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Healthcare is a sector that has been notoriously stagnant in digital innovation, nev-
ertheless its transformation is imminent. Digital pathology is a �eld that is being
accentuated in light of recent technological development. With capacity to conduct
high-resolution tissue imaging and managing output digitally, advanced image anal-
ysis and Machine Learning can be subsequently applied. These methods provide
means to for instance automating segmentation of region-of-interests, diagnosis and
knowledge discovery.

Brain malignancies are particularly dire with a high fatality rate and relatively
high occurrence in children. Di�use gliomas are a subtype of brain tumours whose
biological behavior range from very indolent to extremely aggressive, which is re-
�ected in grading I - IV. The brain tumour micro-environment (TME) � local area
surrounding cancerous cells with a plethora of immune cells and other structures
in interaction � has emerged as a critical regulator of brain tumour progression.
Researchers are interested in immunotherapeutic treatment of brain cancer, since
modern approaches are insu�cient in treatment of especially the most aggressive
tumours. Additionally, the TME is rendered di�cult to understand. Multiplex
Immunohistochemistry (mIHC) is a novel approach in e�ectively mapping spatial
distribution of cell types in tissue samples using multiple antibodies.

In this thesis, we investigate the TME in di�use glioma mIHC samples for three
patient cases with 2-3 di�ering tumour grades per patient. From the 18 possibilities
we selected 6 antigens (markers) of interest for further analysis. In particular, we
are interested in how relative proportion of positive antigens and mean distance to
nearest blood vessel vary for our selected markers in tumour progression. In order
to acquire desired properties, we register each corresponding image, detect nuclei,
segment cells and extract structured data from region channel intensities along with
their location and distance to nearest blood vessel.

Our primary �nding is that M2-macrophage and T cell occurrence proportions as
well as their mean distance to blood vessel grow with increasing tumour grade. The
results could suggest that aforementioned cell types are of low quantity in near
vicinity of blood vessels in low tumour grades, and conversely with higher quantities
and more homogeneous distribution in aggressive tumours. Despite the several po-
tential error sources and non-standardized processes in the pipeline between tissue
extraction and image analysis, our results support pre-existing knowledge in that
M2-macrophage proportion has a positive correlation with tumour grade.

Keywords: Digital Pathology, Computational Pathology, Bioimage Analysis, Ad-
vanced Image Analysis, Multiplex Immunohistochemistry, Tumour Microenviron-
ment
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Terveydenhuollon digitaalinen kehitys on ollut hidasliikkeistä muihin sektoreihin
verrattuna. Tästä huolimatta, terveydenhuollon digitaalinen muunnos on välitön ja
asiaan liittyvä tutkimus jatkuvaa. Digitaalinen patologia on ala, joka viime aikaisen
teknologisen kehityksen myötä on korostunut. Kudoskuvantaminen korkealla res-
oluutiolla ja näytteiden digitaalinen hallinta on mahdollistanut kehittyneen kuv-
analysiin sekä koneoppimisen soveltamisen. Nämä metodit luovat keinot esimerkiksi
biologisesti merkittävien alueiden segmentointiin, diagnoosiin ja uuden tieteellisen
tiedon tuottamiseen.

Aivokasvaimet ovat järkyttäviä, sillä tapauskuolleisuus ja esiintymä nuorissa
ovat suhteellisen korkealla. Di�uusigliomat ovat aivokasvainten alatyyppi, jonka
sisältämät kasvaimet luokitellaan niiden aggressiivisuuden perusteella eri graduksiin
väliltä I - IV. Kasvaimen mikroympäristö (TME), eli syöpäsolujen paikallinen ym-
päristö sisältäen mm. runsaasti immuunipuolustuksen soluja vuorovaikutuksessa,
on osoittautunut merkittäväksi tekijäksi kasvaimen kehityksen suhteen. Aivosyövän
tutkimus painottuu immunoterapeuttisiin ratkaisuihin, sillä nykyiset hoitomuodot
eivät ole tarpeeksi tehokkaita etenkään kaikista aggressiivisimpien kasvainten hoi-
dossa. Lisäksi mikroympäristö voi olla vaikea ymmärtää. Monikanavainen immuno-
histokemiallinen värjäys (mIHC) on uudenlainen lähestymistapa solutyyppien spati-
aalijakauman kartoittamiseen kudosnäytteissä tehokkaasti hyödyntäen useita vasta-
aineita.

Tässä opinnäytetyössä tutkitaan di�uusigliooma mIHC-näytteitä kolmelle poti-
lastapaukselle. Jokaista potilasta kohti on 2-3 näytettä eri kasvainlaaduista ja yh-
teensä 18 mIHC-kanavaa per näyte, joista 6 otettiin tarkasteluun. Tarkalleen ot-
taen, solutyyppien aktivaatioiden osuudet positiivisten antigeenien perusteella ja
keskimääräinen etäisyys lähimpään verisuoneen jokaista ryhmää kohti lasketaan eri
kasvaimen laaduissa. Tavoitteen saavuttamiseksi näytteitä vastaavat kuvat rek-
isteröidään, tumat tunnistetaan, solualueet segmentoidaan ja kerätään jäsenneltyä
tietoa alueiden intensiteettikanavista mukaan lukien sijainti ja sijaintia vastaava
etäisyys lähimpään verisuoneen.

Pääasiallinen löytö on, että M2-makrofagien ja T-solujen suhteelliset osuudet sekä
keskimääräinen etäisyys lähimpään verisuoneen nousevat kasvaimen ollessa aggres-
siivisempi. Tulokset saattavat ehdottaa, että edellämainitut solutyypit ovat vähäisiä
ja verisuonten lähellä kun kasvain on hyvänlaatuinen ja vastaavasti suurimilla os-
uuksilla ja enemmän homogeenisesti jakautunut kun kasvain on aggressiivisempi.
Useista virhelähteistä ja kudosanalyysin liittyvistä ei-standardisoiduista prosesseista
huolimatta, tuloksemme tukevat ennaltatiedettyä tietoa siitä, että M2-makrofagien
osuudella on positiivinen korrelaatio kasvaimen laatuun.

Avainsanat: Digitaalinen patologia, laskennallinen patologia, biokuvainformatiikka,
monikanavainen immunohistokemiallinen värjäys, kasvainmikroympäristö
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Introduction

The digital transformation in healthcare has emerged from the increasing demand for

chronic disease management, technological developments and the need to improve

patient outcomes with scalable and cost-e�ective solutions [1]. This transformation

is actualized by the integration of a rich data foundation with technologies such as

Internet of Things (IoT), advanced analytics and Machine Learning (ML). Whilst

other economic sectors have successfully undergone dramatic digitization, healthcare

is lagging, particularly in transformation of delivery [2].

Digital pathology is a constantly evolving �eld that deals with the acquisition,

management, sharing and interpretation of pathology information in a digital envi-

ronment. The virtualization of traditional glass slides at high resolution � Whole

Slide Imaging (WSI) � is at the forefront of modern digital pathology and is utilized

in clinical as well as non-clinical settings [3]. In addition to basic functions such as

image archiving and sharing, WSI enables the application of advanced image anal-

ysis as well as Arti�cial Intelligence (AI), extending the pathologists view beyond

human perception [4].

Brain and other central nervous system (CNS) tumours are constituted by a large

collection of histologically distinct subtypes. Although these tumours are rare, they

compose a high fatality rate and thus a disproportionate e�ect on cancer mortality;

two-thirds of patients die within a 5 year period after diagnosis. In recent years there

has been development in the molecular understanding, classi�cation, detection and

diagnosis of these tumours, yet the causal factors remain largely unknown. [5]

Over the past few decades, the brain tumour microenvironment (TME) has been

become recognized as a key regulator of cancer progression in brain malignancies.

These microenvironments are highly complex and interconnected � consisting of a

plethora of cell types in interaction � from various types of immune cells to the usual

organ-residents such as neurons and astrocytes. Insights on the tumour-promoting
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roles of TME components have led to discovery of multiple potential therapies,

however there is substantial progress to be made and countless open questions to

address. [6]

Multiplex immunohistochemistry (mIHC) has emerged as an e�cient approach

to mapping spatial distributions of cell types in tumour microenvironments. In

general, immunohistochemistry uses antibodies to detect certain antigens (markers)

in a sample of tissue. Multiplex IHC facilitates simultaneous detection of several

markers per tissue sample and subsequent analysis of tissue composition and cell-cell

interactions � giving foundation to reproducible, e�cient and cost-e�ective tissue

explorations. [7]

In this thesis project I investigate cell type occurrences in the vicinity of blood

vessels in multiplex immunohistochemical stained brain tumour tissue samples. My

data includes 9 tissue samples with 18 stain layers each. The entirety of the data is

rich, with stain hierarchies corresponding to certain cell types within a fascinating

microenvironmental landscape. We select 4 regions-of-interest for each tumour grade

per patient 1-3 and map the tumour micro-environment � in particular T cells,

macrophage M1/M2, microglia and tumour cells.

We start by registering the nuclei channel of each image and reapplying the

transformation to each channel. A pre-trained deep learning model is then utilized

in nuclei detection. Next we use nuclei as focal points in watershed segmentation

with a mask that is acquired from the blood vessel channel. The subsequent task

is composed of measuring mean intensities in �ltered stain images of corresponding

samples. We acquire an attribute describing distance to nearest blood vessel for

each centroid coordinate of our cells � extracted from a feature map based on a

processed blood vessel channel.
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1 Background

1.1 Digital transformation in healthcare

The digitization of modern civilization has transformed economic sectors; retail,

entertainment, �nance, education, communication, and so forth � all either fully

or partially submerged in the digital space. Whilst healthcare has seen substan-

tial technological development, its adoption is stagnated due to several challenges:

the culture isnt set up to absorb innovation, the stakes are very high, regulatory

processes persist, lack of clinical insight in technology companies, to name a few

examples. [2]

We nonetheless live in a time where healthcare is as relevant as ever: increased

chronic disease for an ageing population, health and �tness trends as well as a global

health crisis with the Covid-19 pandemic. According to statistics of FiBAN and

Finnish Venture Capital Association, the pandemic has created unforeseen demand

in digital health, with healthcare being the most attractive sector for Finnish angel

investors in 2020 [8].

Sacha Kraus et. al. [9] state that results from a systematic literature review

about the current research on the digital transformation of healthcare can be clus-

tered into 5 groups:

� Patient-centred approachesHealthcare consumers are becoming active decision-

makers in their health management. An article by Patricio et. al �nds that

participatory service design in healthcare enables innovation. Patient-centric ap-

proaches do not replace face-to-face consultation, rather act as a complementing

service.

� Operational e�ciencies Innovations in healthcare technology enhance opera-

tional e�ciencies, which in turn has a positive correlation with patient satisfac-

tion. These improvements are seen in for example reduction of reaction time and
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duration of administrative processes.

� Organizational factors and managerial implications Adoption of Health In-

formation Technology is investigated at an organizational level. Organizations can

have di�ering barriers and motivations to digitizing their systems and processes.

� Workforce practices Digital transformation in healthcare will reshape the re-

quirements for hospitals and healthcare professionals. These essential require-

ments include improving on �exibility, development of new behavioural traits and

capacity for increased distractions.

� Socio-economic aspects For more than a decade, market investments in the

European digital health market have been highly associated with socio-economic

and technological promises as well as policy initiatives. Socio-economic challenges

regarding digitization of healthcare are found within digital literacy, network ac-

cessibility, �nance and regulatory implications.

Regardless of the stagnation in digitalization of healthcare, quantity of patient-

level data has increased to a great extent; 30 % of global data volume is generated

in healthcare and the annual data volume growth rate is signi�cantly higher than

for manufacturing, �nancial services and media/entertainment [10]. In addition to

volume, healthcare systems possess 4 other distinct Big Data related characteristics,

as noted in table I [11].

