
Testing Graphical User Interfaces with

Property-Based Testing

Master of Science Thesis
University of Turku
Department of Computing
Software Engineering
2022
Tiina Willberg-Laine

Supervisor:
Jaakko Järvi

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system

using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Tiina Willberg-Laine: Testing Graphical User Interfaces with Property-Based
Testing

Master of Science Thesis, 52 p.
Software Engineering
June 2022

Before a software product is released, it has to be veri�ed that the product works as
it should. Graphical User Interfaces (GUI) need to be tested like any other software
products. The purpose of testing GUIs is to detect defects but also unexpected
behaviour of a GUI.
In 2000 John Hughes and Koen Claessen introduced a new software testing tech-
nique: Property-Based Testing (PBT). In this testing technique the functionality of
the system under the test is de�ned as properties. Properties are like rules for the
features under test. A property de�nes a relation between input and output that
should always hold for all inputs. A property is tested by generating a large number
of inputs for which the property is tested.
The goal of this thesis is to explore if PBT is applicable to UI testing. We formulate
properties that describe the rules that a GUI should follow, then apply PBT and
investigate whether defects could be exposed this way. We also explore whether
PBT solves any of the challenges of UI testing, in particular whether test coverage
can be increased by using PBT.
As its results, this thesis shows that PBT can be applied in GUI testing and that
there are defect classes that might not be detectable by traditional testing methods,
but can be found using PBT.

Keywords: Software Testing, Property-Based Testing, Graphical User Interface

Contents

1 Introduction 1

2 Software Testing 3

2.1 The Basic Concepts of Software Testing 3

2.2 Software testing methodologies . 7

2.2.1 Levels of testing . 7

2.2.2 Mocking . 8

3 Testing User Interfaces 11

3.1 Manual User Interface Testing . 13

3.2 Automating User Interface tests . 14

3.2.1 Generative testing . 15

4 Property-Based Testing 19

4.1 The concept of Property-Based Testing 19

4.2 Property-based testing tools for JavaScript 21

4.2.1 Basic concepts of property-based testing tools 22

4.2.2 Fast-check . 23

4.2.3 JSVerify . 25

4.2.4 TestCheck . 26

i

5 Background: Technology stack 28

5.1 React JS and testing React applications 28

5.2 Jest . 31

5.3 React Testing Library . 32

5.4 Puppeteer . 32

6 Catching defects with generated event sequences and Property-

Based testing 34

6.1 Throttled search �eld . 34

6.2 Fetching data to UI using Promises 41

6.2.1 Mocked test: search �eld . 42

6.2.2 React Application for showing RSS-feed 46

7 Conclusions 50

References 53

1 Introduction

A user interface (UI) is the way how human users interact and command a computer,

website or an application. The simplest UIs are command line interfaces (CLI),

where a user writes commands to a command prompter. Modern user interfaces are

graphical user interfaces (GUI). That means the UI consists of graphical elements

like icons and buttons and communication is performed by interacting with these

elements. Through a GUI, anyone can use a computer without having technical

knowledge. Compared to CLIs, of course GUIs are much more complex to program

and they require more resources too like memory. The focus in this thesis is on

GUIs.

Software testing is the process of evaluating, verifying and validating that a

software product does what it is supposed to do. The goal is to indetify errors, gaps

or missing requirements in contrast to actual requirements. Of course UIs need to

be tested like any other software products and the purpose is to detect unexpected

behaviour of a UI.

One action in testing process is to consider an adequate test coverage. To in-

crease con�dence that a software product works as intended one usually tries to

ensure that every piece of code gets executed by some test during the testing pro-

cess. This is usually laborous and sometimes too ambitious goal in practice. In the

context of UI testing obtaining an adequate test coverage is particulally challenging.

CHAPTER 1. INTRODUCTION 2

Usually test coverage is de�ned in terms of which portion of code (lines, branches,

paths) gets executed by tests. In UI testing we are also interested of coverage in

terms of event sequences: do tests execute all possible di�erent sequences of events

user may perform. Even in a simple UI the number of possible event sequence is

enourmous.

In 2000 John Hughes and Koen Claessen introduced a new software testing tech-

nique: Property-Based Testing (PBT). [1]. In this testing technique the functionality

of the system under the test is de�ned as properties. Properties are like rules for the

features under test. A property de�nes a relation between input and output that

should always hold for all inputs. A property is tested by generating a large number

of inputs for which the property is tested.

The goal of this thesis is to explore if PBT is applicable to UI testing. We

formulate properties that describe the rules that a GUI should follow, then apply

PBT and investigate whether defects could be exposed this way. We also explore

whether PBT solve any of the challenges of UI testing, in particular whether the

testing coverage can be increased by using PBT, and whether it provides any other

advantages to UI testing.

The thesis �rst gives a literature review that concerns how software products

in general and UIs in particular are tested and what are the main challenges of UI

testing. The thesis also describes the concept of PBT. Then the thesis describes

examples of PBT being applied to testing of UI elements and functionality. Our

example cases are implemented with React JS and the tests use technologies and

tools which are suitable for testing React and JavaScript.

2 Software Testing

This chapter describes the basic concepts and methodologies of software testing

relevant for this thesis. It is intended as an overview about software testing in

general to set the context for the thesis.

2.1 The Basic Concepts of Software Testing

The purpose of software testing is to evaluate that a software product does what it is

supposed to do. To evaluate the product a de�nion of the behaviour of the software

is needed. This de�nition is called the speci�cation. The Speci�cation de�nes what

the program should do and what users should be able to expect from the program. It

describes the properties that the program must have and the input/output behaviour

of the program. The focus is on what the program does, not on how it does it. [2]

A program is said to be correct if it behaves as de�ned in speci�cation. Correct-

ness can be ensured in many ways, for instance using formal veri�cation. Correct-

ness of a program is proved using formal methods of mathematics like propositional

logic. Another way is to use model checking. A model of a program, like �nite

state machine, is created to model all possible di�erent states of the program. This

model is compared with speci�cation and evaluated whether the model meets the

speci�cation in all its states. [2]

Attaining a formal proof of a program's correctness is often not feasible with

the resources available for typical software projects. More practical way to gain

CHAPTER 2. SOFTWARE TESTING 4

assurance of the correctness of a program is by executing the program with test

cases. A test case de�nes a single test to be executed. A test case usually emulates

some action a user might perform, so in this sense test case is a subset of the

speci�cation. A test case de�nes the input, testing procedure and expected results.

Often individual test cases are organized in test suites. [3]

To determine the result of a test the result has to be de�ned. That is, it has to

be determined when the test has passed and when it has failed. So testing requires a

test oracle. A test oracle is a tool which de�nes when a test has passed. A test oracle

is based on the speci�cation and it checks the correctness of test output. Usually

the oracle is an input/output oracle, which de�nes the output for a given input.

An oracle may not be able to de�ne the output for an arbitrary input. It is often

programmed for speci�c set of inputs. Often the set of inputs that the oracle can

handle can be enlarged, it instead of having to know this exact output, the oracle

is programmed to know some constraints speci�ed about output. [4]

There are many kinds of test oracles, but usually they are separate from the

system under the test. A human who determines the expected behaviour is called a

human oracle. A human oracle can for example consult the program's speci�cation

to determine the expected behaviour or calculate the correct output by hand. Using

a human oracle is of course expensive, but usually humans have system-speci�c

knowledge that helps to determine the excpected behaviour in even cases that are

di�cult to formally specify. Oracles can also be automated. If the speci�cation

is formal enough, the oracle can be generated automatically. It is also possible to

write a separate program, which takes the same input as the system under the test.

Also oracles can be generated from previous test results or operations of previous

versions of the software. [5]

Even though the concept of test oracle seems simple, it is not. It is not easy to

de�ne precisely the expected behaviour of a software system, because the system

CHAPTER 2. SOFTWARE TESTING 5

usually interacts with the real world and reality is often di�cult to capture in a test

suite. Also there is no quarantee that the oracle has de�ned the expected behaviour

correctly. The challenge to determine the correct output or the correct behaviour of

the system for a given input is called the oracle problem. [5] One should also keep

in mind when the behaviour of a program is not what is expected it is not always

because of a bug. Users might use a piece of software in an unintended way or its

behaviour may not be interpreted correctly. Also users and developers may have a

di�erent point of view about how the software should function. What users think

to be a bug, may not necessarily be a bug from the developer's point of view. [6]

Of course, one test case does not exercise all the program code. Test Coverage

describes how much of the program code particular test cases cover, that is how

much of the code is exercised when running the test case. Test coverage is measured

as a percentage and there are several di�erent coverage criteria. A coverage criterion

speci�es the requirements that a test suite needs to satisfy.

A program usually contains many branches. Ideally a test suite should exercise

each branch of each control structure. This is called branch coverage and it is one

often used coverage criterion. If the program contains one conditional statement,

exercising all the braches is trivial: It is enough to create one test case where the

given if statement's condition is true and another where it is false. But if there

are many conditional statements and choosing one option leads to another decision,

there can be a large number possible routes through the code. Even if there are only

two options to choose every time, n decisions lead to 2n options.

Another coverage criterion is path coverage. It describes how many of all possible

paths of control �ow are executed. Achieving full path coverage is harder than

achieving full branch coverage. Usually excercising all paths is not feasible. Even

in a simple program there can be millions of possible paths since loops increase the

number of paths rapidly. [7]

CHAPTER 2. SOFTWARE TESTING 6

Complete testing, that is testing a program with all possible inputs is highly

impractical and often impossible. For instance even if the input was as simple as a

six-character string that includes only letters, it would probably take days to test

all the possible options in and typical computer and simpe test suite. So complete

testing is highly impractical and often impossible. This is why considering adequate

test coverage and the number of test cases is an important part of test design. [4]

Testing should always be a carefully planned process. A test plan is a document

specifying the target test coverage and the testing methods and strategies that are

used. A test plan de�nes which features are tested and which are not and the

pass/fail criteria. The set of used test cases are also introduced in the test plan.

