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Abstract

Biomedical natural language processing (BioNLP) is a subfield of natural
language processing, an area of computational linguistics concerned with
developing programs that work with natural language: written texts and
speech. Biomedical relation extraction concerns the detection of semantic
relations such as protein—protein interactions (PPI) from scientific texts.
The aim is to enhance information retrieval by detecting relations between
concepts, not just individual concepts as with a keyword search.

In recent years, events have been proposed as a more detailed alternative
for simple pairwise PPI relations. Events provide a systematic, structural
representation for annotating the content of natural language texts. Events
are characterized by annotated trigger words, directed and typed arguments
and the ability to nest other events. For example, the sentence “Protein A
causes protein B to bind protein C” can be annotated with the nested event
structure CAUSE(A, BIND(B, C)). Converted to such formal representa-
tions, the information of natural language texts can be used by computa-
tional applications. Biomedical event annotations were introduced by the
Biolnfer and GENIA corpora, and event extraction was popularized by the
BioNLP’09 Shared Task on Event Extraction.

In this thesis we present a method for automated event extraction, im-
plemented as the Turku Event Extraction System (TEES). A unified graph
format is defined for representing event annotations and the problem of
extracting complex event structures is decomposed into a number of inde-
pendent classification tasks. These classification tasks are solved using SVM
and RLS classifiers, utilizing rich feature representations built from full de-
pendency parsing. Building on earlier work on pairwise relation extraction
and using a generalized graph representation, the resulting TEES system is
capable of detecting binary relations as well as complex event structures.

We show that this event extraction system has good performance, reach-
ing the first place in the BioNLP’09 Shared Task on Event Extraction.
Subsequently, TEES has achieved several first ranks in the BioNLP’11 and
BioNLP’13 Shared Tasks, as well as shown competitive performance in the
binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared
tasks.



The Turku Event Extraction System is published as a freely available
open-source project, documenting the research in detail as well as making
the method available for practical applications. In particular, in this thesis
we describe the application of the event extraction method to PubMed-scale
text mining, showing how the developed approach not only shows good
performance, but is generalizable and applicable to large-scale real-world
text mining projects.

Finally, we discuss related literature, summarize the contributions of the
work and present some thoughts on future directions for biomedical event
extraction. This thesis includes and builds on six original research publica-
tions. The first of these introduces the analysis of dependency parses that
leads to development of TEES. The entries in the three BioNLP Shared
Tasks, as well as in the DDIExtraction 2011 task are covered in four pub-
lications, and the sixth one demonstrates the application of the system to
PubMed-scale text mining.
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Chapter 1

Introduction

Biomedical natural language processing (BioNLP) refers to the automated
analysis and extraction of information from texts related to biology and
medicine. Natural language processing, NLP, is a field of computational lin-
guistics concerned with developing methods for enabling computers to work
with natural language, i.e. written texts or spoken language, the natural
forms of human communication. In addition to extending our understand-
ing of how language works, NLP aims to ease and improve human—computer
interaction by allowing humans to use more natural forms of communication
when interacting with computers.

BioNLP has developed as a subfield of NLP, taking NLP techniques and
applying them to biomedical questions. It has emerged as a response to the
exponential growth of information in biology, and the need of scientists and
medical professionals to extract very specialized information from this mass
of knowledge. For example, PubMed!, the central repository of biomedical
research articles, contains over 20 million citations and is growing at an
exponential rate. While traditional keyword searches can retrieve a set of
articles of interest, often much additional work is required to distill this mass
of text into actually relevant knowledge, especially when searches include
common concepts. The BioNLP field aims to provide more advanced tools
for information retrieval, looking into the semantic relations existing between
concepts in biomedical natural language texts.

1.1 Biomedical Event Extraction

Much of modern biology revolves around signaling networks, the compli-
cated relationships formed by the interactions of the molecules that make
up cells and larger organisms. The DNA of a genome defines the genes that
encode the proteins which regulate and process the complex metabolism of

"https://www.ncbi.nlm.nih.gov/pubmed/



an organism: the diverse functions ranging from control of cell structure
and motility to generation of energy from nutrients and defence against
pathogens via the immune system. The scientific publications discussing
molecular biology often present complex statements of semantic relations
(using verbs such as “regulates” to describe metabolic interactions) between
named entities (nouns referring to genes, proteins and other biological com-
ponents). Extracting these statements from text to a set of formally defined
relations is a case of biomedical natural language processing.

Traditionally, this extraction of semantic relations has focused on pair-
wise protein—protein interactions (PPI). Proteins are the macromolecules
that make up most biological structures, and PPIs are a central aspect in
the metabolism of all living organisms. Annotation and study of large scale
protein—protein interaction networks is thus a key method in understanding
the role and function of the various proteins encoded by the genome.

Text mining for these PPIs has proceeded as a task of relation extrac-
tion, where mentions of protein names are detected in natural language text,
and PPIs are defined as the pairs of these protein mentions that the text
states as interacting. The advantage of such pairwise PPIs is a straightfor-
ward annotation scheme and an extraction target easily approached by e.g.
classifier-based machine learning methods. However, such PPIs can capture
only a limited subset of the relations described in literature, or capture the
relations at a very low granularity.

Event extraction has been proposed as a more detailed alternative for
PPI detection. Events are complex relations that aim to provide an anno-
tation scheme detailed and flexible enough to fully capture the semantics
of natural language with a formal representation. Events aim to describe
not only which concepts in the text are stated to be interacting, but what
the types of those interactions are, and what roles the concepts have in
them. Extraction of such events aims to produce a formal representation
for any text, a set of facts that can bring the knowledge within the scien-
tific literature to use in computational applications supporting research and
medicine.

Events in BioNLP are generally considered to have the following char-
acteristics: 1) their arguments have a type and a direction, 2) they have
annotated trigger words (often verbs) and 3) they can be nested, that is, an
event can act as an argument of another event (See Figure 1.1).

The development of event extraction for BioNLP has largely been driven
by corpus annotation, most notably the GENIA project (Kim et al., 2008).
An earlier effort was the Biolnfer corpus, which developed a complex, nested
annotation scheme (Pyysalo et al., 2007). The real breakthrough of event
extraction in the BioNLP field came from the BioNLP Shared Tasks, a com-
petitive evaluation of event extraction software, organized by the GENIA
project in 2009, 2011 and 2013 (Kim et al., 2009, 2011a; Nédellec et al.,

2



<Theme <Theme Regulation Cause>
F w r<Themeﬂ_Cause>W
Protein [Phosphorylation) [Regulation] Protein Protein
STAT3  Ser(727) phosphorylation may involve Vav and Rac-1
Protein Protein Protein
Proteins Triggers Relations Events
P1="STAT3" | T1 = "phosphorylation" | R1 = (P1, P2) | E1 = Phosphorylation<T1>(Theme:P1)
P2 ="Vav" T2 ="involve" R2 =(PI1, P3) | E2 = Regulation<T2>(Cause:P2, Theme:E1)
P3 ="Rac-1" E3 = Regulation<T2>(Cause:P3, Theme:E1)

Figure 1.1: Events and relations. A GENIA-style event annotation is shown
above the sentence and the corresponding binary relation annotation below
the sentence. These traditional binary relations consist of untyped, undi-
rected pairs of interacting proteins. The events consist of a trigger and
directed arguments. In the Regulation events, the order of the Theme and
Cause arguments defines the direction of the event. The Phosphorylation
event E1 is nested as an argument in the two Regulation events. While more
complex than the relations, the events describe the semantics of the sentence
more accurately.



2013). These shared tasks popularized the event extraction approach, and
provided a clearly defined, competitive setting for the development of auto-
mated methods for biomedical event extraction.

1.2 Research Questions

With biomedical event corpora having become available for research, the pri-
mary research question addressed in this thesis is, what sort of approaches
can be developed for automated extraction of these complex semantic struc-
tures?

Very early in the work it became apparent that the complexity of the
natural language favors the use of machine learning over manual definition
of rules for event extraction. Following this choice of approach, the research
questions addressing the practical formulation of a system for event extrac-
tion are two-fold: First, addressed in Chapter 2, how can the extraction of
complex event structures be defined as a task approachable by supervised
machine learning techniques? Second, addressed in Chapter 3, how can the
information available in the text, such as syntax, be utilized effectively in
machine learning of events?

Only after the successful development of an event extraction system do
practical applications become a possibility. With the large scale of literature
available, the final research question, addressed in Chapter 4, examines how
the developed methods can be applied to real-world event extraction tasks
with the aim of producing information useful in biomedical research.

In the rest of the current chapter we see how these research questions
evolved over time and were approached during the course of this work, and
how the solutions developed became the Turku Event Extraction System
(TEES), a comprehensive automated approach for the task of computational
event extraction.

1.3 Development of the Turku Event Extraction
System

The University of Turku established a project for the study of biomedical
natural language processing in 2002. The aims of this project are to de-
velop methods and resources for text mining by analyzing the structure and
attributes of biomedical text, producing annotated corpora and developing
automated systems for information extraction.

The most widely cited project of the Turku BioNLP research is the Bioln-
fer corpus, which was the first detailed, “event type” annotation developed
for biomolecular interactions (Pyysalo et al., 2007). The much larger GE-
NIA event corpus was published shortly thereafter (Kim et al., 2008), and

4



these resources allowed the Turku group to start working on developing
complex relation mining tools from the year 2008. These efforts included an
implementation (Pyysalo et al., 2008) of the RelEx system of Fundel et al.
(2007), and a graph kernel developed by Airola et al. (2008a). However,
these systems were still mostly targeted for extraction of PPI-type binary
relations. A binarized version of the Biolnfer corpus was also developed to
fit the more detailed annotation into the existing PPI paradigm (Heimonen
et al., 2008).

Work on what was to become the Turku Event Extraction System be-
gan in Autumn 2008, based on a study analyzing the similarity of syntactic
parse trees and event-type complex semantic relation graphs (Paper I). The
study illustrated a strong correlation between complex event annotations
and collapsed Stanford dependency parses (a syntactic parse scheme devel-
oped for semantic information extraction). It was shown that for words
linked by an event annotation, corresponding syntactic dependencies usu-
ally existed, connecting the words through only a few dependencies (or just
one), even when these words were distant in the linear order of the sentence.
As existing tools could already automatically generate dependency parses,
parsing formed a logical starting point for the development of automated
event extraction systems.

First attempts at utilizing dependency parses involved defining a set of
syntactic patterns that would allow automated detection of corresponding
semantic relations. However, due to the diversity of syntactic structures,
this rule-based approach was quickly abandoned in favor of machine learn-
ing. Taking cues from the graph kernel approach, a feature based system
was developed, using the concept of the shortest path, the smallest set of
dependencies connecting two words for which a semantic relation may exist.
The diversity of such syntactic structures was addressed by chopping them
down into smaller atomic components such as syntactic n-grams. These
features were then used to train a classifier, a machine learning system that
would extract the real semantic relations from all the potential candidates.

To address the whole task of extracting events from natural language, a
simple approach was devised also for detecting trigger words, keywords such
as the verb “phosphorylates” in “IKK phosphorylates IkBx”. These words,
explicitly marked in event annotations, define the interactions between gene
and protein named entities, and their detection can be viewed as a task
similar to named entity recognition.

To approach trigger word detection with similar machine learning tech-
niques as used for relation detection, we defined this problem as a classifi-
cation task where each trigger word entity was reduced to a single syntactic
parse token, the head token, enabling trigger detection by simply classify-
ing all tokens in the text. In working form by the end of autumn 2008,
these classification methods formed a generalized technique for detection of
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event-type semantic relations using a graph representation, and made up
the basis for what would become the two-step trigger/argument detection
approach used in the Turku Event Extraction System (TEES). The semantic
relation detection system was introduced at the NODALIDA’09 conference,
becoming public only shortly before the 2009 BioNLP Shared Task workshop
(Bjorne et al., 2009a).

1.4 BioNLP’09 Shared Task on Event Extraction

Shared Tasks in computer science and related fields are competitions where
the participants are given a common goal, and within a certain timeframe
have to produce a solution to the defined problem. In information extraction,
the participants can be given a certain dataset on which to develop their
systems, and at the end of the competition, the systems are evaluated by the
organizers using another dataset hidden from the competitors. The BioNLP
Shared Task is a competition in the BioNLP field, concerning the automated
extraction of events from different domain corpora. The first BlioNLP Shared
Task was organized by the University of Tokyo in 2009 (Kim et al., 2009),
with 24 participating university teams submitting final results.

Based on our ongoing work on relation extraction, the first version of
the Turku Event Extraction System was developed by the University of
Turku team for the BioNLP 2009 Shared Task (Paper II). While the existing
relation and entity detection systems provided a basic framework on which
to build, the BioNLP Shared Task corpus, based on the GENTA corpus, was
a new and different extraction target, and much work was done to build a
system suitable for addressing this task. In particular, the original graph-
based approach could only detect one event per trigger word, leading to
the development of an unmerging system for detection of overlapping but
separate events (such as the two Regulation events shown in Figure 1.1).

Much to the happy surprise of everyone involved, the Turku Event Ex-
traction System performed remarkably well, reaching first place and being
the only system with performance above 50% F-score. In retrospect, good
knowledge on the capabilities and limitations of the machine learning sys-
tems available for the team, leading to careful optimization and tuning of
parameters, was likely a key aspect in the high final result. Following the
Shared Task, TEES was extended to predict subtasks 2 and 3, the parts of
the BioNLP’09 Shared Task concerned with subprotein interactors (e.g. do-
mains) and modality detection (speculation and negation). Having extended
TEES for the full scope of the BioNLP Shared Task event definition, the
next goal was to evaluate the suitability of this event scheme for real-world
information extraction.



1.5 PubMed-scale Event Extraction

The BioNLP’09 Shared Task provided preannotated named entities, as well
as automatically generated syntactic parses, so the participants were free to
focus on the event extraction itself. However, the resulting systems could
not be used alone for detecting events from unannotated text, and choosing
a set of additional tools for doing this was the first step in applying event ex-
traction to unannotated text. Based on experiences from the Shared Task,
the Charniak-Johnson parser (known today as the BLLIP parser), using
the biodomain-adapted McClosky model, with conversion to dependency
format using the Stanford parser tools, was chosen for producing the syn-
tactic parses (McClosky and Charniak, 2008; McClosky, 2009; de Marneffe
and Manning, 2008). For detecting named entities, the protein and gene
names that are the arguments of the events, the BANNER system (Leaman
and Gonzalez, 2008) was used. Unprocessed text was split into individual
sentences with the GENIA Sentence Splitter (Kazama and Tsujii, 2003a).

For the dataset, all PubMed abstracts, available for download from NLM,
were chosen. At the time, processing all of PubMed was not yet quite com-
monplace, and with the computational resources provided by CSC, we felt
that analyzing such a large dataset would prove a definitive analysis of the
capabilities of event extraction, even if it would take a lot of computational
resources. Even with CSC cluster computers, working through all of the
text in the PubMed abstracts would take a while. Analysing the data would
also produce a lot of material, so some of the work was divided into a pre-
liminary publication on the results for 1% of the whole dataset (Paper III).
This work was finished at the very end of 2009, aimed for publication at the
ISMB 2010 conference. Several analyses were performed on the randomly
selected 1% sample, including our first attempt at constructing an event
network by joining events through string matching of BANNER-detected
protein names.

The work on the whole PubMed abstracts dataset progressed much faster
than initially predicted, and the final dataset was ready already at the end
of spring 2010, leading to the corresponding publication at the BioNLP
workshop in July 2010, just a few days after the 1% analysis became public
(Bjorne et al., 2010b). Complementing each other, these two publications
aimed to provide a comprehensive overview of the event dataset extracted
from PubMed abstracts, by both large-scale quantitative, as well as detailed
qualitative measurements.

The PubMed abstracts dataset, based on the NLM 2009 release, con-
tained nearly 18 million citations. In total, 19 million biomedical events
were extracted from it using TEES. A more effective event normalization
approach was developed, aligning similar protein or gene names with e.g.
prefix and suffix removal, and aligning events sharing the same structure as
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well as the same normalized protein and gene names. As a result, the 19
million event instances were normalized into 4.5 million unique events.

With this more advanced normalization, network construction was taken
a step further, in an experiment to re-create a KEGG signaling pathway. The
human apoptosis pathway was chosen for its relative complexity, its impor-
tance in cellular signaling and the familiarity of the researchers with the re-
lated biochemistry. Taking the protein nodes as given data from the KEGG
network, the goal was to reconstruct the interactions connecting them. The
experiment showed that all of the interactions could be recovered from the
text mining data, often also with correct interaction types. However, the ex-
periment also showed that an event is not conceptually the same thing as a
physical, biomolecular interaction, as it is common to state that one protein
regulates another (especially if these are well known, central proteins) even
when the actual interaction happens through several intermediate proteins.
While signaling networks denote the direct biomolecular interactions linking
proteins together, text mined events can, in addition to these direct inter-
actions, refer to higher-level conceptual relations. Whether this conceptual
flexibility will prove to be troublesome noise, or an additional source of new
insights, remains an open question.

1.6 BioNLP’11 Shared Task

After completing the PubMed-scale event extraction work, the next itera-
tion of the BioNLP Shared Task, BioNLP’11, started in the autumn. The
BioNLP’11 Shared Task was a significantly expanded effort, having multi-
ple organizing teams from several universities in addition to the University
of Tokyo. The goal of the shared task was to extend the BioNLP’09 event
scheme to various new domains. While the basic scheme from the BioNLP’09
task already allowed for rather extensive coverage of basic biomolecular in-
teractions, the event approach held potential for far more diverse applica-
tions. Thus, the BioNLP’11 Shared Task had eight different tasks, ranging
from epigenetics to protein structural relations and syntactic co-reference to
host-pathogen interactions.

In the intervening time since the BioNLP’09 Shared Task, further de-
velopments had happened in the field of biomedical event extraction. Most
notably, the EventMine system developed by Miwa et al. (2010), following
the basic extraction approach of TEES, achieved a new highest performance
of 56.00%. Besides extensive work on system optimization, the EventMine
performance relied on the use of combined parses, producing combined fea-
tures from the output of several automated syntactic parsers with presum-
ably different areas of strength. As parse combination is a very time con-
suming process, both computationally and in terms of system development
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time, this strategy was not considered an option in extending TEES for the
BioNLP’11 Shared Task. TEES performance was by now lagging behind
the highest known results, and as further gains from optimizing the basic
system were an unrealiable goal at best, the goal of extending TEES for
the BioNLP’11 Shared Task was set as generalization, instead of competing
on absolute performance. TEES was to participate in every single task and
subtask of the BioNLP’11 Shared Task, ideally with minimal task-specific
adaptation, to demonstrate the generalizability of the graph-based approach
to event extraction (Paper IV).

The graph-scheme of representing named entities and trigger words as
nodes, and event arguments and relations as edges, fortunately proved to
be applicable to all eight BioNLP’11 domain tasks. As the graph-scheme
had its roots in binary protein-protein interaction extraction it was also
directly applicable to the triggerless events and relations introduced in some
BioNLP’11 tasks. All in all, no new compromises needed to be made to
convert the BioNLP’11 dataset to the “Interaction XML” format used by
TEES, and the full shared task annotation could be preserved, apart from a
few instances where mapping of protein domain arguments remained slightly
ambiguous, as was the case in the BioNLP’09 Shared Task, too.