Despite these astronomical data volumes, their potential remain largely un-

tapped. Electronic Medical Records (EMR) were an initial stepping stone to digiti-

zation of healthcare, yet they are often attributed to being ine�cient and acting as a

barrier to innovation [2]. The Finnish Institute of Health and Welfare (THL) states

that operating primary and special healthcare as separate entities has resulted in

acquisition of several independent systems. This fact combined with private sec-

tor having no access to local registries are example challenges in enhancing utility

of patient records. The 2023 Finnish reform of social welfare and healthcare will
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Table I. The �ve V's in Healthcare Big Data. Adopted from [11].

Characteristic Description

volume The large amount of data produced by stakeholders

velocity The rate at which health data is generated, stored, analyzed, etc.

variability Changeability in data rate, format, structure, semantics, etc.

variety Diverse sources of data including multimedia, blogs, server logs, etc.

veracity The quality of generated data.

bring about the acquisition of uni�ed systems, which will give foundation to further

development of electronic services in healthcare. [12]

Variety in data sources is one of the major challenges in digitization of health-

care. These sources include patient demographics, encounters, diagnosis, pathology,

laboratory tests, medications, radiology, surgical treatment, post-therapy care and

so forth. With the advent of Internet of Things, advanced sensors and mobile tech-

nology, additional information is collected. Once a rich data foundation is built on

top of these scattered sources, using modern Big Data technologies such as Cloud

Services, Parallel Processing and novel Database Management Systems (DBMS),

organizations can subsequently enter a new level of operation with next genera-

tion data management, advanced analytics, Machine Learning (ML) and Arti�cial

Intelligence (AI). [1, 11]

The aforementioned technologies of advanced analytics and ML/AI1 are methods

related to extracting knowledge from data or other experience as well as generally

building intelligent systems. In the case of healthcare this includes for example

predicting life expectancy, determining tumour malignancy, segmenting ROI's and

1AI is a loosely de�ned umbrella term encapsulating the models that emulate tasks typically

requiring human intelligence. 
ML is a subtype of AI, where learning is from data.
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knowledge discovery.

In the experimental part of this paper, I participate in the �eld of Digital Pathol-

ogy by investigating the cellular microenvironment of brain tumour tissue samples

using advanced image analysis. From the 5 groups of healthcare digitization research

mentioned earlier, this work can be classi�ed as belonging to 'operational e�cien-

cies', since understanding and measuring the tumour microenvironment has poten-

tial to reduce burden on medical professionals in for example automating tumour

grade diagnosis. The next chapters thus accordingly cover some of the background

knowledge in digital pathology, the technique used to illuminate the cells (mIHC)

and brain tumour microenvironments.

1.2 Digital pathology

The diagnostic discipline on the visual interpretation of captured tissue images,

Histopathology, is one of the domains of healthcare whose digitization e�orts are

being accentuated [13]. Digitization in pathology has been ongoing already for a

few decades, although only through recent technological developments have they

become propelled. Digital Pathology � the acquisition, management, sharing and

interpretation of pathology data in a digital setting � plays a crucial role and

is increasingly a technological requirement in the modern laboratory environment

[4, 14]. Since the focal point of this thesis is related to advanced image analysis of

brain tumour tissue, we focus more on the relevant technologies, implementations,

challenges and future prospects of computer vision in Digital Pathology (DP).

Whole Slide Imaging

We can imagine that in order for pathologists to transition to a digital work�ow,

it'd require a system, in which the primary source of diagnosis � microscopy images

� are digitized for display, management, sharing and analysis. This is exactly
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what Whole Slide Imaging (WSI), a.k.a virtual microscopy, achieves. WSI's are

composed of illumination and microscope optical components as well as a system

that accurately positions images on a camera � essentially making it a microscope

in robotic and computer control. WSI's produce digital renderings of traditional

glass slides, which are then viewed with interactive software on a computer. [3, 15]

Although WSI's have been around for more than a decade, they were initially

adapted for educational purposes with no clear clinical utility [16]. Recent ad-

vancements in processing power, data transfer speeds, software, hardware and cloud

services, have deemed WSI as the standard for future, scalable, high-throughput dig-

ital pathology [3, 13]. Other digital counter-parts include real-time systems, where

microscopes are either robotically controlled from a distance or video-streamed to

pathologists.

As mentioned in the previous chapter, healthcare systems are very complex and

digitization is not as straight forward as it perhaps may be in other sectors. The

technical backbone of digital pathology � big data technologies � require expertise

and resources that are not generally found in medical personnel and IT infrastruc-

ture. Additionally there can be misalignment between technical and medical goals,

with technological implementation lacking clinical insight. Some of the numerous

advantages and disadvantages related to WSI's are listed in table II. [13]



8

Table II. Potential advantages and disadvantages related to implementation of
Whole Slide Imaging, in general context as well as in perspective of reporting and
user experience. Adopted from [13].

Feature Possible advantage Possible disadvantage

WSI-general
� No physical slide distribution

� No slide fading

� No lost slides

� Faster case �nalization

� Less misidenti�cation

� Easier workload allocation

� Time for evaluable-ready slide in-

creased

� Cost of integration

� Calibration requirements

� Small particles omitted in scan

� Image artifacts

� Increased IT-dependence

WSI-reporting/

UX

� Parallel viewing

� Digital slide superposition

� Faster case �nalization

� Quick access to prior slides

� Facilitation of slide presentation

� Image sharing

� Computational pathology

� Slower evaluation

� Interpretation di�culties

� Polarization inability

� Visibility poor for some structures

� Additional training needs

� Dual infrastructure (glass & digi-

tal)
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Computational pathology

Histopathological evaluation of cancer is traditionally performed at multiple scales

of magni�cation and resolution. This is done in order to examine tumour progression

relating features, such as nuclei atypia, degree of gland formation, mitosis ubiquity

and presence of in�ammation. However, human visual assessment is time consuming

and incapable of routinely accurately quantifying valuable information such as the

hundreds of thousands of cells in every tissue section or mitosis ubiquity [17, 18].

The integration of WSI's to the pathologists work�ow � bringing management

and sharing of digital slides � opens a new exciting world: the application of ad-

vanced algorithms in microscopic images and computer-aided diagnostic techniques

in pathology[4]. Histopathological sections contain rich phenotypic information that

can be computationally utilized to explore underlying mechanisms contributing to

disease progression and survival outcomes [18]; unprecedented development in com-

puter vision allows for tissue interrogation in ways never seen before [16].

Deployment of Machine Learning models and particularly Deep Convolutional

Neural Networks are at the center of the new promising potential in practical

histopathological diagnostic work�ows. Successful applications include tumour clas-

si�cation and segmentation, mutation classi�cation and patient outcome prediction

[19]. Next I will cover some of the relevant basics of deep neural networks because

of their future prospects and the fact that in my methodology, I utilize a pre-trained

deep neural network for nuclei detection.

Convolutional Neural Networks

In machine learning, arti�cial neural networks (ANN) are a family of models that

mimic the structure of the brain and learn patterns in observations. ANN's are

composed of computational units that form connected layers. Perceptrons are the

most rudimentary ANN's, consisting of an input layer and an output layer, possess-
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ing only linear approximation capability. Perceptrons gain non-linear capability by

introducing hidden layers between input and output layers, where units of neighbour-

ing layers are connected but units within layers are not. These are called multilayer

perceptrons, whose estimation function of an output unit yk given an input vector

v is as follows: [20]

yk(v; Θ) = f 2

(
M∑
j=1

W
(2)
kj f

(1)

(
D∑
i=1

W
(1)
ji vi + b

(1)
j

)
+ b

(2)
k

)
, (1)

where superscript denotes layer index, f non-linear activation functions at speci�ed

layers, M number of hidden units and Θ = {W(1),W(2),b(1),b(2)} weight and bias

parameter set. There are several possible activation functions, including sigmoid,

hyperbolic tangent, softmax and the most popular one � recti�ed linear unit (ReLu)

function [21]. In equation 1, if we regard the hidden layer as a feature extractor

ϕ(v) = [ϕj(v)] ∈ RM , the output is a linear model: [20]

yk(v; Θ) = f 2

(
M∑
j=1

W
(2)
kj ϕj(v) + b

(2)
k

)
, (2)

where ϕj(v) = f (2)
(∑D

i=1 W
(1)
ji vi + b

(1)
j

)
. The above interpretation also applies

when there is increased number of hidden layers, which gives intuition that the role

of hidden layers is to extract informative features relative to the target task.

Practically speaking, the model needs to learn parameters Θ that minimize a cost

function E. Since the cost function is highly non-linear and non-convex, gradient

descent algorithms are used to iteratively update parameters. In feedforward neural

networks, the requirement of computing gradients is satis�ed with back-propagation

of error using the chain rule. Once the gradients are known, parameters Θ can be

updated as: [20]

Θ(τ+1) = Θ(τ) − η∇E
(
Θ(τ)

)
, (3)
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where η is the learning rate. There exists several variations to the optimization

equation 3 depending on for example how many samples are chosen at each gradient

computation and hyper-parameter adaptability [22].

Architectures with multiple layers � deep models � are useful for discovering

features from �ne to abstract. In histopathology, we are interested in instrinsic

cellular patterns exhibited in microscopic images, thus we use models that utilize

spatial and con�gural information in 2D or 3D input, called Convolutional Neural

Networks (CNN). CNN's are composed of convolutional layers scattered with pooling

and fully connected layers � exploiting mechanisms of local receptive �elds, weight

sharing and sub-sampling. The units in convolutional layer l compute activation

A
(l+1)
j based on a subset of near units in feature map A

(l−1)
i of preceding layer l− 1

by convolving kernels k
(l)
ij according to :[20]

A
(l)
j = f(

M(l−1)∑
i=1

A
(l−1)
i ∗ k(l)

ij + b
(l)
j ), (4)

where M (l−1) denotes number of feature maps in layer l − 1, asterisk convolutional

operator, b
(l)
j bias parameter and f activation function. CNN's require a change in

details for gradient descent and backpropagation: the sum of the gradients for a

given weight over all kernel weights must be computed � in order to match patches

with consecutive layer units and upsample pooling layers to recover reduced sizes.

[20]

I have now very brie�y introduced neural networks and CNN's whilst covering

only the most relevant matter. Deep learning is a vast �eld with diverse architectures

in supervised/unsupervised contexts and rich conceptual framework. Deep learning

in medical imaging is used in feature representation learning, detection of anatomical

structures, segmentation, computer-aided detection and computer-aided diagnosis.

[20]

Standardization of analytics is a hurdle in deployment of Digital Pathology so-
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lutions into research and clinical settings. The WSI's we are working with are the

product of a series of steps each with contribution to �nal quality, both in harvest-

ing and processing of tissue. Available scanners have variability and there are image

inconsistencies. These protocols and machinery must be standardized in order to

deploy reliable DP systems in a larger scale. There is research and solutions in

handling of image variability, such as models with generalization capability [16, 23]

1.3 Spatial mapping of brain tumour microenvironment

Brain and other central nervous system (CNS) tumours are constituted by a large

collection of histologically distinct subtypes with varying descriptive epidemiology,

clinical characteristics, treatments and outcomes. Although these tumours are rare,

they compose a high fatality rate and thus a disproportionate e�ect on cancer mor-

tality; two-thirds of patients die within a 5 year period after diagnosis. In recent

years there has been development in the molecular understanding, classi�cation,

detection and diagnosis of these tumours, yet the causal factors remain largely un-

known and clinical responses limited. [5]

Research has revealed that the tumour microenvironment (TME) plays a ma-

jor role in tumour progression and response to therapies, which has prompted the

urgency to develop methodologies in characterizing these complex tissue sites [24].

