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ABSTRACT

The research area of this thesis is nonlinear functional analysis, a branch of Math-
ematics which examines questions related to qualitative aspects of solution of a dif-
ferential equation, such as existence, uniqueness, stability, solvability conditions.
Owning to the rapid progress in image processing research involving variational
problems, this research work deals with the study of existence and properties of
minimizer for image restoration model under Sobolev-Orlicz function space setting.

The nature of image restoration that we deal here is noise reduction, where the
observed image is assumed to be degraded by a random noise. The noise reduction
problem is formulated as a minimization problem consisting of a least squares fit
and a regularization term. In the proposed image denoising model, the regulariza-
tion term represent a double-phase functional that serve the purpose of anisotropic
diffusion along with isotropic smoothing, for piecewise smoothing and edge preser-
vation. The mathematical modeling of image restoration problem requires the setting
of the domain function space to permit discontinuities of the solution. In this respect,
Sobolev-Orlicz function space, which consists of functions having weak derivatives
and satisfy certain integrability conditions, provide a favorable framework. For solv-
ing such minimization problems, the so-called direct method in the Calculus of Vari-
ations is widely used, whose basic topological ingredients are the lower semicontinu-
ity of the functional and the compactness of the lower level sets of the regularization
functional. The natural question which then arises here is to study the regularity of
such solutions and to establish under which conditions on the data and domain, we
have a solution in the sense of distributions. This forms the main objective of my
research from the theoretical perspective. Although considerable contributions have
been devoted to this challenging question, investigating new approaches under the
Sobolev-Orlicz space setting provide new insight into the matter.

In this thesis, the study of image restoration problem is carried out in two ap-
proaches: variational and PDE-based. The variational approach presents restoration
through minimization, where the existence and uniqueness of minimizer is estab-
lished using the direct Method of the Calculus of Variations. This approach gives
information about the qualitative aspects of the model in the Sobolev-Orlicz space
setting. In the PDE-based approach, we consider models in the form of heat flow
differential equation, where the image is embedded in an evolution process in both
space and time dimensions. This yields a quasilinear parabolic boundary value prob-
lem. However, due to the degenerate behavior of the PDE, it is not possible to ap-
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ply general results from classical parabolic equations theory. Thus, to formulate a
well-adapted framework, we regularize the PDE using approximations to obtain ap-
propriate solvability conditions. The idea is to construct an approximated boundary
problem whose solution converges to the solution of the heat flow problem, under the
suitable conditions. Further, to prove the existence and uniqueness of the solution,
we derive a few a priori estimates, which gives information about the qualitative be-
havior of the boundary function. This approach is particularly useful in determining
the nature of the domain, where the image corresponds to a feasible solution, that is
usually required for numerical purposes.

Finally, after proving the existence and uniqueness of the solution, we discretize
the problem in order to find a numerical solution. The behaviour and efficiency of
the model is then tested and illustrated through numerical experiments.

KEYWORDS: image restoration, double-phase, Sobolev-Orlicz space, minimizer,
heat flow, PDE
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TIIVISTELMÄ

Tämän opinnäytetyön tutkimusalueena on epälineaarinen funktionaalinen analyysi,
matematiikan haara, joka tutkii differentiaaliyhtälön ratkaisun laadullisiin näköko-
htiin liittyviä kysymyksiä, kuten olemassaoloa, yksikäsitteisyyttä ja stabiilisuutta.
Johtuen nopeasta edistymisestä kuvankäsittelytutkimuksessa, joka liittyy variaatio-
ongelmiin, tämä tutkimustyö käsittelee kuvan restaurointimallin minimoijan olemas-
saoloa ja ominaisuuksia Sobolev-Orliczin funktioavaruuksissa.

Tässä käsiteltävä kuvan restauroinnin luonne on kohinanvaimennus, jossa olete-
taan havaitun kuvan sisältävän satunnaista kohinaa. Kohinanvaimennusongelma on
muotoiltu minimoimisongelmaksi, joka koostuu pienimmän neliösumman sovituk-
sesta ja regularisointitermistä. Ehdotetussa kuvan kohinanpoistomallissa regular-
isointitermi edustaa kaksivaiheista (double phase) funktiota, jossa on sekä anisotroop-
pinen että isotrooppinen diffuusio paloittaista tasoittamista ja reunan säilyttämistä
varten. Kuvan restaurointiongelman matemaattinen mallinnus edellyttää funktioavaru-
utta, joka mahdollistaa epäjatkuvuudet ratkaisussa. Tässä suhteessa Sobolev-Orlicz-
funktioavaruus, joka koostuu funktioista, joilla on heikko derivaatta ja tietyt inte-
groitavuusehdot, tarjoavat suotuisat puitteet. Tällaisten minimointiongelmien ratkaise-
miseksi ns. variaatiolaskun suora menetelmä on laajalti käytössä, ja sen topologiset
perusainekset ovat funktionaalin alhaalta puolijatkuvuus ja kompaktisuus. Luon-
nollinen kysymys on tutkia tällaisten ratkaisujen säännöllisyyttä ja pyrkiä määrit-
tämään, millä ehdoilla meillä on ratkaisu distribuution mielessä. Tämä on tutkimuk-
seni päätavoite teoreettisesta näkökulmasta. Vaikka tätä haastavaa kysymystä on
tutkittu paljon, uudet lähestymistavat Sobolev-Orliczin avaruuksissa antavat uutta
näkemystä asiaan.

Tässä opinnäytetyössä kuvan restaurointiongelmaa tutkitaan kahdella lähestymis-
tavalla: variaatio- ja ODY-perustaisesti. Variaatiolaskennassa restaurointia lähestytään
minimoinnin kautta, jossa olemassaolo ja minimoinnin yksikäsitteisyys sadaan käyt-
tämällä suoraa variaatiolaskentamenetelmää. Tämä lähestymistapa antaa tietoa mallin
laadullisista näkökohdista Sobolev-Orliczin avaruudessa. ODY-pohjaisessa lähestymis-
tavassa tutkimme lämpöyhtälön muotoisia malleja, joissa on evoluutioprosessi sekä
tila- että aikaulottuvuuksissa. Tämä tuottaa kvasilineaarisen parabolisen reuna-arvo-
ongelman. ODY:n degeneroidun käyttäytymisen vuoksi siihen ei kuitenkaan voida
soveltaa yleisiä tuloksia klassisesta parabolisten yhtälöiden teoriasta. Joten muotoil-
laksemme sopivan kehyksen, normalisoimme ODY:n käyttämällä approksimaatioita
saadaksemme sopivat ratkeavuusehdot. Ideana on rakentaa likimääräiset reuna-arvo-
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ongelmat, joiden ratkaisut suppenevat lämpöyhtälön ratkaisua kohti sopivissa olo-
suhteissa. Lisäksi todistaaksemme ratkaisun olemassaolon ja yksikäsitteisyyden jo-
hdamme a priori arvioita, jotka antavat tietoa rajafunktion laadullisesta käyttäytymis-
estä. Tämä lähestymistapa on erityisen hyödyllinen määritettäessä alueen luonnetta,
jossa kuva vastaa mielekästä ratkaisua, jota yleensä tarvitaan numeerisissa sovelluk-
sissa.

Lopuksi, kun olemme todistaneet ratkaisun olemassaolon ja yksikäsitteisyyden,
diskretisoimme ongelman löytääksemme numeerisen ratkaisun. Sen jälkeen mallin
käyttäytymistä ja tehokkuutta testataan ja havainnollistetaan numeerisilla kokeilla.
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1 Introduction

"In Mathematics, the art of proposing a question must be held of higher value than
solving it."

— Georg Cantor (1845-1918)

We begin by presenting an intuitive introduction to the class of generalized Orlicz
spaces, briefly sketching its background on variational problems, followed by an
outline of the thesis.

1.1 A brief background
In the theory of existence of solutions to minimization problems, functionals with
non-standard growth have been studied extensively due to their application in mod-
elling physical phenomena. Such classes of functionals are mostly covered by gen-
eralized Orlicz spaces, as we look back how it was developed.

The study of generalized Orlicz spaces𝐿𝜙 can be traced back to the 1940s. These
spaces are similar to Orlicz spaces [50], but defined by a more general function
𝜙(𝑥, 𝑡), that may vary with the location in space with the norm defined by means of
the integral �

R𝑛

𝜙(𝑥, |𝑢(𝑥)|) 𝑑𝑥,

whereas in Orlicz space, the function 𝜙 would be independent of 𝑥, that is 𝜙(|𝑢(𝑥)|).
When 𝜙(𝑡) = 𝑡𝑝, we obtain the Lebesgue spaces, 𝐿𝑝. Other principal classes
of examples of generalized Orlicz spaces include variable exponent spaces, where
𝜙(𝑥, 𝑡) ..= 𝑡𝑝(𝑥) [14], and double phase spaces, where 𝜙(𝑥, 𝑡) ..= 𝑡𝑝 + 𝑎(𝑥)𝑡𝑞 [3; 13].

Historically, variable exponent Lebesgue spaces 𝐿𝑝(·)(Ω), where Ω is an open
subset of R𝑛, appeared in the literature for the first time in 1931 in an article writ-
ten by Orlicz [49]. However, after this one paper, the study of variable exponent
Lebesgue spaces was then abandoned by Orlicz to concentrate on the theory of func-
tion spaces consisting of those measurable functions 𝑢 : Ω → R with a modular of
the form

𝜚(𝜆𝑢) ..=

�
Ω
𝜙(𝜆|𝑢(𝑥)|) 𝑑𝑥 <∞,

for some 𝜆 > 0 (𝜙 has to satisfy certain conditions), which are now called Orlicz
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spaces. Abstracting certain central properties of 𝜚, one is lead to a more general
class of so-called modular function spaces which were first systematically studied
by Nakano [47]. Following the work of Nakano, modular spaces were investigated
by several people, most importantly by groups at Sapporo (Japan), Voronezh (USSR)
and Leiden (Netherlands). From 1970s, these function spaces were extensively stud-
ied by Polish mathematicians, for instance Hudzik, Kamińska [31; 32] and notably
Musielak in his monograph [46] with a comprehensive presentation of modular func-
tion spaces.

In the mid-80s, Zhikov [64; 65] started studying variational integrals with non-
standard growth conditions including the variable exponent case 𝜙(𝑥, 𝑡) = 𝑡𝑝(𝑥) and
the double phase case 𝜙(𝑥, 𝑡) = 𝑡𝑝+𝑎(𝑥)𝑡𝑞. This developed into a new line of inves-
tigation, intimately related to the study of variable exponent spaces. While during
80s and 90s, Kováĉik and Rákosník [36] also found a few results of variable ex-
ponent Lebesgue and Sobolev spaces, concerning completeness, density, reflexivity
and separability.

Further, in the calculus of variations, minimization problems of the following
form have been considered,

min
𝑢∈𝑊 1,1(Ω)

�
Ω
𝐹 (𝑥,∇𝑢) 𝑑𝑥.

If 𝐹 (𝑥, 𝑡) ≈ |𝑡|𝑝 (in some suitable sense), Marcellini [43] called this the standard
growth case. While, for more general (𝑝, 𝑞)-growth case, 𝑡𝑝 ≲ 𝐹 (𝑥, 𝑡) ≲ 𝑡𝑞 +

1, 𝑞 > 𝑝 > 1 for all 𝑡 ⩾ 0, Marcellini [44] found that results from standard growth
case generalize when the ratio 𝑞

𝑝 is sufficiently close to 1 with different bounds for
different properties. For instance, in [44], the minimizers in 𝑊 1,𝑞 are Lipschitz if
𝑞
𝑝 ⩽ 𝑛

𝑛−2 , where 𝑛 > 2 is the dimension. Regularity properties for such minimization
problems have been widely studied and proved in the recent decades, as found in the
works of Baroni, Colombo and Mingione [3; 13], especially for the cases

min
𝑢

�
|∇𝑢|𝑝(𝑥) log(𝑒+ |∇𝑢|) 𝑑𝑥 and min

𝑢

�
|∇𝑢|𝑝 + 𝑎(𝑥)|∇𝑢|𝑞 𝑑𝑥,

respectively. They showed that the regularity of the minimizer depends on the choice
of the exponents 𝑝, 𝑞 and the weight 𝑎. Both of these are special cases of generalized
Orlicz growth. Notably, several of those results on regularity of minimizers have
been extended to the generalized Orlicz space, as studied by Hästö and Harjulehto in
[24], and also in [60].

Růžička and his collaborators [55; 54] studied equations with non-standard growth
in the modelling of so-called electrorheological fluids, as such materials with inho-
mogeneities requires that the exponent should be able to vary, in case of which classi-
cal Lebesgue and Sobolev spaces does not prove to be useful. This leads to the study
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of those materials in Lebesgue and Sobolev spaces with variable exponent. As an-
other application, Chen, Levine and Rao [6] studied a model involving (𝑝, 𝑞)-growth
functionals for image restoration, in variable exponent Lebesgue and Sobolev spaces.

When we try to integrate both the two functional structures of variable exponent
Lebesgue spaces and Orlicz spaces, we are led to the so-called generalized Orlicz
spaces, as it naturally generalizes the Lebesgue spaces with constant exponent. In
addition to being a natural generalization which covers results from both variable
exponent and Orlicz spaces, the study of generalized Orlicz spaces are motivated by
applications to image processing [25; 27], fluid dynamics [61], differential equations
[8; 21; 26].

A different approach to differential equations is based on (nonlinear) potential
theory. The foundation of nonlinear potential theory includes general notions of a
Radon measure, a capacity and generalized functions. The sets of capacity zero are
the exceptional sets for representatives of the function.

The basic properties of both Sobolev capacity and relative capacity in the gen-
eralized Orlicz setting, are presented here, as stated in [4]. It should be noted that
T. Ohno and T. Shimomura [48] have also produced similar results on the (Sobolev)
capacity of generalized Orlicz space, however, they consider the capacity in a met-
ric measure space setting with Hajłasz gradients. These results therefore work in
the Euclidean setting only when the maximal operator is bounded, since the Hajłasz
gradient corresponds to 𝑀(|∇𝑓 |).

The goal of this thesis is to study the generalized Orlicz and Sobolev-Orlicz
spaces, in the context of variational problems and the associated PDEs. We show that,
for a given minimization problem, one can find for a unique solution in the domain of
Sobolev-Orlicz space, satisfying certain regularity conditions. This finds application
in the field of image restoration, where we conduct a few numerical experiments.

1.2 Outline of the thesis
The structure of the thesis is organized as follows.

Chapter 2 consists of the preliminary definitions and concepts relevant to the
work. We first introduce generalized Orlicz and Sobolev-Orlicz spaces, and also the
notion of parabolic Hölder and Sobolev spaces involving time. Further, we review
the necessary background material on functions belonging to these spaces, along
with some standard regularity theory for elliptic and parabolic PDEs on Euclidean
domain. The material discussed in this first part is mostly standard and can be found
in the literature. This lays the foundation for study of variational and boundary value
problems for image restoration model, in the domain of Sobolev-Orlicz space.

Chapter 3 consists of a few original results on capacities published in [4], as
part of the doctoral research work. Further, extended results on quasicontinuous
representative are newly added.

3



Debangana Baruah

In chapter 4, we study the minimization problem under the setting of Sobolev-
Orlicz space, and the associated boundary problems. We begin by introducing the
variational problem in line with image restoration model, which involves double-
phase functional. Next, the existence and uniqueness of the minimizer is established,
using the direct method of the Calculus of Variations. Thereafter, we formulate the
associated parabolic boundary value problems, of which the existence and regularity
results are proved using approximation theory. In addition, the behaviour of the mini-
mizing sequence is also studied. Finally, we have the numerical section that presents
experimental results obtained using optimization algorithms along with images, to
understand the working and efficiency of the image restoration model.

The final chapter 5, appendix, consists of supplementary results and arguments
for the proofs presented in the preceding chapters.

4



2 Preliminaries: Function spaces and
PDE

"The organic unity of mathematics is inherent in the nature of this science, for
mathematics is the foundation of all exact knowledge of natural phenomena."

— David Hilbert (1862-1943)

This chapter of preliminaries is organized as follows. In section 2.1, there is a
collection of notations used throughout this thesis, along with some standard formu-
lae and results. The definitions of Φ-functions and some of its generalizations are
stated here, along with the main assumptions on (generalized weak) Φ-functions re-
quired in the thesis. In section 2.2, the generalized Orlicz and the associated Sobolev
Orlicz function spaces are defined, along with discussing a few of their properties.
Finally, to study boundary value problems involving PDEs, a few function spaces
involving time are briefly introduced.

2.1 Notation and definitions
We denote by R𝑛 the 𝑛-dimensional real Euclidean space, and 𝑛 ∈ N stands for the
dimension of the space. By 𝐵(𝑥, 𝑟), we denote an open ball in R𝑛 centred at 𝑥 ∈ R𝑛

with radius 𝑟 > 0, and |𝑥| ..=
√︀∑︀𝑛

𝑖=1 𝑥
2
𝑖 for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛. Let Ω ⊂ R𝑛

be a nonempty open bounded set, which is mainly used throughout, unless otherwise
stated. We denote by Ω its closure and refer to 𝜕Ω ..= Ω ∖Ω as its boundary. Further,
|Ω| stands for its (Lebesgue) measure and 𝜒Ω denotes its characteristic function.
We denote by 𝐿0(Ω) the space of all Lebesgue measurable functions on Ω, and by
𝐿1

loc(Ω) the space of all locally integrable functions on Ω.
For constants, we use the letters 𝑐, 𝑐1, 𝑐2, 𝐶, 𝐶1, 𝐶2, . . ., or other letters specifi-

cally mentioned to be constants. The symbol 𝐶 without index stands for a generic
constant which may vary between appearances. We use 𝑓 ≈ 𝑔 and 𝑓 ≲ 𝑔 if there
exists constants 𝑐1, 𝑐2 > 0 such that 𝑐1𝑓 ⩽ 𝑔 ⩽ 𝑐2𝑓 and 𝑓 ⩽ 𝑐2𝑔, respectively.
In a given interval 𝐼 , a function 𝑓(𝑥) is said to be increasing if 𝑠 < 𝑡 in 𝐼 implies
𝑓(𝑠) ⩽ 𝑓(𝑡) and strictly increasing if 𝑠 < 𝑡 in 𝐼 implies 𝑓(𝑠) < 𝑓(𝑡), for all 𝑠, 𝑡 ∈ 𝐼 .
The terms decreasing and strictly decreasing are defined analogously.

A function 𝑢 : (0,∞) → R is almost increasing if there exists a constant 𝐶 ⩾ 1

such that 𝑢(𝑠) ⩽ 𝐶𝑢(𝑡) for all 0 < 𝑠 < 𝑡 (abbreviated 𝐶-almost increasing). Almost
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decreasing is defined analogously. Increasing and decreasing functions are special
cases when𝐶 = 1. For 𝑝, 𝑞 > 0, we say that 𝑢 satisfies (Inc)𝑝 if 𝑢(𝑡)

𝑡𝑝 is increasing and
(aInc)𝑝 if 𝑢(𝑡)

𝑡𝑝 is almost increasing; similarly, 𝑢 satisfies (Dec)𝑞 if 𝑢(𝑡)
𝑡𝑞 is decreasing

and (aDec)𝑞 if 𝑢(𝑡)
𝑡𝑞 is almost decreasing. While for 𝑝 > 1, 𝑞 < ∞, we drop the

subscripts 𝑝, 𝑞 from the notations above, that is, we say, 𝑢 satisfies (Inc), (aInc) for
some 𝑝 > 1 or satisfies (Dec), (aDec) for some 𝑞 < ∞, which will be mainly used
in this thesis.

Let 𝑘 = 1, 2, . . ., and 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ N𝑛
0 be a multi-index, that is,

a vector of 𝑛 non-negative integers. We set the order of the multi-index as |𝛼| ..=

𝛼1 + 𝛼2 + . . .+ 𝛼𝑛. We call 𝜕𝛼 ..= 𝜕𝛼1

𝜕𝑥
𝛼1
1

𝜕𝛼2

𝜕𝑥
𝛼2
2
. . . 𝜕𝛼𝑛

𝜕𝑥𝛼𝑛
𝑛

the partial derivative of order
𝛼. For sufficiently smooth functions, all partial derivatives commute. Provided that
the derivatives exist, the gradient of a function 𝑢 : Ω → R is the vector ∇𝑢(𝑥) ..=(︀

𝜕𝑢
𝜕𝑥1

(𝑥), . . . , 𝜕𝑢
𝜕𝑥𝑛

(𝑥)
)︀
, for 𝑥 ∈ Ω. Let 𝐹 : Ω → R𝑛 be a vector field, defined as

𝐹 ..= (𝐹1, 𝐹2, . . . , 𝐹𝑛). The divergence of the vector field 𝐹 , denoted as div𝐹 , is

the function ∇ · 𝐹 (𝑥) ..=
𝑛∑︀

𝑖=1

𝜕𝐹𝑖

𝜕𝑥𝑖
(𝑥), for 𝑥 ∈ Ω. The Laplacian operator is denoted

by Δ ..= ∇ · ∇.
The space of uniformly continuous functions on Ω, denoted by,𝐶(Ω), is equipped

with the supremum norm ‖𝑢‖∞ ..= sup𝑥∈Ω |𝑢(𝑥)|. While, 𝐶𝑘(Ω), 𝑘 ∈ N, denote the
space of functions 𝑢, such that the partial derivatives 𝜕𝛼𝑢

𝜕𝑥𝛼 ∈ 𝐶(Ω) for all |𝛼| ⩽ 𝑘.
This is a Banach space, equipped with the norm,

‖𝑢‖𝐶𝑘(Ω)
..= sup

|𝛼|⩽𝑘,𝑥∈Ω

⃒⃒⃒
𝜕𝛼𝑢

𝜕𝑥𝛼

⃒⃒⃒
. (2.1.1)

Further, we denote 𝐶∞(Ω) as the space of functions with continuous partial deriva-
tives of all orders in Ω. While, 𝐶∞

0 (Ω) denotes the set of 𝐶∞(Ω) functions with
compact support in Ω.

We also recall the definition of weak derivative. Let 𝑢 ∈ 𝐿1
loc(Ω), then a function

𝑤 ∈ 𝐿1
loc(Ω) is called the 𝛼th-weak derivative of 𝑢, if

�
Ω
𝑤ℎ𝑑𝑥 = (−1)|𝛼|

�
Ω
𝑢 𝜕𝛼ℎ 𝑑𝑥, ∀ℎ ∈ 𝐶∞

0 (Ω).

For |𝛼| = 1 in the equation above, the function 𝑤 is called the weak gradient of 𝑢,
that is, �

Ω
𝑤ℎ𝑑𝑥 = −

�
Ω
𝑢∇ℎ 𝑑𝑥, ∀ℎ ∈ 𝐶∞

0 (Ω).

Further,𝑤 ∈ 𝐿1
loc(Ω) is called the weak divergence of vector function 𝑢 ∈ 𝐿2(Ω;R𝑛)

if �
Ω
𝑤ℎ𝑑𝑥 = −

�
Ω
𝑢 · ∇ℎ 𝑑𝑥, ∀ℎ ∈ 𝐶∞

0 (Ω)
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Here, if each component 𝑢𝑖 of 𝑢 is weakly differentiable with weak derivatives 𝜕𝑢𝑖

𝜕𝑥𝑖
∈

𝐿1
loc(Ω), then 𝑤 = div 𝑢 = ∇ · 𝑢 =

𝑛∑︀
𝑖=1

𝜕𝑢𝑖

𝜕𝑥𝑖
(𝑥).

Next we have that, 𝑊 1,𝑝(Ω), 𝑝 ⩾ 1, denotes the Sobolev space, consisting of
functions 𝑢 ∈ 𝐿𝑝(Ω) for which the partial derivatives of 𝑢 of order 𝛼 ∈ N𝑛

0 where
|𝛼| = 1 exists in the weak sense and belong to the Lebesgue space 𝐿𝑝(Ω). Its norm
is defined as,

‖𝑢‖𝑊 1,𝑝(Ω)
..=

⎧⎨⎩
(︀ �

Ω |𝑢|𝑝 𝑑𝑥+
�
Ω |∇𝑢|𝑝 𝑑𝑥

)︀ 1

𝑝 (1 ⩽ 𝑝 <∞)

ess sup
Ω

(|𝑢|+ |∇𝑢|) (𝑝 = ∞).

The Sobolev space 𝑊 1,𝑝
0 (Ω) is the completion of 𝐶∞

0 (Ω) in the norm of 𝑊 1,𝑝(Ω).
For 𝑓 ∈ 𝐿1

loc(Ω), we define

𝑀𝑓(𝑥) ..= sup
𝑥∈𝐵

1

|𝐵|

�
𝐵∩Ω

|𝑓(𝑦)| 𝑑𝑦 (2.1.2)

and call 𝑀 the maximal operator, where the supremum is taken over all open balls
𝐵 containing 𝑥.

We also define convolution as follows,

𝑓 * 𝑔(𝑥) ..=

�
Ω
𝑓(𝑦) 𝑔(𝑥− 𝑦) 𝑑𝑦, 𝑥 ∈ Ω

where 𝑓 ∈ 𝐿1
loc(Ω) and 𝑔 ∈ 𝐿1

loc(R𝑛).
Let 𝑁(𝑥) ..= (𝑁1(𝑥), . . . , 𝑁𝑛(𝑥)) denote the outward pointing unit normal vec-

tor defined almost everywhere for 𝑥 ∈ 𝜕Ω and 𝑑𝑆 denotes the surface measure on
the 𝐶1 boundary 𝜕Ω. Let 𝑢 ∈ 𝐶1(Ω) and 𝜙 ∈ 𝐶2(Ω). The Green’s first identity
reads as �

Ω
(∇𝑢 · ∇𝜙+ 𝑢Δ𝜙) 𝑑𝑥 =

�
𝜕Ω
𝑢
𝜕𝜙

𝜕𝑁
𝑑𝑆 (2.1.3)

where 𝜕𝜙
𝜕𝑁 = ∇𝜙 ·𝑁 is the outward normal derivative of 𝜙.

Next, we have the integration by parts formula stated as follows.

Lemma 2.1.1. (Integration by parts formula) [15, Theorem 2, C.2., pp. 628] Let
Ω ⊂ R𝑛 be a bounded open set with 𝐶1 boundary. For every 𝑢, 𝑣 ∈ 𝐶1(Ω), the
following formula holds,

�
Ω

𝜕𝑢

𝜕𝑥𝑖
𝑣 𝑑𝑥 = −

�
Ω

𝜕𝑣

𝜕𝑥𝑖
𝑢 𝑑𝑥+

�
𝜕Ω
𝑢𝑣 𝑁𝑖 𝑑𝑆, 𝑖 = 1, . . . , 𝑛. (2.1.4)
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Moreover, for 𝑣 ∈ 𝐶2(Ω), replacing 𝑣 in the above equality (2.1.4) with 𝜕𝑣
𝜕𝑥𝑖

and
summing over 𝑖 = 1, . . . , 𝑛 to obtain

�
Ω
∇𝑢 · ∇𝑣 𝑑𝑥 = −

�
Ω
𝑢Δ𝑣 𝑑𝑥+

�
𝜕Ω

𝜕𝑣

𝜕𝑁
𝑢 𝑑𝑆, (2.1.5)

where 𝜕
𝜕𝑁

..=
∑︀𝑛

𝑖=1𝑁𝑖
𝜕
𝜕𝑥𝑖

is the operator of differentiation in the direction of the
vector𝑁 . Note that, the above formula (2.1.5) is in line with the Green’s first identity
in (2.1.3). While using Dirichlet’s boundary, 𝑢 = 0 on 𝜕Ω, the integration by parts
formula (2.1.4) can be equivalently written as,

�
Ω

𝜕𝑢

𝜕𝑥𝑖
𝑣 𝑑𝑥 = −

�
Ω
𝑢

𝜕𝑣

𝜕𝑥𝑖
𝑑𝑥, 𝑖 = 1, 2, . . . , 𝑛.

The integration by parts formula is satisfied for Sobolev functions 𝑢 ∈𝑊 1,𝑝
0 (Ω), 𝑝 ⩾

1, in bounded domain Ω ⊂ R𝑛 [38, Chapter 2, section 2], that is,
�
Ω

𝜕𝑢

𝜕𝑥𝑖
𝑣 𝑑𝑥 = −

�
Ω

𝜕𝑣

𝜕𝑥𝑖
𝑢 𝑑𝑥, (2.1.6)

where 𝑣 ∈𝑊 1,𝑞(Ω), 𝑞 ⩾ 1, such that 1
𝑝 + 1

𝑞 = 1.

Lemma 2.1.2. (Fundamental Lemma of Calculus of Variations) [18, Chapter 1,
Lemma 1] If 𝑓 ∈ 𝐿1

loc(Ω) satisfies,
�
Ω
𝑓𝜙 𝑑𝑥 = 0,

for every 𝜙 ∈ 𝐶∞
0 (Ω), then 𝑓 ≡ 0 almost everywhere in Ω.

For use during calculations, we also state the Young’s inequality for products [15,
B.2 (c), pp. 622],

𝑎𝑏 ⩽
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
, ∀ 𝑎, 𝑏 ⩾ 0, (2.1.7)

where 𝑝, 𝑞 ∈ (1,∞) satisfy 1
𝑝 + 1

𝑞 = 1.
In the case of convolution functions, for 𝑓 ∈ 𝐿𝑝(R𝑛), 1 ⩽ 𝑝 ⩽ ∞ and 𝜁𝛿 ∈

𝐿1(R𝑛), the Young’s convolution inequality result implies that (𝑓 * 𝜁𝛿)(𝑥) exists for
almost all 𝑥 ∈ R𝑛 and we have

‖𝑓 * 𝜁𝛿‖𝑝 ≤ ‖𝑓‖𝑝‖𝜁𝛿‖1. (2.1.8)

2.1.1 Φ-functions Let 𝜙 : [0,∞) → [0,∞] be increasing with 𝜙(0) = 0,
lim
𝑡→0+

𝜙(𝑡) = 0 and lim
𝑡→∞

𝜙(𝑡) = ∞. Such 𝜙 is called a Φ-prefunction. While by

𝜙−1 : [0,∞] → [0,∞] we denote the left-continuous inverse of 𝜙 : [0,∞] → [0,∞],
𝜙−1(𝜏) := inf{𝑡 ⩾ 0 : 𝜙(𝑡) ⩾ 𝜏}, for all 𝜏 ∈ [0,∞].
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We say that a Φ-prefunction 𝜙 is a (weak) Φ-function if it satisfies (aInc)1 on
(0,∞); a convex Φ-function if it is left-continuous in the topology of [0,∞] and
convex; a strong Φ-function if it is continuous in the topology of [0,∞] and convex.
The sets of weak, convex and strong Φ-functions are denoted by Φ𝑤,Φ𝑐 and Φ𝑠,
respectively.

Remark 2.1.9. If 𝜙 is convex and 𝜙(0) = 0, then for 0 < 𝑠 < 𝑡, we obtain 𝜙(𝑠) =
𝜙
(︀
𝑠
𝑡 𝑡+ 0

)︀
⩽ 𝑠

𝑡𝜙(𝑡) +
(︀
1− 𝑠

𝑡

)︀
𝜙(0) = 𝑠

𝑡𝜙(𝑡), which implies 𝜙 satisfies (aInc)1.
Hence, it follows from the above definition that Φ𝑠 ⊂ Φ𝑐 ⊂ Φ𝑤.

In order that Φ-functions depend on the spatial variable in set Ω ⊂ R𝑛, we need
some generalization of Φ-functions, as introduced in the following.

Let 𝑢 : Ω× [0,∞) → R and 𝑝, 𝑞 > 0. We say that 𝑢 satisfies (aInc)𝑝 or (aDec)𝑞,
if there exists a constant 𝐶 ⩾ 1 such that the function 𝑡 ↦→ 𝑢(𝑥, 𝑡) satisfies (aInc)𝑝
or (aDec)𝑞 with the same constant 𝐶 for almost every 𝑥 ∈ Ω. When 𝐶 = 1, we use
the notations (Inc)𝑝 and (Dec)𝑞, respectively.

A function 𝜙 : Ω × [0,∞) → [0,∞] is said to be a (generalized) Φ-prefunction
on Ω if 𝑥 ↦→ 𝜙(𝑥, |𝑢(𝑥)|) is measurable for every 𝑢 ∈ 𝐿0(Ω) and 𝜙(𝑥, ·) is a
Φ-prefunction for almost every 𝑥 ∈ Ω. We say that the Φ-prefunction 𝜙 is a
(generalized) weak Φ-function if 𝜙(𝑥, ·) satisfies (aInc)1 with the same constant
for almost every 𝑥 ∈ Ω with the same constant, denoted as 𝜙 ∈ Φ𝑤(Ω). In a
similar way, 𝜙 is called a (generalized) convex Φ-function if 𝜙(𝑥, ·) ∈ Φ𝑐 for al-
most all 𝑥 ∈ Ω, denoted as 𝜙 ∈ Φ𝑐(Ω); and a (generalized) strong Φ-function if
𝜙(𝑥, ·) ∈ Φ𝑠 for almost all 𝑥 ∈ Ω, denoted as 𝜙 ∈ Φ𝑠(Ω). And, by 𝜙−1 we denote
the inverse of 𝜙 ∈ Φ𝑤(Ω) with respect to the second variable, that is, for 𝜏 ⩾ 0,
𝜙−1(𝑥, 𝜏) := inf{𝑡 ⩾ 0 : 𝜙(𝑥, 𝑡) ⩾ 𝜏}.

By the above definition, it is clear that the properties of (weak) Φ-functions
carry over to generalized (weak) Φ-functions point-wise uniformly. Also, Φ𝑠(Ω) ⊂
Φ𝑐(Ω) ⊂ Φ𝑤(Ω).

We say that 𝜙 ∈ Φ𝑐(Ω) is uniformly convex, by [24, Definition 3.6.1], if for every
𝜀 > 0 there exists 𝛿 ∈ (0, 1) such that

𝜙
(︁
𝑥,

𝑠+ 𝑡

2

)︁
⩽ (1− 𝛿)

𝜙(𝑥, 𝑠) + 𝜙(𝑥, 𝑡)

2
,

for almost every 𝑥 ∈ Ω whenever 𝑠, 𝑡 ⩾ 0, and |𝑠 − 𝑡| ⩾ 𝜀max{𝑠, 𝑡}. By [24,
Proposition 3.6.2], the function 𝜙 ∈ Φ𝑤(Ω) is equivalent to a uniformly convex Φ-
function if and only if it satisfies (aInc). On the other hand, a vector space 𝑋 is
uniformly convex if it has a norm ‖ · ‖ such that for every 𝜀 > 0 there exists 𝛿 > 0

with ‖𝑥− 𝑦‖ ⩾ 𝜀 or ‖𝑥+ 𝑦‖ ⩽ 2(1− 𝛿) for all 𝑥, 𝑦 ∈ 𝑋 with ‖𝑥‖ = ‖𝑦‖ = 1.
Next, we have the following assumptions for Φ-function in set Ω ⊂ R𝑛, which

enables the use of certain useful properties such as density of smooth functions, as
discussed in [24].
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Definition 2.1.10. (A0) condition [24, Definition 3.7.1]: We say that 𝜙 ∈ Φ𝑤(Ω)

satisfies (A0), if there exists a constant 𝛽 ∈ (0, 1] such that 𝛽 ⩽ 𝜙−1(𝑥, 1) ⩽ 1
𝛽 for

almost every 𝑥 ∈ Ω.

Equivalently, this means that there exists 𝛽 ∈ (0, 1] such that 𝜙(𝑥, 𝛽) ⩽ 1 ⩽
𝜙(𝑥, 1𝛽 ) for almost every 𝑥 ∈ Ω (cf. [24, Corollary 3.7.4]).

Definition 2.1.11. (A1) condition [24, Definition 4.1.1]: We say that 𝜙 ∈ Φ𝑤(Ω)

satisfies (A1) if there exists 𝛽 ∈ (0, 1) such that 𝛽𝜙−1(𝑥, 𝑡) ⩽ 𝜙−1(𝑦, 𝑡) for every
𝑡 ∈ [1, 1

|𝐵| ], almost every 𝑥, 𝑦 ∈ 𝐵 ∩ Ω and every ball 𝐵 with |𝐵| ⩽ 1.

Definition 2.1.12. (A2) condition [24, Definition 4.2.1]: We say that 𝜙 ∈ Φ𝑤(Ω)

satisfies (A2) if for every 𝑠 > 0 there exist 𝛽 ∈ (0, 1] and ℎ ∈ 𝐿1(Ω) ∩ 𝐿∞(Ω) such
that 𝛽𝜙−1(𝑥, 𝑡) ⩽ 𝜙−1(𝑦, 𝑡) for almost every 𝑥, 𝑦 ∈ Ω and every 𝑡 ∈ [ℎ(𝑥)+ℎ(𝑦), 𝑠].

Lemma 2.1.3. [24, Lemma 4.2.3] If Ω ⊂ R𝑛 is bounded, then every 𝜙 ∈ Φ𝑤(Ω)

satisfies (A2).

2.2 Generalized Orlicz and Sobolev Orlicz spaces
In an open bounded set Ω ⊂ R𝑛, consider 𝜙 ∈ Φ𝑤(Ω). We then define the modular
𝜚𝜙 for 𝑢 ∈ 𝐿0(Ω) as

𝜚𝜙(𝑢) ..=

�
Ω
𝜙(𝑥, |𝑢(𝑥)|) 𝑑𝑥.

The set
𝐿𝜙(Ω) ..= {𝑢 ∈ 𝐿0(Ω) : 𝜚𝜙(𝜆𝑢) <∞ for some 𝜆 > 0}

is called generalized Orlicz space, also known as Musielak-Orlicz space, and it is
equipped with the (quasi) norm

‖𝑢‖𝜙 ..= inf
𝜆>0

{︁
𝜆 : 𝜚𝜙

(︁
𝑢

𝜆

)︁
⩽ 1

}︁
,

while this yields a norm if 𝜙 is convex [24, Lemma 3.2.2(b)].
We say that 𝜙 ∈ Φ𝑤(Ω) satisfies the Δ2-𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 if there exists a constant

𝐿 ⩾ 2 such that 𝜙(𝑥, 2𝑡) ⩽ 𝐿𝜙(𝑥, 𝑡) for all 𝑥 ∈ Ω and all 𝑡 ⩾ 0. In such case, the
semimodular 𝜚𝜙 also satisfies the Δ2-condition with the same constant. Here, Δ2 is
equivalent to (aDec) (cf. [24, Lemma 2.2.6(a)]).

Lemma 2.2.1. [24, Theorem 3.3.7, Corollary 3.6.7] Let 𝜙 ∈ Φ𝑤(Ω).
(i) Then 𝐿𝜙(Ω) is a quasi-Banach space.

(ii) If 𝜙 is convex, then 𝐿𝜙(Ω) is a Banach space.
(iii) If 𝜙 satisfies (aDec), then 𝐿𝜙(Ω) is separable.
(iv) If 𝜙 satisfies (aInc) and (aDec), then 𝐿𝜙(Ω) is uniformly convex and reflexive.
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The following results examine the relationship between norm and modular, to be
used later.

Lemma 2.2.2. [24, Lemma 3.1.3, 3.2.3] Let 𝜙 ∈ Φ𝑤(Ω), then the following proper-
ties hold.

(i) If 𝜙 satisfies the Δ2-condition, then 𝐿𝜙(Ω) = {𝑢 ∈ 𝐿0(Ω) | 𝜚𝜙(𝑢) <∞}.
(ii) ‖𝑢‖𝜙 < 1 ⇒ 𝜚𝜙(𝑢) ⩽ 1 ⇒ ‖𝑢‖𝜙 ⩽ 1.

If 𝜙 is left-continuous, then, 𝜚𝜙(𝑢) ⩽ 1 ⇐⇒ ‖𝑢‖𝜙 ⩽ 1.

Lemma 2.2.3. [24, Lemma 3.1.6] Let 𝜙 ∈ Φ𝑤(Ω) satisfy (Dec). Let 𝑓𝑗 , 𝑔𝑗 ∈ 𝐿𝜙(R𝑛)

for 𝑗 = 1, 2, . . . with (𝜚𝜙(𝑓𝑗))
∞
𝑗=1 bounded. If 𝜚𝜙(𝑓𝑗 − 𝑔𝑗) → 0 as 𝑗 → ∞, then

|𝜚𝜙(𝑓𝑗)− 𝜚𝜙(𝑔𝑗)| → 0 as 𝑗 → ∞.

Lemma 2.2.4. [24, Lemma 3.2.9] Let 𝜙 ∈ Φ𝑤(Ω) satisfy (aInc)𝑝 and (aDec)𝑞, 1 ⩽
𝑝 ⩽ 𝑞 <∞. Then

min{
(︀1
𝑐
𝜚𝜙(𝑢)

)︀ 1

𝑝 ,
(︀1
𝑐
𝜚𝜙(𝑢)

)︀ 1

𝑞 } ⩽ ‖𝑢‖𝜙 ⩽ max{
(︀
𝑐𝜚𝜙(𝑢)

)︀ 1

𝑝 ,
(︀
𝑐𝜚𝜙(𝑢)

)︀ 1

𝑞 },

for 𝑢 ∈ 𝐿0(Ω), where 𝑐 is the maximum of the constants from (aInc)𝑝 and (aDec)𝑞.

For the next result, we first note that, for two normed spaces 𝑋 and 𝑌 , the inter-
section 𝑋 ∩ 𝑌 and the sum 𝑋 + 𝑌 ..= {𝑔 + ℎ : 𝑔 ∈ 𝑋,ℎ ∈ 𝑌 } are equipped with
the norms

‖𝑓‖𝑋∩𝑌 ..= max{‖𝑓‖𝑋 , ‖𝑓‖𝑌 } and ‖𝑓‖𝑋+𝑌
..= inf

𝑓=𝑔+ℎ,𝑔∈𝑋,ℎ∈𝑌
(‖𝑔‖𝑋+‖ℎ‖𝑌 ).

Lemma 2.2.5. [24, Lemma 3.7.7] Let 𝜙 ∈ Φ𝑤(Ω) satisfy (A0), (aInc)𝑝 and (aDec)𝑞,
with 𝑝 ∈ [1,∞) and 𝑞 ∈ [1,∞]. Then

𝐿𝑝(Ω) ∩ 𝐿𝑞(Ω) →˓ 𝐿𝜙(Ω) →˓ 𝐿𝑝(Ω) + 𝐿𝑞(Ω)

and the embedding constants depend only on (A0), (aInc)𝑝 and (aDec)𝑞.

For 𝜙 ∈ Φ𝑤(Ω), we now define the related generalized Sobolev-Orlicz space
𝑊 1,𝜙(Ω) as the set of functions 𝑢 ∈ 𝐿𝜙(Ω) with weak partial derivatives 𝜕𝑢

𝜕𝑥𝑖
, 𝑖 =

1, 2, . . . , belonging to the same 𝐿𝜙(Ω), that is,

𝑊 1,𝜙(Ω) ..=
{︁
𝑢 ∈𝑊 1,1

loc (Ω) : 𝑢, |∇𝑢| ∈ 𝐿𝜙(Ω)
}︁
.

The semimodular on 𝑊 1,𝜙(Ω) is defined by

𝜚1,𝜙(𝑢) ..= 𝜚𝜙(𝑢) + 𝜚𝜙(∇𝑢) =
�
Ω
𝜙(𝑥, |𝑢|) 𝑑𝑥+

�
Ω
𝜙(𝑥, |∇𝑢|) 𝑑𝑥

11
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which induces a (quasi)norm on 𝑊 1,𝜙(Ω) given by

‖𝑢‖1,𝜙 ..= inf
𝜆>0

{︁
𝜆 : 𝜚1,𝜙

(︁
𝑢

𝜆

)︁
⩽ 1

}︁
.

By [24, Lemma 6.1.5], the above norm is estimated as,

‖𝑢‖1,𝜙 ≈ ‖𝑢‖𝜙 + ‖|∇𝑢|‖𝜙.

For later use, the norm of the gradient is abbreviated as ‖∇𝑢‖𝜙.
Here, we also define the zero boundary valued Sobolev-Orlicz space 𝑊 1,𝜙

0 (Ω)

as the closure of 𝐶∞
0 (Ω) ∩𝑊 1,𝜙(Ω) in 𝑊 1,𝜙(Ω). This is often required for study-

ing boundary value problems in situations requiring density of smooth functions in
Sobolev-Orlicz space.

Lemma 2.2.6. [24, Theorem 6.1.4, Theorem 6.1.9] Let Ω ⊂ R𝑛 and 𝜙 ∈ Φ𝑤(Ω).
(i) Then 𝑊 1,𝜙(Ω) is a quasi-Banach space.

(ii) If 𝜙 is convex, then 𝑊 1,𝜙(Ω) is a Banach space.
(iii) If 𝜙 satisfies (aDec), then 𝑊 1,𝜙(Ω) is separable.
(iv) If 𝜙 satisfies (aInc) and (aDec), then 𝑊 1,𝜙(Ω) is uniformly convex and reflex-

ive.
The above conditions hold true also in the case of 𝑊 1,𝜙

0 (Ω).

The following lemma implies that 𝑊 1,𝜙(Ω) is a lattice, that is, the pointwise
minimum and maximum of its elements belong to𝑊 1,𝜙(Ω), provided𝐿𝜙 ⊂ 𝐿1

loc(Ω).

Lemma 2.2.7. [29, Theorem 1.20] If 𝑢, 𝑣 ∈𝑊 1,1
loc (Ω), then max{𝑢, 𝑣} and min{𝑢, 𝑣}

are in 𝑊 1,1
loc (Ω) with

∇max{𝑢, 𝑣}(𝑥) =

{︃
∇𝑢(𝑥), for almost every 𝑥 ∈ {𝑢 ⩾ 𝑣};
∇𝑣(𝑥), for almost every 𝑥 ∈ {𝑣 ⩾ 𝑢};

and

∇min{𝑢, 𝑣}(𝑥) =

{︃
∇𝑢(𝑥), for almost every 𝑥 ∈ {𝑢 ⩽ 𝑣};
∇𝑣(𝑥), for almost every 𝑥 ∈ {𝑣 ⩽ 𝑢};

In particular, |𝑢| belongs to 𝑊 1,1
loc (Ω) and |∇|𝑢|| = |∇𝑢| almost everywhere in Ω.