TEES had been open-sourced and published as the 1.0 version the pre-
ceding spring, and thus the quickly written experimental code had been
refactored to a more generalized form. Extending the entity node and in-
teraction edge detection modules was relatively straightforward, and use of
object oriented Python kept the complexity of the task at a manageable
level. In autumn 2010, TEES participated in the Coreference (CO), En-
tity Relations (REL) and Bacteria Gene Renaming (REN) tasks, the three
“supporting tasks” of the BioNLP’11 Shared Task, reaching first place in the
REL and REN tasks. As new system features, TEES for the first time took
advantage of external structured knowledge to great effect in the REN task,
in the form of known renaming pairs derived from the Uniprot B. Subtilis
gene list and the B. Subtilis research community wiki, the SubtiWiki.

The BioNLP’11 supporting task phase ended in 2010, and in spring 2011
the five main tasks became available for the competitors. The tasks were
much larger, and the schedule perhaps even tighter than on the supporting
tasks. Now more than ever, the unified graph approach and the modular de-
sign of TEES proved vital for completing the given tasks on time. The same
basic event extraction approach was used for all tasks, quickly providing au-
tomated prediction systems for all of the varied domains. Building on these
results, time could be applied to task specific optimizations in the form of
additional program modules. Time was however limited, and especially the
costly parameter grid search, tuning all individual components’ parameters
against the final metric, meant that not very much iterative development was
possible on the tasks with the larger datasets. Ultimately, TEES achieved
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the first rank in two of the five main tasks, and stayed close to the best
systems on the GE task, the direct continuation of the BioNLP’09 Shared
Task.

1.7 DDIExtraction’l1 Shared Task

Shortly after the BioNLP’11 results were in, a new Shared Task was an-
nounced. The “First Challenge task: Drug-drug Interaction Extraction”,
organized by the Universidad Carlos III de Madrid, presented a text mining
task that was traditional in its PPI-like binary relation annotation scheme
but highly novel in its important medical subject domain: the detection
of adverse patient reactions caused by unforeseen interactions between co-
administered drugs (Segura-Bedmar et al., 2011). Such drug-drug interac-
tions can be lethal to patients, and up-to-date information may not be easily
available for doctors prescribing the drugs, meaning text mining could help
in keeping up with the individual reports in medical journals hinting at such
dangers. The clarity of the annotation scheme and the ease of use of the
datasets probably contributed to the high participation in the task despite
the tight schedule. All in all, 10 teams from various universities participated
in the DDIExtraction’11 shared task. In the final results, TEES placed 4th,
with performance at 96% of the highest performing system (Paper V).

From the point of view of biomedical event extraction the DDIExtrac-
tion’11 shared task was very interesting, as it provided an opportunity to
compare an event extraction system to binary relation extraction tools in
the post BioNLP Shared Task text mining field. Since TEES has no direct
concept of events (representing them as a graph of trigger nodes and argu-
ment edges) and uses the same graph scheme also for binary relations (with
individual relation edges connecting named entities), applying the system
to the DDIExtraction’11 task was very straightforward. The task dataset
was also distributed in a format similar to the “Interaction XML” used by
TEES, allowing even faster development. Linking TEES back to our earlier
work on binary relation extraction, we applied the RLS machine learning
system, known from the graph kernel project to work well on this type of
data. We also used “thresholding”, optimizing the positive/negative classifi-
cation cutoff, a technique that proved very effective (increasing performance
by over 6 percentage points) but which can only be easily applied on binary
classification tasks. Following experiences from the BioNLP’11 Shared Task,
TEES again made use of external datasets in the DDI task, and this paid
off in two percentage points of additional performance.

Several systems participating in the task utilized the large scope of re-
search available on kernel methods developed for binary relation extraction.
The graph-kernel developed at University of Turku by Airola et al. (2008b)
was used by several teams, including the winning one.
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1.8 Publishing the Turku Event Extraction Sys-
tem

Following the DDIExtraction’11 task, TEES had participated in three global
Shared Tasks. The initial 1.0 release, made available after the original
BioNLP’09 Shared Task, was largely outdated by now. Extending TEES
to the eight domain tasks of the BioNLP’11 Shared Task, as well as the new
domain of the DDIExtraction’11 task, had produced a mess of a system, with
lots of special case code and task specific data merged inside the program.
As demonstrated by the high rankings in the Shared Task, the system would
clearly be useful for research on biomedical text mining, but it could only
be so, if it was actually usable. From late 2011 until August 2012, a major
re-engineering effort was made, finally producing the 2.0 release of TEES.
The original system had relied on “pipeline files”, effectively long proce-
dures of Python-code to call the required components of each experiment.
While very flexible, the complexity of the system had grown beyond this
approach. To make TEES again useful for end-users, two main approaches
guided the refactoring. First, a higher-level object oriented interface was
developed, encapsulating all of the feature generation, machine learning and
parameter optimization code. Second, a model file encapsulating all the
datafiles that form the model learned for a specific task was developed. The
updated TEES 2.0 was published as a full open source project on GitHub.
In Section 4.5 the importance and results of making research code publicly
available are discussed.

The PubMed-scale event extraction work has also been continued, and
the new extraction targets that TEES was adapted for in the BioNLP’11
Shared Task have been applied on PubMed-scale datasets. To make the
extracted mass of events usable for actual applications, the EVEX project
was founded to build a fast database structure for handling the data, for
connecting the text mining results to biomedical databases via normalization
and for managing real-world use cases on biological collaborative projects
(Van Landeghem et al., 2011). The first version of EVEX was published
in 2011, and the development of the database and web interface has been
ongoing ever since. TEES has been used for this work first in producing
the base GENIA-style events, and in early 2012 also epigenetics events and
protein structural relations, for all PubMed abstracts and PubMed Central
full text articles. To simplify these real world applications, in the 2.0 version
TEES was also extended with a pipeline of open-source, high-performance
NLP tools for syntactic parsing and other pre-processing tasks.

Connected only by the extensible “interaction XML” file format, these
Python-based tool-wrappers automate the setup and use of varied NLP
tools, simplifying the construction of a text mining pipeline. With the help
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of this toolchain, TEES 2.0 can finally process fully unannotated text, e.g.
receiving an abstract from PubMed or a text file, and automatically pro-
ducing a semantic annotation for any of the 10 included biomedical domain
targets.

1.9 BioNLP’13 and DDIExtraction’13 Shared Tasks

The BioNLP and DDIExtraction shared tasks were organized again in 2013,
and TEES participated in both of them, with the aim to continue the ap-
proach of generalization introduced in TEES 2.0. TEES 2.1 introduces a
system for automated annotation scheme learning, allowing TEES to be
directly applied to new annotations and new corpora, whereas in earlier ver-
sions the constraints of each annotation scheme had to be manually defined
in program code.

With this approach, TEES could be applied with almost no task-specific
optimization to all BioNLP’13 tasks. As with the 2011 task, TEES 2.1
reached a first place in four out of eight tasks (Paper VI). In the DDIEx-
traction 2013 task, TEES 2.1 reached 2nd and 3rd places in the drug NER
and drug—drug interaction tasks, respectively (Bjorne et al., 2013). The per-
formance of TEES in the 2009-2013 shared tasks is summarized in Table 1.1.

To make the use of TEES easier for other task participants, we also pub-
lished our predictions during the system development phase of these compe-
titions, so that other teams could build on them. In the BioNLP’13 Shared
Task, the best result for the GENIA task was achieved by a system utilizing
TEES predictions, and in the DDIExtraction’13 task the best performing
system for the drug—drug interaction task included TEES among several
systems in a system combination approach (Hakala et al., 2013; Thomas
et al., 2013). Following the results of the BioNLP’09 Shared Task (Kim
et al., 2009), these results indicate that by combining different text mining
systems, it is possible to utilize the strenghts of different approaches and
reach better overall performance.

1.10 Disposition of the Thesis

The primary contribution of this thesis, the six peer-reviewed research pub-
lications form the latter part of the book. Papers II, IV and VI cover the
three BioNLP Shared Tasks, describing the most important milestones in
the development of the Turku Event Extraction System. Paper I introduces
the dependency parse analysis that formed the starting point for developing
the system, Paper III demonstrates the applicability of TEES to real-world
text-mining tasks and Paper V provides a comparison with binary PPI ex-
traction.
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Task Name Rank | # | Score A
GE09 [1] GENIA Event Extraction 1 24 | 51.95 5.29
GE09 [2] Protein Site Arguments 6 | - -
GEO09 [3] | Negation & Speculation - 6 |- -
GE11 [1] GENTA Event Extraction 3 14 | 53.30 -2.74
GEL11 [2] Protein Site Arguments 2 4 | 41.98 -3.88
GE11 [3] Negation & Speculation 1 2 | 26.86 0.03
EPI11 Epigenetics and PTM:s 1 7 | 53.33 18.3
ID11 Infectious Diseases 5 7 | 42.57 -13.02
BB11 Bacteria Biotopes 3 3 26 -19
BI11 Bacteria Gene Interactions 1 1 |77 -
CO11 Protein/Gene Coreference 4 6 | 23.77 -10.28
REL11 Entity Relations 1 4 | 57.7 16.1
REN11 Bacteria Gene Renaming 1 3 | 87.0 22.6
DDI11 Drug-Drug Interactions 4 10 | 62.99 -2.75
DDI13 9.1 | Drug Name Recognition 2 6 | 604 -4.8
DDI13 9.2 | Drug-Drug Interactions 3 8 | 58.7 -6.1
GE13 GENIA Event Extraction 2 10 | 50.74 -0.23
CG13 Cancer Genetics 1 6 | 55.41 3.32
PC13 Pathway Curation 2 2 | 51.10 -1.74
GRO13 Gene Regulation Ontology 1 1 | 21.50 -
GRN13 Gene Regulation Network 3 5 | 0.86 SER | 4+0.13
BB13 [1] NER and Categorization - 4 |- -
BB13 [2] Bacteria Localization 1 4 | 42 2
BB13 [3] | Bacteria Entities & Relations | 1 2 | 14 8

Table 1.1: Turku Event Extraction System in the shared tasks. The ranking
and score of TEES in the tasks and subtasks of BioNLP Shared Task 2009,
2011 and 2013, as well as DDIExtraction tasks 2011 and 2013 are shown.
Subtasks are indicated with /n/. The number of participants is indicated by
column #. The Score and A are in F-score except for task GRN13 where
SER (Slot Error Rate, smaller is better) was the primary metric. The A
shows the performance difference to the 2nd ranked system (when Rank is
1) or to the 1st system (when Rank > 1).

The first part of the thesis, chapters 1-6, draws together and analyzes
the common thread in the publications, the development of the Turku Event
Extraction System. Chapter 2 introduces the main research question of the
work: developing a machine-learning approach for biomedical event extrac-
tion. Chapter 3 gives a detailed overview of the Turku Event Extraction
System and the text mining techniques used for event extraction. Chapter
4 describes the application of event extraction to a real-world text mining
task, in the context of the PubMed-scale event extraction project. Chap-
ter 5 is the overview of related work, in both the event and PPI extraction
fields, and Chapter 6 concludes the first part of the thesis with an analysis
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of the contributions of the work done, as well as some thoughts on future
directions for biomedical event extraction.
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Chapter 2

Event Extraction as a
Machine Learning Task

Machine learning has been used in the Turku Event Extraction System start-
ing from the earliest prototypes. The most important reason for this choice
was the positive experiences from the graph kernel project which used a clas-
sifier for binary PPI detection (Airola et al., 2008b). Analysis of the shortest
dependency paths corresponding to event argument edges revealed a con-
siderable variety of syntactic structures, further empasizing the suitability
of machine learning over rule-based approaches (Paper I).

This early choice to base TEES on machine learning would have several
consequences on both the approach to event extraction as well as the design
of overall experimental strategy. In particular, using a classifier led to an
“atomic” approach to event extraction where the task of predicting complex
event structures was decomposed into sequential, independent classification
tasks (Paper II). In the later Shared Tasks, machine learning was a key
component in enabling TEES to be rapibly adapted to all the varied domain
tasks introduced in that competition (Papers IV, V and VI).

In this chapter, we first see how the complex graph generation task of
event extraction can be defined as a set of individual classification tasks.
The external classifier programs used by TEES are introduced, as well as
the performance measures specific for event extraction. Finally, solutions
developed for optimizing the multi-step classification pipeline of TEES are
described in detail.

2.1 Defining Event Extraction as a Classification
Task

Biomedical events, such as those defined in the GENIA corpus, are complex
nested structures, displaying a large amount of variation in order to capture
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all possible statements of interest in natural language text. Creating such
structured output with machine learning systems can be a difficult task,
and as we’ll discuss later, several alternative methods have been proposed
for this problem. One of the most straightforward approaches, and the one
used by TEES, is to convert the structured prediction problem into a number
of independent (binary or multiclass) classification tasks.

The starting point in the construction of the Turku Event Extraction
System was an analysis of the similarities between dependency parse and
complex semantic annotations, such as those in the Biolnfer and GENIA
corpora (Paper I). Both of these annotations could be modelled as directed
graphs (mostly acyclic), so this comparison was essentially an analysis of
graph similarity.

The “Interaction XML” file format used in TEES, developed originally
for unifying the annotation schemes of five binary interaction corpora (Pyysalo
et al., 2008), represented semantic annotations as named entity nodes con-
nected by interaction edges. The graph kernel machine learning system also
used this format, and depicted the dependency parse as a directed graph,
used in the construction of the graph kernel’s adjacency matrix (Airola et al.,
2008b).

TEES development started as the search for a method for extracting the
complex semantic relationships defined in the Biolnfer and GENIA corpora.
In light of the mentioned earlier work, development of TEES was based
on a perspective of viewing both the parse and the semantic annotations
as graphs. Compared to binary interactions, the complex relationships and
events defined in the Biolnfer and GENIA corpora are larger structures, usu-
ally consisting of a trigger node and its arguments. Like the named entities
(protein and gene names etc), triggers are mapped to defined spans of text
(often verbs). The arguments of these structures have type and direction,
and can be considered a form of binary relation, linking not only named
entities, but also the trigger nodes. Atomized in this way, the nested event
structure becomes a graph of trigger and named entity nodes, connected by
event argument edges.

Prediction of this graph for a single sentence thus becomes a task of
predicting the trigger (and sometimes also named entity) nodes, and pre-
dicting argument edges linking them. If trigger nodes are limited to one per
syntactic token, such a graph can be generated in two classification steps.
First, each syntactic token is classified as either a negative, or one of a num-
ber of trigger classes (See Figure 2.1 D). Second, each valid directed pair of
(trigger or named entity) nodes is classified as either a negative, or one of a
number of event argument classes (See Figure 2.1 E). These two multi-class
classification steps produce an interaction network that can represent in a
merged form the full event annotation for a sentence.
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Figure 2.1: Event extraction. After conversion to ASCII, text is split into
sentences (A), where gene/protein entities are detected (B). Each sentence
with at least one entity is then parsed (C). Events are extracted from the
parsed sentences (D-G). Figure adapted from Paper IV.
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Such a simplified view of events was the only one used in earlier versions
of TEES (Bjorne et al., 2009a). However, with the BioNLP’09 Shared Task,
it became necessary to address the prediction of event structures in full de-
tail. The limitation of the graph structure is demonstrated by Figure 2.1 E.
If only one trigger can exist for each word token, events with the same trig-
ger, but different arguments become merged together. However, at the time
of trigger detection, we don’t know yet how many “copies” of that trigger
are needed, as event arguments are not yet defined. After argument edges
are predicted for each valid node pair, it becomes possible to “unmerge” the
overlapping events. In the event annotation scheme, the type and number of
arguments for each event is limited by the type of its trigger word. For ex-
ample, a Regulation type event must have at least one theme argument and
can optionally also have one cause argument. Using this information, the
graph is “pulled apart” by duplicating trigger nodes with invalid argument
combinations, and dividing the arguments into valid combinations among
the new nodes (Figure 2.1 F). This step can also be represented as a binary
classification task, with each potential trigger and argument combination
being classified as either a true event or a negative.

The result of these three consecutive classification tasks is an event net-
work where full, valid events are defined by a trigger node and its set of
outgoing edges. Finally, event modifiers such as speculation and negation
can be predicted simply by classifying each event as positive or negative for
each potential modification type (Figure 2.1 G).

Thus, the complex task of predicting structured output in the form of
events has been broken down into a set of consecutive classification tasks. All
of these tasks are separate machine learning problems, requiring independent
training of classifiers, and employing a large amount of different features
derived from the text.

2.2 Classifiers Used in TEES

The earlier work on the graph kernel had relied on the RLScore software
which was still at an experimental development stage when the TEES project
began, so the high performance SVM-light software of Thorsten Joachims
was chosen as the classifier solution (Joachims, 1999). Like RLS, SVMs are
known for their ability to handle large datasets, huge amounts of features and
noisy data, all common qualities in text mining. In the DDIExtraction’11
Shared Task, RLS was again used alongside an SVM as a classifier (Paper
V).
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2.2.1 Support Vector Machines

The Support Vector Machine is a set of supervised machine learning algo-
rithms, introduced originally by Cortes and Vapnik (Cortes and Vapnik,
1995). The SVM can be used for both classification and regression, and is a
popular method in natural language processing due to its ability to handle
both large datasets and noisy data. In TEES, a linear SVM is used for all
SVM classifications.

The data classified by a linear SVM is represented as a set of examples,
defined by a class (to be predicted) and a set of features (known data on
which classification is based). On a general level, the SVM classification is
based on defining a hyperplane that best separates the two classes. This
hyperplane exists in n-dimensional space, where each feature is represented
by its own dimension. In a trivial case, with only one feature, the hyperplane
becomes a scalar value, with two features, a line, with three features, a plane,
and with more than three features, a hyperplane.

Support vectors are the points closest to the hyperplane, in other words,
the most ambiguous examples, which are the hardest to classify and key to
defining a hyperplane that produces a good separation. This hyperplane
is chosen so that the distance to the nearest example is maximized (See
Figure 2.2). This distance between the hyperplane and the closest known
example is called the margin. The SVM optimization problem was greatly
simplified by Cortes and Vapnik who introduced the concept of the soft mar-
gin to better handle mislabeled examples (Cortes and Vapnik, 1995). The
original SVM formulation was a linear classifier, but since then non-linear
kernels have also been introduced. While non-linear kernels can demonstrate
better performance on some machine learning problems, linear SVM:s allow
for a number of optimizations that considerably speed up their training,
making them more suitable for classifying the large datasets used in TEES.

The original SVM algorithm was developed for binary classification. In
this work, we deal mainly with multiclass-classification problems, where the
example can belong to one of a number of classes. Multiclass SVMs can
be divided into two categories: Those that treat the problem as multiple
binary classification problems (e.g. one-versus-all, where each example is
classified as belonging to one class, or any of the other classes) and those
that attempt to solve the whole task as one optimization problem. In the
Turku Event Extraction System, the symmulticlass (Tsochantaridis et al.,
2005) implementation® is used for all classification tasks, except where the
regularized least squares system RLScore is used as an alternative classifier.
symMmaulticlass pag peen optimized for fast linear classification, with the
runtime scaling linearly with the number of training examples.

http://svmlight . joachims.org/svm_multiclass.html
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Figure 2.2: The maximum-margin hyperplane for a binary SVM classifier.
With two features (a and b) the hyperplane is a line. The hyperplane is
chosen to maximize the margins (the dotted lines) and the separation of the
two classes (black and white). The four examples on the margins are the
support vectors.