Multiplexed immunohistochemistry (mIHC) has emerged as an e�ective and pro�-

cient approach in identifying speci�c proteins and molecular abnormalities as well

as determining spatial mapping and activation of di�erent immune cells [25]. In my

methodology, I utilize brain tumour tissue mIHC images courtesy of doctoral stu-

dent Aliisa Tiihonen from the Cancer Regulation and Immunology research group in

Tampere University. In the next section I will take a surface-level look at the mIHC

technique used by Tiihonen and components of the brain tumour microenviornment.
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Multiplex immunohistochemical staining

Immunostaining is an umbrella term in biochemistry that encompasses all antibody

based methods to detect speci�c proteins in samples [26]. Conventional immuno-

histochemistry (IHC) is a prevalent diagnostic technique in histopathology, yet it is

constrained by high inter-observer variability and capacity to label singular markers

per tissue section. These constraints are circumvented by novel so-called multiplexed

techniques � particularly multiplex immunohistochemistry/immuno�uorescence (mIHC/IF)

� permitting simultaneous detection of several markers per tissue sample and sub-

sequent analysis of tissue composition and cell-cell interactions. High-throughput

mIHC/IF techniques give a foundation to reproducible, e�cient and cost-e�ective

tissue explorations. [7]

In general, immunohistochemistry uses antibodies to detect certain antigens

(markers) in a sample of tissue. As antibodies bind to antigens, antibodies can

be labelled with �uorophores for detection with �uorescent microscopy or with

precipitate-creating enzymes observed by light microscopy. [27] Multiplex strate-

gies of staining multiple antigens with di�erent antibodies grown in same species2

are essentially conducted either by bleaching directly conjugated primary antibodies

before adding layers, blocking access to previous antibody for a consecutive staining

round or alternatively removing antibodies from sections after staining and imaging.

[28]

The images used in my analysis were produced based on a staining protocol

called Multiple Iterative Labeling by Antibody Neodeposition (MILAN). This ef-

�cient multiplexing method is implemented with the use of common primary and

secondary antibodies, ubiquitous image scanners and routinely processed formalin

�xed para�n embedded (FFPE) tissue sections. MILAN employs the utility of an-

2mIHC methods can be implemented with anti-bodies from di�ering species, but these methods

are constrained by limited antibody sources.
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tibody removal, as mentioned in the last paragraph. [29] The protocol by Tiihonen

deviates from MILAN primarily from the fact that she used double staining and

conversely did not image auto�uorescence. The steps conducted in production of

utilized images, have been simpli�ed in table III.

Table III: Main phases in used staining protocol. Process

details have been simpli�ed. Various washing steps having

been omitted for simplicity. Interpreted from staining proto-

col document by Tiihonen [30] and steps elaborated by [31].

Step Title Description

1 Tissue setup Process starts from attachment of tissue sections onto

microscopy slides and a incubation period.

2 Para�n removal Para�n is removed from sample by consecutive washes

with xylene. Xylene is then removed with graded

washes of xylene to ethanol, the sample is then hy-

drated by graded washes of ethanol to water.

3 Antigen retrieval Enhance detectability of proteins by putting slides in

Tris-HCL -bu�er and subsequently to a retrieval de-

vice.

4 Auto�uorescence reduction Utilize Sudan Black 0,1 % in incubation of slides in or-

der to block auto�uorescence without e�ecting speci�c

signals.

5 Blocking Apply normal serum incubation. Carries antibodies

that will bind to the non-speci�c epitopes in sample,

thus blocking conjugated antibodies from doing the

same.

6 Primary antibody incubation Dilute the primary antibody in blocking solution and

incubate.
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7 Secondary antibody dilution Dilute the secondary antibody in blocking solution and

incubate.

8 Nucleus staining Incubate with DAPI.

9 Slide mounting Provide a drop of mounting medium on slide and place

the the coverslip on top. Remove air bubbles.

10 Imaging Slides cleaned with Ethanol. Con�gurations made on

imaging device Hamamatsu NanoZoomer s60. Three

channels per sample: DAPI, CY5, CY7.

11 Antibody elution After satisfactory scanning is achieved, coverslip is re-

moved and antibodies are removed. Antibody elution

implemented with 2-ME-SDS solution.

12 New staining round Repeat steps 4 - 11.

13 H&E After all antigens are stained and imaged, Hemtaoxylin

and Eosin staining can be done as �nal staining.

Tumour microenvironment

Brain tumors are the most common solid tumors a�ecting children and adolescents

� with close to 5,000 children diagnosed each year � rendering them particularly

dire [32]. They are notoriously some of the most deadly forms of cancers with

ability to resist conventional and novel treatments. In addition to the fact that

brain tumours are located inside the most crucial organ of the human body, they

are often protected by the blood-brain-barrier (BBB) � a system of tight junctions

and proteins that protect neural tissue from factors in general circulation whilst

concurrently obstructing the passage of therapeutics. [33]

The tumour microenvironment has been recognized as a key regulator of cancer

progression in primary and metastatic brain tumours. It is comprised of several
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Figure 1. Illustration of the complex landscape that comprises the brain tumour
micro-environment. Figure acquired with permission from [6].

non-cancerous cell types in addition to cancer cells, all interconnected in a highly

complex landscape, as illustrated by �gure 1. Cellular components of the brain TME

include tumour cells, various immune cells and organ residents such as neurons and

astrocytes, listed in table IV.

Historically, the brain was thought to be one of the 'immune privileged' organs

in the body due to to several reasons. However this perspective has shifted with

discovery of things such as functional lymphatic vessels in dural sinuses of mice,

CNS-derived immune responses and compromised BBB's that permit entry for mul-

tiple types of immune cells from peripheral circulation. There are several intrinsic

interactions within the TME that are associated to tumour progression, and are

thus under investigation for potential therapy. In this regard, I will introduce a few

relevant features in the following. [6]

In removed glioblastoma tissue, tumour-associated macrophages (TAMs) and
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Table IV. Cellular components present in the brain TME [6]. De�nitions from [27].

Cellular component Description

Cancer cell Malignant cells constituting the tumour

Extracellular matrix Network of molecules that surround, support and give

structure to cells and tissues.

Astrocyte Glial cells that hold nerve cells in place and develop as well

as maintain their functionality.

Dendritic cells Immune cell that boosts immune responses by showing

antigens on its surface to other immune cells.

T lymphocyte A type of white blood cell that develops from stems cells

in bonemarrow. Protects the body from infection.

Regulatory T cell A type of white blood cell that regulates immune system

activity.

Microglia Type of glial cell that acts as one of the two main immune

defenses in the CNS.

BMDM Bone marrow-derived macrophages. A type of white blood

cell that surrounds and kills micro-organisms, removes

dead cells and stimulates action of other immune cells.

Neutrophil A type of white blood cell that ingest and kill microorgan-

isms at site of infection. Additonally boosts response of

other immune cells.

Neurons A type of cell that receives and sends messages from the

body to the brain and vice versa.
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organ-resident microglia reportedly constitute up to 30 % of tumour mass. TAMs

are derived from the bone marrow through the action of glioma and other cells.

Studies have shown that glioma cells suppress immune surveillance of TAMs by al-

tering them towards pro-tumourigenic M2 phenotypes while inhibiting development

of anti-tumourigenic M1 phenotype. It has also been observed that glioma cells can

induce a mixed population of M1 and M2-related molecules. It can nonetheless be

stated that glioma cells and TAMs have complex bidirectional communication, with

TAMs supporting tumour growth and progression. Using immunohistochemistry,

it has been shown that number of M2-related markers had a positive correlation

with tumour grade. It is however important to note that the M1/M2 dichotomy

has become obsolete; many groups focus on de�ning context-speci�c macrophage

activation and phenotype as a measure of functional diversity. [34]

T cells are released from the bone marrow and thymus into the peripheral system,

from which they expand to other tissue after they have matured. T cells are part

of the adaptive immune system, meaning that they are activated on the surface of

antigen-presenting cells, which mature during the innate immune response triggered

by an infection. In human glioma samples, a study found that the brain TME

altered T cell e�ector functions during anti-tumour immunity, despite being in an

environment where T cell responses are minimal under normal conditions. T cell

activation through the use of inhibitors is a emerging �eld of cancer therapy. [6]

Other distinct features of interest include prognostic value of neutrophils, regula-

tion of BBB from TME components and the roles of organ residents such as neurons

and astrocytes in tumour initiation and progress [6]. Generally speaking, researchers

are interested in immunotherapeutic treatment for brain cancer, thus rendering the

TME vital to understand. It is apparent that there is a plethora of research to

conduct, with the brain requiring a speci�c framework for designing TME-targeted

therapies. In this MSc thesis in analysis of mIHC tissue samples of glioma, we are
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particularly interested in macrophage and T cell populations in the vicinity of blood

vessels for di�erent tumour grades.

1.4 Literature review

In order to conduct spatial analysis of the tumour environment � whether it be

studying immune cell proportions or anything else � it is necessary to compu-

tationally map the tumour microenvironment so that cell types are recognized as

distinct class labels. This is a complex and laborious task, which is indeed the foun-

dation of our problem scenario; there is a plethora of interesting questions to answer

regarding spatial properties of the tissue, after the expression of the receptors of

interest have been discretized.

Danielle J. Fassler et al. [35] create an ensemble method ColorAE U-NET from

autoencoder ColorAE and convolutional neural network U-Net. ColorAE predicts

an 8-channel image of the same size of the input image. The channels correspond to

the concentration maps of six IHC stains in addition to hematoxylin and background

channel. Their ground truth data included a set of 80 patches from 10 mIHC WSI's

and utilized seed labels as well as super pixels to gain a relatively large training

set. A pathologist examined each patch and placed a seed annotation to each cell

in order to indicate cell type based on staining. In training, a reconstruction loss

compares reconstructed image to input-image using mean-squared-error. Further-

more, they leveraged weak-form supervision from human annotators through a label

consistency loss-function. The second model was created based on U-Net architec-

ture � it was trained to generate features that di�erentiate cell classes according to

provided labels. The results from ensemble method ColorAE U-NET were used in

a subsequent proof-of-concept spatial analysis to calculate average distance between

cell types.

Yeman Brhane Hagos et. al. [36] propose ConCORDe-Net � a cell count
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regularized convolutional neural network for cell detection and classi�cation in mIHC

images. Inspired by inception-v3, their model integrates conventional dice overlap

and a novel cell count loss function for optimizing cell count, followed by multi-

stage CNN for cell type classi�cation. Their training data consisted of over twenty-

thousand annotated cells, belonging to �ve classes annotated by experts from 175

patches extracted from 6 tumour WSI's. Using ConCORDe-Net, they obtained an

F1-score of 0.873 for cell detection. The model excels at detecting densely packed

cells and weak-staining compared to other state-of-the-art methods. Furthermore,

a 96,5 % cell type classi�cation accuracy was reported.

Yanan Wang et. al. [37] built Cell Graph Signature � a novel graph neural

network-based approach for prediction of patient survival in gastric cancer. Their

cohort consisted of 172 gastric cancer patients with records on their survival status.

Two data binning strategies were applied in order to achieve binary- and ternary-

class datasets in terms of survival. In their pre-processing of mIHC images of 7

biomarkers, each image was �rst segmented into multiple non-overlapping regions.

For each region, a graph was built with each cell type represented as a node and

edges de�ned as reciprocal of distance between cells. Subsequently 35 features were

extracted for each node resulting in a so-called Cell-Graph dataset. 90 Cell-Graphs

were constructed for each mIHC image for each patient. Using cross-validation and

hyper-parameter optimization they tested 4 di�erent models with GINTopK having

the best results and selected as �nal model. They reported an astounding AUROC

value of 0,96± 0,01 on �ve-fold cross validation for the binary class prediction.
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2 Problem setting

2.1 Problem statement

Despite success in treatment of several types of cancer, brain tumours remain es-

pecially devastating with a high mortality rate and relative prevalence in chil-

dren/adolescent. The understanding of the brain tumour microenvironment has

emerged as critical in regards to cancer progression and potential therapeutic solu-

tions. Tumour microenvironments are e�ciently mapped with novel multiplex im-

munohistochemistry staining methods. Due to the big data nature of histopathology,

only through recent technological developments has its digitization become gener-

ally feasible and increasingly a superior system to traditional methods. With the

capacity to map tumour environments and manage the staining output digitally, we

can then seek to use image analysis in hopes of automating tasks to reduce burden

on medical professionals, improving clinical responses and knowledge discovery.

