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Abstract: Obesity is associated with an increased risk of several neurological and psychiatric diseases,
but few studies report the contribution of biological features in the occurrence of mood disorders in
obese patients. The aim of the study is to evaluate the potential links between serum metabolomics
and gut microbiome, and mood disturbances in a cohort of obese patients. Psychological, biological
characteristics and nutritional habits were evaluated in 94 obese subjects from the Food4Gut study
stratified according to their mood score assessed by the Positive and Negative Affect Schedule
(PANAS). The fecal gut microbiota and plasma non-targeted metabolomics were analysed. Obese
subjects with increased negative mood display elevated levels of Coprococcus as well as decreased
levels of Sutterella and Lactobacillus. Serum metabolite profile analysis reveals in these subjects altered
levels of several amino acid-derived metabolites, such as an increased level of L-histidine and a
decreased in phenylacetylglutamine, linked to altered gut microbiota composition and function
rather than to differences in dietary amino acid intake. Regarding clinical profile, we did not observe
any differences between both groups. Our results reveal new microbiota-derived metabolites that
characterize the alterations of mood in obese subjects, thereby allowing to propose new targets to
tackle mood disturbances in this context. Food4gut, clinicaltrial.gov: NCT03852069.
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1. Introduction

Obesity affects a growing proportion of the world population [1]. This disease is asso-
ciated with several comorbidities including cancer, diabetes, cardiovascular diseases and
neurological disturbances [2]. Obese patients have a marked increased risk in developing
depression, anxiety disorders or neurodegenerative diseases [3]. Several studies report
that low-grade inflammation occurring in obesity can be responsible for the increased risk
of psychiatric disease [4]. The gut microbial dysbiosis, meaning disturbances of the gut
microbiota composition and function, has been highlighted in the context of psychiatric
disease on the one hand, and in obesity on the other hand [5,6]. Indeed, it has already been
shown that the transfer to mice of the gut microbiota from patients presenting a dysbiosis
associated to depression and/or psychiatric disorders (such as major depression or alcohol
use disorders) recapitulates at least partially the behavioural alterations [7,8]. In obesity, it is
now well accepted that the characteristics of the gut microbiota may modulate the produc-
tion of metabolites that can in turn drive metabolic or inflammatory disturbances [9,10]. The
combination of both pathological components probably involves several factors, notably
inflammation, hormonal disturbances or insulin-resistance [3]. The gut microbiota is able
to produce a wide variety of molecules that can reach the blood and affect the whole-body
physiology, including the brain [11]. Among microbiota-derived metabolites, several are
thought to exert neuroactive properties including short chain fatty acids (SCFA) or bile
acids [12,13]. Recent studies highlighted that some gut-derived metabolites originating
from aromatic amino acids metabolism are able to modulate cognition and brain function
in obesity [14,15]. Since a crosstalk exists between the gut microbiota and the brain, the
circulating metabolome is susceptible to play an important role in psychiatric disorders. To
date, little is known regarding the link between the gut microbiome, the blood metabolite
composition, and nutrition in obesity-associated mood disturbances. Knowing that diet
and microbiome are the strongest determinants of the human serum metabolome [16], the
identification of bioactive metabolites issued from the interaction of food components and
microbiota could be helpful in proposed biomarkers of psychological health improvement
based on nutritional strategies.

In the present paper, we focused on mood disturbances in a cohort of obese patients.
We split a population of 94 obese individuals from the Food4Gut cohort based on their
mood scores by using the positive and negative affect scale (PANAS). Then we compared
the clinical, microbial and metabolite profiles of the patients to highlight potential new
targets in the management of psychological disturbances associated with obesity.

2. Materials and Methods
2.1. Participants

Men and women were recruited in three university hospitals in Belgium (Hôpital
Erasme in Brussels, Centre Hospitalier Universitaire in Liège and Cliniques universitaires
Saint-Luc Brussels). The original study (Food4Gut cohort) was a 3-month long, multicen-
tric, single-blind, placebo-controlled trial (more details in Supplementary Methods) [17].
Among the 106 patients included in the Food4Gut study, 94 were classified upon their
positivity score (see more details in the “psychological measures” section). Gut microbiota
composition was available for 86 subjects while metabolomics analysis was conducted
only in one of the three centers (the Cliniques universitaires Saint-Luc, Brussels) which
correspond to 38 patients (see Supplementary Figure S1 for more details). This study was
approved by the “Comité d’éthique Hospitalo-facultaire de Saint-Luc”. Written informed
consent was obtained from all participants before inclusion in the study. The trial was reg-
istered at ClinicalTrials.gov under identification number NCT03852069 and the biological
data related to the intervention study have been published previously [17].