Lemma 2.2.8. [24, Lemma 6.1.6] For bounded set Ω ⊂ R𝑛, assume that 𝜙 ∈ Φ𝑤(Ω)

satisfy (A0) and (aInc)p, 𝑝 ∈ [1,∞). Then 𝑊 1,𝜙(Ω) →˓𝑊 1,𝑝(Ω).

The following results provide density properties of Sobolev-Orlicz spaces, to be
used later.

Lemma 2.2.9. [24, Theorem 6.4.2] Let Ω ⊂ R𝑛 be a bounded domain and let 𝜙 ∈
Φ𝑤(Ω) satisfy (aDec) and 𝐿𝜙 ⊂ 𝐿1

loc. Then bounded Sobolev functions with compact
support in R𝑛 are dense in 𝑊 1,𝜙(Ω).

12
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Lemma 2.2.10. [24, Theorem 6.4.7] Let Ω ⊂ R𝑛 be a bounded domain and let
𝜙 ∈ Φ𝑤(Ω) satisfy (A0), (A1), (A2) and (aDec). Then 𝐶∞(Ω) ∩𝑊 1,𝜙(Ω) is dense
in 𝑊 1,𝜙(Ω).

A few convolution properties associated with generalized Orlicz functions from
[24] are useful in this thesis. To state so, we use the notion of bell shaped function,
defined as a non-negative function 𝜎 ∈ 𝐿1(R𝑛) if it is radially decreasing and radially
symmetric. The function

Σ(𝑥) ..= sup
𝑦/∈𝐵(0,|𝑥|)

|𝜎(𝑦)|

is called the least bell shaped majorant of 𝜎. Also consider 𝐿1-scaling 𝜎𝜀(𝑥) ..=
1
𝜀𝑛𝜎

(︀
𝑥
𝜀

)︀
, for 𝜀 > 0. By change of variables, we have ‖𝜎𝜀‖1 = ‖𝜎‖1.

Lemma 2.2.11. [24, Lemma 4.4.6, Theorem 6.4.5] Let Ω ⊂ R𝑛 be a bounded domain
and let 𝜙 ∈ Φ𝑤(Ω) satisfy (A0), (A1), (A2) and (aDec). Let 𝜎 ∈ 𝐿1(R𝑛), 𝜎 ⩾ 0,
have integrable least bell shaped majorant

∑︀
. Then

‖𝑓 * 𝜎𝜀‖1,𝜙 ≲ ‖Σ‖1‖𝑓‖1,𝜙

for all 𝑓 ∈ 𝑊 1,𝜙(Ω). Further, for 𝐷 ⊂⊂ Ω, we have 𝜎𝜖 * 𝑓 → 𝑓 in 𝑊 1,𝜙(𝐷) as
𝜖→ 0+.

2.3 Function spaces involving time
In this thesis, we study time-dependent partial differential equations of second order,
as well. In order to find solutions to parabolic problems, we need to define special
class of functions depending on the spatial variable 𝑥 and the time variable 𝑡. In
the time variable 𝑡, these functions have values in a Banach space of functions in 𝑥,
namely in Sobolev spaces for the applications we have in view.

We only consider here spaces of vector-valued functions defined on a bounded
interval 𝐼 of R of the form 𝐼 = (0, 𝑇 ), 0 < 𝑇 <∞, the details of which can be found
in [15; 62]. In order to define the function spaces involving time, we first recall the
definitions of simple functions and strongly measurable functions.

Suppose that𝑋 is a real Banach space with norm ‖·‖. A function 𝑓 : [0, 𝑇 ] → 𝑋

is called a simple function if it is of the form

𝑓(𝑡) ..=

𝑛∑︁
𝑖=1

𝜒𝐸𝑖
(𝑡)𝑢𝑖, 0 ⩽ 𝑡 ⩽ 𝑇,

where every 𝐸𝑖 is a Lebesgue measurable subset of [0, 𝑇 ] and 𝑢𝑖 ∈ 𝑋 for all 𝑖 =
1, . . . , 𝑛. Further, a function 𝑓 : [0, 𝑇 ] → 𝑋 is called strongly measurable if there

13
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exists a sequence of simple functions 𝑓𝑖 : [0, 𝑇 ] → 𝑋 , 𝑖 ∈ N, such that 𝑓𝑖(𝑡) → 𝑓(𝑡)

in 𝑋 , for almost every 0 ⩽ 𝑡 ⩽ 𝑇 .
Recall that, we will be using ∇ ..= ( 𝜕

𝜕𝑥1
· · · 𝜕

𝜕𝑥𝑛
) for weak gradient with respect

to the space variables, and 𝜕
𝜕𝑡 for weak derivatives with respect to the time variable

𝑡. We will also sometimes use the notation 𝑢𝑡 ..= 𝜕𝑢
𝜕𝑡 .

Let Ω ⊂ R𝑛 be a bounded, connected open set. We denote Ω𝑇
..= Ω× (0, 𝑇 ) and

Ω𝑇
..= Ω× [0, 𝑇 ].
The space 𝐶(Ω𝑇 ) consists of all continuous functions on Ω𝑇 , which can be ex-

tended continuously on Ω𝑇 . Higher order spaces, 𝐶𝑘(Ω𝑇 ), 𝑘 ∈ N, are defined
similarly, as follows,

𝐶𝑘(Ω𝑇 ) ..= {𝑢 ∈ 𝐶(Ω𝑇 ) :
𝜕|𝛼|𝑢

𝜕𝑥𝛼 ∈ 𝐶(Ω𝑇 ) for all |𝛼| ⩽ 𝑘}

We define 𝐶2,1(Ω𝑇 ) to be the class of functions 𝑢 : Ω× [0, 𝑇 ] → R with continuous
spatial partial derivatives up to order 2, and which are once continuously differen-
tiable in time, that is,

𝐶2,1(Ω𝑇 ) = {𝑢 ∈ 𝐶(Ω𝑇 ) : 𝑢𝑡 ∈ 𝐶(Ω𝑇 ) and 𝜕|𝛼|𝑢

𝜕𝑥𝛼 ∈ 𝐶(Ω𝑇 ) for all |𝛼| ⩽ 2}.

The space 𝐶∞
0 (Ω𝑇 ) is defined as the set of all maps 𝑢 : Ω𝑇 → R𝑛 such that 𝑢 and

its derivatives of all orders are continuous in Ω𝑇 with compact support in Ω𝑇 .
We now introduce the 𝐿𝑝-spaces for vector-valued functions.
If 𝑋 is a Banach space, then 𝐿𝑝(0, 𝑇 ;𝑋) is defined as the space consisting of all

strongly measurable functions 𝑢 : (0, 𝑇 ) → 𝑋 for which 𝑡 ↦→ ‖𝑢(𝑡)‖𝑋 ∈ 𝐿𝑝(0, 𝑇 ),
endowed with the finite norm

‖𝑢‖𝐿𝑝(0,𝑇 ;𝑋)
..=

⎧⎪⎨⎪⎩
(︁� 𝑇

0 ‖𝑢(𝑡)‖𝑝𝑋 𝑑𝑡
)︁ 1

𝑝

, (1 ⩽ 𝑝 <∞)

ess sup
0<𝑡<𝑇

‖𝑢(𝑡)‖𝑋 , (𝑝 = ∞).

For 1 ⩽ 𝑝 ⩽ ∞, 𝐿𝑝
loc(0, 𝑇 ;𝑋) denotes the space of strongly measurable func-

tions 𝑢 : [0, 𝑇 ] → 𝑋 so that 𝑢 ∈ 𝐿𝑝(𝑎, 𝑏;𝑋), for all [𝑎, 𝑏] ⊂ (0, 𝑇 ), 𝑎, 𝑏 ∈ R+.
The space 𝐿𝑝(0, 𝑇 ;𝑋) has properties similar to the 𝐿𝑝-spaces for real-valued

functions, as follows.

Proposition 2.3.1. [63, Proposition 23.2, Proposition 23.7] Let 𝑋 and 𝑌 be Banach
spaces. Assume that 0 < 𝑇 <∞. Then:

(i) 𝐿𝑝(0, 𝑇 ;𝑋) is a Banach space, for 1 ⩽ 𝑝 <∞.
(ii) 𝐿𝑝(0, 𝑇 ;𝑋) is separable and reflexive in the case where 𝑋 is separable and

reflexive, for 1 < 𝑝 <∞.
(iii) 𝐿𝑝(0, 𝑇 ;𝑋) is uniformly convex in the case where 𝑋 is uniformly convex and

1 < 𝑝 <∞.

14
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(iv) If the embedding 𝑋 ⊂ 𝑌 is continuous, then the embedding

𝐿𝑟(0, 𝑇 ;𝑋) ⊂ 𝐿𝑞(0, 𝑇 ;𝑌 ), 1 ⩽ 𝑞 ⩽ 𝑟 ⩽ ∞

is also continuous.

Another example of𝐿𝑝(0, 𝑇 ;𝑋) Banach space is𝐿2(0, 𝑇 ;𝑊 1,2(Ω)), that is used
in this thesis. For bounded set Ω ⊂ R𝑛, the function space 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)),
thus, consists of strongly measurable functions 𝑢 : (0, 𝑇 ) → 𝑊 1,2(Ω) such that
𝑡 ↦→ ‖𝑢(𝑡)‖𝑊 1,2(Ω) ∈ 𝐿2(0, 𝑇 ), for which the norm,

‖𝑢‖𝐿2(0,𝑇 ;𝑊 1,2(Ω)) =

(︂� 𝑇

0

�
Ω
(|𝑢(𝑡)|2 + |∇𝑢(𝑡)|2) 𝑑𝑥 𝑑𝑡

)︂ 1

2

is finite. The space 𝐿2(0, 𝑇 ;𝑊 1,2
0 (Ω)), equipped with zero boundary value, is de-

fined analogously.
Suppose 𝑋 and 𝑌 are two Banach spaces such that 𝑋 ⊂ 𝑌 with continuous

embedding, then by [63, Proposition 23.2 (h)], 𝐿𝑝(0, 𝑇 ;𝑋) ⊂ 𝐿𝑝(0, 𝑇 ;𝑌 ) is also a
continuous embedding. However, this property does not extend to compact embed-
dings.

For any Lebesgue or Sobolev space X, an element 𝑣 of 𝐿𝑝(0, 𝑇 ;𝑋) can be re-
garded as a function of the ordered pair (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ) and identified with the
functions 𝑣1(𝑥, 𝑡) defined by

𝑣1(𝑥, 𝑡) = 𝑣(𝑡)(𝑥), for a.e. (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ). (2.3.1)

This point of view is especially well-adapted to evolution problems, where the space
and time variables play a different role and the involved functions have different
properties with respect to 𝑥 and 𝑡. This property will be systematically used through-
out this thesis.

In particular, for 𝑝 = 2, 𝑋 = 𝐿2(Ω) and 𝑣 given by (2.3.1), we have that the
space 𝐿2(0, 𝑇 ;𝐿2(Ω)) can be identified with the space 𝐿2(Ω× (0, 𝑇 )), also denoted
as 𝐿2(Ω𝑇 ), via the map

𝑣 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)) ↦→ 𝑣1 ∈ 𝐿2(Ω𝑇 ),

with 𝑣1 given by (2.3.1), which is an isometry.
To have a weaker notion of the differentiability of vector-valued function, we use

the notion of a distributional or weak derivative, which is a natural generalization
of the definition for real-valued functions. A function 𝑢 ∈ 𝐿1

loc(0, 𝑇 ;𝑋) is weakly
differentiable with weak derivative 𝑢𝑡 ∈ 𝐿1

loc(0, 𝑇 ;𝑋) if� 𝑇

0
𝑢ℎ′(𝑡) 𝑑𝑡 = −

� 𝑇

0
𝑢𝑡ℎ(𝑡) 𝑑𝑡, for every ℎ ∈ 𝐶∞

0 (0, 𝑇 ;R).

Thus, 𝑢𝑡(𝑥, 𝑡) is the partial derivative of 𝑢(𝑥, 𝑡) with respect to time 𝑡 that exists in
a weak sense, which will be referred to as the time derivative of 𝑢 throughout the
thesis.
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2.3.1 Hölder spaces. In this subsection, we introduce Hölder spaces on Eu-
clidean domain as well as parabolic Hölder spaces, which are comprehensively found
in [37; 38; 62]. The Hölder spaces that we mainly deal with here are 𝐶2+𝛾,𝛾(Ω) and
𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ), where 𝛾 ∈ (0, 1).
Let Ω𝑇

..= Ω × (0, 𝑇 ) where Ω ⊂ R𝑛 is an open bounded set and 𝑇 > 0. First,
we define Hölder continuous function as follows: a function 𝑢 : Ω → R is uniformly
Hölder continuous with exponent 𝛾 ∈ (0, 1) in Ω, if the quantity (semi-norm)

[𝑢]𝛾;Ω
..= sup

𝑥,𝑦∈Ω

|𝑢(𝑥)− 𝑢(𝑦)|
|𝑥− 𝑦|𝛾 , 𝑥 ̸= 𝑦 (2.3.2)

is finite, and the space of such functions 𝑢 is denoted by 𝐶𝛾(Ω) for which the norm

‖𝑢‖𝐶𝛾(Ω)
..= sup

Ω
|𝑢|+ [𝑢]𝛾;Ω

is finite. If the right-hand side of (2.3.2) is finite for 𝛾 = 1, the function 𝑢 is called
Lipschitz continuous in Ω. While, 𝑢 is said to be locally uniformly Hölder continuous
with exponent 𝛾 in Ω if the quantity [𝑢]𝛾;Ω′ is finite for every Ω′ ⋐ Ω.

For 0 < 𝛾 < 1 and 𝑘 = 0, 1, 2, . . ., the Hölder space 𝐶𝑘+𝛾(Ω) is the space of all
functions 𝑢 ∈ 𝐶𝑘(Ω) for which the norm

‖𝑢‖𝐶𝑘+𝛾(Ω)
..= ‖𝑢‖𝐶𝑘(Ω) + max

|𝛼|=𝑘

[︁
𝜕|𝛼|𝑢

𝜕𝑥𝛼

]︁
𝛾;Ω

(2.3.3)

is finite. The function space 𝐶𝑘+𝛾(Ω) is a Banach space [15, Theorem 1, Section
5.1]. Note that in [15, Section 5.1], the notation 𝐶𝑘+𝛾(Ω) is same as the notation
𝐶𝑘+𝛾(Ω) used here.

Taking 𝑘 = 2, the Hölder space 𝐶2+𝛾(Ω) is defined as

𝐶2+𝛾(Ω) = {𝑢 | 𝜕|𝛼|𝑢

𝜕𝑥𝛼 ∈ 𝐶𝛾(Ω) for any 𝛼 ∈ N𝑛
0 such that |𝛼| ⩽ 2}.

This is a Banach space equipped for which the norm

‖𝑢‖𝐶2+𝛾(Ω) = ‖𝑢‖𝐶2(Ω) + max
|𝛼|=2

sup
𝑥,𝑦∈Ω, 𝑥 ̸=𝑦

⃒⃒⃒
𝜕|𝛼|𝑢(𝑥)

𝜕𝑥𝛼
− 𝜕|𝛼|𝑢(𝑦)

𝜕𝑦𝛼

⃒⃒⃒
|𝑥− 𝑦|𝛾 ,

is finite, where ‖𝑢‖𝐶2(Ω) = max
0⩽|𝛼|⩽2

sup
𝑥∈Ω

⃒⃒
𝜕|𝛼|𝑢
𝜕𝑥𝛼

⃒⃒
, as defined in (2.1.1).

Now to define the parabolic Hölder space 𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ), we first consider any
two points 𝑃 (𝑥, 𝑡), 𝑄(𝑦, 𝑠) ∈ Ω𝑇 and define a metric as,

𝑑(𝑃,𝑄) ..= max{|𝑥− 𝑦|, |𝑡− 𝑠|
1

2 }.
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Let 𝑢(𝑥, 𝑡) be a function in Ω𝑇 . For 0 < 𝛾 < 1, we define the parabolic Hölder
semi-norm as

[𝑢]𝛾, 𝛾
2
;Ω𝑇

..= sup
𝑃,𝑄∈Ω𝑇 ;𝑃 ̸=𝑄

|𝑢(𝑥, 𝑡)− 𝑢(𝑦, 𝑠)|
(𝑑(𝑃,𝑄))𝛾

,

and denote by 𝐶𝛾, 𝛾
2 (Ω𝑇 ) the set of all functions 𝑢(𝑥, 𝑡) satisfying [𝑢]𝛾, 𝛾

2
;Ω𝑇

< +∞,
endowed with the norm

‖𝑢‖𝛾, 𝛾
2
;Ω𝑇

..= sup
(𝑥,𝑡)∈Ω𝑇

|𝑢(𝑥, 𝑡)|+ [𝑢]𝛾, 𝛾
2
;Ω𝑇

. (2.3.4)

For 𝛾 ∈ (0, 1), the parabolic Hölder space 𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ) is defined as,

𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ) ..= {𝑢 | 𝜕𝜌

𝜕𝑡𝜌
𝜕|𝛽|

𝜕𝑥𝛽 𝑢 ∈ 𝐶𝛾, 𝛾
2 (Ω𝑇 ) for any 𝜌 ∈ N0 and 𝛽 ∈ N𝑛

0

such that 2𝜌+ |𝛽| ⩽ 2}.

Thus, the space 𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ) consists of partial derivatives of 𝑢 with respect to
𝑡 upto order 1 and with respect to 𝑥 upto order 2, respectively, which are Hölder
continuous, such that the norm,

‖𝑢‖
𝐶2+𝛾,1+

𝛾
2 (Ω𝑇 )

..= ‖𝑢‖𝛾, 𝛾
2
;Ω𝑇

+max
|𝛼|=1

⃦⃦𝜕|𝛼|𝑢

𝜕𝑥𝛼

⃦⃦
𝛾, 𝛾

2
;Ω𝑇

+max
|𝛼|=2

⃦⃦𝜕|𝛼|𝑢

𝜕𝑥𝛼

⃦⃦
𝛾, 𝛾

2
;Ω𝑇

+‖𝑢𝑡‖𝛾, 𝛾
2
;Ω𝑇

,

is finite, where ‖ · ‖𝛾, 𝛾
2
;Ω𝑇

follows from (2.3.4).
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3 Capacities and quasicontinuity

"The shortest route between two truths in the real domain passes through the
complex domain."

— Jacques Salomon Hadamard (1865-1963)

In Mathematics, the notion of capacity of a set in Euclidean space is related
to the measure of size of the set, introduced by Gustave Choquet [10] in 1950. It
was inspired by classical (electrostatic) capacity but is now a general basis tool in
analysis. In Calculus of Variations, the characterization of capacity of a set can be
expressed as the minimization of an energy functional satisfying certain boundary
values. This plays a significant role in extending its properties to other (generalized)
functionals as well, which lays the foundation of (nonlinear) potential theory. The
sets of capacity zero are the exceptional sets for representatives of the function space,
especially with zero boundary values.

In this chapter, the properties of capacities associated with the generalized Orlicz
and Sobolev-Orlicz function spaces, along with results related to their relationship
with Hausdorff measure and quasicontinuity are stated from [4]. These results are
applicable in the study of boundary behavior of solutions to PDEs, but not used in
this thesis though. Additionally, the existence and uniqueness of the quasicontinuous
represenatative are proved.

3.1 Capacity: definition and properties
In generalized Orlicz setting, the concept of capacity is introduced as follows.
First, we define a set of test-functions for the capacity of a set 𝐸 ⊂ R𝑛 as,

𝑆1,𝜙(𝐸) ..= {𝑢 ∈𝑊 1,𝜙(R𝑛) | 𝑢 ⩾ 1 in an open set containing 𝐸 and 𝑢 ⩾ 0}.

Here 𝑢 ∈ 𝑆1,𝜙(𝐸) are said to be 𝜙-admissible for the capacity of the set 𝐸. The
generalized Orlicz 𝜙-capacity of 𝐸 is defined by

𝐶𝜙(𝐸) ..= inf
𝑢∈𝑆1,𝜙(𝐸)

�
R𝑛

𝜙(𝑥, 𝑢) + 𝜙(𝑥, |∇𝑢|) 𝑑𝑥.

We now have the following properties for the set function 𝐸 ↦→ 𝐶𝜙(𝐸).

18



Capacities and quasicontinuity

Proposition 3.1.1. [4, Propositions 7, 8, 9] The following properties of Sobolev ca-
pacity hold.
(S1) If 𝜙 ∈ Φ𝑤(R𝑛), then 𝐶𝜙(∅) = 0.
(S2) If 𝜙 ∈ Φ𝑤(R𝑛) and 𝐸1 ⊂ 𝐸2 ⊂ R𝑛, then 𝐶𝜙(𝐸1) ⩽ 𝐶𝜙(𝐸2).
(S3) If 𝜙 ∈ Φ𝑤(R𝑛) and 𝐸 ⊂ R𝑛, then 𝐶𝜙(𝐸) = inf

𝑈⊃𝐸 open
𝐶𝜙(𝑈).

(S4) If 𝜙 ∈ Φ𝑤(R𝑛) and 𝐸1, 𝐸2 ⊂ R𝑛, then 𝐶𝜙(𝐸1 ∪ 𝐸2) + 𝐶𝜙(𝐸1 ∩ 𝐸2) ⩽
𝐶𝜙(𝐸1) + 𝐶𝜙(𝐸2).

(S5) If 𝜙 ∈ Φ𝑤(R𝑛) and 𝐾1 ⊃ 𝐾2 ⊃ . . . are compact, then

lim
𝑖→∞

𝐶𝜙(𝐾𝑖) = 𝐶𝜙

(︁ ∞⋂︁
𝑖=1

𝐾𝑖

)︁
.

(S6) If 𝜙 ∈ Φ𝑐(R𝑛) satisfies (aInc) and (aDec) and 𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ R𝑛, then

lim
𝑖→∞

𝐶𝜙(𝐸𝑖) = 𝐶𝜙

(︂ ∞⋃︁
𝑖=1

𝐸𝑖

)︂
.

(S7) If 𝜙 ∈ Φ𝑤(R𝑛) satisfies (aInc) and (aDec) and 𝐸1, 𝐸2, . . . ⊂ R𝑛, then

𝐶𝜙

(︂ ∞⋃︁
𝑖=1

𝐸𝑖

)︂
⩽

∞∑︁
𝑖=1

𝐶𝜙(𝐸𝑖).

Remark 3.1.1. A set function satisfying the properties (S1), (S2) and (S7) is called
an outer measure. This holds if 𝜙 is satisfies (aInc) and (aDec). If 𝜙 is con-
vex and satisfies (aInc) and (aDec), then it is a Choquet capacity, [9], i.e. it satis-
fies (S1), (S2), (S5) and (S6). Then for every Borel 𝐸 ⊂ Ω,

𝐶𝜙(𝐸) = sup
{︀
𝐶𝜙(𝐾) : 𝐾 is compact and 𝐾 ⊂ 𝐸

}︀
.

Further, the following results discuss the connection between the generalized
Orlicz capacity and the Lebesgue and Hausdorff measures. We also use the Sobolev
𝑝-capacity, denoted as 𝐶𝑝(𝐸), in which case 𝜙(𝑥, 𝑡) ..= 𝑡𝑝, for any fixed exponent
𝑝 ∈ [1,∞), that is, we have

𝐶𝑝(𝐸) ..= inf
𝑢∈𝒮(𝐸)

�
R𝑛

|𝑢|𝑝 + |∇𝑢|𝑝 𝑑𝑥,

where 𝒮(𝐸) ..= {𝑢 ∈𝑊 1,𝑝(R𝑛) : 𝑢 ⩾ 1 on a neighbourhood of 𝐸 and 𝑢 ⩾ 0}.

Proposition 3.1.2. [4, Proposition 12] Let𝜙 ∈ Φ𝑤(R𝑛) satisfies (A0), (aInc)𝑝, 𝑝 > 1,
and (aDec). If 𝐶𝜙(𝐸) = 0, then 𝐶𝑝(𝐸) = 0.
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Moreover, we have |𝐸| ⩽ 𝐶 𝐶𝜙(𝐸) for every 𝐸 ⊂ R𝑛 with constant 𝐶 > 0,
provided 𝜙 satisfies (aDec) and (A0) conditions. This implies that the sets of capacity
zero are of measure zero.

The 𝑠-dimensional Hausdorff measure of a set 𝐸 ⊂ R𝑛, denoted by ℋ𝑠(𝐸), is
defined as

ℋ𝑠(𝐸) ..= lim
𝛿→0

ℋ𝑠
𝛿(𝐸) = sup

𝛿>0
ℋ𝑠

𝛿(𝐸),

where ℋ𝑠
𝛿(𝐸) ..= inf{

∑︀∞
𝑖=1 𝑟

𝑠
𝑖 : 𝐸 ⊂ ∪∞

𝑖=1𝐵(𝑥𝑖, 𝑟𝑖), 𝑟𝑖 ⩽ 𝛿}.

Lemma 3.1.3. [4, Corollary 14] Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (A0), (aInc)𝑝 with 𝑝 > 1

and (aDec).
(i) If 𝑝 ⩽ 𝑛 and 𝐸 ⊂ R𝑛 with 𝐶𝜙(𝐸) = 0, then ℋ𝑠(𝐸) = 0 for all 𝑠 > 𝑛− 𝑝.

(ii) If 𝑝 > 𝑛, then 𝐶𝜙(𝐸) = 0 if and only if 𝐸 = ∅, where 𝐸 ⊂ R𝑛.

The above result implies that capacity is a useful tool only when 𝑝 ⩽ 𝑛.

Lemma 3.1.4. [4, Corollary 15] Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (A0), (aInc) and (aDec)𝑞
with 𝑞 > 1. Let 𝐸 ⊂ R𝑛 be bounded. If 𝐶𝑞(𝐸) = 0 or ℋ𝑛−𝑞(𝐸) < ∞, then
𝐶𝜙(𝐸) = 0.

Next, we have another notion of capacity, known as relative capacity, in which
the capacity of a set is taken relative to a surrounding open subset of R𝑛, defined as
follows.

Definition 3.1.2. Given an open set, Ω ⊂ R𝑛, and 𝜙 ∈ Φ𝑤(Ω), suppose that 𝐾 is a
compact subset of Ω. We denote,

𝑅𝜙(𝐾,Ω) ..= {𝑢 ∈𝑊 1,𝜙(Ω) ∩ 𝐶0(Ω) : 𝑢 > 1 in 𝐾 and 𝑢 ⩾ 0}

and, define,
cap*𝜙(𝐾,Ω)

..= inf
𝑢∈𝑅𝜙(𝐾,Ω)

𝜚𝜙(|∇𝑢|).

Further, if 𝑈 ⊂ Ω is open, then we set

cap𝜙(𝑈,Ω)
..= sup

𝐾⊂𝑈 compact
cap*𝜙(𝐾,Ω),

and, for an arbitrary set 𝐸 ⊂ Ω, we define

cap𝜙(𝐸,Ω)
..= inf

𝑈⊃𝐸 open
cap𝜙(𝑈,Ω).

The number cap𝜙(E,Ω) is called the relative 𝜙-capacity of 𝐸 with respect to Ω.

For a compact set 𝐾 ⊂ Ω, cap*𝜙(𝐾,Ω) and cap𝜙(𝐾,Ω) are the same, that is, the
relative capacity is well defined on compact sets [4, Proposition 21]. Moreover, the
relative 𝜙-capacity has the same basic properties as the Sobolev capacity, as stated
below.
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Proposition 3.1.5. [4, Proposition 22] For an open set Ω ⊂ R𝑛 and 𝜙 ∈ Φ𝑤(R𝑛),
the set function 𝐸 ↦→ cap𝜙(𝐸,Ω) satisfies the following properties:
(R1) cap𝜙(∅,Ω) = 0.
(R2) If 𝐸1 ⊂ 𝐸2 ⊂ Ω2 ⊂ Ω1, then cap𝜙(𝐸1,Ω1) ⩽ cap𝜙(𝐸2,Ω2).
(R3) For an arbitrary set 𝐸 ⊂ Ω,

cap𝜙(𝐸,Ω) = inf
𝑈⊃𝐸 open

cap𝜙(𝑈,Ω).

(R4) If𝐸1, 𝐸2 ⊂ R𝑛, then cap𝜙(𝐸1∪𝐸2,Ω)+cap𝜙(𝐸1∩𝐸2,Ω) ⩽ cap𝜙(𝐸1,Ω)+

cap𝜙(𝐸2,Ω).

(R5) If𝐾1 ⊃ 𝐾2 ⊃ . . . are compact, then lim𝑖→∞ cap𝜙(𝐾𝑖,Ω) = cap𝜙

(︁⋂︀∞
𝑖=1𝐾𝑖,Ω

)︁
.

(R6) If 𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ Ω, then lim
𝑖→∞

cap𝜙(𝐸𝑖,Ω) = cap𝜙

(︂ ∞⋃︁
𝑖=1

𝐸𝑖,Ω

)︂
.

(R7) If 𝐸𝑖 ⊂ Ω, 𝑖 = 1, 2, . . ., then cap𝜙

(︂ ∞⋃︁
𝑖=1

𝐸𝑖,Ω

)︂
⩽

∞∑︁
𝑖=1

cap𝜙(𝐸𝑖,Ω).

Remark 3.1.3. A set function satisfying the properties (R1), (R2), (R5) and (R6) is a
Choquet capacity. Then for every Borel 𝐸 ⊂ Ω,

cap𝜙(𝐸,Ω) = sup
{︀
cap𝜙(𝐾,Ω) : 𝐾 is compact and 𝐾 ⊂ 𝐸

}︀
.

Finally, we have a few results on relationships between the Sobolev capacity and
relative capacity.

Lemma 3.1.6. [4, Lemma 26] Assume that 𝜙 ∈ Φ𝑤(R𝑛) satisfies (A0) and (aDec)𝑞.
If Ω is bounded and 𝐾 ⊂ Ω is compact, then,

𝐶𝜙(𝐾) ⩽ 𝐶max{cap𝜙(𝐾,Ω)
1

𝑞 , cap𝜙(𝐾,Ω)},

where the constant 𝐶 depends on the dimension 𝑛, |Ω| and the constants in (A0) and
(aDec).

Theorem 3.1.7. [4, Theorem 27] Assume that 𝜙 ∈ Φ(R𝑛) satisfies (A0) and (aDec)𝑞.
If Ω is bounded and 𝐸 ⊂ Ω, then

𝐶𝜙(𝐸) ⩽ 𝐶max{cap𝜙(𝐸,Ω)
1

𝑞 , cap𝜙(𝐸,Ω)},

where the constant 𝐶 depends on the dimension 𝑛, |Ω|, and the constants in (A0)
and (aDec).

From the above result, it can be concluded that 𝐶𝜙(𝐸) = 0 if cap𝜙(𝐸,Ω) = 0.
The converse implication is established in the following result.

Theorem 3.1.8. [4, Proposition 29] Let Ω ⊂ R𝑛 be bounded and 𝜙 ∈ Φ𝑤(R𝑛)

satisfies (aDec). Assume that 𝐶(R𝑛) is dense in𝑊 1,𝜙(R𝑛). If 𝐸 ⊂ Ω with 𝐶𝜙(𝐸) =

0, then cap𝜙(𝐸,Ω) = 0.
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3.2 Quasicontinuity
Here, we have the relation between the generalized Orlicz capacity and quasicontinu-
ity as studied in [4]. In general, a function 𝑢 : R𝑛 → [−∞,∞] is 𝜙-quasicontinuous
in R𝑛 if for every 𝜖 > 0 there exists an open set 𝐸 such that 𝐶𝜙(𝐸) < 𝜖 and the re-
striction of 𝑢 to R𝑛 ∖𝐸 is continuous. We say that a claim holds 𝜙-quasieverywhere
if it holds everywhere except in a set of Sobolev 𝜙-capacity zero. The following
result establishes a quasieverywhere converging subsequence.

Theorem 3.2.1. [4, Theorem 16] Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (aInc) and (aDec). Then
for each Cauchy sequence in 𝐶(R𝑛)∩𝑊 1,𝜙(R𝑛), there is a subsequence which con-
verges pointwise 𝜙-quasieverywhere in R𝑛. Moreover, the convergence is uniform
outside a set of arbitrarily small Sobolev 𝜙-capacity.

The next result shows that under suitable conditions, every Sobolev-Orlicz func-
tion has a 𝜙-quasicontinuous representative.

Theorem 3.2.2. [4, Theorem 17] Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (aInc) and (aDec). As-
sume that 𝐶(R𝑛)∩𝑊 1,𝜙(R𝑛) is dense in𝑊 1,𝜙(R𝑛). Then, for each 𝑢 ∈𝑊 1,𝜙(R𝑛),
there exists a 𝜙-quasicontinuous function 𝑔 ∈ 𝑊 1,𝜙(R𝑛) such that 𝑢 = 𝑔 almost
everywhere in R𝑛.

Analogously, we also have that 𝜙-quasicontinuous functions in Sobolev-Orlicz
spaces with zero boundary values are zero 𝜙-quasieverywhere in the complement,
from the following result.

Theorem 3.2.3. Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (A0), (aInc) and (aDec). Assume that
𝐶∞(R𝑛) ∩ 𝑊 1,𝜙(R𝑛) is dense in 𝑊 1,𝜙(R𝑛). Then 𝑢 ∈ 𝑊 1,𝜙

0 (Ω) if and only if
there exists a 𝜙-quasicontinuous function 𝑣 ∈ 𝑊 1,𝜙(R𝑛) such that 𝑣 = 𝑢 almost
everywhere in Ω and 𝑣 = 0 𝜙-quasieverywhere in R𝑛 ∖ Ω.

Proof. Let 𝑢 ∈ 𝑊 1,𝜙
0 (Ω). Then there exists a sequence {𝑢𝑖}, 𝑢𝑖 ∈ 𝐶∞

0 (Ω), 𝑖 =

1, 2, . . ., such that 𝑢𝑖 → 𝑢 in 𝑊 1,𝜙(Ω) as 𝑖 → ∞. Since {𝑢𝑖} is a Cauchy sequence
in 𝑊 1,𝜙(R𝑛), then by Theorem 3.2.1, there exists a subsequence of {𝑢𝑖} that con-
verges pointwise 𝜙-quasieverywhere in R𝑛 to a function 𝑣 ∈ 𝑊 1,𝜙(R𝑛). Moreover,
the convergence is uniform outside a set of arbitrarily small capacity. Uniform con-
vergence implies continuity of the limit function and thus the function 𝑣 is continuous
outside a set of arbitrarily small 𝜙-capacity. Hence, by definition, 𝑣 ∈ 𝑊 1,𝜙(R𝑛) is
a 𝜙-quasicontinuous function such that 𝑣 = 𝑢 almost everywhere in Ω and 𝑣 = 0

𝜙-quasieverywhere in R𝑛 ∖ Ω.
Next, we prove the converse, that if 𝑢 ∈ 𝑊 1,𝜙(R𝑛) is 𝜙-quasicontinuous and

𝑢 = 0 𝜙-quasieverywhere in R𝑛 ∖ Ω, then 𝑢 ∈ 𝑊 1,𝜙
0 (Ω). In order for that, we show

that 𝑢 ∈ 𝑊 1,𝜙(R𝑛) can be approximated by 𝑊 1,𝜙(R𝑛) functions with compact
support in Ω, and then use the assumption of 𝐶∞(R𝑛) ∩ 𝑊 1,𝜙(R𝑛) being dense
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in 𝑊 1,𝜙(R𝑛). If such sequence of functions 𝑢 exist for 𝑢+ ..= max{𝑢, 0}, we can
similarly claim so for 𝑢− ..= min{𝑢, 0}. Thus, we may assume that 𝑢 ⩾ 0. Since 𝜙
satisfies (aDec) property, we may further assume that 𝑢 is bounded and has compact
support in R𝑛, by [24, Lemma 6.4.2].

Let 𝛿 > 0 and 𝑈 ⊂ R𝑛 be an open set such that 𝐶𝜙(𝑈) < 𝛿 and the restriction
of 𝑢 to R𝑛 ∖ 𝑈 is continuous. Denote

𝐸 ..= {𝑥 ∈ R𝑛 ∖ Ω : 𝑢(𝑥) ̸= 0}.

By assumption, we have𝐶𝜙(𝐸) = 0. This yields𝐶𝜙(𝑈∪𝐸) ⩽ 𝐶𝜙(𝑈)+𝐶𝜙(𝐸) < 𝛿.
Then we choose 𝑤𝛿 ∈ 𝑆1,𝜙(𝑈 ∪ 𝐸) such that 0 ⩽ 𝑤𝛿 ⩽ 1 and 𝜚1,𝜙(𝑤𝛿) < 𝛿. Then
𝑤𝛿 = 1 in an open set 𝑉 containing 𝑈 ∪ 𝐸. For 0 < 𝜖 < 1, define

𝑢𝜖(𝑥) ..= max{𝑢(𝑥)− 𝜖, 0}. (3.2.1)

Since 𝑢(𝑥) = 0 for 𝑥 ∈ 𝜕Ω∖𝑉 and the restriction of 𝑢 to R𝑛 ∖𝑉 is continuous, there
exists 𝑟𝑥 > 0 such that 𝑢𝜖 = 0 in𝐵(𝑥, 𝑟𝑥)∖𝑉 . Thus (1−𝑤𝛿)𝑢𝜖 = 0 in𝐵(𝑥, 𝑟𝑥)∪𝑉
for each 𝑥 ∈ 𝜕Ω ∖ 𝑉 . This shows that (1 − 𝑤𝛿)𝑢𝜖 is zero in a neighbourhood of
R𝑛 ∖ Ω, which implies that (1− 𝑤𝛿)𝑢𝜖 is compactly supported in Ω. Hence, by [24,
Lemma 6.1.10], we have

(1− 𝑤𝛿)𝑢𝜖 ∈𝑊 1,𝜙
0 (Ω).

We next show that this kind of functions converge to 𝑢 in 𝑊 1,𝜙(R𝑛).
From (3.2.1), we conclude using Lemma 2.2.7 that

∇𝑢𝜖(𝑥) =

{︃
∇𝑢(𝑥), almost everywhere in {𝑥 ∈ R𝑛 : 𝑢(𝑥) > 𝜖},
0, almost everywhere in {𝑥 ∈ R𝑛 : 𝑢(𝑥) ⩽ 𝜖}.

We have,

‖𝑢− (1− 𝑤𝛿)𝑢𝜖‖𝑊 1,𝜙(R𝑛) ⩽ ‖𝑢− 𝑢𝜖‖𝑊 1,𝜙(R𝑛) + ‖𝑤𝛿𝑢𝜖‖𝑊 1,𝜙(R𝑛). (3.2.2)

Using the facts that |𝑢− 𝑢𝜖| ⩽ 𝜖 and supp(𝑢− 𝑢𝜖) ⊂ supp𝑢, the first expression on
the right-hand side of (3.2.2) implies

‖𝑢− 𝑢𝜖‖𝑊 1,𝜙(R𝑛) = ‖𝑢− 𝑢𝜖‖𝐿𝜙(R𝑛) + ‖∇(𝑢− 𝑢𝜖)‖𝐿𝜙(R𝑛)

⩽ 𝜖‖𝜒supp𝑢‖𝐿𝜙(R𝑛) + ‖𝜒{0<𝑢⩽𝜖}∇𝑢‖𝐿𝜙(R𝑛)
.

(3.2.3)

Since 𝜙 satisfy (A0) property, hence the quantity ‖𝜒supp𝑢‖𝐿𝜙(R𝑛) on the right above,
is finite. On the other hand, by the dominated convergence property for the modular
[24, Lemma 3.1.4(c)], we have,

lim
𝜖→0

𝜚𝜙(𝜒{0<𝑢⩽𝜖}∇𝑢) = 0
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where |𝜒{0<𝑢⩽𝜖}∇𝑢| ⩽ |∇𝑢| ∈ 𝐿1(R𝑛) since ∇𝑢 belongs to 𝐿𝜙(R𝑛) with compact
support in R𝑛, which may be used as an integrable majorant. Further, since norm
convergence and modular convergence are equivalent by [24, Corollary 3.3.4], we
thus obtain lim𝜖→0 ‖𝜒{0<𝑢⩽𝜖}∇𝑢‖𝐿𝜙(R𝑛)

= 0. Hence, from (3.2.3), we have

‖𝑢− 𝑢𝜖‖𝑊 1,𝜙(R𝑛) → 0, as 𝜖→ 0.

On the other hand, for the second expression in (3.2.2), we have

‖𝑤𝛿𝑢𝜖‖𝑊 1,𝜙(R𝑛) ⩽ ‖𝑤𝛿𝑢𝜖‖𝐿𝜙(R𝑛) + ‖∇(𝑤𝛿𝑢𝜖)‖𝐿𝜙(R𝑛)

⩽ ‖𝑤𝛿𝑢𝜖‖𝐿𝜙(R𝑛) + ‖𝑢𝜖∇𝑤‖𝐿𝜙(R𝑛) + ‖𝑤𝛿∇𝑢𝜖‖𝐿𝜙(R𝑛).
(3.2.4)

Since |𝑢𝜖| ⩽ |𝑢| ⩽ ‖𝑢‖𝐿∞ , by solid property of 𝐿𝜙, we have ‖𝑤𝛿𝑢𝜖‖𝐿𝜙(R𝑛) ⩽⃦⃦
𝑤𝛿‖𝑢‖𝐿∞

⃦⃦
𝐿𝜙(R𝑛)

and ‖𝑢𝜖∇𝑤𝛿‖𝐿𝜙(R𝑛) ⩽
⃦⃦
‖𝑢‖𝐿∞∇𝑤𝛿

⃦⃦
𝐿𝜙(R𝑛)

. With |∇𝑢𝜖| ⩽

|∇𝑢|, we similarly obtain the estimate ‖𝑤𝛿∇𝑢𝜖‖𝐿𝜙(R𝑛) ⩽ ‖𝑤𝛿∇𝑢‖𝐿𝜙(R𝑛). Then
(3.2.4) implies

‖𝑤𝛿𝑢𝜖‖𝑊 1,𝜙(R𝑛) ⩽
⃦⃦
𝑤𝛿‖𝑢‖𝐿∞

⃦⃦
𝐿𝜙(R𝑛)

+
⃦⃦
∇𝑤𝛿‖𝑢‖𝐿∞

⃦⃦
𝐿𝜙(R𝑛)

+ ‖𝑤𝛿∇𝑢‖𝐿𝜙(R𝑛)

⩽ ‖𝑢‖𝐿∞‖𝑤𝛿‖𝐿𝜙(R𝑛) + ‖𝑢‖𝐿∞‖∇𝑤𝛿‖𝐿𝜙(R𝑛) + ‖𝑤𝛿∇𝑢‖𝐿𝜙(R𝑛)

which gives

‖𝑤𝛿𝑢𝜖‖𝑊 1,𝜙(R𝑛) ⩽ ‖𝑢‖𝐿∞‖𝑤𝛿‖𝑊 1,𝜙(R𝑛) + ‖𝑤𝛿∇𝑢‖𝐿𝜙(R𝑛)

⩽ 𝐶𝛿
1

𝑝 ‖𝑢‖𝐿∞ + ‖𝑤𝛿∇𝑢‖𝐿𝜙(R𝑛),

since 𝜚1,𝜙(𝑤𝛿) < 𝛿, which implies ‖𝑤𝛿‖𝑊 1,𝜙(R𝑛) ⩽ 𝐶𝛿
1

𝑞 following the (aInc) and
(aDec) properties, where 𝐶 > 0 is the maximum of the constants from (aInc) and
(aDec). As 𝛿 → 0, we have 𝑤𝛿 → 0 in 𝐿𝜙(R𝑛), hence there exists a subsequence
{𝑤𝛿𝑖}

∞
𝑖=1 ⊂ 𝑤𝛿 which tends to 0 pointwise almost everywhere, as 𝛿𝑖 → 0. Again

using the dominated convergence property of the modular, we have

lim
𝛿𝑖→0

𝜚𝜙(𝑤𝛿𝑖∇𝑢) = 0,

where |𝑤𝛿𝑖∇𝑢| ⩽ |∇𝑢|, so that |∇𝑢| ∈ 𝐿1(R𝑛) may be used as an integrable ma-
jorant. Since modular and norm convergence are equivalent, the above limit implies
lim𝛿𝑖→0 ‖𝑤𝛿𝑖∇𝑢‖𝐿𝜙(R𝑛) = 0. Thus, we conclude that,

lim
𝛿𝑖→0

‖𝑤𝛿𝑖∇𝑢‖𝑊 1,𝜙(R𝑛) ⩽ lim
𝛿𝑖→0

(𝐶𝛿𝑝‖𝑢‖𝐿∞ + ‖𝑤𝛿𝑖∇𝑢‖𝐿𝜙(R𝑛)) = 0.

Hence,
‖𝑢− (1− 𝑤𝛿𝑖)𝑢𝜖‖𝑊 1,𝜙(R𝑛) → 0

as 𝜖, 𝛿𝑖 → 0. Since (1 − 𝑤𝛿𝑖)𝑢𝜖 ∈ 𝑊 1,𝜙
0 (Ω) and (1 − 𝑤𝛿𝑖)𝑢𝜖 → 𝑢 in 𝑊 1,𝜙(R𝑛) as

𝜖, 𝛿𝑖 → 0, we conclude that 𝑢 ∈𝑊 1,𝜙
0 (Ω).
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The above result can be used to prove that a given function belongs to the Sobolev-
Orlicz space with zero boundary values without constructing an approximating se-
quence of compactly supported smooth functions.

