Noname manuscript No.
(will be inserted by the editor)

Efficient Cross-Validation for Kernelized Least-Squares
Regression with Sparse Basis Expansions

Tapio Pahikkala - Hanna Suominen - Jorma
Boberg

Received: date / Accepted: date

Abstract We propose an efficient algorithm for calculating hold-out and cross-
validation (CV) type of estimates for sparse regularized least-squares predictors.
Holding out H data points with our method requires O(min(H?n, Hn?)) time pro-
vided that a predictor with n basis vectors is already trained. In addition to holding
out training examples, also some of the basis vectors used to train the sparse reg-
ularized least-squares predictor with the whole training set can be removed from
the basis vector set used in the hold-out computation. In our experiments, we
demonstrate the speed improvements provided by our algorithm in practise, and
we empirically show the benefits of removing some of the basis vectors during the
CV rounds.

Keywords Hold-out - Cross-validation - Regularized least-squares - Least-squares
support vector machine - Kernel methods - Sparse basis expansions

1 Introduction

This paper considers using the regularized least-squares (RLS) algorithm (Rifkin
et al., 2003; Poggio and Smale, 2003), a kernel-based learning algorithm that is
also known as the kernel ridge regression (Saunders et al., 1998), the least-squares
support vector machine (Suykens and Vandewalle, 1999a) for regression and classi-
fication, or the Gaussian process regression (Rasmussen and Williams, 2005). RLS
has been shown to have a superior performance in regression and classification, has

Tapio Pahikkala - Jorma Boberg

University of Turku, Department of Information Technology and Turku Centre for Computer
Science

F1-20014, University of Turku, Finland

Fax: +358 23338600

E-mail: firstname.lastname@utu.fi

Hanna Suominen

NICTA Canberra Research Laboratory and Australian National University, College of Engi-
neering and Computer Science, Canberra Australia

E-mail: Hanna.Suominen@nicta.com.au

2 Tapio Pahikkala et al.

been modified to other learning problems such as ranking, and its successful prac-
tical applications are numerous (see, e.g., Pahikkala et al. (2009a,c)). Formally,
training RLS can be considered a solving the following variational problem (for a
more comprehensive introduction, see, e.g., Poggio and Smale (2003))

A(S) :arfgemfin{Z(f(%) —Yi) +/\|f||f}7 (1)

=1

where z; € X are m training inputs in some input space X and y; € R their
labels, A € Ry is a regularization parameter and || f||; denotes the norm of f in
the reproducing kernel Hilbert space (RKHS) F.! The first and the second term
of (1) are called the squared loss function and the regularizer, respectively. By the
representer theorem (see, e.g., Scholkopf et al. (2001)), the solution of (1) can be
expressed as the following expansion:

f(z) = Zaik(a@xi), (2)

where a; € R and k is a kernel function corresponding to the RKHS F. Accordingly,
we only need to solve a regularization problem with respect to a finite number of
coefficients a;, 1 <i < m.

The training time of RLS, that scales as O(m?) in the worst case although one
can often get closer to quadratic complexity with, for example, conjugate gradi-
ent methods (Shewchuk, 1994; Suykens et al., 2002), may be too tedious if the
number of training instances, m, is large. Moreover, a large number of nonzero co-
efficients in the expansion (2) causes slow prediction speed.? Consequently, several
approaches alleviating the computational burden have been developed during the
recent years. The so-called subset of regressors approach enforces sparsity on the ex-
pansion (2) meaning that only a subset of size n << m of coefficients a; are allowed
to be nonzero, while the whole training set is still used in the training process.>
By doing this, one can immediately decrease the training time down to O(mn?)
(Poggio and Girosi, 1990; Rifkin et al., 2003). One of the simplest and fastest ap-
proaches for selecting the set of basis vectors, that is, the training examples whose
coefficients in the expansion (2) are nonzero, is a random selection. While, many
smarter methods for selecting the basis vectors have been developed (see e.g. Smola
and Bartlett (2001); Vincent and Bengio (2002)), the random selection has been
shown both empirically and theoretically to work as well as most of the more so-
phisticated methods, unless extra amount of computational resources is sacrificed
for the selection process (Rifkin et al., 2003; Kumar et al., 2009). In this paper,

L We note that in some formulations of the problem, such as the least-squares support vector
machine (Suykens and Vandewalle, 1999a), the hypotheses also contain a bias term that is not
necessarily regularized. In this paper we omit the bias for simplicity and note that the effect
of a regularized bias can be obtained by adding a positive constant to the kernel values.