2.2. Anthropometric Characteristics

Weight, height, waist and hip circumference, blood pressure and body composition
were measured at baseline and after three months of intervention. Body composition
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was assessed by bio-impedance devices (BIA 101, Akern, Italy; Biocorpus, Medi Cal,
Germany; Tanita BC-418 MA, Tanita, UK). Resistance measurement was used to calculate
fat-free mass and total body fat. Subcutaneous and visceral fat areas were obtained by
CT-scan, and Fibroscan was used to quantify liver stiffness (elasticity) and controlled
attenuation parameter.

2.3. Dietary Anamnesis

The dietary assessment was carried out by a trained dietician at baseline using a one-
week recall questionnaire to assess the dietary intake. Energy, macronutrients and amino
acid intakes were evaluated using the Canadian Nutrient File and the Souci-Fachmann-
Kraut Datenbank.

2.4. Gut Microbiota Composition

Stool samples were collected at baseline and stored at room temperature with a
DNA stabilizer (Stratecbiomolecular, Berlin, Germany) for a maximum of three days, then
transferred to −80 ◦C. Genomic DNA was extracted using a PSP® spin stool DNA kit
(Stratecbiomolecular). Sequencing and subsequent bioinformatics were performed as pre-
viously described [18]. For the gut microbiota analysis, raw sequences can be accessed in
Sequence Read Archive database (SRA accession numbers PRJNA595949). Clr-transformed
data were used to conduct statistical analysis [19]. Metagenomics predictions based on am-
plicon sequence variants (ASV) were generated using PICRUSt2 [20]. The mean weighted
Nearest Sequenced Taxon Index (NSTI) was 0.15.

Amplicon sequencing of the microbiome was done at the University of Minnesota
Genomics Center. Briefly, the V5-V6 region of the 16S rRNA gene was PCR-enriched
using the primer pair V5F_Nextera (TCGTCGGCAGCGTCAGATGTGTATAAGAGACA-
GRGGATTAGATACCC) and V6R_Nextera (GTCTCGTGGGCTCGGAGATGTGTATAA-
GAGACAGCGACRRCCATGCANCACCT) in a 25 µL PCR reaction containing 5 µL of
template DNA, 5 µL of 2× HotStar PCR master mix, 500 nM of final concentration of
primers and 0.025 U/µL of HostStar Taq + polymerase (QIAGEN). PCR-enrichment reac-
tions were conducted as follow, an initial denaturation step at 95 ◦C for 5 min followed
by 25 cycles of denaturation (20 s at 98 ◦C), annealing (15 s at 55 ◦C), and elongation
(1 min at 72 ◦C), and a final elongation step (5 min at 72 ◦C). Next, the PCR-enriched
samples were diluted 1:100 in water for input into library tailing PCR. The PCR reaction
was analogous to the one conducted for enrichment except with a KAPA HiFi Hot Start
Polymerase concentration of 0.25 U/µL, while the cycling conditions used were as fol-
lows, initial denaturation at 95 ◦C for 5 min followed by 10 cycles of denaturation (20 s at
98 ◦C), annealing (15 s at 55 ◦C), and elongation (1 min at 72 ◦C), and a final elongation
step (5 min at 72 ◦C). The primers used for tailing are the following: F-indexing primer
AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC and R-indexing
primer CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG, where [i5] and
[i7] refer to the index sequence codes used by Illumina. The resulting 10 µL indexing PCR
reactions were normalized using a SequalPrep normalization plate according to the manu-
facturer’s instructions (Life Technologies). 20 µL of each normalized sample was pooled
into a trough, and a SpeedVac was used to concentrate the sample pool down to 100 µL.
The pool was then cleaned using 1× AMPureXP beads and eluted in 25 µL of nuclease-free
water. The final pool was quantitated by QUBIT (Life Technologies, Merelbeke, Belgium)
and checked on a Bioanalyzer High-Sensitivity DNA Chip (Agilent Technologies, Machelen,
Belgium) to ensure correct amplicon size. The final pool was then normalized to 2 nM,
denatured with NaOH, diluted to 8 pM in Illumina’s HT1 buffer, spiked with 20% PhiX,
and heat denatured at 96 ◦C for 2 min immediately prior to loading. A MiSeq 600 cycle v3
kit was used to sequence the pool.