Further, to prove the uniqueness of the quasicontinuous representative of 𝜙-
capacity, we first have the following lemma.

Lemma 3.2.4. Let 𝜙 ∈ Φ𝑤(R𝑛). Assume that 𝐺 ⊂ R𝑛 is open and 𝐸 ⊂ R𝑛 with
|𝐸| = 0. Then 𝐶𝜙(𝐺) = 𝐶𝜙(𝐺 ∖ 𝐸).

Proof. By monotonocity property of 𝐶𝜙 from Proposition 3.1.1(S2), we have,

𝐶𝜙(𝐺 ∖ 𝐸) ⩽ 𝐶𝜙(𝐺). (3.2.5)

Let 𝜖 > 0 and let 𝑢 ∈ 𝑆1,𝜙(𝐺 ∖ 𝐸) be such that,

𝜚1,𝜙(𝑢) ⩽ 𝐶𝜙(𝐺 ∖ 𝐸) + 𝜖.

Then there exists an open set 𝑂 ⊂ R𝑛, with (𝐺 ∖ 𝐸) ⊂ 𝑂 and 𝑢 ⩾ 1 in 𝑂. Since
𝑂∪𝐺 is open and taking 𝑢 ⩾ 1 in𝑂∪(𝐺∖𝐸), we have that 𝑢 ⩾ 1 almost everywhere
in 𝑂 ∪𝐺 since |𝐸| = 0. Hence, we conclude that 𝑢 ∈ 𝑆1,𝜙(𝐺), which implies

𝐶𝜙(𝐺) ⩽ 𝜚1,𝜙(𝑢) ⩽ 𝐶𝜙(𝐺 ∖ 𝐸) + 𝜖.

Then letting 𝜖→ 0 to obtain,

𝐶𝜙(𝐺) ⩽ 𝐶𝜙(𝐺 ∖ 𝐸). (3.2.6)

Hence, from (3.2.5) and (3.2.6), we conclude that

𝐶𝜙(𝐺) = 𝐶𝜙(𝐺 ∖ 𝐸).

Finally, we state the uniqueness property of 𝜙-quasicontinuous representative,
which follows as a special case from [35, Theorem] that shows two quasicontinuous
functions that agree almost everywhere coincide quasieverywhere.

Theorem 3.2.5. Let 𝜙 ∈ Φ𝑤(R𝑛) satisfies (aInc) and (aDec). Assume that 𝑢 and 𝑣
are 𝜙- quasicontinuous functions on R𝑛. If 𝑢 = 𝑣 almost everywhere in R𝑛, then
𝑢 = 𝑣 𝜙-quasieverywhere in R𝑛.
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4 Double phase growth functionals in
image restoration

"As far as the laws of mathematics refer to reality, they are not certain, and as far as
they are certain, they do not refer to reality."

— Albert Einstein (1879-1955)

4.1 Introduction

One of the most active research areas in mathematical image processing and com-
puter vision is image restoration, which deals with the recovery of images corrupted
due to noise, data errors and geometric distortions. A major concern in designing
image denoising models for feature extraction and target detection is to preserve sig-
nificant image features, such as edges, while removing noise. Thus, the important
task is how to preserve edges in restored images. Variational approach have been
shown to be extremely successful for a wide variety of image restoration problems
(see [19; 30]), not only limited to the fundamental problem of image denoising, but
also other restoration tasks such as deblurring, blind deconvolution and inpainting.
Variational models exhibit the solution of these problems as minimizers of appropri-
ately chosen functionals, which involve the solution of nonlinear partial differential
equations (PDEs) derived as necessary optimality conditions.

The pioneering works in this field mainly consist of Wiener filter [53], Tikhonov
regularization and its extensions [59]. However, experiments have shown that these
traditional methods commonly suffer from noise amplification or ringing-like arti-
facts, which degrade the image quality significantly. In order to overcome these lim-
itations, total variation (TV) based image restoration models were first introduced
by Rudin, Osher and Fatemi (ROF) in their work [56] on PDE based edge preserving
denoising. It was designed with the explicit goal of preserving sharp discontinuities
(edges) in images while removing noise and other unwanted fine scale detail, along
with smoothing flat regions. However, these restored images consist of undesirable
staircase-like features as the TV regularizer favors solutions which are piecewise
constant.

Over the years, the ROF model has been extended to many other image restora-
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tion tasks, and has been modified in a variety of ways to improve its performance.
Another growing interest in the literature is replacing the TV-norm by higher order
norms in order to maintain sharp edges and avoid staircase effects on the smooth part.
This procedure is introduced, e.g. in [5], where properties of higher order TV have
been established. The higher order norms involving second-order differential opera-
tors usually lead to piecewise-linear solutions as discussed in [40], and this is useful
for image restoration problems and in applications such as biomedical imaging.

4.2 Problem formulation
In this section, we deal with variational integral functionals having non-standard
growth conditions [1; 43; 45], specifically of the type ℱ(𝑢) ..=

�
Ωℋ(𝑥, |∇𝑢(𝑥)|) 𝑑𝑥,

where ℋ : Ω× [0,∞) → [0,∞), with 𝑟 ∈ R+, defined as,

ℋ(𝑥, 𝑟) ..= 𝑟𝑝 + 𝑎(𝑥)𝑟𝑞, in Ω× [0,∞) (4.2.1)

with 1 < 𝑝 ⩽ 𝑞 ⩽ 2 and Ω ⊂ R𝑛 is a nonempty, bounded, open set with 𝑛 ⩾ 2. Here,
0 ⩽ 𝑎(·) ∈ 𝐿∞(Ω) is Lipschitz continuous. Such class of double-phase functionals,
introduced by Zhikov [64; 65], are basically characterised by the fact of having the
energy density switching between two different types of elliptic behaviours, in ac-
cordance to the size of the "modulating coefficient 𝑎(·)" that determines the phase.
Further study in the framework of regularity theory for minimizers of this class of
double-phase integrals, can be found e.g. in [3; 12; 13].

The derivative of the functional ℋ(𝑥, 𝑟) with respect to 𝑟 is given by

ℋ𝑟(𝑥, 𝑟) ..= 𝑝𝑟𝑝−1 + 𝑎(𝑥)𝑞𝑟𝑞−1.

Note that, we denote the derivative of any ℋ functional as ℋ𝑟, hence the derivative
of ℋ(𝑥, |∇𝑢|) with respect to |∇𝑢| is ℋ𝑟(𝑥, |∇𝑢|) = 𝑝|∇𝑢|𝑝−1 + 𝑎(𝑥)𝑞|∇𝑢|𝑞−1.

We also have lim𝑟→0+ ℋ(𝑥, 𝑟) = 0 and lim𝑟→∞ℋ(𝑥, 𝑟) = ∞. The convexity
of 𝑟 ↦→ 𝑟𝑝 and 𝑟 ↦→ 𝑟𝑞, where 1 < 𝑝 ⩽ 𝑞 ⩽ 2, implies that ℋ(𝑥, 𝑟) is convex. As
ℋ(𝑥, 0) = 0, then for 0 < 𝑠 < 𝑟, 𝑠 ∈ R, we have

ℋ(𝑥, 𝑠) = ℋ(𝑥,
𝑠

𝑟
𝑟 + 0) ⩽

𝑠

𝑟
ℋ(𝑥, 𝑟) +

(︁
1− 𝑠

𝑟

)︁
ℋ(𝑥, 0) =

𝑠

𝑟
ℋ(𝑥, 𝑟),

which implies (Inc)1 holds on (0,∞). Thus, with 𝑥 ↦→ ℋ(𝑥, |∇𝑢(𝑥)|) measurable
for every |∇𝑢(𝑥)| ∈ 𝐿0(Ω), ℋ : Ω × [0,∞) → [0,∞) is a generalized weak Φ-
function on Ω, that is ℋ ∈ Φ𝑤(Ω).

The functional ℋ(𝑥, 𝑟) satisfies the Δ2-condition, that is,

ℋ(𝑥, 2𝑟) = 2𝑝𝑟𝑝 + 𝑎(𝑥)2𝑞𝑟𝑞 ⩽ 2𝑞ℋ(𝑥, 𝑟),

holds, for every 𝑥 ∈ Ω and 𝑟 ∈ R+. Moreover, ℋ satisfies (aDec) property, which
implies that ℋ is finite. Hence, ℋ(𝑥, ·) being continuous and convex for almost all
𝑥 ∈ Ω, we have ℋ ∈ Φ𝑠(Ω).
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Additionally, ℋ satisfies (A0) condition, by [24, Proposition 7.2.1]. On the other
hand, the function 𝑎(𝑥) being Lipschitz continuous, we have that 𝑎 ∈ 𝐶

𝑛

𝑝
(𝑞−𝑝)(Ω)

for 𝑛
𝑝 (𝑞 − 𝑝) ⩽ 1. Then by [24, Proposition 7.2.2], ℋ satisfies the (A1) condition,

provided 𝑞 < 3
2𝑝 for 𝑛 = 2.

Switching the symbolic representations of Φ-functions, from 𝜙 to ℋ, for conve-
nient understanding, we have the generalized Orlicz space denoted as 𝐿ℋ(Ω), ‖ · ‖ℋ
and the associated Sobolev-Orlicz spaces as 𝑊 1,ℋ(Ω),𝑊 1,ℋ

0 (Ω), respectively. We
now have the following useful preliminary results in regard to these spaces.

Lemma 4.2.1. For Ω ⊂ R𝑛 and ℋ : Ω × [0,∞) → [0,∞) as defined in (4.2.1),
the spaces 𝐿ℋ(Ω), 𝑊 1,ℋ(Ω) and 𝑊 1,ℋ

0 (Ω) are separable, uniformly convex and
reflexive Banach spaces.

Proof. Since ℋ ∈ Φ𝑤(Ω) from (4.2.1) is convex and satisfies (aInc) and (aDec) con-
ditions, we can conclude that 𝐿ℋ(Ω) and 𝑊 1,ℋ(Ω) are separable, uniformly convex
and reflexive Banach spaces by Lemma 2.2.1 and Lemma 2.2.6, respectively. Sim-
ilarly, by [24, Theorem 6.1.9], 𝑊 1,ℋ

0 (Ω) is also separable, uniformly convex and a
reflexive Banach space.

Lemma 4.2.2. Let Ω ⊂ R𝑛 be a bounded open set, and function ℋ : Ω× [0,∞) →
[0,∞) as defined in (4.2.1). Assume that {𝑢𝑖}𝑖∈N is a bounded sequence in𝑊 1,ℋ(Ω)

such that its subsequence 𝑢𝑖 ⇀ 𝑢 weakly in 𝐿ℋ(Ω) as 𝑖 → ∞. Then 𝑢 ∈ 𝑊 1,ℋ(Ω)

such that the partial derivatives 𝜕𝑗𝑢𝑖 ⇀ 𝜕𝑗𝑢 weakly in 𝐿ℋ(Ω) as 𝑖→ ∞. Moreover,
if 𝑢𝑖 ∈𝑊 1,ℋ

0 (Ω), then we have 𝑢 ∈𝑊 1,ℋ
0 (Ω).

Proof. Since 𝑊 1,ℋ(Ω) is a reflexive Banach space, by Lemma 4.2.1, then for every
bounded sequence {𝑢𝑖}∞𝑖=1 in 𝑊 1,ℋ(Ω), there exists a subsequence of {𝑢𝑖}, denoted
by same {𝑢𝑖}, and 𝑢 ∈𝑊 1,ℋ(Ω), such that 𝑢𝑖 → 𝑢 weakly in 𝐿ℋ(Ω) and the partial
derivatives 𝜕𝑗𝑢𝑖 → 𝜕𝑗𝑢 weakly in 𝐿ℋ(Ω), as 𝑖→ ∞.
Analogously, the claim holds for 𝑢𝑖 ∈𝑊 1,ℋ

0 (Ω).

Next we consider the property of lower semicontinuity with respect to weak con-
vergence, as in [14, Theorem 2.2.8.] stated for a normed space 𝑋 with semimodular
𝜚 [14, Definition 2.1.1.]. Since the properties of 𝜚 are satisfied by the modular 𝜚ℋ, the
lower semicontinuity property holds for generalized Orlicz space 𝐿ℋ(Ω) as follows.

Lemma 4.2.3. The modular 𝜚ℋ on 𝐿ℋ(Ω) is weakly (sequentially) lower semicon-
tinuous, that is, if 𝑢𝑘 ⇀ 𝑢 weakly in 𝐿ℋ(Ω), then 𝜚ℋ(𝑢) ⩽ lim inf

𝑘→∞
𝜚ℋ(𝑢𝑘).

Lemma 4.2.4. Let Ω ⊂ R2 be a bounded open set, and function ℋ : Ω × [0,∞) →
[0,∞) as defined in (4.2.1). Then 𝑊 1,ℋ(Ω) →˓ 𝐿2(Ω) holds.

Proof. By [24, Lemma 6.1.6], we have

𝑊 1,ℋ(Ω) →˓𝑊 1,𝑝(Ω). (4.2.2)
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While, Sobolev embedding implies,

𝑊 1,𝑝(Ω) →˓ 𝐿𝑝*
(Ω), (4.2.3)

where 𝑝* = 2𝑝
2−𝑝 ⩾ 2 is the Sobolev conjugate exponent. Due to the boundedness of

Ω, we have from Hölder’s inequality for Lebesgue spaces,

𝐿𝑝*
(Ω) →˓ 𝐿2(Ω). (4.2.4)

Thus, from (4.2.2),(4.2.3) and (4.2.4), we obtain,

𝑊 1,ℋ(Ω) →˓ 𝐿2(Ω).

The following result on density of smooth functions in parabolic spaces is proved
using a similar approach from [51, Theorem 4.3].

Lemma 4.2.5. Let Ω ⊂ R𝑛 and ℋ : Ω × [0,∞) → [0,∞) as defined in (4.2.1).
Then, for 𝑇 > 0, 𝐶∞

0 (Ω𝑇 ) is dense in 𝐿2(0, 𝑇 ;𝑊 1,ℋ
0 (Ω)), where Ω𝑇

..= Ω× (0, 𝑇 ).

Proof. By the definition of the space 𝐿2(0, 𝑇 ;𝑊 1,ℋ
0 (Ω)), we have strongly mea-

surable functions 𝑢 such that 𝑢(𝑡) : (0, 𝑇 ) ↦→ 𝑊 1,ℋ
0 (Ω). First we prove that any

function 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ
0 (Ω)), denoted by 𝑢(𝑡) = 𝑢(𝑥, 𝑡), can be approximated

with simple functions.
Now, by separability property of 𝑊 1,ℋ

0 (Ω) (Lemma 4.2.1), we choose a count-
able, dense set {𝑎𝑘}∞𝑘=1 ⊂ 𝑢(0, 𝑇 ). Fixing 𝑛 ∈ N, we partition 𝑊 1,ℋ

0 (Ω) into,

𝐹𝑛
1

..={𝑓 ∈𝑊 1,ℋ
0 (Ω) : ‖𝑓 − 𝑎1‖𝑊 1,ℋ(Ω) ⩽ min

1⩽𝑖⩽𝑛
‖𝑓 − 𝑎𝑖‖𝑊 1,ℋ(Ω)}

𝐹𝑛
2

..={𝑓 ∈𝑊 1,ℋ
0 (Ω) : ‖𝑓 − 𝑎2‖𝑊 1,ℋ(Ω) ⩽ min

1⩽𝑖⩽𝑛
‖𝑓 − 𝑎𝑖‖𝑊 1,ℋ(Ω)} ∖ 𝐹𝑛

1

...

𝐹𝑛
𝑘

..={𝑓 ∈𝑊 1,ℋ
0 (Ω) : ‖𝑓 − 𝑎𝑘‖𝑊 1,ℋ(Ω) ⩽ min

1⩽𝑖⩽𝑛
‖𝑓 − 𝑎𝑖‖𝑊 1,ℋ(Ω)} ∖

(︀
∪𝑘−1
𝑖=1 𝐹

𝑛
𝑖

)︀
.

Here, 𝐹𝑛
1 is closed, hence a Borel set. Since the countable union of Borel sets is

Borel and the difference of two Borel sets is a Borel, then each 𝐹𝑛
𝑗 , 𝑗 = 2, . . . , 𝑘 is

a Borel set. Hence, (𝐹𝑛
𝑗 )1⩽𝑗⩽𝑘

is a family of mutually disjoint, Borel sets such that

∪𝑘
𝑗=1𝐹

𝑛
𝑗 =𝑊 1,ℋ

0 (Ω). While, denote

𝐵𝑛
𝑘

..= 𝑢−1(𝐹𝑛
𝑘 ), 𝐷𝑛

1
..= 𝐵𝑛

1 , 𝐷𝑛
𝑘

..= 𝐵𝑛
𝑘 ∖ (∪𝑘−1

𝑖=1𝐵
𝑛
𝑖 ) for 𝑘 = 2, 3, . . . , 𝑛.

The sets 𝐵𝑛
𝑘 are measurable, since the pre-image of Borel sets are measurable due

to measurability of function 𝑢. Further, the measurability of the sets 𝐷𝑛
𝑘 follows
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from the measurability of 𝐵𝑛
𝑘 . We then define the approximating simple function

𝑢𝑛 : (0, 𝑇 ) →𝑊 1,ℋ
0 (Ω) as

𝑢𝑛(𝑡) ..=

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷𝑛
𝑘
(𝑡).

Here, {𝑎𝑘} being a dense set in 𝑢(0, 𝑇 ), we have min
1⩽𝑘⩽𝑛

‖𝑎𝑘 − 𝑢(𝑡)‖𝑊 1,ℋ(Ω) → 0,

as 𝑛→ ∞. Since 𝐵𝑛
𝑘 is pre-image of 𝐹𝑛

𝑘 under 𝑢, we get those values of 𝑡 for which
the distance between 𝑎𝑘 and 𝑢(𝑡) under the 𝑊 1,ℋ norm is minimum. We then have

‖𝑢𝑛(𝑡)− 𝑢(𝑡)‖𝑊 1,ℋ(Ω) = ‖
𝑛∑︁

𝑘=1

𝑎𝑘𝜒𝐷𝑛
𝑘
(𝑡)− 𝑢(𝑡)‖𝑊 1,ℋ(Ω)

= min
1⩽𝑘⩽𝑛

‖𝑎𝑘 − 𝑢(𝑡)‖𝑊 1,ℋ(Ω) → 0

almost everywhere, as 𝑛→ ∞.
Now, in order to use Lebesgue’s dominated convergence theorem, we modify

𝑢𝑛 whenever ‖𝑢𝑛‖𝑊 1,ℋ(Ω) is large compared to ‖𝑢‖𝑊 1,ℋ(Ω). So, to have an upper
bound, we define, for fixed 𝑡,

𝑣𝑛(𝑡) ..=

{︃
𝑢𝑛(𝑡), if ‖𝑢𝑛(𝑡)‖𝑊 1,ℋ(Ω) ⩽ 2‖𝑢(𝑡)‖𝑊 1,ℋ(Ω)

0, if ‖𝑢𝑛(𝑡)‖𝑊 1,ℋ(Ω) > 2‖𝑢(𝑡)‖𝑊 1,ℋ(Ω).
(4.2.5)

If, for some 𝑡, ‖𝑢(𝑡)‖𝑊 1,ℋ(Ω) = 0, then 𝑣𝑛(𝑡) = 0 a.e., and, while for some 𝑡, if
‖𝑢(𝑡)‖𝑊 1,ℋ(Ω) > 0, then 𝑣𝑛(𝑡) = 𝑢𝑛(𝑡) a.e., for 𝑛 large enough, thus |𝑣𝑛(𝑡)| ⩽

|𝑢𝑛(𝑡)|. Moreover, we can deduce that 𝑣𝑛(𝑡) → 𝑢(𝑡) in 𝑊 1,ℋ(Ω), as 𝑛 → ∞.
Due to the uniform bound ‖𝑣𝑛(𝑡)‖𝑊 1,ℋ(Ω) ⩽ 2‖𝑢(𝑡)‖𝑊 1,ℋ(Ω), we can then apply the
dominated convergence theorem to obtain

� 𝑇

0
‖𝑣𝑛(𝑡)− 𝑢(𝑡)‖2𝑊 1,ℋ(Ω) 𝑑𝑡→ 0, in 𝐿2(0, 𝑇 ;𝑊 1,ℋ

0 (Ω)),

as 𝑛→ ∞.
Next, consider

𝐷̌𝑛
𝑘

..= 𝐷𝑛
𝑘∖{𝑡 ∈ (0, 𝑇 ) : ‖𝑣𝑛(𝑡)‖𝑊 1,ℋ(Ω) > 2‖𝑢(𝑡)‖𝑊 1,ℋ(Ω)}, 𝑘 = 1, 2, . . . , 𝑛,

where 𝐷̌𝑛
𝑘 are mutually disjoint. By (4.2.5), we get 𝑣𝑛(𝑡) =

𝑛∑︀
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
(𝑡).

Since 𝐶∞
0 (Ω) is dense in 𝑊 1,ℋ

0 (Ω), we can choose 𝑑𝑘 ∈ 𝐶∞
0 (Ω) such that,

‖𝑑𝑘 − 𝑎𝑘‖2𝑊 1,ℋ(Ω) <
𝜖

2𝑇
.
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Further, since 𝐷̌𝑛
𝑘 are disjoint sets, we have

∑︀𝑛
𝑘=1 𝜒𝐷̌𝑛

𝑘
(𝑡) ⩽ 1. Also, 𝑑𝑘 being

constant with respect to 𝑡 variable, then

� 𝑇

0
‖

𝑛∑︁
𝑘=1

𝑑𝑘𝜒𝐷̌𝑛
𝑘
(𝑡)−

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
(𝑡)‖2𝑊 1,ℋ(Ω) 𝑑𝑡

= ‖𝑑𝑘 − 𝑎𝑘‖2𝑊 1,ℋ(Ω)

� 𝑇

0

⃒⃒ 𝑛∑︁
𝑘=1

𝜒𝐷̌𝑛
𝑘
(𝑡)

⃒⃒2
𝑑𝑡 <

𝜖

2
,

that is, � 𝑇

0
‖

𝑛∑︁
𝑘=1

𝑑𝑘𝜒𝐷̌𝑘
𝑛
(𝑡)−

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
(𝑡)‖2𝑊 1,ℋ(Ω) 𝑑𝑡 <

𝜖

2
. (4.2.6)

Next, to mollify the above in 𝑡, consider a mollification function 𝛿𝑛 ∈ 𝐶∞
0 (R)

such that for each 𝑘 = 1, 2, . . . , 𝑛, we have 𝛿𝑛*(𝑑𝑘𝜒𝐷̌𝑛
𝑘
) = 𝑑𝑘(𝛿𝑛*𝜒𝐷̌𝑛

𝑘
) ∈ 𝐶∞

0 (R×
Ω) and choosing

� 𝑇

0
|𝛿𝑛 * (𝜒𝐷̌𝑛

𝑘
(𝑡))− 𝜒𝐷̌𝑛

𝑘
(𝑡)|2 𝑑𝑡 < 𝜖

2𝑛‖𝑑𝑘‖2𝑊1,ℋ(Ω)

.

Then the following expression implies

� 𝑇

0
‖𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛

𝑘
)−𝑑𝑘𝜒𝐷̌𝑛

𝑘
‖2𝑊 1,ℋ(Ω) 𝑑𝑡

=

� 𝑇

0
‖𝑑𝑘

(︀
𝛿𝑛 * 𝜒𝐷̌𝑛

𝑘
(𝑡)− 𝜒𝐷̌𝑛

𝑘
(𝑡)

)︀
‖2
𝑊 1,ℋ(Ω)

𝑑𝑡

= ‖𝑑𝑘‖2𝑊 1,ℋ(Ω)

� 𝑇

0
|𝛿𝑛 * (𝜒𝐷̌𝑛

𝑘
(𝑡))− 𝜒𝐷̌𝑛

𝑘
(𝑡)|2 𝑑𝑡 < 𝜖

2𝑛

that is, � 𝑇

0
‖𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛

𝑘
)− 𝑑𝑘𝜒𝐷̌𝑛

𝑘
‖2
𝑊 1,ℋ(Ω)

𝑑𝑡 <
𝜖

2𝑛
. (4.2.7)

Denote 𝑔 ..=
∑︀𝑛

𝑘=1 𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛
𝑘
). Then, we have,

� 𝑇

0
‖𝑔 − 𝑣𝑛‖2𝑊 1,ℋ(Ω) 𝑑𝑡 =

� 𝑇

0
‖

𝑛∑︁
𝑘=1

𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛
𝑘
)−

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
‖2𝑊 1,ℋ(Ω) 𝑑𝑡

⩽
� 𝑇

0
‖

𝑛∑︁
𝑘=1

𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛
𝑘
)−

𝑛∑︁
𝑘=1

𝑑𝑘𝜒𝐷̌𝑛
𝑘
‖2𝑊 1,ℋ(Ω) 𝑑𝑡

+

� 𝑇

0
‖

𝑛∑︁
𝑘=1

𝑑𝑘𝜒𝐷̌𝑛
𝑘
−

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
‖2𝑊 1,ℋ(Ω) 𝑑𝑡,
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which follows from triangle inequality and further applying (4.2.7) and (4.2.6), to
obtain

� 𝑇

0
‖𝑔 − 𝑣𝑛‖2𝑊 1,ℋ(Ω) 𝑑𝑡 ⩽

𝑛∑︁
𝑘=1

� 𝑇

0
‖𝛿𝑛 * (𝑑𝑘𝜒𝐷̌𝑛

𝑘
)− 𝑑𝑘𝜒𝐷̌𝑛

𝑘
‖2
𝑊 1,ℋ(Ω)

𝑑𝑡

+

� 𝑇

0
‖

𝑛∑︁
𝑘=1

𝑑𝑘𝜒𝐷̌𝑛
𝑘
−

𝑛∑︁
𝑘=1

𝑎𝑘𝜒𝐷̌𝑛
𝑘
‖2𝑊 1,ℋ(Ω) 𝑑𝑡

<
𝜖

2
+

𝜖

2
= 𝜖.

Thus, we can conclude that 𝐶∞
0 (Ω𝑇 ) is dense in 𝐿2(0, 𝑇 ;𝑊 1,ℋ

0 (Ω)).

Lemma 4.2.6. Let Ω ⊂ R𝑛 be a bounded open set and ℋ ∈ Φ𝑤(Ω) as defined in
(4.2.1). For each 𝑡 > 0, assume that 𝑓𝑗(·, 𝑡), 𝑔𝑗(·, 𝑡) ∈ 𝐿ℋ(R𝑛) for 𝑗 = 1, 2, . . .,
with

� 𝑠
0 𝜚ℋ(𝑓𝑗) 𝑑𝑡 bounded, where 𝑠 > 0. If

� 𝑠
0 𝜚ℋ(𝑓𝑗 − 𝑔𝑗) 𝑑𝑡→ 0 as 𝑗 → ∞, then

⃒⃒� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡−

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡

⃒⃒
→ 0 as 𝑗 → ∞.

Proof. Since ℋ is increasing and satisfies (Dec) property, we obtain,

ℋ(𝑥, |𝑔𝑗 |) ⩽ ℋ(𝑥, |𝑔𝑗 − 𝑓𝑗 |+ |𝑓𝑗 |) ⩽ ℋ(𝑥, 2|𝑔𝑗 − 𝑓𝑗 |) +ℋ(𝑥, 2|𝑓𝑗 |)
⩽ 2𝑞ℋ(𝑥, |𝑔𝑗 − 𝑓𝑗 |) + 2𝑞ℋ(𝑥, |𝑓𝑗 |).

Integrating both sides with respect to 𝑥 over Ω and with respect to 𝑡 over [0, 𝑠], 𝑠 > 0,
to have � 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡 ⩽ 2𝑞

� 𝑠

0
𝜚ℋ(𝑔𝑗 − 𝑓𝑗) 𝑑𝑡+ 2𝑞

� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡.

This implies that
� 𝑠
0 𝜚ℋ(𝑔𝑗) 𝑑𝑡 is bounded. Then choosing 𝑐 > 0 such that
� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡 ⩽ 𝑐 and

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡 ⩽ 𝑐.

Let 𝜆 > 0 and note that |𝑓𝑗 | ⩽ |𝑓𝑗 − 𝑔𝑗 |+ |𝑔𝑗 |.
If |𝑓𝑗 − 𝑔𝑗 | ⩽ 𝜆|𝑔𝑗 |, then by (Dec), we have

ℋ(𝑥, |𝑓𝑗 |) ⩽ ℋ(𝑥, (1 + 𝜆)|𝑔𝑗 |) ⩽ (1 + 𝜆)𝑞ℋ(𝑥, |𝑔𝑗 |). (4.2.8)

If |𝑓𝑗 − 𝑔𝑗 | > 𝜆|𝑔𝑗 |, then we estimate by (Dec),

ℋ(𝑥, |𝑓𝑗 |) ⩽ ℋ(𝑥, (1 +
1

𝜆
)|𝑓𝑗 − 𝑔𝑗 |) ⩽

(︀
1 +

1

𝜆

)︀𝑞
ℋ(𝑥, |𝑓𝑗 − 𝑔𝑗 |). (4.2.9)

Combining both the cases above and integrating over 𝑥 ∈ Ω, we find that,

𝜚ℋ(𝑓𝑗)− 𝜚ℋ(𝑔𝑗) ⩽
(︀
1 +

1

𝜆

)︀𝑞
𝜚ℋ(𝑓𝑗 − 𝑔𝑗) + (1 + 𝜆)𝑞𝜚ℋ(𝑔𝑗)− 𝜚ℋ(𝑔𝑗).
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Further, integrating with respect to 𝑡 over [0, 𝑠], 𝑠 > 0, gives
� 𝑠

0
(𝜚ℋ(𝑓𝑗)− 𝜚ℋ(𝑔𝑗)) 𝑑𝑡

⩽
(︀
1 +

1

𝜆

)︀𝑞 � 𝑠

0
𝜚ℋ(𝑓𝑗 − 𝑔𝑗) 𝑑𝑡+ ((1 + 𝜆)𝑞 − 1)

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡.

Swapping 𝑓𝑗 and 𝑔𝑗 in both (4.2.8) and (4.2.9) gives a similar inequality, and com-
bining the inequalities, we find that,

⃒⃒� 𝑠

0
(𝜚ℋ(𝑓𝑗)− 𝜚ℋ(𝑔𝑗)) 𝑑𝑡

⃒⃒
⩽
(︀
1 +

1

𝜆

)︀𝑞 � 𝑠

0
𝜚ℋ(𝑓𝑗 − 𝑔𝑗) 𝑑𝑡

+ ((1 + 𝜆)𝑞 − 1)
(︀� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡+

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡

)︀
.

Let 𝜖 > 0. Since
� 𝑠
0 𝜚ℋ(𝑓𝑗) 𝑑𝑡+

� 𝑠
0 𝜚ℋ(𝑔𝑗) 𝑑𝑡 ⩽ 2𝑐, we can choose 𝜆 so small that,

((1 + 𝜆)𝑞 − 1)
(︀� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡+

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡

)︀
⩽

𝜖

2
,

when 𝑗 ⩾ 𝑗0, and it follows that,

⃒⃒� 𝑠

0
𝜚ℋ(𝑓𝑗) 𝑑𝑡−

� 𝑠

0
𝜚ℋ(𝑔𝑗) 𝑑𝑡

⃒⃒
⩽ 𝜖.

4.3 Minimization of image restoration model
Let us consider any image 𝑓 as a scalar function defined on a bounded and piecewise
smooth open set Ω of R𝑁 -typically a rectangle in R2. Most commonly, image
restoration models (refer [2; 33]) consist of an original image 𝑢 in the domain Ω,
describing a real scene, and the observed image 𝑓 of the same scene, which is a
degradation of 𝑢 resulting due to the presence of additive Gaussian noise, denoted as
𝜂, with mean zero and variance 𝜎2. Thus the process of image restoration is modeled
as

𝑓 = 𝐴𝑢+ 𝜂 in Ω, (4.3.1)

where𝐴 is a linear operator representing the blur (usually a convolution). The objec-
tive is to recover 𝑢, with known 𝑓 and some statistics of 𝜂. Taking 𝐴 as an identity
operator, we assume that the model of degradation (4.3.1) is valid.

Mostly, restoring image 𝑢 from (4.3.1) is an ill-condition problem, and prior
information on the underlying image is required to find an acceptable solution. For
this purpose, many variational methods are developed, the most popular one being
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the TV-based (ROF) model proposed by Rudin, Osher and Fatemi [56] in the BV
space as follows:

min
𝑢∈𝐵𝑉 (Ω)

{︂�
Ω
|𝐷𝑢|𝑝 + 𝜆

2

�
Ω
(𝑢− 𝑓)2 𝑑𝑥

}︂
, (4.3.2)

where 𝑝 = 1 and 𝐷𝑢 is the BV-gradient. Based on the above TV-based diffusion, an
adaptive total variation model:

min
𝑢∈𝐵𝑉 (Ω)

�
Ω
𝑎(𝑥)|𝐷𝑢| 𝑑𝑥,

was proposed by Chan and Strong [58]. Here, a control factor 𝑎(𝑥) slows the dif-
fusion at likely edges, thus controlling the speed of the diffusion and reconstructing
edges.

Now, we consider the types of diffusion arising from the minimization problem
(4.3.2) with different values of 𝑝. At 𝑝 = 2, it results in isotropic diffusion which
smooths the ’staircasing effect’ caused by the TV-based diffusion at 𝑝 = 1, but not
able to preserve edges. While different values of 1 < 𝑝 < 2 result in anisotropic
diffusion, originally presented by Perona and Malik [52], which lies between TV-
based and isotropic smoothing. Such type of anisotropic diffusion proved to be more
effective in reconstructing piecewise smooth regions with an edge preserving inho-
mogenous technique.

Motivated by the above models, using (4.2.1), we define the following functional

𝐸(𝑢) ..= ℱ(𝑢) +
𝜆

2
‖𝑢− 𝑓‖2 =

�
Ω
ℋ(𝑥, |∇𝑢|) + 𝜆

2
(𝑢− 𝑓)2 𝑑𝑥 =:

�
Ω
𝐹 (𝑢) 𝑑𝑥,

(4.3.3)
where the double-phase functional ℋ(𝑥, 𝑟) ..= 𝑟𝑝 + 𝑎(𝑥)𝑟𝑞, 1 < 𝑝 ⩽ 𝑞 ⩽ 2

would serve the purpose of anisotropic diffusion along with isotropic smoothing in
the model. The function 0 ⩽ 𝑎 ∈ 𝐿∞(Ω) is assumed to be Lipschitz continuous,
which plays as the trade-off between the two types of diffusion. We then propose the
following image restoration model:

min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)

𝐸(𝑢) = min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)

�
Ω
ℋ(𝑥, |∇𝑢|) + 𝜆

2
(𝑢− 𝑓)2 𝑑𝑥. (4.3.4)

The following result shows the convexity of the functional 𝐸.

Lemma 4.3.1. Let Ω ⊂ R𝑛 and ℋ : Ω × [0,∞) → [0,∞) as defined in (4.2.1).
Then, 𝑢 ↦→ 𝐸(𝑢) is strictly convex, where 𝐸(𝑢) =

�
Ωℋ(𝑥, |∇𝑢|) + 𝜆

2 (𝑢− 𝑓)2 𝑑𝑥

from (4.3.3).
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Proof. For 𝑢, 𝑣 ∈𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω), 𝑢 ̸= 𝑣, and 𝛼 ∈ (0, 1), we have

𝐸(𝛼𝑢+ (1− 𝛼)𝑣)

=

�
Ω
|∇(𝛼𝑢+ (1− 𝛼)𝑣)|𝑝 + 𝑎(𝑥)|∇(𝛼𝑢+ (1− 𝛼)𝑣)|𝑞

+
𝜆

2
(𝛼𝑢+ (1− 𝛼)𝑣 − 𝑓)2 𝑑𝑥

⩽
�
Ω
(𝛼|∇𝑢|+ (1− 𝛼)|∇𝑣|)𝑝 + 𝑎(𝑥)(𝛼|∇𝑢|+ (1− 𝛼)|∇𝑣|)𝑞

+
𝜆

2
(𝛼𝑢+ (1− 𝛼)𝑣 − 𝛼𝑓 − (1− 𝛼)𝑓)2 𝑑𝑥.

Then using convexity of 𝑟 ↦→ 𝑟𝑝, 𝑟 ↦→ 𝑟𝑞 and 𝑟 ↦→ 𝑟2, which are strictly convex for
𝑝, 𝑞 > 1, we obtain

𝐸(𝛼𝑢+ (1− 𝛼)𝑣)

<

�
Ω
(𝛼|∇𝑢|𝑝 + (1− 𝛼)|∇𝑢|𝑝) + 𝑎(𝑥)(𝛼|∇𝑢|𝑞 + (1− 𝛼)|∇𝑢|𝑞)

+
𝜆

2
(𝛼(𝑢− 𝑓)2 + (1− 𝛼)(𝑣 − 𝑓)2) 𝑑𝑥,

that is,
𝐸(𝛼𝑢+ (1− 𝛼)𝑣) < 𝛼𝐸(𝑢) + (1− 𝛼)𝐸(𝑣), (4.3.5)

which proves the strict convexity of the functional 𝐸.

4.3.1 Existence of solution of the minimization problem. In this section,
we discuss the existence and uniqueness of the minimizer to the minimization prob-
lem (4.3.4). The approach of the proofs presented here is motivated by those in
[23; 39].

Theorem 4.3.2. Let Ω ⊂ R𝑛 be a bounded open set and 𝑓 ∈ 𝐿2(Ω). The minimiza-
tion problem

min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)

𝐸(𝑢) (4.3.6)

has a unique minimizer 𝑢 ∈ 𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω), where 𝐸(𝑢) =
�
Ωℋ(𝑥, |∇𝑢|) +

𝜆
2 (𝑢− 𝑓)2 𝑑𝑥, with ℋ(𝑥, 𝑟) = 𝑟𝑝 + 𝑎(𝑥)𝑟𝑞, 1 < 𝑝 ⩽ 𝑞 ⩽ 2 and 0 ⩽ 𝑎 ∈ 𝐿∞(Ω).

Proof. Set 𝑚 ..= inf𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)𝐸(𝑢), which is finite, since

0 ⩽ 𝑚 = inf
𝑢
𝐸(𝑢) ⩽ 𝐸(0) =

𝜆

2
‖𝑓‖22 <∞.

The definition of infimum then implies that there exists a minimizing sequence, de-
noted by {𝑢𝑘}∞𝑘=1, 𝑢𝑘 ∈𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω) such that

inf
𝑢
𝐸(𝑢) = lim

𝑘→∞
𝐸(𝑢𝑘) = 𝑚 <∞.
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The existence of finite limit implies that the sequence 𝐸(𝑢𝑘) is bounded. Thus,

𝐸(𝑢𝑘) =

�
Ω
ℋ(𝑥, |∇𝑢𝑘|) +

𝜆

2
|𝑢𝑘 − 𝑓 |2 𝑑𝑥 ⩽ 𝐶,

where 𝐶 denotes a universal strictly positive constant, and so
�
Ω
ℋ(𝑥, |∇𝑢𝑘|) 𝑑𝑥 ⩽ 𝐶 and

�
Ω
(𝑢𝑘 − 𝑓)2 𝑑𝑥 ⩽ 𝐶,

for every 𝑘 = 1, 2, . . ..
Now, by triangle inequality, we have

‖𝑢𝑘‖2 ⩽ ‖𝑓‖2 + ‖𝑢𝑘 − 𝑓‖2 ⩽ 𝐶

which results in uniform boundedness of {𝑢𝑘}∞𝑘=1 in 𝐿2(Ω), that is
�
Ω |𝑢𝑘|2 𝑑𝑥 ⩽ 𝐶.

Moreover 𝐿2(Ω) →˓ 𝐿ℋ(Ω) [4, Lemma 2.5], which then gives
�
Ωℋ(𝑥, |𝑢𝑘|) 𝑑𝑥 ⩽

𝐶. Thus we get,
𝜚ℋ(𝑢𝑘) + 𝜚ℋ(|∇𝑢𝑘|) ⩽ 𝐶

which implies that {𝑢𝑘}∞𝑘=1 is a bounded sequence in 𝑊 1,ℋ(Ω). Since 𝑊 1,ℋ(Ω) ∩
𝐿2(Ω) is a reflexive Banach space, there exists a subsequence {𝑢𝑘𝑗

}∞𝑗=1 ⊂ {𝑢𝑘}∞𝑘=1

converging weakly to a function 𝑢 in 𝑊 1,ℋ(Ω)∩𝐿2(Ω). Then Lemma 4.2.3 implies

lim inf
𝑗→∞

�
Ω
ℋ(𝑥, |∇𝑢𝑘𝑗

|) 𝑑𝑥 ⩾
�
Ω
ℋ(𝑥, |∇𝑢|) 𝑑𝑥. (4.3.7)

Moreover, by the weak lower semicontinuity of the 𝐿2-norm,

lim inf
𝑗→∞

�
Ω
|𝑢𝑘𝑗

− 𝑓 |2 𝑑𝑥 ⩾
�
Ω
|𝑢− 𝑓 |2 𝑑𝑥. (4.3.8)

Thus, from (4.3.7) and (4.3.8), we can conclude that

𝐸(𝑢) ⩽ lim inf
𝑗→∞

𝐸(𝑢𝑘𝑗
) = inf

𝑢
𝐸(𝑢) = 𝑚, (4.3.9)

and hence 𝑢 is a minimizer of the problem (4.3.6).
To prove uniqueness of the minimizer, suppose that 𝑢, 𝑢̃ ∈𝑊 1,ℋ(Ω)∩𝐿2(Ω) are

two solutions of the minimization problem (4.3.6). Then 𝑣 := 𝑢+𝑢̃
2 ∈ 𝑊 1,ℋ(Ω) ∩

𝐿2(Ω). We claim here that

𝐸(𝑣) ⩽
𝐸(𝑢) + 𝐸(𝑢̃)

2
,

with a strict inequality, unless 𝑢 = 𝑢̃ a.e.
By Lemma 4.3.1, the functional 𝐸(𝑢) is strictly convex. Then, taking 𝛼 = 1

2 in
(4.3.5), we get 𝐸(𝑣) < 𝐸(𝑢)+𝐸(𝑢̃)

2 = 𝑚 = inf𝑣 𝐸(𝑣), which is a contradiction, thus
𝑢 = 𝑢̃ a.e. in Ω. Hence the minimizer of 𝐸(𝑢) is unique.
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Theorem 4.3.3. Let Ω ⊂ R𝑛 be a bounded open set with boundary function 𝑓 ∈
𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω). Assume that 𝐶∞(Ω) ∩𝑊 1,ℋ(Ω) is dense in 𝑊 1,ℋ(Ω). Then,
for energy functional 𝐸(𝑢) =

�
Ωℋ(𝑥, |∇𝑢|) + 𝜆

2 (𝑢 − 𝑓)2 𝑑𝑥, where ℋ(𝑥, 𝑟) =

𝑟𝑝 + 𝑎(𝑥)𝑟𝑞, 1 < 𝑝 ⩽ 𝑞 ⩽ 2 as defined in (4.2.1), the minimization problem:

min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω),𝑢−𝑓∈𝑊 1,ℋ

0 (Ω)
𝐸(𝑢) (4.3.10)

has a unique minimizer 𝑢 ∈𝑊 1,ℋ(Ω)∩𝐿∞(Ω), which satisfies 𝑢−𝑓 ∈𝑊 1,ℋ
0 (Ω)∩

𝐿∞(Ω).

Proof. Let 𝑈 denote the set {𝑢 : 𝑢 − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω)}, and 𝑀 > 0 be such that

|𝑓 | ⩽ 𝑀 a.e. Let 𝑢𝑀 be the function 𝑢 ∈ 𝑈 which has been cut-off at −𝑀 and 𝑀 ,
that is

𝑢𝑀 ..= min{𝑀,max{−𝑀,𝑢}}.

This implies that 𝑢𝑀 − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω) (see the notes in A.1 in the appendix). More-

over, from the lattice property of 𝑊 1,ℋ(Ω) (which follows from [24, Lemma 6.1.6]
and [24, Lemma 6.1.7]), we have that

∇𝑢𝑀 =

{︃
∇𝑢, for |𝑢| ⩽𝑀,

0, otherwise

which holds almost everywhere. Hence, |∇𝑢𝑀 | ⩽ |∇𝑢| a.e., and by increasing
property of ℋ, we get ℋ(𝑥, |∇𝑢𝑀 |) ⩽ ℋ(𝑥, |∇𝑢|). For {𝑥 ∈ Ω : |𝑢(𝑥)| ⩽ 𝑀}, we
have |𝑢𝑀−𝑓 | = |𝑢−𝑓 |, and, for {𝑥 ∈ Ω : 𝑢(𝑥) ⩾𝑀}, |𝑢𝑀−𝑓 | = |𝑀−𝑓 | ⩽ |𝑢−𝑓 |
holds. While, for {𝑥 ∈ Ω : 𝑢(𝑥) < −𝑀}, |𝑢𝑀 − 𝑓 | =𝑀 + 𝑓 < −𝑢+ 𝑓 ⩽ |𝑢− 𝑓 |
holds. This implies ‖𝑢𝑀 − 𝑓‖𝐿2 ⩽ ‖𝑢− 𝑓‖𝐿2 . So, we get 𝐸(𝑢𝑀 ) ⩽ 𝐸(𝑢). Thus,
we conclude that the possible minimizer satisfies |𝑢| ⩽ 𝑀 a.e., and belongs to the
set 𝑈𝑀

..= {𝑢𝑀 : 𝑢 ∈ 𝑈}.
Since 𝐸(𝑢) ⩾ 0 for every 𝑢 ∈ 𝑈𝑀 and 𝑓 ∈ 𝑈 , we note that, on taking the same

𝑓 for an upper bound of the functional 𝐸, results in a finite limit of the infimum of
𝐸, that is,

0 ⩽ 𝑚 ..= inf
𝑢−𝑓∈𝑊 1,ℋ

0 (Ω)
𝐸(𝑢) ⩽ 𝐸(𝑓) = 𝜚ℋ(|∇𝑓 |) <∞.