2.2.2 Regularized Least Squares

Regularized least squares classification (RLS), also known as least squares
SVM, or ridge regression, is the second classification technique used in this
work (Rifkin et al., 2003; Evgeniou et al., 2000). It is closely related to SVM
classification and often displays similar performance, but has the advantage
of efficient computational shortcuts for fast cross-validation evaluations.

Where training SVMs involves solving a convex quadratic program, train-
ing an RLS classifier requires the solution of a single system of linear equa-
tions. To achieve good computational performance, RLS implementations
rely on multiple approximations.

The RLS implementation used in this work is the RLScore? software
package, developed at the University of Turku, and earlier utilized in a text-
mining setting in Airola et al. (2008b). In this work, RLScore is used in
Paper V for classification of drug—drug interactions.

2.3 Performance Measures

For optimizing a machine learning system, the choice of the performance
metric is critically important. In TEES development the micro-averaged

2http://www.tucs.fi/RLScore/
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F-score has been most widely used. The F-score (also known as Fi-score
or F-measure) is the harmonic mean of precision (fraction of correct predic-
tions) and recall (fraction of correctly extracted positives). In the following
formulas, TP, FP, and FN refer to true positives, false positives and false
negatives.

. TP I TP (2.1)
recision = ——— recall = ————— .
P TP+ FP TP+ FN
F =2+ precision * recall (2.2)

preciston + recall

The F-score is a binary measure, but with some modifications it can
also be used in a multi-class setting. In such settings, the per-class F-scores
are combined for an overall measure, usually by macro- or micro-averaging
(Sebastiani, 2002). In micro-averaging, individual decisions are summed
over all classes.

IC| TP, IC| TP,
ICEI: recall = |CZ|:
Y TP+ FP Yoy TP+ FN;

precision = (2.3)

In macro-averaging precision and recall are evaluated per-class, then
averaged over the classes:

i Il;
e L pecatt = Szt recall T(j,'eca (2.4

Thus, macro-averaging puts more emphasis on good performance for
all classes, even if they are very small, whereas micro-averaging provides a
measure of overall performance, if the goal is to maximize the number of
correct predictions regardless of class.

In both of these cases the F-score is calculated from the averaged pre-
cision and recall with Equation 2.2. These averages are directly usable in
multiclass classification tasks where the question is only to assign one of the
known labels for each example. For instance, if predicting the part-of-speech
label (noun, verb, adjective etc.) of a word token we might not know which
of these classes is correct, but we know that for each word token there must
exist a part-of-speech label.

However, in TEES event extraction, the task is not only to determine
which of several labels an example has, but whether it has a label at all. For
example, in trigger word detection, each word token may be a trigger word
of a class such as Binding, Phosphorylation or Regulation, but it may as well
not be a trigger word at all. In the technical implementation of the system,
this “lack of class” is represented simply as an additional class, negative,

precision =
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which may be predicted for an example just like any of the other, positive
classes.

When evaluating performance, if this “negative class” was treated like
the other classes, it would dominate the micro-averaged F-score. Negative
instances form the majority in all TEES classification tasks and a very high
F-score would be trivially achieved by maximizing performance on the “neg-
ative class”, by predicting nothing at all, i.e. everything as negative.

Therefore, while the “negative class” is a class in the technical implemen-
tation of the classification system, when measuring performance, a predicted
negative is considered to denote a lack of predicted class. In determining
micro-averaged precision and recall, the negative class (index 1) is there-
fore skipped, resulting in a weighted average of the performance across the
positive classes:

S TP __ NaTh
] recall = ]
iZQTPi+F-P’i iZQT-P7,'+FNi

This micro-averaged F-score which ignores the negative class is the main
internal performance metric used in TEES. Despite more advanced metrics
being available the F-score has preserved its position as the primary perfor-
mance metric due to its comprehensibility, easy application to multi-class
situations and similar measures being used as the official metrics in the
shared tasks TEES has been developed for. In the BioNLP shared tasks
the official approximate span matching and approximate recursive matching
F-score has been closely approximated by this internal metric, evaluating
events defined in the predicted graph as trigger nodes combined with their
outgoing edges.

The final evaluation of published TEES results has always been per-
formed using the official evaluation systems of the relevant shared tasks.
These performance measures, usually F-scores, ensure a truly objective mea-
sure of the system’s performance. The internal micro-averaged F-score has
been used as a final metric only in the first publication on a preliminary
TEES system by Bjorne et al. (2009b). During the writing of this thesis we
found that the metric as described in this paper is in error, as while it does
count false positives (F'P; where i is the predicted class and >= 2), it does
not count them as false negatives for the true class when the true class is
also positive, but different (F'N; where i is the true class and >= 2). Al-
though not an accurate micro-average, the formula in that paper is however
consistent with the program code and the reported experimental results.

The same incorrect micro-averaging formula has since then been used
internally in TEES for optimizing all classification tasks, but has now been
fixed for the 2.1 release. In practice, for TEES classification tasks this incor-
rect definition of micro-average has had only a minor impact on performance,

(2.5)

precision =
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further evidenced by TEES performance in several shared tasks (that use
their own evaluation software) being very high but also close to the internal
metric.

The F-score is in many ways a problematic measure of performance. As
it is the harmonic mean of precision and recall, many different combinations
of precision and recall values can produce the same F-score. Thus, to fully
understand a result described by an F-score, it is necessary to go back to
the component values and note where on the precision/recall plane the F-
score is located (See Paper II, Figure 6.). Another central issue with the
F-score is its dependence on the class distribution of the dataset. In machine
learning, other metrics are commonly used to overcome this limitation. The
AUC (Area Under the Receiver operating characteristic curve) is a binary
performance measure that is not dependent on the class distribution (Hanley
and McNeil, 1982), and has become popular in machine learning work in
recent years. Despite the advantages of AUC, the F-score remains a common
measure in the BioNLP field and is the official evaluation metric in the
BioNLP and DDIExtraction Shared Tasks. To overcome the issue of the F-
score being dependent on the class distribution, a dataset can be stratified
when it is divided into e.g. training and testing subsets.

Stratification means simply keeping the class distribution constant across
all the subsets. While this does not change F-score’s dependence on class
distribution, it helps to ensure that systems optimized for F-score on the
training set exhibit comparable performance on the test set. While stratifi-
cation can be easily done with binary data, for event datasets where multiple
events of different types appear in a single sentence, it can be more difficult
to achieve a balanced class distribution. Stratification is complicated also by
the fact that when dividing text mining corpora, all sentences from the same
document (article, abstract etc) are generally placed into the same subset
as a precaution against similar text in both a training and an evaluation set
leading to over-fitting. If subsets are selected randomly, the class distribu-
tion will naturally be more stratified the larger the dataset is, so with large
corpora this issue, along with other problems arising from limited dataset
size are mitigated. Regardless, several participants in the BioNLP Shared
Tasks have commented on an apparent gap between performance measured
on devel and test sets, but whether this is due to stratification issues, or
other reasons such as overfitting, remains an open question.

2.4 Optimizing Machine Learning

A key issue in building a machine-learning based system is parameter opti-
mization. For example, the linear SVM classifier is trained using the train-

ing data and a regularization parameter, usually denoted as “c”. For a
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new classification task, the values of ¢ must be determined experimentally.
With non-linear kernels, additional parameters are introduced, which also
need to be optimized. Classifier parameters are usually optimized using a
grid search, with an optimal parameter set defined as providing the high-
est performance in an area of the search space where the performance no
longer changes significantly. Since the SVM needs to be re-trained for each
parameter combination, this grid search can be very time consuming. A
nested grid can be used, with more values tested in the likely peak area, and
such an approach can also be the basis for more advanced algorithms using
automated boundary selection and search area refinement (Staelin, 2003).

In TEES, a simple grid search is used, with a user-defined set of param-
eters. If a non-linear kernel or additional parameters are used, the classifier
wrapper automatically generates and tests all the parameter combinations.
However, the choice of the actual parameter values and value ranges to test
is left to the user. In most experiments the ideal parameter range is found
by first running a coarse grid, then focusing on the likely peak area. As SVM
parameter spaces can have e.g. local minima, this kind of semi-automated
approach with human oversight is considered more reliable, and since most
experiments require only a few attempts to determine the optimal parameter
range, full automation is not necessary.

However, using fixed parameter values presents a potential issue during
feature engineering. Since changing the features of the system can lead to a
change in the optimal classifier parameters, it is possible that after changing
the features and retraining with the same parameter value grid, the result
becomes non-optimal (the new performance peak not being exactly on a
grid point) and would incorrectly indicate worse performance from the new
features. In practice, a dense enough parameter grid will avoid this issue,
and can be observed by multiple grid parameter values in the peak area
resulting in only minor performance differences. Still, a fully automated,
iteratively refining grid search would probably provide more reliably optimal
peak parameter selection for each possible feature set, and is an interesting
future direction for the development of TEES.

2.4.1 Optimizing Consecutive Classification Steps

In the TEES event extraction approach, the final event is the product of
multiple consecutive classification steps. Edge detection relies on predicted
entities, and both edges and entities are used as input by the unmerging
step. All of these classification tasks are optimized by searching for the best
parameters for that task, but optimal performance for an individual step
might not mean optimal performance for the whole task.

For example, the parameters that give the best F-score for trigger de-
tection may not produce the sort of trigger predictions that form the best

24



basis for the following edge detection step. Edge detection can work better
if more triggers are available (even incorrect ones), as the classification of a
potential argument edge can reveal information that is not available when
predicting triggers in isolation, and as triggers for which no argument edge
is predicted are removed afterwards, overall performance can increase.

To maximise overall performance, several approaches have been tested
during TEES development. The obvious approach is to perform a multi-
dimensional search, testing each parameter combination to determine the
best classifier parameters for the overall performance. With several steps
this approach can quickly get unwieldy, even if TEES can parallelize the
classifier training in a cluster environment. While testing around 10 regu-
larization parameters is often enough to optimize an SVM, and can be done
relatively fast, if we have three such steps to optimize (trigger, argument
and unmerging detection), a combined 1000 classifiers to train is already
getting a bit excessive, cluster or not.

Another issue with the parameter optimization is the metric used to de-
termine classifier performance. The symmulticlass goftware used in TEES
uses the F-score for its internal performance optimization, and has a ten-
dency to find a balanced precision/recall performance for each regularization
parameter tested. However, for example in the case of trigger detection we
want to specifically emphasize recall to overproduce triggers. To achieve
this, trigger predictions are processed with a recall adjustment step. The
prediction strength of the negative class is given a multiplier (< 1.0 for more
triggers, > 1.0 for less triggers), affecting the relative strength of the positive
class predictions. This way we can first find the regularization parameter
that provides optimal SVM performance, then “redistribute” this perfor-
mance so that more predictions become positive, emphasizing recall at the
cost of precision.

Determining the recall adjustment parameter becomes another consecu-
tive step to optimize. The resulting system now has four such parameterized
steps: trigger detection, recall adjustment, edge detection and unmerging.
While a recall adjustment step could also be used between edge detection and
unmerging, this has not been tested in practice, as originally TEES unmerg-
ing was performed with a rule-based system, and introducing an additional
parameter to optimize would further slow down system development. Even
four parameters have proved to be unpractical, and in the current TEES
approach, only the recall adjustment parameter is optimized in a context
larger than its own performance.

In the final system, trigger detection and edge detection are optimized
for their independent, local maximum performance. Using the best classi-
fier models from trigger and edge detection, a number of recall adjustment
values are tested, with performance evaluated on the edges predicted as a
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result of these three consecutive steps. The unmerging system is trained
almost entirely outside this system: training examples are generated from
gold-standard data extended with self-classified data, intended to produce
more negatives for the system to learn on (See Section 3.8), and unmerg-
ing classification is optimized in isolation. This simplified approach greatly
improves the speed at which new features can be tested, and compared to
optimizing the trigger classification, recall adjustment and edge classification
parameters globally, incurs only a small performance loss.

2.4.2 TEES Training Setup

A constant issue in machine learning is over-fitting, developing a system
that appears to have good classification performance, but the performance
of which is actually based on frivolous features which just happen to ran-
domly correlate with the classes. Such situations are usually present on
smaller datasets, but even with larger datasets, as the same data is used
over time to iteratively optimize a system, the danger of over-fitting still
exists. One approach to reduce the likelihood of over-fitting has been the
use of cross-validation, with methods such as ten-fold, leave-one-out or five-
times-two cross-validation used to divide a dataset into multiple subsets for
training and parameter optimization, thus giving a statistical estimate of
performance variation with differing datasets. In the University of Turku
text mining projects, extensive cross-validation was used e.g. in the devel-
opment of the graph kernel (Airola et al., 2008b).

In the BioNLP and DDI Shared Tasks, the final evaluation is done on
a hidden test set, the annotations of which are not available to the partici-
pants during the development of the competing systems (and in the case of
the BioNLP tasks, not even later, to allow continued objective evaluation).
This means that the chances of overfitting are considerably reduced, and
accidental data-leaks by the participants are also effectively prevented. In
the BioNLP Shared Task, the provided annotated dataset is also pre-divided
into a training dataset and a parameter optimization, or “devel” dataset.
In this simple setup, the classifier is trained on the training data, its perfor-
mance is optimized against the devel data and finally, the hidden test data
is classified with the optimal classifier.

While cross-validation probably provides more accurate optimization re-
sults, running such experiments is extremely time-consuming. For example,
if 10 parameter values are tested, with ten-fold cross-validation we would
need to train 100 classifiers. In the graph-kernel experiments the variance
observed in ten-fold cross-validation was rather minor, so in TEES a simple
training approach, using only a single train, devel and test set is used. How-
ever, to maximize the data available for learning, once optimal parameters
have been decided against the devel set, the devel set is merged with the
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Figure 2.3: TEES training process. A) In the BioNLP Shared Tasks the
corpus is divided into annotated training and development sets, and a test
set whose annotation is not available to the participants. B) TEES uses
this type of three-part division for training an event or relation extraction
system. First, the classifier is trained on the training data, and parameters
are measured against the development data, producing a devel model. For
the final classification, a new model is trained using the merged train and
devel data, with parameters determined on the devel data, to produce final
test model which is used to classify the hidden test set. In new event ex-
traction tasks, any corpus can be easily divided into such datasets. When
using a fully known corpus, it is important to measure performance against
the chosen test set as few times as possible, to avoid over-fitting.

train set, and the whole system is re-trained using this set of all available
annotated data with the known optimal parameters. While adding the devel
set to the train set can move the optimal parameters away from the values
determined on the devel set, this drift is likely to be limited, considering that
the devel set should be close to the train set in nature. Thus, in participating
in the Shared Tasks, we considered maximizing the available training data
to be worth the risk. The TEES training approach is shown in Figure 2.3.
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Chapter 3

Syntax Representations for
Event Extraction

Having defined an approach for representing event extraction as a set of
classification tasks, we now look at how the text itself is presented for the
classifier. In this section we review the text mining approaches used in
the Turku Event Extraction System, as introduced in Papers II, IV and
VI. First, the general principles and techniques for extracting features from
natural language texts are introduced in sections 3.1-3.5. Then, the feature
representations of the four main classification steps (entity, edge, unmerging
and modifier detection) are examined in detail in sections 3.6-3.9.

3.1 Syntactic Parsing

Syntactic parsing in computational linguistics concerns the automatic con-
struction of a structure defining the parts of speech in a text, and their
syntactic, sometimes also semantic, relations. A syntactic parse is a central
source of information in event extraction, and in many systems, including
TEES, the most important analysis from which features usable for machine
learning are derived.

Parsing is a problem that has been the subject of much research, and with
gradual improvements, the performance of syntactic parsers has increased
to a very respectable level on many languages. For example, continuous
research on parsing the Penn Wall Street Journal treebank has increased
performance from 84% to 92% F-score in the years 1995-2006 (Pyysalo,
2008, pp. 66-67).

A multitude of algorithms have been developed for parsing, and with the
concurrent advances in machine learning, statistical approaches have become
a central building block of modern parsers. Parsing natural language often
introduces ambiguous cases not easily solved by a strict formal approach,
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but with the “fuzzy” methods of machine learning, an automated system
can become robust in handling all the varied structures present in natural
language texts.

Several parsing techniques of varying complexity are available and usable
for event extraction. While not generally a parsing issue, dividing text into
sentences is often a necessary preliminary step in parsing, as parsing software
often operates on a single sentence at a time.

For sentence splitting TEES uses the GENIA Sentence Splitter which
has been optimized for biomedical texts (Saetre et al., 2007). The GENIA
Sentence Splitter uses a maximum entropy method! (Kazama and Tsujii,
2003b) to select the actual sentence breaks from all potential candidate
break positions (periods, commas etc.). The features used are all based on
the text alone (delimiters, previous/next words, special characters etc.) so
the input text does not need to be preprosessed in any way. The GENIA
Sentence Splitter is reported to achieve an F-score of 99.7% on 200 unseen
abstracts from the GENTA corpus it has been trained on.

Another preliminary step required before parsing is tokenization. Pars-
ing considers the roles and relations of the tokens that make up the sentence.
Generally, each word corresponds to a token, so the simplest form of tok-
enization is to consider each whitespace-separated word as its own token.
However, some additional rules are needed, such as separating punctuation
such as commas into their own tokens, or detaching parentheses from the
words they enclose. Tokenization is usually done by a parser, but occa-
sionally a better parse can be achieved by applying a separate tokenization
method before parsing, for example in the case of domain specific biomedical
text. Using a single, shared tokenization can also be helpful when applying
several different parsers to the same text in order to produce a combined
parse, usable as input in further information extraction tasks.

For individual, tokenized sentences, detailed automated parses can be
generated by many different parsing methods. Automated parsing is gener-
ally divided into shallow and deep parsing. Shallow parsing tries to divide
the text into its constituents, such as verb or noun groups, but does not de-
fine their relation to each other. Deep parsing produces “parse trees”, tree
or graph structures that connect the words (or word chunks) of the sentence
to each other in a hierarchy of linguistic relations such as subject, object,
preposition etc.

The first step in generating a parse is POS (part-of-speech) tagging,
which means attaching a part-of-speech label (verb, noun etc.) to each
token in a sentence. The rule-based Brill-tagger, published in 1992, was one
of the first popular English language part-of-speech taggers (Brill, 1992).
Different POS taggers use different tag sets, with ones derived from the

http://www.nactem.ac.uk/tsuruoka/maxent/
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Figure 3.1: Constituency and dependency parses, shown for the same sen-
tence. The constituency parse has intermediate phrase nodes whereas in the
dependency parse each node corresponds to a single token.

Brown Corpus or the University of Pennsylvania (Penn) Treebank being
popular in many systems. In modern parsers, POS tagging is part of the
overall parsing process.

Where POS tagging defines only the leaves of the parse tree, a shallow
parser aims to produce a limited higher structure, enough for many applica-
tions, but computationally less intensive than the generation of a full parse
tree. Shallow parsing is also known as “chunking”, referring to the process
of taking the individual POS-tagged words, and forming larger phrases out
of them. For example, “the new protein”, a list of three tokens with the
POS tags determiner, adjective and noun could form a single noun phrase
when processed by a shallow parser. The Apache OpenNLP library contains
a chunker that is sometimes used in biomedical text mining (Bui and Sloot,
2012).

When a shallow parse is not enough, a full parse tree can be generated
for a sentence. In the parse tree individual tokens are the leaves, and other
tokens or higher-level concepts such as phrases are their parent nodes. Such
parse trees aim to fully define the relations of the tokens or phrases of a
sentence. These relations are often syntactic concepts, but can also represent
semantic roles. Two common parse tree schemes are the constituency parse
and the dependency parse.