Because tests cannot be executed with all possible inputs, the set of used cases

must be chosen carefully. The goal is that the used test cases which are a subset of

all possible cases have the highest probability of detecting most errors. That is, a

well-selected test case reveals something about the presence of error when using a

speci�c set of inputs and reduces the number of other test case needed to achieve a

reasonable coverage.

If test inputs are chosen randomly test coverage is usually low. So some reasoning

for choosing what test cases to write is needed. Usually test cases are written by

using some kind of error-guessing: Usually experienced programmers and testers

have a hunch about what kind of errors are the most probable and what kind of

inputs cause errors. For instance, empty inputs usually cause unexpected behaviour.

Then based on intuition and experience, developers try to construct good and well-

covering test suites [7]

CHAPTER 2. SOFTWARE TESTING 7

2.2 Software testing methodologies

There are numerous software testing methodologies, they are widely used during the

development process, to make sure that software products really meet their require-

ments. Software testing methodologies can be roughly divided in two categories:

functional and non-functional testing. Functional tests verify that the system be-

haves as described in its speci�cation, for example, that it produces the expected

output for a given intput. Non-functional tests evaluate operational requirements

like performance or security. The focus in this thesis is in functional testing: non-

functional testing is out of scope.

2.2.1 Levels of testing

Functional tests can be executed at di�erent levels. The �rst level is unit testing.

That is, an individual component like one class or method, is tested. Especially

if the system under the test is large, it is reasonable to focus testing on smaller

building blocks. Then it is easier to locate errors and understand their causes. It is

also possible to test multiple modules simultaneuosly, so constructing test suites for

smaller building blocks saves time and makes testing more manageable. [7]

Of course it is not enough to test a system in isolated modules; these components

must work also when they are combined. When the units are combined, it has

to be tested that they work together properly, for instance that data is correctly

transferred between components. This is called integration testing.

There are di�erent types of strategies to combine modules. When using a bottom-

up approach lowest level modules are tested �rst and then the high-level modules.

Finally the integration between the low-level and high-level modules is tested. Top-

down approach is of course the opposite: testing starts from the high-level modules.

The Big Bang approach means that all the modules are combined once. The Big

Bang approach has some disadvantage: It can only be used if all the modules are

CHAPTER 2. SOFTWARE TESTING 8

ready. Further the defects are not easy to locate from large test that involve many

modules.

System testing or end-to-end testing tests system as a whole. End-to-end tests

ensure that an application �ow from start to end works as intended from the perspec-

tive of the user and the product ful�lls business objectives. The focus of end-to-end

tests is on how an end user would use the system. One type of system testing is

regression testing. That is evaluating that a system still works as it should. after it

has been modi�cated.

Acceptance Testing is the last and highest level of testing. It ensures that a

product is ready for delivery.

2.2.2 Mocking

The idea of unit tests is to test just the module under the test, not anything else.

The code that is tested usually has dependencies to other components or internal or

external services. Dependencies can be replaced with fake versions that imitate the

behaviour of the real ones. This is called mocking. Mocks can be used to replace

API calls, to make some time consuming tasks simpler or to simulate a database by

providing �xed responses. Mocks can be created manually or by some library. [8],

[9]

Mocks are particularly useful in unit testing where just a particular piece of code

like one component or one method is under the test. In such cases it is sometimes

necessary to isolate the code under the test. Sometimes erroneous behaviour of a

dependency can make the test fail even if the code under the test works correctly so

mocking can make tests run more reliably. [10]

The purpose of mocking is to substitute something that is not controllable with

something that is. Mocking provides the code we can control, for instance for pro-

ducing a fake but expected database response, that is suitable for the test case. That

CHAPTER 2. SOFTWARE TESTING 9

is why mocks are useful also in negative testing. Negative testing means testing how

the application under test handles errors. Mocks can easily simulate errors from

dependencies for instance erroneous responses from a database.

Sometimes mocking may make test suites simplier. If the focus is on testing that

some partcular API or method is called, it is not necessary to use a real dependency.

A mock is enough to verify the code calls the API or method, because the focus of

the test is not on responses. Simirlarly mocks can be used if a test should verify

that an API or a method is not called. [11]

Mocking is also useful when dependencies would slow down the whole testing

process. For example if the code to be tested is run after authentication, testing may

be very slow, if an authentication protocol is completed before each test. A mocked

authentication may be a good solution. Mocking dependencies is also useful in that

it allows tests to be written even before all dependencies are implemented. [10]

Mocks can also reduce maintenance works of test suites. If there are only a few

methods to call, mocking them requires less con�guration than setting up an entire

real class. On the other hand, if there are a lot of mocks in a test suite, maintaining

them may be tedious. If refactoring of the code takes place and mocks are not

properly updated, the test suite may allow bugs that should be caught by unit tests.

A common depency to mock is a database connection. Using a real database con-

nection can make testing inconvenient for many reasons. Connection to the database

can be slow or there may be no connection at all. If a test writes something to a

database, it may be expensive to undo after the test, because there is something to

manually delete every time. Also, some states of the database are di�cult to create

or reproduce for instance some errors. Further, if the tested functionality is some

action triggered by a database update and the database is updated rarely, testing

would include much waiting.

CHAPTER 2. SOFTWARE TESTING 10

Mocking is a useful method when performing unit testing, but sometimes it can

be applied also when testing integrations. Of course, if the integration under test is

between the application and a connection to a server, mocking cannot be utilized.

On the other hand, if the purpose of a test case is to test how an application handles

erroneous responses from a server, mocking is an easy way to produce them. Further

if the integration under the test is the integration between components, mocking may

be bene�cial. If the test focus is, for instance, on how di�erent parts of a form work

together, isolating the form from server integration helps to stay focused on how the

form works, not on server errors. When performing end-to-end tests, mocking is not

applicable, because the idea of end-to-end testing is to test the system as a whole.

[10]

Even if mocking has many advantages, it is important to understand when not

to apply mocking. Mocking has to be used in a proper contex and in a proper way.

A mock is always a compromise from a real dependency - with misguided mocking

a test may exercise an entirely di�erent system than it should. Also misplaced

mocking can lead to testing of implementation details. The purpose of unit testing

is to test a component's external behavior rather than its internal implementation.

Considering the limitations, mocking should always be a conscious choice rather

than a tool to be used in all testing.

3 Testing User Interfaces

Modern User Interfaces (UI) are complicated, hierarchical systems. They consist

of elements like buttons and scroll bars that enable the user to interact with the

system. These elements are called widgets. The functioning of UIs is based on events,

like a user pushing a button and on handling the events. Widgets are associated

with event-handlers that de�ne how the system anwers to an event. Usually a

user performs multiple actions which create event sequences. Even very simple UIs

usually generate dozens of possible event types. [12]

The GUI responds to events and event sequences asynchronously. That means

the code runs separately and independently. The event code runs only when event is

triggered and for instance it does not wait another piece of code to be ready. So UI

must be able to handle multiple events and event sequences at the same time. [13]

Programming a modern UI is based on declarative paradigm. Traditionally com-

puter programs are based on imperative paradigm. That means a program consists

of statements that change the program's state. The focus is on how a program op-

erates and a detailed control �ow is de�ned. The statements are commands that a

program executes. When using declarative paradigm the focus is on what the pro-

gram should accomplish, but it is not de�ned how to accomplish it. The program

logic is de�ned, but not a detailed control �ow.

UI has a state, that means what widgets are visible and what operations a user

is able to perform at the moment. The behaviour of the event-handlers may depend

CHAPTER 3. TESTING USER INTERFACES 12

on the state. Also the state may change whenever an event occurs and the new

resulting state may depend on the preceeding state. This means that di�erently

ordered sequences of the same set of events may lead to di�erent UI states. Even

the same sequences of events can lead to di�erent states, e.g., if the timings of the

events di�er. Even small and simple UIs can have thousands of possible states.

Because the behaviour of an event handler depends on the current UI state, it is not

enough to test event handlers in one state only. Some errors may occur only in one

state. [12]

So testing UI is not trivial and the developer has to construct a large suite of

di�erent event sequences to expose defects. Also obtaining an adequate test coverage

is laborous, because in the context of UI testing test coverage is not only about

catching all execution paths in the code but also test suite exercising all possibile

event sequences that might behave di�erently. Also complex event sequences expose

defects more probably than simple ones, but of course constructing and running

such tests is more time-consuming. [3], [14]

Two main categories of UI testing are usability testing and functional testing.

Usability testing asses how easy a UI is to use. This type of testing is based on

principles from user interface design; in this thesis usability testing is out of scope.

Functional testing asseses if the UI works as intented. There are four types of func-

tional testing. GUI system testing is testing the system through the UI. Regression

testing is performed when new features are added to make sure that modifying the

UI did not cause any bugs. Input validation testing asseses how the software re-

sponds di�erent kind of inputs, specially invalid ones. Finally UI testing is checking

that all the controls works as intented,navigation works as intenteded and the error

messages occur when they should. [3]

The UI testing is maybe the most critical part of testing the software, because

every action a user performs is done on the UI. The user does not see the source code

CHAPTER 3. TESTING USER INTERFACES 13

or does not have any knowledge of the application. The quality of the UI decides

the user's impression of the applications. That is why the focus of UI testing is on

what user sees.

3.1 Manual User Interface Testing

The simplest way to test a user interface is just using it, e.g. by clicking the buttons

and �lling text boxes and then observing if the behaviour is what it should be. This

is called manual testing. Like testing in general manual UI testing should be a well-

planned process. The test cases should be planned beforehand and the expected

behaviour of the UI de�ned.