2 Some kernel-base learning algorithms, such as the support vector machines for classification
and regression (Vapnik, 1995), achieve sparse coefficient vectors due to the nature of the loss
function they employ but this is not the case with the squared loss we consider in this paper.

3 See also (Williams and Seeger, 2001) for related approaches based on the Nystrém ap-
proximation of the kernel matrix. We also note that the optimal solution with only n nonzero
coefficients does not necessarily have a representation as in formula (2), because the subset of
regressors approach cannot straightforwardly resort to the representer theorem.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 3

we mainly focus on the random selection of basis vectors, since it substantially
simplifies our considerations of both computational complexity of the training al-
gorithms and estimating the prediction performance with cross-validation. In the
rest of the paper, we refer to the above described approach of training RLS with
randomly selected basis vectors shortly as sparse RLS.

Another approach for alleviating the computational burden is to make selec-
tion of hyperparameters and performance evaluation methods more efficient. Of
them, hold-out techniques and particularly cross-validation (CV) are among the
most commonly used methods, and thus, fast N-fold CV methods have also been
introduced for RLS and its variations (Pelckmans et al., 2006; Pahikkala et al.,
2006a; An et al., 2007; De Brabanter et al., 2010; Airola et al., 2011). They gen-
eralize the classical leave-one-out CV (LOOCV) short-cut (Wahba, 1990; Green
and Silverman, 1994) computable in O(m?) time and some variations also enable
the selection of the RLS regularization parameter efficiently without a separate
re-training for each parameter value (Pelckmans et al., 2005, 2006; Rifkin and
Lippert, 2007). As a related work, we also mention fast CV approaches made for
support vector machine classifiers (Cauwenberghs and Poggio, 2001) and regres-
sors (Karasuyama et al., 2009). While the CV methods for RLS usually rely on
computational short-cuts based on matrix algebra, the CV methods for SVMs re-
quire solving a series of small optimization problems, whose size and number are
data dependent.

One can combine the aforementioned speed improvement approaches and ad-
dress the question of performing hold out efficiently with sparse RLS. In the case
of RLS regression, the sparse algorithm can also be considered as the standard
algorithm with a certain type of a modified kernel function (Quinonero-Candela
and Rasmussen, 2005). Consequently, a straightforward way to expedite the com-
putations is to use the sparse algorithm for training and the most efficient hold-out
algorithms for standard RLS (Pahikkala et al., 2006a; An et al., 2007) for selection
of hyperparameters and performance evaluation. For holding out |H| instances,
this results in the computational complexity of O(|#|?m). However, as mentioned
above, the computational complexity of LOOCYV with the previously known meth-
ods is O(m?), which is more expensive than the training process of sparse RLS if
m > n?. This motivates us in improving the efficiency by developing a sparse RLS
specific method for selection of hyperparameters and performance evaluation.

Recently, Cawley and Talbot (2004) proposed this type of LOOCV algorithm.
Its computational complexity of only O(mn?) makes it much more practical than
the LOOCYV algorithm of standard RLS used together with the above mentioned
modified kernel function, because it is as expensive as the training process of sparse
RLS.

In this paper, we propose a novel hold-out method for sparse RLS that has
the following merits, given that O(mn?) floating point operations has already been
spent in the training phase. We show that the method

— allows holding out several training examples simultaneously, enabling the use
of CV methods other than LOOCV,

— enables the removal of basis vectors if they belong to the hold-out set, which is,
for some learning tasks, a necessary property in order to avoid severely biased
CV results, and

— is computationally more efficient

4 Tapio Pahikkala et al.

— Holding out |H| training examples requires O(min(|#H|?n, |H|n?)) time.