Thus, there exists a minimizing sequence {𝑢𝑘}∞𝑘=1 ⊂ 𝑈𝑀 with 𝑢𝑘 − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω)

such that
inf

𝑢∈𝑈𝑀

𝐸(𝑢) = lim
𝑘→∞

𝐸(𝑢𝑘) = 𝑚.

This implies that the sequence 𝐸(𝑢𝑘) is bounded, that is

𝐸(𝑢𝑘) =

�
Ω
ℋ(𝑥, |∇𝑢𝑘|) +

𝜆

2
(𝑢𝑘 − 𝑓)2 𝑑𝑥 ⩽ 𝐶

37



Debangana Baruah

where 𝐶 denotes a universal strictly positive constant, and so�
Ω
ℋ(𝑥, |∇𝑢𝑘|) 𝑑𝑥 ⩽ 𝐶,

�
Ω
(𝑢𝑘 − 𝑓)2 𝑑𝑥 ⩽ 𝐶.

for every 𝑘 = 1, 2, . . ..
Applying triangle inequality to get

‖𝑢𝑘‖2 ⩽ ‖𝑓‖2 + ‖𝑢𝑘 − 𝑓‖2 ⩽ 𝐶,

which implies {𝑢𝑘}∞𝑘=1 is bounded in 𝐿2(Ω), that is
�
Ω |𝑢𝑘|2 𝑑𝑥 ⩽ 𝐶, and further

since 𝐿2(Ω) →˓ 𝐿ℋ(Ω) by [4, Lemma 2.5], we can conclude that�
Ω
ℋ(𝑥, |𝑢𝑘|) 𝑑𝑥 ⩽ 𝐶.

Thus, we get
𝜚ℋ(𝑢𝑘) + 𝜚ℋ(|∇𝑢𝑘|) ⩽ 𝐶.

Now, the sequence {𝑢𝑘}∞𝑘=1 being bounded in 𝑊 1,ℋ(Ω) and 𝐿2(Ω), so similarly
using reflexivity, we have a subsequence {𝑢𝑘𝑗

}∞𝑗=1 ⊂ {𝑢𝑘}∞𝑘=1, and 𝑢 ∈𝑊 1,ℋ(Ω)∩
𝐿2(Ω) such that

𝑢𝑘𝑗
⇀ 𝑢 in 𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω).

Moreover, since {𝑢𝑘}∞𝑘=1 ⊂ 𝑈𝑀 , hence 𝑢 ∈ 𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω). Also note that
for 𝑢𝑘 − 𝑓 ∈𝑊 1,ℋ

0 (Ω) ∩ 𝐿∞(Ω), since 𝑊 1,ℋ
0 (Ω) ∩ 𝐿∞(Ω) is a closed subspace of

𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω) and 𝑢𝑘 ⇀ 𝑢, then we have 𝑢 − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω) ∩ 𝐿∞(Ω) which

is weakly closed. Thereafter, following the same argument in the previous proof to
obtain weak lower semicontinuity as in (4.3.9),which implies

𝐸(𝑢) ⩽ lim inf
𝑗→∞

𝐸(𝑢𝑘𝑗
) = inf

𝑢
𝐸(𝑢) = 𝑚,

we can then conclude that 𝑢 is a minimizer of the minimization problem (4.3.10).
The uniqueness of minimizer 𝑢 follows similarly as proved in the previous result.

4.4 The associated boundary value problems
In this section, we show that the minimizer of the problem (4.3.4) can be equivalently
expressed as solution of a boundary value problem obtained from the minimization
functional (4.3.3).

Assume that 𝑓 : Ω → R is continuous, and let

𝐾 ..= {𝑣 ∈ 𝐶2(Ω), such that 𝑣(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝜕Ω},

be a non-empty set for the energy functional (4.3.3), which we recall, is of the form,

𝐸(𝑣) =

�
Ω
ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥. (4.4.1)

38



Double phase growth functionals in image restoration

Next, we compute the functional derivative of 𝐸 with respect to 𝑣 ∈ 𝐾 which gener-
alizes the ’gradient’ notion for functions. One version of functional derivative is the
Gâteaux derivative for functional 𝐸 at 𝑣 in the direction of ℎ ∈ 𝐶∞

0 (Ω), denoted by
𝑑(𝐸;ℎ), as defined below

𝑑𝐸(𝑢;ℎ) ..= lim
𝜖→0

𝐸(𝑢+ 𝜖ℎ)− 𝐸(𝑢)

𝜖
=

𝑑

𝑑𝜖
𝐸(𝑢+ 𝜖ℎ) |𝜖=0 . (4.4.2)

Here, we have 𝐸(𝑢 + 𝜀ℎ) =
�
Ωℋ(𝑥, |∇(𝑢 + 𝜀ℎ)|) + 𝜆

2 (𝑢+ 𝜀ℎ− 𝑓)2 𝑑𝑥, where
the integrand and its derivative with respect to 𝜀 are continuous over Ω. Using Leib-
niz rule to interchange the order of integration and differentiation, we calculate the
derivative of 𝐸(𝑢+ 𝜀𝑤) with respect to 𝜀 to obtain as follows,

𝑑

𝑑𝜀
𝐸(𝑢+ 𝜀ℎ)

=

�
Ω
(𝑝|∇(𝑢+ 𝜀ℎ)|𝑝−1 + 𝑎(𝑥) 𝑞|∇(𝑢+ 𝜀ℎ)|𝑞−1)

∇(𝑢+ 𝜀ℎ)

|∇(𝑢+ 𝜀ℎ)| · ∇ℎ

+ 𝜆(𝑢+ 𝜀ℎ− 𝑓)ℎ 𝑑𝑥.

(4.4.3)

Then (4.4.2) implies,

𝑑

𝑑𝜖
𝐸(𝑢+𝜖ℎ) |𝜖=0=

�
Ω
𝑝|∇𝑢|𝑝−1 ∇𝑢

|∇𝑢| ·∇ℎ+𝑎(𝑥) 𝑞|∇𝑢|
𝑞−1 ∇𝑢

|∇𝑢| ·∇ℎ+𝜆(𝑢−𝑓)ℎ 𝑑𝑥,

that is,

𝑑𝐸(𝑢;ℎ) =

�
Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇ℎ+ 𝜆(𝑢− 𝑓)ℎ 𝑑𝑥, ℎ ∈ 𝐶∞
0 (Ω). (4.4.4)

where ℋ𝑟(𝑥, |∇𝑣|) = 𝑝|∇𝑣|𝑝−1 + 𝑎(𝑥) 𝑞|∇𝑣|𝑞−1. Note that when ∇𝑢 = 0 the
derivative in (4.4.3) is well-defined, since the total degree of ∇𝑢 is 𝑝− 1 > 0.

Proposition 4.4.1. Let Ω ⊂ R𝑛 be a bounded open set and function 𝑓 : Ω → R
be continuous. Consider the following partial differential equation with Dirichlet
boundary condition:

− div
(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓) = 0 in Ω, (4.4.5)

𝑢 = 𝑓 on 𝜕Ω, (4.4.6)

where ℋ𝑟(𝑥, 𝑟) denotes the derivative of ℋ(𝑥, 𝑟) with respect to 𝑟. Then the function
𝑢 ∈ 𝐾 is a solution of (4.4.5)–(4.4.6) if and only if 𝐸(𝑢) = min

𝑣∈𝐾
𝐸(𝑣), where 𝐸(𝑣)

is defined as in (4.4.1).

Proof. Suppose that 𝑢 ∈ 𝐾 is a solution of (4.4.5)–(4.4.6). Let 𝑣 ∈ 𝐾 be arbitrary.
We aim to show that 𝐸(𝑢) ⩽ 𝐸(𝑣) for all 𝑣 ∈ 𝐾, that is, 𝐸(𝑢) = min

𝑣∈𝐾
𝐸(𝑣).
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Now multiplying (4.4.5) by 𝑢− 𝑣 and integrating over Ω, we have

−
�
Ω
div

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
(𝑢− 𝑣) 𝑑𝑥+

�
Ω
𝜆(𝑢− 𝑓)(𝑢− 𝑣) 𝑑𝑥 = 0,

where the derivative ℋ𝑟(𝑥, |∇𝑢|) = 𝑝|∇𝑢|𝑝−1 + 𝑎(𝑥) 𝑞|∇𝑢|𝑞−1. Since 𝑢, 𝑣 ∈ 𝐾, so
𝑢 − 𝑣 = 0 at the boundary 𝜕Ω. Then using integration by parts formula for the first
integral in the previous expression implies�

Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇(𝑢− 𝑣) 𝑑𝑥+

�
Ω
𝜆(𝑢− 𝑓)(𝑢− 𝑣) 𝑑𝑥 = 0.

Further rearranging gives�
Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇(𝑢− 𝑣) 𝑑𝑥 = −
�
Ω
𝜆(𝑢− 𝑓)(𝑢− 𝑓 + 𝑓 − 𝑣) 𝑑𝑥

= −
�
Ω
𝜆(𝑢− 𝑓)2 𝑑𝑥+

�
Ω
𝜆(𝑢− 𝑓)(𝑣 − 𝑓) 𝑑𝑥.

Then using the relation 𝑎𝑏 ⩽ 1
2(𝑎

2 + 𝑏2), 𝑎, 𝑏 ∈ R, for the second integral on the
right hand side above, we obtain�

Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇(𝑢− 𝑣) 𝑑𝑥+

�
Ω
𝜆(𝑢− 𝑓)2 𝑑𝑥

⩽
�
Ω

𝜆

2

(︁
(𝑢− 𝑓)2 + (𝑣 − 𝑓)2

)︁
𝑑𝑥,

and thus we have,�
Ω

(︁
𝑝

|∇𝑢|2−𝑝+𝑎(𝑥)
𝑞

|∇𝑢|2−𝑞

)︁
∇𝑢 · ∇𝑢 𝑑𝑥+

�
Ω

𝜆

2
(𝑢− 𝑓)2 𝑑𝑥

⩽
�
Ω

(︁
𝑝

|∇𝑢|2−𝑝 + 𝑎(𝑥)
𝑞

|∇𝑢|2−𝑞

)︁
∇𝑢 · ∇𝑣 𝑑𝑥+

�
Ω

𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥.

Now taking the absolute value relation ∇𝑢 · ∇𝑣 ⩽ |∇𝑢 · ∇𝑣| ⩽ |∇𝑢||∇𝑣| in the first
integral expression on the right hand side, the above inequality becomes�

Ω
(𝑝|∇𝑢|𝑝+𝑎(𝑥)𝑞|∇𝑢|𝑞) 𝑑𝑥+

�
Ω

𝜆

2
(𝑢− 𝑓)2 𝑑𝑥

⩽
�
Ω
(𝑝|∇𝑢|𝑝−1|∇𝑣|+ 𝑎(𝑥)𝑞|∇𝑢|𝑞−1|∇𝑣|) 𝑑𝑥+

�
Ω

𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥,

and, thereafter, applying Young’s inequality (2.1.7) on each term of the first integral
expression on the right hand side above, we obtain the following,�

Ω
(𝑝|∇𝑢|𝑝 + 𝑎(𝑥)𝑞|∇𝑢|𝑞) 𝑑𝑥+

�
Ω

𝜆

2
(𝑢− 𝑓)2 𝑑𝑥

⩽
�
Ω
𝑝
(︁
1
𝑝 |∇𝑣|

𝑝 +
(︁
1− 1

𝑝

)︁
|∇𝑢|𝑝

)︁
+ 𝑎(𝑥)𝑞

(︁
1
𝑞 |∇𝑣|

𝑞 +
(︁
1− 1

𝑞

)︁
|∇𝑢|𝑞

)︁
+

𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥,
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and therefore, we have
�
Ω
|∇𝑢|𝑝 + 𝑎(𝑥)|∇𝑢|𝑞 + 𝜆

2
(𝑢− 𝑓)2 𝑑𝑥 ⩽

�
Ω
|∇𝑣|𝑝 + 𝑎(𝑥)|∇𝑣|𝑞 + 𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥,

which gives,
𝐸(𝑢) ⩽ 𝐸(𝑣).

Since 𝑣 is any arbitrary function in 𝐾, we get 𝐸(𝑢) = min
𝑣∈𝐾

𝐸(𝑣). Therefore, 𝑢 is a

minimizer of 𝐸 on 𝐾.
Conversely, suppose that 𝑢 ∈ 𝐾 minimizes 𝐸. We aim to show that 𝑢 is a

solution of the boundary value problem (4.4.5)–(4.4.6). Let ℎ ∈ 𝐶∞
0 (Ω), and for

any real number 𝜀, we have 𝑢+ 𝜀ℎ ∈ 𝐾. Now, consider the functional 𝐸̃ : R → R,
defined as,

𝐸̃(𝜀) ..= 𝐸(𝑢+ 𝜀ℎ),

such that the function 𝑢 + 𝜀ℎ is admissible for the minimization problem. By as-
sumption, 𝑢 is a minimizer of 𝐸, thus the minimizer of 𝐸̃ must exist at 𝜀 = 0. This
implies that the derivative of 𝐸̃ vanishes at 𝜀 = 0, that is,

𝑑

𝑑𝜀
𝐸̃(𝜀) =

𝑑

𝑑𝜀
𝐸(𝑢+ 𝜀ℎ) = 0 at 𝜀 = 0. (4.4.7)

Using (4.4.4), we have from (4.4.7),
�
Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇ℎ+ 𝜆(𝑢− 𝑓)ℎ 𝑑𝑥 = 0, ℎ ∈ 𝐶∞
0 (Ω), (4.4.8)

which indicates that the solution 𝑢 is weak. As ℎ vanishes on 𝜕Ω, then using inte-
grating by parts formula for the first integral on the left hand side above, we get

�
Ω

(︁
−div

(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
+ 𝜆(𝑢− 𝑓)

)︁
ℎ 𝑑𝑥 = 0. (4.4.9)

Since ℎ can be chosen arbitrarily, then applying the Fundamental Lemma of Calculus
of Variations 2.1.2 for the above equation (4.4.9), we obtain,

−div
(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
+ 𝜆(𝑢− 𝑓) = 0, (4.4.10)

almost everywhere in Ω. Thus, we conclude that every minimizer of 𝐸 on 𝐾 solves
(4.4.5)–(4.4.6).

Next we define weak solution for the above Dirichlet problem (4.4.5)–(4.4.6).
Note that, it suffices to require 𝑢 ∈ 𝑊 1,2(Ω) satisfying (4.4.8), for any ℎ ∈ 𝐶∞

0 (Ω),
as a solution of (4.4.5) in a weak sense. Additionally, in order to satisfy the bound-
ary value condition (4.4.6), we consider functions in 𝑊 1,2

0 (Ω) taking zero boundary
values in a general sense, so we have 𝑢 − 𝑓 ∈ 𝑊 1,2

0 (Ω) (refer [15, Section 5.5]).
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Thus, a function 𝑢 ∈ 𝑊 1,ℋ(Ω) is called weak solution of the Dirichlet problem
(4.4.5)–(4.4.6) if the integral identity (4.4.8) holds for every ℎ ∈ 𝐶∞

0 (Ω), provided
𝑢− 𝑓 ∈𝑊 1,ℋ

0 (Ω). The equation obtained in (4.4.10) is known as the Euler equation
or Euler-Lagrange equation, corresponding to the functional 𝐸 in (4.4.1).

On the other hand, for solving minimization problems where no Dirichlet bound-
ary condition is imposed in the space of admissible functions, as in Theorem 4.3.2,
the Neumann boundary problem is considered. The Neumann boundary condition,
in general, emerges as a natural consequence of the weak formulation of the prob-
lem. In this case, the weak solution formulation is obtained in a similar manner as in
the Dirichlet case.

Now, in order to obtain the minimizer of the energy functional (4.4.1), we com-
pute the Euler-Lagrange equation with:

𝑑𝐸(𝑢;ℎ) = 0 in Ω. (4.4.11)

Then using (4.4.4) we obtain the Gâteaux derivative of 𝐸 as,

𝑑𝐸(𝑢;ℎ) =

�
Ω
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| · ∇ℎ+ 𝜆(𝑢− 𝑓)ℎ 𝑑𝑥.

Further applying the Green’s first identity (2.1.5), yields

𝑑𝐸(𝑢;ℎ) =

�
Ω

(︁
− div

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓)

)︁
ℎ 𝑑𝑥

+

�
𝜕Ω

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| ·𝑁
)︀
ℎ 𝑑𝑆

where 𝑁 is the outer unit normal vector for 𝑥 ∈ 𝜕Ω and 𝑑𝑆 denotes the surface
measure on 𝜕Ω. Then, from (4.4.11) and since ℎ ̸= 0, we obtain the Euler-Lagrange
equation,

−div
(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓) = 0, in Ω,

and a Neumann natural boundary condition,

𝜕𝑢

𝜕𝑁
= 0, on 𝜕Ω.

Thus, the minimizer of 𝐸(𝑢) is obtained by solving the boundary value problem,⎧⎨⎩−div
(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓) = 0 in Ω

∇𝑢 ·𝑁 = 0 on 𝜕Ω.

Note here that, the Neumann boundary condition does not originate from restric-
tions on the function space where minimization of the functional takes place, but as
part of the derivative condition 𝑑𝐸(𝑢) = 0. Thus, the admissible variations ℎ, in
this case, are free to vary on the boundary. Due to such characteristics, boundary
problems with Neumann condition are more widely used for numerical purposes, in
compared to the Dirichlet boundary condition.
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4.4.1 Heat flow and the associated weak solution. In [56], Rudin et al. pro-
posed the use of artificial time to solve Euler-Lagrange equation, which is equivalent
to the steepest descent of the energy functional. For such approach, we first consider
the image as a function of space and time, say 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐶2(Ω)), having bound-
ary function 𝑓 : Ω → R, both continuous up to the boundary of Ω𝑇

..= Ω×(0, 𝑇 ) for
any 𝑇 ∈ (0,∞). The associated 𝐿2-gradient flow [15] of functional𝐸(𝑢), defined in
(4.4.1), is given by 𝑢𝑡 = −𝜕𝐸(𝑢), where 𝑢𝑡 is the partial derivative of 𝑢(𝑥, 𝑡) with
respect to 𝑡, and 𝜕𝐸(𝑢) denotes the functional derivative of 𝐸 to 𝑢 which general-
izes the ’gradient’ notion for functions. One version of functional derivative is the
Gâteaux derivative, as in (4.4.2) for functional 𝐸 where the boundary term vanishes,
expressed as follows

𝑑𝐸(𝑢;ℎ) =

�
Ω

(︁
− div

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓)

)︁
ℎ 𝑑𝑥

=
⟨
−div

(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
+ 𝜆(𝑢− 𝑓), ℎ

⟩
2

where ℋ𝑟(𝑥, 𝑟) is the derivative of ℋ(𝑥, 𝑟) with respect to 𝑟 and ⟨·, ·⟩ is the 𝐿2-inner
product over Ω. The above can be interpreted as the directional derivative of 𝐸 in
the direction of ℎ, that is,

⟨𝜕𝐸(𝑢), ℎ⟩2 =
⟨
−div

(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
+ 𝜆(𝑢− 𝑓), ℎ

⟩
2

and, thus, we get

𝜕𝐸(𝑢) = −div
(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
+ 𝜆(𝑢− 𝑓).

Hence, the associated gradient flow of 𝐸(𝑢) is of the form,

𝑢𝑡 = div
(︁
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|

)︁
− 𝜆(𝑢− 𝑓) in Ω× R+.

The associated heat flow to the problem (4.3.4) can then be written as:

𝑢𝑡 = div
(︁
𝑝|∇𝑢|𝑝−1 ∇𝑢

|∇𝑢| + 𝑎(𝑥) 𝑞|∇𝑢|𝑞−1 ∇𝑢

|∇𝑢|

)︁
− 𝜆(𝑢− 𝑓), in Ω𝑇 (4.4.12)

𝑢(𝑥, 𝑡) = 𝑓(𝑥), on 𝜕Ω× (0, 𝑇 ). (4.4.13)

We also consider an initial condition at 𝑡 = 0, associated with the above boundary
problem:

𝑢(𝑥, 0) = 𝑓(𝑥), in Ω× {𝑡 = 0}. (4.4.14)

In general, the above boundary problem (4.4.12)–(4.4.13) does not have a clas-
sical solution, so we need to introduce a weak formulation in order to satisfy the
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conditions for the well-posedness of the problem. We now derive the weak solution
formulation of the boundary problem as follows.

Suppose that 𝑢 is a classical solution of (4.4.12)–(4.4.13) belonging to the func-
tion space 𝐿2(0, 𝑇 ;𝐶2(Ω)) ∩ 𝐶1(Ω𝑇 ), and 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶1(Ω𝑇 ),
and both 𝑢(·, 𝑡) and 𝑣(·, 𝑡) have the same boundary function 𝑓 continuous upto
𝜕Ω × (0, 𝑇 ), for every 𝑡. Now multiplying (4.4.12) by 𝑣 − 𝑢 both sides and in-
tegrating over Ω to obtain,

�
Ω
𝑢𝑡(𝑣− 𝑢) 𝑑𝑥 =

�
Ω
div

(︁
𝑝∇𝑢

|∇𝑢|2−𝑝 + 𝑎(𝑥)
𝑞∇𝑢

|∇𝑢|2−𝑞

)︁
(𝑣− 𝑢)− 𝜆(𝑢− 𝑓)(𝑣− 𝑢) 𝑑𝑥.

At the boundary 𝜕Ω, 𝑣− 𝑢 = 𝑓 − 𝑓 = 0, then using integration by parts formula for
the integral on the right hand side above gives,

�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥

= −
�
Ω

(︁
𝑝∇𝑢

|∇𝑢|2−𝑝 + 𝑎(𝑥)
𝑞∇𝑢

|∇𝑢|2−𝑞

)︁
· ∇(𝑣 − 𝑢) 𝑑𝑥

−
�
Ω
𝜆(𝑢− 𝑓)(𝑣 − 𝑓 − 𝑢+ 𝑓) 𝑑𝑥

= −
�
Ω

(︁
𝑝

|∇𝑢|2−𝑝 + 𝑎(𝑥)
𝑞

|∇𝑢|2−𝑞

)︁
∇𝑢 · ∇𝑣 𝑑𝑥+

�
Ω
(𝑝|∇𝑢|𝑝 + 𝑎(𝑥) 𝑞|∇𝑢|𝑞) 𝑑𝑥

+

�
Ω
𝜆(𝑢− 𝑓)2 𝑑𝑥−

�
Ω
𝜆(𝑢− 𝑓)(𝑣 − 𝑓) 𝑑𝑥.

Further using absolute value relation on the first integral on the right implies,

�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥 ⩾ −

�
Ω
(𝑝|∇𝑢|𝑝−1|∇𝑣|+ 𝑎(𝑥)𝑞|∇𝑢|𝑞−1|∇𝑣|) 𝑑𝑥

+

�
Ω
(𝑝|∇𝑢|𝑝 + 𝑎(𝑥)𝑞|∇𝑢|𝑞) 𝑑𝑥+

�
Ω
𝜆(𝑢− 𝑓)2 − 𝜆

2
(𝑢− 𝑓)2

+
𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥.

Thereafter, applying Young’s inequality (2.1.7) to each of the terms in the first inte-
gral on the right above implies,

�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥

⩾ −
�
Ω
𝑝
(︁
1

𝑝
|∇𝑣|𝑝 +

(︁
1− 1

𝑝

)︁
|∇𝑢|𝑝

)︁
+ 𝑎(𝑥) 𝑞

(︁
1

𝑞
|∇𝑣|𝑞 +

(︁
1− 1

𝑞

)︁
|∇𝑢|𝑞

)︁
𝑑𝑥

+

�
Ω
(𝑝|∇𝑢|𝑝 + 𝑎(𝑥) 𝑞|∇𝑢|𝑞) 𝑑𝑥+

�
Ω

𝜆

2
(𝑢− 𝑓)2 𝑑𝑥−

�
Ω

𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥,
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that is,�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥

⩾
�
Ω

(︀
|∇𝑢|𝑝 + 𝑎(𝑥)|∇𝑢|𝑞 + 𝜆

2
(𝑢− 𝑓)2

)︀
−
(︀
|∇𝑣|𝑝 + 𝑎(𝑥)|∇𝑣|𝑞 + 𝜆

2
(𝑣 − 𝑓)2

)︀
𝑑𝑥.

Hence, we obtain �
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥+ 𝐸(𝑣) ⩾ 𝐸(𝑢).

Further integrating both sides with respect to 𝑡 over [0, 𝑠], where 𝑠 ∈ (0, 𝑇 ], yields� 𝑠

0

�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑣) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢) 𝑑𝑡. (4.4.15)

Now if we consider that (4.4.15) holds, then for 𝑤 ∈ 𝐶∞
0 (Ω𝑇 ), setting 𝑣 ..= 𝑢 +

𝜀𝑤, 𝜀 ∈ (0, 1) in (4.4.15), we have� 𝑠

0

�
Ω
𝑢𝑡𝜀𝑤 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑢+ 𝜀𝑤) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢) 𝑑𝑡,

which implies that
� 𝑠
0

�
Ω 𝑢𝑡𝜀𝑤 𝑑𝑥 𝑑𝑡+

� 𝑠
0 𝐸(𝑢+ 𝜀𝑤) 𝑑𝑡 attains a minimum at 𝜀 = 0.

Thus, at
𝜕

𝜕𝜀

(︂� 𝑠

0

�
Ω
𝑢𝑡𝜀𝑤 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑢+ 𝜀𝑤) 𝑑𝑡

)︂ ⃒⃒⃒⃒
𝜀=0

= 0,

interchanging the order of integration and differentiation using Leibniz’s rule, as the
integrands: 𝐸(𝑢+ 𝜀𝑤) and its derivative with respect to 𝜀 are continuous in 𝑥 and 𝑡
over Ω𝑇 , we then obtain from above,� 𝑠

0

�
Ω
𝑢𝑡𝑤 𝑑𝑥𝑑𝑡+

� 𝑠

0

�
Ω
(𝑝|∇𝑢|𝑝−1 + 𝑎(𝑥) 𝑞|∇𝑢|𝑞−1)

∇𝑢

|∇𝑢| · ∇𝑤

+ 𝜆(𝑢− 𝑓)𝑤 𝑑𝑥𝑑𝑡 = 0,

that is,� 𝑠

0

�
Ω
𝑢𝑡𝑤 𝑑𝑥𝑑𝑡+

� 𝑠

0

�
Ω

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
· ∇𝑤 + 𝜆(𝑢− 𝑓)𝑤 𝑑𝑥𝑑𝑡 = 0.

Since 𝑤 = 0 on 𝜕Ω, then applying integration by parts formula above to get,� 𝑠

0

�
Ω
𝑢𝑡𝑤 𝑑𝑥𝑑𝑡+

� 𝑠

0

�
Ω

(︁
− div

(︀
ℋ𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢|
)︀
+ 𝜆(𝑢− 𝑓)

)︁
𝑤 𝑑𝑥𝑑𝑡 = 0,

which holds for all 𝑠 ∈ (0, 𝑇 ] and 𝑤 ∈ 𝐶∞
0 (Ω𝑇 ). Since 𝑤 is arbitrary, then by

Fundamental Lemma of Calculus of Variations 2.1.2, we obtain from the above
equation, 𝑢𝑡 = div

(︀
ℋ𝑟(𝑥, |∇𝑢|) ∇𝑢

|∇𝑢|
)︀
− 𝜆(𝑢 − 𝑓), which is the heat flow equation

(4.4.12). This motivates that, if 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω)) satisfies (4.4.15)
with 𝑢𝑡 ∈ 𝐿2(Ω𝑇 ), then 𝑢 is a weak solution (pseudosolution) of (4.4.12)–(4.4.13),
in the sense of distribution. We, thus, have the following definition.
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Definition 4.4.2. A function 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω)) with weak derivative
𝑢𝑡 ∈ 𝐿2(Ω𝑇 ) is called a weak solution of (4.4.12)–(4.4.13) if

(i) 𝑢(·, 𝑡)− 𝑓 ∈𝑊 1,ℋ
0 (Ω), for every 𝑡, where 𝑓 ∈𝑊 1,ℋ(Ω), and

(ii) 𝑢 satisfies (4.4.15) for all 𝑠 ∈ (0, 𝑇 ] and 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω))

such that 𝑣(·, 𝑡)− 𝑓 ∈𝑊 1,ℋ
0 (Ω), for every 𝑡.

4.4.2 The approximate functional and the associated boundary prob-
lem. Among the various regularization approaches [20; 33] developed so far to
achieve specific geometric properties, we consider the 𝜖-regularization technique
[20] to artificially smooth the problem (4.3.4). For bounded set Ω ⊂ R𝑛 with Lips-
chitz boundary, we regularize ℋ(𝑥, 𝑟), 𝑟 ∈ R+ by introducing a smoothing parame-
ter 𝜖 ∈ (0, 1) such that the approximate functional, ℋ𝜖 : Ω× [0,∞) → R, is defined
as:

ℋ𝜖(𝑥, 𝑟) ..=
(︀√︀

𝑟2 + 𝜖2
)︀𝑝

+ 𝑎(𝑥)
(︀√︀

𝑟2 + 𝜖2
)︀𝑞
, 1 < 𝑝 ⩽ 𝑞 ⩽ 2.

Here, the function 0 ⩽ 𝑎 ∈ 𝐿∞(R𝑛) ∩ 𝐶2(Ω) is Lipschitz continuous and addition-
ally assume that 𝑎 is constant outside some large ball in R𝑛 containing Ω, so that
the decay condition (𝐴2) holds for ℋ(𝑥, 𝑟). Moreover, ℋ satisfies (A1) condition,
provided 𝑛

𝑞 (𝑝 − 𝑞) ⩽ 1 holds [24, Proposition 7.2.2]. Further, we consider that the
function 𝑎 has bounded second order derivative, which is mainly required to satisfy
solvability conditions of the boundary problem.

The derivative of ℋ𝜖(𝑥, 𝑟) with respect to 𝑟, given by ℋ𝜖
𝑟 : Ω × [0,∞) → R, is

of the form,

ℋ𝜖
𝑟(𝑥, 𝑟)

..=
𝜕

𝜕𝑟
ℋ𝜖(𝑥, 𝑟) =

𝑝𝑟(︀√
𝑟2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞𝑟(︀√

𝑟2 + 𝜖2
)︀2−𝑞 .

Further calculation of second derivative of ℋ𝜖(𝑥, 𝑟) with respect to 𝑟 yields,

𝜕2

𝜕𝑟2
ℋ𝜖(𝑥, 𝑟) =

𝑝(𝑝− 1)𝑟2 + 𝑝𝜖2(︀√
𝑟2 + 𝜖2

)︀4−𝑝 + 𝑎(𝑥)
𝑞(𝑞 − 1)𝑟2 + 𝑞𝜖2(︀√

𝑟2 + 𝜖2
)︀4−𝑞 > 0.

This implies that ℋ𝜖(𝑥, 𝑟) is (strictly) convex with respect to the second variable.
While, as 𝜖→ 0, it is clear that ℋ𝜖(𝑥, 𝑟) → ℋ(𝑥, 𝑟) and ℋ𝜖

𝑟(𝑥, 𝑟) → ℋ𝑟(𝑥, 𝑟).
For any 𝜖 ∈ (0, 1), we have the estimates (𝑟2 + 𝜖2)

𝑝

2 ⩾ (𝑟2)
𝑝

2 and (𝑟2 + 𝜖2)
𝑞

2 ⩾

(𝑟2)
𝑞

2 , where 𝑝, 𝑞 ∈ (1, 2], from which (
√
𝑟2 + 𝜖2)

𝑝− (
√
𝑟2)

𝑝
+𝑎(𝑥)((

√
𝑟2 + 𝜖2)

𝑞−
(
√
𝑟2)

𝑞
) ⩾ 0 holds. Thus, we have the property,

ℋ𝜖(𝑥, 𝑟) ⩾ ℋ(𝑥, 𝑟). (4.4.16)

On the other hand, for ℋ𝜖, we use the estimate
√
𝑎2 + 𝑏2 ⩽ 𝑎 + 𝑏, (𝑎, 𝑏 ∈ R+),

to have, for any 𝑟 > 0,

ℋ𝜖(𝑥, 𝑟) =
(︀√︀

𝑟2 + 𝜖2
)︀𝑝

+ 𝑎(𝑥)
(︀√︀

𝑟2 + 𝜖2
)︀𝑞

⩽ (𝑟 + 𝜖)𝑝 + 𝑎(𝑥)(𝑟 + 𝜖)𝑞,
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also expressed as,

ℋ𝜖(𝑥, 𝑟) ⩽ 2𝑝
(︁
𝑟 + 𝜖

2

)︁𝑝
+ 𝑎(𝑥) 2𝑞

(︁
𝑟 + 𝜖

2

)︁𝑞
.

Further due to the convexity of 𝑡 ↦→ 𝑡𝑝 and 𝑡 ↦→ 𝑡𝑞 for the right-hand side terms,

ℋ𝜖(𝑥, 𝑟) ⩽ 2𝑝−1(𝑟𝑝 + 𝜖𝑝) + 𝑎(𝑥) 2𝑞−1(𝑟𝑞 + 𝜖𝑞)

⩽ 2(𝑟𝑝 + 𝑎(𝑥)𝑟𝑞 + (|𝑎(𝑥)|+ 1)𝜖𝑝),

and since |𝑎| ⩽𝑀 , where 𝑀 > 0 is constant, we obtain

ℋ𝜖(𝑥, 𝑟) ⩽ 2ℋ(𝑥, 𝑟) + 2(𝑀 + 1)𝜖.

Hence, we have the estimate,

ℋ𝜖(𝑥, 𝑟) ⩽ 2ℋ(𝑥, 𝑟) + 𝐶, (4.4.17)

where the constant 𝐶 = 2(𝑀 + 1)𝜖 > 0.
Next, we regularize the boundary function 𝑓 through mollification. We consider

𝑓 in the whole of R𝑛 instead of Ω, such that 𝑓 ∈ 𝑊 1,ℋ(R𝑛) ∩ 𝐿∞(R𝑛). First
consider a standard mollifier 𝜁 ∈ 𝐿1(R𝑛), defined as,

𝜁(𝑥) ..=

{︃
𝐶 exp

(︁
1

|𝑥|2−1

)︁
, |𝑥| < 1

0, else,

where constant 𝐶 > 0 is selected so that ‖𝜁‖1 =
�
R𝑛 𝜁 𝑑𝑥 = 1. Then, for 𝛿 > 0 and

𝑥 ∈ Ω, we define the convolution,

𝑓𝛿(𝑥) ..= (𝑓 * 𝜁𝛿)(𝑥) ..=

�
R𝑛

𝑓(𝑦) 𝜁𝛿(𝑥− 𝑦) 𝑑𝑦 =

�
R𝑛

𝑓(𝑥− 𝑦) 𝜁𝛿(𝑦) 𝑑𝑦. (4.4.18)

where 𝜁𝛿(𝑥) ..= 1
𝛿𝑛 𝜁

(︀
𝑥
𝛿

)︀
. It holds that 𝜁𝛿 ∈ 𝐶∞

0 (R𝑛) and satisfy
�
R𝑛 𝜁𝛿 𝑑𝑥 = 1. Thus,

by standard mollification properties [15, C.4., Theorem 6] and Young’s convolution
inequality, we can conclude that 𝑓𝛿 ∈ 𝐶∞(Ω) and ∇𝑓𝛿 ..= ∇𝑓 * 𝜁𝛿 in Ω. Further,
since the set Ω is compactly inside R𝑛 and 𝑓𝛿 is continuous upto the boundary of Ω,
so 𝑓𝛿 is bounded in Ω.

Since ℋ satisfies (aDec), (A0), (A1) and (A2) conditions, then by Lemma 2.2.11,
we obtain the following convergence property, as 𝛿 → 0,

𝑓𝛿 → 𝑓 in 𝑊 1,ℋ(Ω) (4.4.19)

which implies 𝑓𝛿 ∈𝑊 1,ℋ(Ω).
We note another estimate,

‖𝑓𝛿‖𝐿∞(Ω) ⩽ ‖𝑓‖𝐿∞(R𝑛), (4.4.20)
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which follows from Young’s inequality for convolution (2.1.8).

Now, to prove the existence of solution to the heat flow problem (4.4.12)–(4.4.13),
we first consider the following approximated problem:

𝑢𝑡 = 𝜖Δ𝑢+ div
(︁
ℋ𝜖

𝑟(𝑥, |∇𝑢|)
∇𝑢

|∇𝑢|

)︁
− 𝜆(𝑢− 𝑓𝛿), in Ω𝑇 (4.4.21)

𝑢(𝑥, 𝑡) = 𝑓𝛿(𝑥), on 𝜕Ω× [0, 𝑇 ] (4.4.22)

where 𝑓𝛿 ∈ 𝐶∞(Ω) and Δ𝑢 =
𝑛∑︀

𝑖=1

𝜕2𝑢
𝜕𝑥2

𝑖
is the Laplacian of 𝑢. The initial condition

associated with the above boundary problem at 𝑡 = 0 is taken as:

𝑢(𝑥, 0) = 𝑓𝛿(𝑥), in Ω× {𝑡 = 0}. (4.4.23)

Note that in the divergence term in (4.4.21), if ∇𝑢 = 0 then ℋ𝜖
𝑟(𝑥, |∇𝑢|)

∇𝑢

|∇𝑢| = 0.

We aim to prove that, under suitable conditions, as 𝜖 → 0 and 𝛿 → 0, the so-
lution of the approximated problem (4.4.21)–(4.4.22) converges to the solution of
the boundary problem (4.4.12)–(4.4.13). In order for that, we first prove the exis-
tence of solution of the approximated problem (4.4.21)–(4.4.22). Taking (4.4.21) as
a quasilinear equation in the form,

ℒ𝑢 ..= 𝑢𝑡 −
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑢,∇𝑢)𝑢𝑥𝑖𝑥𝑗
+ 𝑔(𝑥, 𝑡, 𝑢,∇𝑢) = 0, (4.4.24)

where the coefficient functions 𝑔𝑖𝑗 and 𝑔 are continuous functions in the domain.
Then calculating the divergence term in (4.4.21) to obtain

div
(︁
ℋ𝜖

𝑟(𝑥, |∇𝑢|)
∇𝑢

|∇𝑢|

)︁
= div

(︂
𝑝∇𝑢(︀√︀

|∇𝑢|2 + 𝜖2
)︀2−𝑝 + 𝑎(𝑥)

𝑞∇𝑢(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞

)︂

which gives,

div
(︁
ℋ𝜖

𝑟(𝑥, |∇𝑢|)
∇𝑢

|∇𝑢|

)︁
=

(︂
𝑝(︀√︀

|∇𝑢|2 + 𝜖2
)︀2−𝑝 +

𝑎(𝑥) 𝑞(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞

)︂
Δ𝑢+

(︂
𝑝(𝑝− 2)(︀√︀

|∇𝑢|2 + 𝜖2
)︀4−𝑝

+
𝑎(𝑥) 𝑞(𝑞 − 2)(︀√︀
|∇𝑢|2 + 𝜖2

)︀4−𝑞

)︂ 𝑛∑︁
𝑖,𝑗=1

𝜕𝑢

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝑞(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞 (∇𝑎 · ∇𝑢).
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Then (4.4.21) is of the form,

𝑢𝑡 =

𝑛∑︁
𝑖,𝑗=1

(︂(︀
𝜖+

𝑝(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑝 +
𝑎(𝑥) 𝑞(︀√︀

|∇𝑢|2 + 𝜖2
)︀2−𝑞

)︀
𝛿𝑖𝑗 +

(︀ 𝑝(𝑝− 2)|∇𝑢|2(︀√︀
|∇𝑢|2 + 𝜖2

)︀4−𝑝

+ 𝑎(𝑥)
𝑞(𝑞 − 2)|∇𝑢|2(︀√︀
|∇𝑢|2 + 𝜖2

)︀4−𝑞

)︀ 𝜕𝑢

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

)︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝑞(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞∇𝑎 · ∇𝑢

− 𝜆(𝑢− 𝑓𝛿).
(4.4.25)

Comparing the above expression (4.4.25) with (4.4.24), the coefficient functions 𝑔𝑖𝑗
and 𝑔 can be expressed as,

𝑔𝑖𝑗(𝑥, 𝑡, 𝑢,∇𝑢) =
(︀
𝜖+

𝑝(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑝 +
𝑎(𝑥) 𝑞(︀√︀

|∇𝑢|2 + 𝜖2
)︀2−𝑞

)︀
𝛿𝑖𝑗

+
(︀ 𝑝(𝑝− 2)|∇𝑢|2(︀√︀

|∇𝑢|2 + 𝜖2
)︀4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)|∇𝑢|2(︀√︀
|∇𝑢|2 + 𝜖2

)︀4−𝑞

)︀ 𝜕𝑢

𝜕𝑥𝑖

𝜕𝑢

𝜕𝑥𝑗

(4.4.26)

and,

𝑔(𝑥, 𝑡, 𝑢,∇𝑢) = − 𝑞(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞 (∇𝑎 · ∇𝑢) + 𝜆(𝑢− 𝑓𝛿). (4.4.27)

Here, the partial differential equation (4.4.25) is uniformly parabolic, as proved in
the appendix A.2, which satisfies the following parabolicity condition, for any 𝑠 ∈ R
and 𝜅 ∈ R𝑛,

𝜈 |𝜉|2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇 |𝜉|2, (𝜈, 𝜇 > 0) (4.4.28)

where 𝜉 = (𝜉1, . . . , 𝜉𝑛) is an arbitrary real vector. Due to the parabolic nature,
the solvability of the approximated problem (4.4.21)–(4.4.22) can be proved from
the theory of general quasilinear parabolic equations, referred in the book of O. A.
Ladyzhenskaya, V. A. Solonnikov and N. N. Uralt́seva [38]. We can then conclude
the following result on the existence of solution of the quasilinear boundary value
problem.

Lemma 4.4.3. Let Ω ⊂ R𝑛 be a bounded open set with Lipschitz boundary and
𝑤 ∈ 𝐶∞(Ω). Consider the following quasilinear boundary problem,

𝑢𝑡(𝑥, 𝑡)−
𝑛∑︀

𝑖,𝑗=1
𝑔𝑖𝑗(𝑥, 𝑡, 𝑢,∇𝑢)𝑢𝑥𝑖𝑥𝑗

+ 𝑔(𝑥, 𝑡, 𝑢,∇𝑢) = 0, (𝑥, 𝑡) ∈ Ω𝑇

𝑢(𝑥, 𝑡) = 𝑤(𝑥), (𝑥, 𝑡) ∈ 𝜕Ω× (0, 𝑇 )

⎫⎪⎬⎪⎭
(4.4.29)

where 𝑔𝑖𝑗 and 𝑔 are given by (4.4.26) and (4.4.27) respectively. Then there exists a
solution of the boundary problem (4.4.29) in𝐶(Ω𝑇 )∩𝐿2(0, 𝑇 ;𝑊 1,2(Ω)). Moreover,
𝑢(·, 𝑡)− 𝑤 ∈𝑊 1,2

0 (Ω) holds for every 𝑡.
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Proof. Here, 𝑔𝑖𝑗 and 𝑔 in (4.4.26) and (4.4.27), satisfy the solvability conditions in
[24, p. 560, Theorem 4.4, Chapter 6], as proved in Proposition A.3.1 in the appendix.
Then, for 𝛾 ∈ (0, 1), we have that 𝑢 ∈ 𝐶(Ω𝑇 ) ∩ 𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ) is a solution of the
quasilinear problem (4.4.29), where𝐶2+𝛾,1+ 𝛾

2 (Ω𝑇 ) is the Hölder space consisting of
derivatives of 𝑢(𝑥, 𝑡) with respect to 𝑥 upto order 2 and with respect to 𝑡 upto order
1. Moreover, we have 𝑢 ∈ 𝐶(Ω𝑇 ) ∩ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) and 𝑢(·, 𝑡)− 𝑤 ∈ 𝑊 1,2

0 (Ω)

for every 𝑡 (refer [28, Lemma 1.26]).

Remark 4.4.30. The result in Lemma 4.4.3 further implies that the solution of the
parabolic boundary problem (4.4.29), satisfies𝐶∞-regularity in Ω𝑇 by [15, Theorem
8, Section 2.3, Chapter 2], irrespective of smoothness of the boundary values on 𝜕Ω×
(0, 𝑇 ). This regularity assertion is required for estimating mixed order derivative of
the solution with respect to both 𝑥 and 𝑡. Thus, for fixed 𝛿, 𝜖 > 0, considering 𝑢𝜖𝛿(𝑥, 𝑡)
as the solution of the quasilinear boundary problem (4.4.29), it follows from the
previous Lemma 4.4.3 that, the approximated problem (4.4.21)–(4.4.22) has weak
solution 𝑢𝜖𝛿 in 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ), such that 𝑢𝜖𝛿(·, 𝑡)− 𝑓𝛿 ∈𝑊 1,2

0 (Ω) for
each 𝑡, where 𝑓𝛿 ∈ 𝐶∞(Ω).

Next, in order to prove the existence of solution of the original boundary problem
(4.4.12)–(4.4.13), we first produce the following a priori estimates.

Lemma 4.4.4. Let Ω ⊂ R𝑛 be a bounded open set with Lipschitz boundary and
𝑓 ∈ 𝑊 1,ℋ(R𝑛) ∩ 𝐿∞(R𝑛). For fixed 𝛿, 𝜖 > 0 and 𝑓𝛿 ∈ 𝐶∞(Ω), if function 𝑢𝜖𝛿 ∈
𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ) is a solution of the problem (4.4.21)–(4.4.22) having
initial condition (4.4.23), then (𝑢𝜖𝛿)𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)) satisfies
� 𝑇

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡

+ sup
𝑠∈(0,𝑇 ]

�
Ω

(︁
𝜖

2
|∇𝑢𝜖𝛿(𝑥, 𝑠)|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿(𝑥, 𝑠)|) +
𝜆

2
(𝑢𝜖𝛿(𝑥, 𝑠)− 𝑓𝛿)

2
)︁
𝑑𝑥 ⩽ 𝐶,

(4.4.31)

where 𝐶 > 0 is a constant depending only on Ω and 𝜖‖∇𝑓𝛿‖2𝐿2(Ω).