The error guessing is a technique that can be utilized to choose the test cases

when testing UIs and applicable especially when testing manually. Usually testers

have an intuition about error-prone operations, for instance user performing actions

in unusual order or submitting an empty form, based on their experience. The testers

use this intuition to guess the problematic areas of software. The main purpose is

to guess possible defects in the areas where formal testing would not work.

In agile development exploratory testing is a widely used method to structure the

testing process. Exporatory testing is based on the tester exploring the application.

The tester learns and understands better the system while testing it. Exploratory

testing is not planned accurately beforehand. The tester plans the testing process

simultaneuosly while learning more about the application during the testing process.

The tester makes observations about the application and plans the next steps based

on these observations. [15]

CHAPTER 3. TESTING USER INTERFACES 14

Manual testing is performed by a human so it is error-prone and manual tests are

less reliable. It is hard to stay concentraded for hours. Also human can concentrate

on one or two veri�cation point only so the scope of the test cases is very limited.

Testing actions may be repetitive. Filling out the same form again and again is

boring so it understandable that testers have a hard time staying engaged in this

process and errors are more likely to occur. Of course, manual testing is highly

time-consuming and the coverage is low.

3.2 Automating User Interface tests

Some testing activities can be automated. That means for instance developing and

executing test scripts or using automated test tools. Automated test tools are ,for

instance, record and play -tools where the tester performs some actions. These

actions are recorded and they can be repeated. Record and play tools are useful

when performing regression testing. The recorded use of a GUI is executed after the

changes have been made and the tool reports di�erences.

UI events can be generated programmatically, so test scripts can be programmed

using some programming language or domain speci�c language. Record and play

tools also create test scripts based on the actions.

When test scripts are created on a way or another the test case is designed �rst.

When designing a test case it has to be considered what is the input and what is

the expected behaviour. Then the script is created.

Automating testing activities has many advantages. Automated tests are more

e�cient, so time and money is saved. Also tests are reusable and repeatable. Once

the test is created it can be used over and over again for instance when performing

regression testing. Automation also reduces errors. Human errors are common when

testing manually. It is hard to keep focus for hours when testing a web site.

CHAPTER 3. TESTING USER INTERFACES 15

Of course creating automated tests for a large amount of test cases is time-

consuming too, because it is still manual work. Obtaining a high coverage still

requires much work. Also automated tests require some maintenance. When the

tested program is updated, the tests have to be also updated and completely new

tests will likely be needed.

3.2.1 Generative testing

Tests can be automated by using generators. Testing needs test data. That means

all the test cases. When testing manually the test data set is very limited, also when

using record and play-tools, they exercise a program with very limited amount of

cases. Sometimes testing needs a large set of data and using generators that set

is created quickly. Larger data set can increase the test coverage. Generators are

useful for instance when testing input validation. They create test data and the

data is the input. Scripting the input manually is timeconsuming and laborous

while generators create large set of input quickly.

The test data is not generated in an ad hoc manner. Of course, there are re-

quirements that the generated data has to satisfy. The program is always tested

against a speci�cation and the test data is always considered inside the domain of

the speci�cation. When the requirements to the input is de�ned, the output has to

be also de�ned.

The requirements depend on the goal of the test so there are three strategies

for designing the test data set. The data can concentrate on valid test cases, which

the program should accept and be able to process. Or the data can include corner

cases. Corner cases are data sets which are at the beginning or at the end of the

input range, e.g. an empty list or extremely long list. The data can also be invalid,

that means data that the program should not accept.

CHAPTER 3. TESTING USER INTERFACES 16

The most e�ective tests are tests that have the highest coverage. When con-

sidering the requirements of the test data, it has to be noticed that the test data

should exercise as much code as possible. The data has to be generated so that the

coverage is as high as possible.

When testing UI, events and event sequences can also be generated. One way to

generate event sequences is Model-Based testing. Model-Based testing is like model

checking applied to UI testing. The expected behaviour of system is described as a

model. Model is a precise description of the system and it is usually an abstraction

of the real world behaviour. The model can be for instance UML chart or decision

table. In case of UI testing the event sequences are usually modeled as a graph or

�nite state machine. The event sequences are generared based on these models and

the behaviour is compared to the model. [3]

The challenge of generating events is the same as UI testing challenge in general:

the large amount of possible events and possible states. There are several techniques

to reduce the number of states. One approach is to imitate novice users. Usually

expert users take short, direct paths through the UI. These paths are not useful for

testing. Novice users usually take indirect paths that exercise the UI in di�erent

ways. [3]

There are many di�enrent kinds of generators and many ways to build them.

The simpest examples of generators are random generators. They create test data

randomly. For example, to test the operation of a text �eld random generator

can create random strings. The custom generators can also be implemented, but

of course building a custom generator takes more time than just using a random

generator.

Usually a test data generation system consists of three parts: program analyzer,

path selector and test data generator. Program analyzer examines the program

code and produces the data needed by path selector and the test data generator.

CHAPTER 3. TESTING USER INTERFACES 17

For instance control �ow graph can be used to analyze the code. The Path Selector

indenti�es the exercised paths from the code using some coverage criterion. Finally

the test data generator generates the input that will traverse the paths selected

by path selector. Path-Oriented Test data generation selects just one path and

generates input for the path. Test data generator can use the goal-oriented approach,

where generated data exercises a program point rather than a program path. [16]

The challenge of UI testing is UI's interaction with the real world. Also generated

test data must be realistic. If the generated data is not valid and realistic, the

generation of test data does not however increase coverage. Logging in to a service

with an e-mail address is an example. Generating hundred random strings without

the '@'-character does not really increase coverage. [16]

There are two aspects to consider when analysing if the data is realistic or not.

First the data has to be structurally valid. For example Finnish postal codes are �ve

digit numbers, so if postal codes are generated they have to be �ve digit numbers.

Then realistic data is also semantically valid. That means it represents a real world

entity. Like postal codes; every �ve digit number is not an existing postal code.

E.g. the number 20782 is not a postal code while 20780 is. If postal codes where

generated it would not be enough to pick �ve digit numbers at random, especially

if we want to test with valid postal codes only. So designing a generator producing

realistic data is not trivial. [17]

Also generated UI event sequences must be realistic to make testing e�ective. In

this case realistic means event sequences the user might most likely perform. Un-

fortunately generators usually fail to produce event sequences representing realistic

user interactions especially in the case of more complex event sequences. Generators

tend to spend e�ort on testing behaviour that is not relevant in practice, like �lling

data into a form without ever submitting it. Of course e�ective testing needs also

unusual event sequences. Generators may also produce infeasible event sequences.

CHAPTER 3. TESTING USER INTERFACES 18

That means one or more events are disabled by a previously executed event. Of

course valuable time is vasted when testing infeasible test sequences. [17], [18]

To summarize, manual testing usually produces realistic test data, but it is

laborous. Generators produce data easily, but data is not necessarily realistic.

4 Property-Based Testing

Property Based Testing (PBT) is a software testing technique �rst introduced by

Koen Claessen and John Hughes in 2000. In this chapter �rst the concept of PBT

is introduced followed by insights about PBT tools for JavaScript.

4.1 The concept of Property-Based Testing

In Property-Based testing the system or function under test is de�ned as properties.

A Property is a feature or a functionality of the system or an aspect of the function,

so it is like a partial speci�cation. Properties de�ne the preconditions of a function,

such as the range of input parameters, and postconditions, such as the results of

a computation. A Property is always true regardless of the exact input, so the

properties are like rules for feature under the test [1] A simple example of a property

can be given in the context of a function for sorting a list. In this case we can de�ne

a property that the length of the input list is the same as the length of the output

list.

Traditional testing methods introduced previously in this thesis can be called

example-based testing. When using these methods the exact input is de�ned and

the exact output or behaviour is known. The test asserts the actual result against

the designated output. When using PBT just some conditions for input is de�ned

for instance the input's data type, but not the exact input. Also for output just

conditions are de�ned not the exact output. For example, when testing a function

CHAPTER 4. PROPERTY-BASED TESTING 20

for sorting a list, an example-based test would de�ne that when the input is a list

1,2,5,4,3, the output is 1,2,3,4,5. The property for the test can be de�ned "for every

list, the length of the input list is the same as the length of the output list". So the

focus is not on speci�c use cases, but on general properties, that must hold for all

input-output pairs. Such properties are a bit more abstract than use cases.

Properties de�ne the expected behaviour in a compact way, so they tend to be

easier to understand than a full speci�cation of the whole system. Of course several

properties are needed to cover the desired functionality. Properties are expressed

mathematical functions or logical laws and usually they are written in a formal way

using a domain speci�c language created to express properties. Using mathematical

logic enables de�ning expected behaviour accurately. Formally expressed properties

also make it precise what is tested and when a test fails. Properties are therefore

test oracles.

A property is tested by generating a large number of input. For instance the

previous example about the function for sorting a list is tested by generating lists,

then sorting them and then comparing if the length of the output list is the same as

that of the input list. Claessen and Hughes used random generation. They conclude

that if properties are well-de�ned, random generation quarantees an adequate test

coverage and there is no need to de�ne custom generators. Many PBT frameworks,

however, support de�ning custom test data generators.

So assuming that the property is always true, the aim is to �nd a counterexample

which proves that the property does not hold. That is why the function is tested

by generating a large amount of inputs. The generated input may produce large

and complex counterexamples, pinpointing a bug from such counterexamples may

be di�cult.

PBT frameworks often use shrinking to make it easier to understand reasons of

defects. When a test fails it means that a property does not hold for some input.

CHAPTER 4. PROPERTY-BASED TESTING 21

The framework then tries to shrink the failing input to be as simple as possible.

The framework can for example remove elements from a list given as input to �nd

a minimal counterexample. This of course helps �nding and �xing bugs, because a

simple counterexample is usully more understandable for humans. So the �rst found

counterexample is not necessarily used for �nding bugs. The framework explores

if a simpler counterexample exists and always returns the minimal case. There

are di�erent strategies for �nding the minimal counterexample, the used strategy

depends on the framework. [19], [20]

Even though test input is randomly generated, PBT tests are always reproduca-

ble and test runs can be replayed. The testing framework creates a seed for every

executed test case. The seed makes possible to replay the test with the same values

and reproduce the failing case.