Subsequent bioinformatics and biostatistics analyses were performed in house. Initial
quality filtering of the reads was performed with the Illumina Software, yielding an average
of 99,159 pass-filter clusters per sample. Quality scores were visualized with the FastQC
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software (http://www.bioinformatics.babraham.ac.uk/publications.html; version 0.11.9),
and reads were trimmed to 220 bp (R1) and 200 bp (R2) with the FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/; version 0.0.13). Next, reads were merged with the
merge-illumina-pairs application v1.4.2 (with p = 0.03, enforced Q30 check, perfect matching
to primers which are removed by the software, and otherwise default settings including
no ambiguous nucleotides allowed) [21]. For all the samples, a subset of 25,000 reads
was randomly selected using Mothur v1.25.0 [22] to avoid large disparities in the number
of sequences. Subsequently, the UPARSE pipeline implemented in USEARCH [23] was
used to further process the sequences. Amplicon sequence variants (ASVs) were identified
using UNOISE3 [24]. Taxonomic prediction was performed using the nbc_tax function, an
implementation of the RDP Naive Bayesian Classifier algorithm [25].

2.5. Non-Targeted Metabolomics

Metabolomics analysis was conducted on a subset of subjects (n = 38, 23 and 15 in
High and Low mood score group respectively; from the St Luc Hospital). The non-targeted
metabolomics analysis pipeline has been described in detail before [26]. Frozen plasma
samples were randomized. For metabolite extraction, cold acetonitrile was added in a ratio
of 400 µL per 100 µL of plasma. The samples were then vortexed for 15 s, sonicated for
5 min, and centrifuged for 5 min at 4 ◦C and 13,000 rpm. The samples were kept in ice
between the steps. The supernatants were filtered (Acrodisc 4 mm with 0.45 µm membrane)
and inserted into HPLC vials for analysis. The QC sample was prepared by collecting 10 µL
from each sample vial and combining the material in another vial.

The samples were analyzed by liquid chromatography–mass spectrometry, consisting
of a 1290 Infinity Binary UPLC coupled with a 6540 UHD Accurate-Mass Q-TOF (Agilent
Technologies). A Zorbax Eclipse XDB-C18 column (2.1 × 100 mm, 1.8 µm; Agilent Tech-
nologies) was used for the reversed-phase (RP) separation and an Aqcuity UPLC BEH
amide column (Waters) for the HILIC separation. After each chromatographic run, the
ionization was carried out using jet stream electrospray ionization (ESI) in the positive and
negative mode, yielding four data files per sample. The collision energies for the MS/MS
analysis were selected as 10, 20 and 40 V, for compatibility with spectral databases.

Peak detection and alignment was performed in MS-DIAL ver. 3.96 [27]. For the peak
collection, m/z values up to 1500 and all retention times were considered. The amplitude of
minimum peak height was set at 2000. The peaks were detected using the linear weighted
moving average algorithm. For the alignment of the peaks across samples, the retention
time tolerance was 0.05 min and the m/z tolerance was 0.015 Da. Drift correction and
removal of low quality signals was done as described previously [26].

The chromatographic and mass spectrometric characteristics (retention time, exact
mass, and MS/MS spectra) of the significantly differential molecular features were com-
pared with entries in an in-house standard library and publicly available databases, such as
METLIN and HMDB, as well as with published literature. The annotation of each metabo-
lite and the level of identification was given based on the recommendations published
by the Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative
(MSI) [28]: 1 = identified based on a reference standard, 2 = putatively annotated based on
MS/MS spectra or physicochemical properties, 3 = putatively annotated to a compound
group (e.g., phosphatidylcholine) and 4 = unknown.

2.6. Psychological Measures

Participants were asked to answer to semi-structured interview questions regard-
ing their background information and lifestyle, fill out self-reported questionnaires, and
perform cognitive tasks on a computer before and after the intervention. The following
self-reported questionnaires were used to measure actual and general mood, and emotion
regulation abilities: Positive and Negative Affect Schedule (PANAS; NA and PA, negative
and positive affect respectively), the Scale of Positive and Negative Experience (SPANE, NE
and PE, negative and positive emotion respectively; BE, Balance emotion), and the Profile
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of Emotional Competences (PEC. TOT, total, INTRA, intrapersonal; INTER, interpersonal,
Self Reg, emotional self-regulation) [29–31].