The constituency parse is based on a constituency grammar, character-
ized by multi-level nested phrases (See Figure 3.1). A constituency parse
always has a root node. Branch nodes define the nested phrases of the

31



sentence, and the POS-labeled tokens are the leaf nodes. A constituency
parse defines a very detailed breakdown of the elements of a sentence and
can provide a lot of informative features for text mining, but producing
such a parse is often a computationally intensive task. Most modern con-
stituency parsers are statistical in nature, and can be re-trained for different
domains and often even for different languages. Popular constituency parsers
used in event extraction include the ENJU parser (Miyao et al., 2009), the
BLLIP parser (Charniak, 2000; Charniak and Johnson, 2005) and the Stan-
ford parser (Klein and Manning, 2003; de Marneffe et al., 2006).

For semantic information extraction, the constituency grammar can be
somewhat difficult to utilize, as central subject-object relations are defined
through multiple levels of nested phrases. The dependency grammar pro-
duces parse trees that are often much easier to use for tasks such as biomed-
ical event extraction. A dependency grammar is built on the concept of the
dependency relation, where the verb has a structurally central role, with
all other words being dependent on it. In dependency grammars, phrase
nodes do not exist, and all nodes are terminal (See Figure 3.1). These at-
tributes cause a dependency parse tree to have much fewer nodes than a
constituency parse, fewer levels of nesting, and more direct links for seman-
tic relations such as agent/patient. The Stanford parser library provides a
tool for converting a constituency parse tree into a dependency parse tree
and this approach is also utilized in TEES. The Stanford system can pro-
duce several types of dependency parses. The Stanford Dependencies (SD)
collapsed form, which further simplifies the parse, is the one used in TEES.

Being statistical in nature, modern parsers are also dependent on the
parse tree corpora they have been trained on. Texts in different domains
can differ quite a lot in terms of vocabulary and the types of phrases used,
so a parser trained on e.g. newspaper text may not perform optimally on
biomedical research text with its long, complicated sentences and special-
ized, domain-specific terminology. The machine learning aspect of parsers
allows them to be adapted to new subdomains, and several efforts have been
made to produce parsers more suitable for processing biomedical text. TEES
uses the BLLIP parser with David McClosky’s biomodel, a domain adapted
model utilizing self-training and the GENIA tree corpus (McClosky, 2009).

3.2 The Graph Kernel

A graph kernel for PPI extraction was the first machine learning system
developed at the University of Turku for biomedical text mining (Airola
et al., 2008b). This project was the foundation for many of the methods
used in TEES, and its technology continues to be utilized with good results
by researchers working on PPI extraction (Thomas et al., 2011; Tikk et al.,
2010).
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The all-paths graph kernel was developed to automatically extract protein-
protein interactions from the “five corpora” (AIMed, Biolnfer, HPRD50,
IEPA and LLL), commonly used PPI corpora converted to a unified binary
relation format (Pyysalo et al., 2008). For each unordered protein pair in a
sentence, the graph kernel attempts to predict whether it is an interacting
pair.

The graph kernel implementation follows the theoretical graph kernel
introduced by Gértner et al. (2003). The graph kernel is calculated using
an adjacency matriz. Each element corresponds to a directed path between
two nodes in the graph. In the initial state of the matrix, an element can
either be 1 (nodes are directly connected) or 0 (there is no direct connection
between the nodes), meaning that the initial matrix contains all paths of
length 1. When the adjacency matrix is multiplied by itself, the resulting
matrix will contain paths of length 2, 3 and so forth, defined as the sum
of the values of the component paths from earlier steps. An infinite sum
of such matrices is calculated using the Neumann Series, resulting in the
final adjacency matrix containing the summed weights of all possible paths
connecting each pair of graph nodes. By modifying the initial weight of the
direct connections between specific nodes, certain paths can be given more
weight in the final adjacency matrix.

The PPI relations classified by the graph kernel are pairs of potentially
interacting protein names (nodes) and the features used for classification are
defined for each directly connected node pair, to be combined and weighted
with the adjacency matrix.

The nodes of the graph used to construct the adjacency matrix are the
word tokens in the sentence. These nodes are duplicated, as the graph con-
sists of two subgraphs: The linear order of words in the sentence, where each
word is connected to those before and after it, and the dependency parse,
where words are connected via dependencies. In an approach following the
shallow linguistic relation extraction method of Giuliano et al. (Giuliano
et al., 2006), features generated from the linear subgraph are labeled as
(B)efore, (M)iddle or (A)fter, relative to the candidate protein pair.

In an approach that would become a central feature in TEES, in the
graph kernel dependency subgraph the shortest path is emphasized. That
is, for each protein pair, the set of pairwise dependencies that provide the
shortest path between the two proteins are given a higher initial weight in
the adjacency matrix. Features on the shortest path are also labeled so that
the classifier can make decisions based on the presence of specific syntactic
elements on the shortest path.

In the graph kernel system, a variant of Dijkstra’s algorithm (Dijkstra,
1959) was used to generate all shortest paths for a pair of nodes. In TEES,
the Floyd-Warshall algorithm (Floyd, 1962), modified to likewise produce
all shortest paths, is used. A filter is also added for skipping selected edge
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types in order to produce paths more likely to capture interaction words.
For example, in the DDI Extraction 2011 task the “conj_and” dependencies
are skipped to avoid producing shortest paths with no intermediate nodes.

Other aspects of the graph kernel later adopted in TEES are very high
dimensional, very sparse feature sets and the use of a high-performance
machine learning classifier (RLS in the case of the graph kernel, SVM in
TEES). Moreover, the use of Python for fast and flexible prototyping, and a
highly parallel cluster system for optimizing the parameters of the classifier,
are also approaches used in TEES.

3.3 The Shortest Path

The concept of the shortest path is a feature of the dependency parse utilized
in relation extraction, based on the common assumption that words in the
connecting nodes of the dependency path are especially relevant for the
potential relation holding between the end nodes. E.g. Bunescu and Mooney
define a formal shortest path hypothesis for this aspect of the dependency
parse and build a shortest path dependency kernel focusing on information
derived from these dependencies (Bunescu and Mooney, 2005).

In the context of event extraction, the shortest path hypothesis was ana-
lyzed in Paper 1. Events, and the complex interactions of the Biolnfer corpus,
have many structural similarities with pairwise PPI relations. In particular,
events with a specified trigger word can be defined as a set of pairwise re-
lations. For example, the interaction “A binds B” might be defined as the
(undirected) pairwise PPI relation BIND(A, B) between the two named en-
tities. As an event, the same phrase would be defined as BIND (trigger:binds,
theme:A, theme:B), with the trigger word specified and argument roles la-
beled. However, considering the trigger word as a generic graph node compa-
rable to the named entities, the same event could be defined as two pairwise
relations, BIND (trigger:binds, theme:A) and BIND (trigger:binds, theme:B),
where the roles of the arguments could also be implicitly derived from the in-
teraction type BIND, leading to two directed pairwise relations BIND (binds,
A) and BIND(binds, B).

This naturally leads to the TEES event extraction approach where events
are divided into their component relations, enabling methods developed for
PPI extraction to be directly applied to complex interactions. Further com-
plications of course result from the more complex annotation, namely the
need to detect not only named entities but also trigger nodes and to sepa-
rate overlapping events, but largely this approach of implicitly “binarizing”
event structures defines the core event extraction method used in TEES.

One feature that stands out when representing events as graphs is that
events provide more intermediary nodes as compared to binary relations (See
Figure 3.2). In the event representation, unlike a pairwise binary relation,
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Figure 3.2: Event annotations share similarities with dependency parses.
Event triggers form intermediary nodes on the shortest path of dependencies
(shown in green), and event arguments often have a one-to-one correspon-
dence with a dependency. In this example from the GENIA Event Corpus,
there is a single corresponding dependency for both arguments of the Reg-
ulation event (shown in blue), while two dependencies exist between the
endpoints of the Positive Regulation event’s Theme argument. In contrast,
four dependencies separate the endpoints, if the relationship is annotated
with a binary relation (Figure adapted from Paper I).

the trigger word is included in the semantic annotation. Based on this
observation, it was hypothesized that event arguments would correlate with
the shortest dependency path more closely than binary relations, and this
could aid in trying to extract them.

To compare event arguments with relations, a binarized version of the
Biolnfer corpus, where the complex nested interactions were interpreted into
binary relations, was utilized (Heimonen et al., 2008). The Biolnfer corpus
consists of complex interactions which are largely similar in structure to
events. However, they can also describe physical relations (such as sub-
structures) unlike events, which are usually considered to describe active
processes. The binarization of the Biolnfer corpus converts these event-like
structures into pairwise binary relations, resolving nested structures with
a set of rules. When compared to the arguments of complex interactions,
the shortest path for binary relations consists on average of considerably
more dependencies, demonstrating that event-type annotations correlate
more closely with a dependency parse (See Figure 3.3). This correlation is
noticeably strong with dependency parses of the collapsed Stanford format,
which has been developed with semantic mining applications in mind. Using
this parse, over 60% of GENIA and Biolnfer event or complex interaction

arguments have a single, corresponding dependency.
As with binary relations, event arguments link together words that can
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Figure 3.3: GENIA corpus event arguments and comparable Biolnfer corpus
complex interactions are more likely to correspond to a single syntactic de-
pendency than pairwise relations from the binarized Biolnfer corpus (Figure
from Paper I).

36



50

dépendency distance
47 linear distance - ,
40 | |

35t :
30t :
25 t :
20 f o .
15 | e 1

10 O

Proportion of edges [%0]

0O 1 2 3 4 5 6 7 8 9 10 >10
Edge length

Figure 3.4: The number of dependencies on the shortest path compared
with the number of words separating the two terminal words of an event
argument (Figure from Paper II).

be distant in the linear order. As the dependency parse, especially the
collapsed Stanford variety was shown to correlate strongly with the event
arguments, the BioNLP’09 Shared Task GENIA corpus was analyzed to
determine how close event arguments are to the dependency parse. As can be
seen from Figure 3.4, almost 50% of all GENIA event arguments correspond
to a single collapsed Stanford dependency, and the vast majority take a
maximum of three links. Compared to the linear order, where only 15% of
event arguments are at a distance of one word, and more importantly, where
more than 10% of event arguments travel over more than 10 words, the
dependency parse is very similar to the semantic annotation of the events.

3.4 Entity Syntactic Heads

TEES utilizes the dependency graph to predict the event annotation graph.
To use the correlation, the two graphs must be aligned, so that one can
say which edge or path of edges corresponds to which event argument. In
one graph, the nodes are tokens and edges are dependencies, in the other,
the nodes are named entities or triggers and edges are event arguments. To
connect these graphs, their nodes have to be aligned. The dependency graph
is always known information, so the two graphs are connected by mapping
the named entity or trigger nodes of the event graph to the token nodes of
the dependency graph.
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In many cases this mapping is trivial, for example a trigger node Phos-
phorylation with the text “phosphorylates” can easily be mapped to the
single token “phosphorylates”. However, in corpora like GENIA named en-
tities and triggers can span multiple tokens, for example the “human IL-4
protein” spans three separate tokens. In such cases, the whole named en-
tity or trigger is mapped to the syntactic head token of the parse subtree
it covers. The head token is determined by giving each token a head score,
then picking from the tokens corresponding to the trigger or named entity
the one with the highest score. If two or more tokens share the same highest
score, the rightmost one in the linear token order is used.

The head score algorithm is specific for the Stanford scheme dependency
parse. All tokens are given an initial score of 0, except for tokens “\”, “/”,
or “-” which get a score of -1, as they are likely a byproduct of splitting
named entity tokens, and in such cases a more informative substring should
be the head. After initial scores are defined, the algorithm loops over all
dependencies of types commonly encountered in multi-token entities?. If the
governor token of such a dependency has a score lower or equal to the score
of the dependent token, the score of the governor token is increased by one.
All dependencies are reprocessed as long as any score is modified or until
the maximum number of iterations (20) is reached, indicating a potential
loop. This algorithm is designed to survive the loops and broken parses often
produced for complicated sentences, and to produce a reasonable ordering
for the tokens with the information available.

Occasionally a single token can include several named entities or trig-
gers. We use a rule-based “protein name splitter” that divides these tokens
at punctuation. For example, the token “p50/p65” contains two named
entites, and the token “GATA3-binding” contains a named entity and a
trigger. Without this preprocessing step, multiple entities or triggers would
end up having the same syntactic head token, preventing detection of events
between them.

3.5 Features for Event Extraction

The analyses on dependency parse correlation with event annotations were
the basis for the approach used in TEES to derive features from the parse
for machine learning. The shortest path is the primary source of features
for interactions, whether they are binary relations or event arguments. For
triggers and other nodes, the immediate dependency context is used to define
features. TEES differs from the graph kernel in that the whole dependency
graph is not used for features, but rather specific regions are utilized to
produce task-specific features. Compared to the graph kernel, this makes

Zprep, nn, det, hyphen, num, amod, nmod, appos, measure, dep and partmod
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TEES as a system more specialized for text mining, reduces the number
of features, and therefore makes processing less computationally intensive.
The downside of this approach is that instead of a single technique based on
a well-defined mathematical theory, the syntax representation for machine
learning is constructed from a series of solutions arrived at by trial and error.
However, in the context of current relation and event extraction tasks, the
TEES approach has been shown to perform well and remains generalized
enough to be easily adapted to different extraction targets.

TEES consists of different modules for the different classification steps
in event extraction, such as trigger detection, edge detection or modifier de-
tection. These modules use different features, but most of them are derived
by combining a set of simple, core features in a variety of ways. The primary
feature groups that form the building blocks for more complex features are
dependency features and token features. The dependency features are the
type of the dependency (such as nsubj or aux) and its direction relative to its
two token nodes or a longer path of dependencies. The basic token features
are the text of the token, its POS type and the types of the known entities
which it is part of. The token features can be extended with task-specific
features, such as the text being a known speculation word, and these new
component features will then produce further variants of the combinatoric
features built from them.

We will next analyze the four classification steps of TEES event extrac-
tion and see how their feature representations are used to describe the syntax
and other known data for the classifier.

3.6 Entity Detection

Entity detection refers to the process of marking the boundaries of named
entities and event triggers in a given sentence to produce the nodes of the
event graph. This part of TEES is conceptually similar to the NER (Named
Entity Recognition) field of research, but is simplified with the limitation
that each predicted entity consists of a single token. In training data, where
annotated entities can have arbitrary (even disjoint) spans, each entity is
first mapped to a single token, as explained in Section 3.4.

Trigger detection becomes thus a classification task relating to a single
word token and the chosen feature representation reflects this. In classifying
the token, the token itself is of course of central importance, and TEES
attempts to derive as much information as possible from it. As shown in
Figure 3.5, a large number of features are generated from the token. The
basic token features generated for each token are of course used also for entity
detection. The Porter Stemmer (Porter, 1980) is used to derive the stem
of the word token. The stem and the non-stem part of the word are used
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Figure 3.5: Entity Example Builder Features. One example is generated for
each syntactic token that does not belong to a Protein entity. This sentence
produces three positive and two negative examples. The numbers show the
distance of dependencies and tokens from the highlighted example.

40



as features that can detect the same word in different inflected forms. The
text is also normalized, to combine cases like “coimmunoprecipitate” and
“Co-immunoprecipitate”. The content of the word is analyzed for features
that might be typical for biomedical keywords, such as upper casing or
presence of hyphens and digits. The potential head token is also split into
two- and three-letter duplets and triplets for a detailed representation of its
structure. All of these features that aim to either generalize or subdivide the
basic features of the token never replace the basic features, but are generated
in addition to them. Therefore, for a token “phosphorylation” both the full
word “phosphorylation” as well as the stem “phosphoryl” are represented in
the features, leaving the choice of how specific features are used for learning
up to the classifier.

As with the other components, the trigger detector produces for each
example also a representation of the full sentence it exists in, using an
unordered bag-of-words and the number of given entities (usually protein
names from a separate NER step) already detected for the sentence.

In using the syntactic parse, the trigger detection system shares a lot of
similarities with the edge detection one, not least because the edge detec-
tion system was developed first and the work on trigger detection naturally
utilized methods already shown to work. The concept of the shortest path
does naturally not apply to a single token, so instead the trigger detector
builds a representation of the dependency context of the token, following all
undirected dependency paths up to a depth of three leaving from this token.
This process generates a large number of features and aims to capture such
relations as a trigger token being the governor of a dobj type dependency
connecting to the head of an already detected protein.

As shown in Bjorne et al. (2011b) entity detection cannot be performed
simply with a dictionary lookup, as many trigger words are sometimes trigger
entities, sometimes not. Furthermore, the same word can in one sentence be
a trigger of one type, in another a trigger of another type. For example, in
the 2009 BioNLP Shared Task GENIA corpus the token “overexpression” is
roughly evenly distributed among Gene expression, Positive requlation and
the negative class.

In TEES version 2.1 the trigger detection step generates for the BioNLP’11
Shared Task GENIA corpus training and development sets around 200,000
examples with a feature space of around 540,000 features, with around 110
features per example on average. All TEES classification steps have a very
sparse feature space, as is common in text mining. With modern implemen-
tations of linear SVMs this amount of data remains easily processable.

The main limitation of the TEES approach to entity detection is the
heavy dependence on features derived from the syntactic parse. While the
parse is a rich source of features, parsing a sentence with the best parsers
currently available for the biomedical domain is a very time-consuming pro-
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cess, and in applications such as PubMed-scale text mining producing a
deep parse for each sentence can become computationally unfeasible. In
most event extraction tasks TEES relies on a preprocessing step where a
dedicated, fast NER-system, such as BANNER, is used to detect gene or
protein names (which form the leaf nodes of the event graph), therefore
limiting the parsing (and subsequent event extraction) to sentences with at
least one such entity detected. While TEES has been adapted to extraction
targets where its trigger detector extracts all required entities, such as the
BioNLP’11 Bacteria Gene Interactions tasks or drug-drug interaction ex-
traction, the requirement to parse each sentence limits the usability of such
models on large-scale datasets.

3.6.1 Variations on Entity Detection

The basic structure of the entity detection system has remained the same
since the original TEES version from 2009, although the feature represen-
tation has been somewhat optimized. Moreover, for the BioNLP’11 Shared
Task several task-specific modifications were developed to address the par-
ticular requirements of different domain targets.

For the BioNLP’11 Shared Task, external databases were for the first
time used as an additional source of features. Such real-world contextual
knowledge holds great promise in improving text mining, but at the risk
of making systems overly reliant on what is already known, thus making it
harder to detect examples not already in the databases. Therefore, the use of
external data in information extraction projects should always be carefully
considered. In the BioNLP’11 and BioNLP’13 Bacteria Biotopes tasks the
TEES entity detector was enhanced with existing knowledge from the List of
Prokaryotic names with Standing in Nomenclature (LPSN) (Euzéby, 1997)
and Wordnet (Fellbaum, 1998).

To specialize the TEES entity detector for different tasks, the easiest
way to introduce additional features is to add them to the common token
features (See Figure 3.5) from where they will be combined into many of
the more complex features. The LPSN database maintains a list of names
for prokaryotes and was used to help in detecting Bacterium-type entities
by extending the token features with a binary feature marking the presence
of the token in the set of known bacteria name tokens. Synonyms and
hypernyms from Wordnet were used in an attempt to detect similarities
between the very heterogeneous Environment-entities describing elements
where bacteria live. For example, both “chicken” and “milk” are Food-
entities, and while their character strings have nothing in common, both
have the same WordNet hypernym “noun.food”.