Proof. Since 𝑢𝜖𝛿 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ) satisfies the approximated prob-
lem (4.4.21)–(4.4.22), then multiplying (4.4.21) by (𝑢𝜖𝛿)𝑡 and integrating over Ω, we
obtain,�

Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 =

�
Ω
𝜖(𝑢𝜖𝛿)𝑡Δ𝑢

𝜖
𝛿 𝑑𝑥+

�
Ω
(𝑢𝜖𝛿)𝑡 div

(︀
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|)
∇𝑢𝜖

𝛿

|∇𝑢𝜖
𝛿|
)︀
𝑑𝑥

− 𝜆

�
Ω
(𝑢𝜖𝛿)𝑡(𝑢

𝜖
𝛿 − 𝑓𝛿) 𝑑𝑥.

At the boundary 𝜕Ω, we have (𝑢𝜖𝛿)𝑡 = 0, since 𝑓𝛿 is independent of 𝑡. Then, for
fixed 𝑡, applying integration by parts formula over Ω for the first two integrals on the
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right-hand side above to get,�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 = −𝜖
�
Ω
∇(𝑢𝜖𝛿)𝑡 · ∇𝑢

𝜖
𝛿 𝑑𝑥−

�
Ω
∇(𝑢𝜖𝛿)𝑡 ·

∇𝑢𝜖
𝛿

|∇𝑢𝜖
𝛿|
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|) 𝑑𝑥

− 𝜆

�
Ω
(𝑢𝜖𝛿)𝑡(𝑢

𝜖
𝛿 − 𝑓𝛿) 𝑑𝑥.

Since 𝑢𝜖𝛿 ∈ 𝐶∞(Ω𝑇 ), then interchanging the differentiation order of the mixed
derivatives of 𝑥 and 𝑡 using Schwarz’s Theorem, in the previous equation to obtain�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 = −𝜖
�
Ω

𝜕

𝜕𝑡
(∇𝑢𝜖𝛿) · ∇𝑢𝜖𝛿 𝑑𝑥−

�
Ω

𝜕

𝜕𝑡
(∇𝑢𝜖𝛿)·

∇𝑢𝜖
𝛿

|∇𝑢𝜖
𝛿|
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|) 𝑑𝑥

− 𝜆

�
Ω

𝜕

𝜕𝑡
(𝑢𝜖𝛿 − 𝑓𝛿)

2 𝑑𝑥.

(4.4.32)

For the terms on the right-hand side above, note that 𝜕
𝜕𝑡(∇𝑢

𝜖
𝛿) · ∇𝑢𝜖𝛿 = 1

2
𝜕
𝜕𝑡 |∇𝑢

𝜖
𝛿|
2,

and, on the other hand, we compute,

𝜕

𝜕𝑡
(ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|)) =

(︂
𝑝|∇𝑢𝜖

𝛿|(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞|∇𝑢𝜖

𝛿|(︀√︀
|∇𝑢|2 + 𝜖2

)︀2−𝑞

)︂
𝜕

𝜕𝑡
|∇𝑢𝜖𝛿|

= ℋ𝜖
𝑟(𝑥, |∇𝑢𝜖𝛿|)

∇𝑢𝜖
𝛿

|∇𝑢𝜖
𝛿|
· 𝜕

𝜕𝑡
(∇𝑢𝜖𝛿).

Then plugging the above derivatives in (4.4.32) implies,�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥

= −
�
Ω

𝜖

2

𝜕

𝜕𝑡
|∇𝑢𝜖𝛿|

2 𝑑𝑥−
�
Ω

𝜕

𝜕𝑡
(ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|)) 𝑑𝑥− 𝜆

�
Ω

𝜕

𝜕𝑡
(𝑢𝜖𝛿 − 𝑓𝛿)

2 𝑑𝑥,

that is,�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥+

�
Ω

𝜕

𝜕𝑡

(︀ 𝜖
2
|∇𝑢𝜖𝛿|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|) + 𝜆(𝑢𝜖𝛿 − 𝑓𝛿)
2)︀ 𝑑𝑥 = 0.

Interchanging the order of integration and differentiation above using Leibniz’s in-
tegral rule, and further integrating with respect to 𝑡 over the interval [0, 𝑠] where
𝑠 ∈ (0, 𝑇 ], we have� 𝑠

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+

� 𝑠

0

𝜕

𝜕𝑡

�
Ω

(︀ 𝜖
2
|∇𝑢𝜖𝛿|

2+ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|)+𝜆(𝑢𝜖𝛿 − 𝑓𝛿)
2)︀ 𝑑𝑥 𝑑𝑡 = 0.

At 𝑡 = 0, we have 𝑢𝜖𝛿(𝑥, 0) = 𝑓𝛿(𝑥), then the above equation implies,
� 𝑠

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+

�
Ω

(︀ 𝜖
2
|∇𝑢𝜖𝛿(𝑥, 𝑠)|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿(𝑥, 𝑠)|)

+ 𝜆(𝑢𝜖𝛿(𝑥, 𝑠)− 𝑓𝛿)
2)︀ 𝑑𝑥 =

�
Ω

(︀ 𝜖
2
|∇𝑓𝛿|2 +ℋ𝜖(𝑥, |∇𝑓𝛿|)

)︀
𝑑𝑥.

51



Debangana Baruah

Applying the estimate ℋ𝜖(𝑥, |∇𝑓𝛿|) ⩽ 2ℋ(𝑥, |∇𝑓𝛿|)+𝐶 from (4.4.17), on the right-
hand side above, to have,
� 𝑠

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+

�
Ω

(︀ 𝜖
2
|∇𝑢𝜖𝛿(𝑥, 𝑠)|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿(𝑥, 𝑠)|)

+ 𝜆(𝑢𝜖𝛿(𝑥, 𝑠)− 𝑓𝛿)
2)︀ 𝑑𝑥 ⩽

�
Ω

(︀ 𝜖
2
|∇𝑓𝛿|2 + 2ℋ(𝑥, |∇𝑓𝛿|) + 𝐶

)︀
𝑑𝑥.

(4.4.33)

Further, since
�
Ωℋ(𝑥, |∇𝑓𝛿|) 𝑑𝑥 ⩽ 𝐶(constant), then the previous expression im-

plies,

� 𝑠

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+

�
Ω

(︀ 𝜖
2
|∇𝑢𝜖𝛿(𝑥, 𝑠)|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿(𝑥, 𝑠)|)

+ 𝜆(𝑢𝜖𝛿(𝑥, 𝑠)− 𝑓𝛿)
2)︀ 𝑑𝑥 ⩽ 𝐶,

(4.4.34)

where the constant 𝐶 depends on Ω and 𝜖‖∇𝑓𝛿‖2𝐿2(Ω). Thus, as 𝑠→ 𝑇 , then (4.4.34)
implies,

� 𝑇

0

�
Ω
|(𝑢𝜖𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+ sup
𝑠∈(0,𝑇 ]

�
Ω

(︀ 𝜖
2
|∇𝑢𝜖𝛿(𝑥, 𝑠)|

2 +ℋ𝜖(𝑥, |∇𝑢𝜖𝛿(𝑥, 𝑠)|)

+ 𝜆(𝑢𝜖𝛿(𝑥, 𝑠)− 𝑓𝛿)
2)︀ 𝑑𝑥 ⩽ 𝐶,

with constant 𝐶 depending only on Ω and 𝜖‖∇𝑓𝛿‖2𝐿2(Ω), as required.

Lemma 4.4.5. Let Ω ⊂ R𝑛 be a bounded open set with Lipschitz boundary and 𝑓 ∈
𝑊 1,ℋ(R𝑛)∩𝐿∞(R𝑛). For fixed 𝛿, 𝜖 > 0 and 𝑓𝛿 ∈ 𝐶∞(Ω), if 𝑢𝜖𝛿 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω))∩
𝐶∞(Ω𝑇 ) is the weak solution of the approximated problem (4.4.21)–(4.4.22) having
initial condition (4.4.23), then

‖𝑢𝜖𝛿‖𝐿∞(Ω𝑇 )
⩽ ‖𝑓‖𝐿∞(R𝑛). (4.4.35)

Proof. Let 𝑘 ..= ‖𝑓‖𝐿∞(R𝑛) and 𝐺 be a 𝐶0 truncation function defined as 𝐺(𝑣) ..=

max{𝑣, 0}. Choosing 𝑣 ..= 𝑢𝜖𝛿 − 𝑘, we have

𝐺(𝑢𝜖𝛿 − 𝑘) =

{︃
𝑢𝜖𝛿 − 𝑘, if 𝑢𝜖𝛿 − 𝑘 ⩾ 0,

0, otherwise.

By Lemma 2.2.7, we have, for fixed 𝑡 > 0,𝐺(𝑢𝜖𝛿(·, 𝑡)−𝑘) ∈𝑊 1,2(Ω). Let𝐺′ denote
the derivative of 𝐺(𝑢𝜖𝛿(·, 𝑡)− 𝑘) with respect to 𝑥, having value 𝐺′ = ∇𝑢𝜖𝛿(𝑥, 𝑡) for
almost every 𝑥 ∈ {𝑢𝜖𝛿(·, 𝑡) − 𝑘 ⩾ 0}, otherwise 𝐺′ = 0 for all other 𝑥. Since 𝑢𝜖𝛿
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is weak solution of (4.4.21), then multiplying (4.4.21) by 𝐺(𝑢𝜖𝛿 − 𝑘) and integrating
over Ω gives

�
Ω
(𝑢𝜖𝛿)𝑡𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥

=

�
Ω
𝜖Δ𝑢𝜖𝛿 𝐺(𝑢

𝜖
𝛿 − 𝑘) + div

(︁
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|)
∇𝑢𝜖

𝛿

|∇𝑢𝜖
𝛿|

)︁
𝐺(𝑢𝜖𝛿 − 𝑘)

− 𝜆(𝑢𝜖𝛿 − 𝑓𝛿)𝐺(𝑢
𝜖
𝛿 − 𝑘) 𝑑𝑥.

Using (4.4.20), we have at the boundary 𝜕Ω, 𝑢𝜖𝛿 = 𝑓𝛿 ⩽ |𝑓𝛿| ⩽ ‖𝑓𝛿‖𝐿∞(𝜕Ω) ⩽
‖𝑓‖𝐿∞(R𝑛) = 𝑘, that is 𝑢𝜖𝛿 − 𝑘 ⩽ 0, and hence, by definition, 𝐺(𝑢𝜖𝛿 − 𝑘) = 0. Then
using integration by parts formula for the right-hand side integral above gives,

�
Ω
(𝑢𝜖𝛿)𝑡𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥

= −
�
Ω
𝜖∇𝑢𝜖𝛿 ·𝐺′ 𝑑𝑥−

�
Ω
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|)
∇𝑢𝜖

𝛿

|∇𝑢𝜖
𝛿|
·𝐺′ 𝑑𝑥

−
�
Ω
𝜆(𝑢𝜖𝛿 − 𝑓𝛿)𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥.

(4.4.36)

To evaluate the right-hand expression in (4.4.36), we consider two cases: the first
case is for 𝑥 ∈ {𝑢𝜖𝛿(·, 𝑡) < 𝑘}. This yields 𝐺(𝑢𝜖𝛿 − 𝑘) = 0 and also 𝐺′ = 0.
Hence, (4.4.36) implies

�
{𝑢𝜖

𝛿(·,𝑡)<𝑘} (𝑢
𝜖
𝛿)𝑡𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥 = 0. The second case is for

𝑥 ∈ {𝑢𝜖𝛿(·, 𝑡) ⩾ 𝑘}. Then, we have 𝑢𝜖𝛿(·, 𝑡) ⩾ 𝑘 = ‖𝑓‖𝐿∞(R𝑛) ⩾ ‖𝑓𝛿‖𝐿∞(Ω) ⩾ 𝑓𝛿,
that is, 𝑢𝜖𝛿(·, 𝑡) ⩾ 𝑓𝛿 for every 𝑥 ∈ {𝑢𝜖𝛿(·, 𝑡) ⩾ 𝑘}. Moreover, for 𝑢𝜖𝛿(·, 𝑡) ⩾ 𝑘, we
have 𝐺(𝑢𝜖𝛿 − 𝑘) = 𝑢𝜖𝛿 − 𝑘 ⩾ 0. Additionally, 𝐺′ = ∇𝑢𝜖𝛿 in this case.

Now, for the right-hand side integrals in (4.4.36), we have
�
Ω
𝜆(𝑢𝜖𝛿 − 𝑓𝛿)𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥

=

�
Ω
𝜆(𝑢𝜖𝛿 − 𝑓𝛿)𝐺(𝑢

𝜖
𝛿 − 𝑘)𝜒{𝑢𝜖

𝛿(·,𝑡)<𝑘} 𝑑𝑥

+

�
Ω
𝜆(𝑢𝜖𝛿 − 𝑓𝛿)𝐺(𝑢

𝜖
𝛿 − 𝑘)𝜒{𝑢𝜖

𝛿(·,𝑡)⩾𝑘} 𝑑𝑥

⩾ 0 +

�
Ω
𝜆(𝑢𝜖𝛿 − 𝑓𝛿)

2 𝜒{𝑢𝜖
𝛿(·,𝑡)⩾𝑘} 𝑑𝑥 ⩾ 0

and, for
�
Ω
𝜖∇𝑢𝜖𝛿 ·𝐺′ 𝑑𝑥 =

�
Ω
𝜖∇𝑢𝜖𝛿 ·𝐺′𝜒{𝑢𝜖

𝛿(·,𝑡)<𝑘} 𝑑𝑥+

�
Ω
𝜖∇𝑢𝜖𝛿 ·𝐺′𝜒{𝑢𝜖

𝛿(·,𝑡)⩾𝑘} 𝑑𝑥

= 0 +

�
Ω
𝜖|∇𝑢𝜖𝛿|

2𝜒{𝑢𝜖
𝛿(·,𝑡)⩾𝑘} 𝑑𝑥 ⩾ 0
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and, similarly for,
�
Ω
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|)
∇𝑢𝜖

𝛿

|∇𝑢𝜖
𝛿|
·𝐺′ 𝑑𝑥 =

�
Ω
ℋ𝜖

𝑟(𝑥, |∇𝑢𝜖𝛿|)|∇𝑢𝜖𝛿|𝜒{𝑢𝜖
𝛿(·,𝑡)⩾𝑘} 𝑑𝑥 ⩾ 0

Since the value of the right-hand side expression in (4.4.36) is non-positive for every
𝑥, which implies

�
Ω (𝑢𝜖𝛿)𝑡𝐺(𝑢

𝜖
𝛿 − 𝑘) 𝑑𝑥 ⩽ 0, that is,

1

2

�
Ω

𝑑

𝑑𝑡
(𝐺(𝑢𝜖𝛿 − 𝑘))2 𝑑𝑥 ⩽ 0.

Interchanging the order of integration and differentiation through Leibniz integral
rule, we get 𝑑

𝑑𝑡

�
Ω

1
2(𝐺(𝑢

𝜖
𝛿 − 𝑘))2 𝑑𝑥 ⩽ 0, which implies that

�
Ω

1
2(𝐺(𝑢

𝜖
𝛿 − 𝑘))2 𝑑𝑥

is monotonically decreasing in 𝑡. Moreover, at the initial condition Ω× {𝑡 = 0}, we
have 𝑢𝜖𝛿 = 𝑓𝛿 ⩽ 𝑘, which implies 𝐺(𝑢𝜖𝛿 − 𝑘) = 0. So we can conclude that,

�
Ω

1

2
(𝐺(𝑢𝜖𝛿(𝑥, 𝑡)− 𝑘))2 𝑑𝑥 ⩽

�
Ω

1

2
(𝐺(𝑢𝜖𝛿(𝑥, 0)− 𝑘))2 𝑑𝑥 = 0.

Thus, we have 1
2

�
Ω(𝐺(𝑢

𝜖
𝛿(·, 𝑠) − 𝑘))2 𝑑𝑥 = 0, for every 𝑠 ∈ (0, 𝑇 ]. This yields

𝐺(𝑢𝜖𝛿(·, 𝑠)− 𝑘) = 0, which implies 𝑢𝜖𝛿(·, 𝑠) ⩽ 𝑘, for every 𝑠 ∈ (0, 𝑇 ].
On the other hand, considering 𝑣 ..= 𝑢𝜖𝛿+𝑘 and multiplying (4.4.21) by𝐺(𝑢𝜖𝛿+𝑘),

we follow the same process as above to obtain 𝑢𝜖𝛿(·, 𝑠) ⩾ −𝑘 for every 𝑠 ∈ (0, 𝑇 ].
Hence, we can conclude that −𝑘 ⩽ 𝑢𝜖𝛿(·, 𝑠) ⩽ 𝑘, that is |𝑢𝜖𝛿| ⩽ 𝑘, which implies,

‖𝑢𝜖𝛿‖𝐿∞(Ω𝑇 )
⩽ 𝑘 = ‖𝑓‖𝐿∞(R𝑛)

as required.

4.4.3 Existence and uniqueness of solution of the boundary value prob-
lem

Theorem 4.4.6. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and
ℋ : Ω × [0,∞) → [0,∞), as defined in (4.2.1) where 1 < 𝑝 ⩽ 𝑞 ⩽ 2 such that
𝑞 < 3

2𝑝. Suppose 𝑓 ∈𝑊 1,ℋ(R2)∩𝐿∞(R2). Then there exists a unique weak solution
𝑢 ∈ 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω)∩𝐿∞(Ω)) of the boundary problem (4.4.12)–(4.4.13) having
initial condition (4.4.14), with 𝑢𝑡 ∈ 𝐿2(Ω𝑇 ).

Proof. Existence: For fixed 𝛿, 𝜖 > 0, there exists a strong solution of the approxi-
mated problem (4.4.21)–(4.4.22) in 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ), say 𝑢𝜖𝛿(𝑥, 𝑡), by
Lemma 4.4.3, such that 𝑢𝜖𝛿(·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,2

0 (Ω) for each 𝑡, where 𝑓𝛿 ∈ 𝐶∞(Ω) is
the convolution function of 𝑓 as defined in (4.4.18). Note that, on passing 𝛿, 𝜖→ 0 in
the approximated problem (4.4.21)–(4.4.22), we would obtain the heat flow problem
(4.4.12)–(4.4.13), under suitable convergence conditions. So, to prove the existence
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of solution for the boundary problem (4.4.12)–(4.4.13), the approach involves first
fixing 𝛿 > 0 for the solution of the boundary problem (4.4.21)–(4.4.22) 𝑢𝜖𝛿(𝑥, 𝑡) and
pass to the limit as 𝜖→ 0, and thereafter passing 𝛿 → 0.

Step 1: With fixed 𝛿 > 0, passing 𝜖 → 0. Now, for fixed 𝛿 > 0, we have
{𝑢𝜖𝑖𝛿 }

∞
𝑖=1

as the sequence of solutions to the approximated problem (4.4.21)–(4.4.22).
Then, for each 𝜖𝑖 ∈ (0, 1), {𝑢𝜖𝑖𝛿 } satisfies the estimates in Lemma 4.4.5 and Lemma
4.4.4, which implies that {𝑢𝜖𝑖𝛿 } has uniformly bounded 𝐿∞(Ω𝑇 ) norm, and {(𝑢𝜖𝑖𝛿 )𝑡}
has uniformly bounded 𝐿2(Ω𝑇 ) norm with bounded constant depending on Ω and
𝜖𝑖‖∇𝑓𝛿‖2𝐿2(Ω). Hence, by sequential Banach-Alaoglu Theorem [57, Section 3.15, p
68], there exists a subsequence {𝑢𝜖𝑖𝑗𝛿 }∞

𝑗=1
⊂ {𝑢𝜖𝑖𝛿 } such that, for 𝑢𝛿 ∈ 𝐿∞(Ω𝑇 ) and

𝑤 ∈ 𝐿2(Ω𝑇 ), as 𝜖𝑖 → 0,

𝑢
𝜖𝑖𝑗
𝛿 ⇀ 𝑢𝛿 weakly* in 𝐿∞(Ω𝑇 ) (4.4.37)

(𝑢
𝜖𝑖𝑗
𝛿 )

𝑡
⇀ 𝑤 weakly in 𝐿2(Ω𝑇 ), (4.4.38)

Then, from A.4 in the appendix,

𝑤(𝑥, 𝑡) = (𝑢𝛿(𝑥, 𝑡))𝑡, 𝑢𝛿(𝑥, 0) = 𝑓𝛿(𝑥), (4.4.39)

where (𝑢𝛿)𝑡 ∈ 𝐿2(Ω𝑇 ).
We have

� 𝑠
0 (𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑡))

𝑡
𝑑𝑡 = 𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑠) − 𝑓𝛿(𝑥), where 𝑠 ∈ (0, 𝑇 ], 𝑇 > 0, then

for 𝜓 ∈ 𝐿2(Ω), the following holds,
�
Ω

� 𝑠

0
(𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑡))

𝑡
𝜓(𝑥) 𝑑𝑡 𝑑𝑥 =

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑠)− 𝑓𝛿(𝑥))𝜓(𝑥) 𝑑𝑥.

Thereafter, taking 𝜖𝑖 → 0, we apply weak 𝐿2-convergence of (𝑢𝜖𝑖𝑗𝛿 )
𝑡

from (4.4.38),
to obtain,

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑠)− 𝑓𝛿(𝑥))𝜓(𝑥) 𝑑𝑥 =

�
Ω

� 𝑠

0
(𝑢

𝜖𝑖𝑗
𝛿 (𝑥, 𝑡))

𝑡
𝜓(𝑥) 𝑑𝑡 𝑑𝑥

→
�
Ω

� 𝑠

0
(𝑢𝛿(𝑥, 𝑡))𝑡𝜓(𝑥) 𝑑𝑡 𝑑𝑥

=

�
Ω

� 𝑠

0
(𝑢𝛿(𝑥, 𝑡))𝑡𝜓(𝑥) 𝑑𝑡 𝑑𝑥

=

�
Ω
(𝑢𝛿(𝑥, 𝑠)− 𝑓𝛿(𝑥))𝜓(𝑥) 𝑑𝑥.

This implies that, for each 𝑠 > 0, as 𝜖𝑖 → 0,

𝑢
𝜖𝑖𝑗
𝛿 (·, 𝑠)⇀ 𝑢𝛿(·, 𝑠) weakly in 𝐿2(Ω).

Since the sequence {𝑢𝜖𝑖𝛿 } satisfies the estimate (4.4.31) from Lemma 4.4.4, we
have ‖𝑢𝜖𝑖𝛿 (·, 𝑠)− 𝑓𝛿‖22 ⩽ 𝐶 for each 𝑠 > 0, where 𝐶 > 0 is constant depending
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on Ω and 𝜖𝑖‖∇𝑓𝛿‖2𝐿2(Ω). Then, applying the embedding 𝐿2(Ω) →˓ 𝐿ℋ(Ω), by [4,
Lemma 2.5], we obtain ‖𝑢𝜖𝑖𝛿 (·, 𝑠)− 𝑓𝛿‖ℋ ⩽ 𝐶. Also by Lemma 2.2.11, ‖𝑓𝛿‖ℋ ⩽ 𝐶

where constant 𝐶 > 0 depends on ‖𝑓‖ℋ. Then, for each 𝑠 > 0, ‖𝑢𝜖𝑖𝛿 (·, 𝑠)‖ℋ ⩽
‖𝑢𝜖𝑖𝛿 (·, 𝑠)− 𝑓𝛿‖ℋ + ‖𝑓𝛿‖ℋ ⩽ 𝐶. By definition of the norm of 𝐿ℋ space and its unit
ball property (Lemma 2.2.2), we have 𝜚ℋ(𝑢𝜖𝑖𝛿 (·, 𝑠)) ⩽ 𝐶 and 𝜚ℋ(𝑢𝜖𝑖𝛿 (·, 𝑠)−𝑓𝛿) ⩽ 𝐶.
Moreover, since

�
Ωℋ𝜖(𝑥, |∇𝑢𝜖𝑖𝛿 (·, 𝑠)|) 𝑑𝑥 ⩽ 𝐶 from the estimate (4.4.31), and ℋ ⩽

ℋ𝜖 from (4.4.16), we get
�
Ωℋ(𝑥, |∇𝑢𝜖𝑖𝛿 (·, 𝑠)|) 𝑑𝑥 ⩽ 𝐶, that is 𝜚ℋ(∇𝑢𝜖𝑖𝛿 (·, 𝑠)) ⩽ 𝐶.

Thus, we have, for each 𝑠,

𝜚ℋ(𝑢
𝜖𝑖
𝛿 (·, 𝑠)) + 𝜚ℋ(∇𝑢𝜖𝑖𝛿 (·, 𝑠)) ⩽ 𝐶, (4.4.40)

which implies {𝑢𝜖𝑖𝛿 (·, 𝑠)} is a bounded sequence in 𝑊 1,ℋ(Ω). And since ‖∇𝑓𝛿‖ℋ ⩽
𝐶 from 2.2.11, we have ‖∇(𝑢𝜖𝑖𝛿 (·, 𝑠)− 𝑓𝛿)‖ℋ ⩽ ‖∇𝑢𝜖𝑖𝛿 (·, 𝑠)‖ℋ + ‖∇𝑓𝛿‖ℋ ⩽ 𝐶,
where 𝐶 > 0 is a constant depending on Ω, 𝜖‖∇𝑓𝛿‖2𝐿2(Ω) and ‖∇𝑓‖ℋ. Using the
estimate 𝜚ℋ(𝑢𝜖𝑖𝛿 (·, 𝑠)− 𝑓𝛿) ⩽ 𝐶, we similarly obtain as above,

𝜚1,ℋ(𝑢
𝜖𝑖
𝛿 (·, 𝑠)− 𝑓𝛿) ⩽ 𝐶. (4.4.41)

Since ℋ satisfies (A0) and (aInc)𝑝, (𝑝 > 1), conditions, then by [24, Lemma
6.1.6], we have 𝑊 1,ℋ(Ω) →˓ 𝑊 1,𝑝(Ω), where 𝑝 is the index from (aInc)𝑝 condi-
tion. Thus, (4.4.40) yields that, for each 𝑡 > 0, the sequence {𝑢𝜖𝑖𝛿 (·, 𝑡)} is bounded
in 𝑊 1,𝑝(Ω). Further, due to the boundedness of Ω in R2 and applying Rellich-
Kondrachov theorem, we have that 𝑊 1,𝑝(Ω) compactly embeds into 𝐿𝑞 for all 𝑞 <
2𝑝
2−𝑝 , which implies compact embedding of 𝑊 1,𝑝(Ω) into 𝐿2(Ω) space. Thus, for
each 𝑡 > 0, the subsequence {𝑢𝜖𝑖𝑗𝛿 (·, 𝑡)}∞

𝑗=1
⊂ {𝑢𝜖𝑖𝛿 (·, 𝑡)} converges strongly in

𝐿2(Ω), as 𝜖𝑖 → 0, that is,

𝑢
𝜖𝑖𝑗
𝛿 (·, 𝑡) → 𝑢𝛿(·, 𝑡) strongly in 𝐿2(Ω). (4.4.42)

Next, we have (𝑢
𝜖𝑖𝑗
𝛿 )

𝑡
𝑢
𝜖𝑖𝑗
𝛿 − (𝑢𝛿)𝑡𝑢𝛿 = (𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑢𝛿) + 𝑢𝛿((𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
− (𝑢𝛿)𝑡),

then integrating both sides over Ω, for each 𝑡, implies,
�
Ω
((𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
𝑢
𝜖𝑖𝑗
𝛿 − (𝑢𝛿)𝑡𝑢𝛿) 𝑑𝑥

⩽
�
Ω
|(𝑢𝜖𝑖𝑗𝛿 )

𝑡
||𝑢𝜖𝑖𝑗𝛿 − 𝑢𝛿| 𝑑𝑥+

�
Ω
𝑢𝛿((𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
− (𝑢𝛿)𝑡) 𝑑𝑥.

Further, applying Hölder’s inequality for the first integral on the right gives,
�
Ω
((𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
𝑢
𝜖𝑖𝑗
𝛿 − (𝑢𝛿)𝑡𝑢𝛿) 𝑑𝑥

⩽ ‖(𝑢𝜖𝑖𝑗𝛿 )
𝑡
‖
2
‖𝑢𝜖𝑖𝑗𝛿 − 𝑢𝛿‖2 +

�
Ω
𝑢𝛿((𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
− (𝑢𝛿)𝑡) 𝑑𝑥.
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Then, for each 𝑡 > 0, as 𝜖𝑖𝑗 → 0, we apply strong-𝐿2 convergence of 𝑢𝜖𝑖𝑗𝛿 (·, 𝑡)
from (4.4.42) and weak-𝐿2 convergence of (𝑢𝜖𝑖𝑗𝛿 (·, 𝑡))

𝑡
from (4.4.38) in the above

expression, which implies,

�
Ω
((𝑢

𝜖𝑖𝑗
𝛿 (·, 𝑡))

𝑡
𝑢
𝜖𝑖𝑗
𝛿 (·, 𝑡)− (𝑢𝛿(·, 𝑡))𝑡𝑢𝛿(·, 𝑡)) 𝑑𝑥→ 0, as 𝜖𝑖𝑗 → 0. (4.4.43)

Now consider a test function, say, 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ) such that
𝑣(·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,2

0 (Ω), for every 𝑡. Since the solution {𝑢𝜖𝑖𝑗𝛿 } satisfies the PDE
(4.4.21), then multiplying (4.4.21) by (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ), and integrating with respect to 𝑥

over Ω as well as with respect to 𝑡 over [0, 𝑠], where 𝑠 ∈ (0, 𝑇 ], 𝑇 > 0, we have,

� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜖𝑖𝑗Δ𝑢

𝜖𝑖𝑗
𝛿 (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) 𝑑𝑥 𝑑𝑡

=

� 𝑠

0

�
Ω
div

(︀
ℋ𝜖

𝑟(𝑥, |∇𝑢
𝜖𝑖𝑗
𝛿 |) ∇𝑢

𝜖𝑖𝑗
𝛿

|∇𝑢
𝜖𝑖𝑗
𝛿 |

)︀
(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜆(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) 𝑑𝑥 𝑑𝑡.

Note that, from proof of Lemma 4.4.3, 𝑢𝜖𝑖𝑗𝛿 and its derivatives of 𝑥 upto order 2 are
Hölder continuous in Ω𝑇 , which implies they are continuous in Ω, and thus we have⃒⃒
ℋ𝜖

𝑟(𝑥, |∇𝑢
𝜖𝑖𝑗
𝛿 (·, 𝑡)|) ∇𝑢

𝜖𝑖𝑗
𝛿 (·,𝑡)

|∇𝑢
𝜖𝑖𝑗
𝛿 (·,𝑡)|

⃒⃒
∈ 𝑊 1,2(Ω) for each 𝑡. Moreover, since 𝑣(·, 𝑡) −

𝑢
𝜖𝑖𝑗
𝛿 (·, 𝑡) ∈ 𝑊 1,2

0 (Ω), then, for fixed 𝑡, applying integration by parts formula for
Sobolev functions, from (2.1.6), to the integral on the right above, we obtain

� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜖𝑖𝑗Δ𝑢

𝜖𝑖𝑗
𝛿 (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) 𝑑𝑥 𝑑𝑡

=

� 𝑠

0

�
Ω

(︀
−ℋ𝜖

𝑟(𝑥, |∇𝑢
𝜖𝑖𝑗
𝛿 |) ∇𝑢

𝜖𝑖𝑗
𝛿

|∇𝑢
𝜖𝑖𝑗
𝛿 |

· (∇𝑣 −∇𝑢𝜖𝑖𝑗𝛿 )
)︀
𝑑𝑥 𝑑𝑡

−
� 𝑠

0

�
Ω
𝜆(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) 𝑑𝑥 𝑑𝑡.

(4.4.44)

Since ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|) is convex with respect to the second variable, that is |∇𝑢𝜖𝛿|, then
the relation ℋ𝜖

𝑟(𝑥, |∇𝑢
𝜖𝑖𝑗
𝛿 |)(|∇𝑣| − |∇𝑢𝜖𝑖𝑗𝛿 |) ⩽ ℋ𝜖(𝑥, |∇𝑣|) −ℋ𝜖(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) holds

true. First, applying absolute value both sides, we compute

ℋ𝜖
𝑟(𝑥, |∇𝑢

𝜖𝑖𝑗
𝛿 |) ∇𝑢

𝜖𝑖𝑗
𝛿

|∇𝑢
𝜖𝑖𝑗
𝛿 |

· (∇𝑣 −∇𝑢𝜖𝑖𝑗𝛿 ) ⩽ ℋ𝜖
𝑟(𝑥, |∇𝑢

𝜖𝑖𝑗
𝛿 |)

(︁ |∇𝑢
𝜖𝑖𝑗
𝛿 · ∇𝑣|

|∇𝑢
𝜖𝑖𝑗
𝛿 |

− |∇𝑢
𝜖𝑖𝑗
𝛿 |2

|∇𝑢
𝜖𝑖𝑗
𝛿 |

)︁
⩽ ℋ𝜖

𝑟(𝑥, |∇𝑢
𝜖𝑖𝑗
𝛿 |)(|∇𝑣| − |∇𝑢𝜖𝑖𝑗𝛿 |),

and then applying the convexity relation of ℋ𝜖 to obtain,

ℋ𝜖
𝑟(𝑥, |∇𝑢

𝜖𝑖𝑗
𝛿 |) ∇𝑢

𝜖𝑖𝑗
𝛿

|∇𝑢
𝜖𝑖𝑗
𝛿 |

· (∇𝑣 −∇𝑢𝜖𝑖𝑗𝛿 ) ⩽ ℋ𝜖(𝑥, |∇𝑣|)−ℋ𝜖(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |). (4.4.45)
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On the other hand, we have

𝜆(𝑢
𝜖𝑖𝑗
𝛿 − 𝑓𝛿)(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) = 𝜆(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)(−𝑢

𝜖𝑖𝑗
𝛿 + 𝑓𝛿 + 𝑣 − 𝑓𝛿)

= −𝜆(𝑢𝜖𝑖𝑗𝛿 − 𝑓𝛿)
2 + 𝜆(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)(𝑣 − 𝑓𝛿)

⩽ −𝜆(𝑢𝜖𝑖𝑗𝛿 − 𝑓𝛿)
2 +

𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2
+

𝜆

2
(𝑣 − 𝑓𝛿)

2,

and thus,

−𝜆(𝑢𝜖𝑖𝑗𝛿 − 𝑓𝛿)(𝑣 − 𝑢
𝜖𝑖𝑗
𝛿 ) ⩾

𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2 − 𝜆

2
(𝑣 − 𝑓𝛿)

2. (4.4.46)

So applying the inequalities (4.4.45) and (4.4.46) in (4.4.44) to obtain,
� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜖𝑖𝑗Δ𝑢

𝜖𝑖𝑗
𝛿 (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) 𝑑𝑥 𝑑𝑡 ⩾

� 𝑠

0

�
Ω

(︀
−ℋ𝜖(𝑥, |∇𝑣|)

+ℋ𝜖(𝑥, |∇𝑢𝜖𝛿|) +
𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2 − 𝜆

2
(𝑣 − 𝑓𝛿)

2
)︀
𝑑𝑥 𝑑𝑡,

that is,
� 𝑠

0

�
Ω
(𝑢𝜖𝛿)𝑡(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜖𝑖𝑗Δ𝑢

𝜖𝑖𝑗
𝛿 (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) +ℋ𝜖(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ𝜖(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) + 𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡.

Further, since ℋ𝜖 ⩾ ℋ from (4.4.16), then the previous inequality implies,
� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
(𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 )− 𝜖𝑖𝑗Δ𝑢

𝜖𝑖𝑗
𝛿 (𝑣 − 𝑢

𝜖𝑖𝑗
𝛿 ) +ℋ𝜖(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) + 𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2
𝑑𝑥 𝑑𝑡.

(4.4.47)

Next, for all 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω))∩𝐶∞(Ω𝑇 ), applying the dominated convergence
theorem, we obtain,

lim
𝜖→0

� 𝑠

0

�
Ω
ℋ𝜖(𝑥, |∇𝑣|) 𝑑𝑥 𝑑𝑡 =

� 𝑠

0

�
Ω
lim
𝜖→0

ℋ𝜖(𝑥, |∇𝑣|) 𝑑𝑥 𝑑𝑡

=

� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑣|) 𝑑𝑥 𝑑𝑡,

(4.4.48)

since the integral
�
Ωℋ𝜖(𝑥, |∇𝑣|) 𝑑𝑥 is bounded with respect to 𝜖 < 1, and ℋ𝜖 is

bounded by 2ℋ and a constant, from (4.4.17).
On the other hand, from weak-𝐿2 convergence of (𝑢𝜖𝑖𝑗𝛿 )

𝑡
in (4.4.38), we have

� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
𝑣 𝑑𝑥 𝑑𝑡→

� 𝑠

0

�
Ω
(𝑢𝛿)𝑡𝑣 𝑑𝑥 𝑑𝑡,
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as 𝜖𝑖 → 0.
Due to the uniform boundedness of {𝑢𝜖𝑖𝛿 (·, 𝑡)} in𝑊 1,ℋ(Ω) with respect to 𝑡 from

(4.4.40), there exists a subsequence of {𝑢𝜖𝑖𝑗𝛿 (·, 𝑡)}, denoted by same {𝑢𝜖𝑖𝑗𝛿 (·, 𝑡)}∞
𝑗=1

,
converging weakly in 𝑊 1,ℋ(Ω) and weakly* in 𝐿∞(Ω), to the limit 𝑢𝛿(·, 𝑡) ∈
𝑊 1,ℋ(Ω)∩𝐿∞(Ω), as 𝜖𝑖𝑗 → 0. Then using weak lower semicontinuity from Lemma
4.2.3, we have,

lim inf
𝜖𝑖𝑗→0

�
Ω
ℋ(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 (·, 𝑡)|) 𝑑𝑥 ⩾

�
Ω
ℋ(𝑥, |∇𝑢𝛿(·, 𝑡)|) 𝑑𝑥. (4.4.49)

On the other hand, applying the embedding property 𝐿2(Ω) →˓ 𝐿ℋ(Ω) [4, Lemma
2.5] for 𝑢𝜖𝑖𝛿 (·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,2

0 (Ω), yields 𝑢𝜖𝑖𝛿 (·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,ℋ
0 (Ω) for every 𝑡.

Further, since {𝑢𝜖𝑖𝛿 (·, 𝑡) − 𝑓𝛿} is uniformly bounded in 𝑊 1,ℋ(Ω) with respect to 𝑡,
by (4.4.41), then taking a subsequence of {𝑢𝜖𝑖𝑗𝛿 (·, 𝑡) − 𝑓𝛿} converging weakly to
𝑢𝛿(·, 𝑡)− 𝑓𝛿 in 𝑊 1,ℋ(Ω) as 𝑖𝑗 → ∞, we apply Lemma 4.2.2 to obtain that the limit
𝑢𝛿(·, 𝑡)− 𝑓𝛿 ∈𝑊 1,ℋ

0 (Ω), for each 𝑡 > 0.
Now taking the limit as 𝜖𝑖 → 0 in (4.4.47), we apply the convergence results

(4.4.38), (4.4.43) and (4.4.48) to obtain,� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝑣 − 𝑢𝛿) +ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡

⩾ lim
𝜖𝑖𝑗→0

(︀� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) 𝑑𝑥 𝑑𝑡+

� 𝑠

0

�
Ω

𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2
𝑑𝑥 𝑑𝑡

)︀
.

(4.4.50)

Applying boundedness property of 𝑢𝜖𝑖𝑗𝛿 in 𝑊 1,ℋ(Ω) from (4.4.40), and boundedness
of

�
Ω

𝜆
2 (𝑢

𝜖𝑖𝑗
𝛿 −𝑓𝛿)2 𝑑𝑥 with respect to 𝜖𝑖𝑗‖∇𝑓𝛿‖2𝐿2(Ω), from the estimate (4.4.31), we

have �
Ω
ℋ(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) 𝑑𝑥 𝑑𝑡+

�
Ω

𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2
𝑑𝑥 ⩽ 𝜖𝑖𝑗‖∇𝑓𝛿‖2𝐿2(Ω) + 𝐶,

where constant 𝐶 depends on Ω. Then taking limit on both sides as 𝜖𝑖𝑗 → 0, the
above implies,

lim
𝜖𝑖𝑗→0

(︀�
Ω
ℋ(𝑥, |∇𝑢𝜖𝑖𝑗𝛿 |) 𝑑𝑥 𝑑𝑡+

�
Ω

𝜆

2
(𝑢

𝜖𝑖𝑗
𝛿 − 𝑓𝛿)

2
𝑑𝑥

)︀
⩽ 𝐶.

With constant 𝐶 as the majorant of the right-hand side integral above, we apply
the dominated convergence theorem to interchange the order of limit and integral in
(4.4.50), and further apply (4.4.49) and (4.4.42) to get,

� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝑣 − 𝑢𝛿) +ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝛿|) +

𝜆

2
(𝑢𝛿 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡,
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that is,

� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝑣 − 𝑢𝛿) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑣) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢𝛿) 𝑑𝑡, (4.4.51)

holds for all 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ), such that 𝑣(·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,2
0 (Ω),

for each 𝑡 > 0.
Next we prove that (4.4.51) holds for any test function in 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)) with
similar boundary condition as 𝑢𝛿.

First, let 𝑓𝛿(𝑥, 𝑡) ..= 𝑓𝛿(𝑥) for every 𝑡, then we have
� 𝑇
0 ‖𝑓𝛿(·, 𝑡)‖𝑊 1,2(Ω) 𝑑𝑡 =

𝑇‖𝑓𝛿‖𝑊 1,2(Ω). So for 𝑣(·, 𝑡)− 𝑓𝛿 ∈𝑊 1,2
0 (Ω), we have 𝑣− 𝑓𝛿 ∈ 𝐿2(0, 𝑇 ;𝑊 1,2

0 (Ω)).

Assume that 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)), such that 𝑣(·, 𝑡) − 𝑓𝛿(·, 𝑡) ∈ 𝑊 1,ℋ
0 (Ω) for

every 𝑡, and let 𝜉 ..= 𝑣 − 𝑓𝛿.

Since 𝐶∞
0 (Ω𝑇 ) is dense in 𝐿2(0, 𝑇 ;𝑊 1,ℋ

0 (Ω)) by Lemma 4.2.5, which implies
that, any function in 𝐿2(0, 𝑇 ;𝑊 1,ℋ

0 (Ω)) can be approximated by a sequence of
𝐶∞
0 (Ω𝑇 ) functions, say {𝜉𝑗}∞𝑗=1. Thus, there exists a subsequence of 𝜉𝑗 , denoted

by the same 𝜉𝑗 , such that, as 𝑗 → ∞, 𝜉𝑗 → 𝜉 in 𝐿2(0, 𝑇 ;𝑊 1,ℋ
0 (Ω)), that is,

� 𝑠

0
‖𝜉𝑗 − 𝜉‖2𝑊 1,ℋ 𝑑𝑡→ 0. (4.4.52)

Since ℋ satisfies (aInc)𝑝, 𝑝 > 1, and (aDec) properties, then using Lemma 2.2.4 to
have

� 𝑠

0
‖𝜉𝑗 − 𝜉‖2𝑊 1,ℋ 𝑑𝑡 ⩾

� 𝑠

0
(min{

(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑝 ,
(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑞 })2 𝑑𝑡,
(4.4.53)

where 𝑝 and 𝑞 come from the (aInc) and (aDec) conditions, while 𝑐 is the maxi-
mum of the constants from these conditions. Further, the right-hand side of (4.4.53)
implies,

� 𝑠

0
(min{

(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑝 ,
(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑞 })2 𝑑𝑡

=

� 𝑠

0

(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 2

𝑝𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)<𝑐} +
(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 2

𝑞𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)⩾𝑐} 𝑑𝑡

⩾
1

𝑐
2
𝑝

(︀� 𝑠

0

(︀
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 2

𝑝𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)<𝑐} 𝑑𝑡
)︀ 𝑝

2

+
1

𝑐

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉)𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)⩾𝑐} 𝑑𝑡.
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Applying Hölder’s inequality to have from
� 𝑠

0
(min{

(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑝 ,
(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑞 })2 𝑑𝑡

⩾
1

𝑐
2
𝑝 𝑠1−

𝑝
2

(︀� 𝑠

0

(︀
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 2

𝑝𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)<𝑐} 𝑑𝑡
)︀ 𝑝

2
(︀� 𝑠

0
𝑑𝑡
)︀1− 𝑝

2

+
1

𝑐

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉)𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)⩾𝑐} 𝑑𝑡

⩾ 𝐶

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉)𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)<𝑐} 𝑑𝑡+ 𝐶

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉)𝜒{𝜚1,ℋ(𝜉𝑗−𝜉)⩾𝑐} 𝑑𝑡

where 𝐶 = min{ 1

𝑐
2
𝑝 𝑠1−

𝑝
2

,
1

𝑐
}. Thus, we obtain

� 𝑠

0
(min{

(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑝 ,
(︀1
𝑐
𝜚1,ℋ(𝜉𝑗 − 𝜉)

)︀ 1

𝑞 })2 𝑑𝑡 ⩾ 𝐶

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉) 𝑑𝑡.