2.2 Objectives

In this Masters thesis I use computational methods in mapping spatial distribution

of immune cell populations within di�use glioma mIHC tissue samples and subse-

quently analyze cell type occurrences in the vicinity of blood vessels. I aim to create

a program, that from a given image, extracts structured data of cells with infor-

mation on their location, type and distance to neareast blood vessel. Once data

is formed in the desired format, the subsequent analysis of relative cell quantities

and spatial qualities, is enabled. In order to conduct spatial analysis, the following

primary steps are implemented:
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1. Image registration The stainings for each sample are registered using a image regis-

tration module based on a�ne transformations

2. Nuclei detection Pretrained deep convolutional neural network StarDist2D is applied

in nuclei labelling in DAPI images

3. Cell segmentation Nuclei labels are given as input for watershed algorithm, which

hypothetically approximates cellular area

4. Feature extraction Calculate intensity properties from cell areas of thresholded stain

images and modify data to desired format

2.3 Scope and Limitation of the Study

The purpose of this thesis is to investigate immune cell proportions and spatial

distributions in the vicinity of blood vessels in di�use glioma mIHC sample region-

of-interests. We compare the aforementioned properties between ROI's of di�erent

samples, since they have di�erent grade tumours and di�ering immune responses.

The spatial mapping of the tumour microenvironment is a pre-requisite to our analy-

sis, and is thus under focus. We also highlight the utility of developing computational

methods for multiplex immunohistochemistry outputs.

The mapping of cell types in mIHC is a complex problem: TME consists of a

plethora of components of varying structure, antigen receptors are not de�nitive,

the images are Gigabyte-size, and so forth. At the core, we are trying to map

intensity distributions to distinct labelled cells on an image. Whilst it is possible

to use traditional methods in segmenting the cells and calculating intensity vectors

� it comes with a lot of constraints. Each image section must be processed with

multiple algorithms and the program output data is modi�ed to cell-wise. There

are hundreds of thousands of cells per sample with morphological attributes that

are out of the scope of this project.
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Figure 2. Hematoxylin & Eosin stained mIHC tumour tissue at di�erent levels of
magni�cation viewed in Cytomine. The pink and black illumination signify extra-
cellular matrix and cell nuclei respectively.

The program is suitable for densely packed tissue areas; utilized segmentation of

cells is not reliable in spatially inhomogeneous regions-of-interest. Using traditional

methods, structures with no visible nuclei such as blood vessels require special at-

tention. Ultimately, the task is solved best with deep learning � this approach was

not taken due to lack of labelled data for target task and time constraints. Train-

ing a deep learning model for this approach would optimally require hundreds or

thousands of labelled ground truths for desired segmented cell types.

3 Methodology

3.1 Image acquisition

Cytomine is an open source web application for collaborative analysis of multi-

gigapixel images designed for development of machine learning, image informatics

and big data. As a Cytomine user, you have capability to upload large images charac-

teristic to histopathology, view images at di�erent magni�cations, manage/con�gure

projects and add various annotations associated with terms. [38]

Aliisa Tiihonen conducted mIHC over a period of approximately a month for 4

patient cases resulting in an impressive 18 antigens used per sample � as noted in
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table V � in addition to measuring H&E and separate cell nuclei illuminating DAPI

channel. After completion, she uploaded all the images to Cytomine into the project

folder. The images came in di�erent sizes with pixel width px ∈ [50176, 69888] and

pixel height py ∈ [37632, 53760] as well as 20x magni�cation. All stain images ex-

cluding H&E were transferred to compute cluster Narvi as presented in next section.

Case information was provided by Tiihonen, as illustrated in table VI. In our

case de�nition � e.g. 1A � the number signi�es the patient and the letter denotes

tumour progression. For example case 1A is tissue from the �rst diagnosis (III di�use

astrocytoma) for a 32 year old female patient and 1B is tissue, that is collected 7

years later from the same patient (relapse). Note that for patient 2, the order

of samples is illogical � with 2C being the primary diagnosis, 2A �rst relapse

and 2B the second relapse. Additionally, information on survival in months after

glioblastoma (GBM) diagnosis is reported.
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Table V. Antigens measured by Tiihonen and their corresponding receptors. All
images were registered, but subset colored in gray was selected for further analysis.

Antigen Receptor

CD45 All blood cells except mature red blood cells and platelets

CD3 T cells

CD4 Helper T cell

CD8 Cytotoxic T cell

FOXP3 Regulatory T cell

CD20 B-lymphocytes

CD56 NK-cells

CD66B Granulocytes

TMEM119 Microglia

CD68 M1-macrophage

CD163 M2-macrophage

CD11c Dendritic cells

CD31 Blood vessels

NeuN Neurons

IDH1 Tumour cells

Ki67 Any cell, proliferation

MHCI Any cell, antigen ability

pSTAT3 Any cell, poor prognosis

H&E ECM, Nuclei (Tissue morphology)
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Table VI. Patient case information.

Case Gender Age at diagnosis Primary Grade Survival after

GBM diagnosis

[months]

1A Female 32 III di�use astrocy-

toma

1B Female 39 IV glioblastoma 13

2C Male 29 II di�use astrocy-

toma

2A Male 34 III di�use astrocy-

toma

2B Male 41 IV glioblastoma 17

3A Male 30 III di�use astrocy-

toma

3B Male 31 IV glioblastoma 25+

4A Female 41 III di�use oligoden-

droglioma

4B Female 44 IV glioblastoma 9
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3.2 Computational environment

Access to compute cluster Narvi was admitted by Tampere University computing

centre (TCSC) and supervised by PhD student Masi Valkonen. Narvi is built

on SLURM � a cluster management and job scheduling system for Linux clus-

ters � boasting 140 CPU-only nodes with 3000+ cores and 22 Tesla GPU nodes

(V100/P100/K80) with 4 cores each. SLURMs functionality as a workload man-

ager includes resource access management, framework for starting, executing and

monitoring work as well as queue management. [39, 40]

A Python virtual environment was created within the Narvi project folder using

Anaconda. Programming was implemented in Python and bash scripts with test-

ing done in Jupyter Notebooks. Inconvenient scanner output names needed to be

renamed according to information from Tiihonen on channel output pairs. Hierar-

chical relationships in stains were modelled as a basic class with functionality to

fetch stains for desired receptors and output their paths for a given sample.

3.3 Image registration

In order to being able to measure stain intensities for a given area, the images need

to be in the same coordinates. Image registration was implemented with a module

provided by Masi Valkonen. The registration was based on a�ne transformations,

which consist of two primary steps [41]:

1. Determine the corresponding points between the images

� Use labelling functionality in Cytomine

� Gather 3 corresponding points r ∈ [1, 2, 3] in all stain images
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2. Determine the transformation between the corresponding points

� Solve a�ne transformation matrix T from equation 5 relative to sample DAPI

� Reapply transform to images for registered output

A�ne transformations

The a�ne transformation (AT) matrix T consists of rotation Tr, translation Td

and scaling / gain Ts components, which are represented by parameters aij in the

following AT equation [41]:


x′

y′

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1

 ⇐⇒ p′ = Tp, (5)

which is a generalization of linear transformation and where x′, y′, z′ are target image

coordinates, x, y, z corresponding coordinates of image to be transformed and the

right hand the vector form equivalence. From equation 5 we can state:

x′
i = a11xi + a12yi + a13 (6)

y′i = a21xi + a22yi + a23. (7)

These two sets of linear equations are of the form:

Ma = b, (8)

which have a least squared solution:

a = (M⊺M)−1 M⊺b. (9)

During the staining process, DAPI was measured for each double staining round.

In the registration program, equation 9 is used to transform all DAPI's to the same

coordinate system� the DAPI from CD45-IDH1 is kept as the �xed image whilst the
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rest as moving images. The solved transformations parameters are then reapplied

to each corresponding stain and subsequent bicubic interpolation is performed to

interpolate pixels on the grid.

3.4 Artefact removal

Cell detection and classi�cation are particularly challenging for mIHC images due

to high levels of variability in staining, expression intensities and inherent noise as

a result of preprocessing artefacts. Generally in IHC, common artefacts include

non-speci�c binding, high background noise, overstaining and weak-staining. High

background noise and overstaining can result in important features and tissue struc-

tures being obscured by the background signal and thus being indistinguishable.

Conversely, weak-staining results in very faint signals. Non-speci�c binding � the

binding of primary or secondary antibodies to something else than the designated

target � is particularly di�cult and results in false positives. [35, 42]

In our dataset, there is high variability in expression intensities and background

noise. Activation thresholds for each selected antigen were de�ned by looking at heat

maps of each channel and determining suitable values based on expert knowledge

from Tiihonen. As an example, the activation of CD163 and its corresponding

�ltered image is illustrated in �gure 3. For the sake of clarity of color scale, values

above 10 are taken as 0, resulting in dark areas in local maxima. In our program,

we simply apply a threshold to each image, as determined by table VII.
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Figure 3. CD163 raw signal and corresponding �ltered image of local area in sample
1A.

Table VII. Utilized threshold values for selected antigens of interest.

Antigen Threshold

CD45 3

CD3 3

TMEM119 2

CD68 2

CD163 2

CD31 1

IDH1 6
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3.5 Nuclei detection

StarDist 2D is a pretrained convolutional neural network that facilitates automatic

detection and segmentation of cell nuclei. Whilst there are other successful learning-

based methods for cell nuclei segmentation, StarDist performs well in situations of

crowded cells � making it �tting to the densely packed landscape seen in brain

tumour tissue. It localizes cell nuclei via star-convex polygons, which are better

shape representations compared to bounding boxes. For each pixel, distances to

the boundary of the object to which the pixel belongs to dki,j are regressed, along

a set of n prede�ned radial directions with equidistant angles. Additionally, the

model separately predicts whether a pixel is part of an object and subsequently

non-maximum supression (NMS) is performed to these polygon-proposals and their

associated probabilities di,j. [43]

StarDist has been implemented with basis in U-Net � the de facto biomedical

image segmentation CNN. U-Net architecture consists of a contracting and expansive

path, as illustrated in �gure 4 on the left and right side respectively. The contract-

ing path applies repeated two unpadded 3x3 convolutions with a subsequent ReLU

activation and 2x2 max pooling with stride 2 for downsampling. At each downsam-

pling step the number of feature channels is doubled. The expansive path consists of

layers of upsampling feature map followed by 2x2 convolution that halves number of

channels, concatenation with corresponding cropped contracting path and two 3x3

convolutions with subsequent ReLU activations. At the �nal layer a 1x1 convolution

maps each 64-component feature vector to the desired number of classes. High reso-

lution features from the contracting path combined with upsampled output and the

large number of feature channels in upsampling, respectively provide localization

capability and context information propagation to higher resolution layers. [44]

StarDist is composed of an additional 3x3 convolutional layer with 128 channels

and ReLU activation after the �nal U-Net feature layer. For the object probability
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Figure 4. U-Net architecture. Blue boxes signify multi-channel feature map. Num-
ber of channels and image size are denoted on top of and on left hand side of boxes
respectively. Signi�cance of each arrow is represented in the right side of the image.
Figure acquired with permission from [44].

predictions, a single-channel convolutional layer with sigmoid activation is used.

The polygon distance output layer has same number of channels as there are radial

directions n and no activation. In training, binary cross-entropy loss is used for

predicted object probabilities and mean absolute error weighted by ground truth

object probabilities for polygon distances. StarDist was tested and compared with

U-Net variations on various popular cell nuclei datasets: the average precision for

StarDist was superior with smaller intersection over union thresholds � as expected

for predicting a parametric shape model instead of per-pixel basis. [43]

In this thesis project, the goal is essentially to detect location of di�erent immune

cells in brain tumour samples. Since each cell contains a single cell nucleus, predicted

instances from the StarDist 2D model can be used for further analysis. The applica-

tion of StarDist 2D to two di�erent sized images, (204, 124) and (1912, 1164), from

sample 1A is presented in �gure 5. The top-center image shows the star-convex

shapes with 16 radial directions di,j predicted by the model. Each predicted in-

stance is then associated with a label, as illustrated in the right side column of the
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Figure 5. Pretrained model StarDist 2D applied to two di�erent sized input images
(left). Predicted star-convex polygons presented in middle; 16 radial directions
visible in smaller input (center top). Corresponding labelled instances on right side.

image. The model was tested in various subsets of sample images with qualitatively

successful results.

