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Abstract

A set of vertices S is a resolving set in a graph if each vertex has a unique array of distances
to the vertices of S. The natural problem of finding the smallest cardinality of a resolving set
in a graph has been widely studied over the years. In this paper, we wish to resolve a set of
vertices (up to ℓ vertices) instead of just one vertex with the aid of the array of distances. The
smallest cardinality of a set S resolving at most ℓ vertices is called ℓ-set-metric dimension.
We study the problem of the ℓ-set-metric dimension in two infinite classes of graphs, namely,
the two dimensional grid graphs and the n-dimensional binary hypercubes.
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1 Introduction

In this paper, a graph G is finite, undirected, simple and connected. As usual, we denote its
vertex set by V and the set of edges by E. The distance between two vertices u, v ∈ V (that
is, the number of edges in any shortest path joining u and v) is denoted by d(u, v) = dG(u, v).
Let N(v) = {u ∈ V | d(u, v) = 1} for v ∈ V. The Cartesian product of graphs G = (V,E) and
H = (V ′, E′), denoted by G�H , is the graph with vertex set V × V ′ = {(a, b) | a ∈ V, b ∈ V ′},
where (a, b) is adjacent to (u, v) if a = u and the edge {b, v} ∈ E′, or b = v and {a, u} ∈ E. The
distance d((a, b), (u, v)) = dG(a, u) + dH(b, v).

Let S ⊆ V and denote its cardinality by |S|. Let us write S as an ordered set S = (s1, s2, . . . , s|S|).
For any x ∈ V , we denote by

D(x) = DS(x) = (d(x, s1), d(x, s2), . . . , d(x, s|S|))

the distance array of x with respect to S. If DS(x) 6= DS(y) for any two distinct vertices x and y
in V , then S is called a resolving set. The concept of a resolving set was introduced independently
by Slater [15] and Harary and Melter [8]. Resolving sets are widely studied [5, 3, 4, 9, 1, 6, 13] and
these sets have many connections to other diverse problems, see for example, network discovery
and verification [2], robot navigation [10] and connected joins in graphs [14]. In [15], each si ∈ S
is considered as a site for a sonar station, and the location of an object (like an intruder in x ∈ V )
is then uniquely determined using its distances to stations in D(x).

In this paper, we consider the situation where there can be several objects whose locations (the
set X ⊆ V ) we want to determine simultaneously. Naturally, here each sonar si ∈ S measures
the distance to the closest vertex in the object set X ⊆ V (there can be several objects at that
particular distance), but reveals no further information on the locations or the cardinality of X .
Finding several objects has earlier been considered in other contexts of sensor networks, like in
the case of identifying codes and locating-dominating sets, where the sensors can detect objects
within a fixed radius, see [7, 12] and also the list in [11].

For any X ⊆ V and v ∈ V , denote d(v,X) = min{d(v, x) | x ∈ X}. Furthermore, for any
X ⊆ V , let the distance array

D(X) = DS(X) = (d(s1, X), d(s2, X), . . . , d(s|S|, X)).
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Figure 1: The set S consists of the black vertices.

We write in short, D({x1, . . . , xk}) = D(x1, . . . , xk). Hence D(x) means the same distance array
as before.

Definition 1. Let G = (V,E) be a finite, undirected, simple and connected graph. Let further
ℓ be an integer such that 1 ≤ ℓ ≤ |V |. A subset S ⊆ V is called an ℓ-resolving set (or an ℓ-set
resolving set) if

D(X) 6= D(Y )

for any two distinct and nonempty subsets X,Y ⊆ V with |X | ≤ ℓ and |Y | ≤ ℓ.

The minimum cardinality of an ℓ-resolving set of G is called the ℓ-set-metric dimension of G
and it is denoted by βℓ(G). An ℓ-resolving set of cardinality βℓ(G) is called an ℓ-set-metric basis of
G. Clearly, a 1-resolving set is the usual resolving set, and the set S = V is always an ℓ-resolving
set for all 1 ≤ ℓ ≤ |V |.