2.7. Statistical Analyses

R Software (version 3.5.1, MixOmics package), JMP Pro 14, and Graphpad Prism 8.0
were used for analyses. Mood score was based on the positivity score (Positive scale of
the PANAS-Negative scale) as previously described [18]. Segregation was made using the
median of the positivity score: individuals with a higher positivity score were assigned
to the “High mood score” group while those with lower score were assigned to the “Low
mood score” group and were presented as “High” and “Low” in all tables and figures.

Group differences were assessed using χ2-tests for categorical variables and parametric
t-tests when applicable or Mann-Whitney-Wilcoxon tests for quantitative variables based
on data distribution (Shapiro-Wilk test). Logistic regressions were used to confirm the
robustness of the observations by taking into account major potential confounding factors
for each type of variables. All models were adjusted for age, gender and the center (except
for metabolomics data available for one center). Then, depending on the type of variables,
models were adjusted for BMI, nutritional habits (energy or protein intake) or the use of
antidepressant medications. The different models are described in the legend of each table.
Odds ratios (OR) and confidence interval (95%) were estimated for the logistic regressions
and are represented in the Figure 1.
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Figure 1. Logistic regressions for selected genera and metabolites. Logistic regression with TOP10
microbial genera (A) and metabolites (B). Odd ratio and 95% confidence intervals were represented.
* significant results (p < 0.05). A. Model 1: Logistic regression adjusted for age, gender and center;
Model 2: Logistic regression adjusted for age, gender, center, BMI, energy intake; Model 3: Logistic
regression adjusted for age, gender, center and antidepressant medications. B. Model 1: Logistic
regression adjusted for age and gender; Model 2: Logistic regression adjusted for age, gender, BMI,
energy and protein intake. PC: Phosphatidylcholine.
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As metagenomics and metabolomics data were characterized by a large number of
variables, we conducted partial least square discriminant analysis (PLS-DA) and a more
restrictive approach using sPLS-DA (mixOmics). Based on the variable importance in
projection (VIP) scores of the PLS-DA we defined the top 10 variables accounting for the
difference between High and Low mood groups for bacterial genera and blood metabolites.

Analyses of correlation were conducted using the Spearman method. False discovery
rate (FDR) approach was used to calculate q-value by using the Benjamini, Krieger and
Yekuteli method. Data are expressed as mean ± SD. p and q-value were considered as
statistically significant when p < 0.05.

3. Results
3.1. Mood Status Characterization and Related Psychological and Behavioural Profiles

The positivity score, based on the difference between the positive and the negative
scale of the PANAS score, allows us to segregate obese subjects in two populations (median
value: 16): one with high positivity score (24.5 ± 5.2, n = 47; “High mood score group”),
and another low positivity score (7.8 ± 8.4, n = 47; “Low mood score group”) (Table 1).
There were no statistically significant differences in sociodemographic characteristics or
medication use in High vs. Low mood subjects except a difference in family status, namely a
higher rate of non-married or attached individuals in the Low mood group (Supplementary
Table S1).

Table 1. Psychological parameters in obese subjects with High and Low mood scores 1.

High Low p Model 1 Model 2

Mean ± SD Mean ± SD OR p OR p

PANAS PA 36.4 ± 4.90 27.2 ± 6.36 <0.0001 0.75 <0.0001 0.75 <0.0001
PANAS NA 11.9 ± 3.26 19.5 ± 8.06 <0.0001 1.36 <0.0001 1.42 <0.0001

PANAS PA-NA 24.5 ± 5.17 7.77 ± 8.36 <0.0001 1.92 × 10−13 <0.0001 1.06 × 10−6 <0.0001
PEC TOT 3.42 ± 0.44 3.18 ± 0.47 0.012 0.26 0.006 0.26 0.016

PEC INTRA 3.37 ± 0.50 3.11 ± 0.55 0.027 0.33 0.016 0.36 0.034
PEC INTER 3.40 ± 0.49 3.20 ± 0.51 0.041 0.36 0.032 0.34 0.029