In the case of the BioNLP’11 EPI (Epigenetics) task, types of reversed
trigger entities were merged with their direct forms. For example, phospho-
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rylation and dephosphorylation were merged into a single phosphorylation
class. After entity detection, a rule-based step was used to separate the re-
verse forms. This step was shown to determine a reverse class correctly for
99.6% of cases in the EPI training dataset. As many of the reverse classes
were quite small and thus difficult for the SVM to learn, this approach in-
creased performance on the EPI task by 1.33 percentage points and made
it possible to extract several of the small reverse classes. For example, the
previously undetectable deubiquitination class with 8 instances in the devel-
opment set was predicted with an F-score of 77.78%.

In two cases the trigger detector has been modified to detect entities
consisting of more than a single token. In the BioNLP’11 Coreference sup-
porting task the detected entities had to cover at least a minimum span, a
part of the entity that could consist of multiple tokens. To produce suitable
entity candidates, the syntactic phrases from the BLLIP-parse, further sub-
divided with a set of rules, were used as entity candidates. This resulted in
a very large number of examples, mostly negatives. In the BioNLP’11 Bac-
teria Biotopes task exact spans were required for Bacterium-type entities,
so a simple rule-based system was developed to expand the detected single-
token entities forwards and backwards from the head token largely based on
a dictionary of known bacterium name tokens extracted from LPSN. This
rule-based step was shown to have 91% accuracy on the training data. Both
of these multi-token entity detection approaches were quite specific for the
tasks they were developed for and have not been used in other work.

3.7 Edge Detection

The edge detector is the first TEES component developed (Bjérne et al.,
2009a). In this work, it was evaluated for extraction of event arguments from
the Biolnfer and GENIA corpora and shown to have higher performance
on this task than the graph kernel, the system developed earlier for PPI
extraction. The classifiable example produced during edge detection is most
often a directed, typed edge linking together two entity nodes. Since entities
are linked to the parse through their syntactic head tokens, edges can have
a corresponding path of dependencies (See Figure 3.6).

The edge detector relies largely on features generated from the shortest
path of dependencies. This shortest path is subdivided into shorter sections
called N-grams, to produce features more likely to be present in multiple
sentences (See Figure 3.6). It is important to note that the edge detec-
tor uses features generated from entities produced by the entity detector,
linking its performance to this earlier event extraction step. Given gold
standard entities, edge detection has often significantly higher performance,
indicating that the system relies heavily on the correctness of the detected
entities (Bjorne et al., 2011b).
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Figure 3.6: Edge Detection. The Edge Example Builder builds one clas-
sifiable example for each potential edge. A gold standard annotation (A)
can be used to label the examples. Potential edges exist between all tokens
where an event argument or relation could connect the entities the heads of
which the tokens are (B). As only a single trigger entity can be produced
by the entity detector for each token, overlapping events are predicted in a
merged format (C).

44



. Z
Known data: dobj

1
<nn <nsubj
QW?j T r—«“:ﬁdobpj_conjianw
0
VB NN

1

N2 NN NN MD cc NN
STAT3  Ser(727) phosphorylation may involve Vav and Rac-1 -
Protein (Entity] [Phosphorylation] [Regulation] Protein Protein

Extraction <site— j <Theme Cause>—
Target: <Theme Cause>
<neg

Token features: txt MASK txt Ser(727) txt phosphorylation txt may txt involve txt MASK txt and  txt MASK

TOK(x) txt STAT3 POS_NN POS_NN POS_MD POS_VB txt_Vav POS_CC txt_Rac-1
POS NN  ann Entity  ann Phosphorylation ann neg ann Regulation POS NN  ann neg POS NN
ann_Protein ann_Protein ann_Protein

Example Regulation(involve)— Protein(STAT3) (negative example) features:

Entity counts: n_Protein=3, n_Entity=1, n_Phosphorylation=1, n_Regulation=1

Sentence
Features

@
b @
€ E Features ENT(X) generated by Entity Example Builder (See Figure X): el _ENT(involve), €2 ENT(STAT3)
@
fge 9-; Entity features: el _TOK(involve), e2 TOK(STAT3), el_predicted e2_given, eTypes_Regulation_Protein
é £ § Terminal token features: t1_TOK(involve), t2_ TOK(STAT3)
=
- § Single element features: nsubj>, nn>, internal_txt_phosphorylation, internal POS_NN
]
‘g E «g Annotated type features: path_has Regulation, path_has_Phosphorylation, path_has_Protein
% & Elements: dep_nsubj, dep_nn, tok_TOK(involve), tok_TOK(phosphorylation), tok_TOK(STAT3)
Edge directions N-gram: directions >>
2 Entity type N-grams in range [0, n-1]: Regulation_Phosphorylation
E j:;‘ N-gram component roles: directions >> TOK(Phosphorylation), directions >> pos0_nsubj, directions >> posl_nn
2 i Dependency N-grams in range [0, 4]: directions_>> nsubj_nn
&
_‘g' ‘:"o Dependency N-grams with terminus entities: Regulation_directions_>> nsubj_nn_Protein
“ Z  Governor/Dependent 2-grams: gov_TOK(involve) dep TOK(phosphorylation),

gov_TOK(phosphorylation) _dep_TOK(STAT3)
Entity/dependency/entity 3-grams: ann_Regulation_nsubj_ann_Phosphorylation, ann_Phosphorylation_nn_ann_Protein
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3.7.1 External Knowledge for Edge Detection

Similar to the entity detector in the BioNLP’11 Bacteria Biotopes task, the
edge detector was enhanced with external database knowledge in the Bac-
teria Gene Renaming (REN) task. The task consisted of detecting pairwise
relations marking statements where a new B. Subtilis gene name was intro-
duced to supercede an old one. Most of this information was already covered
in external databases, so pre-existing pairs were extracted from the UniProt
B. Subtilis gene list “bacsu”® and SubtiWiki, the B. Subtilis community
annotation wiki*. It was shown that for the 300 gene renaming relations in
the training data, the UniProt list contained the pair for 66%, SubtiWiki
for 79% and a union of both sources for 81% of the relations. Conversely,
only 2.1% of negative examples had a corresponding pair in the union set.

Unsurprisingly, adding the presence of a known, annotated pair as a
feature increased performance from 67.85% to 87.0%, leading to the best
performance in the task by a margin of 17.1 percentage points. While this
example shows that external knowledge can give a huge boost for a text min-
ing system, it is also a good example of the dangers of using such knowledge.
With the external knowledge, the system relies heavily on the list of known
pairs, likely making it less capable of detecting yet unknown renaming state-
ments. The question with using external data then becomes whether one
wants to find all textual mentions of a set of known facts, or whether one
wants to detect completely new events of a given type. In the first case,
external knowledge is a clear benefit, in the latter a potential hindrance,
but of course the balance to be found depends on each particular task.

The REN task was a case of pairwise relation extraction, presented as a
supporting task of the event-oriented BioNLP Shared Task. TEES has how-
ever been evaluated also on a pure relation extraction task, the 2011 First
Challenge Task on Drug-drug interaction extraction (DDIExtractionll), as
described in Paper V. The goal of the task is to detect statements on adverse
effects between given drug mentions in text. These relations are untyped
(they have a single type) and undirected, making the task structurally simi-
lar to traditional PPI relation extraction tasks. In this task, only the TEES
edge detector component was needed, and it was optimized for this particular
challenge. Apart from task-specific features, the use of binary classification
allowed the application of “thresholding”, modifying the balance between
positive and negative classes to increase performance. The Turku Event
Extraction System placed fourth, four percentage points behind the leading
system by team WBI of Humboldt-Universitdt Berlin (Thomas et al., 2011;
Segura-Bedmar et al., 2011).

3www.uniprot.org/docs/bacsu
4subtiwiki.uni-goettingen.de/wiki/
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Most of the specialization towards the DDIExtractionll dataset was
done by adding features from external datasets. The task organizers pro-
vided MetaMap analyses for the task corpus, produced with the UMLS
MetaMap Transfer (MMTx) tool (Aronson, 2001). From the MetaMap anal-
yses, additional features given to drug entity head tokens included predicted
long and short names, prediction probabilities, semantic types and CUI num-
bers. Binary features were added to mark if an annotated drug mention had
not been detected as a known drug by MetaMap, and whether the two drugs
in the candidate pair referred to the same MetaMap instance.

Additional features were built from DrugBank, the database which the
DDI11 corpus is based on. Unlike the corpus, which marks instances of
interaction statements in text, the DrugBank database simply lists known
interaction pairs for each drug. For each candidate pair additional features
were added to mark whether both drug names are present in DrugBank and
whether DrugBank lists them as a known interaction pair.

Adding the DrugBank features increased performance by 0.94 percent-
age points, and adding also MetaMap features gave a further increase of
0.99 percentage points. As with the Bacteria Biotopes task, external data
was shown to improve text mining performance, but this again comes at
the risk of making the system good at detecting only the known cases. The
MetaMap features, only adding more information about the given drug en-
tities, probably do not have much risk of this. The known interaction pairs
from DrugBank, even if they can’t tell whether each specific mention of such
a pair in text is an interaction, are already a greater risk when using the
system in real-world applications. As with the Bacteria Biotopes example,
the tradeoff is likely to be high performance for detecting instances of known
interactions vs. lower overall performance, but a higher chance of detecting
new interaction pairs.

3.7.2 Modifying the Shortest Path

The TEES edge detector was developed for detecting event arguments, which
connect a trigger word to another trigger word or named entity. In such
edges, the most important words are at the ends of the shortest path. How-
ever, in pairwise PPI relation extraction where the trigger word is not ex-
plicitly marked it may not fall on the shortest path between the two named
entities, even if it would provide essential information about the interaction.
In the DDIExtractionll binary relation extraction task, to avoid situations
where the shortest path would become trivially short, conj_and dependen-
cies were excluded from the path construction (See Figure 3.8). This simple
customization increased F-score on the development set by 0.42 percentage
points.
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Figure 3.8: By ignoring conj_and dependencies when constructing the short-
est path, words essential for describing the interaction can more often be
included in the path. Here the word “therapy” fulfills a role similar to event
corpus triggers. Figure from Bjorne et al. (2011a).

This modification is of course specific for the parse, and due to time
constraints, edge filtering beyond conj_and was not studied much, but based
on this result it can be said that by artifically extending the shortest path in
this manner, an approach originally developed for event argument detection
can be better optimized for pairwise relation extraction tasks. In TEES
version 2.1, dependency types to be filtered can be defined in the command
line parameters passed to the edge detector.

3.8 Unmerging

The unmerging detector is the component that takes the merged event graph
produced by the entity and edge detectors and duplicates event nodes in
order to separate arguments into valid combinations. The resulting event
graph can be directly interpreted as BioNLP Shared Task -like events.

The unmerging step was originally implemented for the BioNLP’09 Shared
Task as a rule-based system. The system removed invalid edges, broke ar-
gument loops and used a set of heuristics based on the dependency parse to
group event arguments (Bjorne et al., 2011b). The rules of this system were
specific for the BioNLP’09 GENIA corpus, so in further research a decision-
tree-based machine learning system was tested for use on both the GENIA
and Biolnfer corpora (Heimonen et al., 2010). In the 2011 BioNLP Shared
Task and TEES versions since then, unmerging has been implemented as a
classification task similar to other processing steps.

The system looks at each event trigger node, and produces one example
for all valid outgoing edge combinations (See Figure 3.9). These are classified
as positives or negatives, optionally with multiclass classification for tracking
event type specific performance. After classification, the unmerged events
are combined again into a connected graph, further duplicating nested nodes
as required.
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Figure 3.9: Unmerging Detection Features. The merged event
graph shown in the figure produces five examples. The three
positive examples are for Phosphorylation(Theme:STAT3), Regula-
tion(Cause:Vav, Theme:Phosphorylation) and Regulation(Cause:Rac-1,
Theme:Phosphorylation). The two examples Regulation(Theme:Vav) and
Regulation(Theme:Rac-1) are negative, as even if they are structurally valid
Regulation events (Regulations can be without a Cause-argument) they do
not correspond to the annotated gold events. The numbers in known data
show the token indices, where tokens 3—6 form the argument span bag-of-
words.
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In TEES 2.0 the valid argument combinations defining the candidate
events are encoded in the unmerging example builder and are limited to de-
tecting event structures defined in the eight tasks of the BioNLP’11 Shared
Task. Starting from TEES 2.1, valid argument combinations are automati-
cally learned from the training data, enabling the system to be used on new
annotation schemes with no additional programming required.

A candidate event example consists of a trigger node and outgoing edges,
which link it to other trigger or named entity nodes. To describe this struc-
ture as features, the system relies on the entity and edge prediction feature
representations (See Figure 3.9). A feature representation similar to the
one used in entity detection is used to describe the trigger node and the
other nodes linked by the outgoing edges, both the ones that are part of
the candidate event and the context edges that are not. The edge detector
feature representation is used to describe the outgoing edges. To distinguish
the features of the different parts of the event, entity and edge features are
labeled with the type of the edge or entity and with a further label if they
are not part of the current event candidate.

Features specific for the unmerging detector include a bag-of-words cov-
ering the span of text between the most distant argument targets of the
event, in an approach reminiscent of the jSRE relation extraction system
(Giuliano et al., 2006). Additional features are defined to mark the pres-
ence of entity and edge types both in the candidate event and other outgoing
edges of the trigger node. Edge and entity type are also merged to define the
presence of specific combinations. Finally, argument count features denote
the number of different types of arguments.

An issue for training the classifier for unmerging detection is that while
examples can be generated from a merged and unmerged gold annotation
corpus, in actual predicted data there are also false positive edges and nodes.
To train the system on more realistic data, a second copy of the training
data is used, for which edges and entities are predicted using models trained
on the same dataset. Classifying the training data with models trained on
it results naturally in very high performance, so only a small number of
incorrect entities and nodes is included in the extended unmerging training
data. Even so, unmerging performance for predicted datasets is slightly im-
proved. The additional unmerging examples could of course be generated
by e.g. using the development set for training separate edge and entity de-
tector models and using these to re-classify the training set, but this would
require two more rounds of parameter optimization and make the already
complicated multi-stage system even slower.

Apart from task-specific event candidate limitations, the unmerging de-
tector has not been specialized for the different tasks. This is mostly due
to the fact that all the tasks where external data has been used have been
pairwise relation extraction tasks which do not require the unmerging step.
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3.9 Modifier Detection

The final component in the TEES stepwise event extraction process is mod-
ifier detection. Modifiers define additional attributes for events, such as the
negation and speculation modifiers used to mark event modality in some
BioNLP Shared Task corpora. Modifier detection falls outside the graph
prediction task of the main TEES event extraction approach, and is per-
formed as an additional post-processing step on the final, unmerged event
graph.

Fach event trigger node generates an example to be classified for the
presence of modifiers. Overlapping modifiers are rare, and with only two
modifier types, merged classes can be used in these cases. It is also possible
to perform modifier detection as multiple binary classifications, generating
one example per trigger node per modifier type.

The TEES modifier detector uses a modified version of the entity detec-
tor, similarly building a feature representation based on the event trigger
node. Sentence level features include node counts and a bag-of-words (See
Figure 3.10).

The most important feature specific for modifier detection is a manually
curated list of 115 speculation-specific key words such as “aim”, “findings”
and “shown”. This list was compiled in 2009 from the BioNLP’09 Shared
Task GENIA corpus and was first used in Paper II. The speculation words
are used as token features, leading to their incorporation into the more
complex features such as the dependency context features.

The TEES negation and speculation detector used in the BioNLP’11
Shared Task was jointly trained for the GE, EPI, and ID tasks. This sim-
plified processing, important in the limited time available for system de-
velopment, but resulted in potentially sub-optimal performance. In later
experiments the modifier detector was re-trained using only the GENIA
data, resulting in a gain of 2.42 percentage points from the previous F-score
of 26.86% (which was already the best in the 2011 shared task). This ap-
proach of training modifier detection specifically for each task is used in
TEES version 2.1.

Modifier detection has always been left in TEES as something of an af-
terthought. Partially this is due to the way modifier detection has been
evaluated in the BioNLP Shared Tasks, as an additional attribute of pre-
dicted events, meaning that modifier detection performance is largely de-
pendent on how good the system is at detecting events and as such efforts
have been better spent in improving general event extraction performance.
Compared to event detection, modifier detection may feel like a minor de-
tail, but modality such as negation can have a large impact on the meaning
of extracted event data.
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Figure 3.10: Modifier Detection Features. Events can have modifiers, such as
speculation or negation. Modifiers are predicted for each event trigger node,
either as a binary classification for each modifier type, or as shown here,
with multiclass classification where overlapping modifiers are represented
with merged classes such as negation/speculation.
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The original GENTA modifier annotation scheme has later been extended
into a general meta-knowledge annotation, and systems have been developed
for extracting this information (Thompson et al., 2011; Miwa et al., 2012) As
a growing part of event extraction, retrieving such meta-knowledge can be
an interesting future area of research. If the TEES implementation were to
be further improved, likely directions would be adding a list of keywords for
negation and other modifiers, and including the event arguments in feature
generation.
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Chapter 4

PubMed-scale Event
Extraction and Applications

The Turku Event Extraction System was developed for the BioNLP Shared
Tasks, where participants could focus on just the event extraction, with
named entities, syntactic parses etc. provided by the organizers (Kim et al.,
2009; Stenetorp et al., 2011). With the good performance reached in the
shared tasks, applying TEES to real-world text mining tasks became rele-
vant, as shown in Paper III. To make such work possible, additional NLP
tools were required to produce the supporting data given in the shared tasks,
and also a corpus for mining biomedical events from was needed.

The corpus part was easily solved: the PubMed database is provided in
downloadable format, so the entire set of (in 2010) 17.8 million citations was
chosen as the target. No domain limitations were defined to ensure a realistic
dataset, even if the inclusion of citations falling outside the biomolecular
scope (such as medical patient cases) would result in some additional false
positives. With the wide coverage of PubMed, the dataset was assumed to
provide extensive coverage of biomolecular interactions, even if it contained
only article titles and abstracts.

To be able to process any text, a preprocessing pipeline was developed.
For detecting protein and gene names, the BANNER named entity recog-
nizer (Leaman and Gonzalez, 2008), known for its high performance on the
standard GENETAG corpus (Tanabe et al., 2005), was chosen. BANNER is
based on conditional random fields, a technique that enables straightforward
detection of named entities consisting of multiple tokens. As named entity
recognition is the first step in the pipeline, processing of the large PubMed
dataset could be considerably optimized by limiting most subsequent pro-
cessing to only those citations where BANNER detected at least one named
entity, a prerequisite for detecting events with TEES.
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These citations were next divided into individual sentences using the
maximum-entropy based GENIA Sentence Splitter (Kazama and Tsujii,
2003a). Trained on the GENIA corpus, it is specifically aimed at processing
biomedical text, achieving an F-score of 99.7% on a set of 200 unseen GENIA
abstracts. To fix a few observed common error cases, a limited rule-based
post-processing script was also used.

As TEES does not look for sentence-boundary crossing events, event
triggers and thus events can only be detected in sentences that have at least
one named entity. Therefore, we could limit the following, computationally
expensive steps only to individual sentences where BANNER had detected at
least one named entity. For the PubMed dataset, this meant approximately
20 million sentences.