When writing a test it is important to consider if the test really tests the feature

that is wanted to be under the test. When writing example-based tests this is usually

easy, but the input scope is of course low. Input scope means how much of all possible

inputs the test case covers. The input scope of course increases with generation of

inputs, but especially when generating the examples randomly, random input is not

necessarily be testing the feature under the test. PBT combins the bene�ts. By

generating input, we achieve a high input scope and properties still keep the focus

on the feature under the test.

4.2 Property-based testing tools for JavaScript

When Hughes and Claessen �rst introduced the concept of property-based test-

ing, they had developed a property-based testing tool called QuickCheck. [1]

QuickCheck was originally developed for testing Haskell programs, but nowadays

there are property-based testing tools available for almost every programming lan-

guage. For instance, for Java is jqwik [21], for Python is Hypothesis [22] and for

CHAPTER 4. PROPERTY-BASED TESTING 22

C# is FsCheck [23].

JavaScript programmig language is used in this thesis, so this chapter introduces

proberty-based testing tools for JavaScript. The �rst subsection de�nes the basic

concepts of property-based testing tools. They are common for all tools. The second

section is a more detailed introduction to a tool called Fast-Check, the tool used in

this thesis. Rest of the sections are short overviews of other property-based testing

tools for JavaScript.

4.2.1 Basic concepts of property-based testing tools

Property-Based testing frameworks consist of two main building blocks, runners and

arbitraries. Runners are functions that execute the tests and check that properties

stay true. A Runner function receives a property to verify and it runs the property

several times. Frameworks de�ne by default how many times a property is tested.

Typically frameworks run tests 100 times. Of course it is possible to con�gure the

number of times tests are executed.

Arbitraries are generated datatypes. Usually property-based testing frameworks

have an abstract class called Arbitrary which is able to generate values. Arbitrary

de�nes a default test data generator for each type. Frameworks usually have some

built-in arbitratries for primitive types but it is also possible to create custom ones.

While testing frameworks usually de�ne by a default for how many inputs will be

generated, for many arbitraries it is also possible to set a minimum or maximum

number of generated inputs.

Of course testing tools have to de�ne the properties under the test. Properties

bind the arbitraries and a test function. The test function is a predicate and it tells

what should be observed during the test execution. A predicate should always stay

true.

CHAPTER 4. PROPERTY-BASED TESTING 23

Especially when testing JavaScript programs, it is important that testing frame-

work is able to test promises and other asynchronous methods. All common testing

frameworks for JavaScript support asynchronous testing.

According npm trends1 the most popular tools are JSVerify and Fast-Check.

4.2.2 Fast-check

Fast-Check is a property-based testing tool for JavaScript developed by Nicolas Du-

bienn since 2017 [24]. The library is written in TypeScript because of TypeScript's

static typing. Fast-Check was developed relatively late compared to many other

property-based testing tools. Older tools had some known limitations and Fast-

check was designed without these limitations. One extension compared to other

tools is Fast-Check's verbose mode. That is, in case of the failure, it is possible to

get a more detailed log which includes all the counterexamples encountered during

shrinking. This sometimes makes debugging easier. Another improvement is that

generated values are biased by default. This means that Fast-check generates both

small and large values. In addition to these advantages Fast-Check was chosen for

this thesis because of a clear documentation and because it is actively maintained.

Fast-Check testing framework has two options for runner functions, fc.assert()

and fc.check(). Both of these functions run a property, but fc.assert() doesn't

return anything but if the property fails it throws. Function fc.check() returns an

object containing useful details like test status, seed and of course in case of failure

the minimal counterexample. Both of these functions have to be awaited if calling

in an asynchronous property.

Properties are de�ned in the function fc.property(). Arguments of the function

are an arbitrary and a predicate. Fast-Check enables testing asynchronous properties

in which case properties are de�ned in the function fc.asyncProperty().

1https://www.npmtrends.com/fast-check-vs-jsverify-vs-testcheck

CHAPTER 4. PROPERTY-BASED TESTING 24

Listing 1 The structure of FastCheck test

fc.assert(//run the property several times

fc.property(//define the property: arbitrary and

// what should be observed (predicate)

arb1, arb2, ..., // 1 to +infinity arbitraries

(valueGeneratedByArb1, valueGeneratedByArb2, ...) => {

// predicate receives generated values

// In case of success: No return, return undefined

// or return true

// In case of failure: Throw or return false

}

)

)

}

Fast-Check provides some built-in arbitraries. There are of course arbitraries

for primitive datatypes like Integer. The function fc.integer() generates integers

between -2147483648 and 2147483647, but it is also possible to set a range for

generated integers. For instance fc.integer(-20,20) generates integers between

-20 and 20. Fast-check of course o�ers a generator for strings, fc.string(), but also

more speci�c generators like generator for e-mail addresses, fc.emailAddress().

It is possible to create arbitraries by combining built-in arbitraries. Fast-check

provides combinators for creating custom arbitraries. One of these combinators is

fc.oneOf(). It chooses randomly one of the generated values. For instance the

function call fc.oneof(fc.integer(1,5), fc.integer(11,15)) generates a pair

of integers. The �rst of the pairs is an integer between 1 and 5 and the other is an

integer between 11 and 15. One of those two integers is chosen randomly. It is also

possible to write an arbitrary from scratch. In FastCheck this is done by extending

the abstract class Arbitrary and implementing a method generate.

So as a summary, the structure of test written using Fast-check is shown in List-

ing 1.

CHAPTER 4. PROPERTY-BASED TESTING 25

Listing 2 Sorting tested with Fast Check

it('should have the same length as input list'), () => {

fc.assert(

fc.property(fc.array(fc.integer()), (input) => {

expect(sort(input).toHaveLength(input.length))

})

)

}

In the previous chapter testing an algorithm for sorting a list was mentioned

as an example of property-based testing. The length of the list was de�ned as a

property, that is the length of the output list should be the same as the length of

the input list. This test written using Fast-check is shown in Listing 2.

This test generates arrays of integers, then sorts them and compares the length

of sorting results to the length of the input array.

4.2.3 JSVerify

JSVerify is a property-based testing tool for JavaScript developed by Oleg Grenrus

since 2014 [25]. Like in Fast-Check there are two options for runner functions in

JSVerify, jsc.check and jsc.assert(). Both functions get the property and op-

tions as an argument. Options include for instance a number for maximum size of

the generated values, which is 50 by default.

The di�erence of the runner functions is the same as in Fast-Check. The function

jsc.check() returns true if the test is passed and in case of failure it returns an

object with details of the shrinking operation, like number of shrinks performed, and

of course the minimal counterexample. The function jsc.assert() doesn't return

anything in case of success, but it throws an exception if the property doesn't hold.

The property constructor of JSVerify is the function jsc.forall(). As an argu-

ment it expects an arbitrary and a property function. JSVerify enables also testing

promise based properties so property function can return a promise.

CHAPTER 4. PROPERTY-BASED TESTING 26

Listing 3 Sorting tested with JSVerify

it('should have the same length as input list'), () => {

jsc.assert(

jsc.forall(jsc.array(jsc.integer()), (input) => {

expect(sort(input).toHaveLength(input.length))

})

)

}

JSVerify has built-in arbitratries for primitive data types such as jsc.integer.

There are also arbitraries for strings. Custom arbitratries are built with combinators

like jsc.oneof or restricting arbiratries with suchthat().

The test for sorting lists written using JSVerify, is shown in Listing 3.

4.2.4 TestCheck

TestCheck is a property-based testing tool for JavaScript developed by Lee Byron

since 2014 [26]. It is based on Clojure's test.check. [27] It seems that TestCheck

is not mantained anymore. The last update is from 2018, so it is not used in this

thesis.

TestCheck includes only one runner function check(). This function expects a

property created via the property() function and an optional Object. The object

includes properties like the seed for rerunning the test. The function returns the

results. The properties like boolean value result and in case of fail, shrunk , which

is an object including the smallest argument with failing the test.

The function property() creates a property. It receives the value generators

that generate the arguments of the predicate and of course the predicate itself.

Generating values is not implemented like in Fast-Check or JSVerify. TestCheck

doesn't include a class like Arbitrary. Values are generated with function gen().

The function is called a generator builder.

CHAPTER 4. PROPERTY-BASED TESTING 27

Listing 4 Sorting tested with TestCheck

check.it('should have the same length as input list',

gen.array(gen.int), (input) => {

expect(sort(input).toHaveLength(input.length))

})

Like other tools, TestChek has some built-in generators, for instance, gen.int()

generates integers. Custom generators can be built by combining generators like

gen.array(gen.int), because TestCheck includes combinators like gen.oneOf. Cus-

tom generators can be de�ned by using ValueGenerator instances, like

ValueGenerator#suchThat(). For instance a generator for even numbers is created

like this: var genEvenNumbers = gen.int.suchThat(n => n % 2 === 0)

By default TestCheck generates 200 values. The function check() has an op-

tional object with property maxSize that de�nes the number of generated values.

TestCheck generators have one limitation. They begin by generating small test

cases. If there is a need to test input including very large numbers or extremely

long arrays, running test with default options isn't enough.

In TestCheck asynchronous code is tested by using the runner function checkAsync()

instead of check(). When using checkAsync() the predicate function needs to re-

turn a promise.

As an example the test for sorting list is implemented using TestCheck. The test

code is shown in listing 4

5 Background: Technology stack

This chapter introduces the tools and technologies used in this thesis. When testing

applications it is common to use a combinations of several frameworks to achieve

the most �exible set functionality.

5.1 React JS and testing React applications

The UIs under the test in this thesis are React applications, because perhaps it is

the most popular and also the most modern way to build UIs at the moment.