PEC Reg Self 3.26 ± 0.80 2.85 ± 0.86 0.013 0.54 0.025 0.58 0.048
SPANE.PE 20.5 ± 2.62 17.2 ± 8.77 <0.0001 0.86 0.024 0.89 0.078
SPANE.NE 10.9 ± 3.07 13.7 ± 4.03 0.0003 1.25 0.001 1.24 0.003
SPANE.BE 9.65 ± 5.09 3.53 ± 10.6 <0.0001 0.89 0.003 0.90 0.008

Unidimensional analysis revealed that Low mood group displayed lower scores in all tests related to emotion
(PANAS, PEC, SPANE) (Table 1). PANAS, Positive and Negative Affect Schedule; PEC, Profile of Emotional
Competences; SPANE, Scale of Positive and Negative Experience; PA, positive affect; NA, negative affect; PE,
positive emotion; NE, negative emotion; BE; Balanced emotion; INTRA, intra-personal; INTER, inter-personal;
REG SELF, self-regulation TOT, total.

3.2. The Low Mood Score Group Did Not Display Specific Clinical Features

Univariate analysis revealed that among anthropometric, biological and nutritional
parameters, the Low mood score group did not display any significant difference compared
to the High mood score group (Supplementary Table S2). Model 1 (logistic regression ad-
justed for age, gender and center) confirmed these results while model 2 (logistic regression
adjusted for age, gender, center, BMI and energy intake) only revealed a lower protein
intake in Low mood score group versus High mood score group.

3.3. The Low Mood Score Group Are Characterized by Specific Gut Microbiome Composition

PLS-DA was used to select bacterial genera responsible for the segregation of Low
and High mood score groups (Supplementary Table S3; n = 86 individuals, Supplementary
Figure S1). It allowed to select a top 10 of the genera based on their VIP score. Univariate
analysis revealed that the Low mood score group displayed elevated levels of Coprococcus
and lower levels of Sutterella and Lactobacillus (Supplementary Table S3). None of these
differences remained significant after FDR corrections. We used three logistic regression
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models adjusted for age, gender and center (model 1) + BMI and energy intake (model 2)
or antidepressant use (model 3; Figure 1A). The models 2 and 3 revealed a significantly
higher abundance of Lachnospiraceae incertae sedis in the Low mood score group (OR: 1.47
95% CI [1.02–2.12]; OR = 1.44, 95% CI [1.00–2.06] respectively; Figure 1A). There were no
more statistical differences in the abundance of Lactobacillus after adjustments in the three
models. Despite elevated VIP scores in the PLS-DA and sPLS-DA analysis and trends
(p < 0.10) in Mann-Whitney tests or logistic models, the other genera (Dorea, Clostridium
XIVa, Oscillibacter, Streptococcus, Eisenbergiella and Ruminococcus) were not different between
both groups (Figure 1A and Supplementary Table S3).

We used the same model in the subpopulation of individuals with available metabolomics
data (Supplementary Table S4, n = 38) to test whether the observations made in the whole
cohort can be replicated. This was the case for Coprococcus and Lactobacillus while for
Sutterella, the difference did not reach significance (p = 0.09, Mann-Whitney test; Supple-
mentary Table S4). A significantly lower levels of Clostridium XIVa was observed in the
Low mood score group in all the models used (Supplementary Table S4), which was not
the case when the whole cohort was considered (Figure 1A).

3.4. The Low Mood Score Group Exhibited Selective Profile of Plasma Metabolites

PLS-DA and sPLS-DA were used to select the Top 10 plasma metabolites that dis-
criminate Low and High mood score groups (Supplementary Table S5; n = 38 individuals,
Supplementary Figure S1). Among them, we found several amino acids and derivatives
such as L-histidine, phenylacetylglutamine, p-cresol sulfate or 2-piperidone (δ-valerolactam,
Supplementary Table S5). Several (lyso)phosphatidylcholines (PC) were also pivotal to
segregate Low and High mood score groups (Supplementary Table S5). Univariate analysis
revealed a higher L-histidine levels and lower levels of phenylacetylglutamine in Low
mood score group versus the High mood score groups (Supplementary Table S5). None
of the differences reached the statistical significance after FDR correction (Supplementary
Table S5). The logistic regression adjusted for age and gender (Model 1) and age, gender,
BMI, energy and protein intake (Model 2) confirmed the robustness of the changes observed
for L-histidine and phenylacetylglutamine (Figure 1B). After adjustment for age, gender,
BMI, energy and protein intake (model 2) PC 36:3 (18:1–18:2) was significantly higher in
the Low mood score group (Figure 1B).