Example 2. (i) Let us consider the graph of Figure 1(a). Take the set S = {v2, v3, v5, v6}.
It is easy to check that S is a 1-resolving set, and D(v4) = (1, 1, 1, 1). If we receive the
distance array (1, 1, 1, 1), we immediately conclude that the object (like an intruder) is in
v4. However, if there are two objects (intruders), say in v1 and v7, we can falsely make that
decision and no intruder is found, since also D(v1, v7) = (1, 1, 1, 1).

(ii) Denote a path on n ≥ 2 vertices by Pn and write the vertices as an ordered set Pn =
(v1, v2, . . . , vn). The set S = {v1, vn} is a 2-resolving set as we will show next. Let X ⊆
{v1, . . . , vn} and 1 ≤ |X | ≤ 2. Now D(X) = (a, b) for some 0 ≤ a, b ≤ n − 1 (here
S = (v1, vn) is considered as an ordered set). If a + b = n − 1, then there X consists of
one vertex, namely, v1+a. On the other hand, if a + b < n − 1, then there are two vertices
in X , namely, X = {vi+a, vn−1−b}. Consequently, β2(Pn) ≤ 2. Moreover, the 2-set-metric
dimension β2(Pn) = 2. Indeed, if S = {vi} for some 1 ≤ i ≤ n, then D(vi) = (0) = D(vi, vj)
for any j 6= i, j = 1, . . . , n.

(iii) Consider then the complete graph K4 of Figure 1(b). We will show that a set S 6= V cannot
be a 2-resolving set. Without loss of generality, say v4 /∈ S for some 2-resolving set S. Notice
that if we add vertices to a 2-resolving set, it remains 2-resolving. Hence we may assume that
S = {v1, v2, v3}. Since D(v2) = (1, 0, 1) = D(v2, v4), the set S is not 2-resolving. It follows
that β2(K4) = 4. By the same token, β2(Kn) = n for all complete graphs Kn, n ≥ 3. This
example shows that a 2-resolving set must not be confused with so-called doubly resolving set
which is discussed, for instance, in [4] — there it is shown that the smallest doubly resolving
set in Kn equals n− 1.

In this paper, we consider ℓ-resolving sets in two infinite families of graphs, namely, in the
two dimensional grid graphs Pp�Pq and the n-dimensional binary hypercubes Fn. For the usual
(1-)resolving set, it has been shown that the metric dimension of the two dimensional grid graph
equals two [10]. Section 2 shows that we can determine the 2-set-metric dimension in the grid
graph using a helpful geometric flavour of the problem. In Section 3, we consider ℓ-resolving sets
in the binary hypercubes Fn. For the usual (1-)resolving sets it is known that β1(F

n) ≤ n [5] and,
asymptotically [14],

lim
n→∞

β1(F
n) ·

logn

n
= 2.
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2 On ℓ-resolving sets in a grid graph

In this section, we find the 2-set-metric dimension of the grid graph Pp�Pq and show that the
only ℓ-resolving set for 3 ≤ ℓ ≤ pq is the whole set of vertices S = Pp × Pq. Recall that the path
in Example 2(ii) can be interpreted as Pn�P1 where P1 consists of a single vertex.

Theorem 3. Let p, q ≥ 2 be integers. Then we have β2(Pp�Pq) = min{p, q}+ 2.

Proof. First we consider the lower bound β2(Pp�Pq) ≥ min{p, q} + 2. Let S be any 2-resolving
set in the graph Pp�Pq. Denote Pp = (v1, . . . , vp) and Pq = (w1, . . . , wq). The distance between
two vertices (vi, wj) and (vi′ , wj′ ) of Pp × Pq equals

|i− i′|+ |j − j′|. (1)

First we show that all the corners (v1, w1), (vp, w1), (v1, wq) and (vp, wq) necessarily belong
to the 2-resolving set S. Assume to the contrary that (v1, w1) /∈ S (proceed analogously with
the other corners). Consider now two sets X = {(v2, w2)} and Y = {(v1, w1), (v2, w2)}. By (1),
we see that any vertex in Pp�Pq apart from (v1, w1) has shorter (or equal) distance to (v2, w2)
than to (v1, w1). Therefore, for any element s ∈ S, we get d(s, Y ) = d(s, (v2, w2)) = d(s,X).
Consequently, D(X) = D(Y ), which is a contradiction, and we are done.