React is a Javascript library for building user interfaces. React applications con-

sists of encapsulated components. The idea is to build encapsulated components and

then compose them to make complex UIs. Each component manages its own state.

The components are reusable and combining them in many di�erent ways builds dif-

ferent UIs. A component can include other components. Included components are

called children and a component, that includes other components is called a parent.

A parent component, the children of the parent component, ant the children of the

child components and so on, are called a component tree.

Like modern UIs, usually React applications are built using the declarative

paradigm. The data is stored using state of the application. The data is transformed

from a component to another using props. React code uses JSX which stands for

JavaScript XML. At �rst glance it looks like HTML, but JSX is just a another way

to write JavaScript code. The JSX code is compiled to vanilla JavaScript using

CHAPTER 5. BACKGROUND: TECHNOLOGY STACK 29

Listing 5 A Promise chain
promise

.then(value => {

// use value...

}, error => {

// check error...

})

Babel [28]. Babel is a JavaScript compiler that is used to convert a source code

into versions of JavaScript that can be run by older JavaScript engines. This is how

new JavaScript features can be used right away even if web browsers do not have

support for them. The reason why React components are programmed with JSX is

that it is easier to write and understand than vanilla JavaScript.

The HTLM elements present on a webpage or web application are represented

in the Document Object Model (DOM). It is a tree data structure that contains a

node for each UI element. The content can be modi�ed through JavaScript. [29]

JavaScript code in React applications runs asynchronously. This is a matter of

a user experience. It would be highly impractical if the whole application would

freeze to wait some operation to be completed. Also fetching data to a UI usually

happens asynchronously. Otherwise loading the application would freeze while data

is being fetched. When using asynchronous programming, loading the application

can be done at the same time as the data is fetched.

React applications use promises for fetching data. A promise is like a placeholder

for some value which is not yet available. Promises have three possible states.

Pending is the initial state of the promise. The task that will eventually produce a

value is still waiting to be completed. When the state is full�lled or resolved the task

is completed successfully and if not, the state is rejected. To handle the full�ll value

of the promise, the method .then() is used and the method .catch() to access the

rejection error. Usually these two methods are chained to handle all possible states

of the promise. The structure of a promise chain is shown in Listing 5. [30], [31]

CHAPTER 5. BACKGROUND: TECHNOLOGY STACK 30

Listing 6 Async-await promise

async function myFunction() {

// ...

try {

const value = await promise;

} catch (error) {

// check error

error;

}

}

Using keywords async and await makes working with promises more comfort-

able. It enables to handling multiple promises as if the code was asynchronous.

When the keyword async is used before a function it means that the function always

returns a promise. If a non-Promise object is returned it is automatically wrapped

in a resolved promise. The keyword await works only inside async functions. It

makes the code wait until the promise is full�lled, but only in that function's con-

text. The keyword await won't work at the top-level. To handle the possible errors,

try-catch syntax is used. The structure of async-await syntax is shown in Listing 6.

A common way for fetching data in React applications is to use Axios. It is a

JavaScript library for HTTP requests and it is based on promises. Axios is widely

used because, it is easy to use and it allows for instance cancelling requests and

request timeout. It also has protection against most common attacks. [32]

The testing of React applications can be separated into two levels. Testing

one component or component tree and testing a complete app. Usually tests for

a component or component tree run in simpli�ed testing environment and usually

the component is isolated from other components, in other words dependencies are

mocked. So the nature of component testing is like unit testing, but the di�erence

between unit testing and integration testing is not that clear when talking about

React components. Some components can be tested only as part of a bigger process.

So it is worth considering what depencies are mocked. [33]

CHAPTER 5. BACKGROUND: TECHNOLOGY STACK 31

When using a simpli�ed testing environment, tests run quicker, because there is

no waiting for a browser to start up for each test. So the feedback loop and iteration

is fast. Of course a simpli�ed environment is an approximation of the behaviour of

the browser, but it is often still good enough for testing React components.

There are di�erent techniques to test components. The simplest test is a smoke

test that sees that a component renders correctly. When using shallow rendering,

the individual component is rendered, not the child components. Of course the

component can be full-rendered and the lifecycle and state changes can be tested.

[34]

The tests of a complete app usually run in a realistic browser environment and

they are called end-to-end tests. End-to-end tests are used for testing longer works-

�ows like signing up to a service. Also they are useful when fetching data from a

real API or the side e�ects in the backend are under test. While end-to-end tests

show how React components behave in a real browser, the iteration speed in such

tests is much slower. Also, end-to-end tests can be �aky. That means the test some-

times passes and sometimes fails without any code changes. This is a challenge for

pinpointing errors because it is unclear if the error is in the code or in the test. [35]

5.2 Jest

Jest is a JavaScript testing framework developed and maintained by Facebook. It

is compatible with Babel-based projects like NodeJs, React, Angular ad VueJS.

Jest is used in this thesis because it is the most popular and recommended way to

test React applications. The documentation is clear and using Jest requires little

con�guration.

Jest is a test runner. It accesses the DOM via jsdom, which is a browser imple-

mentation running inside Node.js. Usually jsdom is good enough to simulate a real

browser even if some features are missing, like layout and navigation. It models user

CHAPTER 5. BACKGROUND: TECHNOLOGY STACK 32

interactions and the side e�ects of these actions can be observed and asserted. Jest

provides good control over the code under the test. Jest has support for mocking

modules and timers. [33], [36]

Testing frameworks for testing React application has to support asynchronous

testing and Jest does. Jest only needs to know when it can continue to another test,

i.e, when the code under the test has completed. When dealing with promises, this

is easy. A promise can be returned from a test and Jest waits for the promise to

resolve. A test will fail automatically, if the promise is rejected. Another way is to

use .resolves matcher in the expected statement. Asynchronous code can be also

tested with keywords async and await. [37]

5.3 React Testing Library

React Testing library is created by Kent C. Dodds. [38] It is a library for testing

React components, and it encourages better testing practices. Tests have to be

maintanable. That means if the implementation of the component is changed, not

the functionality, this refactoring does not break the tests. The best practise in

testing guide not to test implementation details.

The guiding principle of React Testing library is: "The more your tests resemble

the way you software is used, the more con�dence they can give you", so it imitates

the way the components are used by end users. Of course some comporomises are

done because a simulated browser enviroment is used, not a real one. The tests work

with actual DOM nodes, not the instances of rendered React components. [38]

5.4 Puppeteer

Puppeteer [39] is Node Library which is used when performing end-to-end tests

to React applications. Puppeteer is a browser controller. That is it simulates user

CHAPTER 5. BACKGROUND: TECHNOLOGY STACK 33

actions like clicking and typing. Puppeteer uses a headless browser, a web browser

without a graphical user interface. Headless browser is still able to understand

HTML the same way a normal browser would. This includes also styling elements

like layout. A headless browser also provides a automated control of a web applica-

tion. Because of using a headless browser end-to-end tests are fast to execute when

comparing with normal browser.

Puppeteer is used in this thesis because it is easy to con�gure and tests are easy

to execute. It also integrates nicely with Jest.

Fundamentally Puppeteer is an automation tool. It does not have a rec and play

-feature and the tests and user actions have to be scripted. [39]

6 Catching defects with generated

event sequences and Property-Based

testing

This chapter introduces four example UI tests. The main idea is to test UI com-

ponents with generated event sequences and property-based testing. The goal is

to investigate whether Property-Based testing is applicable to UI tests and what

advantages using PBT provides comparing to other UI testing methods. Of course,

the goal is to see if it is possible to catch defects that other testing methods would

not catch, or to catch defects with less e�ort in writing tests.

6.1 Throttled search �eld

Modern search �elds have an autocomplete functionality. That means that when a

user starts to type something into the search �eld, the application suggests search

terms with a matching pre�x. The suggested terms depend on what is being

searched. A search �eld might suggest terms in alphabetical order. For instance

if there is a �eld where you search countries, usually the suggestions are in alpha-

betical order. In some GUIs the �eld suggest the terms that are the most popular

search terms; this is the behavior in Google search, for example.

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 35

Sometimes using autocompletion is a challenge when considering the performance

of the application. If the searched data is fetched from the server and there is large

amount of data to fetch, autocomplete causes a heavy load. Every time a user types

a letter, new data must be fetched from the server and this of course slows down

the application. A common solution is to use throttling. Throttling is a technique

to limit the number of events the system needs to handle. Throttling delays the

execution of a handler function, so that more events will be collected and then

processed in one go.

In this chapter an autocomplete throttled search �eld is under the test. A simple

search �eld is implemented with React JS and it is used as an example of autocom-

plete throttled search �eld. The �eld allows for searching cities and towns. The

database includes all the cities and towns in the world whose population is over

1000. Every city has also a number that tells how many times the city has been

searched. The autocomplete search �eld suggests the most popular cities.

Search results are fetched from a database by using React's e�ect hook. Without

throttling the hook is executed every time the search term changes, that is, every

time the user types a letter. When the search term is throttled, the hook is executed

at most once every second. If the user types three letters during that second, those

letters are the next search term. The code of the e�ect hook is shown in Listing 7.

When autocomplete and throttling are combined carelessly, the search function-

ality may not behave as intended. When a user types the �rst letters of the search

term in the search �eld, then takes a little break and then rapidly types the last

letters and presses enter, a wrong result may be shown. This happens because of

throttling. During the break, the search term and the suggestions are updated, but

because the user types the last letters faster than the throttling time, the search

term is not updated because throttling prevents it. Autocomplete chooses the �rst

of the suggestions and when enter is pressed, the �rst suggestions is chosen for the

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 36

Listing 7 E�ect hook for fetching results.