3.5. Origins of the Differences in L-Histidine and Phenylacetylglutamine Levels

Recent work suggested that nutrition, gut microbiota composition and function as
well as clinical features were the strongest predictors of the circulating metabolome [16].
Thus, we wanted to explore the importance of each component in the levels of L-histidine
and phenylacetylglutamine.

Dietary anamnesis revealed that there were no differences in the intake of histidine and
phenylalanine from dietary proteins between low mood and high mood groups (Figure 2A).

Then, we performed correlation between the clr value of the top 10 genera and the
levels of the two most discriminant metabolites between both groups: L-histidine and
phenylacetylglutamine (Figure 2B). We observed only one significant correlation between
the phenylacetylglutamine levels and the Lactobacillus abundance (r = 0.41; p = 0.01), which
was no more significant after FDR correction. Histidine levels were not significantly
associated with any of the microbial genera (Figure 2B).
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Besides the gut microbiota composition, we assessed predicted function from micro-
biome analysis by using PICRUSt2. Regarding MetaCyc pathways, a PLS-DA analysis
allowed us to select the TOP10 pathways pivotal for the segregation of High and Low
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mood score groups (Figure 2C). Among these pathways, univariate analysis revealed that
six were significantly different between both groups. Interestingly, we observed that the
biosynthesis pathways of several amino acids including the L-tyrosine and L-phenylalanine
were predicted to be significantly less functional in the Low mood score group. Then, we
explored individually the predicted expression of the enzymes involved in the metabolism
of histidine and phenylalanine. The aromatic amino acid transaminase, which allows
initiating the transformation of phenylalanine into phenylacetate (further transformed
by the liver into phenylacetylglutamine), was predicted to be significantly less expressed
in the gut microbiota of the Low mood score group (Figure 2D). Regarding histidine
metabolism, we found no difference in any of the predicted expression of the enzymes but
only non-significant decrease (p = 0.09) for the urocanate reductase, an enzyme involved
in the production of imidazole propionate from histidine, in the low mood score group
(Figure 2D).

The accumulation of some metabolites in the blood -especially phenylacetylglutamine-
can result from disturbances of its clearance by kidneys observed for example in chronic
kidney disease [32]. Based on our metabolite profiling, we confirmed that kidney function
did not appear to be affected since urea and creatinine levels were comparable between
both groups (Supplementary Figure S2).

3.6. Relationship between the Selected Microbial Genera

As it is now well recognized that some bacteria cooperate to grow notably through
cross-feeding we assessed if the abundance of some genera was associated with others.
To do so we performed a Spearman’s correlation matrix (Figure 3A). We observed that
several genera were correlated with each other (q-value < 0.05). Coprococcus was positively
associated with Ruminococcus and Dorea while it was negatively correlated to Clostridium
XIVa (Figure 3A). Clostridium XIVa was negatively associated with Ruminococcus and Dorea
(Figure 3A). Positive associations were found between the abundances of lactobacillus and
streptococcus as well as between lachnospiraceae incertae sedis and dorea (Figure 3A).
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3.7. Relationship between the Selected Metabolites

Regarding circulating metabolites two correlations were found. We observed a signifi-
cant (q < 0.05) positive correlation between the two amino-acids derivates phenylacetyl-
glutamine and p-Cresol sulfate (Figure 3B). We also observed that the lyso PC 20:3 was
positively associated with lyso PC 14:0 sn-2.

4. Discussion

This study reveals that mood disturbances in obese subjects are associated with specific
alterations of gut bacteria and plasmatic metabolites. Despite the fact that the circulating
metabolite levels and microbiome signatures did not reveal drastic changes between low
and high mood obese patients, the statistical analysis revealed very specific features associ-
ated with mood in the cohort. Sutterella and Lactobacillus were lower in obese individuals
with mood disturbances while Coprococcus was higher. Regarding plasma metabolite pro-
file, the multivariate analysis revealed that several protein-derived metabolites (histidine,
phenylacetylglutamine, p-cresol sulfate, 2-piperidone) and lipid metabolites (Lyso PC14:0
sn2 and lyso PC 20:3 and PC 36:3) distinguished the two groups of patients. After adjust-
ments for several confounding factors, only increased levels of L-histidine and decreased
levels of phenylacetylglutamine characterized the obese subjects with mood disturbances,
who did not present other anthropometric or biological characteristics.