For parsing, a setup similar to the one used to produce the support-
ing resources of the BioNLP’09 Shared Task was chosen. Sentences were
first parsed with the BLLIP parser using David McClosky’s domain-adapted
biomodel (McClosky and Charniak, 2008; McClosky, 2009), a system shown
to achieve the best performance on the GENIA Treebank (Tateisi et al.,
2005), demonstrating applicability for biomedical text. The BLLIP parser
generates PENN-style parse trees, which were further converted into de-
pendency parses of the collapsed-ccprocessed style using the Stanford parser
toolset (de Marneffe and Manning, 2008; de Marneffe et al., 2006).

This preprocessing pipeline has been integrated in TEES 2.0, and to-
gether with the included batch-processing system it can be used to run
similar experiments on other large scale datasets.

4.1 Scaling up Text Mining

The preprocessing pipeline provided an automated system for producing
the supporting data given in the BioNLP’09 Shared Task, forming the input
for event extraction performed with TEES. Processing the entire PubMed
dataset consumed approximately 346 CPU days, a process effectively par-
allelized up to 50-fold on the CSC “Murska” HP CP4000 BL ProLiant su-
percluster. Processing time was divided in a 1:3:1 fashion between NER,
parsing and event extraction. While event extraction was much faster than
parsing, it must be remembered that it also relies heavily on data generated
by the parsing step.

Processing a dataset of almost 18 million citations presented several scal-
ing issues, and provided a good test case for the adaptability of these text
mining tools for real world scenarios. Most of the tools used were generally
developed and tested on small datasets, such as the GENIA corpus, but
the much larger PubMed dataset would contain several texts with unfore-
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seen, problematic cases. We found out that e.g. the BLLIP parser would
crash or never finish on only 0.09% of the sentences processed, but with the
PubMed-scale dataset this minute fraction already meant 18,000 sentences.
To survive situations like this, and ensure that a problem in a single sen-
tence did not cause the whole batch to be lost, all preprocessing tools were
wrapped in a layer of control code. If a tool crashed, the wrapper restarted
it from the following sentence. If the tool stalled, the wrapper, tracking the
appearance of tool output at a sentence level, terminated the process after
a set timeout and likewise skipped the problematic sentence.

To enable parallelization, input citations were divided into small batches.
A batch size of a few hundred citations allowed efficient parallelization, with-
out wasting too much time on tool startup and shutdown times. Standard
filesystems have limits on the number of files in a single directory, so batches
were stored in a hierarchical directory structure.

In addition to the issues caused by tools running into unforeseen in-
puts, the Murska cluster could occasionally go down for maintenance breaks.
More problematically, individual jobs in the cluster were processed by multi-
processor nodes with a shared memory space. Different users’ processes can
be allocated to the same node, and any process can accidentally consume
the shared memory, causing other processes to crash. While such situations
were not common, we had to take into account the fact that any processing
job could fail at any time. Therefore, in addition to the tool wrappers, our
large scale processing system included extensive cross-checks and methods
for rerunning failed jobs.

4.2 Event Extraction Performance at PubMed-scale

Processing the PubMed dataset of 18M citations resulted in 36.5M named
entities detected in 5.4M citations. 20M sentences containing at least one
named entity were syntactically parsed and finally, 19.2M events were ex-
tracted.

While the pipeline of tools was known to consist of high-performance
components, this performance was usually measured on small test corpora.
Using random sampling, we determined whether the performance general-
ized to PubMed scale text mining. Sets of 100 named entities and 100 events
were chosen at random and evaluated manually. In this manner, we could
estimate precision, but not recall, as that would require the prohibitively
slow process of fully annotating a random sample of sentences.

For named entities, we considered an entity correct if it was a cell, cel-
lular component or any molecule taking part in biochemical interactions,
including small inorganic molecules such as Ca?*. Even though only pro-
teins and genes were marked as named entities in the BioNLP’09 Shared
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Task, the TEES system can detect syntactically similar relations when pre-
sented with e.g. a relation-event where the Calcium-ion is a participant. For
the random sample of 100 named entities, the evaluation showed a preci-
sion of 87%, comparable to BANNER'’s precision of 89% on the GENETAG
corpus (for an F-score of 86%).

For events, we considered the event correct if both the event and its
argument entities are correct. Precision for the 100 randomly selected events
was 64%, reasonably close to the 58% precision on the BioNLP’09 Shared
Task corpus (for an F-score of 53%).

We also estimated precision for BioNLP’09 subtasks 2 and 3, detection of
protein/gene sites of action and event modality. For subtask 2, 100 randomly
selected events with subtask 2 arguments (site or location) were chosen. For
subtask 3, 100 random events for which the speculated or negated modifier
was predicted were chosen for both modifiers.

The subtask 2 arguments are largely external to the event and can be
viewed as an attribute of the named entity participant. Therefore we evalu-
ated them independently of the correctness of the event, determining a pre-
cision of 53%, comparable to a precision of 58% on the BioNLP’09 Shared
Task development set using the same criterion of correctness.

For evaluating subtask 3, modality, of the 100 negated events 9 were
incorrectly extracted to such a degree that the correctness of negation could
not be determined. For the remaining 91 events, 82% were correctly marked
as negated. Similarly, for the 100 speculated events 20 were too incorrect to
be judged for correctness of speculation. For the remaining 80 events, 88%
were correctly marked as speculated. For correctly predicted events in the
BioNLP’09 Shared Task development set, precision for negation was 83%
(for a recall of 53%) and precision for speculation was 77% (for a recall of
51%).

In total, these evaluations indicate that real-world event extraction per-
formance, at least in terms of precision, seems to be consistent with measures
on test corpora. Promisingly, event extraction performance was reasonably
high even when the named entities are also predicted, unlike in the shared
tasks where manual named entity annotations were provided.

4.3 Normalizing Events

When events are detected in text, they define the relationships between
textual entities with a standardized set of argument roles and event types.
However, as long as the named entities remain just strings of letters, the
events are relevant only in the context of the sentence they have been de-
tected in. Named entity normalization maps named entities, such as genes
and proteins, into higher level categories, such as all synonyms of a single
protein being detected as instances of the same molecule. With normaliza-
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tion, events can be abstracted away from the individual sentence, showing
which events refer to the same biological process. This is a basic requirement
for utilizing the event data for applications such as retrieving documents
describing a certain molecular process, or for joining individual events into
large interaction networks.

The simplest approach to normalizing named entities is to normalize
the strings by removing non-informative variation. For example, removal of
capitalization, hyphens or whitespace allows detection of “actin 4”, “actin-4”
and “Actin4” as the same named entity. Taking advantage of the large scale
of the PubMed event dataset, this approach was extended with prefix and
suffix removal. For multi-token named entities, the frequency of substrings
appearing on their own as named entities was used to remove non-essential
prefixes and suffixes. For example, “p53” was detected as a named entity
117,000 times but “p53 protein” only 12,000 times, therefore the “protein”
suffix could be removed, normalizing these into the same higher level concept
“pb3”. On the other hand, the substring “capsid” appeared on its own as a
named entity only seven times, but as part of “capsid protein” 2,000 times,
indicating that this suffix should not be removed.

Using such normalization techniques, the original set of 19.2M events
extracted from PubMed could be reduced to 4.5M normalized events. The
most common normalized event was Expression(Theme: “Insulin”) with 59,821
instances in the dataset. While single-argument events can be useful when
searching for processes involving a specific gene or protein, generally more
important are the events that describe complex relations linking together
two or more genes or proteins. The most common multi-argument event
was Positive-requlation(Cause: “GNRG”, Theme:Localization(Theme: “LH”)
with 699 instances. This describes the process where gonadotropin-releasing
hormone affects the localization of luteinizing hormone, a signaling molecule
important in human reproduction.

Ultimately, string-based normalization is a very limited approach for de-
termining the identity of biomolecular named entities. Genes and proteins
can be referred to with a wide variety of synonyms that can not be detected
by string normalization, such as “APO2L” and “TRAIL” for the gene “TN-
FSF10”. On the other hand, large bioinformatics databases such as Ensembl
and UniProt define unique ids for most of the known genes and proteins.
Linking to such ids is important not only for normalization, but also for
connecting text mining results to other bioinformatics resources.

Assigning database ids to gene and protein mentions is known as Gene
Name Normalization and has been the subject of a task in the BioCre-
ative III shared task (Lu et al., 2011). The GenNorm system of Wei and
Kao (2011) demonstrated good performance in this task and has now been
applied also to the normalization of our PubMed-scale event data in a col-
laboration project (Van Landeghem et al., 2013a).
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In addition to normalizing to database ids, normalization methods based
on gene homology have been developed by Van Landeghem et al. (2013a).
Gene families often exhibit similar functionality across multiple species,
making this normalization useful when events are used to extract informa-
tion from literature to aid in determining the functionality of yet unknown
proteins.

4.4 Applications for Events

The PubMed-scale event mining project produced a large, multi-domain
dataset, potentially useful for several bioinformatics applications. The fol-
lowing use cases have enabled event extraction to help other bioinformatics
research, and have also been important in further evaluating the extracted
PubMed-scale event data.

4.4.1 The EVEX Database

Running TEES on 18M PubMed citations produced a dataset of 19.2M
events. Even when converted to the BioNLP Shared Task format, removing
parse and sentence splitting information, the resulting dataset takes 6.3Gb
of disk space. Moreover, running experiments, even a simple search, on
this dataset can be prohibitively slow, as just reading through all the files
can take hours depending on the computer. As is, the dataset is thus hard
to utilize for other text mining work, and certainly unusable for biologists
looking for the information contained in it.

The EVEX project was founded to address these issues. First, the event
data was converted into a MySQL database, allowing fast queries and further
processing such as normalization, providing a basis on which to build novel
text mining work (Van Landeghem et al., 2011). Second, a web interface!
and tools like the Cytoscape plugin have been developed to provide a way
for experimental biologists to use the data (Van Landeghem et al., 2012b;
Hakala et al., 2012).

The EVEX database has been used in collaborative projects to provide
text mining support for biological research. In a study on FE. coli NADP(H)
metabolism, EVEX has been used to extract candidate genes for regulators
of this process (Kaewphan et al., 2012). By detecting candidate genes from
PubMed-scale event data, text mining can save time-consuming laboratory
work by selecting the most promising candidates for experimental valida-
tion. EVEX has also been applied to the study of Arabidopsis thaliana,
combining text mining with information from experimental databases on

"http://evexdb.org/
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protein—protein and regulatory interactions, building an integrative resource
for domain-specific knowledge (Van Landeghem et al., 2013b).

4.4.2 Pathway Construction

Signaling pathways refer to the complex network of biochemical interactions
that control the function and activities of cells. Depicted as interconnected
graphs, signaling pathway diagrams, such as the ones in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) are used
to give a detailed overview of molecular processes. Such signaling pathways
are also a central tool in systems biology, the study of large-scale, complex
biochemical and cellular interactions.

While constructing a signaling pathway model certainly requires much
more than listing the sum of known interactions between its components,
requiring interpretation and high-level filtering of information to separate
the essential interactions from the superfluous ones, there has been some
research into using text-mined events for automatically generating such net-
works.

With the PubMed-scale dataset, we visualized a subset of the original
1% dataset, focusing on interactions around interleukin-4 (Paper III). Using
string-level named entity normalization, we merged individual events into a
network, following the approach of Saeys et al. (2009). The event dataset
covering one percent of PubMed produced a network with one major con-
nected component consisting of 88,477 of the 232,760 nodes (38%), with
the next largest connected component having only 95 nodes. We visualized
the network of all proteins directly connected by an event to interleukin-4,
already consisting of 19 proteins. Adding more distant connections would
have increased the complexity of the network beyond easy readability.

Having finished processing the full PubMed citations dataset, we again
experimented with pathway construction (Bjorne et al., 2010b). To visual-
ize a manageable subset of the 19.2M events, we chose a subgraph of the
well-known apoptosis signaling pathway, using the KEGG human apoptosis
pathway (entry hsa04210) diagram as a template. From the KEGG path-
way, we picked the interacting proteins and lists of their synonyms. From
the event data, we extracted all named entities whose normalized strings
corresponded to these synonyms, and visualized the network of automati-
cally extracted events connecting them (See Figure 4.1). Due to the proteins
being connected with an amount of events too large to visualize with clarity,
we chose a cutoff where for each pair of proteins, 4 of that protein’s most
common interactions, plus 4 of the most common interactions for that pro-
tein’s known KEGG interaction partners were visualized. Thus the resulting
graph emphasizes that almost all of the KEGG interactions can be found in
the event data (often with correct types, too), but it should also be noted
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Figure 4.1: A subset of the KEGG human apoptosis pathway (entry
hsa04210) reconstructed from events automatically extracted from 18M
PubMed abstracts and titles. The event types are (P)ositive regula-
tion, (N)egative regulation, (R)egulation, gene (E)xpression, (B)inding,
p(H)osphorylation, (L)ocalization and protein (C)atabolism. Events cor-
responding to KEGG interactions are highlighted with a light grey back-
ground. The figure shows a subset of events, selected based on their fre-
quency or correspondence to known KEGG interactions. (From Bjorne et al.
(2010Db)).

that the large number of interactions falling outside the scope of the pathway
demonstrates the issues of using event data for pathway construction.
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In particular, it should be noted that text mined events are not necessar-
ily biochemical interactions. While the KEGG apoptosis signaling pathway
defines the chain of detailed molecular interactions leading from TNF« bind-
ing to NF-kB, a research paper can state that TNF« positively regulates
NF-«kB, the most common event in the extracted pathway. Such indirect
events can define higher level semantic relations, highlighting the impor-
tant nodes of complex regulatory pathways. Whether these non-physical
relations are useful or harmful in constructing pathways is a question that
requires more research.

The event types in the apoptosis pathway demonstrate the value of a
detailed event scheme. For the immediate regulation of NF-kB, we can see
in the lower left corner of Figure 4.1 that IKK both phosphorylates (H) and
upregulates the catabolism (C) of IkBa. This corresponds to the KEGG
pathway, and the known fact that IKK (the IkB kinase) phosphorylates
IkBa (the inhibitor of kappa B), leading to its degradation after detachment
from NF-kB.

Without IkBax NF-kB is activated, shown also in the indirect positive
regulation events connecting IKK and NF-kB, although IKK is not known
to bind NF-kB as a false positive event claims. The events also show IkBax
to bind and regulate (also both positively and negatively) NF-kB, which
can be considered correct, as depending on its phosphorylation state IkBo
either inhibits NF-kB or allows its activation by detaching from it.

The event counts for the interactions in the IKK-IkBax—NF-«kB regula-
tion system are shown in Table 4.1. Considering that events are extracted
from all PubMed abstracts and titles, the numbers are perhaps surprisingly
low, especially taking into account how central and much-studied the apop-
tosis pathway is. We have also later observed that extracted events gener-
ally provide good coverage only for the most well studied aspects of biology
(Bjorne et al., 2012b). However, by processing also full-text articles, both
the scope and nature of event coverage can be extended (Van Landeghem
et al., 2013a).

Having gene names normalized to database ids makes pathway construc-
tion considerably easier. With the EVEX database, we analyzed the imme-
diate regulatory context of the tumor suppressor protein pb3 from KEGG
pathway hsa04115 (See Figure 5, Van Landeghem et al. (2013a)). For this
experiment, we manually evaluated the source text for the event with the
highest confidence score for each interaction. All of these events are cor-
rectly extracted and correspond to the KEGG interaction. Moreover, we
observed that for eight out of the nine interactions, the highest confidence
event was found in a PMC full-text article, highlighting the importance of
text mining access to full texts, not just titles and abstracts.

Event-based pathway construction has been studied also in the EVEX
project, in construction of an E. coli NADP(H) metabolism regulation net-
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Event Count | Process
Positive-regulation(c:IKK, t:Catabolism(t:IkBw)) 15 A
Positive-regulation(c:IKK, t:Phosphorylation(t:IkBe)) 14 A
Binding(t:IkBa,t:NF-«kB) 124 B
Negative-regulation(c:IkBot,t:NF-kB) 21 B
Positive-regulation(c:IkBa,t:NF-«kB) 17 B
Regulation(c:IkBo,t:NF-kB) 16 B
Positive-regulation(c:IkBa,t:NF-kB) 43 C
Positive-regulation(c:IkBa,t:Positive-regulation(t:NF-kB)) | 28 C
Binding(t:IkBa,t:NF-«B) 29 C

Table 4.1: Event counts for the IKK-IkBax-NF-kB events shown in Fig-
ure 4.1. The events correspond to the three processes where A) IKK phos-
phorylates IkBa, initiating its breakdown, B) IkBa negatively regulates
NF-kB by binding it and C) the overall result is positive regulation of NF-
kB by IKK. Event cause and theme arguments are indicated with ¢ and
L.

work (Kaewphan et al., 2012), and in building the network-analysis tool
CyEVEX (Hakala et al., 2012). Using events to connect pathways to sup-
porting literature has also been evaluated in the PathText project (Miwa
et al., 2013). Recent trends in use of text mining for biological network
construction are reviewed by Li et al. (2013).

4.4.3 Protein Function Prediction

The Automated Function Prediction Special Interest Group (AFP-SIG) or-
ganizes the Critical Assessment of protein Function Annotation algorithms
(CAFA) shared task. The goal of the task is to predict the function of as-yet
unknown proteins, using varied bioinformatics methods, producing a set of
Gene Ontology annotations. When participating in the 2010 CAFA task
using machine learning methods, we also evaluated the suitability of text
mined event data for protein function prediction. For our basic SVM clas-
sification model we used precalculated GO annotations produced using the
Blast2GO tool (Conesa et al., 2005), provided by SIMAP (Similarity Matrix
of Proteins)?, Uniprot information on protein structures and families®, Uni-
Gene? information on tissues where the protein is expressed and a feature
marking whether the protein is from one of the seven CAFA target species.
As text mining features, all extracted events for each protein were converted
into additional features by defining all paths in such event structures leading
to the leaf-node protein named entity.

’http://boincsimap.org/boincsimap/
3http://www.uniprot.org/docs/similar
“http://www.ncbi.nlm.nih.gov/unigene
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With performance measured as F-score, microaveraged over the 385 pre-
dicted GO terms, our basic model achieved a performance of 52.9%. Text
mining features alone had a performance of 9.4%, but combining them with
the basic model reduced performance to 50.9%. The all-positive baseline
for the dataset was 0.7%, and the baseline of using Blast2GO alone was
47.7%. Not too many conclusions should be drawn from these results, as
our overall system performance was very low, and due to time constraints
not much feature engineering was done. Regardless, the performance of text
mining features alone clearly exceeds the all-positive baseline, and hints that
the event data could contain information usable for computational biology
tasks like protein function prediction (Bjorne and Salakoski, 2011a; Radivo-
jac et al., 2013).

4.5 Open-sourcing an Event Extraction System

One of the great advantages in computer science, compared to many other
fields of natural science, is the ease of sharing research. While a biochemistry
laboratory might occasionally send cell lines or plasmids to a collaborating
laboratory, in computer science it is possible to share all the research with
everyone interested. Open sourcing research code is today easier than ever
before, thanks to the internet and public project management tools devel-
oped by the open source movement. In the TEES project, it has always been
the goal to produce software not just for performing a single experiment, but
also for use by the larger BioNLP community.

TEES 1.0 was published on May 10th 2010, following the 2009 BioNLP
Shared Task. It was released as a simple zip-archive on the project home-
page. Being written largely in Python it was reasonably flexible regarding
where it could be used, but was still very much lacking as generally usable
research software.