Then, from (4.4.53) we get
� 𝑠

0
‖𝜉𝑗 − 𝜉‖2𝑊 1,ℋ 𝑑𝑡 ⩾ 𝐶

� 𝑠

0
𝜚1,ℋ(𝜉𝑗 − 𝜉) 𝑑𝑡. (4.4.54)

Then, from (4.4.52), the above estimate (4.4.54) implies that
� 𝑠
0 𝜚1,ℋ(𝜉𝑗−𝜉) 𝑑𝑡→ 0,

as 𝑗 → ∞. Since 𝜚1,ℋ(𝜉(·, 𝑡)) is bounded with respect to 𝑡, we apply Lemma 4.2.6
to conclude that, as 𝑗 → ∞,

⃒⃒� 𝑠

0
(𝜚1,ℋ(𝜉𝑗)− 𝜚1,ℋ(𝜉)) 𝑑𝑡

⃒⃒
→ 0,

from which we have,
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝜉𝑗 |) 𝑑𝑥 𝑑𝑡→

� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝜉|) 𝑑𝑥 𝑑𝑡, as 𝑗 → ∞. (4.4.55)

Using 𝑊 1,ℋ(Ω) →˓ 𝐿2(Ω) from Lemma 4.2.4, we obtain the embedding prop-
erty 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)) →˓ 𝐿2(0, 𝑇 ;𝐿2(Ω)) from parabolic space properties in [63,
Proposition 23.2(h)], and applying this in (4.4.52) implies

� 𝑠

0

�
Ω
𝜉2𝑗 𝑑𝑥 𝑑𝑡→

� 𝑠

0

�
Ω
𝜉2 𝑑𝑥 𝑑𝑡, as 𝑗 → ∞. (4.4.56)

With (𝑢𝛿)𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2(Ω)), we apply the above 𝐿2-convergence to get,

lim
𝑗→∞

� 𝑠

0

�
Ω
(𝑢𝛿)𝑡 𝜉𝑗 𝑑𝑥 𝑑𝑡 =

� 𝑠

0

�
Ω
(𝑢𝛿)𝑡 𝜉 𝑑𝑥 𝑑𝑡. (4.4.57)
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We have that (4.4.51) holds for test function 𝜉𝑗 + 𝑓𝛿, that is
� 𝑠

0

�
Ω
ℋ(𝑥,|∇𝑢𝛿|) +

𝜆

2
|𝑢𝛿 − 𝑓𝛿|2 𝑑𝑥 𝑑𝑡

⩽
� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝜉𝑗 + 𝑓𝛿 − 𝑢𝛿) +ℋ(𝑥, |∇𝜉𝑗 +∇𝑓𝛿|) +

𝜆

2
𝜉2𝑗 𝑑𝑥 𝑑𝑡.

(4.4.58)

Now taking the limit as 𝑗 → ∞ in (4.4.58), we apply (4.4.55), (4.4.56) and (4.4.57),
to get

� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝛿|) +

𝜆

2
|𝑢𝛿 − 𝑓𝛿|

2
𝑑𝑥 𝑑𝑡

⩽
� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝜉 + 𝑓𝛿 − 𝑢𝛿) +ℋ(𝑥, |∇𝜉 +∇𝑓𝛿|) +

𝜆

2
𝜉2 𝑑𝑥 𝑑𝑡.

Since 𝜉 = 𝑣 − 𝑓𝛿 = 𝑣 − 𝑓𝛿, then the above inequality implies
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝛿|) +

𝜆

2
|𝑢𝛿 − 𝑓𝛿|2 𝑑𝑥 𝑑𝑡

⩽
� 𝑠

0

�
Ω
(𝑢𝛿)𝑡(𝑣 − 𝑢𝛿) +ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓𝛿)

2 𝑑𝑥 𝑑𝑡,

(4.4.59)

which holds for all 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)), with 𝑣(·, 𝑡)− 𝑓𝛿 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ
0 (Ω)).

Hence, by definition of weak solutions 4.4.2, 𝑢𝛿 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω)) is
a weak solution of (4.4.12)–(4.4.13), such that, 𝑢𝛿(·, 𝑡) − 𝑓𝛿 ∈ 𝑊 1,ℋ

0 (Ω) for each
𝑡 > 0, and 𝑢𝛿(𝑥, 0) = 𝑓𝛿(𝑥).

Step 2: Passing 𝛿 → 0, to obtain the weak solution formulation. Now we
pass 𝛿 → 0+ in (4.4.59), to complete the proof.
First note that Lemma 4.4.4 holds for 𝑢𝜖𝑖𝛿 , so fixing 𝛿 > 0 and taking 𝜖𝑖 → 0 in
(4.4.33), we apply (4.4.42), (4.4.38) to obtain

� 𝑇

0

�
Ω
|(𝑢𝛿)𝑡|

2 𝑑𝑥 𝑑𝑡+ sup
𝑠∈(0,𝑇 ]

(︂�
Ω
ℋ(𝑥, |∇𝑢𝛿(·, 𝑠)|) +

𝜆

2
(𝑢𝛿(·, 𝑠)− 𝑓𝛿)

2 𝑑𝑥

)︂
⩽ 𝐶

(4.4.60)

where the constant 𝐶 > 0 is independent of 𝛿 and 𝜖𝑖, and depends only on Ω. This
implies that 𝑢𝛿 is in 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω)), with bounded constant independent of 𝑡.

On the other hand, taking 𝜖𝑖 → 0 in (4.4.35), we apply (4.4.37) to obtain,

‖𝑢𝛿‖𝐿∞(Ω𝑇 )
⩽ lim inf

𝜖𝑖→0
‖𝑢𝜖𝑖𝛿 ‖𝐿∞(Ω𝑇 )

⩽ ‖𝑓‖𝐿∞(R𝑛), (4.4.61)

where the bound is independent of both 𝛿 and 𝜖𝑖.
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Now taking 𝛿 = 𝛿𝑖, 𝑖 ∈ N, we have from (4.4.60), that {(𝑢𝛿𝑖)𝑡} is uniformly
bounded in 𝐿2(Ω𝑇 ). While, (4.4.61) implies that {𝑢𝛿𝑖} is uniformly bounded in
𝐿∞(Ω𝑇 ). Also, from (4.4.60), for fixed 𝑠 ∈ (0, 𝑇 ], 𝜚ℋ(∇𝑢𝛿𝑖(·, 𝑠)) ⩽ 𝐶 and
‖𝑢𝛿𝑖(·, 𝑠)− 𝑓𝛿𝑖‖2 ⩽ 𝐶. Again, using the embedding 𝐿2 →˓ 𝐿ℋ [4, Lemma 2.5], we
obtain, for fixed 𝑠, ‖𝑢𝛿𝑖(·, 𝑠)− 𝑓𝛿𝑖‖ℋ ⩽ 𝐶, and further ‖𝑢𝛿𝑖(·, 𝑠)‖ℋ ⩽ 𝐶. Hence,
by properties of the norm, we get 𝜚ℋ(𝑢𝛿𝑖(·, 𝑠)) ⩽ 𝐶 and 𝜚ℋ(𝑢𝛿𝑖(·, 𝑠)− 𝑓𝛿𝑖) ⩽ 𝐶.

While, with |∇(𝑢𝛿𝑖−𝑓𝛿𝑖)| ⩽ |∇𝑢𝛿𝑖|+ |∇𝑓𝛿𝑖|, applying the doubling property of
ℋ and integrating over Ω to get 𝜚ℋ(∇(𝑢𝛿𝑖(·, 𝑠)− 𝑓𝛿𝑖)) ⩽ 𝐶. Thus, for fixed 𝑠 > 0,
{𝑢𝛿𝑖(·, 𝑠)} as well as {𝑢𝛿𝑖(·, 𝑠)− 𝑓𝛿𝑖} are bounded sequences in 𝑊 1,ℋ(Ω).

Next, we follow the same arguments used to obtain (4.4.37), (4.4.38), (4.4.42)
and (4.4.49), to conclude that, for each 𝑡, there exists a subsequence {𝑢𝛿𝑖𝑗(·, 𝑡)}

∞
𝑗=1

⊂
{𝑢𝛿𝑖(·, 𝑡)} and a function 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω)∩𝐿∞(Ω)) with 𝑢𝑡 ∈ 𝐿2(Ω𝑇 ) such
that as 𝛿𝑖𝑗 → 0,

𝑢𝛿𝑖𝑗 ⇀ 𝑢 weakly* in 𝐿∞(Ω𝑇 ) (4.4.62)(︀
𝑢𝛿𝑖𝑗

)︀
𝑡
⇀ 𝑢𝑡 weakly in 𝐿2(Ω𝑇 ) (4.4.63)

𝑢𝛿𝑖𝑗(·, 𝑡) → 𝑢(·, 𝑡) strongly in 𝐿2(Ω) (4.4.64)

lim inf
𝛿𝑖→0

�
Ω
ℋ(𝑥, |∇𝑢𝛿𝑖𝑗 |) 𝑑𝑥 ⩾

�
Ω
ℋ(𝑥, |∇𝑢|) 𝑑𝑥, (4.4.65)

and 𝑢(𝑥, 0) = lim
𝛿𝑖→0

𝑓𝛿𝑖(𝑥), follows from A.4 as well. Moreover, since 𝑞 < 3
2 which

implies ℋ satisfies (𝐴1) condition [24, Proposition 7.2.2], then using (4.4.19) we
have 𝑓𝛿𝑖 → 𝑓 in 𝑊 1,ℋ(Ω), as 𝛿𝑖 → 0. Hence we obtain 𝑢(𝑥, 0) = 𝑓(𝑥). Also, since
𝑢𝛿𝑖(·, 𝑡) − 𝑓𝛿𝑖 ∈ 𝑊 1,ℋ

0 (Ω) for each 𝑡, then by Lemma 4.2.2, we have 𝑢(·, 𝑡) − 𝑓 ∈
𝑊 1,ℋ

0 (Ω).
On the other hand, using the uniform boundedness of {𝑢𝛿𝑖(·, 𝑡)} in 𝑊 1,ℋ(Ω)

with respect to 𝑡, and the pointwise estimate (4.4.65), we obtain

lim inf
𝛿𝑖→0

� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢𝛿𝑖𝑗 |) 𝑑𝑥 =

� 𝑠

0
lim inf
𝛿𝑖→0

�
Ω
ℋ(𝑥, |∇𝑢𝛿𝑖𝑗 |) 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢|) 𝑑𝑥 𝑑𝑡.

(4.4.66)

Now, using weak-𝐿2 convergence of (𝑢𝛿𝑖𝑗)𝑡 from (4.4.63) and strong-𝐿2 conver-
gence of 𝑢𝛿𝑖(·, 𝑡) from (4.4.64), we follow a similar approach used to obtain (4.4.43),
to have,�

Ω

(︀
𝑢𝛿𝑖𝑗(·, 𝑡)

)︀
𝑡
𝑢𝛿𝑖𝑗(·, 𝑡) 𝑑𝑥→

�
Ω
𝑢𝑡(·, 𝑡)𝑢(·, 𝑡) 𝑑𝑥, as 𝛿𝑖𝑗 → 0. (4.4.67)

Since 𝑓𝛿𝑖 → 𝑓 in 𝑊 1,ℋ(Ω), as 𝛿𝑖 → 0, by (4.4.19), then we apply the embedding
𝑊 1,ℋ(Ω) →˓ 𝐿2(Ω), from Lemma 4.2.4, to obtain

‖𝑓𝛿𝑖𝑗‖2 → ‖𝑓‖2 as 𝛿𝑖𝑗 → 0. (4.4.68)
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Consider 𝛿 = 𝛿𝑖𝑗 in (4.4.59). Then taking the limit as 𝛿𝑖 → 0 in (4.4.59), we apply
the convergence criteria (4.4.62)–(4.4.68), to obtain that, for all 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)),

� 𝑠

0

�
Ω
𝑢𝑡(𝑣 − 𝑢) +ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢|) + 𝜆

2
(𝑢− 𝑓)2 𝑑𝑥 𝑑𝑡

that is,
� 𝑠

0

�
Ω
𝑢𝑡(𝑣 − 𝑢) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑣) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢) 𝑑𝑡. (4.4.69)

Additionally, since we have 𝑢(·, 𝑡) − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω) for each 𝑡 > 0, and 𝑢(𝑥, 0) =

𝑓(𝑥), hence, by definition 4.4.2, we conclude that 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω)∩𝐿∞(Ω))

is weak solution of the heat flow problem (4.4.12)–(4.4.13).
Uniqueness: To prove the uniqueness of the solution, suppose that 𝑢1(𝑥, 𝑡) and
𝑢2(𝑥, 𝑡) are weak solutions of (4.4.12)-(4.4.13). Here we can obtain two inequal-
ities from (4.4.69): the first one by setting 𝑢 = 𝑢1 and 𝑣 = 𝑢2 in (4.4.69) as follows:

� 𝑠

0

�
Ω
(𝑢1)𝑡(𝑢2 − 𝑢1) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑢2) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢1) 𝑑𝑡 (4.4.70)

and the second one by setting 𝑢 = 𝑢2 and 𝑣 = 𝑢1 in (4.4.69) as follows:
� 𝑠

0

�
Ω
(𝑢2)𝑡(𝑢1 − 𝑢2) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑢1) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢2) 𝑑𝑡. (4.4.71)

For all 𝑠 > 0, adding the two inequalities (4.4.70) and (4.4.71) gives,
� 𝑠

0

�
Ω
((𝑢1)𝑡 − (𝑢2)𝑡)(𝑢1 − 𝑢2) 𝑑𝑥 𝑑𝑡 ⩽ 0

so, we have, � 𝑠

0

�
Ω

1

2

𝑑

𝑑𝑡
|𝑢1 − 𝑢2|2 𝑑𝑥 𝑑𝑡 ⩽ 0.

Then applying Fubini’s Theorem for interchanging the order of integration above,
and using the initial conditions, 𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 𝑓(𝑥), to obtain

�
Ω
|𝑢1(𝑠)− 𝑢2(𝑠)|2 𝑑𝑥 ⩽ 0

for every 𝑠 ∈ (0, 𝑇 ]. Thus, for 𝑇 > 0, we have
�
Ω |𝑢1 − 𝑢2|2 𝑑𝑥 = 0, which implies

𝑢1 = 𝑢2 almost everywhere in Ω× [0,∞), and hence the solution is unique.
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Next, we discuss steady state of the solution to the boundary value problem
(4.4.12)–(4.4.13). A steady state solution for a differential equation is defined as
the solution where the value of the function do not change over time, that is, a time
independent function. This is obtained by setting the partial derivative(s) with re-
spect to 𝑡 in the partial differential equation to constant zero, and then solving the
equation for a function that depends only on the spatial variable 𝑥. With such ap-
proach, we now prove the stability of the solution for the heat flow problem in the
following result.

Theorem 4.4.7. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, and
ℋ : Ω × [0,∞) → [0,∞), as defined from (4.2.1) where 1 < 𝑝 ⩽ 𝑞 ⩽ 2 such that
𝑞 < 3

2𝑝. Then, for any 𝑇 > 0,

‖𝑢1 − 𝑢2‖𝐿∞(Ω𝑇 )
⩽ ‖𝑓1 − 𝑓2‖𝐿∞(R2)

where 𝑢1 and 𝑢2 are weak solutions of the boundary problem (4.4.12)–(4.4.13) with
initial values 𝑓1, 𝑓2 ∈𝑊 1,ℋ(R2) ∩ 𝐿∞(R2).

Proof. Setting 𝑘 ..= ‖𝑓1 − 𝑓2‖𝐿∞(R2), we define,

𝑣 ..= 𝑢1 − (𝑢1 − 𝑢2 − 𝑘)+, 𝑤 ..= 𝑢2 + (𝑢1 − 𝑢2 − 𝑘)+, (4.4.72)

where,

(𝑢1 − 𝑢2 − 𝑘)+
..=

{︃
𝑢1 − 𝑢2 − 𝑘, if 𝑢1 − 𝑢2 − 𝑘 ⩾ 0

0, otherwise.
(4.4.73)

From Theorem 4.4.6, the weak solutions 𝑢1, 𝑢2 ∈ 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω))

such that 𝑢1(·, 𝑡) − 𝑓1 ∈ 𝑊 1,ℋ
0 (Ω) and 𝑢2(·, 𝑡) − 𝑓2 ∈ 𝑊 1,ℋ

0 (Ω) for each 𝑡, with
(𝑢1)𝑡, (𝑢2)𝑡 ∈ 𝐿2(Ω𝑇 ). Then for the above expressions, by chain rule we get 𝑣, 𝑤 ∈
𝐿2(0, 𝑇 ;𝑊 1,ℋ(Ω)∩𝐿∞(Ω)). Moreover, we have (𝑢1 − 𝑢2 − 𝑘)+ ∈𝑊 1,ℋ

0 (Ω), then
𝑣 and 𝑤 have the same boundary value as 𝑢1 and 𝑢2 in Sobolev sense, that is, 𝑓1 and
𝑓2, respectively. Further, we estimate the following using (4.4.72) and (4.4.73),

∇𝑣 =

{︃
∇𝑢2, 𝑢1 − 𝑢2 ⩾ 𝑘

∇𝑢1, 𝑢1 − 𝑢2 < 𝑘
, ∇𝑤 =

{︃
∇𝑢1, 𝑢1 − 𝑢2 ⩾ 𝑘

∇𝑢2, 𝑢1 − 𝑢2 < 𝑘.
(4.4.74)

Now, 𝑢1 and 𝑢2 being weak solutions, then by definition of weak solution, we have
that, for each 𝑡 > 0,
� 𝑠

0

�
Ω
(𝑢1)𝑡(𝑣 − 𝑢1) +ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓1)

2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢1|) +

𝜆

2
(𝑢1 − 𝑓1)

2 𝑑𝑥 𝑑𝑡,
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and,� 𝑠

0

�
Ω
(𝑢2)𝑡(𝑤 − 𝑢2) +ℋ(𝑥, |∇𝑤|) + 𝜆

2
(𝑤 − 𝑓2)

2 𝑑𝑥 𝑑𝑡

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢2|) +

𝜆

2
(𝑢2 − 𝑓2)

2 𝑑𝑥 𝑑𝑡.

Summing up the above two inequalities implies,� 𝑠

0

�
Ω
(𝑢1)𝑡(𝑣 − 𝑢1) + (𝑢2)𝑡(𝑤 − 𝑢2) +ℋ(𝑥, |∇𝑣|) +ℋ(𝑥, |∇𝑤|) + 𝜆

2
(𝑣 − 𝑓1)

2

+
𝜆

2
(𝑤 − 𝑓2)

2 𝑑𝑥 𝑑𝑡 ⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢1|) +ℋ(𝑥, |∇𝑢2|) +

𝜆

2
(𝑢1 − 𝑓1)

2

+
𝜆

2
(𝑢2 − 𝑓2)

2 𝑑𝑥 𝑑𝑡.

(4.4.75)

From (4.4.74), we have

ℋ(𝑥, |∇𝑣|) +ℋ(𝑥, |∇𝑤|) =

{︃
ℋ(𝑥, |∇𝑢2|) +ℋ(𝑥, |∇𝑢1|), for 𝑢1 − 𝑢2 ⩾ 𝑘

ℋ(𝑥, |∇𝑢1|) +ℋ(𝑥, |∇𝑢2|), for 𝑢1 − 𝑢2 < 𝑘

and, hence

ℋ(𝑥, |∇𝑣|) +ℋ(𝑥, |∇𝑤|) = ℋ(𝑥, |∇𝑢1|) +ℋ(𝑥, |∇𝑢2|), (4.4.76)

holds almost everywhere. On the other hand, consider,�
Ω
((𝑢1 − 𝑓1)

2−(𝑣 − 𝑓1)
2) + ((𝑢2 − 𝑓2)

2 − (𝑤 − 𝑓2)
2) 𝑑𝑥

=

�
Ω
(𝑢1 − 𝑣)(𝑢1 + 𝑣 − 2𝑓1) + (𝑢2 − 𝑤)(𝑢2 + 𝑤 − 2𝑓2) 𝑑𝑥

where we substitute the values of 𝑣 and 𝑤 from (4.4.72) to obtain,�
Ω
(𝑢1 − 𝑓1)

2 − (𝑣 − 𝑓1)
2 + (𝑢2 − 𝑓2)

2 − (𝑤 − 𝑓2)
2 𝑑𝑥

=

�
Ω
(𝑢1 − 𝑢2 − 𝑘)+(𝑢1 + 𝑣 − 2𝑓1 − 𝑢2 − 𝑤 + 2𝑓2) 𝑑𝑥

=

�
Ω
(𝑢1 − 𝑢2 − 𝑘)+(2𝑢1 − 2𝑢2 − 2(𝑢1 − 𝑢2 − 𝑘)+ − 2𝑓1 + 2𝑓2) 𝑑𝑥,

that is,�
Ω
(𝑢1 − 𝑓1)

2 + (𝑢2 − 𝑓2)
2 − (𝑣 − 𝑓1)

2 − (𝑤 − 𝑓2)
2 𝑑𝑥

=

�
Ω
2(𝑢1 − 𝑢2 − 𝑘)+((𝑢1 − 𝑢2 − 𝑘)− (𝑢1 − 𝑢2 − 𝑘)+ − (𝑓1 − 𝑓2 − 𝑘)) 𝑑𝑥.

(4.4.77)
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On the other hand, by the definition of 𝑘, we have 𝑓1 − 𝑓2 − 𝑘 = 𝑓1 − 𝑓2 −
‖𝑓1 − 𝑓2‖𝐿∞(Ω) ⩽ 𝑓1 − 𝑓2 − |𝑓1 − 𝑓2| ⩽ 0, that is 𝑓1 − 𝑓2 − 𝑘 ⩽ 0.
So, now, for values of 𝑢1 − 𝑢2 < 𝑘, since (𝑢1 − 𝑢2 − 𝑘)+ = 0 by (4.4.73), then the
right-hand side expression of (4.4.77) implies,
�
{𝑢1−𝑢2<𝑘}

2(𝑢1 − 𝑢2 − 𝑘)+((𝑢1−𝑢2−𝑘)−(𝑢1 − 𝑢2 − 𝑘)+−(𝑓1−𝑓2−𝑘)) 𝑑𝑥 = 0.

(4.4.78)
While, for 𝑢1 − 𝑢2 ⩾ 𝑘, since (𝑢1 − 𝑢2 − 𝑘)+ = 𝑢1 − 𝑢2 − 𝑘 by (4.4.73), then the
right-hand side expression of (4.4.77) implies,
�
{𝑢1−𝑢2⩾𝑘}

2(𝑢1 − 𝑢2 − 𝑘)+((𝑢1 − 𝑢2 − 𝑘)− (𝑢1 − 𝑢2 − 𝑘)+ − (𝑓1 − 𝑓2 − 𝑘)) 𝑑𝑥

⩾
�
{𝑢1−𝑢2⩾𝑘}

2(𝑢1 − 𝑢2 − 𝑘)((𝑢1 − 𝑢2 − 𝑘)− (𝑢1 − 𝑢2 − 𝑘)) 𝑑𝑥 = 0,

that is,�
{𝑢1−𝑢2⩾𝑘}

2(𝑢1 − 𝑢2 − 𝑘)+((𝑢1−𝑢2−𝑘)−(𝑢1 − 𝑢2 − 𝑘)+−(𝑓1−𝑓2−𝑘)) 𝑑𝑥 ⩾ 0.

(4.4.79)
From (4.4.78) and (4.4.79), we conclude
�
Ω
2(𝑢1 − 𝑢2 − 𝑘)+((𝑢1 − 𝑢2 − 𝑘)− (𝑢1 − 𝑢2 − 𝑘)+ − (𝑓1 − 𝑓2 − 𝑘)) 𝑑𝑥 ⩾ 0.

Then (4.4.77) implies,
�
Ω
(𝑢1 − 𝑓1)

2 + (𝑢2 − 𝑓2)
2 𝑑𝑥 ⩾

�
Ω
(𝑣 − 𝑓1)

2 + (𝑤 − 𝑓2)
2 𝑑𝑥. (4.4.80)

Now applying (4.4.76) and (4.4.80) in (4.4.75), to obtain
� 𝑠

0

�
Ω
(𝑢1)𝑡(𝑣 − 𝑢1) + (𝑢2)𝑡(𝑤 − 𝑢2) 𝑑𝑥 𝑑𝑡 ⩾ 0.

Substituting the values of 𝑣 and 𝑤 gives,
� 𝑠

0

�
Ω
(−(𝑢1)𝑡(𝑢1 − 𝑢2 − 𝑘)+ + (𝑢2)𝑡(𝑢1 − 𝑢2 − 𝑘)+) 𝑑𝑥 𝑑𝑡 ⩾ 0,

that is, � 𝑠

0

�
Ω
((𝑢1)𝑡 − (𝑢2)𝑡)(𝑢1 − 𝑢2 − 𝑘)+ 𝑑𝑥 𝑑𝑡 ⩽ 0.

The above expression is of the form,
� 𝑠

0

�
Ω

𝑑

𝑑𝑡
|(𝑢1 − 𝑢2 − 𝑘)+|

2 𝑑𝑥 𝑑𝑡 ⩽ 0.
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Then, applying Leibniz rule to interchange the order of integration and differentiation
above, gives � 𝑠

0

𝑑

𝑑𝑡

(︂�
Ω
|(𝑢1 − 𝑢2 − 𝑘)+|

2 𝑑𝑥

)︂
𝑑𝑡 ⩽ 0.

and thus, integrating over the interval [0, 𝑠] implies,
�
Ω
|(𝑢1(𝑥, 𝑠)− 𝑢2(𝑥, 𝑠)− 𝑘)+|

2 𝑑𝑥 ⩽
�
Ω
|(𝑢1(𝑥, 0)− 𝑢2(𝑥, 0)− 𝑘)+|

2 𝑑𝑥

=

�
Ω
|(𝑓1 − 𝑓2 − 𝑘)+|

2 𝑑𝑥.

(4.4.81)

Since 𝑓1 − 𝑓2 − 𝑘 ⩽ 0, so we have (𝑓1 − 𝑓2 − 𝑘)+ = 0, almost everywhere, then
from (4.4.81), it follows,

�
Ω
|(𝑢1 − 𝑢2 − 𝑘)+|

2 𝑑𝑥 ⩽ 0.

This gives us that (𝑢1 − 𝑢2 − 𝑘)+ = 0 a.e., which implies 𝑢1 − 𝑢2 ⩽ 𝑘.
Similarly, considering (𝑘 − 𝑢1 + 𝑢2)+, we follow the same approach to obtain

𝑢1−𝑢2 ⩾ −𝑘. Thus, we get −𝑘 ≤ 𝑢1−𝑢2 ⩽ 𝑘, that is, |𝑢1−𝑢2| ⩽ 𝑘, which gives,

𝑘 = ‖𝑓1 − 𝑓2‖𝐿∞(R2) ⩾ |𝑢1 − 𝑢2| = ‖𝑢1 − 𝑢2‖𝐿∞(Ω𝑇 )
,

as required.

4.4.4 Behavior of the solution

Theorem 4.4.8. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and
ℋ : Ω × [0,∞) → [0,∞), as defined in (4.2.1) where 1 < 𝑝 ⩽ 𝑞 ⩽ 2 such that
𝑞 < 3

2𝑝. Assume that 𝑓 ∈ 𝑊 1,ℋ(R2) ∩ 𝐿∞(R2). Then, there exists a sequence
of positive numbers {𝑠𝑖}, 𝑖 = 1, 2, . . . , and an integral average of weak solution,
denoted as 𝑢(𝑥, 𝑡), of the heat flow problem (4.4.12)–(4.4.13) over the interval [0, 𝑠𝑖],
defined as

𝑤(𝑥, 𝑠) ..=
1

𝑠

� 𝑠

0
𝑢(𝑥, 𝑡) 𝑑𝑡, 𝑠 = 𝑠1, 𝑠2, . . . , (4.4.82)

such that a subsequence of 𝑤(𝑥, 𝑠𝑖) strongly converges to the solution of the mini-
mization problem (4.3.10) in 𝐿2(Ω), as 𝑠𝑖 → ∞.

Proof. With 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω)) as weak solution of the problem
(4.4.12)–(4.4.13), we have, by definition 4.4.2, 𝑢 satisfies (4.4.15) such that 𝑢(·, 𝑡)−
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𝑓 ∈ 𝑊 1,ℋ
0 (Ω) for each 𝑡 > 0. For any 𝑣 ∈ 𝑊 1,ℋ(Ω), having the same boundary

value as 𝑢, we have from (4.4.15) the weak solution formulation,� 𝑠

0

�
Ω
𝑢𝑡(𝑥, 𝑡)(𝑣(𝑥)− 𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡+

� 𝑠

0
𝐸(𝑣) 𝑑𝑡 ⩾

� 𝑠

0
𝐸(𝑢) 𝑑𝑡.

Applying Fubini’s Theorem to interchange the order of integration for the first inte-
gral, implies�

Ω

� 𝑠

0
𝑢𝑡(𝑥, 𝑡)𝑣(𝑥) 𝑑𝑡 𝑑𝑥−

�
Ω

� 𝑠

0
𝑢𝑡(𝑥, 𝑡)𝑢(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥+ 𝐸(𝑣)

� 𝑠

0
𝑑𝑡

⩾
� 𝑠

0
𝐸(𝑢) 𝑑𝑡.

Since 𝑢𝑡𝑢 = 1
2

𝑑
𝑑𝑡(𝑢

2) and 𝑢(𝑥, 0) = 𝑓(𝑥), then integrating with respect to 𝑡 over the
interval [0, 𝑠] for the left hand side integrals, it follows,�
Ω
(𝑢(·, 𝑠)− 𝑓)𝑣 𝑑𝑥− 1

2

�
Ω
(𝑢2(·, 𝑠)− 𝑓2) 𝑑𝑥+ 𝑠

�
Ω
(ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓)2) 𝑑𝑥

⩾
� 𝑠

0

�
Ω
ℋ(𝑥, |∇𝑢|) + 𝜆

2
(𝑢− 𝑓)2 𝑑𝑥 𝑑𝑡.

(4.4.83)

Since 𝑢 ∈ 𝐿∞(0,∞;𝑊 1,ℋ(Ω) ∩ 𝐿∞(Ω)) by Theorem 4.4.6, so for each 𝑠 > 0,
using the convexity property of ℋ and the definition of 𝑤 from (4.4.82) to get

𝜚ℋ(𝑤(·, 𝑠)) = 𝜚ℋ
(︀1
𝑠

� 𝑠

0
𝑢 𝑑𝑡

)︀
=

�
Ω
ℋ(𝑥,

1

𝑠

� 𝑠

0
𝑢 𝑑𝑡) 𝑑𝑥 ⩽

1

𝑠

�
Ω

� 𝑠

0
ℋ(𝑥, 𝑢) 𝑑𝑡 𝑑𝑥.

Interchanging the order of integration above and using the boundedness of 𝑢(·, 𝑡) in
𝑊 1,ℋ(Ω) to obtain,

𝜚ℋ(𝑤(·, 𝑠)) ⩽
1

𝑠

� 𝑠

0

�
Ω
ℋ(𝑥, 𝑢) 𝑑𝑥 𝑑𝑡 =

1

𝑠

� 𝑠

0
𝜚ℋ(𝑢) 𝑑𝑡 ⩽

1

𝑠

� 𝑠

0
𝐶 𝑑𝑡 ⩽ 𝐶,

(4.4.84)
where the constant 𝐶 depends on 𝑠 > 0. Similarly, for each 𝑠 > 0, we ob-
tain 𝜚ℋ(∇𝑤(·, 𝑠)) ⩽ 𝐶, and hence we conclude that 𝜚1,ℋ(𝑤(·, 𝑠)) ⩽ 𝐶. Thus,
‖𝑤(·, 𝑠)‖𝑊 1,ℋ(Ω) ⩽ 𝐶. On the other hand, since ‖𝑢(·, 𝑡)‖∞ ⩽ 𝐶 for every 𝑡, we
estimate

‖𝑤(·, 𝑠)‖∞ = ‖1
𝑠

� 𝑠

0
𝑢(𝑥, 𝑡) 𝑑𝑡‖∞ ⩽

1

𝑠

� 𝑠

0
‖𝑢‖∞ 𝑑𝑡 ⩽

1

𝑠

� 𝑠

0
𝐶 𝑑𝑡 ⩽ 𝐶, (4.4.85)

where the constant 𝐶 depends on 𝑠 > 0.
Next, we compute estimates for 𝑤(·, 𝑠). Since |∇𝑤(𝑥, 𝑠)| ⩽ 1

𝑠

� 𝑠
0 |∇𝑢(𝑥, 𝑡)| 𝑑𝑡,

then increasing and convexity properties of ℋ implies

ℋ(𝑥, |∇𝑤(·, 𝑠)|) ⩽ ℋ(𝑥,
1

𝑠

� 𝑠

0
|∇𝑢| 𝑑𝑡) ⩽ 1

𝑠

� 𝑠

0
ℋ(𝑥, |∇𝑢|) 𝑑𝑡. (4.4.86)
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On the other hand, using Cauchy-Schwartz inequality, we have

(𝑤(𝑥, 𝑠)− 𝑓(𝑥))2 =
(︀1
𝑠

� 𝑠

0
𝑢(𝑥, 𝑡) 𝑑𝑡− 𝑓(𝑥)

)︀2
=

(︀1
𝑠

� 𝑠

0
(𝑢(𝑥, 𝑡)− 𝑓(𝑥)) 𝑑𝑡

)︀2
⩽

1

𝑠

� 𝑠

0
(𝑢(𝑥, 𝑡)− 𝑓(𝑥))2 𝑑𝑡.

(4.4.87)

Now, in (4.4.83), interchanging the order of integration by applying Fubini’s
theorem for the right hand side expression, we divide both the sides by 𝑠, to obtain

1

𝑠

�
Ω
(𝑢(𝑥, 𝑠)− 𝑓(𝑥))𝑣(𝑥) 𝑑𝑥− 1

2𝑠

�
Ω
(𝑢2(𝑥, 𝑠)− 𝑓2(𝑥)) 𝑑𝑥+

�
Ω
(ℋ(𝑥, |∇𝑣|)

+
𝜆

2
(𝑣 − 𝑓)2) 𝑑𝑥 ⩾

�
Ω

1

𝑠

(︀� 𝑠

0
ℋ(𝑥, |∇𝑢|) 𝑑𝑡+ 𝜆

2𝑠

� 𝑠

0
(𝑢− 𝑓)2 𝑑𝑡

)︀
𝑑𝑥,

and applying (4.4.86) and (4.4.87) implies,
�
Ω
ℋ(𝑥,|∇𝑤(𝑥, 𝑠)|) + 𝜆

2
(𝑤(𝑥, 𝑠)− 𝑓(𝑥))2 𝑑𝑥 ⩽

1

𝑠

�
Ω
(𝑢(𝑥, 𝑠)− 𝑓(𝑥))𝑣(𝑥) 𝑑𝑥

− 1

2𝑠

�
Ω
(𝑢2(𝑥, 𝑠)− 𝑓2(𝑥)) 𝑑𝑥+

�
Ω
ℋ(𝑥, |∇𝑣(𝑥)|) + 𝜆

2
(𝑣(𝑥)− 𝑓(𝑥))2 𝑑𝑥.

Further, using the estimate |𝑢𝑣| ⩽ 1
2(|𝑢|

2 + |𝑣|2) and |𝑓𝑣| ⩽ 1
2(|𝑓 |

2 + |𝑣|2) on the
left-hand side above implies,
�
Ω
ℋ(𝑥,|∇𝑤(𝑥, 𝑠)|) + 𝜆

2
(𝑤(𝑥, 𝑠)− 𝑓(𝑥))2 𝑑𝑥

⩽
1

2𝑠

�
Ω
(|(𝑢(𝑥, 𝑠)|2 + |𝑣(𝑥)|2 + |𝑓(𝑥)|2 + |𝑣(𝑥)|2) 𝑑𝑥

− 1

2𝑠

�
Ω
(𝑢2(𝑥, 𝑠)− 𝑓2(𝑥)) 𝑑𝑥+

�
Ω
ℋ(𝑥, |∇𝑣(𝑥)|) + 𝜆

2
(𝑣(𝑥)− 𝑓(𝑥))2 𝑑𝑥.

that is,
�
Ω
ℋ(𝑥, |∇𝑤(𝑥, 𝑠)|) + 𝜆

2
(𝑤(𝑥, 𝑠)− 𝑓(𝑥))2 𝑑𝑥

⩽
1

𝑠

�
Ω
(|𝑣(𝑥)|2 + |𝑓(𝑥)|2) 𝑑𝑥+

�
Ω
ℋ(𝑥, |∇𝑣(𝑥)|) + 𝜆

2
(𝑣(𝑥)− 𝑓(𝑥))2 𝑑𝑥.

(4.4.88)

Since 𝑊 1,ℋ(Ω) →˓ 𝐿2(Ω) from Lemma 4.2.4, we have 𝑓 ∈ 𝐿2(R2) as square-
integrable function, then

�
Ω(|𝑣(𝑥)|

2 + |𝑓(𝑥)|2) 𝑑𝑥 is finite in the above expression.
Taking 𝑠 = 𝑠𝑖, 𝑖 ∈ N, we have from (4.4.84) and (4.4.85) that the sequence

{𝑤(·, 𝑠𝑖)}𝑖∈N is uniformly bounded in 𝑊 1,ℋ(Ω) and 𝐿∞(Ω), for each 𝑠𝑖. Therefore,
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there exists a subsequence {𝑤(·, 𝑠𝑖𝑗)}∞𝑗=1
⊂ {𝑤(·, 𝑠𝑖)} which converges weakly in

𝑊 1,ℋ(Ω) and weakly* in 𝐿∞(Ω) to a function 𝑢̃ ∈𝑊 1,ℋ(Ω)∩𝐿∞(Ω), as 𝑠𝑖 → ∞.
Applying weak lower semicontinuity from Lemma 4.2.3, it follows,

lim inf
𝑠𝑖→∞

�
Ω
ℋ(𝑥, |∇𝑤(·, 𝑠𝑖𝑗)|) 𝑑𝑥 ⩾

�
Ω
ℋ(𝑥, |∇𝑢̃|) 𝑑𝑥. (4.4.89)

Moreover, from the embedding 𝑊 1,ℋ(Ω) →˓ 𝑊 1,𝑝(Ω) [24, Lemma 6.1.6], where
𝑝 > 1 is from (aInc)𝑝, it follows that {𝑤(·, 𝑠𝑖)} is a bounded sequence in 𝑊 1,𝑝(Ω)

for each 𝑠𝑖. Further, since 𝑊 1,𝑝(Ω) is compactly embedded in 𝐿𝑝*(Ω) for 𝑛 = 2,
where 𝑝* < 2𝑝

2−𝑝 , we conclude that {𝑤(·, 𝑠𝑖𝑗)} converges strongly in 𝐿2(Ω) space.
Hence, as 𝑠𝑖𝑗 → ∞,

𝑤(·, 𝑠𝑖𝑗) → 𝑢̃ strongly in 𝐿2(Ω). (4.4.90)

Now consider 𝑠 = 𝑠𝑖, 𝑖 ∈ N in (4.4.88). Then taking limit as 𝑠𝑖 → ∞ in (4.4.88),
and applying (4.4.89) and (4.4.90), we obtain

�
Ω
ℋ(𝑥, |∇𝑢̃|) + 𝜆

2
(𝑢̃− 𝑓)2 𝑑𝑥 ⩽

�
Ω
ℋ(𝑥, |∇𝑣|) + 𝜆

2
(𝑣 − 𝑓)2 𝑑𝑥,

that is,
𝐸(𝑢̃) ⩽ 𝐸(𝑣),

which shows that 𝑢̃ is the minimizer of (4.3.4).

4.5 Numerical methods and experimental results
Image restoration is an application of minimization problems, as introduced earlier,
whose primary objective is removal of noise such that the features of the image are
preserved. The approach involves the minimization of nonsmooth energy functionals
for yielding quality restored results. Solving such functionals typically requires large
number of iterations, and thus an efficient algorithm is preferable where the runtime
is crucial. It is a classic problem in the field of image processing and computer
vision, for which various methods involving variational and numerical approaches
[16; 56], have been developed to address noise reduction, in the recent decades.

Nonsmooth optimization techniques to solve image restoration problems include
the bundle methods [42]. The basic idea in bundle methods is to approximate the
subdifferential [11] of an objective function with a bundle formed by collecting sub-
gradients from previous iterations. This information is used to construct a model
of the objective, which is utilized to determine a solution of the original problem.
Among the bundle methods, Limited Memory Bundle Method (LMBM) [22; 34]
is used for solving large-scale nonsmooth unconstrained optimization problems that
guarantee global convergence. So, it is considered appropriate for image restoration
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[33; 41], as digital images contains thousands of pixels to be processed in a short
span. We apply this method to produce experimental results by solving the image
restoration optimization problem through FORTRAN.

In this section, the primary goal is to present simple numerical results, to under-
stand how the image restoration model works with noisy signal and images. How-
ever, we do not discuss the details of the optimization algorithm used, since we
mainly deal with the illustration of the behavior of the image restoration model.

First, we give the discretized formulation of the image restoration model along
with its discretized gradient, in the following subsection.

4.5.1 Discretization of the model In solving optimization problems, Euler
made extensive use of the ’method of finite differences’. By replacing smooth curves
by polygonal lines, he reduced the problem of finding extrema of a function to the
problem of finding extrema of a function of 𝑁 variables, and then he obtained exact
solutions by passing to the limit as 𝑁 → ∞. The finite difference discretization
method [17] is one of the simplest forms of discretization, which approximates the
differential operators constituting an equation locally. In image processing, due to
the digital structure of an image as a set of pixels uniformly distributed, finite differ-
ence approximation schemes are easy to implement to an image domain.

We assume that Ω is an open and bounded domain in R𝑛, where 𝑛 ⩾ 1 is the
dimension of image. In one dimension, for signals, Ω is an interval in R. In two di-
mensions, we deal with planar images and Ω is a rectangle in R2. Given an observed
image 𝑓 , possibly degraded by noise, and a balancing parameter 𝜆 > 0, we solve the
corresponding optimization problem of the image restoration model from (4.3.3) as,

min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)

𝐸(𝑢) = min
𝑢∈𝑊 1,ℋ(Ω)∩𝐿2(Ω)

ℱ(𝑢) +
𝜆

2
‖𝑢− 𝑓‖22, (4.5.1)

where ℱ(𝑢) =
�
Ω |∇𝑢|𝑝 + 𝑎(𝑥)|∇𝑢|𝑞 𝑑𝑥, with 1 < 𝑝 ⩽ 𝑞 ⩽ 2 and 𝑎 ⩾ 0 is a

regulatory component. The weak lower semicontinuity of the cost functional𝐸(𝑢) in
𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω), yields the unique solvability of the above minimization problem
in this space, as established in Theorem 4.3.2. The discretization of the above model
is approached by finite difference method, using backward difference approximation.

For the numerical experiments, we take the case of one-dimensional signal 𝑓 :

Ω → R, where Ω = (0, 1) ⊂ R. Consider the number of discretized points in Ω as
𝑁 ∈ N. We introduce the equidistributed grid points (𝑥𝑖)0⩽𝑖⩽𝑁 given by 𝑥𝑖 ..= 𝑖ℎ,
and ℎ ..= 1

𝑁+1 denote the mesh step size. Also, let 𝑢𝑖 ..= 𝑢(𝑥𝑖). For discretization,
we fix 𝑁 and assume 𝑢, 𝑓, 𝑎 as 𝑁 -dimensional vectors, where 𝑓 is the given noisy
signal and 𝑎 is chosen appropriately. To perform the operation over the entire signal
in Ω, we simply iterate over all the points indices 𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑁 , and thus
determine the numerical value of 𝑢𝑖.
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Let 𝐷 denote the backward difference approximation operator of ∇, defined as

(𝐷𝑢)𝑖
..=

1

ℎ
(𝑢𝑖 − 𝑢𝑖−1), 𝑖 = 1, . . . , 𝑁, (4.5.2)

with 𝑢0 = 0, taken as a Dirichlet boundary condition. Further, we denote

|𝐷𝑢|𝑝 ..=

𝑁∑︁
𝑖=1

|(𝐷𝑢)𝑖|
𝑝 and |𝐷𝑢|𝑞𝑎 ..=

𝑁∑︁
𝑖=1

𝑎𝑖|(𝐷𝑢)𝑖|
𝑞.

The discrete approximation of the problem (4.5.1) is then defined as,

min
𝑢∈R𝑁

𝐸(𝑢) = min
𝑢∈R𝑁

𝜆

2
(𝑢− 𝑓)𝑇 (𝑢− 𝑓) + |𝐷𝑢|𝑝 + |𝐷𝑢|𝑞𝑎, (4.5.3)

where (𝑢− 𝑓)𝑇 denotes the transpose of (𝑢− 𝑓).
Note that, for 1 < 𝑝 ⩽ 𝑞 ⩽ 2, 𝐸(𝑢) is strictly convex and differentiable in R𝑛,

which implies that 𝐸 has a global minimum value at the point where the gradient of
𝐸 vanishes. So, next we arrive at the necessary and sufficient optimality condition
for (4.5.3), by computing the gradient of 𝐸(𝑢).

We denote,
𝐸(𝑢) = 𝑒(𝑢) +ℋ(𝑢),

where 𝑒(𝑢) = 𝜆
2 (𝑢− 𝑓)𝑇 (𝑢− 𝑓) and ℋ(𝑢) = |𝐷𝑢|𝑝+ |𝐷𝑢|𝑞𝑎. We then calculate the

gradients of 𝑒(𝑢) and ℋ(𝑢) with respect to 𝑢. The gradient of 𝑒(𝑢) is given by,

∇𝑒(𝑢) = 𝜆(𝑢− 𝑓).