Phenylacetylglutamine has been highlighted as a biomarker of healthy aging, and
being associated with a shift in microbiome composition [33]. This last study confirmed
previous data showing elevated levels of this metabolite in centenarians [34]. This metabo-
lite has also been associated with an increased α-diversity and abundance of putatively
“beneficial” bacteria (Akkermansia muciniphila, genus from Christensenellaceae) despite its
potential detrimental effects on cardiovascular health [35,36]. Little is known regarding
phenylacetylglutamine relationship with psychiatric symptoms. Two studies found ele-
vated levels of phenylacetylglutamine in patients suffering from depression after stroke or
anorexia nervosa [37,38].

The other metabolite that was pivotal in segregating obese individuals with or without
mood disturbances was histidine. This essential amino acid is crucial for several physiolog-
ical processes, including immunomodulation, the scavenging of reactive oxygen species or
proton buffering [39]. Histidine is the precursor of several bioactive compounds including



Nutrients 2022, 14, 147 11 of 16

histamine [39,40]. Regarding brain function, a preclinical study suggested that histidine
deficiency can lead to brain histamine depletion which is associated with anxiety [41].
Moreover, through the immunomodulatory effects of histamine, the histidine supplementa-
tion can exert neuroprotective effect in the context of epilepsy [42]. In humans, histidine
supplementation was associated with improvements in mental fatigue and cognition [43].
On the contrary, high doses of histidine supplementation can lead to detrimental effect in
healthy subjects such as confusion or depression [44]. Overall, there is no clear evidence of
a relationship between mood and physiological blood levels of histidine, especially in the
context of obesity. Unlike for phenylacetylglutamine, our data did not allow to speculate on
the origins of the difference seen in histidine circulating levels. Further studies are needed
to better understand why there is an increased level of histidine in obese individuals with
mood disturbances and whether and how it can affect their behaviour.

The bacterial genera associated with mood in our study have already been associated
with metabolic alterations and behavioural disorders in other studies. The higher level
of Coprococcus associated with mood disorders is of particular interest. We and other
have already shown that Coprococcus can be an interesting genus to study when it comes
to emotional regulation [18,45]. Our previous study revealed that elevated levels of Co-
prococcus in obese individuals predict a better response toward inulin supplementation
regarding their mood scores [18]. Bacteria from this genus are well-recognized butyrate
producers, which is interesting since this SCFA has been shown to exert neuroprotective
and antidepressant effects in preclinical models [46]. Valles-Colomer and colleagues postu-
lated that it could be involved in neurotransmitters metabolism (3,4-dihydroxyphenylacetic
acid-DOPAC-synthesis) based on correlative analysis [45].

Sutterella, for which levels are lower in obese individuals presenting mood alterations,
is composed of three anaerobic species (S. parvirubra, S. stercoricanis, and S. wadsworthen-
sis). Its occurrence has already been shown in a recent systematic review to decrease in
depression [47]. A recent report revealed that this genus also decreased in diabetic patients
while its increase was associated with improvement of glycemia after Roux-en-Y bariatric
surgery [48]. Sutterella has also been highlighted in the field of inflammatory bowel diseases
(IBD) -with conflicting results- [49]. This genus remains understudied and little is known
regarding the mechanisms through which Sutterella influences the host. Sutterella exerts
some immunomodulatory effects as it has been negatively associated with cytokines such
as IL-12 or IL-13 in patients suffering IBD and is able to degrade IgA [49–51]. Sutterella is
a bacteria that does not use carbohydrates as energy source but which is able to degrade
protein substrates [52]. This characteristic is particularly interesting in our context since
protein-derived metabolites were the more important to segregate obese subjects with
mood disturbances. Of interest, protein degraders seem to compete and to be mutually
exclusive in culture based on protein as a main substrate [52].