TEES 1.0 was built around the concept of a procedural pipeline. In
an approach somewhat similar to well-known programs such as MatLab or
the R programming language, the user was expected to write simplified
Python programs, defining a set of commands to perform the desired event
extraction experiment. Example pipelines for the BioNLP’09 Shared Task
were provided with the software, and while these supported command line
parameters for training on different datasets, in practice the interface and
the program were largely usable only in the specific context of the BioNLP’09
Shared Task.

Participating in the 2011 BioNLP Shared Task the goal was to gener-
alize TEES and produce a system that would be easily applicable not only
to all the BioNLP’11 tasks but also to event extraction challenges beyond
this shared task. TEES being the only system to participate in all eight
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BioNLP’11 tasks (and their subtasks), while also achieving best performance
in four of the tasks, indicated that the program had been successfully gen-
eralized beyond the original version.

Following the BioNLP’11 Shared Task, it became again pertinent to
open source the research code. However, following the 1.0 approach and
just putting a zip-archive on a web page seemed limited considering the op-
portunities of open source, and a potential hindrance for providing ongoing
support and updates. Therefore, to publish the BioNLP’11 research we de-
cided to produce a full open source project, including code repository and
history, as TEES version 2.0. GitHub® was chosen as a free and full-featured
platform for distributing this and later versions.

The goals for the 2.0 release were to take the generalization approaches
developed for event extraction in the BioNLP’11 Shared Task and further
generalize them from a software engineering perspective of usability, appli-
cability and ease of maintenance. Furthermore, the interface was to be im-
proved and simplified, thus minimizing and later in version 2.1 often avoid-
ing the need for TEES users to write any Python code. Finally, program
usability, especially for new users, was to be improved by automating the
configuration process (including that of required external programs), cen-
tralizing the multitude of configuration options and providing reasonable
default settings where ever possible.

Several software toolkits exist for natural language processing, such as
the Apache UIMAS, GATE” and NLTK®. While an existing library could
have reduced the need for framework code, the rapidly changing require-
ments of the experimental work TEES was developed for, such as the evolv-
ing event extraction tasks or our use of specialized cluster environments
for large-scale processing of PubMed-data, meant that a pure Python pro-
gram not requiring installation or external libraries was the safest choice for
ensuring maximum flexibility.

4.5.1 Generalizing Research Code

Scientific software faces a dilemma regarding usability. In experimental re-
search, it is highly important that the code is as flexible as possible. Being
able to modify and manipulate every single step in the program is vital, so
that new ideas and avenues of thought can be freely pursued without the
software becoming a restriction. On the other hand, flexibility comes at a
price: It tends to mean more options and settings, turning a clean interface
into a jumble of choices.

Shttp://github. com/
Shttp://uima.apache.org/
"http://gate.ac.uk/
®http://nltk.org/
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The TEES 1.0 pipeline files, relatively simple in the original version, had
become far too complex during the development of the BioNLP’11 Shared
Task. Writing a separate pipeline for each experiment proved too time con-
suming, introduced the possibility of further errors and most importantly
reduced the ability to re-use applicable code. A famous aphorism of com-
puter scientist David Wheeler goes: ” All problems in computer science can
be solved by another level of indirection.” While too many levels of indirec-
tion can ultimately raise their own issues, TEES was clearly suffering from
the common case of too much low level functionality being exposed on the
outside. The procedural approach to defining experiments had originally
been intended to give the user maximum control over the whole process of
event extraction. Unfortunately it resulted in a system with dozens of inter-
nal data structures and variables managed by the user. An object oriented
approach was needed to compartmentalize and modularize the code.

TEES had been written as a largely object oriented system from the
beginning. It was only the outermost, user facing layer that was fully pro-
cedural, so the first step was to restructure this code, namely the pipelines,
into an additional, outer level of classes managing the process of event ex-
traction. A Detector-baseclass was developed to encapsulate the whole pro-
cess of event extraction, including example generation, machine learning,
evaluation and production of the final output. The object oriented interface
allowed the system to hide many implementation details from the user, while
still allowing detailed modification via inheritance or composition.

The object oriented interface provided the means to encapsulate over-
whelming complexity in the program code, but this complexity extended
also into the data files used by the system. In TEES 1.0, the system could
be trained on new datasets, but to distribute the results of this training,
the user was required to provide an array of files that included not only the
SVM models but also the files for class and feature identifiers, not to men-
tion the parameters required to replicate the experiment. To “encapsulate”
the datafiles, a generalized model-file approach was used. Following the ex-
ample of well-known machine learning systems such as LibSVM (Chang and
Lin, 2011) or SVMLight (Joachims, 1999), TEES was restructured to store
all the datafiles it needed in a container file, a model. Regardless of the
number of machine learning systems and other steps used, training TEES
2.0 produces just this one self-contained model file which can be used to
classify unannotated text. As with standard machine learning programs,
the optimized classification parameters are also stored in this model. For
more general settings, such as the paths to installed executable programs,
the approach of the Django-project? was followed. Such settings are defined
as variables in a user-editable Python-file, accessible for the TEES program

“https://www.djangoproject.com/
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via an environment variable or a command line parameter.

In research, replicability of results is highly important. In TEES 2.0,
the full standard on-screen output streams are saved in log files, producing
a record of the experiments done. In recording such data, it has been our
experience that it is better to simply save everything, as making a choice on
the information to record can too often miss the data that turns out to be
important later.

Already for the BioNLP’09 version TEES was built to take advantage of
parallelization via cluster computing, but this was implemented as a system
very specifically built for training the SVM classifier. In TEES 2.0, also the
remote processing interface is generalized, allowing any subprocess to be
transparently run on either the local machine or a remote cluster, using ei-
ther simple UNIX process control tools or a job management system such as
SLURM® (Jette et al., 2002). With this generalization, the same interface
used to train classifiers in parallel was used to build a batch-processing sys-
tem for processing large-scale datasets like the PubMed dataset introduced
in Chapter 4.

The project to open source and generalize the TEES program shows how
research questions are often instances of a more general problem. When
building a solution for a particular task, it is easy to focus on the specifics
and overlook the common features among related tasks. The schedules of
the BioNLP’11 and BioNLP’13 Shared Tasks meant there was no time to
study each task in detail, if results were to be submitted for every task.
This forced the generalization of the program to enable it to be more easily
applied for new contexts, but as the competitive results indicate, this turned
out to be a good approach also in terms of performance.

4.5.2 TEES Use Cases

TEES 2.0 was published on August 1st, 2012. In the one year period follow-
ing its publication, TEES was installed over 100 times'!. TEES has been
used for producing events for the EVEX database (Van Landeghem et al.,
2011) and has been integrated in the U-Compare project, used for analyzing
system combination impact on event extraction performance (Kano et al.,
2011).

Several research groups have also used TEES without the direct partici-
pation of University of Turku. The BioContezt system built on both TEES
and EventMine to produce an online event database (Gerner et al., 2012).
Likewise, TEES and EventMine were used to produce a dataset on human
immunodeficiency virus type 1 (HIV-1) protein interactions (Jamieson et al.,

Ohttps://computing.11lnl.gov/linux/slurm/
11 As determined by the number of downloads for the model package, downloaded during
installation
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2012). Neves et al. have re-trained TEES on a corpus of gene expression
events relating to human embryonic and kidney stem cell research. Auto-
matically extracted events are manually verified and used in curating the
CellFinder database'? (Neves et al., 2013). The NER tool Cocoa'® (Ra-
manan and Nathan, 2013) has been integrated into the TEES preprocessing
pipeline, providing an interface for processing text via the Cocoa WebAPI.
The DigSee'* search engine uses TEES to detect evidence sentences from
MedLine abstracts through extraction of events relating genes to cancer
(Kim et al., 2013a). OncoSearch!® is a search engine for retrieving MedLine
abstracts that describe whether a gene expression change relates to can-
cer progression or regression. It uses TEES to extract the gene expression
change events (Lee et al., 2014). TEES has also been used in the implemen-
tation of a feature selection strategy for biomedical event extraction (Xia
et al., 2014).

For the BioNLP’13 and DDIExtraction’13 Shared Tasks we used TEES
to produce publicly available, pre-calculated predictions for the task datasets.
This way, using TEES when participating in these shared tasks was possi-
ble also without running the program (Bjorne et al., 2013; Segura-Bedmar
et al., 2013; Bjorne and Salakoski, 2013). TEES was used as a part of other
entries in both the DDIExtraction’13 and BioNLP’13 shared tasks (Thomas
et al., 2013; Hakala et al., 2013)

2http://www.cellfinder.org
Bhttp://npjoint.com
Mhttp://gcancer.org/digsee
http://oncosearch.biopathway.org
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Chapter 5

Approaches to Event and
Relation Extraction

In this chapter we introduce related work relevant for the development of the
Turku Event Extraction System described in chapters 2-4. Both event ex-
traction and the related field of PPI extraction are discussed. Community-
wide shared tasks have been organized for both approaches, providing a
unique opportunity to evaluate the merits of different approaches in an ob-
jective and balanced setting.

5.1 Event Extraction in the BioNLP’09 Shared
Task

While event-type annotations had been available for a while before it, the
BioNLP’09 Shared Task was the first time event extraction became widely
used in the BioNLP field. The BioNLP’09 Shared Task had 42 teams regis-
tered as participants and 24, of which two remained anonymous, submitted
final results (Kim et al., 2009). The participants used a variety of parsers
and other syntactic preprosessing tools. For the event extraction task itself,
of the seven best performing systems, only one, the University of Concordia
entry, did not use machine learning for either trigger word or argument de-
tection. Already in the 2009 task, external resources like MetaMap, Gene
Ontology and WordNet were used by 11 out of the known 22 teams, but
there didn’t appear to be any clear correlation between the use of such re-
sources and system performance. Best performance was achieved by TEES
with an F-score of 51.95%.

Following the Shared Task, the organizers used the final submissions
to combine predictions into system ensembles. Different weighted voting
schemes and numbers of systems were tested, with the best result of 55.96%
(a 4 percentage point improvement over the best system) achieved by com-
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bining results from the top six systems (Kim et al., 2009). The approach of
system combination was further studied by Kano et al. using the UCompare
framework (Kano et al., 2011) and was used in the BioNLP 2011 Shared
Task by Riedel et al. (2011).

The three systems placing 2nd to 4th all reached F-scores within 2.31
percentage points of each other. The JULIE lab entry combines machine
learning with a stepwise event extraction process (Buyko et al., 2009). This
approach, also used by TEES, is one of the most commonly used approaches
for biomedical event extraction today. The 2009 JULIE lab system used
a dictionary-based approach for trigger detection and machine learning for
event argument detection. Interestingly, the system also incorporates a trim-
ming step where dependency parses are modified with a set of rules before
being used as features for machine learning techniques such as the graph
kernel, aiming to produce a syntactic graph closer to the semantic task of
argument detection. The JULIE lab system exhibited high performance at
46.66% F-score and placed second in the 2009 task.

The University of Concordia system reached 3rd place with 44.62% F-
score, and was notably the only system among the top seven to use no
machine learning (Kilicoglu and Bergler, 2009). Trigger detection is based
on dictionary matching, taking into account also the part-of-speech tag of
the word. As with TEES, event triggers are limited to a single token in
the Concordia system, but instead of always using the syntactic head to-
ken, the most semantically relevant token is used as the representation for
multi-token triggers. Event argument detection is based on rules determin-
ing valid dependency paths, produced from a simplified dependency parse.
The detailed analysis of syntactic structures required for defining the extrac-
tion rules of this system provides also valuable insight into the relationship
between syntactic patterns and semantic relations.

Riedel et al. (2009) present a Markov logic based approach for event ex-
traction, the “MLN(thebeast) ¢, reaching 4th place at 44.35% F-score. This
system uses a joint probabilistic model for predicting the entire event struc-
ture at the same time. In this model, e.g. the type and number of event ar-
guments can influence the event type, in contrast to stepwise models where
keywords are fully predicted before a separate event argument prediction
step. Riedel et al. use Markov logic, a Statistical Relational Learning lan-
guage, to define the model, allowing the authors familiar with this tool to
rapidly test and develop their system. The Markov logic graph model re-
quires the presence of all potential nodes for predicting relations between
them, so, similarly to TEES graph merging/unmerging, proteins and event
triggers are mapped to syntactic tokens and a final event network is re-
constructed with a post-processing algorithm. The joint model that allows
event argument predictions to affect prediction of triggers and vice versa is a
promising, and still today not widely utilized approach to event extraction.
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Following the BioNLP Shared Task, in 2010, Miwa et al. introduced the
EventMine system, reaching a new record performance of 56.00% F-score on
the BioNLP 2009 test set (Miwa et al., 2010). EventMine followed the three-
step approach introduced by TEES (trigger detection, argument detection
and unmerging) but implemented also the third step as a classification task.
The authors evaluated five different syntactic parsers and showed that using
an ensemble of parsers for feature generation can improve event extraction
performance.

5.2 Event Extraction in the BioNLP’11 Shared
Task

The theme of the BioNLP’11 Shared Task was generalization, expanding
the event extraction approach to various new domains. In addition to the
primary GENTA task, which forms the direct continuation of the 2009 task,
seven additional corpora were introduced. Despite differences in annota-
tion targets, the basic event extraction task remains the same regardless
of domain. In addition to events, the 2011 shared task also included bi-
nary relation extraction tasks, the Entity Relations (REL), Bacteria Gene
Renaming (REN), Bacteria Biotopes (BB) and Bacteria Gene Interactions
(BI) tasks. The BioNLP’11 Shared Task had 24 groups participating, the
same amount as the 2009 one (Kim et al., 2011a; Tsujii et al., 2011). The
Turku Event Extraction System placed first in four out of eight tasks, the
Epigenetics, Bacteria Gene Interactions, Entity Relations and Bacteria Gene
Renaming tasks.

The primary GENIA task was extended by including full papers in addi-
tion to the 2009 abstracts, thus providing an important evaluation of system
performance in a more realistic text mining context. Turku Event Extrac-
tion System placed 3rd in this task with an F-score of 53.30%. The best
performance was achieved by team FAUST, reaching an F-score of 56.04%.
Second place went to the University of Massachusetts with an F-score of
55.20% (Kim et al., 2011b).

The University of Massachusetts (UMass) entry introduced a joint model
based on dual decomposition (Riedel and McCallum, 2011). While reaching
2nd place on its own, this model formed also a part of the best perform-
ing FAUST system (Riedel et al., 2011). The FAUST system combines the
UMass entry with the event parsing Stanford entry. Due to the performance
gap between the systems, the authors discarded voting and reranking as
model combination techniques, and instead used stacking, where the predic-
tions of the lower performance Stanford system were included in the UMass
system. The Stanford system predictions are introduced as features for the
UMass system, allowing the stacking system to determine the optimal use
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of the stacked system. The resulting joint system demonstrated an increase
of 0.84 percentage points over the UMass system used on its own. On the
similar Epigenetics (EPI) and Infectious Diseases (ID) tasks, increases of
1.51 and 2.17 percentage points over UMass alone were demonstrated, re-
spectively.

The Stanford system, used also in FAUST, shows an interesting approach
of adapting the technology of dependency parsing for event extraction (Mc-
Closky et al., 2011a,b). The authors convert the event annotation to de-
pendency trees, and use the MSTParser for predicting new ones. While
the system uses a dependency parser for extracting semantic information, it
also utilizes a separate syntactic parsing step (The BLLIP parser, David Mc-
Closky’s biomodel and conversion to Stanford dependencies, the approach
also used in TEES) for producing features for the semantic parsing step.

Expanding from the GENIA task, the BioNLP’11 Shared Task intro-
duced two new tasks with similar corpora, the Epigenetics and the Infectious
Diseases tasks (Ohta et al., 2011; Pyysalo et al., 2011a). FAUST placed first
also in the Infectious Diseases task and second in the Epigenetics task. On
the EPI task, TEES had a performance 18 percentage points higher than
FAUST. This task specific performance difference is due to TEES being the
only system that predicted additional (non-core) arguments. On the alter-
native “core” metric, which ignores additional arguments, TEES lead was
only 0.27 percentage points.

On the ID task TEES placed 5th, 13.02 percentage points behind the task
winning FAUST system. After the shared task we analyzed the results and
noticed that TEES ignored ID task specific zero-argument process events.
The four top-performing systems on the task also used the GENIA task
corpus as additional training data, due to its similarity with the ID task.
Implementing these approaches in TEES increased the F-score to 53.87%, a
result 1.72 percentage points behind the FAUST shared task winning result.
In light of these findings that show much of the large performance differences
among the top systems being due to minor implementation issues, it can be
said that the GENIA, Epigenetics and Infectious Diseases tasks were of
roughly equal complexity, and that the top performing system for any one
of these tasks could most likely be successfully adapted to a different one
with limited optimization.

The Bacteria Track tasks, Bacteria Biotopes (BB) and Bacteria Gene
Interactions (BI), introduced corpora more drastically different from the
other main task corpora (Bossy et al., 2011; Jourde et al., 2011). These
corpora were smaller, consisted largely of relations, and the BB corpus had
a massive 86% of events crossing sentence boundaries, compared to less than
10% on all other corpora.

The best performing system on the Bacteria Biotopes task was by team
INRA Bibliome, with an F-score of 45% (Ratkovic et al., 2011). Their Alvis
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system uses the BioYatea program to extract candidate entities and assigns
them to the BB task ontology. External dictionaries are used to improve
term detection. Relations between entities are predicted with a rule-based
system. The Alvis system also incorporates an anaphora resolution system,
and the authors demonstrate that this accounts for almost 13 percentage
points of their performance, due to the large number of sentence crossing
relations in the BB corpus.

The supporting tasks introduced several diverse text mining targets. The
Entity Relations task concerns detection of protein super- and substructures,
annotated as binary relations (Pyysalo et al., 2011b). The Bacteria Gene
Renaming defines also a pairwise relation extraction task (Jourde et al.,
2011). The Coreference task is the most different one compared to the
other tasks, concerning the detection of syntactic co-reference structures as
opposed to semantic events or relations (Nguyen et al., 2011).

The best-performing system on the Coreference task was developed by
the University of Utah (Kim et al., 2011c). They present an approach based
on using the Reconcile system of Stoyanov et al. (2010). The machine-
learning based system was not originally developed for the biomedical do-
main, so in the 2011 task the authors introduce several adjustments making
it more suitable for biomedical text. Most importantly, a mention detector
based on conditional random fields was trained on the biomedical text of the
Coreference task corpus. The first place achieved with the Reconcile system,
a tool that has previously achieved good results on coreference resolution,
highlights the importance of using dedicated, high-performance systems for
the complex syntactic task of coreference resolution also in the biomedical
domain.

5.3 Event Extraction in the BioNLP’13 Shared
Task

The BioNLP’13 Shared Task continued the BioNLP’11 pattern of presenting
a number of structurally similar event extraction tasks that mostly differ
in the domain of the annotations. Additionally, the GRN13 task results
were evaluated as an interaction network and the Bacteria Biotopes subtask
1 concerned named entity recognition and categorization (Nédellec et al.,
2013).

The primary GENIA task was redesigned, with the co-reference anno-
tation included in it. The 2013 GENIA task corpus focused on full text
articles (Kim et al., 2013b). The best performance in the task was achieved
by team EVEX, building on the publicly available TEES 2.1 predictions
(Hakala et al., 2013). The EVEX entry re-ranks the output and using a
cut-off threshold aims to remove false positives, increasing performance by
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0.23 pp over the second ranking TEES 2.1 baseline. The re-ranking system
is machine-learning based, using support vector machines.