//effect hook for fetching results

useEffect(() => {

//preventing the app from setting state after the component

//has unmounted

let isSubscribed = true

//variable deciding if "no results"-text is shown,

//setting it false

setNoResults(false)

//promise for fetching data

axios

.get('http://localhost:3001/cities/' + throttledSearchTerm)

.then(response => {

if (isSubscribed) {

//save response data in a variable

setCities(response.data)

}

})

return () => isSubscribed = false

},[throttledSearchTerm])

search term. So the chosen search term is not what the user has typed into the

search �eld. This is why the search is done with the wrong term.

When the search �eld is tested useing a traditional, example-based unit test

or component this defect will not be detected. The test takes just one city as an

input, searches with it, �nds the right result and the test is passed. Coverage can

be increased by generating inputs with FastCheck. There the interesting cases are

those where a search result is found so a generated number is an index in the JSON-

table of cities. Even in these cases, where the cities are generated the tests still

pass because the error is not in the code that is being tested. The code works just

like it should work. Instead, the cause of the unintended behaviour is on how the

user behaves. When testing UIs it is important to use the UI the same way real

users would use it. This is why Puppeteer tool was used in this test. In this case

the application behaves incorrectly because humans do not always type at the same

pace. To imitate this behaviour, a little break is added in the middle of typing the

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 37

Listing 8 The test code

it('should search data about a given city', async () => {

await page.waitForFunction('document.getElementById("searchForm")')

await fc.assert(

fc.asyncProperty(fc.integer({

min: 0,

max: 137520

}) , fc.integer({min: 500, max: 1500}) ,

async (city, delay) => {

const testcity=testCities[city].Name

const split=Math.round(0.66*testcity.length)

const firstpart=testcity.substring(0,split)

const secondpart=testcity.substring(split)

await page.type("input[name='search']", firstpart)

await page.waitForTimeout(delay)

.then(() => console.log('Waited a moment!'))

await page.type("input[name='search']", secondpart)

await page.click("button[type='submit']")

await page.click("button[type='button']")

expect(await page.$eval('#result', element => element.innerText))

.toEqual(testCities[city].Name)

}), {verbose:true})

})

search term.

When applying Property-Based testing the property has to be formulated. Here

the input is those city names for which data is found; the behavior under the test is

not how the search �eld behaves if the input is something that does not �nd anything

from the database. Of course, the expected behaviour is that the information of the

typed city is shown. So the property is: for all cities found from the database,

application shows information from the city that the user types.

The test that combines the generation of inputs and imitation of a real user, is

shown in Listing 8. In the test, a little break is generated before the last letters are

typed.

As seen from the test result in Listing 9, the test fails. Fast-Check has used

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 38

Listing 9 Test result
Property failed after 15 tests

{ seed: 249612799,

path: "14:12:13:3:3:1:0:15:14:9:4:9:14:10:6:1:11:

14:14:14:6:1:1:0:9:1:11:11:11:11",

endOnFailure: true }

Counterexample: [774711,501]

Shrunk 29 time(s)

Got error: Error: expect(received).toEqual(expected) // deep equality

Expected: "Bystra"

Received: "Bystrom"

Stack trace: Error: expect(received).toEqual(expected) // deep equality

Expected: "Bystra"

Received: "Bystrom"

shrinking to �nd a counterexample. In this case the counterexample is that the

user tries to �nd information about a city called Bystra. The user types "Bystr",

then takes a little break. Autocomplete suggests a search term "Bystrom" because

it has been searched more times than Bystra. When the user types the last letter

and presses enter quicky, the search term is not updated because of throttling.

Throttling delays the update. That is why the results from Bystrom are shown and

the application does not behave as was expected.

Next, more generation is added to the test. In addition to generating the duration

of the break, the point of the break is also generated. The test is shown in Listing

10. This test also fails like shown in Listing 11. The reasons for this test failing

are the same as in the previous test. This test is even more imitating the real user,

because the break it is taking occurs at a random point.

Also when the searched city name is very short and the user types it really fast,

the search term is not updated. Throttling prevents it and and again wrong result

is shown. A test which reveals this defect is shown in Listing 12. To make the test's

typing simulation as realistic as possible, we have added a delay after every press.

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 39

Listing 10 The Test Code

it('should search a given place', async () => {

await page.waitForFunction('document.getElementById("searchForm")')

await fc.assert(

fc.asyncProperty(fc.integer({

min: 0,

max: 137520

}) , fc.integer({min: 500, max: 1500}) ,

fc.integer({min: 1, max: 30}) ,

async (city, delay, burst) => {

const testcity=testCities[city].Name

const split = burst%testcity.length

const firstpart=testcity.substring(0,split)

const secondpart=testcity.substring(split)

await page.type("input[name='search']", firstpart)

await page.waitForTimeout(delay)

.then(() => console.log('Waited a moment!'))

await page.type("input[name='search']", secondpart)

await page.click("button[type='submit']")

await page.click("button[type='button']")

expect(await page.$eval('#result', element => element.innerText)).

toEqual(testCities[city].Name)

}), {verbose:true})

})

Listing 11 Test result
Property failed after 4 tests

{ seed: -623420858, path: "3:1:7:4:4:5:14", endOnFailure: true }

Counterexample: [28198,500,30]

Shrunk 6 time(s)

Got error: Error: expect(received).toEqual(expected) // deep equality

Expected: "Nanjin"

Received: "Nanjie"

Stack trace: Error: expect(received).toEqual(expected) // deep equality

Expected: "Nanjin"

Received: "Nanjie"

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 40

Listing 12 The Test Code

it('should search data about a given city', async () => {

await page.waitForFunction('document.getElementById("searchForm")')

await fc.assert(

fc.asyncProperty(fc.integer({

min: 0,

max: 137520

}), fc.array(fc.integer({

min: 100,

max: 1000

}), {

minLength: 50,

maxLength: 100

}) , async (city, delays) => {

const testcity=testCities[city].Name

for (let i ; i < testcity.length ; i++){

const char = testcity.chartAt(i)

await page.type("input[name='search']", char)

const delay = delays[i]

await page.waitForTimeout(delay)

.then(() => console.log('Waited a moment!'))

}

await page.click("button[type='submit']")

await page.click("button[type='button']")

expect(await page.$eval('#result', element => element.innerText))

.toEqual(testCities[city].Name)

}), {verbose:true})

})

The delay is again generated, but now the generated values are less than the delay

of throttling to imitate really fast typing.

As seen from the test result in Listing 13, the test fails. Fast-Check has used

shrinking to �nd a counterexample. In this case the counterexample is that the user

tries to �nd information about a city called Mirny. The user types "Mirny" really

fast, but the search term is not updated because of throttling. The search term is

now "Mir" because throttling delays the update. Only a part of the search term

is updated and the last letters are not included in the search term. That is why

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 41

Listing 13 Test result
Property failed after 6 tests

{ seed: -409630996, path: "5:16:16", endOnFailure: true }

Counterexample: [58484,[20,105,156,396,260,134,179,329,124,

157,94,209,342,390,102,211,447,134,262,205,425,33,359,375,302,

320,247,144,120,369,132,116,285,420,219,431,295,428,443,362,394,

300,308,326,417,423,56,85,374,292]]

Shrunk 2 time(s)

Got error: Error: expect(received).toEqual(expected) // deep equality

Expected: "Mirny"

Received: "Miramar"

Stack trace: Error: expect(received).toEqual(expected) // deep equality

Expected: "Mirny"

Received: "Miramar"

the results from "Miramar" are shown and the application does not behave as was

expected.

So to reveal this errourneous behaviour, we had to use Property-Based testing

and feed the generated inputs to test in a way that emulates realistic use of applica-

tion. Trying the search with just one city would likely not reveal the error, especially

if the city is the most searched city. By generating a large number of search terms

the probability to �nd suitable terms increases.

6.2 Fetching data to UI using Promises

The asynchronous behaviour of promises causes sometimes unexpected behaviour.

The exectution of code continues even if there is a promise pending. The code can

create a new promise before a previous promise is full�lled or rejected. Because of

asynchronity the second promise can be resolved before the �rst one and this may

cause unexpected behaviour. The next two example tests are designed to reveal

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 42

problems in these kind of situations.

Property-based testing can be used to reveal the behaviour described. Fast-check

provides an interface called Scheduler, which is a built-in asynchronous scheduler.

The purpose of the interface is to reschedule promises. The interface provides three

scheduling methods, schedule, scheduleFunction and scheduleSequence. The

method schedule creates wrapped promises. The lifecycle of the promise stays the

same, but the promise resolves only when the scheduler decides so. Before scheduling

another promise the scheduler waits the �rst promise to resolve. The method can be

used to test functions whose input is a raw promise. The method scheduleFunction

creates a producer of scheduled promises. If the function makes asynchronous API

calls, this method can reorder the order of promises. For instance function fetch

is this kind of function. If there is sequence of asynchronous calls that must be run

in a precise order, the method scheduleSequence can be used. Like the next two

examples show, the scheduler is applicable to both mocked tests and to tests that

use a real database. [40]

6.2.1 Mocked test: search �eld

The �rst example is a search �eld, where a user types the name of the city in the

search �eld and pushes the search button. Then the data from the city is fetched

from the database. In this case the erroneous behaviour of promises appears when

user types the name of city A, then pushes a button and promise A is pending.

Then the user types the name of the city B, then pushes the button and promise

B is pending. If promise B is ful�lled �rst, the data from city B is shown. When

promise A is full�lled the data from the city A is shown, even if the user wanted to

see data from city B. This sequence of events is described as a list below just to be

clear.

1. User types the name of city A and pushes the search button

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 43

2. Promise A is created and is pending

3. User types the name of city B and pushes the search button

4. Promise B is created and is pending

5. Promise B is full�lled

6. Data from city B is shown

7. Promise A is full�lled

8. Data from city A is shown

To apply Property-Based testing we again need to formulate a property. Again,

the set of interesting inputs is now the cities for which the data is stored. The

interesting case is not how the search �eld behaves if the input is something that

does not �nd anything from the database. Of course, the expected behaviour is

that information about the typed city is shown. So the property is much like in

the previous example: for all cities found from the database, the application shows

information from the city the user types.