3.6 Cell segmentation

Watershed by �ooding is a prevalent segmentation technique for gray-scale images,

which characteristically simulates a �ooding process. Images are represented as a

topographic relief, where the altitude of each point is determined by the gray-scale

value of its corresponding pixel. Subsequently, holes are pierced in all regional

minima within the relief. The whole surface is then slowly sunk � water springs

through the holes and progressively immerses the adjacent walls. An obstruct is

set at the conjunctions of the basins and as the relief is fully submerged, the set of

obstructs depict the segmented image. Watershed can also implemented by so-called

rain falling, that uses connectivity components and models the rain process. [45]

Watershed by �ooding consists of the following steps [46]:

1. Identify local minima and assign each one with a unique label
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2. Simulate �ooding process with a priority queue consisting of H queues, where H

is the number of possible element values e.g. pixel range. When the queue is full,

image elements with value h are pushed to corresponding queue with number h.

� Fill priority queue with elements of local minima

� Scan priority queue in sequence from smaller to larger values of h

� Select element from �rst non-empty queue � If all queues are empty, terminate

algorithm

� Remove selected elements from queue and propagate marker to all unmarked

neighbours

� Place all marked neighbours from previous step into queue, repeat step 2

In this thesis project, we use StarDist 2D output labels as input for the watershed

algorithm provided by the open source Python library scikit-image. First the DAPI

image is converted to gray-scale. Subsequently we apply the the distance transform,

in order to improve segmentation results. Distance transforms label each pixel of

the image with the distance to the nearest boundary pixel e.g. the background

distinguished in gray-scale transformations. Taking the inverse of distance transform

results in cell nuclei locations depicted as local minima. Applying watershed to the

inverse distance transform essentially �oods the image from each cell nuclei and

draws borders at the point of meeting, as illustrated in �gure 6. Each hypothetical

cellular area is now associated with a distinct label.

Structures such as blood vessels require special attention since they are not asso-

ciated with nuclei and their corresponding antigen CD31 does not clearly mark the

boundaries of the structures. In the DAPI input image of �gure 6, the outlines of a

blood vessel is visible as a worm-like non-nuclei area in the center top. It is apparent

that applying watershed without further speci�cation results in a segmentation error

regarding blood vessels. We solve this problem by acquiring a mask from the CD31

channel. The signal from CD31 is weak and thus we apply morphological operations
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Figure 6. Cell segmentation process from left to right: 1. Input DAPI image 2.
StarDist prediction cell nuclei labels 3. Distance transform inverse of gray-scale
StarDist prediction 4. Segmented cells in Watershed algorithm output.
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Figure 7. In order to exclude blood vessels from cell segmentaion, a mask is acquired
from processing CD31. Top left: CD31 channel with thresholded activation. Top
right: Closing operation applied to thresholded image. Lower left: Opening oper-
ation applied to closed image. Lower right: Watershed segmentation with blood
vessel mask.

� closing with subsequent opening � in order to improve outlines and �ll in empty

space in blood vessels. In our watershed function call, we set the mask as such, that

it is true else where besides blood vessel associated pixels. This process is illustrated

in �gure 7, with blood vessels now being excluded from cell segmentation. As a �nal

step, we apply a function that removes regions with minimal or maximal pixel-wise

areas as well as those that have high perimeters.
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3.7 Feature engineering

In order to acquire structured data from the cell-segmented image, we utilize a

region property extractor. We de�ne a function that takes segmented cell labels

and a list of all corresponding stain channel images of our ROI as input. This

function computes intensity properties � min, max and mean � as well as centroid

coordinates for each cellular region in each stain image. The output of this function

results in a 2D table with each region measurement as its own sample. Since there

are several measurements per region, we apply pivoting for each intensity property

against our stain labels, resulting in cellular regions as rows, and intensity properties

for each channel as additional columns. Both formats � wide and long � are

interchangeably used in our analysis according to whichever is suitable for a given

task.

Since we are interested in cell types in the vicinity of blood vessels, we need a

measurement for this scenario. To solve this problem, we acquire a feature map

from the opened image of �gure 7. The background and foreground of blood vessels

are easily distinguishable after the opening operation so we create a new masked

image with the blood vessels as 0 and the rest as maximum value. Now, applying the

distance transform to this inverted image results in a feature map as illustrated in 8,

where each pixel is de�ned by the distance to the nearest blood vessel boundary. For

each one of our samples we acquire the corresponding blood vessel distance feature

with the centroid coordinates.

In de�ning stain activation for a given segmented cell, we are faced with a rather

arbitrary task of choosing an activation threshold. We de�ne a cell sample as ac-

tivated for a given stain, if atleast 5 % of the cell area is above the threshold in

that channel. In �gure 9, we have illustrated the relationship between proportions

of labelled cell types and the activation threshold used in de�ning them � for a

given extracted dataset from sample 1A ROI. The proportion of unidenti�ed cells
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Figure 8. Feature map acquired from CD31 channel. Pixels are de�ned by distance
to nearest blood vessel boundary.

starts o� at about 10 % when activation threshold is de�ned as t = 0,01 and steadily

increases to 60 % when t = 0,5. Given the variability of multiplex staining outputs

and the overestimation of cellular boundaries, it is di�cult to evaluate a universally

suitable activation threshold.

We are also faced with an additional issue: given cellular regions can have acti-

vation for more than one stain, especially with natural hierarchies being present �

for example CD45 is activated for all immune cells and CD3 is a child of CD45 that

is activated for all T cells. Furthermore, T cell subtypes have their own associated

speci�c activation, such as CD4 for helper T cells. We however, are investigating T

cells as a general group, as signi�ed in table V. Double activations that we investi-

gate are microglia (CD45, TMEM119), T cells (CD45, CD3) and M1-macrophages

(CD45, CD68). M2-macrophages are the sole triple activation we are taking into

account (CD45, CD68, CD163). In addition, we create a new stain group for those

samples with only CD45 activation. These are considered to be 'other immune cells'.

We also measure the number of samples with no activation.

It is important to note that there is uncertainty that cell types must have all cor-
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Figure 9. Proportion of labeled stain activations plotted against region activation
threshold for given stain. Data extracted from same ROI as in �gure 7, with resulting
1397 total cells. Note that in this graph, samples can have multiple activations, for
example CD45 being present in all immune cells. This is apparent in the graph, as
taking the sum of proportions for a given threshold does not equate to 1.

responding hierarchical stain activations, in for example M2-macrophage requiring

all 3 activations instead of solely CD163 � thus we calculate activations of all afore-

mentioned combinations and compare proportions. Additionally, certain regions can

have activations for multiple stains that do not pose any real biological signi�cance.

This can be a result of mIHC artefacts, imprecise image registration or inaccurate

cell regions.

Pseudocode for utilized data extraction program is presented in Algorithm 1.

It essentially combines everything we have described thus far: for the given sample,

biomarkers and corresponding stains � nuclei are detected, watershed segmenta-

tion with blood vessel mask is applied and region properties are extracted as well as

processed and saved. The program output of our data extraction program � with

intensity properties, corresponding de�ned cell labels, centroid coordinates and dis-

tance to nearest blood vessel � is used in spatial analysis.
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Algorithm 1 Pseudocode for utilized data extraction program for mIHC.
1: procedure main

2: biomarkers← list of biomarkers of interest ▷ e.g. immune cells

3: stainLabels← getStains(biomarkers) ▷ corresponding stains

4: sample← desired sample ▷ e.g. 1A

5: stainPaths← getStainPaths(sample, stainLabels)

6: dapiPath← getDapiPath(sample)

7: roiCoords← getROIcoords()

8: thresholds← HashMap ▷ key-value pairs for noise thresholds

9: stainImages← empty list

10: bloodVesselMask← empty

11: for imagePath, stain in stainPaths, stainLabels do

12: image← imagePath.open()

13: image← image.crop(roiCoords)

14: artefactMask← image ≤ thresholds[stain]

15: if stain == 'CD31' then

16: bloodVesselMask← createBloodVesselMask(image)

17: end if

18: image[artefactMask] = 0

19: stainImages.append(image)

20: end for

21: dapi← dapiPath.open().crop(roiCoords).rgb2gray()

22: cellLabels← segmentDapiCells(dapi, bloodVesselMask)

23: cellLabels← �lterCellLabels(cellLabels, dapi)

24: regionProps←multichannelRegionProps(cellLabels, stainImages, stainLabels)

25: featureMatrix← processRegionProps(regionProps)

26: featureMatrix← addDistanceFeature(featureMatrix)

27: featureMatrix.toCSV()

28: end procedure



41

3.8 Analysis

We add an additional function to our data extraction program, in which we calculate

stain activation absolute and relative proportions as well as mean distance to nearest

blood vessel by stain group. We select 4 ROI's of size px = 3822 and py = 2330 from

each tumour grade from samples 1 - 3. We de�ne the data extraction program to

support e�cient parallelization on a SLURM cluster. Each program can now be run

as tasks in separate nodes within the cluster � computation is simultaneous for all

ROI's. The program execution time per ROI is approximately 300 - 500s depending

on DAPI image size. In the output we get all cases with extracted CSV's, excel

�le for analytical properties, and �gures related to segmentation as well as ROI

mapping. We create an additional script, that combines all the proportion and

mean distance to nearest blood vessel data into one dataframe.

Essentially, most of the per-ROI information provided by the full data of our

data extraction program is illustrated in �gure 10. In this graph, sample location

is plotted according to centroid coordinates, coloured by determined cell label and

sized by distance to nearest blood vessel. This plot gives us validation � that the

blood vessel distance feature has been correctly parsed � since the cells near empty

sites (blood vessels) are indeed small, as required. This image was produced for

observational purposes � it is smaller in size than actual ROI's, multi-activations

have been omitted and cell labelling done ad-hoc � this image is not part of our

results.



42

Figure 10. The mapping of cell types in same ROI as in 7. Cells are marked on
the map based on their centroid coordinates, colored by their cell label and sized by
their distance to nearest blood vessel. The image and its constituent cell labelling
were produced for observational purposes and are not part of our results.

4 Results

4.1 Results

Results from all ROI's per sample have been listed in tables VIII - XIV. We've

included the activation occurrenceN , relative proportionN [%] and mean distance to

nearest blood vessel per activation group bstain. Additionally the mean of activation

proportion and distance to nearest blood vessels from all ROI's per patient per

sample are illustrated in �gures 12 - 14. We analyze the results at sample and

patient level. The activation occurrence proportion from all groups in 1A ROI's are

relatively consistent. As expected, immune cell, macrophage, microglia and tumour

cells are in abundance � and specialized T cells are low. The mean distance to

nearest blood vessel is small for CD163 and CD3 activations, implying that T cells

and M2-macrophages are near blood vessels at this point in time for this tumour
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grade. It is important to note that all immune cells travel to the brain through

blood vessels despite the only organ resident immune cell type, microglia.

Looking through the results, most of the segmentations worked well with similar

appearance to �gure 11. The biggest challenge in terms of our results is staining

variability. This is especially true for sample 1B, with inhomogeneous tissue regions

and high background noise. We applied an increased CD31 threshold for this sample,

in order to acquire a desirable segmentation result. We can nonetheless observe that

CD3 and CD163 are substantially higher in occurrence in relapse sample 1B grade

IV glioblastoma compared to sample 1A grade III astrocytoma 7 years prior. It is

also noteworthy that mean distance to blood vessel has stabilised to similar values

of other stain groups, perhaps implying that in the grade IV tumour, T cells and

M2-macrophage are more homogeneously distributed.