While, calculating the gradient of ℋ(𝑢) gives,

𝜕

𝜕𝑢𝑖
ℋ(𝑢) =

𝜕

𝜕𝑢𝑖

(︀
|(𝐷𝑢)𝑖|𝑝 + 𝑎𝑖|(𝐷𝑢)𝑖|

𝑞 + |(𝐷𝑢)𝑖+1|
𝑝 + 𝑎𝑖+1|(𝐷𝑢)𝑖+1|

𝑞)︀.
Plugging in the formula for backward difference operator 𝐷 from (4.5.2), we have
from above
𝜕

𝜕𝑢𝑖
ℋ(𝑢) =

𝜕

𝜕𝑢𝑖

(︁⃒⃒𝑢𝑖 − 𝑢𝑖−1

ℎ

⃒⃒𝑝
+
⃒⃒𝑢𝑖+1 − 𝑢𝑖

ℎ

⃒⃒𝑝
+ 𝑎𝑖

⃒⃒𝑢𝑖 − 𝑢𝑖−1

ℎ

⃒⃒𝑞
+ 𝑎𝑖+1

⃒⃒𝑢𝑖+1 − 𝑢𝑖

ℎ

⃒⃒𝑞)︁
= 𝑝

⃒⃒𝑢𝑖 − 𝑢𝑖−1

ℎ

⃒⃒𝑝−1
sgn

(︀𝑢𝑖 − 𝑢𝑖−1

ℎ

)︀ 1
ℎ
+ 𝑝

⃒⃒𝑢𝑖+1 − 𝑢𝑖

ℎ

⃒⃒𝑝−1
sgn

(︀𝑢𝑖+1 − 𝑢𝑖

ℎ

)︀(︀
− 1

ℎ

)︀
+ 𝑎𝑖 𝑞

⃒⃒𝑢𝑖 − 𝑢𝑖−1

ℎ

⃒⃒𝑞−1
sgn

(︀𝑢𝑖 − 𝑢𝑖−1

ℎ

)︀ 1
ℎ

+ 𝑎𝑖+1 𝑞
⃒⃒𝑢𝑖+1 − 𝑢𝑖

ℎ

⃒⃒𝑞−1
sgn

(︀𝑢𝑖+1 − 𝑢𝑖

ℎ

)︀(︀
− 1

ℎ

)︀
,

where sgn(𝑥) ..=
𝜕

𝜕𝑥
|𝑥|, 𝑥 ̸= 0 denotes the sign or signum function. Using again

(𝐷𝑢)𝑖, the above expression can be expressed as

𝜕

𝜕𝑢𝑖
ℋ(𝑢) = 𝑝

[︁
|(𝐷𝑢)𝑖|

𝑝−1 sgn((𝐷𝑢)𝑖)− |(𝐷𝑢)𝑖+1|
𝑝−1 sgn((𝐷𝑢)𝑖+1)

]︁
1

ℎ

+ 𝑞
[︁
𝑎𝑖|(𝐷𝑢)𝑖|

𝑞−1 sgn((𝐷𝑢)𝑖)− 𝑎𝑖+1|(𝐷𝑢)𝑖+1|
𝑞−1 sgn((𝐷𝑢)𝑖+1)

]︁
1

ℎ
.

(4.5.4)
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Let us denote by

𝜇𝑖 ..= |(𝐷𝑢)𝑖|
𝑝−1 sgn((𝐷𝑢)𝑖) =

{︃
(𝐷𝑢)

𝑖

|(𝐷𝑢)
𝑖
|2−𝑝 , for (𝐷𝑢)𝑖 ̸= 0

0, for (𝐷𝑢)𝑖 = 0
(4.5.5)

and,

𝜂𝑖 ..= 𝑎𝑖|(𝐷𝑢)𝑖|
𝑞−1 sgn((𝐷𝑢)𝑖) =

{︃
𝑎𝑖(𝐷𝑢)

𝑖

|(𝐷𝑢)
𝑖
|2−𝑞 , for (𝐷𝑢)𝑖 ̸= 0

0, for (𝐷𝑢)𝑖 = 0.
(4.5.6)

Taking a forward difference operator, denoted by𝐷𝑇 , such that (𝐷𝑇𝜇)𝑖 ..= 1
ℎ(𝜇𝑖+1−

𝜇𝑖) and (𝐷𝑇 𝜂)𝑖 ..= 1
ℎ(𝜂𝑖+1 − 𝜂𝑖), then (4.5.4) implies,

𝜕

𝜕𝑢𝑖
ℋ(𝑢) = −(𝑝(𝐷𝑇𝜇)𝑖 + 𝑞(𝐷𝑇 𝜂)𝑖).

So considering that the minimum value of 𝐸(𝑢) exists at 𝑢 = 𝑢*, we have

∇𝐸(𝑢*) = 𝜆(𝑢* − 𝑓)− (𝑝𝐷𝑇𝜇* + 𝑞𝐷𝑇 𝜂*) = 0, (4.5.7)

where 𝜇*𝑖 and 𝜂*𝑖 correspond to 𝜇𝑖 and 𝜂𝑖, defined similarly as in (4.5.5) and (4.5.6)
for (𝐷𝑢*)𝑖. The equation (4.5.7) is the necessary and sufficient optimality condition
for (4.5.3).

4.5.2 Experimental results. Here, we present a few examples to demonstrate
the working of the proposed image restoration model (4.5.3) with one-dimensional
signals and numerical results. Also, depending on the original as well as noisy sig-
nals, we formulate the function 𝑎(𝑥) to examine the behaviour of the image restora-
tion model.

For the 1-dimensional noisy signals [33] considered for image restoration, we
implement LMBM algorithm [22] (coded by Napsu Karmitsa) using Fortran 77, pre-
sented in the appendix A.5. The quality of image restoration is measured using the
reconstruction error, which is the average error between the true signal and the ob-
tained result. The number of discretization points taken for all the cases is𝑁 = 1000.

We consider the following 1-dimensional signal, say 𝐼1(𝑥), formulated as:

𝐼1(𝑥) ..=

⎧⎪⎨⎪⎩
sin(2𝜋𝑥), 𝑥 < 0.5,

0.65, 0.5 < 𝑥 < 0.8,

−2𝑥+ 2, 0.8 < 𝑥 < 1.

The above signal along with its noisy signal are presented in figure 1.
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(a) Original signal (b) Noisy signal

Figure 1. 1D signal: first example

We consider two approaches in formulating the function 𝑎(𝑥): first, based on the
noisy signal and, second, based on the original signal. In practical cases, it is not
always feasible to correctly estimate the original signal, but for theoretical purpose
we adopt such approach to examine the efficiency of our image restoration model.
The main idea here is to test if we have the best possible 𝑎(𝑥) and check how the
model works in that case.

For the first approach where the function 𝑎(𝑥) is formulated using the gradient
of noisy signal, say 𝑓1(𝑥) in figure 1(b), denoting it by 𝑎1(𝑥), we have:

𝑎1(𝑥) ..=

{︃
0.9, |𝐷𝑓1(𝑥)| ⩽ 𝛽,

0, |𝐷𝑓1(𝑥)| > 𝛽,

where 𝛽 > 0 is an appropriate cut-off value, which depends on the noise level present
at the particular point.

We now compare the restored signals obtained with different values of 𝛽 in figure
2. Here, we fix 𝑝 = 1.0001, 𝑞 = 2.0. With 𝛽 = 0.1, the restored signal, figure
2(a), gives an error of 7.41 · 10−4 and computation time being 2.73 seconds. While
with 𝛽 = 0.37, we obtain the restored signal, figure 2(b), with error 1.81 · 10−3

and computation time of 1.49 seconds. Further, with 𝛽 = 0.5 and 𝛽 = 1.0, the
obtained restored signals, figures 2(c) and 2(d), both give approximately same error
of 1.59 ·10−3, with computation time of 1.14 seconds and 1.18 seconds respectively.
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(a) 𝛽 = 0.10 (b) 𝛽 = 0.37

(c) 𝛽 = 0.50 (d) 𝛽 = 1.0

Figure 2. Restored signals of 1(b) with 𝑝 = 1.0001, 𝑞 = 2.0

Next, taking a fixed 𝛽, we consider the extreme values of the parameters 𝑝 and
𝑞 to check the behaviour of the model for the same noise level. With fixed 𝛽 = 0.5,
choosing 𝑝 = 1.0001 and 𝑞 = 1.0007 we obtain the restored signal, figure 3(a),
with error 6.81 · 10−4 and computation time of 18.95 seconds. On the other hand,
choosing 𝑝 = 1.9 and 𝑞 = 2.0 we obtain the restored signal, figure 3(b), with error
1.99 · 10−3 and computation time of 0.16 second.
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(a) 𝑝 = 1.0001, 𝑞 = 1.0007 (b) 𝑝 = 1.9, 𝑞 = 2.0

Figure 3. Restored signals of 1(b) with 𝛽 = 0.5

Next, we use the second approach where the function 𝑎(𝑥) depends on the gra-
dient of the original signal, 𝐼1(𝑥) in figure 1(a), that is,

𝑎2(𝑥) ..=

{︃
0.9, |∇𝐼1(𝑥)| ⩽ 𝛽,

0, |∇𝐼1(𝑥)| > 𝛽.

In this case, the (absolutely continuous part of) gradient, ∇𝐼1(𝑥), is formulated as:

∇𝐼1(𝑥) ..=

⎧⎪⎨⎪⎩
2𝜋 cos(2𝜋𝑥), 𝑥 < 0.5,

0, 0.5 ⩽ 𝑥 < 0.8,

−2, 0.8 ⩽ 𝑥 < 1.

We again compare the restored signals obtained with different values of 𝛽, in
figure 4. The parameters 𝑝 = 1.0001, 𝑞 = 2.0 are fixed here. With 𝛽 = 0.1, the
restored signal, in figure 4(a), gives an error of 7.90 · 10−4 and computation time
being 1.86 seconds. While with 𝛽 = 2.1, we obtain the restored signal, in figure
4(b), with error 1.18 · 10−3 and computation time of 2.54 seconds. Further, with
𝛽 = 4.1 and 𝛽 = 8.1, the obtained restored signals, figures 4(c) and 4(d), give
approximately same error of 1.59 · 10−3, with computation time of 1.15 seconds and
1.19 seconds respectively.
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(a) 𝛽 = 0.10 (b) 𝛽 = 2.1

(c) 𝛽 = 4.1 (d) 𝛽 = 8.1

Figure 4. Restored signals: 𝑝 = 1.0001, 𝑞 = 2.0

Next, taking a fixed 𝛽, we consider the extreme values of the parameters 𝑝 and
𝑞. With fixed 𝛽 = 0.1, choosing 𝑝 = 1.0001 and 𝑞 = 1.0007 we obtain the restored
signal, in figure 5(a), with error 7.42 · 10−4 and computation time of 35.68 seconds.
On the other hand, choosing 𝑝 = 1.9 and 𝑞 = 2.0 we obtain the restored signal, in
figure 5(b), with error 1.63 · 10−3 and computation time of 0.19 second.

(a) 𝑝 = 1.0001, 𝑞 = 1.0007 (b) 𝑝 = 1.9, 𝑞 = 2.0

Figure 5. Restored signals with 𝛽 = 0.1
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Next, we consider another 1-dimensional signal, say 𝐼2(𝑥), formulated as:

𝐼2(𝑥) ..=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(2𝜋𝑥), 𝑥 < 0.25,

0.75, 0.25 < 𝑥 < 0.4,

4𝑥− 1.56, 0.4 < 𝑥 < 0.5,

−4𝑥+ 2.5, 0.5 < 𝑥 < 0.6,

0.75, 0.6 < 𝑥 < 0.75,

− sin(2𝜋𝑥), 0.75 < 𝑥 < 1.

We follow a similar process as in the previous signal, to check the working of the
image restoration model in this case.

The above signal along with its noisy signal are presented in figure 6.

(a) Original signal (b) Noisy signal

Figure 6. 1D signal: second example

For the first approach where the function 𝑎(𝑥) is based on the gradient of noisy
signal, say 𝑓2(𝑥) in figure 6(b), denoting it by 𝑎3(𝑥), we have

𝑎3(𝑥) ..=

{︃
0.9, |𝐷𝑓2(𝑥)| ⩽ 𝛽,

0, |𝐷𝑓2(𝑥)| > 𝛽,

where 𝛽 > 0 is an appropriate cut-off value.
We now compare the restored signals obtained with different values of 𝛽, in

figure 7. The parameters 𝑝 = 1.0001, 𝑞 = 2.0 are fixed. With 𝛽 = 0.1, the restored
signal, figure 7(a), gives an error of 9.67 · 10−4 and computation time being 4.18

seconds. While with 𝛽 = 0.37, we obtain the restored signal, figure 7(b), with
error 2.38 · 10−3 and computation time of 5.60 seconds. Further, with 𝛽 = 0.5, the
obtained restored signal, figure 7(c), give error of 1.59 · 10−3 and 3.12 · 10−3, with
computation time of 1.17 seconds. Lastly, with 𝛽 = 1.0, the obtained restored signal,
figure 7(d), give error of 3.12 · 10−3, with computation time of 2.78 seconds.
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(a) 𝛽 = 0.10 (b) 𝛽 = 0.37

(c) 𝛽 = 0.50 (d) 𝛽 = 1.0

Figure 7. Restored signals: 𝑝 = 1.0001, 𝑞 = 2.0

Next, taking a fixed 𝛽, we consider the extreme values of the parameters 𝑝 and
𝑞 to check the behaviour of the model. With fixed 𝛽 = 0.5, choosing 𝑝 = 1.0001

and 𝑞 = 1.0007 we obtain the restored signal, figure 8(a), with error 1.05 · 10−3 and
computation time of 11.92 seconds. On the other hand, choosing 𝑝 = 1.9 and 𝑞 = 2.0

we obtain the restored signal, figure 8(b), with error 4.31·10−3 and computation time
of 0.17 second.
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(a) 𝑝 = 1.0001, 𝑞 = 1.0007 (b) 𝑝 = 1.9, 𝑞 = 2.0

Figure 8. Restored signals with 𝛽 = 0.5

Next, in the second approach, the function 𝑎(𝑥) depends on the gradient of the
original signal in figure 6(a), that is,

𝑎4(𝑥) ..=

{︃
0.9, |∇𝐼2(𝑥)| ⩽ 𝛽,

0, |∇𝐼2(𝑥)| > 𝛽

where the (absolutely continuous part of) gradient, ∇𝐼2(𝑥), is formulated as:

∇𝐼2(𝑥) ..=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝜋 cos(2𝜋𝑥), 𝑥 < 0.25,

0, 0.25 ⩽ 𝑥 < 0.4,

4, 0.4 ⩽ 𝑥 < 0.5,

−4, 0.5 ⩽ 𝑥 < 0.6,

0, 0.6 ⩽ 𝑥 < 0.75,

−2𝜋 cos(2𝜋𝑥), 0.75 ⩽ 𝑥 < 1.

We again compare the restored signals obtained with different values of 𝛽, in
figure 9. The parameters 𝑝 = 1.0001, 𝑞 = 2.0 are fixed here. With 𝛽 = 0.1, the
restored signal, figure 9(a), gives an error of 1.27 · 10−3 and computation time being
2.16 seconds. While with 𝛽 = 2.1, we obtain the restored signal, figure 9(b), with
error 1.29 · 10−3 and computation time of 2.16 seconds. With 𝛽 = 4.1, the obtained
restored signal, figure 9(c), give error of 3.06 · 10−3, with computation time of 4.39
seconds. Further with 𝛽 = 8.1, the obtained restored signal, figure 9(d), give error
of 3.80 · 10−3, with computation time of 2.62 seconds.
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(a) 𝛽 = 0.10 (b) 𝛽 = 2.1

(c) 𝛽 = 4.1 (d) 𝛽 = 8.1

Figure 9. Restored signals: 𝑝 = 1.0001, 𝑞 = 2.0

Finally, taking a fixed 𝛽, we consider the extreme values of the parameters 𝑝 and
𝑞. With fixed 𝛽 = 0.1, choosing 𝑝 = 1.0001 and 𝑞 = 1.0007 we obtain the restored
signal, figure 10(a), with error 1.08 · 10−3 and computation time of 15.17 seconds.
On the other hand, choosing 𝑝 = 1.9 and 𝑞 = 2.0 we obtain the restored signal,
figure 10(b), with error 3.68 · 10−3 and computation time of 0.17 second.

(a) 𝑝 = 1.0001, 𝑞 = 1.0007 (b) 𝑝 = 1.9, 𝑞 = 2.0

Figure 10. Restored signals with 𝛽 = 0.1
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Thus, as the exponents 𝑝, 𝑞 of the gradient function in the model (4.5.3) move
from 1 to 2, the sharp edge-like features tend to become smooth, with varying error
tolerance depending on the image features and noise level.

4.5.3 Summary and discussion The results presented here are measured using
quantitative performance measures such as reconstruction error, as well as in terms
of visual quality of the images. The techniques here assume the noise model to
be Gaussian, while in reality, this assumption may not always hold true due to the
varied nature and sources of noise. An ideal denoising procedure requires a priori
knowledge of the noise, whereas a practical procedure may not have the required
information about the variance of the noise or the noise model. Thus, in most of the
cases, Gaussian noise with different variance values is added in the natural images
to test the performance of an algorithm and also to compare different algorithms or
different denoising models.

The parameters chosen here comply with the image restoration model consid-
ered, where the functional ℋ(𝑥, |∇𝑢|) = |∇𝑢|𝑝+𝑎(𝑥)|∇𝑢|𝑞, 1 < 𝑝 ⩽ 𝑞 ⩽ 2 is used
to keep a balance between edge detection and smoothing effect in the denoised im-
age regulated by the value of 𝑎. Moreover these parameters are chosen accordingly
at best to reduce the reconstruction error mathematically. The difference in the visual
quality of the reconstructed images might not be reflected distinctly, as shown math-
ematically, but this aspect is more significant in the practical applications to obtain
clarity of image features to the possible extent.

The message we wish to convey is that to interpret a physical phenomenon, the
intuition that leads to certain formulations and the underlying theoretical study are
often complementary. However, developing a theoretical justification of a problem
is not simply art for art’s sake, but in fact, a deep understanding of the theoretical
difficulties may lead to the development of suitable numerical schemes or different
models. Hence, for denoising purpose, the formulation quality of the image restora-
tion model as well as the algorithm solver are crucial to justify a well-established
nature of methodology.
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Appendix

A.1 Density argument in the proof of Theorem 4.3.3

To prove: 𝑢𝑀 − 𝑓 ∈ 𝑊 1,ℋ
0 (Ω), where 𝑢𝑀 ..= min{𝑀,max{−𝑀,𝑢}} with 𝑢 ∈

𝑈 ..= {𝑢 ∈𝑊 1,ℋ(Ω) ∩ 𝐿2(Ω) | 𝑢− 𝑓 ∈𝑊 1,ℋ
0 (Ω)} and 𝑀 > 0 such that |𝑓 | ⩽𝑀 .

Since 𝐶∞
0 (Ω) is dense in 𝑊 1,ℋ

0 (Ω), then there exists a sequence {𝜓𝑖}∞𝑖=1 ∈
𝐶∞
0 (Ω) such that 𝜓𝑖 → 𝑢 − 𝑓 in 𝑊 1,ℋ(Ω), as 𝑖 → ∞. In order to establish the

claim, we need to prove that there exists an approximating sequence 𝜓𝜖𝑖 ∈ 𝐶∞
0 (Ω),

such that 𝜓𝜖𝑖 → 𝑢𝑀 − 𝑓 in 𝑊 1,ℋ(Ω) as 𝑖→ ∞.
We have that,

𝜚1,ℋ(𝜓𝑖 + 𝑓 − 𝑢) → 0, as 𝑖→ ∞, (A.1.1)

so 𝜓𝑖 + 𝑓 converges to 𝑢 in 𝑊 1,ℋ(Ω). Now cutting-off the functions 𝜓𝑖 + 𝑓, 𝑢 at
−𝑀 and 𝑀 , 𝑀 > 0, we set,

(𝜓𝑖 + 𝑓)𝑀 ..= min{𝑀,max{−𝑀,𝜓𝑖 + 𝑓}}, 𝑢𝑀 ..= min{𝑀,max{−𝑀,𝑢}}.

Next we prove that (𝜓𝑖 + 𝑓)𝑀 → 𝑢𝑀 in 𝑊 1,ℋ(Ω) as 𝑖→ ∞, that is,

𝜚1,ℋ((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 ) → 0, as 𝑖→ ∞.

For that, we consider the following subsets of the domain Ω, where the values of the
modular 𝜚1,ℋ((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 ) are calculated.

Consider Ω1
..= {𝑥 ∈ Ω : −𝑀 ⩽ (𝜓𝑖 + 𝑓)(𝑥), 𝑢(𝑥) ⩽ 𝑀}, Ω2

..= {𝑥 ∈ Ω :

(𝜓𝑖 + 𝑓)(𝑥), 𝑢(𝑥) < −𝑀} and Ω3
..= {𝑥 ∈ Ω : (𝜓𝑖 + 𝑓)(𝑥), 𝑢(𝑥) > 𝑀}. Let 𝜒1,

𝜒2 and 𝜒3 be the corresponding characteristic functions to the sets Ω1, Ω2 and Ω3.
Then, at Ω1, Ω2 and Ω3, the modular 𝜚1,ℋ((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 ) takes the following
forms.

𝜚1,ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒1) = 𝜚1,ℋ((𝜓𝑖 + 𝑓 − 𝑢)𝜒1),

𝜚1,ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒2) = 𝜚1,ℋ((−𝑀 +𝑀)𝜒2) = 0,

𝜚1,ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒3) = 𝜚1,ℋ((𝑀 −𝑀)𝜒3) = 0.

At Ω4
..= {𝑥 ∈ Ω : (𝜓𝑖 + 𝑓)(𝑥) > 𝑀} ∩ {𝑥 ∈ Ω : 𝑢(𝑥) < −𝑀}, with 𝜒4 as the

characteristic function to the set Ω4, we have the modulars

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒4) = 𝜚ℋ((𝑀 − (−𝑀))𝜒4) = 𝜚ℋ((2𝑀)𝜒4),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒4) = 𝜚ℋ((0)𝜒4) = 0.
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At Ω5
..= {𝑥 ∈ Ω : |(𝜓𝑖 + 𝑓)(𝑥)| < 𝑀} ∩ {𝑥 ∈ Ω : 𝑢(𝑥) < −𝑀}, with 𝜒5 as

the characteristic function to the set Ω5, we have

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒5) = 𝜚ℋ((𝜓𝑖 + 𝑓 − (−𝑀))𝜒5) = 𝜚ℋ((𝜓𝑖 + 𝑓 +𝑀)𝜒5),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒5) = 𝜚ℋ(∇(𝜓𝑖 + 𝑓)𝜒5).

At Ω6
..= {𝑥 ∈ Ω : (𝜓𝑖 + 𝑓)(𝑥) > 𝑀} ∩ {𝑥 ∈ Ω : |𝑢(𝑥)| < 𝑀}, with 𝜒6 as the

characteristic function to the set Ω6, we have

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒6) = 𝜚ℋ((𝑀 − 𝑢)𝜒6),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒6) = 𝜚ℋ((−∇𝑢)𝜒6).

At Ω7
..= {𝑥 ∈ Ω : (𝜓𝑖 + 𝑓)(𝑥) < −𝑀} ∩ {𝑥 ∈ Ω : |𝑢(𝑥)| < 𝑀}, with 𝜒7 as

the characteristic function to the set Ω7, we have

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒7) = 𝜚ℋ((−𝑀 − 𝑢)𝜒7),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒7) = 𝜚ℋ((−∇𝑢)𝜒7).

At Ω8
..= {𝑥 ∈ Ω : |(𝜓𝑖 + 𝑓)(𝑥)| < 𝑀} ∩ {𝑥 ∈ Ω : 𝑢(𝑥) > 𝑀}, with 𝜒8 as the

characteristic function to the set Ω8, we have

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒8) = 𝜚ℋ((𝜓𝑖 + 𝑓 −𝑀)𝜒8),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒8) = 𝜚ℋ((∇(𝜓𝑖 + 𝑓))𝜒8).

At Ω9
..= {𝑥 ∈ Ω : (𝜓𝑖 + 𝑓)(𝑥) < −𝑀} ∩ {𝑥 ∈ Ω : 𝑢(𝑥) > 𝑀}, with 𝜒9 as the

characteristic function to the set Ω9, we have

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒9) = 𝜚ℋ(−𝑀 −𝑀)𝜒9 = 𝜚ℋ((−2𝑀)𝜒9),

𝜚ℋ((∇(𝜓𝑖 + 𝑓)𝑀 −∇𝑢𝑀 )𝜒9) = 𝜚ℋ((0)𝜒9) = 0.

Since Ω1,Ω2, . . . ,Ω9 form a partition of Ω, then using the triangle-inequality,
we obtain

𝜚ℋ((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 ) =

9∑︁
𝑘=1

𝜚ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒𝑘). (A.1.2)

As 𝑖 → ∞, we have 𝜚1,ℋ(𝜓𝑖 + 𝑓 − 𝑢) → 0, from (A.1.1), hence we conclude
𝜚1,ℋ(((𝜓𝑖+ 𝑓)−𝑢)𝜒1) → 0 as 𝑖→ ∞. Using the fact that each characteristic func-
tion 𝜒𝑘 depend on the definition of the corresponding set Ω𝑘, and since 𝜓𝑖 converges
pointwise to 𝑢 − 𝑓 as 𝑖 → ∞, in Ω1, hence the characteristics functions 𝜒2, . . . , 𝜒9

tend to 0, as 𝑖→ ∞.
On the other hand, we have |(𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 | ⩽ |(𝜓𝑖 + 𝑓)𝑀 | + |𝑢𝑀 | ⩽ 𝑀 +

𝑀 = 2𝑀 which is integrable, hence using the dominated convergence theorem, we
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conclude that lim
𝑖→∞

𝜚1,ℋ(((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 )𝜒𝑘) = 0 for 𝑘 = 1, . . . , 9. Further, from
(A.1.2), we obtain lim

𝑖→∞
𝜚1,ℋ((𝜓𝑖 + 𝑓)𝑀 − 𝑢𝑀 ) = 0, which implies

(𝜓𝑖 + 𝑓)𝑀 − 𝑓 → 𝑢𝑀 − 𝑓 in 𝑊 1,ℋ(Ω),

as 𝑖→ ∞. Since (𝜓𝑖 + 𝑓)𝑀 −𝑓 has a compact support in Ω and 𝐶∞(Ω)∩𝑊 1,ℋ(Ω)

is dense in 𝑊 1,ℋ(Ω) by assumption, then by [24, Lemma 6.1.10] we conclude that
𝑢𝑀 − 𝑓 ∈𝑊 1,ℋ

0 (Ω).

A.2 Verification of the parabolicity condition
To prove: For any 𝑠 ∈ R and 𝜅 ∈ R𝑛,

𝜈|𝜉|2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇|𝜉|2,

where 𝜉 = (𝜉1, . . . , 𝜉𝑛) is a real vector and 𝜈, 𝜇 > 0 are constants.
For (𝑥, 𝑡) ∈ Ω𝑇 , 𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) is defined from (4.4.26) as,
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅)𝜉𝑖𝜉𝑗 =

(︂
𝜖+

𝑝(︀√︀
|𝜅|2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞(︀√︀

|𝜅|2 + 𝜖2
)︀2−𝑞

)︂ 𝑛∑︁
𝑖,𝑗=1

𝜉𝑖𝜉𝑗𝛿𝑖𝑗

+

(︂
𝑝(𝑝− 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑝 + 𝑎(𝑥)
𝑞(𝑞 − 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑞

)︂ 𝑛∑︁
𝑖,𝑗=1

(𝜅𝑖𝜉𝑖)(𝜅𝑗𝜉𝑗),

where 1 < 𝑝 ⩽ 𝑞 ⩽ 2 and 𝑎(𝑥) is Lipschitz continuous function.
In order to get the required inequality, we further apply absolute value for each term
above to get,
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽

(︂
𝜖+

𝑝

𝜖2−𝑝 + |𝑎(𝑥)| 𝑞

𝜖2−𝑞

)︂
|𝜉|2 +

(︂
|𝑝(𝑝− 2)|
|𝜅|2𝜖2−𝑝 + |𝑎(𝑥)| |𝑞(𝑞 − 2)|

|𝜅|2𝜖2−𝑞

)︂
|𝜅|2|𝜉|2

⩽

(︂
𝜖+

2𝐶

𝜖2−𝑝 +
2𝐶

𝜖2−𝑞

)︂
|𝜉|2, where 𝐶 ⩾ 0 is a constant.

Thus,
𝑛∑︀

𝑖,𝑗=1
𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇|𝜉|2, where 𝜇 = 𝜖+ 2𝐶

𝜖2−𝑝 + 2𝐶
𝜖2−𝑞 > 0.

On the other hand,
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩾

(︂
𝜖+

𝑝

(
√︀

|𝜅|2 + 𝜖2)2−𝑝
+

𝑎(𝑥)𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

)︂
|𝜉|2

+

(︂
𝑝(𝑝− 2)

|𝜅|2(
√︀

|𝜅|2 + 𝜖2)
2−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)

|𝜅|2(
√︀

|𝜅|2 + 𝜖2)
2−𝑞

)︂
|𝜅|2|𝜉|2

⩾

(︂
𝜖+

𝑝(𝑝− 1)

(
√︀

|𝜅|2 + 𝜖2)
2−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 1)

(
√︀

|𝜅|2 + 𝜖2)
2−𝑞

)︂
|𝜉|2
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Since each term on the right-hand side above is non-negative, hence we have

𝑛∑︁
𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩾ 𝜈|𝜉|2, where 𝜈 > 𝜖 > 0,

holds a.e. Therefore, the condition (4.4.28): 𝜈|𝜉|2 ⩽
∑︀𝑛

𝑖,𝑗=1 𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽

𝜇|𝜉|2 is satisfied for constants 𝜈, 𝜇 > 0.

A.3 Existence of solution of quasilinear boundary prob-
lem

Proposition A.3.1. [38, p. 560, Theorem 4.4, Chapter 6] Let Ω ⊂ R𝑛 be a bounded
open set with Lipschitz boundary. Consider the quasi-linear equation with Dirichlet
boundary,

𝑢𝑡 −
𝑛∑︀

𝑖,𝑗=1
𝑔𝑖𝑗(𝑥, 𝑡, 𝑢,∇𝑢)𝑢𝑥𝑖𝑥𝑗

+ 𝑔(𝑥, 𝑡, 𝑢,∇𝑢) = 0, (𝑥, 𝑡) ∈ Ω𝑇

𝑢(𝑥, 𝑡) = 𝑓𝛿(𝑥), (𝑥, 𝑡) ∈ 𝜕Ω× (0, 𝑇 ).

⎫⎪⎬⎪⎭
(A.3.1)

Suppose that the following conditions hold.

(a) For (𝑥, 𝑡) ∈ Ω𝑇 and arbitrary 𝑠 ∈ R, the following conditions are fulfilled,

𝑛∑︁
𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 0) 𝜉𝑖𝜉𝑗 ⩾ 0 and 𝑠 𝑔(𝑥, 𝑡, 𝑠, 0) ⩾ −𝑏1𝑠2 − 𝑏2,

where 𝑏1 and 𝑏2 are non-negative constants, and 𝜉 = (𝜉1, . . . , 𝜉𝑛) is an arbi-
trary real vector.

(b) For (𝑥, 𝑡) ∈ Ω𝑇 , |𝑠| ⩽ 𝑀 (where 𝑀 > 0 is constant) and, 𝜅 ∈ R𝑛, the
functions 𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) and 𝑔(𝑥, 𝑡, 𝑠, 𝜅) are continuous and differentiable with
respect to 𝑥, 𝑠 and 𝜅, and satisfy the following inequalities with 𝑚 ⩾ 1,

𝜈(1 + |𝜅|)𝑚−2𝜉2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇(1 + |𝜅|)𝑚−2𝜉2, 𝜈, 𝜇 > 0

⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|)3 + |𝑔|+

⃒⃒⃒
𝜕𝑔

𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|) ⩽ 𝜇1(1 + |𝜅|)𝑚,⃒⃒⃒

𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

⃒⃒⃒
(1 + |𝜅|)2 +

⃒⃒⃒
𝜕𝑔

𝜕𝑥𝑘

⃒⃒⃒
⩽ [𝛽 + 𝑃 (|𝜅|)](1 + |𝜅|)𝑚+1, 𝛽 > 0⃒⃒⃒

𝜕𝑔𝑖𝑗
𝜕𝑠

⃒⃒⃒
⩽ [𝛽 + 𝑃 (|𝜅|)](1 + |𝜅|)𝑚−2,

88



Double phase growth functionals in image restoration

−𝜕𝑔
𝜕𝑠

⩽ [𝛽 + 𝑃 (|𝜅|)](1 + |𝜅|)𝑚.

where 𝑃 (𝜌) is a non-negative continuous function that tends to zero for 𝜌→ ∞
and 𝛽 is sufficiently small determined by the numbers 𝑀,𝜈, 𝜇, 𝜇1 and 𝑃 =

max𝜌⩾0 𝑃 (𝜌).

(c) For (𝑥, 𝑡) ∈ Ω𝑇 , |𝑠| ⩽ 𝑀 and |𝜅| ⩽ 𝑀1 (where 𝑀,𝑀1 > 0 are con-
stants), the functions 𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) and 𝑔(𝑥, 𝑡, 𝑠, 𝜅) are continuously differ-
entiable with respect to all of their arguments.

(d) 𝑓𝛿 ∈ 𝐶(Ω𝑇 ) ∩𝐻2+𝛽,1+ 𝛽

2 (Ω𝑇 ).

(e) Each point of the boundary of Ω can be touched from without by a ball (or
cone) of fixed size in such a way that the ball (cone) does not have any points
in common with Ω.

Then there exists a unique solution of the problem (A.3.1) in𝐶(Ω𝑇 )∩𝐻2+𝛽,1+ 𝛽

2 (Ω𝑇 ).

For (𝑥, 𝑡) ∈ Ω𝑇 and arbitrary 𝜅 ∈ R𝑛, 𝑠 ∈ R, the functions 𝑔𝑖𝑗 and 𝑔 are defined
from (4.4.26) and (4.4.27), as follows

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) =

(︂
𝜖+

𝑝(︀√︀
|𝜅|2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞(︀√︀

|𝜅|2 + 𝜖2
)︀2−𝑞

)︂
𝛿𝑖𝑗

+

(︂
𝑝(𝑝− 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑝 + 𝑎(𝑥)
𝑞(𝑞 − 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑞

)︂
𝜅𝑖𝜅𝑗 ,

(A.3.2)

and,

𝑔(𝑥, 𝑡, 𝑠, 𝜅) = − 𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖
𝜕𝑎

𝜕𝑥𝑖
+ 𝜆(𝑠− 𝑓𝛿), (A.3.3)

(a) To prove: For (𝑥, 𝑡) ∈ Ω𝑇 and arbitrary 𝑠 ∈ R,

𝑛∑︁
𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 0) 𝜉𝑖𝜉𝑗 ⩾ 0 and 𝑠𝑔(𝑥, 𝑡, 𝑠, 0) ⩾ −𝑏1𝑠2 − 𝑏2,

where 𝑏1 and 𝑏2 are non-negative constants.
For real-valued vectors 𝜉𝑖, 𝜉𝑗 , we have

𝑛∑︁
𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 0) 𝜉𝑖𝜉𝑗 =
(︁
𝜖+

𝑝

𝜖2−𝑝 + 𝑎(𝑥)
𝑞

𝜖2−𝑞

)︁ 𝑛∑︁
𝑖,𝑗=1

𝜉𝑖𝜉𝑗 𝛿𝑖𝑗

⩾
(︁
𝜖+

𝑝

𝜖2−𝑝

)︁
|𝜉|2 ⩾ 0.
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On the other hand,

𝑠 𝑔(𝑥, 𝑡, 𝑠, 0) = 𝑠𝜆(𝑠− 𝑓𝛿) ⩾ 𝜆(𝑠2 − |𝑠𝑓𝛿|)

⩾ 𝜆
(︀
𝑠2 − |𝑠|2

2
− |𝑓𝛿|2

2

)︀
(by Young’s inequality)

= 𝜆
(︀𝑠2
2
− |𝑓𝛿|2

2

)︀
.

and, since |𝑓𝛿| ⩽ 𝐶 (𝐶 > 0 is constant), hence we have,

𝑠 𝑔(𝑥, 𝑡, 𝑠, 0) ⩾ 𝜆
(︀𝑠2
2
− 𝐶2

2

)︀
⩾ −𝜆𝐶2

2
.

Thus, 𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 0) 𝜉𝑖𝜉𝑗 ⩾ 0 and 𝑠𝑔(𝑥, 𝑡, 𝑠, 0) ⩾ −𝑏1𝑠2 − 𝑏2, where 𝑏1 = 0

and 𝑏2 = 𝜆𝐶2

2 are non-negative constants.

(b) To prove: We prove the inequalities here for 𝑚 = 2, that is, the following
estimates:

𝜈|𝜉|2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇|𝜉|2, 𝜈, 𝜇 = constant > 0 (A.3.4)

⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|)3 + |𝑔|+

⃒⃒⃒
𝜕𝑔

𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|) ⩽ 𝜇1(1 + |𝜅|)2, (A.3.5)⃒⃒⃒

𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

⃒⃒⃒
(1 + |𝜅|)2 +

⃒⃒⃒
𝜕𝑔

𝜕𝑥𝑘

⃒⃒⃒
⩽ [𝛽 + 𝑃 (|𝜅|)](1 + |𝜅|)3, (𝛽 > 0) (A.3.6)⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝑠

⃒⃒⃒
⩽ [𝜀+ 𝑃 (|𝜅|)], (A.3.7)

−𝜕𝑔

𝜕𝑠
⩽ [𝜀+ 𝑃 (|𝜅|)](1 + |𝜅|)2 (A.3.8)

where 𝑃 (𝜌) → 0 for 𝜌→ ∞.

First, we compute the following estimates, for arbitrary 𝑠 ∈ R and 𝜅 ∈ R𝑛,

Now differentiating 𝑔𝑖𝑗 in (A.3.2) with respect to 𝜅𝑘,

𝜕

𝜕𝜅𝑘
𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) =

𝜕

𝜕𝜅𝑘

(︂(︀
𝜖+

𝑝(︀√︀
|𝜅|2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞(︀√︀

|𝜅|2 + 𝜖2
)︀2−𝑞

)︀
𝛿𝑖𝑗

+
(︀ 𝑝(𝑝− 2)(︀√︀

|𝜅|2 + 𝜖2
)︀4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑞

)︀
𝜅𝑖𝜅𝑗

)︂
,

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

=

(︂
𝑝(𝑝− 2)|𝜅|

(
√︀

|𝜅|2 + 𝜖2)
4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)|𝜅|
(
√︀

|𝜅|2 + 𝜖2)
4−𝑞

)︂
𝛿𝑖𝑗

𝜕

𝜕𝜅𝑘
(|𝜅|)

+

(︂
𝑝(𝑝− 2)(𝑝− 4)|𝜅|
(
√︀

|𝜅|2 + 𝜖2)
6−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(𝑞 − 4)|𝜅|
(
√︀

|𝜅|2 + 𝜖2)
6−𝑞

)︂
𝜅𝑖𝜅𝑗

𝜕

𝜕𝜅𝑘
(|𝜅|)

+

(︂
𝑝(𝑝− 2)

(
√︀

|𝜅|2 + 𝜖2)
4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)

(
√︀

|𝜅|2 + 𝜖2)
4−𝑞

)︂
𝜕

𝜕𝜅𝑘
(𝜅𝑖𝜅𝑗)
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which further gives,

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

=

(︂
𝑝(𝑝− 2)

(
√︀

|𝜅|2 + 𝜖2)
4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)

(
√︀

|𝜅|2 + 𝜖2)
4−𝑞

)︂
(𝜅𝑖𝛿𝑗𝑘 + 𝜅𝑗𝛿𝑖𝑘 + 𝜅𝑘𝛿𝑖𝑗)

+

(︂
𝑝(𝑝− 2)(𝑝− 4)

(
√︀

|𝜅|2 + 𝜖2)
6−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(𝑞 − 4)

(
√︀

|𝜅|2 + 𝜖2)
6−𝑞

)︂
𝜅𝑖𝜅𝑗𝜅𝑘

Then,

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⩽

(︂
𝑝(𝑝− 2)

(|𝜅|+ 1)4−𝑝 + 𝑎(𝑥)
𝑞(𝑞 − 2)

(|𝜅|+ 1)4−𝑞

)︂
(𝜅𝑖𝛿𝑗𝑘 + 𝜅𝑗𝛿𝑖𝑘 + 𝜅𝑘𝛿𝑖𝑗)

+

(︂
𝑝(𝑝− 2)(𝑝− 4)

(
√︀

|𝜅|2 + 𝜖2)
6−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(𝑞 − 4)

(
√︀

|𝜅|2 + 𝜖2)
6−𝑞

)︂
𝜅𝑖𝜅𝑗𝜅𝑘

⩽

(︂
|𝑝(𝑝− 2)|

(|𝜅|+ 1)4−𝑝 + 𝑎(𝑥)
|𝑞(𝑞 − 2)|

(|𝜅|+ 1)4−𝑞

)︂
(|𝜅𝑖|+ |𝜅𝑗 |+ |𝜅𝑘|)

+

(︂
𝑝(𝑝− 2)(𝑝− 4)

(
√︀

|𝜅|2𝜖2 + 𝜖2)
6−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(𝑞 − 4)

(
√︀

|𝜅|2𝜖2 + 𝜖2)
6−𝑞

)︂
|𝜅𝑖||𝜅𝑗 ||𝜅𝑘|

which implies,

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⩽

(︂
|𝑝(𝑝− 2)|

|𝜅|(|𝜅|+ 1)3−𝑝 + 𝑎(𝑥)
|𝑞(𝑞 − 2)|

|𝜅|(|𝜅|+ 1)3−𝑞

)︂
3|𝜅|

+

(︂
𝑝(𝑝− 2)(𝑝− 4)

|𝜅|3𝜖(
√︀

|𝜅|2 + 1)3−𝑝
+ 𝑎(𝑥)

𝑞(𝑞 − 2)(𝑞 − 4)

|𝜅|3𝜖(
√︀

|𝜅|2 + 1)3−𝑞

)︂
|𝜅|3

⩽
3|𝑝(𝑝− 2)|
(|𝜅|+ 1)3−𝑝 + |𝑎(𝑥)| 3|𝑞(𝑞 − 2)|

(|𝜅|+ 1)3−𝑞 +
𝑝(𝑝− 2)(𝑝− 4)

𝜖2(
√︀

|𝜅|2 + 1)3−𝑝

+ 𝑎(𝑥)
𝑞(𝑞 − 2)(𝑞 − 4)

𝜖2(
√︀

|𝜅|2 + 1)3−𝑞

Thus, we obtain

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⩽ 𝐶
(︀
1 +

1

𝜖2

)︀(︂ 1

(|𝜅|+ 1)3−𝑝 +
1

(|𝜅|+ 1)3−𝑞

)︂
⩽ 2𝐶

(︀
1 +

1

𝜖2

)︀ 1

(|𝜅|+ 1)3−𝑞

where constant 𝐶 = 𝑝(𝑝− 2)(𝑝− 4) ∈ [0, 3). that is,⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⃒⃒⃒
⩽ 2𝐶

(︀
1 +

1

𝜖2

)︀ 1

(|𝜅|+ 1)3−𝑞 . (A.3.9)

Also, differentiating 𝑔𝑖𝑗 with respect to 𝑥𝑘, we have

𝜕

𝜕𝑥𝑘
𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) =

𝜕

𝜕𝑥𝑘

(︂(︀
𝜖+

𝑝(︀√︀
|𝜅|2 + 𝜖2

)︀2−𝑝 + 𝑎(𝑥)
𝑞(︀√︀

|𝜅|2 + 𝜖2
)︀2−𝑞

)︀
𝛿𝑖𝑗

+
(︀ 𝑝(𝑝− 2)(︀√︀

|𝜅|2 + 𝜖2
)︀4−𝑝 + 𝑎(𝑥)

𝑞(𝑞 − 2)(︀√︀
|𝜅|2 + 𝜖2

)︀4−𝑞

)︀
𝜅𝑖𝜅𝑗

)︂
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𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

=

(︂
𝑞

(
√︀

|𝜅|2 + 𝜖2)
2−𝑞 𝛿𝑖𝑗 +

𝑞(𝑞 − 2)

(
√︀

|𝜅|2 + 𝜖2)
4−𝑞 𝜅𝑖𝜅𝑗

)︂
𝜕

𝜕𝑥𝑘
𝑎(𝑥)

⩽

(︂
𝑞

|𝜅|2−𝑞 +
𝑞(𝑞 − 2)

(|𝜅|+ 1)4−𝑞 𝜅𝑖𝜅𝑗

)︂
𝜕

𝜕𝑥𝑘
𝑎(𝑥)

⩽

(︂
𝑞

|𝜅|2−𝑞 +
|𝑞(𝑞 − 2)|

|𝜅|2(|𝜅|+ 1)2−𝑞 |𝜅𝑖||𝜅𝑗 |
)︂⃒⃒ 𝜕

𝜕𝑥𝑘
𝑎(𝑥)

⃒⃒
.

Thus, ⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

⃒⃒⃒
⩽

(︂
2

|𝜅|2−𝑞 +
2

|𝜅|2(|𝜅|+ 1)2−𝑞

)︂
𝐶, (A.3.10)

where | 𝜕

𝜕𝑥𝑘
𝑎(𝑥)| ⩽ 𝐶, since 𝑎(𝑥) is Lipschitz continuous.

Next, we have for 𝑔(𝑥, 𝑡, 𝑠, 𝜅) in (A.3.3),

|𝑔| =

⃒⃒⃒⃒
⃒− 𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖
𝜕𝑎

𝜕𝑥𝑖
+ 𝜆(𝑠− 𝑓𝛿)

⃒⃒⃒⃒
⃒ ⩽ 𝐶(|𝜅|+ 1), (A.3.11)

and differentiating 𝑔(𝑥, 𝑡, 𝑠, 𝜅) with respect to 𝜅𝑘 gives,

𝜕𝑔

𝜕𝜅𝑘
=

𝜕

𝜕𝜅𝑘

(︀
− 𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖
𝜕𝑎

𝜕𝑥𝑖
+ 𝜆(𝑠− 𝑓𝛿)

)︀
=

−𝑞𝜅𝑘𝑎𝑥𝑘

(
√︀

|𝜅|2 + 𝜖2)2−𝑞
− 𝑞(𝑞 − 2)𝜅𝑘

(
√︀

|𝜅|2 + 𝜖2)4−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖𝑎𝑥𝑖
.