If p = 2 or q = 2, this already gives the claim β2(Pp�Pq) ≥ 4, so assume from now on that p, q ≥
3. We denote the rows (which are not intersecting the corners) by Rk = {(vi, wk) | i = 1, . . . , p},
where k = 2, . . . , q − 1, and columns by Ih = {(vh, wj) | j = 1, . . . q}, where h = 2, . . . , p − 1.
Denote the cross (without the center (vh, wk)) by Ch,k = (Rk ∪ Ih) \ {(vh, wk)}. We need the
following fact:

• Fact 1: There exists at least one element of S in any cross Ch,k where h = 2, . . . , p− 1 and
k = 2, . . . , q − 1.

In order to prove this, let us consider the sets X = {(vh, wk+1), (vh, wk−1)} and Y =
{(vh−1, wk), (vh+1, wk)}. There must be an element of S in the cross Ch,k if S is a 2-resolving
set, since any vertex u outside the cross has d(u,X) = d(u, Y ). Indeed, suppose u is in the
first quadrant when (vh, wk) is considered as the origin in the Euclidean plane. The vertices
in that quadrant outside the cross are (vh, wk) and U = {(va, wb) | a ≥ h + 1, b ≥ k + 1}.
If u = (vh, wk), we clearly have d(u,X) = 1 = d(u, Y ), so suppose that u ∈ U . Now the
distance from u to (vh, wk+1) in X is the same as its distance to (vh+1, vk) in Y (and the
distance to the other vertices of X and Y are larger). Therefore, d(u,X) = d(u, Y ). If u
belongs to other quadrants, the argument is similar.

If all the rows Rk, k = 2, . . . , q−1, contain at least one element of S, then |S| ≥ q−2+4 = q+2.
Suppose then that there is a row Rt for some t ∈ {2, . . . , q − 1} which has no element of S in
it. By Fact 1, we know, by considering the cross Ch,t, that every column Ih, h = 2, . . . , p − 1
must contain an element of S. There are p− 2 such columns, so we get |S| ≥ p − 2 + 4 = p+ 2.
Combining these two observations, we get the assertion β2(Pp�Pq) ≥ min{p+ 2, q + 2}.

Next we give a construction achieving the lower bound. Suppose p ≤ q (the other case is
analogous). Consider the set (see Figure 2(a))

S = {(vi, w1) | i = 1, . . . p} ∪ {(v1, wq), (vp, wq)}.

Clearly, |S| = p + 2 = min{p, q} + 2. We will show that S is a 2-resolving set in Pp�Pq. We do
this by determining the set X ⊆ Pp ×Pq, where 1 ≤ |X | ≤ 2, using only the distance array D(X).
This implies that D(X) 6= D(Y ) for all distinct subsets X,Y ⊆ Pp × Pq with 1 ≤ |X |, |Y | ≤ 2.

Denote the diagonal line (see Figure 2(a)) with slope 1 passing through the vertex u = (vi, wj)
by

L+(u) = {(vi+r, wj+r) ∈ Pp × Pq | r ∈ Z}.

Analogously, the diagonal line with slope −1 is denoted by L−(u).
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Figure 2: (a) The set S consists of the black vertices and the diagonal line L+(u) is marked in
gray. (b) The top region R is illustrated by gray vertices and the vertices of the path are circled.

Now let X ⊆ Pp × Pq, where 1 ≤ |X | ≤ 2. Denote the elements of S on the bottom line of
the grid by S′ = {(vi, w1) | i = 1, . . . p}. Consider the distances d(s,X) corresponding to vertices
s ∈ S′ in D(X) and choose one with smallest value. Say s1 = (vm, w1) gives the minimal value
d(s1, X) = k (there can be others giving the minimal value also). Then we know that x = (vm, wk)
belongs to X . Indeed, the other vertices in Pp�Pq which have the distance equal to k from s1 are
those in L+(x) ∪ L−(x) whose second coordinate wh is such that h < k. But these vertices in X
would imply that there were a smaller value than k in D(X) among vertices of S′.

Now we have found one vertex of X , so we continue to look for the possible other vertex or
conclude that there are no other vertices. The distance from x ∈ X to the other vertices in S′ is
easy to calculate — for s2 = (vi, w1) ∈ S′ we have d(s2, x) = k + |m− i|. We separate two cases,
depending on whether d(s,X) = d(s, x) for all s ∈ S′ or not.