Two others genera display weaker associations with mood status in our study: Lac-
tobacillus and Lachnospiraceae incertae sedis, which abundances were lower and higher in
the obese patients presenting mood alterations in our cohort respectively. The former can
influence brain function and behaviour [5,53,54]. Some Lactobacillus species (L. fermentum
and L. acidophilus) have been associated with blood metabolite composition in a large study
conducted in general population by Visconti and colleagues [55]. Interestingly, it appears
that several Lactobacillus species were positively associated with phenylpyruvate and pheny-
lacetylglutamine [55]. The metabolic filiation is the following: phenylalanine is metabolized
by bacteria into phenylacetate, which in its turn, is transformed in the host, mainly by the
liver, into phenylacetylglutamine. In accordance, a pilot study revealed that Lactobacillus
casei shirota supplementation in football players increased the urinary phenylacetylglu-
tamine [56]. We observed the same positive association between Lactobacillus and plasma
phenylacetylglutamine, both variables being positively associated with mood in our study.
Lachnospiraceae incertae sedis has been shown to be higher in people suffering depression
which is in line with our findings (higher in Low mood score group) [47,57]. We observed
that among the genera involved in the segregation of our two groups of obese individuals,
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several were robustly correlated. For example, the genus Coprococcus was co-abundant
with Ruminococcus and Dorea while it was negatively associated with Clostridium XIVa.
The concept of guild in gut microbiota, which refer to a group of constantly co-abundant
bacteria that are likely to be functionally related is particularly interesting to explore when
it comes to study function of the gut microbiota (i.e., metabolites production) [58,59]. In
future studies, with sequencing method allowing this kind guild-based analysis at the
species level, it could be interesting to look for more robust associations with circulating
metabolite profile and psychological symptoms of obese individuals.

Our results suggest that the differences of the phenylacetylglutamine levels can be due
to changes in the gut microbiota composition (Lactobacillus levels) and function (predicted
bacterial amino acid production and metabolism) rather than from differences in dietary
intake or renal excretion capacity. It is in line with the fact that phenylacetylglutamine levels
are highly associated with changes in gut microbiota composition [55]. Our observations
that the microbial pathways of aromatic amino acids biosynthesis are lower in the Low
mood score group is intriguing. The gut microbiota can synthesize all amino acids that are
then used by the host. However, the relative contribution of this phenomenon compared to
dietary intake as well as its impact on health remain unknown [60]. Aromatic amino acids
are crucial for brain function as precursors of neurotransmitters and others neuroactive
compounds and have been recently associated with cognition in obese individuals [14].
Thus, it appears of interest to study in more details whether changes in gut microbiota com-
position and function can affect amino acids metabolism (both production and catabolism),
especially in the context of psychiatric disorders.

One limitation of our study is the absence of longitudinal follow-up, and hence
our study does not allow any assumption on causality. Further studies are needed to
understand whether specific microbes (Coprococcus, Sutterella or Lactobacillus) or amino-
acids metabolites regulate emotion in obese individuals, namely by evaluating the proof
of concept of the relevance of the selected bacteria and metabolites in other larger cohorts
of obese patients, but also in non obese individuals. Indeed, an additional limitation of
this study is the lack of lean individuals with high and low mood scores. Inclusion of
those individuals would allow this study to determine if these metabolic differences are
unique to obese individuals or to mood disorders in general. One criticism could be that
the PANAS test, which is coherent to assess mood, is not a validated test of depression and
anxiety. Nevertheless, the PANAS test has been shown to be associated with another test of
depression [61]. The reliability of our classifications is reinforced by the marked differences
observed with other tests assessing mood (SPANE scale) and emotional competence (PEC).

5. Conclusions

In summary, we discovered in this study that emotional disturbances in obese indi-
viduals are characterized by specific changes in gut microbiota composition (lower levels
of Sutterella and Lactobacillus and higher levels of Coprococcus) and function (amino acid
metabolism) which are translated into modifications of the level of some amino acid-derived
metabolites (L-histidine and phenylacetylglutamine). Our data, if confirmed further in
larger cohorts, would allow to propose new targets to tackle mood disturbances seen in
obese individuals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu14010147/s1, Supplementary Methods; Supplementary Figure S1: Flow chart of the study
presenting the number of patients included in each analysis; Supplementary Figure S2: Relative
levels of urea and creatinine in the blood. Supplementary Table S1: Baseline characteristics of
the participants; Supplementary Table S2: Biological and nutritional parameters in obese subjects
with High and Low mood scores; Supplementary Table S3: TOP 10 Microbial genus discriminating
obese subjects with High and Low mood scores; Supplementary Table S4: TOP 10 Microbial genus
discriminating obese subjects with High and Low mood scores in the subpopulation with untargeted
metabolomics; Supplementary Table S5: TOP 10 Circulating metabolites discriminating obese subjects
with High and Low mood scores.
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