The third highest performance in the GE13 task was achieved by the
BioSEM system of Bui et al. (2013), which extends their work published
in the interim of the 2011 and 2013 BioNLP Shared Tasks (Bui and Sloot,
2012). This very interesting system achieves high performance both in terms
of speed and F-score. The system is based on automatically learned syn-
tactic patterns for events, and uses only shallow parsing. Each event in the
training data is mapped to the smallest available syntactic container, such
as a chunk, a phrase, or a clause. The syntax within this container is used
to automatically learn a new pattern corresponding to an event annotation.
When predicting new events, the system first detects potential event trig-
gers based on a dictionary of known trigger words. Full events are then
predicted by matching the syntactic pattern around the trigger against the
set of patterns learned from the training data.

The BioSEM system achieved an F-score of 50.68 on the GE13 task, only
0.29 pp behind the task winning EVEX entry. Most remarkably, the system
is highly computationally efficient: on a regular desktop machine, BioSEM
processes the GE13 test set in 11 seconds, thus taking an average of 3.4 ms
to process one sentence. By comparison, TEES or the 2011 GENIA task
winning UMass system require from 1040ms to 1400ms per sentence with
parsing included (Bui and Sloot, 2012).

The PC13 (Pathway Curation) and CG13 (Cancer Genetics) tasks present
two new event corpora (Ohta et al., 2013; Pyysalo et al., 2013). The
NaCTeM EventMine system placed first on the PC13 task (with 52.84%
F-score) and second on the CG13 task (at 52.09% vs. TEES 2.1 55.41%)
(Miwa and Ananiadou, 2013). EventMine was introduced in 2010 and with
a pipeline approach similar to TEES it achieved the highest result on the
2009 GENTA corpus (Miwa et al., 2010). In the BioNLP’13 Shared Task the
current version of EventMine was applied largely as-is to the CG13 task, but
in the PC13 task used a stacking approach that utilized information from
seven external corpora.

While the GRN13 task resembled the other tasks with its corpus, its
evaluation was completely different: The goal was to build an overall in-
teraction network from the extracted events and relations, and for ranking
the entries the predicted networks were evaluated using the Slot Error Rate
(SER) (Bossy et al., 2013a). All participants reached the <1.0 SER expected
from decent predictions, and the best SER score of 0.73 was achieved by the
University of Ljubljana (Zitnik et al., 2013). The system uses linear chain
conditional random fields and a set of task-specific processing rules to detect
events and relations from the corpus texts. The second highest SER score
of 0.83 in the GRN13 task was achieved by the KU Leuven team’s system,
which bypasses event extraction and directly predicts with SVM:s the in-
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teraction pairs used to construct the final network (Provoost and Moens,
2013).

The GRO task concerns the detection of events from a corpus with a
very large number of named entity and event types derived from the Gene
Regulation Ontology (Kim et al., 2013c). TEES 2.1 was the only participant
in this task with a rather low F-score of 21.50% which is to be expected as
the multi-class classification approach of TEES is particularly badly suited
for corpora that have very many distinct types to predict.

The 2013 Bacteria Biotopes task was divided into three subtasks (Bossy
et al., 2013b). Subtask 1 differs greatly from the rest of the BioNLP’13
Shared Task, as it is a named entity recognition and categorization task.
Boundaries of bacteria habitat entities must be detected from text, and for
each entity one or more concepts from the 1,700 term OntoBiotope ontology
must be assigned. Submissions were evaluated with the SER metric, with
the IRISA-TexMex system achieving the best SER score of 0.46 (Claveau,
2013). The IRISA-TexMex approach to subtask 1 has two main steps. In
the first step, almost direct matches for ontology terms and terms in train-
ing data are searched for, followed by a second step where noun phrases
are matched to known examples from the training data using The k-Nearest
Neighbors algorithm (kNN). In subtask 2, IRISA-TexMex uses shallow lin-
guistic information and a kNN classifier to detect relations between potential
interacting pairs of named entities, reaching second place with an F-score of
40%, only 2 pp lower than the first placing TEES 2.1.

5.4 Relation Extraction

Biomedical event extraction was developed as a more detailed text mining
approach building on the research on pairwise relation extraction. These
formalisms have also been used in parallel, as the presence of combined event
and relation annotations in several BioNLP Shared Task corpora shows.
TEES is built on techniques developed in the graph kernel project, the
University of Turku pairwise text mining system, and as such builds on
much of the work done on pairwise text mining. Even before the graph kernel
project, our first use of a biomedical text mining tool was an implementation
(Pyysalo et al., 2008) of the RelEx system of Fundel et al. (2007), a purely
rule-based algorithm for detecting binary relations from dependency parses.

A multitude of systems and approaches has been developed to address
binary relation extraction in the past decades. In recent years, the BioCre-
ative Shared Task has formed a similar focal point on PPI extraction as
the BioNLP Shared Task on event extraction. The BioCreative tasks cover
several aspects of biomedical information extraction. BioCreative II Task
3 had the topic of “Extraction of protein-protein interactions from text”.
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Generally, the task concerns a higher abstraction level than the BioNLP
Shared Task where individual statements are recovered. The BioCreative
IT Task 3 defines four subtasks, the Interaction article subtask (IAS) where
articles are classified as relevant for PPI or not, the Interaction pair subtask
(IPS) where PPI pairs are extracted from full-text articles, the Interaction
method subtask (IMS) where experimental evidence for interactions is de-
tected and the Interaction sentences subtask (ISS) where detected PPIs are
mapped to passages of up to three sentences. Of these, the last subtask,
ISS, is closest to the approach of the BioNLP Shared Tasks. This task had
11 participants, with the best system mapping 19% of extracted passages to
manually extracted ones (Krallinger et al., 2008).

The BioCreative III shared task also had a PPI task, consisting of two
subtasks, an Article Classification Task (ACT) for detecting abstracts con-
taining PPIs and an Interaction Method Task (IMT) for extracting experi-
mental evidence. Eleven teams participated in the BioCreative III PPI task,
with the best AUC of interpolated Precision/Recall (iP/R) curve being 68%
and 53% for the ACT and IMT subtasks, respectively (Krallinger et al.,
2011).

The DDIExtraction2011, First Challenge Task: Drug-Drug Interaction
Extraction, was a text mining challenge for detecting mention-level drug-
drug interactions. These interactions are comparable to PPI annotated in
corpora such as AIMED!, and provide an interesting point of comparison
for the similar scope of the BioNLP Shared Tasks (Segura-Bedmar et al.,
2011). Ten teams participated in the task, with the best result achieved
by team WBI of Humboldt-Universitat Berlin using an ensemble of several
kernel methods with a case-based reasoning (CBR) system using a voting
approach (Thomas et al., 2011).

The next DDIExtraction task was organized as part of the SemEval
workshop in 2013, including also named entity recognition (Segura-Bedmar
et al., 2013). For the DDIExtractionl3 drug-drug interaction (DDI) ex-
traction task, type and direction were included in the relation annotation,
moving the task closer to the semantic complexity of the BioNLP Shared
Tasks. Best performance for the DDI extraction task was achieved by team
FBK-irst of Fondazione Bruno Kessler, who introduced a filtering step based
on negation cues and named entity semantic roles to discard likely negative
examples. For relation extraction the FBK-irst system uses a hybrid-kernel
combining a heterogeneous feature representation, the Shallow Linguistic
kernel of Giuliano et al. (2006) and the Path-enclosed Tree kernel of Mos-
chitti (2004).

Compared to event extraction, where the complexity of the annotation
often necessitates complicated multi-step machine learning setups (as de-

Lftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
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scribed in Chapter 2), pairwise protein—protein interaction extraction can
be more easily defined as a straightforward classification task, which may
have had an impact on PPI extraction systems often taking advantage of
more generalized machine learning approaches. In particular, kernel meth-
ods are often used to detect the similarity between parse structures. For
example tree kernels have been applied to comparison of parse trees (Ze-
lenko et al., 2003). The graph kernel developed by Airola et al. (2008b),
described in Section 3.2, continues to be utilized in PPI extraction work.
The Shallow Linguistic kernel is particularly interesting as it relies on shal-
low parsing alone, defining bag-of-words features based on the sets of words
before/between, between and between/after the pair of potentially interact-
ing protein mentions (Giuliano et al., 2006). A recent overview of kernel
methods used in PPI extraction is provided by Tikk et al. (2010).

5.5 Online Services

The goal in the development of many biomedical text mining systems is to
provide tools to aid end users such as bioinformaticians and biologists in
their everyday work. The easiest way to use such tools is as web services,
and several online systems have been developed in the recent years.

The most notable is of course the web service of PubMed itself, provid-
ing a search interface to this vast database of biomedical research articles?.
PubMed provides e.g. topic indexing via MeSH terms, synonym resolution
for queries, an Advanced Search system for defining detailed queries and
a subscription feature for providing updates via email on specific queries.
For many biologists, PubMed is the primary, and only tool used for finding
scientific articles.

Most biomedical text mining tools build on the PubMed database. The
1HOP system hyperlinks articles via the protein and gene names that appear
in them, producing a connected, navigable resource (Hoffmann and Valencia,
2004). Using Gene Ontology and MeSH terms, GoPubMed introduces a
knowledge-based search system (Doms and Schroeder, 2005).

For detecting statements of biomolecular relations, most online systems
are based on pairwise protein and gene interactions. The MEDIE and InfoP-
ubmed systems search PubMed via subject-verb-object patterns (Ohta et al.,
2006). The Chilibot and the TextMed tools use co-occurrence for retrieving
pairwise relationships (Chen and Sharp, 2004; Lloyd et al., 2005). The Ali
Baba service visualizes the search results as a graph (Palaga et al., 2009).
The STRING database merges together many databases of biomolecular
relationships, such as KEGG and UniProt, but includes also text mining,

2http://www.ncbi.nlm.nih.gov/pubmed/
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bringing together a multitude of sources for biomolecular interaction data
(Franceschini et al., 2013).

Following the BioNLP Shared Tasks, online services based on event ex-
traction tools have been introduced in addition to ones based on pairwise
relation extraction. The FACTA+ system integrates event data following
the BioNLP Shared Task GENIA scheme (Tsuruoka et al., 2011). The
BioContext system uses TEES and EventMine to produce an online acces-
sible event database, also following the GENIA event scheme (Gerner et al.,
2012). The EVEX database, introduced in Section 4.4.1, uses TEES to pro-
duce events following the annotation schemes of the 2011 Shared Task GE,
EPI and ID tasks (Van Landeghem et al., 2013a).
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Chapter 6

Conclusions

6.1 Contributions of the Thesis

In this thesis we evaluated the question of extracting biomedical events
defined through a complex semantic annotation scheme. A machine learning
based method was developed, based on converting the event annotations
into a unified graph format and decomposing the problem into consecutive,
atomic classification tasks. The similarity of event annotations and syntactic
dependency parses was studied in Paper I, and was later extensively utilized
in developing a feature representation for event extraction relying on deep
syntactic parsing.

These methods were tested in five community-wide shared tasks, the
three BioNLP Shared Tasks in 2009, 2011 and 2013, and the two DDIExtrac-
tion tasks in 2011 and 2013. The methods demonstrated consistently good
performance, including several first ranks achieved in each of the BioNLP
Shared Tasks. The methods were implemented as the Turku Event Extrac-
tion System, a generalized, graph-based machine learning tool. The TEES
system was published as a freely usable open source project, and has since
then been utilized in numerous text mining projects, also by teams outside
the University of Turku.

Having developed a working approach for event extraction, the suit-
ability of the method for real-world challenges was tested by using it to
extract events from the entire PubMed, the largest repository of biomedical
research articles. The feasibility of such large-scale biomedical text mining
was demonstrated, and the resulting dataset has become a starting point
for further projects that aim to provide search solutions and apply it to
bioinformatics research.

The chosen approach of performing event extraction via the three main
steps of trigger detection, edge detection and unmerging is computationally
intensive, especially with the added preprocessing of the chosen deep syn-
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tactic parsing pipeline. Nevertheless, the excellent performance achieved in
the shared tasks demonstrates the continuing validity of the approach. Ap-
plicability to the varied domain challenges introduced in the shared tasks
shows the generalizability of the system, and work on the PubMed shows
that the approach is also suitable for very large text mining tasks.

These being the contributions of the work, we will next discuss current
issues in event extraction, and present some thoughts on possible future
directions for biomedical text mining.

6.2 Ranking the Events: Relevance vs. Similarity

With the PubMed-scale event extraction project introduced in Chapter 4,
event extraction is starting to become a practical tool for information ex-
traction in the biomedical domain. In such large-scale event extraction ap-
proaches, the only metric of relevance is usually an event confidence score.
A machine-learning based event extraction system can provide a confidence
estimate for the events it extracts, but this confidence is not a metric of rel-
evance, but rather of syntactic similarity with instances seen in the training
data. Syntactically simple statements are naturally easier to detect and get
a higher confidence score, so a statement of “actin binds profilin” will likely
end up as a higher confidence event than “the nucleotide bound to actin
monomers determines the affinity for profilin”. However, this tells nothing
about the relevance of the documents retrieved.

In 1998, Google introduced a new type of search engine based on the
principle of advanced ranking of search results. Previously, internet search
engines had ranked pages based on the frequency of search terms. With
Google’s PageRank algorithm, pages could be ranked based on how many
other pages referred to them (Page et al., 1999). A page central to the con-
cept searched (e.g. a high-quality Wikipedia page) is ranked high, as many
other sources will refer to it. This provided a very insightful way of determin-
ing the relevance of the page. In a sense, the PageRank algorithm uses the
massive, distributed, human semantic analysis of all the individual people
making webpages and linking them to what they view as quality informa-
tion. Since its introduction, PageRank and other methods leveraging the
connections between documents have become essential tools in information
retrieval.

If event extraction is to be used as an information retrieval tool, it
needs to be augmented with a way to rank results by relevance. As nat-
ural language processing methods can not produce an actual understanding
of the text, the simplest approach would be in the vein of algorithms such
as PageRank, to utilize the human element for determining relevance. A
natural source for this in scientific literature is of course the citation graph
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which links together streams of research and highlights central nodes of crit-
ical importance. Unfortunately, as many aspects of scientific research, this
resource is also the property of publishing companies and not available to
the scientific community that created it.

The accessibility of PubMed abstracts and even full-text articles from
PubMed Central has provided a rich source for event extraction. However,
with advancing bioinformatics more and more biomedical research results
are published and elaborated on in dedicated databases. Results of high-
throughput experiments on e.g. post-translational modifications are often
defined only in structured supplementary tables, data not accessible through
event extraction methods (Bjorne et al., 2012b). Relevant information can
also be found in scientific blogs or resources such as Wikipedia. Thus, pro-
cessing PubMed alone will not be enough to produce a reliable gateway to
biomedical information. The general web remains out of reach for all but
the largest search-engine companies, and this state of affairs is not likely
to change in the foreseeable future. Still, event extraction systems could
already be greatly enhanced by integration of a limited number of central
resources, such as UniProt and other biomedical databases in addition to
PubMed.

6.3 Future Directions for Event Extraction

Event extraction was developed as a more detailed alternative for pairwise
PPI extraction, accurately capturing the full semantics of the sentence. The
original BioNLP’09 Shared Task defined nine event types, and subsequent
tasks have introduced many more. However, this level of detail becomes
also a limitation, as events can only be used to extract concepts defined
in the annotation. Only the largest biomedical annotation projects such
as the Unified Medical Language System (UMLS) Metathesaurus can even
begin to approach universal coverage of relevant terms, and with events,
not only do the terms need to be annotated, but also all the varied types
of interactions between them. It’s unlikely that a universal event-based
approach for biomedical information retrieval will be seen, at least in the
near future.

On the other hand, a simple keyword search can be used to retrieve any
type of document, and when supported with algorithms like PageRank, it
can also return highly relevant documents. Moreover, in the two decades
since the world wide web became widely used, people have developed an
instinctive understanding of how search tools work, being able to rapidly
find the information they are looking for. While event extraction is thus
unlikely to provide a better form of information retrieval, it could be very
valuable in refining information.
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With more and more information available all the time, it is not enough
to simply retrieve the thousands of documents relevant for a query. More
advanced systems are needed to collate and distill the essential facts from
the mass of information. In practice, this approach can already be seen
in the emergence of expert systems for analyzing everything from insurance
claims to patient records, with the aim of providing concise, definite answers
for the professional dealing with huge amounts of data. Such expert systems
are developed to answer a specific question (such as analyzing the risk of
certain drugs for a specific patient), an approach in line with the restricted
scope of an event annotation scheme. Thus, it could be that event extraction
will not provide much of an impact in terms of search systems, but could be
very useful in uncovering semantic connections behind the scenes as part of
a complex expert system.

On the other hand, both relation and event annotations represent ad-
hoc solutions to semantic information retrieval. Inter-annotator agreement
on event corpora tends to be low, and many annotations are a matter of
perspective. Compare this with syntactic parsing, where linguistic theo-
ries can (in most cases) unambiguously define how a sentence should be
parsed. In a sense, semantic annotation and text mining are still at a very
early stage, but ultimately they might become the building blocks towards a
comprehensive theory on how language conveys meaning. Such a theoretic
framework may be needed to take event extraction beyond narrow domain-
specific annotations and lead to more advanced and generalized information
retrieval.

6.4 Final Remarks

TEES has been built from the first prototypes to rely on deep syntactic
parsing, using the BLLIP parser with conversion to the Stanford depen-
dency scheme. While high performance has been achieved with this method,
we have never tested alternative methods to this computationally expensive
approach. Related work, such as the Shallow Linguistic Kernel of Giuliano
et al. (2006) or the template system of Bui and Sloot (2012) present intrigu-
ing cases for use of shallow parsing techniques. In future work, it would be
fascinating to see more diverse use of varied syntactic NLP techniques and
their applications for semantic text mining.

The relationship between event extraction and binary relation extraction
in the biomedical field is an interesting one. Event extraction was originally
developed to cover annotation tasks where binary relations could not fully
capture the underlying semantics (e.g. situations where one protein affects
a relation between two other proteins). While the current event extraction
schemes can produce annotations very close to the semantics of the text,
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the resulting annotations require more complex automated extraction tools.
Annotating events is more time consuming, and since an event scheme is
generally domain specific, also the scheme needs to be re-thought when
producing a corpus for a new domain. Binary relations allow fast annotation
and straightforward extraction algorithms, but at the cost of a loss of the
details in the text. Which approach to use is probably largely dependent on
the task at hand.

However, an interesting outcome of TEES participating in the DDIEx-
traction’l1 task was to demonstrate that the basic feature representation of
this event extraction system resulted in performance roughly at the level of
high-performing binary relation extraction systems. While event extraction
has more to it than detection of argument relations, on a very general level,
it could be said that both event and relation extraction remain at similar
levels of performance. This of course depends much on corpora used, but
generally, we see F-scores in the range of 40-60%, as opposed to e.g. the 80-
90% performance often seen on syntactic parsing, or the >80% performance
demonstrated for semantic role labeling in the CoNLL 2009 Shared Task
(Haji¢ et al., 2009). In terms of machine learning approaches to the prob-
lem of semantic information extraction, it seems that what ever approach
or textual feature set is used, with currently available methods, biomedical
text mining systems reach a similar performance level, which, while ade-
quate for some applications, is still far from generally reliable information
extraction. Does this plateau most tasks seem to hit speak of limitations on
available machine learning tools, or also limitations in the way we present
the language to these tools? Either way, there is still a long way to go to-
wards effective semantic natural language processing, and it is possible that
to progress, we will need entirely new ways of looking at the language.
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