1) Assume first that there are elements s ∈ S′ with smaller d(s,X) than d(s, x). Say s3 =
(vf , w1) ∈ S′ gives the smallest value d(s3, X) = k′ among the elements of S′ which differ from
d(s, x). Then, reasoning as above, we know that y = (vf , wk′) belongs toX and we have determined
X = {x, y} completely.

2) Assume then that d(s,X) = d(s, x) for all s ∈ S′. This implies that if there is another
vertex y in X besides x = (vm, wk), it must be in the top region bounded by the sets L+(x) and
L−(x) as illustrated in Figure 2(b), that is, in the set

R = {(va, wb) ∈ Pp × Pq | b > k,m− (b− k) ≤ a ≤ m+ (b− k)}.

Now we use the remaining two elements of S (apart from S′), namely, s4 = (v1, wq) and
s5 = (vp, wq) to resolveX . Denote d(s4, x) = e1 and d(x5, x) = e2 (we can calculate these, since we
know x). If d(s4, X) = e1 and d(s5, X) = e2, then X consists of a single pointX = {x}. Otherwise,
we can find y at the intersection of the following two diagonal lines. The first diagonal line is L+(u)
where u is the vertex at distance d(s4, X) from s4 on the following path (see Figure 2(b)) between
s4 and x:

{(v1, wq), (v2, wq), . . . , (vm, wq), (vm, wq−1), . . . , (vm, wk)}.

The second diagonal line is L−(u′) where u′ is the vertex at distance d(s5, X) from s5 on the path
between s5 and x:

{(vp, wq), (vp−1, wq), . . . , (vm, wq), (vm, wq−1), . . . , (vm, wk))}.

We have determined X using D(X) in all cases which completes the proof.

We consider next ℓ-resolving sets when ℓ ≥ 3.

Theorem 4. Let p, q ≥ 2 be integers. For 3 ≤ ℓ ≤ pq, we have βℓ(Pp�Pq) = pq.
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Proof. We will show that the only ℓ-set-metric basis is the whole set of vertices V = Pp × Pq

(trivially, this set is ℓ-resolving). Let S be any ℓ-resolving set for 3 ≤ ℓ ≤ pq in Pp�Pq. Assume
to the contrary that there exists u ∈ Pp × Pq such that u /∈ S. Since an ℓ-resolving set is also a
2-resolving set, we know from the proof of Theorem 3, that u cannot be any of the corners (v1, w1),
(v1, wq) (vp, w1) or (vp, wq).

We divide the examination into two parts depending on where u lies — whether it is on the
first or last row or column or it is not on one of them.

1) Suppose that u = (vi, wj) /∈ S is such that 2 ≤ i ≤ p−1 and 2 ≤ j ≤ q−1. Hence necessarily
p, q ≥ 3. Denote y = (vi+1, wj+1) and z = (vi−1, wj−1). It follows that D(y, z) = D(u, y, z).
Indeed, the distance of any vertex s ∈ S, s 6= u, to x is larger than or equal to its distance to the
set {y, z} (in other words, d(s, {y, z}) = d(s, {u, y, z}). Hence, if S does not contain u, it cannot
be an ℓ-resolving set for ℓ ≥ 3.

2) If p = q = 2, then all the vertices are corners, so S = V immediately. Therefore, we can
assume that p ≥ 3 or q ≥ 3. Without loss of generality, say q ≥ 3. Let u = (vi, wj) be such that
i ∈ {1, p} or j ∈ {1, q}. Assume that i = 1 (the other cases are analogous and if p = 2 the case
j ∈ {1, q} is trivial). Since u is not a corner, we know that 2 ≤ j ≤ q − 1. Choose y = (v2, wj+1)
and z = (v1, wj−1). Again it is easy to see that D(y, z) = D(u, y, z) and we are done.

