small amount of non-research related works for the toolkit made it difficult to

find support for any issues that arose during the development of the environment

and made it much more difficult to know how to analyze the results of the study.

Many of the studies that utilize Unity ML-Agents toolkit focus either on physics-

based problems like teaching the agent to walk, or on simpler game environments.

This makes it hard to utilize the toolkit in an actual game development setting. For
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many researchers in the field of machine learning, this is fine as they use the video

game environments to emulate the real world. But machine learning can be used to

improve the development and quality of video games as well but this area of study

is not as much studied.

For the usage of Unity ML-Agents toolkit for video game development, I am not

sure if it will gain mainstream adoption in its current form. As I alluded to in the

previous section, a clear set of best practices on how to optimize the hyperparameters

has to be made. This along with the need to do a lot of manual changes to the

hyperparameters also slow the adoption of the toolkit.

6.3 Usage of machine learning in video games

There are many different ways that machine learning could be utilized to improve

the quality of video games. In my opinion, the two main ways are content creation

and AI. For content creation machine learning could be utilized in a way to assist

the art teams to create variant textures from a handmade example. One example

of machine learning being used in the content creation of a video game is the game

Source of Madness in which the enemy monsters are generated with procedural

generation and are then animated using machine learning through the Unity ML-

Agents toolkit [32]. In my opinion, with Source of Madness showing the way, the

most likely usage for machine learning in video game content creation is as a tool

that assists with procedural generation.

One way that machine learning could be used in video games is as a way to create

replacements for more traditional algorithms. Just like how machine learning is used

for data analysis in fields other than video games, it can be used and might already

be used by the bigger video game developers and publishers for more traditional

data analysis roles. One interesting application for machine learning in this regard

is to use it as a way to balance matchmaking in online video games. There are
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studies and projects that try to replace traditional matchmaking systems but these

have not reached widespread adoption.

For the usage of machine learning as a way to create better AI in video games,

the majority of studies focus on creating an AI opponent for the player. While

this is an important area to improve in video games, especially in strategy games

where the AI opponents are often making poor decision and cheat their way out of

the games mechanics, there is one type of AI in video games that, in my opinion,

could benefit more from the utilization of machine learning and it is AI companions.

Many players are often frustrated by the companions that are in video games as the

companions often provide little to no assistance.

On the other hand, a good companion AI must not outshine the player. This

presents an interesting problem for the usage of machine learning as the Agent

must be proficient AI but it cannot be better than the actual player. Of course

this dynamic changes depending on the purpose of the companion AIs. For some

games and players, the playable character might serve a supporting role, improving

abilities for the companions. This might require that the Agent receives rewards

from different actions than if the Agent served as a supporting companion.

No matter for which role the AI is used for, there is a problem that comes with

using machine learning. This problem is that the machine learning agent tries to

find the most optimal way to be the role it is trained to be. This is often the desired

outcome for the agent but for a player playing against an AI that only makes optimal

choices is not a desirable outcome. This problem can also appear with companion

AIs with the companion taking optimal actions constantly making them outshine

the player. In both of these scenarios most players would not consider the game as

fun. One solution for this problem was explored by Sestini et a. [33] where they

made the AI sometimes choose actions which were not the most optimal.

One way that results from studies of machine learning in video games could be
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improved is by making the environments much more akin to an actual game. In

my opinion, it is quite clear that the learning environment for a machine learning

agent must be as close to the actual game environment as possible. If the agent

does not use any kind of visual sensors for gathering observations the graphics of

the environment do not need to be like they would be in the game but any tags or

layers that could be used must be set as if they would be for the actual game.

I believe it will still take many years until machine learning has reached widespread

adoption in the field of video games. One reason is that bigger video game devel-

opers and publishers avoid too big risks and implementing machine learning into a

video game is a big risk. This is due to the lack of examples that are made outside

of academia and research groups.



7 Conclusion

This thesis proved that using curriculum learning even in an unoptimized state will

improve the stability of the training and can result in improvements of the quality

of the results of the training. As the study in this thesis was built up from two case

studies that provided different insights. Both case studies differed only by the way

that the Agent received observations: In the first case study it was solely through the

Vector Sensor and in the second it was through the Raycast Perception Sensor.

Both case studies had the Agent go through a maze that was changed after five

training episodes had ended. These training episodes continued until 1,000 steps

were reached or the Agent had reached the goal. In both case studies the result

of the Agent were compared against the same type of Agent that had curriculum

learning implemented. The way that the curriculum was created was to make the

maze start as a small and simple maze and as the Agent learns to complete these

simpler mazes it is then made bigger and more complex.

In the evaluation of the training results each Agent had the same maze to com-

plete. Each repeat of the evaluation ran until each Agent had completed it or until

one minute had passed.The selection criteria of the Agents for the evaluation was

the lowest entropy at the end of the training and that the Agent had actually com-

pleted its training successfully. The evaluation was repeated 200 times and for each

repeat, the maze was generated again.

In terms of the hyperparameters, there were no differences between them in both
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of the case studies. The only difference in the configuration file with both the Agent

that used curriculum learning and the Agent that did not use curriculum learning

was the addition of the environmental parameters for using curriculum learning.

The hyperparameters and the environmental parameters were both based on the

examples provided in the documentation of the Unity ML-Agents toolkit.

In the first case study, the Vector Agent that used curriculum learning had

consistently higher average cumulative reward for the duration of the training and

in terms of the average entropy the Vector Agent that uses curriculum learning had

the average entropy lower for most of the training except in the beginning where the

Vector Agent that did not use curriculum learning had significantly lower average

entropy. The reason for this behavior was not discovered in this thesis. This showed

that using curriculum learning can result in improvements in the statistics of the

training.

In the second case study, the Raycast Agent that used curriculum learning fared

better only at the beginning of the training for both the average cumulative reward

and the average entropy. At the end of the training both of the Raycast Agents

had converged around the same values. The major difference between the Raycast

Agents was that when curriculum learning was used, the training could have been

stopped much earlier to achieve the same results as with the Raycast Agent that did

not use curriculum learning. This showed that in this case, the usage of curriculum

learning can result in quicker training.

For the evaluation of the first case study, the Vector Agent that did not use

curriculum learning had better average completion time from all of the evaluations

and had more successful evaluations while the Vector Agent that used curriculum

learning had better average completion when only the successful evaluations were

counted in the average. The Vector Agent that used curriculum learning had a

larger percentage of its successful evaluations take less than 15 seconds which meant
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that it had fewer mazes that it could complete but those it could, it did on average

faster than the Vector Agent that did not use curriculum learning.

The Raycast Agents in the evaluation of the second case study had results that

were as expected. The Raycast Agent that used curriculum learning was slightly

faster in terms of the average completion time. The difference in average completion

between the two Raycast Agents was slightly larger when only the successful evalu-

ations were counted in the average and the success rate was also slightly higher for

the Raycast Agent that used curriculum learning. This result was in line with the

training results for both of the Raycast Agents.

As machine learning continues to be used in a larger variety of fields, it is only a

matter of time until machine learning is widely adopted into video game development

workflows. In the end, the only question is how it will be used. It might be as an

alternate way to create the AI for a video game, as a way to automate content

creation or in some other way. The video game industry might even decide that

machine learning is not worth the effort: that the training takes too long or that

the trained Agent does not act in the desired manner. But to even reach the point

where these kinds of decisions are made, more studies and projects that create

smaller, more prototype feeling games have to be made.
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