In this example test Axios is mocked using Jest. Jest provides mocking out of

the box and mocking an API call is easy. First the mocked module, in this case

Axios, is imported into the test �le. To mock a module Jest uses jest.mock. The

necessary imports are shown in Listing 14. [37]

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 44

Listing 14 Mocking Axios
import axios from 'axios'

jest.mock('axios')

Later in the test code the method .mockResolvedValue() is used to mock the

response. Responses are generated from a JSON �le. The �le includes 137 521 cities,

so an integer in the range from 0 to 137 520 is generated. The integer is used as

an index of the city to be fetched. The Search component is rendered using this

mocked response. The promises are reordered using scheduler. The test code is

shown in Listing 15.

When the test is executed, it fails. The result is shown in Listing 16. In this

case the scheduler delays the �rst promise and the second is ful�lled �rst.

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 45

Listing 15 Mocked search test

it('should search data about the city user types', async () => {

await fc.assert(

fc.asyncProperty(fc.scheduler(), fc.integer(0,137520),

fc.integer(0, 137520), async (scheduler, city1, city2) => {

const resp =[testCities[city1]]

const resp2 =[testCities[city2]]

axios.get.mockResolvedValue({ data: resp })

const {rerender} = render(<Search />)

scheduler.scheduleSequence([async () => {

axios.get.mockResolvedValue({ data: resp2 })

rerender(<Search />) },])

await scheduler.waitAll()

const result= await waitFor(() => screen.getByTestId("result"));

expect(result).toHaveTextContent(resp2[0].Name)

}).beforeEach(async () => {

jest.resetAllMocks();

await cleanup();

})

)

})

})

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 46

Listing 16 Mocked search test
Property failed after 1 tests

{ seed: 1578744751, path: "0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0",

endOnFailure: true }

Counterexample: [schedulerFor()`

-> [task${1}] sequence resolved`,0,1]

Shrunk 17 time(s)

Got error: Error: expect(element).toHaveTextContent()

Expected element to have text content:

Namtsy

Received:

Result: Priargunsk

6.2.2 React Application for showing RSS-feed

The second example is about testing an application that shows news titles from RSS

feeds. The code of the application is introduced in the article by Madsen, Lhoták

and Tip [41]. The application sends a new promise every �ve seconds to update feeds

shown by the application. In this application the errorneous behaviour of promises

can be noticed when the feed is updated between two promises. The application

creates a promise and after �ve seconds a new one. If the second promise is full�lled

�rst and there is a feed update between these promises, a new title shows up to the

application. But when the �rst promise is full�lled the title disappears because the

response of the �rst promise does not include the latest title. Of course the title

�nally shows up when the next promise is full�lled, but it can be very confusing to

user when the title shows up, disappears and shows up again. The behaviour is also

described as a list below just to be clear.

1. Application creates promise A for updating

2. Application sends a request A to RSS feed

3. Five seconds passes

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 47

4. Application creates promise B for updating

5. Application sends a request A to RSS feed

6. RSS feed sends a response for request A

7. The feed is updated and new titles are added

8. RSS feed sends a response for request B

9. Promise B is full�lled

10. User sees new titles in the application

11. Promise A is full�led

12. New titles disappear

What the user sees depends on how often the feed is updated. If the feed is up-

dated regurlarly and more often than promises are created, reordering of promises

can also cause two titles appearing at the same time and then another one disap-

pearing. If the second promise is full�lled �rst, the feed has updated twice before

the promise is resolved. That is why two titles appears. When the the �rst sent

promise resolves, another disappears. Of course, the next resolved promise includes

the title, but it still can be very confusing to the user.

Again property-based testing and Fast-Check's interface scheduler is utilized

to reorder the promises. Because PBT is utilized the property has to be formulated.

Now the observed behaviour is when the feed is updated. The new titles show up

always at the top of the list of titles. So the updated list includes the same titles

in the same order than before the update. The only change is the new titles at the

top. So the property is: for every updated list, the list includes the titles from the

previous list in the same order.

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 48

Listing 17 Test for RSS feed application

it('should keep the rest of the list ', async () => {

await fc.assert(

fc.asyncProperty(fc.scheduler() , async (scheduler) => {

let feed

let expectedresult

let result

let slicedresult

scheduler.scheduleSequence([async () => {

feed= await parser.parseURL('http://localhost:4050/examplefeed')

expectedresult = feed.items.map(item => item.title)

await new Promise(res => setTimeout(res, 5000))} ,

async ()=> {

feed = await parser.parseURL('http://localhost:4050/examplefeed')

result=feed.items.map(item => item.title)

slicedresult= result.slice(1)

await new Promise(res => setTimeout(res,5000))

},])

await scheduler.waitAll()

expect(slicedresult).toEqual(expectedresult)

}),)

})

})

For testing purposes an ad-hoc solution for simulating the feed is impelemented.

It is an example feed which is updated every four seconds. In this test mocking is

not used, because this example is about to demonstrate that we can use scheduler

interface also when executing end-to-end tests and because there are many other

solutions than to mock, e.g., to build an example feed which is updated more often

than a real one.

In the test code the async-await syntax is used. This syntax can be used also in

tests just as in the program code. The test code is shown in Listing 17.

The test fails because the second promise is resolved �rst. The feed has updated

CHAPTER 6. CATCHING DEFECTS WITH GENERATED EVENT
SEQUENCES AND PROPERTY-BASED TESTING 49

Listing 18 Test result
Property failed after 8 tests

{ seed: -364263465, path: "7", endOnFailure: true }

Counterexample: [schedulerFor()`

-> [task${1}] sequence resolved

-> [task${2}] sequence resolved`]

Shrunk 0 time(s)

Got error: Error: expect(received).toEqual(expected)

- Expected - 0

+ Received + 1

@@ -1,6 +1,7 @@

Array [

+ "Title 7253",

"Title 7247",

"Title 7243",

"Title 7237",

"Title 7229",

"Title 7219",

twice after the application has sent a request and that is why two titles are added

instead of just one. Of course executing the test stops, but if it will continue, the

�rst title would disappear. The test result is shown in Listing 18.

7 Conclusions

In this thesis we investigated Property-Based Testing for testing user interfaces.

Some simple tests were implemented using PBT and some bugs were found using

these tests. Based on these tests Property-Based testing is applicable also in UI

tests. But it is not enough that some testing technique is applicable. There has to

be some advantages comparing to other techniques. One goal of this thesis was also

to study what advantages PBT provides. In this thesis was also introduced some

challenges of UI testing and discussed if PBT can solve these challenges.

One challenge in software testing is the so called oracle problem. The oracle

problem is the challenge to determine wheter a test is passed or failed, i.e. what is

the correct behaviour of the system for given input. Properties de�ne the expected

behaviour accurately. They also make it precise what is tested and when the test

fails, so properties are test oracles and they make it easier to de�ne the correct

behaviour. On the other hand, de�ning properties is not trivial and it is also a

challenge to formulate invariants that should always stay the same and yet be likely

to be broken in case of defects.

Another challenge of UI testing is to obtain an adequate test coverage. The

behaviour of an UI is dependent on the state of the UI. Even a simple UI can

have thousands of possible states. Events and event sequences change the state and

the state is usually dependent on former events. So testing the behaviour in every

possible state and testing the e�ect of every possible event is generally impossible.

CHAPTER 7. CONCLUSIONS 51

Consequently, obtaining an adequate test coverage is di�cult. Further, if an UI has

some input �elds that accept complex data, such as text testing for di�erent inputs

is also a daunting task.

Generating input data is one way to increase coverage. By generating a large

amount of test data, tests can be created quickly, but using generators in UI testing

may have challenges. UIs interact with the real world and with humans, so gener-

ating a realistic test data is not easy. Generators must be speci�cally programmed

to emulate humans' data and event production.

Hughes and Claessen state [1] that well-de�ned properties quarantee an adequate

test coverage, so random generators are suitable for generating test data and custom

test data generators are not needed. In example tests introduced in this thesis we

were able to �nd a defect by using random generation of events. The test for throt-

tled search �eld exposed a defect and the test generated realistic event sequence to

uncover a bug. The breaks added to some point of typing imitated a real user much

better than typing imitated by Puppeteer. This defect would not have necessarily

been found by using example-based tests. Of course it would be interenting to test

more complex UIs and to generate more complex event sequences to explore if we

�nd defects.

In example tests of this thesis a PBT testing tool called FastCheck was used.

Some observations about the tool were also made. The tool provides an interface

called Scheduler and it is designed to reschedule the ordering of promises. This

interface is very useful for testing promises and how the UI behaves if the ordering

of promises is rescheduled.

When implementing and executing the example tests, some limitations of the

tool FastCheck were noticed. Especially when testing the city search for promise

errors, the generator started many times with the same integers 0 and 1. Also we

noticed that the generator usually produced small test cases, e.g. small integers. To

CHAPTER 7. CONCLUSIONS 52

really increase the coverage, large numbers or long arrays are also needed.

The test cases we used in our examples were rather simple, but they nevertheless

demonstared that PBT can be applied in GUI testing and that there are defect

classes that might not be detectable by example-based testing, but can be found

using PBT.

References

[1] K. Claessen and J. Hughes, �QuickCheck: A lightweight tool for random test-

ing of Haskell programs�, Proceedings of the ACM SIGPLAN International

Conference on Functional Programming, ICFP, vol. 46, Jan. 2000. doi: 10.

1145/1988042.1988046.

[2] A. Mili, Software testing : concepts and operations. Hoboken, New Jersey: John

Wiley and Sons, Inc., isbn: 1-119-06559-3.

[3] P. Ammann and J. O�utt, Introduction to Software Testing, 1st ed. USA:

Cambridge University Press, 2008, isbn: 0521880386.