3 On ℓ-resolving sets in the binary hypercube

In this section, we examine ℓ-resolving sets in the n-dimensional binary hypercubes. Let F = {0, 1}.
Denote the Cartesian product F

n = F × · · · × F (n times). The vertex set of the n-dimensional
binary hypercube is F

n and two vertices x = (x1, . . . , xn) ∈ F
n and y = (y1, . . . , yn) ∈ F

n are
adjacent if and only if they differ in exactly one coordinate position. The (Hamming) distance
between two vertices is the number of coordinates in which they differ. As usually, the vertices
in F

n are called words. The support of a word x = (x1, . . . , xn) ∈ F
n is defined as supp(x) = {i |

xi = 1, i = 1, 2, . . . , n}. The weight w(x) of x equals |supp(x)|. Denote 0 = (0, . . . , 0) ∈ F
n.

Next we will provide an analogous result to Theorem 4 for the binary hypercube.

Theorem 5. Let n ≥ 3 and ℓ ≤ 2n. We have βℓ(F
n) = 2n if

ℓ ≥

{

n−1
2 + 2 when n is odd,

n
2 + 1 when n is even.

Proof. We show that the only ℓ-resolving set in the n-dimensional binary hypercube is Fn.

First, let n be odd and S be an ℓ-resolving set with n−1
2 + 2 ≤ ℓ ≤ 2n. Suppose to the

contrary that there is x ∈ F
n such that x /∈ S. Without loss of generality (the binary hypercube

is vertex-transitive), we may assume that x = 0. Denote by yi the word with support {2i− 1, 2i}
for i = 1, . . . , (n− 1)/2. Denote further z = 000 . . .01. Since S is an ℓ-resolving set, we must have

D(X) 6= D(Y )

for the sets X = {y1, . . . , y(n−1)/2, z} and Y = {0, y1, . . . , y(n−1)/2, z}, because |X |, |Y | ≤ ℓ. Since
D(X) 6= D(Y ) there must exist s1 ∈ S such that d(s1, X) 6= d(s1, Y ) (recall that s1 cannot be 0).
We need to have d(s1,0) < d(s1, X). Any shortest path from s1 to 0 (the only vertex differing in the
sets X and Y ) has to go through (or begin at) a vertex with weight one, say a with supp(a) = {j}
where j = 1, 2, . . . n. If j < n, then the distance from s1 to 0 is the same as its distance to yi with
i = ⌈j/2⌉. If j = n, then d(s1,0) > d(s1, z). This implies that d(s1, X) = d(s1, Y ), a contradiction.

The case n even goes similarly using the sets X = {y1, . . . , yn/2} and Y = {0, y1, . . . , yn/2}.

Notice that F
2 is isomorphic to P2�P2, so, by Theorem 3, we get β2(F

2) = 4 and hence
βℓ(F

2) = 4 for ℓ = 3, 4. By the previous theorem, there are no non-trivial ℓ-resolving sets for n =
3, 4 when ℓ ≥ 3. The code C = F

3 \{000, 111} (resp. C = F
4 \{0000, 0001, 0010, 0100, 0111, 1011})

gives β2(F
3) ≤ 6 (resp. β2(F

4) ≤ 10). It is easy to check using a computer that β2(F
3) = 6 and

β2(F
4) = 10. Now we will show that the bound on ℓ of the previous theorem is optimal in the

sense that if ℓ is smaller than that, there exists a set S 6= F
n such that it is ℓ-resolving.
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Theorem 6. Let n ≥ 5. For n odd and ℓ ≤ (n − 1)/2 + 1, we have βℓ(F
n) ≤ 2n−1. For n even

and ℓ ≤ n/2, we have similarly βℓ(F
n) ≤ 2n−1.

Proof. Let n ≥ 5 and

S = {(c1, . . . , cn) ∈ F
n | c1 + c2 + · · ·+ cn = 0} (2)

where the sum is taken modulo two, that is, S consists of all of the words in F
n which have even

weight. Clearly, |S| = 2n−1. We will show that this set gives an ((n − 1)/2 + 1)-resolving set for
n odd and an n/2-resolving set for n even. This implies that there exists an ℓ-resolving set for
all ℓ ≤ (n − 1)/2 + 1 when n is odd and for all ℓ ≤ n/2 when n is even. We need to show that
D(X) 6= D(Y ) for any distinct subsets X,Y ⊆ F

n with 1 ≤ |X |, |Y | ≤ ℓ where ℓ = (n− 1)/2+ 1 if
n is odd and ℓ = n/2 if n is even.