Sample 2 is the most interesting, since it has data for three grades: II/III (C/A)

astrocytoma and IV glioblastoma (B). 2C (lowest grade tumour for patient 2) oc-

currence levels are comparable to 1A, with less activation for M2-macrophage and

interestingly more for microglia. 2A has similar proportions as 2C, with CD45 �

and thus general immune response � being on average higher in 2A. In 2B the di�er-

ences are more visible: M2-macrophage and T cell occurrence levels as well as mean

distance to blood vessel being on average higher. Additionally, microglia expression

is less in 2B compared to 2A. Sample 3 has large quantities of M2-macrophage in

both 3A and 3B, with it being greater in the latter. 3B has a relatively high amount

of T cells compared to 3A. We make the same observation as in sample 1, in that

mean distance to nearest blood vessel seems to grow for M2-macrophage and T cells

with increasing tumour grade.



44

N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 121 2.2 49.40 117 2.14 35.85

CD3 5 0.09 54.86 3 0.05 64.13

CD45 2984 53.20 236.79 2600 47.67 172.32

CD45CD3 3 0.05 20.8 0 -

CD45CD68 1322 23.60 234.92 996 18.2 2

CD45CD68CD163 69 1.23 59.04 42 0.77 40.42

CD45TMEM119 307 5.48 46643 331 6.06 150.22

CD68 1992 35.56 233.74 1640 30.06 164.75

IDH1 2496 44.56 246.53 3356 61.53 172.49

TMEM119 507 9.10 210.01 557 10.21 142.60

Only CD45 871 15.55 236.15 576 10.56 165.22

No act. 1009 18.01 225.14 788 14.44 151.90

ROI 3 3 3 4 4 4

CD163 103 2.22 47.69 79 2.34 47.81

CD3 2 0.04 60.34 3 0.88 116.83

CD45 1784 38.50 175.03 1397 41.36 225.3

CD45CD3 1 0.02 11.40 3 0.88 116.83

CD45CD68 569 12.28 165.47 625 18.50 221.73

CD45CD68CD163 37 0.80 44.01 29 0.86 51.05

CD45TMEM119 247 5.33 147.98 115 3.41 136.95

CD68 1120 24.17 170.79 1028 30.44 225.23

IDH1 3469 74.86 178.29 2233 66.12 227.41

TMEM119 373 8.05 146.69 151 4.47 138.38

Only CD45 291 6.27 180.07 247 7.31 235.24

No act. 565 12.19 196.53 503 14.89 240.79

Table VIII. Results from sample 1A.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 1824 14.88 108.09 2145 18.92 120.47

CD3 72 0.58 111.83 44 0.38 83.67

CD45 11012 89.84 155.87 9229 81.38 171.82

CD45CD3 72 0.58 111.83 44 0.38 83.67

CD45CD68 8068 65.82 148.09 5888 51.92 174.30

CD45CD68CD163 1687 13.76 108.46 1941 17.11 125.20

CD45TMEM119 8685 70.86 144.57 6659 58.72 144.30

CD68 8406 68.58 149.18 6050 53.35 174.49

IDH1 11866 96.81 160.73 10996 96.97 176.97

TMEM119 9196 75.02 145.51 7458 65.77 139.27

Only CD45 18 0.15 103.35 39 0.34 14.50

No act. 71 0.57 37.53 84 0.74 22.38

ROI 3 3 3 4 4 4

CD163 2121 26.78 137.13 2964 33.21 92.13

CD3 16 0.20 129.07 109 1.22 60.97

CD45 6298 79.52 159.74 8017 89.85 103.51

CD45CD3 16 0.20 129.07 99 1.11 59.02

CD45CD68 4193 52.94 166.53 6155 68.97 95.02

CD45CD68CD163 1743 22.01 134.27 2324 26.04 86.39

CD45TMEM119 3554 44.87 143.43 7630 85.51 96.43

CD68 4731 59.73 166.06 6799 76.19 100.80

IDH1 7242 91.43 173.22 8610 96.49 105.54

TMEM119 3692 79.52 143.94 8327 93.32 98.19

Only CD45 135 1.70 172.80 8 0.09 483.18

No act. 127 1.60 127.78 36 0.4 439.24

Table IX. Results from sample 1B.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 12 0.18 96.65 12 0.21 67.86

CD3 1 0.02 327.94 3 0.05 31.94

CD45 4165 63.06 208.82 3417 59.82 239.71

CD45CD3 1 0.02 327.94 3 0.05 31.94

CD45CD68 855 12.94 193.93 408 7.14 210.76

CD45CD68CD163 10 0.15 90.68 7 0.12 68.76

CD45TMEM119 2288 34.64 199.10 2049 35.87 230.33

CD68 1219 18.46 202.83 677 11.85 220.99

IDH1 3084 46.69 235.02 3620 63.37 249.21

TMEM119 2581 39.07 199.02 2527 44.24 232.32

Only CD45 740 11.20 206.30 457 8.00 242.75

No act. 866 13.11 208.22 639 11.18 253.64

ROI 3 3 3 4 4 4

CD163 10 0.15 97.32 13 0.23 58.46

CD3 23 0.36 190.84 2 0.04 2.62

CD45 4217 65.91 220.21 3361 59.54 177.74

CD45CD3 23 0.36 190.84 2 0.04 2.62

CD45CD68 935 14.61 222.39 416 7.37 180.40

CD45CD68CD163 9 0.14 101.03 7 0.12 89.74

CD45TMEM119 2113 33.03 216.95 1743 30.88 175.08

CD68 1197 18.70 225.41 562 9.96 180.13

IDH1 2849 44.52 184.70 3195 56.60 178.99

TMEM119 2911 45.50 218.75 2490 44.11 176.10

Only CD45 1029 16.08 251.28 626 11.09 183.68

No act. 678 10.59 246.99 612 10.84 188.41

Table X. Results from 2A.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 250 4.46 130.43 168 2.90 109.53

CD3 59 1.05 145.21 64 1.10 153.49

CD45 3908 69.72 186.34 3456 59.77 176.04

CD45CD3 54 0.96 138.47 59 1.02 158.63

CD45CD68 1637 29.20 183.14 1507 26.06 175.19

CD45CD68CD163 122 2.18 117.89 63 1.09 88.83

CD45TMEM119 859 15.33 197.36 515 8.90 173.63

CD68 2132 38.03 184.35 2026 35.04 176.24

IDH1 3633 64.82 186.49 3360 58.11 177.70

TMEM119 1133 20.21 198.90 781 13.50 174.90

Only CD45 679 12.11 198.55 707 12.22 174.99

No act. 431 7.69 195.05 733 12.67 176.67

ROI 3 3 3 4 4 4

CD163 158 5.09 92.99 753 15.11 94.10

CD3 23 0.74 108.32 45 0.90 61.62

CD45 1855 59.8 142.20 3021 60.63 116.55

CD45CD3 13 0.42 100.07 26 0.52 62.32

CD45CD68 677 21.82 137.65 1317 26.43 106.01

CD45CD68CD163 76 2.45 97.16 320 6.42 90.42

CD45TMEM119 359 11.57 135.53 899 18.04 115.77

CD68 1046 33.72 139.03 2044 41.02 108.91

IDH1 913 29.43 158.62 1892 37.97 114.61

TMEM119 578 18.63 142.39 1415 28.40 116.50

Only CD45 669 21.56 141.54 738 14.81 131.70

No act. 556 17.92 150.90 576 11.56 130.31

Table XI. Results from sample 2B.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 44 0.58 40.93 32 0.46 35.43

CD3 5 0.07 151.80 1 0.01 114.03

CD45 3808 50.86 127.09 2890 41.77 157.69

CD45CD3 3 0.04 79.85 0 - -

CD45CD68 1433 19.14 121.60 1030 14.88 149.44

CD45CD68CD163 26 0.34 30.10 10 0.14 25.50

CD45TMEM119 2553 34.10 126.13 2001 28.92 158.41

CD68 1896 25.32 126.17 1602 23.15 148.56

IDH1 3320 44.34 135.47 1115 16.11 153.40

TMEM119 3183 42.51 129.58 3334 48.18 151.78

Only CD45 480 6.41 126.06 507 7.32 158.77

No act. 1690 22.57 139.55 2002 28.93 139.69

ROI 3 3 3 4 4 4

CD163 58 0.98 54.86 34 0.63 43.40

CD3 5 0.08 120.19 1 0.02 13.00

CD45 2057 34.73 125.03 1368 3945 116.31

CD45CD3 4 0.07 122.77 1 0.02 13.00

CD45CD68 572 9.65 120.96 321 6.04 107.50

CD45CD68CD163 6 0.10 33.90 4 0.08 24.79

CD45TMEM119 1384 23.36 124.52 922 17.35 113.52

CD68 842 14.21 125.58 604 11.36 111.72

IDH1 3143 53.06 134.18 2082 39.18 129.68

TMEM119 2726 46.02 129.70 2312 43.15 120.71

Only CD45 196 3.30 119.89 185 3.48 123.30

No act. 1195 20.17 144.31 1435 27.00 135.17

Table XII. Results from sample 2C.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 1494 38.36 101.29 192 5.27 58.23

CD3 22 0.56 86.75 12 0.33 140.16

CD45 3453 88.67 110.87 3250 89.26 122.93

CD45CD3 22 0.56 86.75 12 0.33 140.16

CD45CD68 2811 72.19 109.78 2764 75.91 121.62

CD45CD68CD163 1288 33.07 100.90 164 4.50 57.27

CD45TMEM119 2563 65.81 111.44 1161 31.88 116.76

CD68 3011 77.32 109.96 2991 82.15 122.10

IDH1 613 15.74 99.27 473 12.99 109.38

TMEM119 2845 73.06 111.83 1292 35.48 116.99

Only CD45 158 4.05 115.38 275 7.55 137.96

No act. 78 2.00 104.74 108 2.97 149.6

ROI 3 3 3 4 4 4

CD163 73 2.15 36.03 1494 38.38 101.29

CD3 10 0.29 135.9 22 0.56 86.76

CD45 2864 84.60 117.36 3453 88.67 110.86

CD45CD3 10 0.29 135.9 22 0.56 86.76

CD45CD68 2407 71.10 116.51 2811 2811 109.78

CD45CD68CD163 65 1.92 36.70 1288 33.08 100.09

CD45TMEM119 652 19.26 107.07 2563 65.82 111.44

CD68 2744 81.06 117.89 3011 77.32 109.95

IDH1 409 12.08 113.43 613 15.74 99.27

TMEM119 740 21.86 107.27 2845 73.06 111.83

Only CD45 315 9.30 124.55 158 4.06 115.38

No act. 130 3.84 130.80 78 2.00 104.74

Table XIII. Results from sample 3A.
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N N [%] bstain N N [%] bstain

ROI 1 1 1 2 2 2

CD163 2313 23.59 170.48 1562 15.74 228.59

CD3 100 1.02 196.73 105 1.06 300.91

CD45 4215 42.99 181.60 4517 45.52 260.31

CD45CD3 88 0.89 200.31 98 0.98 306.89

CD45CD68 1585 16.16 165.95 1738 17.51 244.29

CD45CD68CD163 715 7.29 152.74 612 6.17 218.53

CD45TMEM119 2062 21.03 178.11 2151 21.67 257.75

CD68 2836 28.93 172.38 2639 26.59 252.53

IDH1 883 9.00 175.69 836 8.42 245.66

TMEM119 4618 47.10 189.25 4702 47.38 274.36

Only CD45 940 9.58 203.04 993 10.00 288.10

No act. 1899 19.36 204.16 2088 21.04 303.93

ROI 3 3 3 4 4 4

CD163 2238 20.07 183.01 1613 14.69 212.36

CD3 267 2.39 191.52 50 0.45 173.48

CD45 4371 39.21 207.73 4069 37.06 220.02

CD45CD3 156 1.39 178.84 17 0.15 141.08

CD45CD68 1154 10.35 154.29 994 9.05 180.05

CD45CD68CD163 484 4.34 124.35 425 3.87 166.64

CD45TMEM119 2204 19.77 212.58 2178 19.83 208.70

CD68 2385 21.39 186.15 2266 20.64 214.13

IDH1 9956 85.72 231.40 9757 88.87 242

TMEM119 5536 47.86 236.19 5181 47.19 238.93

Only CD45 154 1.38 222.42 108 0.98 256.31

No act. 447 4.01 269.98 461 4.19 273.89

Table XIV. Results from 3B.
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Figure 11. The appearance of cell region segmentation in size of our ROI's. Most
of the segmentations are of similar nature, since the ROI's were selected from the
middle of tissue segments with dense nuclei populations.