[4] B. Beizer, Software Testing Techniques (2nd Ed.) USA: Van Nostrand Rein-

hold Co., 1990, isbn: 0442206720.

[5] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, �The oracle

problem in software testing: A survey�, IEEE Transactions on Software Engi-

neering, vol. 41, no. 5, pp. 507�525, 2015. doi: 10.1109/TSE.2014.2372785.

[6] K. Herzig, S. Just, and A. Zeller, �It's not a bug, it's a feature: How misclassi-

�cation impacts bug prediction�, in 35th International Conference on Software

Engineering (ICSE), IEEE Press, 2013, pp. 392�401, isbn: 1467330760.

[7] G. J. Myers, The art of software testing, 3rd ed. Hoboken, N.J: John Wiley

and Sons, isbn: 9781118031964.

https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1109/TSE.2014.2372785

REFERENCES 54

[8] M. Fowler, Testdouble. [Online]. Available: https://martinfowler.com/

bliki/TestDouble.html (visited on 09/26/2021).

[9] M. Fowler,Mocks aren't stubs. [Online]. Available: https://www.martinfowler.

com/articles/mocksArentStubs.html (visited on 09/26/2021).

[10] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli, �To mock or not

to mock? an empirical study on mocking practices�, in 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR), 2017,

pp. 402�412. doi: 10.1109/MSR.2017.61.

[11] R. Osherove, The Art of Unit Testing: With Examples in .Net, 1st. USA:

Manning Publications Co., 2009, isbn: 1933988274.

[12] Q. Xie and A. M. Memon, �Using a pilot study to derive a gui model for auto-

mated testing�, ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 18, no. 2, pp. 1�35, 2008.

[13] R. F. Jorge, M. Delamaro, C. G. Camilo-Junior, and A. M. Vincenzi, �Test

data generation based on gui: A systematic mapping�, in Proceedings of the 9th

International Conference on Software Engineering Advances (ICSEA), 2014,

pp. 240�246.

[14] A. M. Memon, M. L. So�a, and M. E. Pollack, �Coverage criteria for GUI test-

ing�, in ESEC/FSE-9: Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium on

Foundations of software engineering, New York, NY, USA: ACM Press, 2001,

pp. 256�267, isbn: 1-58113-390-1.

[15] A. N. Ghazi, K. Petersen, E. Bjarnason, and P. Runeson, �Levels of exploration

in exploratory testing: From freestyle to fully scripted�, IEEE Access, vol. 6,

pp. 26 416�26 423, 2018. doi: 10.1109/ACCESS.2018.2834957.

https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/TestDouble.html
https://www.martinfowler.com/articles/mocksArentStubs.html
https://www.martinfowler.com/articles/mocksArentStubs.html
https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1109/ACCESS.2018.2834957

REFERENCES 55

[16] J. Edvardsson, �A survey on automatic test data generation�, in Proceedings

of the Second Conference onComputer Science and Engineering in Linköping,

ECSEL, 1999, pp. 21�28.

[17] M. Bozkurt and M. Harman, �Automatically generating realistic test input

from web services�, in Proceedings of 2011 IEEE 6th International Symposium

on Service Oriented System (SOSE), 2011, pp. 13�24. doi: 10.1109/SOSE.

2011.6139088.

[18] M. Ermuth and M. Pradel, �Monkey see, monkey do: E�ective generation of

GUI tests with inferred macro events�, in Proceedings of the 25th International

Symposium on Software Testing and Analysis, Saarbrücken, Germany: Asso-

ciation for Computing Machinery, 2016, pp. 82�93, isbn: 9781450343909. doi:

10.1145/2931037.2931053. [Online]. Available: https://doi.org/10.1145/

2931037.2931053.

[19] J. Hughes, �How to specify it!�, in Trends in Functional Programming, W. J.

Bowman and R. Garcia, Eds., Cham: Springer International Publishing, 2020,

pp. 58�83, isbn: 978-3-030-47147-7.

[20] F.-Y. Lo, C.-H. Chen, and Y.-p. Chen, �Shrinking counterexamples in property-

based testing with genetic algorithms�, in 2020 IEEE Congress on Evolution-

ary Computation (CEC), 2020, pp. 1�8. doi: 10 . 1109 / CEC48606 . 2020 .

9185807.

[21] Jqwik. [Online]. Available: https://jqwik.net/ (visited on 05/11/2022).

[22] Hypothesis. [Online]. Available: https://hypothesis.readthedocs.io/en/

latest/ (visited on 05/11/2022).

[23] Fscheck. [Online]. Available: https://fscheck.github.io/FsCheck/ (visited

on 05/11/2022).

https://doi.org/10.1109/SOSE.2011.6139088
https://doi.org/10.1109/SOSE.2011.6139088
https://doi.org/10.1145/2931037.2931053
https://doi.org/10.1145/2931037.2931053
https://doi.org/10.1145/2931037.2931053
https://doi.org/10.1109/CEC48606.2020.9185807
https://doi.org/10.1109/CEC48606.2020.9185807
https://jqwik.net/
https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/
https://fscheck.github.io/FsCheck/

REFERENCES 56

[24] N. Dubienn, Fastcheck. [Online]. Available: https://github.com/dubzzz/

fast-check (visited on 05/01/2022).

[25] O. Grenrus, Jsverify. [Online]. Available: http://jsverify.github.io/

(visited on 11/13/2021).

[26] L. Byron, Testcheck.js. [Online]. Available: http://leebyron.com/testcheck-

js/ (visited on 11/13/2021).

[27] Test.check. [Online]. Available: https://github.com/clojure/test.check

(visited on 05/11/2022).

[28] Babel. [Online]. Available: https://babeljs.io/ (visited on 05/18/2022).

[29] Document object model. [Online]. Available: https://developer.mozilla.

org/en-US/docs/Web/API/Document_Object_Model/Introduction (visited

on 02/18/2022).

[30] Promises. [Online]. Available: https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Global_Objects/Promise (visited on

09/04/2021).

[31] Using promises. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Using_promises (visited on 09/04/2021).

[32] Axios. [Online]. Available: https://axios-http.com/ (visited on 09/18/2021).

[33] Testing React. [Online]. Available: https://reactjs.org/docs/testing.

html (visited on 01/23/2021).

[34] Create React app. [Online]. Available: https://create-react-app.dev/

docs/running-tests/#docsNav (visited on 01/15/2022).

[35] R. Verdecchia, E. Cruciani, B. Miranda, and A. Bertolino, �Know you neigh-

bor: Fast static prediction of test �akiness�, IEEE Access, vol. 9, pp. 76 119�

76 134, 2021. doi: 10.1109/ACCESS.2021.3082424.

https://github.com/dubzzz/fast-check
https://github.com/dubzzz/fast-check
http://jsverify.github.io/
http://leebyron.com/testcheck-js/
http://leebyron.com/testcheck-js/
https://github.com/clojure/test.check
https://babeljs.io/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://axios-http.com/
https://reactjs.org/docs/testing.html
https://reactjs.org/docs/testing.html
https://create-react-app.dev/docs/running-tests/#docsNav
https://create-react-app.dev/docs/running-tests/#docsNav
https://doi.org/10.1109/ACCESS.2021.3082424

REFERENCES 57

[36] React Testing environments. [Online]. Available: https://reactjs.org/

docs/testing-environments.html (visited on 01/23/2021).

[37] Jest. [Online]. Available: https://jestjs.io/docs/ (visited on 05/28/2021).

[38] React testing library. [Online]. Available: https://testing-library.com/

docs/react-testing-library/intro (visited on 01/23/2021).

[39] Puppeteer. [Online]. Available: https://pptr.dev/ (visited on 05/01/2022).

[40] N. Dubienn, Fast-check scheduler-interface. [Online]. Available: https : / /

github.com/dubzzz/fast-check/blob/main/documentation/RaceConditions.

md (visited on 05/01/2022).

[41] M. Madsen, O. Lhoták, and F. Tip, �A Semantics for the Essence of Re-

act�, in 34th European Conference on Object-Oriented Programming (ECOOP

2020), R. Hirschfeld and T. Pape, Eds., ser. Leibniz International Proceed-

ings in Informatics (LIPIcs), vol. 166, Dagstuhl, Germany: Schloss Dagstuhl�

Leibniz-Zentrum für Informatik, 2020, 12:1�12:26, isbn: 978-3-95977-154-2.

doi: 10.4230/LIPIcs.ECOOP.2020.12. [Online]. Available: https://drops.

dagstuhl.de/opus/volltexte/2020/13169.

https://reactjs.org/docs/testing-environments.html
https://reactjs.org/docs/testing-environments.html
https://jestjs.io/docs/
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://pptr.dev/
https://github.com/dubzzz/fast-check/blob/main/documentation/RaceConditions.md
https://github.com/dubzzz/fast-check/blob/main/documentation/RaceConditions.md
https://github.com/dubzzz/fast-check/blob/main/documentation/RaceConditions.md
https://doi.org/10.4230/LIPIcs.ECOOP.2020.12
https://drops.dagstuhl.de/opus/volltexte/2020/13169
https://drops.dagstuhl.de/opus/volltexte/2020/13169

	Introduction
	Software Testing
	The Basic Concepts of Software Testing
	Software testing methodologies
	Levels of testing
	Mocking

	Testing User Interfaces
	Manual User Interface Testing
	Automating User Interface tests
	Generative testing

	Property-Based Testing
	The concept of Property-Based Testing
	Property-based testing tools for JavaScript
	Basic concepts of property-based testing tools
	Fast-check
	JSVerify
	TestCheck

	Background: Technology stack
	React JS and testing React applications
	Jest
	React Testing Library
	Puppeteer

	Catching defects with generated event sequences and Property-Based testing
	Throttled search field
	Fetching data to UI using Promises
	Mocked test: search field
	React Application for showing RSS-feed

	Conclusions
	References