Assume to the contrary that for some such sets X and Y we have

D(X) = D(Y ). (3)

Without loss of generality, we may assume that |X | ≥ |Y | and that there exists x ∈ X which
is not in Y . Moreover, due to (3), the word x cannot belong to S. Since x /∈ S, the neighbours
N(x) must be in S by the definition of S.

Clearly, d(s,X) ≤ 1 for all s ∈ N(x) because x ∈ X . Moreover, d(s,X) = 0 if and only if
s ∈ X . Suppose that k of the vertices in N(x) are in X , where 0 ≤ k ≤ ℓ− 1. Denote these words
by v1, . . . , vk (if there are any). Due to (3) (recall that v1, . . . , vk ∈ S), these words must also
belong to Y . Since d(s,X) = 1 for the rest of the neighbours N(x), for each s ∈ N(x)\{v1, . . . , vk}
there must be y ∈ Y such that d(s, y) = 1. Because x /∈ Y , clearly d(x, y) = 2. On the other
hand, for any such y there can be at most two words in N(x) \ {v1, . . . , vk}, say s1 and s2, such
that d(s1, y) = d(s2, y) = 1 — indeed, in the binary hypercube, any words at distance two have
exactly two common neighbours. There are n−k words in N(x)\{v1, . . . , vk} which all must have
a word of Y at distance one from them. Since {v1, . . . , vk} ⊆ Y , there are at most |Y | − k words
available for that in Y . Because each such word in Y can take care of at most two of the n − k
words, the inequality

n− k ≤ 2(|Y | − k) (4)

must be satisfied when (3) holds. Notice that the inequality is not satisfied unless |Y | = ℓ (and
hence also |X | = ℓ because |X | ≥ |Y |).

Since X 6= Y and |X | = |Y | = ℓ, there must be a word in Y which is not in X . This, as we
shall see below in cases 1) and 2), is a word ỹ ∈ Y \X at distance two from x. Moreover, we will
see that all the words in Y are at distance two or less from x. We separate the investigation into
two parts depending on whether n is odd or even.
1) Let first n be odd. In this case ℓ = (n− 1)/2 + 1 and thus (4) with |Y | = ℓ gives k ≤ 1.

• Assume first that k = 1. Thus Y consists of v1 ∈ N(x) and words yi, i = 1, . . . , (n − 1)/2,
such that d(x, yi) = 2 which all are needed to take care of the words in N(x) \ {v1}. Notice
that hence every word of Y is within distance two from the word x. Since v1 ∈ X ∩ Y , the
word ỹ is one of the yi’s.

• Let then k = 0. Now again all words in the set Y are such that their distance to x is at most
two (actually, now the distance is exactly two). Indeed, any ℓ − 1 words y1, . . . , y(n−1)/2

cannot give d(s, Y ) = 1 for all s ∈ N(x) — recall that each yi can take care of at most two
of the words in N(x). Therefore, all the ℓ words of Y must be at distance two form x and ỹ
is found among them.

2) Assume then that n is even and ℓ = n/2. By (4), we know that k = 0. Now all the words of Y
are again within distance two form x and the promised ỹ exists.

Next we show how the word ỹ and the fact that the words of Y are within distance two from
x can be used to get a contradiction with (3). By the definition of S and the fact that x /∈ S, we
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know that ỹ is not in S and all the words in N(ỹ) belong to S. In N(ỹ), there are n − 2 words
which are at distance three from x (the two remaining words in N(ỹ) are in N(x)). Denote this
set of n−2 words by U . Now U ⊆ S and d(s, Y ) ≤ 1 for every s ∈ U — more precisely, d(s, Y ) = 1
because all the words in Y are within distance two from x. Due to (3), the same must be true
with respect to X . In order to have d(s,X) = 1 for s ∈ U there must be a word in X , which is
at distance four or two from x. However, a word at distance four, say u′ ∈ X , is not possible,
because then there would be a word w ∈ N(u′) ⊆ S at distance five from x such that d(w,X) ≤ 1,
but clearly d(w, Y ) > 1 due to the fact that all the words in Y are within distance two from x.
Consider then the case that we have a word u′ ∈ X which is at distance two form x. For each
such word u′ (u′ 6= ỹ) there is at most one word s in U such that d(s, u′) = 1. But |U | = n−2 and
there are at most ℓ − 1 words in X at distance two from x. This gives the sought contradiction
with (3), because there exists s ∈ U such that d(s, Y ) = 1 in D(Y ) but d(s,X) > 1 in D(X).