The above implies

𝜕𝑔

𝜕𝜅𝑘
⩽

𝑞|𝜅𝑘𝑎𝑥𝑘 |
(
√︀

|𝜅|2 + 𝜖2)2−𝑞
+

|𝑞(𝑞 − 2)||𝜅𝑘|
(
√︀

|𝜅|2 + 𝜖2)4−𝑞

⃒⃒ 𝑛∑︁
𝑖=1

𝜅𝑖𝑎𝑥𝑖

⃒⃒
⩽

𝐶|𝜅|
(
√︀

|𝜅|2 + 𝜖2)2−𝑞
+

𝐶|𝜅|2

|𝜅|2(
√︀

|𝜅|2 + 𝜖2)2−𝑞
⩽

𝐶|𝜅|
𝜖(
√︀

|𝜅|2 + 1)2−𝑞
+

𝐶

𝜖(
√︀

|𝜅|2 + 1)2−𝑞

⩽
𝐶|𝜅|

𝜖2(|𝜅|+ 1)2−𝑞 +
𝐶

𝜖2(|𝜅|+ 1)2−𝑞 ⩽
𝐶(|𝜅|+ 1)

𝜖2(|𝜅|+ 1)2−𝑞

Thus, ⃒⃒⃒
𝜕𝑔

𝜕𝜅𝑘

⃒⃒⃒
⩽

𝐶

𝜖2
(|𝜅|+ 1)𝑞−1. (A.3.12)

On the other hand, differentiating 𝑔 with respect to 𝑥𝑘,

𝜕𝑔

𝜕𝑥𝑘
=

𝜕

𝜕𝑥𝑘

(︀
− 𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖
𝜕𝑎

𝜕𝑥𝑖
+ 𝜆(𝑠− 𝑓𝛿)

)︀
= − 𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

𝜅𝑖
𝜕2𝑎

𝜕𝑥𝑖𝜕𝑥𝑘
+ 𝜆

𝜕

𝜕𝑥𝑘
𝑓𝛿(𝑥),
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and, further, since 𝑎(𝑥) has bounded second order derivative and also the
derivative of 𝑓𝛿(𝑥) is bounded, we have

𝜕𝑔

𝜕𝑥𝑘
⩽

𝑞

(
√︀

|𝜅|2 + 𝜖2)2−𝑞

𝑛∑︁
𝑖=1

|𝜅𝑖𝑎𝑥𝑖𝑥𝑘
|+ 𝜆| 𝜕

𝜕𝑥𝑘
𝑓𝛿(𝑥)|

⩽
𝑞|𝜅|𝐶
|𝜅|2−𝑞 + 𝐶 ⩽ 𝐶|𝜅|𝑞−1 + 𝐶 ⩽ 𝐶(|𝜅|+ 1)𝑞−1 + 𝐶.

Thus, ⃒⃒⃒
𝜕𝑔

𝜕𝑥𝑘

⃒⃒⃒
⩽ 𝐶(|𝜅|+ 1). (A.3.13)

Now, to prove (A.3.4), we refer the parabolicity condition proved in section
A.2,

𝜈|𝜉|2 ⩽
𝑛∑︁

𝑖,𝑗=1

𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) 𝜉𝑖𝜉𝑗 ⩽ 𝜇|𝜉|2,

where 𝜉 = (𝜉1, . . . , 𝜉𝑛) is a real vector and 𝜈, 𝜇 > 0 are constants.
This implies that (A.3.4) holds for the case 𝑚 = 2.

Next to prove (A.3.5), we apply (A.3.9), (A.3.11) and (A.3.12) on the left-hand
side of (A.3.5), which gives,

⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|)3 + |𝑔|+

⃒⃒⃒ 𝑛∑︁
𝑘=1

𝜕𝑔

𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|)

⩽ 2𝐶
(︀
1 +

1

𝜖2

)︀ 1

(1 + |𝜅|)3−𝑞 (1 + |𝜅|)3 + 𝐶(1 + |𝜅|) + 𝐶

𝜖2
(1 + |𝜅|)𝑞−1(1 + |𝜅|)

⩽ 2𝐶
(︀
1 +

1

𝜖2

)︀
(1 + |𝜅|)𝑞 + 𝐶(1 + |𝜅|) + 𝐶

𝜖2
(1 + |𝜅|)𝑞

⩽ 3𝐶
(︀
1 +

1

𝜖2

)︀
(1 + |𝜅|)2

Hence, we get,

⃒⃒⃒ 𝑛∑︁
𝑘=1

𝜕𝑔𝑖𝑗
𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|)3 + |𝑔|+

⃒⃒⃒ 𝑛∑︁
𝑘=1

𝜕𝑔

𝜕𝜅𝑘

⃒⃒⃒
(1 + |𝜅|) ⩽ 𝜇1(1 + |𝜅|)2,

where 𝜇1 ⩾ 3𝐶
(︀
1 +

1

𝜖2

)︀
> 0 is constant. This implies that (A.3.5) holds true.

Next, in case of (A.3.6), we apply (A.3.10) and (A.3.13) on the left-hand side
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of (A.3.6), which gives,⃒⃒⃒
𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

⃒⃒⃒
(1 + |𝜅|)2 +

⃒⃒⃒
𝜕𝑔

𝜕𝑥𝑘

⃒⃒⃒
⩽

2𝐶

|𝜅|2−𝑞 (1 + |𝜅|)2 + 𝐶|𝑞(𝑞 − 2)|
(1 + |𝜅|)2−𝑞 (1 + |𝜅|)2 + 𝐶(1 + |𝜅|)

⩽
2𝐶

|𝜅|2−𝑞 (1 + |𝜅|)2 + 𝐶|𝑞(𝑞 − 2)|(1 + |𝜅|)3 + 𝐶(1 + |𝜅|)

⩽ (1 + |𝜅|)3
(︂

2𝐶

|𝜅|2−𝑞(1 + |𝜅|) + 𝐶|𝑞(𝑞 − 2)|+ 𝐶

(1 + |𝜅|)2

)︂
Thus, ⃒⃒⃒

𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

⃒⃒⃒
(1 + |𝜅|)2 +

⃒⃒⃒
𝜕𝑔

𝜕𝑥𝑘

⃒⃒⃒
⩽ [𝛽 + 𝑃 (|𝜅|)](1 + |𝜅|)3,

where the constant 𝛽 = 𝐶|𝑞(𝑞 − 2)| + 𝜖 > 0 depending on 𝜖 is sufficiently
small, and 𝑃 (|𝜅|) = 2𝐶

|𝜅|2−𝑞(1+|𝜅|) +
𝐶

(1+|𝜅|)2 → 0 as |𝜅| → ∞.
Hence, (A.3.6) holds true for 𝑚 = 2.

The remaining conditions (A.3.7) and (A.3.8) also hold true, since 𝜕𝑔𝑖𝑗
𝜕𝑠

= 0

and −𝜕𝑔

𝜕𝑠
= −𝜆 < 0.

(c) The condition that, for (𝑥, 𝑡) ∈ Ω𝑇 , |𝑠| ⩽ 𝑀 and |𝑟| ⩽ 𝑀1, the functions
𝑔𝑖𝑗(𝑥, 𝑡, 𝑠, 𝜅) and 𝑔(𝑥, 𝑡, 𝑠, 𝜅) are continuously differentiable with respect to
all of their arguments, holds true for being smooth up to order 2.

(d) Since 𝑓𝛿 ∈ 𝐶∞(Ω𝑇 ), we can conclude that 𝑓𝛿 ∈ 𝐶(Ω𝑇 ) ∩𝐻2+𝛽,1+ 𝛽

2 (Ω𝑇 ) is
satisfied.

(e) The condition that, each point of the boundary 𝜕Ω can be touched from without
by a ball (or cone) of fixed size in such a way that the ball (cone) does not have
any points in common with Ω, holds true because the boundary of domain Ω

satisfies Lipschitz continuity.

A.4 Arguments for initial and boundary values in proof
of Theorem 4.4.6

In the proof of Theorem 4.4.6, for 𝑤 ∈ 𝐿2(Ω𝑇 ) and 𝑓𝛿 ∈ 𝐶∞(Ω), we need to prove
that 𝑤(𝑥, 𝑡) = (𝑢𝛿)𝑡(𝑥, 𝑡) and 𝑢𝛿(𝑥, 0) = 𝑓𝛿(𝑥) hold.
It is established that {𝑢𝜖𝑖𝛿 }𝑖∈N ∈ 𝐿2(0, 𝑇 ;𝑊 1,2(Ω)) ∩ 𝐶∞(Ω𝑇 ) is the sequence of
solution to the approximated problem (4.4.21)–(4.4.22), and we have the following
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convergence results for the subsequence {𝑢𝜖𝑖𝑗𝛿 }
𝑗∈N ⊂ {𝑢𝜖𝑖𝛿 }, from the proof of The-

orem 4.4.6, as 𝜖𝑖 → 0,

𝑢
𝜖𝑖𝑗
𝛿 ⇀ 𝑢𝛿 weakly* in 𝐿∞(Ω𝑇 ) (A.4.1)

(𝑢
𝜖𝑖𝑗
𝛿 )

𝑡
⇀ 𝑤 weakly in 𝐿2(Ω𝑇 ), (A.4.2)

as 𝜖𝑖 → 0, for some 𝑢𝛿 ∈ 𝐿∞(Ω𝑇 ) and 𝑤 ∈ 𝐿2(Ω𝑇 ).
Let 𝑧 be a function in 𝐶2,1(Ω𝑇 ), with compact support in Ω𝑇 . From weak con-

vergence of (𝑢𝜖𝑖𝑗𝛿 )
𝑡

in 𝐿2(Ω𝑇 ) from (A.4.2), we have, as 𝜖𝑖 → 0

� 𝑠

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
𝑧 𝑑𝑥 𝑑𝑡→

� 𝑠

0

�
Ω
𝑤𝑧 𝑑𝑥 𝑑𝑡. (A.4.3)

On the other hand, because we have a uniform bound for 𝑢𝜖𝑖𝑗𝛿 in 𝐿∞(Ω𝑇 ) and the
bounded constant is integrable on Ω𝑇 , then by dominated convergence theorem, as
𝜖𝑖 → 0, � 𝑠

0

�
Ω
𝑢
𝜖𝑖𝑗
𝛿 𝑧𝑡 𝑑𝑥 𝑑𝑡→

� 𝑠

0

�
Ω
𝑢𝛿𝑧𝑡 𝑑𝑥 𝑑𝑡.

Then interchanging the order of integration in the above expression and applying
integration by parts formula with respect to 𝑡 for the left-hand side integral, we obtain

−
�
Ω

� 𝑠

0
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
𝑧 𝑑𝑡 𝑑𝑥→

�
Ω

� 𝑠

0
𝑢𝛿𝑧𝑡 𝑑𝑡 𝑑𝑥. (A.4.4)

From (A.4.3) and (A.4.4), the uniqueness of limit then implies
�
Ω

� 𝑠

0
𝑤𝑧 𝑑𝑡 𝑑𝑥 = −

�
Ω

� 𝑠

0
𝑢𝛿𝑧𝑡 𝑑𝑡 𝑑𝑥

which by definition of weak derivative implies that 𝑤 is the derivative of 𝑢𝛿 with
respect to 𝑡 that exists in a weak sense, in 𝐿2(Ω𝑇 ).

By the First fundamental theorem of Calculus, we then consider that 𝑢 is a.e.
equal to an antiderivative of 𝑤 as follows,

𝑢𝛿(·, 𝑡) ..= 𝜉 +

� 𝑡

0
𝑤(·, 𝑠) 𝑑𝑠,

for 𝜉 ∈ 𝐿2(Ω), a.e. 𝑡 ∈ (0, 𝑇 ]. Clearly, the above gives us that 𝑢𝛿(·, 0) = 𝜉.
We next prove that 𝑢𝛿(𝑥, 0) = 𝑓𝛿(𝑥). Let Ψ ∈ 𝐶∞(0, 𝑇 ;𝐿2(Ω)) such that

0 < Ψ(𝑥, 0) ∈ 𝐿2(Ω) and Ψ(𝑥, 𝑇 ) = 0, for almost every 𝑥 ∈ Ω. Moreover,
Ψ𝑡 ∈ 𝐿2(Ω𝑇 ).

Consider the integral
� 𝑇
0

�
Ω 𝑢

𝜖𝑖𝑗
𝛿 Ψ𝑡 𝑑𝑥 𝑑𝑡, and applying Fubini’s Theorem to in-

terchange the integration order, we use integration by parts formula with respect to 𝑡
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to obtain
� 𝑇

0

�
Ω
𝑢
𝜖𝑖𝑗
𝛿 Ψ𝑡 𝑑𝑥 𝑑𝑡 = −

�
Ω

� 𝑇

0
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
Ψ 𝑑𝑡 𝑑𝑥−

�
Ω
𝑢
𝜖𝑖𝑗
𝛿 (𝑥, 0)Ψ(𝑥, 0) 𝑑𝑥,

= −
� 𝑇

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
Ψ 𝑑𝑥 𝑑𝑡−

�
Ω
𝑢
𝜖𝑖𝑗
𝛿 (𝑥, 0)Ψ(𝑥, 0) 𝑑𝑥.

Since 𝑢𝜖𝑖𝑗𝛿 (𝑥, 0) = 𝑓𝛿(𝑥), then the above expression implies

−
�
Ω
𝑓𝛿(𝑥)Ψ(𝑥, 0) 𝑑𝑥−

� 𝑇

0

�
Ω
(𝑢

𝜖𝑖𝑗
𝛿 )

𝑡
Ψ 𝑑𝑥 𝑑𝑡 =

� 𝑇

0

�
Ω
𝑢
𝜖𝑖𝑗
𝛿 Ψ𝑡 𝑑𝑥 𝑑𝑡.

Taking limit as 𝜖𝑖 → 0 in the above equation, we apply the convergence conditions
(A.4.1) and (A.4.2) to get,

−
�
Ω
𝑓𝛿(𝑥)Ψ(𝑥, 0) 𝑑𝑥−

� 𝑇

0

�
Ω
𝑤Ψ 𝑑𝑥 𝑑𝑡 =

� 𝑇

0

�
Ω
𝑢𝛿Ψ𝑡 𝑑𝑥 𝑑𝑡.

Again interchanging the integration order through Fubini’s theorem on the right hand
side above, we apply integration by parts formula with respect to 𝑡 to obtain,

−
�
Ω
𝑓𝛿(𝑥)Ψ(𝑥, 0) 𝑑𝑥−

� 𝑇

0

�
Ω
𝑤Ψ 𝑑𝑥 𝑑𝑡 =

�
Ω

� 𝑇

0
𝑢𝛿Ψ𝑡 𝑑𝑡 𝑑𝑥

= −
�
Ω

� 𝑇

0
𝑤Ψ 𝑑𝑡 𝑑𝑥−

�
Ω
𝑢𝛿(𝑥, 0)Ψ(𝑥, 0) 𝑑𝑥.

Further interchanging the order of integration on the right hand side above,

−
�
Ω
𝑓𝛿(𝑥)Ψ(𝑥, 0) 𝑑𝑥 = −

�
Ω
𝑢𝛿(𝑥, 0)Ψ(𝑥, 0) 𝑑𝑥,

we thus obtain, for Ψ(𝑥, 0) ∈ 𝐿2(Ω) and,

𝑢𝛿(𝑥, 0) = 𝑓𝛿(𝑥) for every 𝑥 ∈ Ω,

as required.
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A.5 FORTRAN code for the image restoration model

* * PROGRAM TLMBM *
* * Purpose *
* T e s t program f o r l i m i t e d memory b und l e s u b r o u t i n e f o r

l a r g e − s c a l e
* u n c o n s t r a i n e d nonsmooth o p t i m i z a t i o n wi th n o i s e

r e d u c t i o n problem .
* * P a r a m e t e r s *
* I N Number o f v a r i a b l e s .
* I NA Maximum b und le d imens ion , NA >= 2 .
* I MCU Upper l i m i t f o r maximum number o f

s t o r e d
* c o r r e c t i o n s , MCU >= 3 .
* I NW Dimension of t h e work v e c t o r W:
* NW >= N*(9+2*NA+2*(MCU+1) ) + 3*NA
* + 3*(MCU+1) * (MCU+2) / 2 + 9*(MCU+1) )
* + N*MG + N*MH.
* * V a r i a b l e s *
* I MC Maximum number o f s t o r e d c o r r e c t i o n s ,
* MCU >= MC >= 3 .
* R X(N) V ec t o r o f v a r i a b l e s .
* R F Value o f t h e o b j e c t i v e f u n c t i o n .
* R RPAR( 6 ) Rea l p a r a m e t e r s :
* RPAR( 1 ) T o l e r a n c e f o r change of f u n c t i o n

v a l u e s .
* RPAR( 2 ) T o l e r a n c e f o r t h e f u n c t i o n v a l u e .
* RPAR( 3 ) T o l e r a n c e f o r t h e t e r m i n a t i o n

c r i t e r i o n .
* RPAR( 4 ) D i s t a n c e measure p a r a m e t e r , 0 <=

RPAR( 4 ) .
* RPAR( 5 ) Line s e a r c h p a r a m e t e r , 0 < RPAR( 5 )

< 0 . 2 5 .
* RPAR( 6 ) Maximum s t e p s i z e , 1 < RPAR( 6 ) .
* I IPAR ( 7 ) I n t e g e r p a r e m e t e r s :
* IPAR ( 1 ) Exponent f o r d i s t a n c e measure .
* IPAR ( 2 ) Maximum number o f i t e r a t i o n s .
* IPAR ( 3 ) Maximum number o f f u n c t i o n

e v a l u a t i o n s .
* IPAR ( 4 ) Maximum number o f i t e r a t i o n s wi th

changes o f
* f u n c t i o n v a l u e s s m a l l e r t h a n RPAR

( 1 ) .
* IPAR ( 5 ) P r i n t o u t s p e c i f i c a t i o n :
* −1 − No p r i n t o u t .
* 0 − Only t h e e r r o r messages .
* 1 − The f i n a l v a l u e s o f t h e
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o b j e c t i v e
* f u n c t i o n .
* 2 − The f i n a l v a l u e s o f t h e

o b j e c t i v e
* f u n c t i o n and t h e most

s e r i o u s
* warn ing messages .
* 3 − The whole f i n a l s o l u t i o n .
* 4 − At each i t e r a t i o n v a l u e s

o f t h e
* o b j e c t i v e f u n c t i o n .
* 5 − At each i t e r a t i o n t h e

whole
* s o l u t i o n
* IPAR ( 6 ) S e l e c t i o n o f t h e method :
* 0 − L i m i t e d memory bun d l e

method .
* 1 − L−BFGS bun d l e method .
* IPAR ( 7 ) S e l e c t i o n o f t h e s c a l i n g :
* 0 − I n t e r v a l s c a l i n g wi th STU

/UTU.
* 1 − I n t e r v a l s c a l i n g wi th STS

/ STU .
* 2 − S c a l i n g a t e v e r y

i t e r a t i o n wi th STU /UTU.
* 3 − S c a l i n g a t e v e r y

i t e r a t i o n wi th STS / STU .
* 4 − P r e l i m i n a r y s c a l i n g wi th

STU /UTU.
* 5 − P r e l i m i n a r y s c a l i n g wi th

STS / STU .
* 6 − No s c a l i n g .
* I IOUT ( 3 ) I n t e g e r p a r a m e t e r s :
* IOUT ( 1 ) Number o f used i t e r a t i o n s .
* IOUT ( 2 ) Number o f used f u n c t i o n e v a l u a t i o n s

.
* IOUT ( 3 ) Cause o f t e r m i n a t i o n :
* 1 − The problem has been

s o l v e d .
* wi th d e s i r e d a c c u r a c y .
* 2 − Number o f f u n c t i o n c a l l s

> IPAR ( 3 ) .
* 3 − Number o f i t e r a t i o n s >

IPAR ( 2 ) .
* 4 − Changes i n f u n c t i o n

v a l u e s < RPAR( 1 )
* i n IPAR ( 4 ) s u b s e q u e n t
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i t e r a t i o n s .
* 5 − F ( 1 ) < RPAR( 2 ) .
* −1 − Two c o n s e c u t i v e r e s t a r t s

o r number
* o f r e s t a r t s > maximum

number o f
* r e s t a r t s .
* −2 − TMAX < TMIN i n two

s u b s e q u e n t
* i t e r a t i o n s .
* −3 − F a i l u r e i n f u n c t i o n o r

s u b g r a d i e n t
* c a l c u l a t i o n s ( a s s i g n e d by

t h e u s e r ) .
* −4 − F a i l u r e i n a t t a i n i n g t h e

demanded
* a c c u r a c y .
* −5 − I n v a l i d i n p u t p a r a m e t e r s .
* −6 − Not enough working s p a c e .
* R W(NW) Work v e c t o r .
* * V a r i a b l e s i n COMMON / CPUTIME / *
* R STARTU I n i t i a l CPU− t ime .
* R TIME Maximum CPU− t ime i n s e c o n d s .
* * Subprograms used *
* S LMBMU I n i t i a l i z a t i o n o f l i m i t e d memory

bu nd l e method
* f o r nonsmooth o p t i m i z a t i o n .
* RF ETIME E x e c u t i o n t ime .
* I n i t i a l code by Napsu K a r m i t s a ( nee H a a r a l a ) (2002 −

2004)

PROGRAM TLMBM

* P a r a m e t e r s
INTEGER N,NA,MCU,NW
PARAMETER(

! N = number o f v a r i a b l e s ( i . e . d imens ion o f u ) .
& N = 1000 ,

c For t h e r e s t o f t h e s e do n o t t o u c h
& NA = 2 ,
& MCU = 7 ,
& NW = 1 + 9*N + 2*N*NA + 3*NA + 2*N*(MCU+1) +
& 3*(MCU+2) * (MCU+1) / 2 + 9*(MCU+1) )

* S c a l a r Arguments
INTEGER MC
DOUBLE PRECISION F
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* Array Arguments
INTEGER IPAR ( 7 ) , IOUT ( 3 )
DOUBLE PRECISION W(NW) ,X(N) ,RPAR( 6 )

* Loca l S c a l a r s
INTEGER MCINIT , I , J , IMODEL

DOUBLE PRECISION Z (N) ,ZZ (N) ,APU(N)
DOUBLE PRECISION L , H,MY, G, DELTA, P ,Q
DOUBLE PRECISION TEMP, S , EXACT, TEMP2 , VIRHE , JJ ,VEKT(N)

* CPU− t ime
REAL START , FINI , ETIME , TARRAY( 2 )
REAL STARTU, FINIU , TIME
COMMON / CPUTIME /STARTU, TIME

* Common b l o c k s
COMMON /KIMPPUM/ Z , H,MY, G, P , Q, APU, IMODEL

* E x t e r n a l S u b r o u t i n e s
EXTERNAL LMBMU

TIME=1800.0E+00

* I n i t i a l number o f s t o r e d c o r r e c t i o n s
*

MC = 7
MCINIT = MC

* Choice o f i n t e g e r and r e a l p a r a m e t e r s
*

DO 10 I = 1 ,7
IPAR ( I ) = 0

10 CONTINUE

* P r i n t o u t s p e c i f i c a t i o n
*

IPAR ( 5 ) = 2

* S e l e c t i o n o f t h e method
*

IPAR ( 6 ) = 0

* S e l e c t i o n o f t h e s c a l i n g
*

IPAR ( 7 ) = 2
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DO 20 I = 1 ,6
RPAR( I ) = 0 . 0 D0

20 CONTINUE

* D e s i r e d a c c u r a c y
*
c Th i s can be changed . S m a l l e r v a l u e s h o u l d p roduce more

a c c u r a t e r e s u l t s
c from o p t i m i z a t i o n view p o i n t .
c

RPAR( 3 ) = 1 . 0D−4

* L o c a l i t y measure
*
c For convex prob lems 0 s h o u l d be ok .

RPAR( 4 ) = 0 . 0D+00

* S t e p s i z e
*
c Th i s p a r a m e t e r has l a r g e e f f e c t on r e s u l t s , f o r v a l u e s i n

( 1 , 1 0 0 0 ]

RPAR( 6 ) = 2 . 5 0D+00

* Line s e a r c h p a r a m e t e r
*
c Th i s p a r a m e t e r a f f e c t s how we a c c e p t t h e new p o i n t i n

o p t i m i z a t i o n p r o c e d u r e
c p r e f e r a b l e v a l u e s t h a t a r e s m a l l e r t h a n 0 . 2 5

RPAR( 5 ) = 0 .2499D+00

* Maximum numbers o f i t e r a t i o n s and f u n c t i o n e v a l u a t i o n s
*

IPAR ( 2 ) =500000000
IPAR ( 3 ) =500000000

c These a r e p a r a m e t e r s f o r models :
c MY, G = r e g u l a r i z a t i o n p a r a m e t e r s
c P , Q = e x p o n e n t s
c MY = lambda and g=a f o r t h e image r e s t o r a t i o n model

! S e l e c t i o n o f model :
c IMODEL = 3 −> model wi th a ( x ) depend ing on n o i s y s i g n a l

’ s g r a d i e n t
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c IMODEL = 4 −> model wi th a ( x ) depend ing on non n o i s y
s i g n a l ’ s g r a d i e n t

c J u s t f o r t e s t i n g t h e second example ( Change ISIGNA=1 i n
EXACT below ) .

c IMODEL = 5 −> model wi th a ( x ) depend ing on non n o i s y
s i g n a l ’ s g r a d i e n t

c J u s t f o r t e s t i n g t h e f i r s t example ( Change ISIGNA=2 i n
EXACT below ) .

c

IMODEL=4
L = 1 . 0 D0

c Try d i f f e r e n t v a l u e s f o r P and Q.
MY = 1000 .0D0

! MY = 5 .D−2
! P = 1 . 9 D0

P = 1 .0001D0
Q = 2 . 0 D0 ! f o r IMODEL 3 and 4

! Q = 1 .0007D0

c DELTA = n o i s e
DELTA = 0 . 2 D0

c D i s c r e t i z a t i o n s t e p
H = L / ( N+1)

C r e a d N random numbers from NOISE .DAT
C S = randomnumber i n [ − 1 . 0 , 1 . 0 ]

OPEN( 1 0 , FILE = ’ n o i s e . da t ’ )
READ ( 1 0 , * ) I
IF ( I . LT .N) THEN

PRINT * , I , ’ RANDOM NUMBERS IN FILE NOISE .DAT, BUT N
= ’ ,N, ’ . ’

PRINT * , ’CANNOT CONTINUE . BYE. ’
STOP

END IF
TEMP = H
DO I =1 ,N

READ( 1 0 , * ) S
Z ( I ) = EXACT( I , N,TEMP) + DELTA*S
ZZ ( I ) = EXACT( I , N,TEMP)
TEMP = TEMP + H

END DO
CLOSE( 1 0 )
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CALL DCOPY (N, Z , 1 ,X, 1 )

*
* CPU− t ime
*

START = ETIME(TARRAY)
STARTU = TARRAY( 1 )

* S o l u t i o n
*

CALL LMBMU(N,NA,MC,MCU,NW, X, F , IPAR , IOUT , RPAR,W)

* CPU− t ime
*

FINI = ETIME(TARRAY)
FINIU = TARRAY( 1 )

PRINT*
PRINT * , ’ITERM = ’ , IOUT ( 3 )
PRINT*
PRINT * , ’ F (X) = ’ , F
PRINT * , ’N = ’ ,N
PRINT * , ’NA = ’ ,NA
PRINT * , ’ MCINIT = ’ , MCINIT
PRINT * , ’MC = ’ ,MC
PRINT * , ’MCU = ’ ,MCU
PRINT * , ’ NIT = ’ , IOUT ( 1 )
PRINT * , ’NFV = ’ , IOUT ( 2 )
PRINT * , ’XMAX = ’ ,RPAR( 6 )
PRINT * , ’GAM = ’ ,RPAR( 4 )
PRINT * , ’ EPSL = ’ ,RPAR( 5 )
PRINT * , ’ EPS = ’ ,RPAR( 3 )
PRINT * , ’METHOD = ’ , IPAR ( 6 )
PRINT * , ’SCALING = ’ , IPAR ( 7 )

C E r r o r :

TEMP2 = H
TEMP = 0 . D0
DO I =1 ,N

TEMP = TEMP + (X( I ) −EXACT( I , N, TEMP2) ) **2
TEMP2=TEMP2+H

END DO
! TEMP = TEMP/N

VIRHE = SQRT(TEMP) /DBLE(N)
PRINT*
PRINT * , ’ERROR= ’ ,VIRHE
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! PRINT * , ’ J J = ’ , J J (N, X, H,MY, G, P , Q, Z , VEKT, IMODEL)
! p r i n t * , ’TARKKA= ’ , J J (N, ZZ , H,MY, G, P , Q, Z , VEKT, IMODEL)

PRINT*
PRINT * , ’ Used t ime = ’ , FINIU−STARTU
PRINT*

C P r i n t i n g t h e r e s u l t s t o f i l e s

200 CONTINUE

OPEN( 1 0 , FILE = ’U.DAT’ )
OPEN( 3 0 , FILE = ’Z .DAT’ )
OPEN( 4 0 , FILE = ’EU .DAT’ )

c
TEMP = 0 . D0
DO I =1 ,N

TEMP = TEMP + H
WRITE( 1 0 , ’ ( 2 F10 . 4 ) ’ ) TEMP,X( I )
WRITE( 3 0 , ’ ( 2 F10 . 4 ) ’ ) TEMP, Z ( I )
WRITE( 4 0 , ’ ( 2 F10 . 4 ) ’ ) TEMP,EXACT ( I , N,TEMP)

END DO

CLOSE( 1 0 )
CLOSE( 3 0 )
CLOSE( 4 0 )

c END DO
999 CONTINUE

STOP
END

**********************************
*
* * SUBROUTINE FUNDER *

* * PURPOSE *
*
* COMPUTATION OF THE VALUE AND THE SUBGRADIENT OF THE

OBJECTIVE
* FUNCTION .

* * CALLING SEQUENCE *
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*
* CALL FUNDER(N, X, F ,G)

* * PARAMETERS *
*
* I I N NUMBER OF VARIABLES .
* RI X(N) A VECTOR OF VARIABLES .
* RO F THE VALUE OF THE OBJECTIVE FUNCTION .
* RO G(N) THE SUBGRADIENT OF THE OBJECTIVE

FUNCTION .
*

SUBROUTINE FUNDER(NF , U, F ,D)
INTEGER NF , I , IMODEL
DOUBLE PRECISION F ,U(NF) ,D(NF) ,H, MY, G, Z ( 1 0 0 0 ) , EPS , P ,

Q,APU( 1 0 0 0 )
DOUBLE PRECISION H2 , H3 ,TMP, TMP2 , BETA, PI ,GN( 1 0 0 0 )

! DOUBLE PRECISION pw (NF) , Gs (NF) ,CNV(NF)
C

p a r a m e t e r ( eps = 1 . d −12)
COMMON /KIMPPUM/ Z , H,MY, G, P , Q, APU, IMODEL

! BETA = 8 . 1 0D0 ! Th i s goes w e l l w i th IMODEL 4 and 5 .
! In f a c t a n y t h i n g below 4 . 0 w i l l g i v e

a l m o s t t h e same r e s u l t w i th imode l 4
and

! Anyth ing below 2 . 0 w i l l g i v e a l m o s t
t h e same r e s u l t w i th imode l 5 .

! I n t e r e s t i n g v a l u e s wi th imode l =5 a r e
a t l e a s t 4 . 1 , 2 . 1 , and 0 . 1 .

! BETA = 0 .370D0 ! Th i s goes a p p r o x i m a t e l y w e l l w i th
IMODEL 3 .

! S m a l l e r v a l u e s w i l l make more
s t a i r c a s e e f f e c t .

! The s u i t a b l e v a l u e debends on n o i s e
l e v e l .

BETA = 4 . 1 0D0
H2=1 .D0 / ( H*H)
H3=1 .D0 /H
F = 0 . D0

PI=DACOS( −1 .D0 )

IF (IMODEL == 3) THEN
c t h i s i s t h e model wi th a ( x ) computed from n o i s y s i g n a l s

s u b g r a d i e n t .
! The n o i s y s i g n a l ’ s g r a d i e n t i s computed h e r e a t t h e
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b e g i n n i n g .
! Note t h a t i t would be enough t o compute i t once a t t h e

b e g i n n i n g o f t h e program .

GN( 1 ) = Z ( 1 ) ! / DBLE(NF) ! Z ( 0 ) =0 and we t a k e number
o f d i s c r e t i z a t i o n p o i n t s a s s t e p

IF (ABS(GN( 1 ) ) . GE . BETA) THEN
GN( 1 ) = 0 . 0 0D0

ELSE
GN( 1 ) = 0 . 9 D0

END IF

DO I =2 ,NF
GN( I ) = ( Z ( I ) −Z ( I −1) ) ! / DBLE(NF)

! Computing t h e p i e c e w i s e f u n c t i o n a ( x ) i n t h e
t h e s i s .

IF (ABS(GN( I ) ) . GE . BETA) THEN
GN( I ) = 0 . 0 0D0

ELSE
GN( I ) = 0 . 9 D0

END IF
END DO

TMP = U( 1 ) *H3
F = ABS(TMP) **P + GN( 1 ) *ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( 1 ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( 1 ) =GN( 1 ) *Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( 1 ) =0 .0D0
APU( 1 ) =0 .0D0

END IF

DO I =2 ,NF
! PRINT * , ’GN= ’ , I ,GN( I )

TMP = (U( I ) −U( I −1) ) *H3
F = F + ABS(TMP) **P + GN( I ) *ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( I ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( I ) =GN( I ) *Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( I ) =0 .0D0
APU( I ) =0 .0D0

END IF
END DO
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TMP = 0 . D0
DO I =1 ,NF−1

TMP2 = (D( I ) −D( I +1) ) *H3
D( I ) = TMP2 + MY*( U( I ) − Z ( I ) )
TMP2 = (APU( I ) −APU( I +1) ) *H3
D( I ) = D( I ) +TMP2
TMP = TMP + (U( I ) −Z ( I ) ) **2

END DO

TMP2 = D(NF) *H3
D(NF) = D(NF) *H3 + GN(NF) *TMP2 + MY*(U(NF) − Z (NF) )
TMP = TMP + (U(NF) − Z (NF) ) **2
F = F + 0 . 5 D0*MY*TMP

ELSE IF (IMODEL == 4) THEN
c t h i s i s t h e model wi th f u n c t i o n a ( x ) computed from

o r i g i n a l ( n o t n o i s y ) s i g n a l ’ s g r a d i e n t .
c J u s t f o r t e s t i n g t h e model wi th t h e one d i m e n s i o n a l

s i g n a l g i v e n i n t h e s i s ( ISIGNAL=1 i n EXACT below ) .
c Note ! G i s " ha rd " coded . I t c a n n o t be used b u t t o t h i s

one s i g n a l .
c In a d d i t i o n , a s t h e o r i g i n a l s i g n a l i s n o t changing , G

c o u l d be coded as
c a v e c t o r a t t h e b e g i n n i n g and n o t computed a t e v e r y

i t e r a t i o n .

TMP = U( 1 ) *H3
! G i s a f u n c t i o n depend ing on o r i g i n a l s i g n a l s

g r a d i e n t
G = 2 . 0 D00* PI ! cos ( 0 ) =1

! Computing t h e p i e c e w i s e f u n c t i o n a ( x ) i n t h e
t h e s i s .

IF (ABS(G) . GE . BETA) THEN
G = 0 . 0 0D0

ELSE
G = 0 . 9 D0

END IF

F = ABS(TMP) **P + G*ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( 1 ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( 1 ) =G*Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( 1 ) =0 .0D0
APU( 1 ) =0 .0D0
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END IF

DO I =2 ,NF
TMP = (U( I ) −U( I −1) ) *H3

! Computing t h e ( sub ) g r a d i e n t o f t h e o r i g i n a l
s i g n a l .

IF ( I < 0 .25 *NF) THEN ! The s i g n a l i s p i e c e w i s e
d e f i n e d .
G = 2 . 0 * PI *COS( PI * 2 . 0D+00/DBLE( I ) )

ELSE IF ( I <0 .40*NF) THEN
G = 0 . 0 D00

ELSE IF ( I <0 .50*NF) THEN
G = 4 . 0 D00

ELSE IF ( I <0 .60*NF) THEN
G = −4.0D00

ELSE IF ( I <0 .75*NF) THEN
G = 0 . 0 D00

ELSE
G = −2.0* PI *COS( PI * 2 . 0D+00/DBLE( I ) )

END IF

! Computing t h e p i e c e w i s e f u n c t i o n a ( x ) i n t h e
t h e s i s .

IF (ABS(G) . GE . BETA) THEN
G = 0 . 0 0D0

ELSE
G = 0 . 9 D0

END IF

F = F + ABS(TMP) **P + G*ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( I ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( I ) =G*Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( I ) =0 .0D0
APU( I ) =0 .0D0

END IF
END DO

TMP = 0 . D0
DO I =1 ,NF−1

TMP2 = (D( I ) −D( I +1) ) *H3
D( I ) = TMP2 + MY*( U( I ) − Z ( I ) )
TMP2 = (APU( I ) −APU( I +1) ) *H3
D( I ) = D( I ) +TMP2
TMP = TMP + (U( I ) −Z ( I ) ) **2
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END DO

TMP2 = D(NF) *H3
D(NF) = D(NF) *H3 + G*TMP2 + MY*(U(NF) − Z (NF) )
TMP = TMP + (U(NF) − Z (NF) ) **2
F = F + 0 . 5 D0*MY*TMP

ELSE ! IMODEL == 5
c t h i s i s t h e model wi th f u n c t i o n a ( x ) computed from

o r i g i n a l ( n o t n o i s y ) s i g n a l ’ s g r a d i e n t .
c J u s t f o r t e s t i n g t h e f i r s t example ( Change ISIGNAL=2 i n

EXACT below ) .
c Note ! G i s " ha rd " coded . I t c a n n o t be used b u t t o t h i s

one s i g n a l .
c In a d d i t i o n , a s t h e o r i g i n a l s i g n a l i s n o t changing , G

c o u l d be coded as
c a v e c t o r a t t h e b e g i n n i n g and n o t computed a t e v e r y

i t e r a t i o n .

TMP = U( 1 ) *H3
! G i s a f u n c t i o n debend ing on o r i g i n a l s i g n a l s

g r a d i e n t
G = PI ! cos ( 0 ) =1

! Computing t h e p i e c e w i s e f u n c t i o n a ( x ) i n t h e
t h e s i s .

IF (ABS(G) . GE . BETA) THEN
G = 0 . 0 0D0

ELSE
G = 0 . 9 D0

END IF

F = ABS(TMP) **P + G*ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( 1 ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( 1 ) =G*Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( 1 ) =0 .0D0
APU( 1 ) =0 .0D0

END IF

DO I =2 ,NF
TMP = (U( I ) −U( I −1) ) *H3

! Computing t h e ( sub ) g r a d i e n t o f t h e o r i g i n a l
s i g n a l .

IF ( I < NF / 2 ) THEN ! The s i g n a l i s p i e c e w i s e
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d e f i n e d .
G = PI *COS( PI /DBLE( I ) )

ELSE IF ( I <4*NF / 5 ) THEN
G = 0 . 0 D00

ELSE
G = −2.0D00

END IF

! Computing t h e p i e c e w i s e f u n c t i o n a ( x ) i n t h e
t h e s i s .

IF (ABS(G) . GE . BETA) THEN
G = 0 . 0 0D0

ELSE
G = 0 . 9 D0

END IF

F = F + ABS(TMP) **P + G*ABS(TMP) **Q
IF (ABS(TMP) . GE . eps ) THEN

D( I ) =P*TMP / ( ABS(TMP) * * ( 2 . 0 D0−P ) )
APU( I ) =G*Q*TMP / ( ABS(TMP) * * ( 2 . 0 D0−Q) )

ELSE
D( I ) =0 .0D0
APU( I ) =0 .0D0

END IF
END DO

TMP = 0 . D0
DO I =1 ,NF−1

TMP2 = (D( I ) −D( I +1) ) *H3
D( I ) = TMP2 + MY*( U( I ) − Z ( I ) )
TMP2 = (APU( I ) −APU( I +1) ) *H3
D( I ) = D( I ) +TMP2
TMP = TMP + (U( I ) −Z ( I ) ) **2

END DO

TMP2 = D(NF) *H3
D(NF) = D(NF) *H3 + G*TMP2 + MY*(U(NF) − Z (NF) )
TMP = TMP + (U(NF) − Z (NF) ) **2
F = F + 0 . 5 D0*MY*TMP

END IF
RETURN

END

* EMPTY SUBROUTINES
*
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SUBROUTINE FUN(NF ,KA, X, FA)
C . . S c a l a r Arguments . .

DOUBLE PRECISION FA
INTEGER KA, NF

C . .
C . . Array Arguments . .

DOUBLE PRECISION X( * )
C . .

RETURN

END
SUBROUTINE DER(NF ,KA, X,GA)

C . . S c a l a r Arguments . .
INTEGER KA, NF

C . .
C . . Array Arguments . .

DOUBLE PRECISION GA( * ) ,X( * )
C . .

RETURN

END
SUBROUTINE HES(NF , X,H)

C . . S c a l a r Arguments . .
INTEGER NF

C . .
C . . Array Arguments . .

DOUBLE PRECISION H( * ) ,X( * )
C . .

RETURN

END

C***********************************
C
C ORIGINAL SIGNAL
C comment one o f t h e s e .
C You can add h e r e some more d i f f e r e n t s i g n a l s
*************************************

DOUBLE PRECISION FUNCTION EXACT ( I , N,TEMP)
INTEGER I , N, ISIGNA
DOUBLE PRECISION PI ,TEMP

PI = ACOS( −1 .D0 )

c S e l e c t i o n o f s i g n a l S e t t h i s 1 o r 2 .
ISIGNA = 1
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IF ( ISIGNA . EQ . 1 ) THEN
C
C Example 2 :
C

IF ( I . LE . N/ 4 ) THEN
EXACT = SIN ( PI *TEMP* 2 . d0 )

ELSE IF ( I . GT . 3*N/ 4 ) THEN
EXACT = −SIN ( PI *TEMP* 2 . d0 )

ELSE IF ( I . GT .N/ 4 .AND. I . LE . 4 *N/ 1 0 .OR.
& I . GT. 6 *N/ 1 0 .AND. I . LE . 3 *N/ 4 ) THEN

EXACT = 0 . 7 5 d0
ELSE IF ( I . GT. 4 *N/ 1 0 .AND. I . LE .N/ 2 ) THEN

EXACT = 4 . d0*TEMP−1.5 d0
ELSE IF ( I . GT .N/ 2 .AND. I . LE . 6 *N/ 1 0 ) THEN

EXACT = 2 . 5 d0 −4 . d0*TEMP
END IF

ELSE
C
C Example 1 :
c

IF ( I . LE . N/ 2 ) THEN
EXACT = SIN ( PI *TEMP)

ELSE IF ( I . GT .N/ 2 .AND. I . LE . 4 *N/ 5 ) THEN
EXACT = 0 . 6 5 d0

ELSE
EXACT = 2 . d0 −2 . d0*TEMP

END IF

END IF

RETURN
END

C***********************************
c The v a l u e o f c o s t f u n c t i o n ( Same as i n FUNDER b u t w i t h o u t

d e r i v a t i v e s )
c n o t e t h a t n o t a l l p a r a m e t e r s a r e used i n t h i s example
C**********************************

DOUBLE PRECISION FUNCTION J J (N, U, H,MY, G, P , Q, Z , APU,
IMODEL)

INTEGER N, I
DOUBLE PRECISION U(N) , H, MY, G, P , Q, Z (N) , APU(N)
DOUBLE PRECISION H2 , H3 ,TMP

c Here U i s t h e o p t i m i z e d v a r i a b l e , z i s t h e n o i s y da t a ,
c h i s t h e s t e p s i z e i n d i s c r e t i z a t i o n
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H3=1 .D0 /H
J J = 0 . D0

c PRINT * , ’ hihu ’ , IMODEL

IF (IMODEL . EQ . 1 ) THEN
c PRINT * , ’ hihu ’
C

H2=1 .D0 / ( H*H)

TMP = U( 1 ) *H3
J J = J J + G*ABS(TMP)

DO I =2 ,N
TMP = (U( I ) −U( I −1) ) *H3
J J = J J + G*ABS(TMP)

END DO

TMP = ( 2 . D0*U( 1 ) − U( 2 ) ) *H2
J J = J J + 0 . 5 D0*(MY*U( 1 ) *TMP + (U( 1 ) − Z ( 1 ) ) **2)

DO I =2 ,N−1
TMP = ( 2 . D0*U( I ) − U( I −1) − U( I +1) ) *H2
J J = J J + 0 . 5 D0*(MY*U( I ) *TMP + (U( I ) − Z ( I ) ) **2)

END DO
TMP = ( 2 . D0*U(N) − U(N−1) ) *H2
J J = J J + 0 . 5 D0*(MY*U(N) *TMP + (U(N) − Z (N) ) **2)

c
ELSE
TMP = U( 1 ) *H3
J J = ABS(TMP) **P + G*ABS(TMP) **Q

DO I =2 ,N
TMP = (U( I ) −U( I −1) ) *H3
J J = J J + ABS(TMP) **P + G*ABS(TMP) **Q

END DO

TMP = 0 . D0
DO I =1 ,N

TMP = TMP + (U( I ) −Z ( I ) ) **2
END DO
J J = J J + 0 . 5 D0*MY*TMP

END IF

RETURN
END
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