Figure 12. The mean of stain activation proportion from all ROI's per patient per
sample.
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Figure 13. The mean of stain activation proportion from all ROI's per patient per
sample for CD3/CD163 combinations.

Figure 14. The mean of nearest distance to blood vessel from all ROI's per patient
per sample.
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4.2 Error analysis

The computational analysis of tumour mIHC tissue samples is only possible through

the cooperation of several parties: e.g. a surgeon conducts a biopsy, surgical assistant

preserves the tissue, pathologist conducts mIHC/WSI and �nally computer vision

methods can be applied by an analyst. It is thus apparent, that error margins are

high, since each aforementioned step � each with their own constituent processes

� contribute to the �nal outcome.

In terms of the brain tumour biopsy, the sampling process itself is a probable

source of error. Only a few tissue segments are extracted from the entire mass and

it is thus conceivable that samples are not representative of the true pathological

picture. For example, in needle liver biopsies, sampling error has been shown to exist

in respect to severity of in�ammation, degree of �brosis and presence of cirrhosis.

According to a study by Arie Regev et al., a sampling error may have led to under-

diagnosis of cirrhosis in 14.5 % of patients. [47]

Tissue handling can be divided into two main work�ows, pre-analytics and an-

alytics. Analytics can be de�ned as the the processes that are conducted after the

sample has been collected and is ready for sectioning for various molecular or his-

tological tests. Conversely, pre-analytics can be considered to include patient iden-

ti�cation/tracking, sample collection/transport and embedding into para�n wax.

Whilst analytics has seen substantial development, it is known that pre-analytics

steps are largely non-standardized. Poor pre-analytics can lead to many errors in

the laboratory, such as mislabelling patient cassettes, improperly �xed tissue, tissue

contamination and compromised staining. [48]

As noted in section 3.4 and throughout the thesis, mIHC images have a high

level of variability due to several factors. Common culprits include high background

noise, over-staining, weak-staining and non-speci�c binding. These sources of error

prove to be a challenging aspect in our analysis: due to variation, it was di�cult to
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�nd suitable thresholds. In the case that stain channels have high amounts of noise

or have been unreliably �ltered, the results will not re�ect the true pro�le of the

tissues. [35, 42]

We started our methodology with image registration. Three reference points

were selected from each sample with care and the registration results were qualita-

tively successful. It is nonetheless without doubt that registration brings a level of

error to our results. Since some channels had very minimal levels of activity, it was

hard to compare whether they were successfully registered. Blood vessel outlines

were visible in many channels so they acted as our primary reference. Thus, it is

possible that there were more severe registration deviations due to di�ering point

selection, that were left undetected. Another noteworthy source of error, is that

DAPI registration program output were named very ine�ciently, so there was man-

ual work done in assuring that transformation parameters were reapplied correctly,

potentially resulting in systematic error.

The selected pre-trained nuclei detection model was indeed produced for dense

nuclei areas, which made it �tting to our application. Nuclei detection was quali-

tatively successful and it set the foundation for all subsequent analysis. Applying

watershed segmentation had drawbacks. The size of the cellular area was de�ned by

the distance to other cells and thus algorithm performance at complex morphological

sites is poor. Cells located in the borders of inhomogeneous nuclei distributions have

exaggerated surface areas, and thus inaccurate activation levels. These cases were

�ltered out. It is nonetheless likely that our method of segmentation introduced

activation errors for our cellular regions.

The program produced data folders for each ROI along with an excel �le that

contained the analytics regarding activation occurrence. Since the results were man-

ually read from the �les and input to this report, there may have been some level

of reading error. This could have been alleviated by scripting a solution that au-
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tomatically produces code for the corresponding LaTeX table. Illustrations 12 -

14 were nonetheless produced programmatically from combined data. Finally, our

sampling of 4 ROI's from each case may have resulted in unrepresentative results

for each tumour grade. This can be alleviated by increasing the amount of ROI's.

The measurements will always have a level of random error.

4.3 Discussion

Our primary �nding is that proportion of T cells and M2-macrophage as well as

their mean distance to nearest blood vessel are greater in higher tumour grades.

This might suggest that T cells and M2-macrophage are of low quantity in near

vicinity of blood vessels in low tumour grades, and conversely with higher quantities

and more homogeneous distribution in higher tumour grades. It was noted in section

1.3, that research has shown M2-macrophage proportions having positive correlation

with tumour grade, which is in line with our results.

Tiihonen mentioned that she had visually made similar observations of the sam-

ples, which gives us validation of the results. Whilst visual assessment can give us

a general idea, this thesis provides foundation to computational means in automat-

ing and quantifying such tissue investigations. Furthermore, our program can be

applied to any set of antigens of interest after suitable thresholding � and as the

activations are mapped � a plethora of questions can be asked related to cell-cell

interactions and tumour grade properties.

Our problem scenario and methodology come with several limitations. As noted

in the previous section, there are many sources of error and non-standardized pro-

cesses related to analysis of tissue. The greatest challenge we faced, unsurprisingly,

turned out to be staining variability, as ubiquitously stated in related literature.

Our method of using expert knowledge in thresholding gave us su�cient results, yet

it is certain that there was a lack of validation in chosen values, since images had
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di�erent intensity ranges and noise levels.

Our method of segmentation has poor results in heterogeneous tissue areas. In

contrast, it is su�cient in densely packed areas, and the ROI's were selected accord-

ingly. Segmented cells are not necessarily realistic representations of cell boundaries,

but they are suitable for our means � which is to acquire intensity vectors from

given cellular areas. Despite our limitations and low-amount of selected ROI's, the

results support pre-existing knowledge.

The issue of staining variability needs to be addressed at both the tissue handling

and analytics level; there is a dire need for standardized processes and additional

research in generalizability so that models can be applied at a larger scale in a reliable

manner. Regarding our methodology, an automated and adaptive solution for image

thresolding could be explored. Our program could further be combined with tissue

morphology information from H&E staining, for example in tissue detection and

automatic tiling.

In terms of our analysis, we had a limited amount of ROI's from each tissue,

despite the images being quite large with substantial cell populations. One could

further collect data from a larger set of ROI's and conduct proper statistical anal-

ysis in supporting hypotheses of micro-environment behaviour regarding tumour

progression. In the grand scheme of things, computational utility in mIHC analysis

requires a multi-modal system for several tasks, from managing large tabular and

image databases to implementing registration modules, automated advanced anal-

ysis based on scienti�c and technical knowledge in tandem as well as visualizing

relevant information for medical professionals. If the full pipeline is created in a

robust manner, one can imagine commercial-level, semi-automated and advanced

mIHC-tissue investigations in clinical use.



57

References

[1] G.Gopal, C. Suter Crazzolara, L. Toldo et al. (2019), Digital transformation
in healthcare - Architectures of present and future information technologies,
Clinical Chemistry and Laboratory Medicine, 57(3), 328-335, URL: https:
//doi.org/10.1515/cclm-2018-0658

[2] M. Norine Walsh, J. S. Rumsfeld,(2017), Leading the Digital Transformation of
Healthcare, Journal of the American College of Cardiology, 70(21), 2719-2722,
URL: https://doi.org/10.1016/j.jacc.2017.10.020

[3] N. Farahani, A. V Parwani, L. Pantanowitz, (2015), Whole slide imaging
in pathology, advantages, limitations, and emerging perspectives, Pathology
and Laboratory Medicine International, 7, 23-33, URL: https://doi.org/
10.2147/PLMI.S59826

[4] M. K. K. Niazi, A. V. Parwani, M. Gurcan, (2021), Digital Pathology and
Arti�cial Intelligence, The Lancet Oncology, 20(5), 253-261, URL: https://
doi.org/10.1016/S1470-2045(19)30154-8.

[5] K. D. Miller, Q. T. Ostrom, C. Kruchko, (2021), Brain and Other Central
Nervous System Tumour Statistics, Cancer Journal for Clinicians, 71(5), 381
- 406, URL: https://doi.org/10.3322/caac.21693

[6] D. F. Quail, J. A. Joyce, (2017), The Microenvironmental Landscape of Brain
Tumors, Cancer Cell, 31(3), 326-241, URL: https://doi.org/10.1016/j.
ccell.2017.02.009

[7] W. C. C. Tan, S. N. Nerurkar, H. Y. Cai et. al., (2021), Overview of multi-
plex immunohistochemistry/immuno�uorescence techniques in the era of can-
cer immunotherapy, Cancer Communications, 40(4), 135-153, URL: https:
//doi.org/10.1002/cac2.12023

[8] Health Capital Helsinki, (2021), Finnish health startups show great growth
potential but funding is urgently needed, Helsinki, Finland, URL: https://
healthcapitalhelsinki.fi/health-startup-survey/

[9] S. Kraus, F. Schiavone, A. Pluzhnikova, (2021), Digital transformation in
healthcare: Analyzing the current state-of-research, Journal of Business Re-
search, 123, 557-567, URL: https://doi.org/10.1016/j.jbusres.2020.

10.030

[10] G. Wiederrecht, S. Darwish, A. Callaway, (2020), The healthcare data explo-
sion, Royal Bank of Canada Capital Markets, Canada , URL: https://www.
rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion

[11] I. Olaronke, O. Oluwaseun, (2016), Big Data in Healthcare: Prospects, Chal-
lenges and Resolutions, 2016 Future Technologies Conference (FTC), 1152-
1157, URL: https://doi.org/10.1109/FTC.2016.7821747

https://doi.org/10.1515/cclm-2018-0658
https://doi.org/10.1515/cclm-2018-0658
https://doi.org/10.1016/j.jacc.2017.10.020
https://doi.org/10.2147/PLMI.S59826
https://doi.org/10.2147/PLMI.S59826
https://doi.org/10.1016/S1470-2045(19)30154-8.
https://doi.org/10.1016/S1470-2045(19)30154-8.
https://doi.org/10.3322/caac.21693
https://doi.org/10.1016/j.ccell.2017.02.009
https://doi.org/10.1016/j.ccell.2017.02.009
https://doi.org/10.1002/cac2.12023
https://doi.org/10.1002/cac2.12023
https://healthcapitalhelsinki.fi/health-startup-survey/
https://healthcapitalhelsinki.fi/health-startup-survey/
https://doi.org/10.1016/j.jbusres.2020.10.030
https://doi.org/10.1016/j.jbusres.2020.10.030
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion
https://doi.org/10.1109/FTC.2016.7821747


58

[12] J. Reponen, T. Vehko, (2021), Terveydenhuollon sähköiset palve-
lut ja ammattilaistyökalut ovat lisääntyneet, mutta potilasti-
etojärjestelmiä pitää vielä yhtenäistää, The Finnish Institute
for Health and Welfare (THL), URL: https://thl.fi/fi/-/

terveydenhuollon-sahkoiset-palvelut-ja-ammattilaistyokalut-ovat-lisaantyneet-mutta-potilastietojarjestelmia-pitaa-viela-yhtenaistaa

[13] S. W. Jahn, M. Plass, F. Moinfar, (2020), Digital Pathology: Advantages,
Limitations and Emerging Perspectives, Journal of Clinical Medicine, 9(11),
3697, URL: https://doi.org/10.3390/jcm9113697

[14] S. He�ner, O. Colgan, C. Doolan, Digital Pathology, Illinois, United
States URL: https://www.leicabiosystems.com/knowledge-pathway/

digital-pathology/

[15] F. Ghazvani, A. Evans, A. Madabhushi, M. Feldman, (2012) Digital Imaging
in Pathology: Whole-Slide Imaging and Beyond, Annual Review of Pathol-
ogy: Mechanisms of Disease, 8, 331-3359, URL: https://doi.org/10.1146/
annurev-pathol-011811-120902

[16] L. Barisoni, K. J. Lafata, S. M. Hewitt et al., (2020), Digital pathology and
computational image analysis in nephropathology, Nature Reviews Nephrology,
16, 669-685, URL: https://doi.org/10.1038/s41581-020-0321-6

[17] R. Gupta, T. Kurc, A. Sharma et al., (2019) The Emergence of Pathomics,
Current Pathobiology Reports, 7, 73-84, URL: https://doi.org/10.1007/
s40139-019-00200-x

[18] C. Srinidhi, O. Ciga, A. Martel, (2021), Deep neural network models for compu-
tational histopathology: A survey, Medical Image Analysis, 67, 101813, URL:
https://doi.org/10.1016/j.media.2020.101813.