For n odd, the set found in the previous proof is actually a ((n− 1)/2 + 1)-set-metric basis.

Theorem 7. Let n ≥ 5 be odd. Then the β(n−1)/2+1(F
n) = 2n−1.

Proof. The previous theorem shows that there exists an ℓ-resolving set of cardinality 2n−1 for
ℓ = (n − 1)/2 + 1. It suffices to show that there does not exist a smaller one. Suppose S is
any ((n − 1)/2 + 1)-resolving set. Then it must be able to distinguish between the two sets
X = {y1, . . . , y(n−1)/2} and Y = {0, y1, . . . , y(n−1)/2} where yi is the word with support supp(yi) =
{2i− 1, 2i}, i = 1, . . . , (n − 1)/2. Notice that |X |, |Y | ≤ ℓ, so necessarily D(X) 6= D(Y ). We will
show next that this implies that the pair A = {0, z}, where z = 00 . . .01, must contain an element
of S.

Suppose to the contrary that A ∩ S = ∅. Since D(X) 6= D(Y ) and the sets X and Y differ
only in 0, there must be an element s ∈ S such that d(s,0) < d(s, Y ). Notice that s /∈ A.
Any shortest path between s and 0 goes through (or starts from) a word of weight one, say v
with supp(v) = {k}. If k < n, then d(s,0) ≥ d(s, y⌈k/2⌉) leading to d(s,0) ≥ d(s, Y ), so this is
impossible. Assume then that k = n. Now s /∈ A, so s must be a word of weight two or more.
Hence the shortest path must go through some vertex w ∈ N(z) \ A. Say, w has the support
{h, n}. But then d(s,0) ≥ d(s, yi) where i = ⌈h/2⌉. This gives a contradiction, so the set A must
contain an element of S.

Since the binary hypercube is vertex-transitive, the fact that A contains an element of S implies
that every pair {x0, x1}, x ∈ F

n−1, which differ in the last coordinate must contain also an element
of S. Since these pairs partition the binary hypercube Fn (because Fn = F

n−1×F), we obtain the
assertion that |S| ≥ 2n−1. Hence the set of (2) is an ((n− 1)/2 + 1)-set-metric basis.

We show next that the 2-set-metric dimension has an upper bound of order ∼ n2.

Theorem 8. Let n ≥ 6. In the n-dimensional binary hypercube we have

β2(F
n) ≤

1

2
n2 +

3

2
n+ 2.

Proof. Let S be the set which consists of all the words of weight 0, 1, 2, n−1 and n. We will verify
that S is a 2-resolving set in the binary hypercube. Denote the words of weight two (resp. n− 1)
in S by S2 (resp. Sn−1). Clearly, |S| =

(

n
2

)

+ 2(n+ 1) = 1
2n

2 + 3
2n+ 2.

In order to show that S is 2-resolving, we determine X with the aid of D(X), when 1 ≤ |X | ≤ 2.
We divide the consideration into two cases depending on whether or not the distance array D(X)
contains zeros.

1) Suppose first that D(X) does not contain any zeros. Consequently, the weights of the words
of X are between 3 and n− 2. Consider first the smallest value in D(X) among the words of S2

(of course, there can be many words in S2 giving that value). Denote the smallest value by dmin.
Clearly, there is a word (maybe two) in X of weight dmin +2. Similarly, let d′min be the minimum
value, which the words in Sn−1 have in D(X). Then there is at least one word in X of weight
n− d′min − 1.
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X: X’:,0  0 0  00    001 10    00111  1

0  0 0  00    000 01    11011  1

0  0 0  00 000 11    10011  1

0  0 0  00    001 00    01111  1

Figure 3: Two sets of words. The coordinates in U ′ are in bold and in W underlined.

If dmin + 2 6= n − d′min − 1, then we can immediately reconstruct the words of X . Namely,
the word giving the weight dmin + 2 (call this x) can be found by looking at all the words in S2

which provide the value dmin to D(X) — the union of their supports gives the support of x, so
we have determined x. On the other hand, the word of X of weight n − d′min − 1, say y, can be
reconstructed by looking at the words of Sn−1 with minimal value d′min in D(X) — these reveal
all the coordinates with zero in y (there is a zero in y at the coordinate where a word of Sn−1

with d′min has the unique zero). Therefore, y is also reconstructed and we know X .

Assume then that dmin + 2 = n − d′min − 1, that is, the words of X have the same weight or
there is just one word in X . Denote the weight by w = dmin + 2. Let U be the set of the words
(if any) in Sn−1 such that they give the maximal value dmax > d′min in D(X) among the values
provided by the words in Sn−1. This value dmax = d(s,X) is obtained if s ∈ Sn−1 has (its unique)
0 in a coordinate where all the words of X have a 1 (if |X | = 2, this means a common 1 for the
words of X in this coordinate).

If |U | = w, then X consists of just one word and its ones are at the positions where the words
of U have zeros. Consequently, we have determined the set X in this case.

Suppose then that |U | < w (obviously, we cannot have |U | > w). Now there must be at least
two words in X , say X = {x, y}. The coordinates where both x and y have common 1’s (if any)
are the positions where the words of U have zeros. Denote the set of coordinates with common
1’s by U ′. We separate three cases depending on the size of U ′. Let T denote the set of words in
S2 which correspond to the minimum value dmin in D(X).

• Assume first that the size |U ′| = w − 1. Now we can reconstruct x and y by looking at the
words in T . Take one coordinate i ∈ U ′ and test all the coordinates j /∈ U ′ to find out
whether or not the word with support {i, j} belongs to T . There must be exactly two such
coordinates j1 and j2. Now (say) x is the word with 1’s exactly at the coordinates in U ′ and
one more 1 at coordinate j1, and y is the word with 1’s in U ′ and at the coordinate j2.

• Assume then that 1 ≤ |U ′| ≤ w−2. Now take as previously the coordinates i ∈ U ′ and j /∈ U ′

and test whether the word with support {i, j} belongs to T . This reveals the coordinate
positions outside U ′ where either x has 1 or y has 1 (but not both). Denote this set of
coordinate positions by W . Notice that we do not know how these 1’s are distributed among
x and y (see Figure 3 for two different sets X and X ′ with the same U ′ and W ). Take a
coordinate i′ ∈ W . Name the words x and y so that x is the word with 1 at the coordinate
i′ (and y has 0). Going through the words in T with support {i′, j′} where j′ ∈ W \ {i′}
reveals all the coordinates j′ with 1 in x. Indeed, only those words where there is 1 in x at
the coordinate position j′ belong to T . The rest of the coordinates of W are such that y has
1 and x has 0. Consequently, we have determined the set X .

• Let |U ′| = 0. Now take any word in T . Suppose it has the support {i, j}. Now either x or
y has 1’s in these coordinates i and j (and the other has 0’s). Call x the one with 1’s at i
and j. Going through all the words in T with support {i, j′} where j′ 6= i we find all the
coordinates of x with 1 in it. Hence we can determine x (and we know supp(x)). After that
take another word in T , whose support {h, k} is such that supp(x)∩{h, k} = ∅ (there exists
such a word because |U ′| = 0). We can now find supp(y) in the same way as we did find
supp(x). Consequently, we have determined X .

2) Assume then that D(X) contains zeros. If there are two zeros in D(X), then X consists of the
two words of S giving the zeros in D(X). Now suppose there is exactly one zero. Again we know
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one word of X immediately within S. If the zero in D(X) is given by a word of weight at least
n − 1 (resp. of weight at most 2), then we can find out (as above) using the words in S2 (resp.
Sn−1) whether or not there is another word in X of weight between 3 and n− 2, and which it is.
This completes the proof.

Actually, in the previous proof, we would only need words of weight 2 and n−1, but our choice
made the argument shorter and we are only interested in the order of growth of S.

Acknowledgement: The author would like to thank the referees for fruitful suggestions.
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