[19] O. Iizuka, F. Kanavati, K. Kato et al., (2020), Deep Learning Mod-
els for Histopathological Classi�cation of Gastric and Colonic Epithelial
Tumours, Scienti�c Reports, 10, 1504, URL: https://doi.org/10.1038/

s41598-020-58467-9

[20] D. Shen, G. Wu, H. Suk, (2017), Deep Learning in Medical Image Analysis,
Annual Review of Biomedical Engineering, 19, 221-248, URL: https://doi.
org/10.1146/annurev-bioeng-071516-044442

[21] C. E. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall,(2020), Activation Func-
tions: Comparison of Trends in Practice and Research for Deep Learning,URL:
https://doi.org/10.48550/arXiv.1811.03378

[22] D. Choi, C. J. Shallue, Z. Nado et al., (2020), On Empirical Comparisons of
Optimizers for Deep Learning, ICLR 2020 Conference Blind Submission, URL:
https://doi.org/10.48550/arXiv.1910.05446

https://thl.fi/fi/-/terveydenhuollon-sahkoiset-palvelut-ja-ammattilaistyokalut-ovat-lisaantyneet-mutta-potilastietojarjestelmia-pitaa-viela-yhtenaistaa
https://thl.fi/fi/-/terveydenhuollon-sahkoiset-palvelut-ja-ammattilaistyokalut-ovat-lisaantyneet-mutta-potilastietojarjestelmia-pitaa-viela-yhtenaistaa
https://doi.org/10.3390/jcm9113697
https://www.leicabiosystems.com/knowledge-pathway/digital-pathology/
https://www.leicabiosystems.com/knowledge-pathway/digital-pathology/
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1038/s41581-020-0321-6
https://doi.org/10.1007/s40139-019-00200-x
https://doi.org/10.1007/s40139-019-00200-x
https://doi.org/10.1016/j.media.2020.101813.
https://doi.org/10.1038/s41598-020-58467-9
https://doi.org/10.1038/s41598-020-58467-9
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.48550/arXiv.1910.05446


59

[23] M. Valkonen, G. Högnäs, G. S. Bova, P. Ruusuvuori, (2021), Generalized Fixa-
tion Invariant Nuclei Detection Through Domain Adaption Based Deep Learn-
ing, IEEE Journal of Biomedical and Health Informatics, 5, 1747-1757, URL:
https://doi.org/10.1109/JBHI.2020.3039414

[24] R. Remark, T. Merghoub, N. Grabe et al., (2016), In-depth tissue pro�ling us-
ing multiplexed immunohistochemical consecutive staining on single slide, Sci-
ence Immunology, 1(1), 6925,URL: https://doi.org/10.1126/sciimmunol.
aaf6925

[25] P. Hofman, C. Badoual, F. Henderson, (2019), Multiplexed Immunohistochem-
istry for Molecular and Immune Pro�ling in Lung Cancer � Just About Ready
for Prime-Time?, Cancers (Basel), 11(3), 283, URL: https://doi.org/10.
3390/cancers11030283

[26] D. Scha�er, S. Willerth, (2017),Sca�old Materials for Human Embryonic Stem
Cell Culture and Di�erentiation, Comprehensive Biomaterials II, 5, 129-153,
URL: https://doi.org/10.1016/B978-0-12-803581-8.10111-0

[27] NCI cancer term dictionary, (2022), National Cancer Institute, URL:
https://www.cancer.gov/publications/dictionaries/cancer-terms/

def/immunohistochemistry

[28] M. M. Bolognesi, M. Manzoni, C. R. Scalia, (2017), Multiplex Staining by
Sequential Immunostaining and Antibody Removal on Routine Tissue Sections,
Journal of Histochemistry & Cytochemistry, 65(8), 431-444., URL: https:
//doi.org/10.1369/0022155417719419

[29] M. M. Bolognesi, F. M. Bosisio, L. Marcelis et. al., (2019), Multiple Iterative
Labeling by Antibody Neodeposition (MILAN), Protocol Exchange, 5, URL:
https://doi.org/10.21203/rs.2.1646/v5

[30] A. Tiihonen, (2020), Personal notes, Multiplex IHC staining protocol

[31] F. Ho�, How to Prepare Your Specimen for Immuno�uores-
cence Microscopy, Leica Microsystems, Illinois, United States,
URL: https://www.leica-microsystems.com/science-lab/

how-to-prepare-your-specimen-for-immunofluorescence-microscopy/

[32] Johns Hopkins Medicine, (2022), Baltimore, USA, Brain Tumour
in Children, URL: https://www.hopkinsmedicine.org/health/

conditions-and-diseases/brain-tumor/pediatric-brain-tumors

[33] K. Aldape, K. M. Brindle, L. Chesler, (2019), Challenges to curing primary
brain tumours, Nature Reviews Clinical Oncology, 8, 509-520, URL: https:
//doi.org/10.1038/s41571-019-0177-5

https://doi.org/10.1109/JBHI.2020.3039414
https://doi.org/10.1126/sciimmunol.aaf6925
https://doi.org/10.1126/sciimmunol.aaf6925
https://doi.org/10.3390/cancers11030283
https://doi.org/10.3390/cancers11030283
https://doi.org/10.1016/B978-0-12-803581-8.10111-0
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immunohistochemistry
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/immunohistochemistry
https://doi.org/10.1369/0022155417719419
https://doi.org/10.1369/0022155417719419
https://doi.org/10.21203/rs.2.1646/v5
https://www.leica-microsystems.com/science-lab/how-to-prepare-your-specimen-for-immunofluorescence-microscopy/
https://www.leica-microsystems.com/science-lab/how-to-prepare-your-specimen-for-immunofluorescence-microscopy/
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor/pediatric-brain-tumors
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor/pediatric-brain-tumors
https://doi.org/10.1038/s41571-019-0177-5
https://doi.org/10.1038/s41571-019-0177-5


60

[34] M. D. Sorensen, R. H. Dahlrot, H. B. Boldt et. al., (2018) Tumour-associated
microglia / macrophages predict poor prognosis in high-grade gliomas and cor-
relate with an aggressive tumour subtype, Neuropathology and Applied Neuro-
biology, 2, 185-206, URL: https://doi.org/10.1111/nan.12428

[35] D. J. Fassler, S. Abousamara, R. Gupta et. al., (2020), Deep learning-based im-
age analysis methods for bright�eld-acquired multiplex immunohistochemistry
images, Diagnostic Pathology, 15, 100, URL: https://doi.org/10.1186/

s13000-020-01003-0

[36] Y. B. Hagos, P. L. Narayanan, A. U. Akarca et. al., (2019), ConCORDe-Net:
Cell Count Regularized Convolutional Neural Network for Cell Detection in
Multiplex Immunohistochemistry Images, International Conference on Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI 2019),
11764, URL: https://doi.org/10.48550/arXiv.1908.00907

[37] Y. Wang, Y. G. Wang, C. Hu et. al., (2021), Cell graph neural networks enable
the digital staging of tumor microenvironment and precise prediction of patient
survival in gastric cancer, medRxiv, URL: https://doi.org/10.1101/2021.
09.01.21262086

[38] Cytomine, Open-source rich internet application for collaborative analysis of
multi-gigapixel images, Liege, Belgium, URL: https://cytomine.be/

[39] SchedMD,(2022), Slurm Workload Manager Overview, Utah, United States,
URL: https://slurm.schedmd.com/overview.html

[40] Tampere University ITC Wiki, (2022), TUNI Narvi Cluster, Tampere,
Finland, URL: https://tuni-itc.github.io/wiki/Technical-Notes/

tuni-narvi-cluster/

[41] Leow Wee Khang, (2022), CS4243 Computer Vision and Pattern Recogni-
tion, National University of Singapore, URL: https://www.comp.nus.edu.
sg/~cs4243/lecture/register.pdf

[42] L. Pozzi,(2022), Artifacts in IHC, The usual suspects - part I, Ech-
ing, Germany, BIOZOL, URL: https://www.biozol.de/en/techniques/

Artifacts-in-IHC

[43] U. Schmidt, M. Weigert, C. Broaddus et. al., (2018), Cell Detection with Star-
convex Polygons, International Conference on Medical Image Computing and
Computer-Assisted Intervention, 11071, URL: https://doi.org/10.1007/
978-3-030-00934-2_30

[44] O. Ronneberger, P. Fischer, T. Brox, (2015), U-Net, Convolutional Networks for
Biomedical Image Segmentation, International Conference on Medical Image
Computing and Computer-Assisted Intervention, 9351, URL: https://doi.
org/10.1007/978-3-319-24574-4_28

https://doi.org/10.1111/nan.12428
https://doi.org/10.1186/s13000-020-01003-0
https://doi.org/10.1186/s13000-020-01003-0
https://doi.org/10.48550/arXiv.1908.00907
https://doi.org/10.1101/2021.09.01.21262086
https://doi.org/10.1101/2021.09.01.21262086
https://cytomine.be/
https://slurm.schedmd.com/overview.html
https://tuni-itc.github.io/wiki/Technical-Notes/tuni-narvi-cluster/
https://tuni-itc.github.io/wiki/Technical-Notes/tuni-narvi-cluster/
https://www.comp.nus.edu.sg/~cs4243/lecture/register.pdf
https://www.comp.nus.edu.sg/~cs4243/lecture/register.pdf
https://www.biozol.de/en/techniques/Artifacts-in-IHC
https://www.biozol.de/en/techniques/Artifacts-in-IHC
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1007/978-3-030-00934-2_30
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28


61

[45] A. Bieniek, A. Moga, (1999), An e�cient watershed algorithm based on con-
nected components, Pattern Recognition, 33(6), URL: https://doi.org/10.
1016/S0031-3203(99)00154-5

[46] A. S. Kornilov, I. V. Safonov, (2018), An Overview of Watershed Algorithm
Implementations in Open Source Libraries, Journal of Imaging, 4(10), URL:
https://doi.org/10.3390/jimaging4100123

[47] A. Regev, M. Berho, L. J. Je�ers, (2002), Sampling Error and Intraobserver
Variation in Liver Biopsy in Patients With Chronic HCV Infection, The Amer-
ican Journal of Gastroenterology, 10, 2614-8, URL: https://doi.org/10.
1111/j.1572-0241.2002.06038.x

[48] D. R. Bauer, M. Otter, D. R. Cha�n, (2018), A New Paradigm for Tissue
Diagnostics: Tools and Techniques to Standardize Tissue Collection, Transport,
and Fixation, Current Pathobiology Reports, 6(2), 135-143, URL: https://
doi.org/10.1007/s40139-018-0170-1

https://doi.org/10.1016/S0031-3203(99)00154-5
https://doi.org/10.1016/S0031-3203(99)00154-5
https://doi.org/10.3390/jimaging4100123
https://doi.org/10.1111/j.1572-0241.2002.06038.x
https://doi.org/10.1111/j.1572-0241.2002.06038.x
https://doi.org/10.1007/s40139-018-0170-1
https://doi.org/10.1007/s40139-018-0170-1

	Background
	Digital transformation in healthcare
	Digital pathology
	Spatial mapping of brain tumour microenvironment
	Literature review

	Problem setting
	Problem statement
	Objectives
	Scope and Limitation of the Study

	Methodology
	Image acquisition
	Computational environment
	Image registration
	Artefact removal
	Nuclei detection
	Cell segmentation
	Feature engineering
	Analysis

	Results
	Results
	Error analysis
	Discussion