— Since in N-fold CV the average size of the hold-out sets is |H| = m/N,
the overall complexity of N-fold CV is O(min(m|H|n,mn?)). That is, the
required time is at most the same as the time spent for learning a sparse
RLS with the whole training set.

— As a special case, we get the complexity of LOOCV: because there are
m hold-out sets of size 1, our algorithm requires only O(mn) time. The
respective complexity for the previously proposed LOOCYV algorithm for
sparse RLS is O(mn?) Cawley and Talbot (2004).

One may ask reasons for developing a LOOCV-algorithm with the above time
complexity if one has to spend O(mn?) time for initializing the sparse RLS pre-
dictor before computing LOOCV. We provide the two most apparent motivations
for this.

First, it is well-known and straightforward to see that sparse RLS can be
simultaneously trained to predict multiple outputs almost at the cost of learning
to predict only one output. A typical example of this is the use of RLS for the
one-versus-all type of multi-class classification (Rifkin and Klautau, 2004). For
other types of multi-output learning settings, see Suykens and Vandewalle (1999b);
Suykens et al. (2002), for example. The complexity of training a predictor for v
outputs is O(mn(n + v)), that is, the number of outputs starts to dominate the
training complexity only in case there are more outputs than basis vectors. Now,
we may want to compute LOOCYV for each output separately. The computational
cost of this is O(mnv) which is dominated by the training complexity.

As a second motivation, we consider selecting the value of the regularization
parameter with CV. If our algorithm is used for LOOCV or N-fold CV with
small hold-out sets, it can be combined with the simultaneous training of the
sparse RLS with several values of the regularization parameter in a way that
performs the parameter selection as efficiently as training only one instance of
the sparse RLS (see e.g. Pahikkala et al. (2006a); Rifkin and Lippert (2007)).
For example, if the number of regularization parameter value candidates is ¢, the
overall computational time of training a sparse RLS predictor with the optimal
value found by LOOCV is O(mn? + cmn) = O(mn(n + ¢)), where the mn?-term
is the computational cost of the initial training and e¢mn is the cost of running
LOOCYV c¢ times. Now, if ¢ < n, the complexity reduces to the complexity O(mn?)
of training a sparse RLS predictor once. This speed improvement is also empirically
demonstrated in our experiments.

Finally, we motivate the abilities to hold out several training examples simul-
taneously and to remove the effect of basis vectors belonging to the hold-out set
as follows. A classical motivation is that while LOOCYV is known to be an almost
unbiased estimator of the learning performance, it is known to suffer from larger
variance than, say N-fold CV (see e.g. Kohavi (1995)). Another, more practically
oriented, motivation is that there exists many learning problems where the assump-
tion of training set consisting of independently and identically distributed training
examples does not hold, and this must be taken account of when designing the CV
experiments in order to avoid severely biased CV results. Using large hold-out sets,
in turn, raises the question of how to deal with basis vectors in the hold-out set,
as it is not realistic to assume that predictions are made for data points that are
at the same time among the basis vectors in training. Indeed, in our experiments,

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 5

we show that not removing the basis vectors belonging to the hold-out set may
also cause a serious bias in the CV results. Thus, in this types of learning tasks,
our approach for efficiently removing basis vectors becomes indispensable.

The rest of the paper is organized as follows: In Section 2, we recall the concepts
of supervised learning and discuss the issues of performance evaluation with hold-
out and CV estimates. In Section 3, we formalize the RLS method. Section 4
considers the sparse RLS. Section 5 presents our algorithm for calculating a hold-
out performance and, by that, different types of CV performance estimates for the
sparse RLS. Section 6 describes the empirical part of our study and it contains
both the evaluation setting and results. Section 7 concludes the paper.

2 Preliminaries

We first recall the concept of supervised learning. A supervised learner is a machine
that is taught with a set of training data points with preferred output variables to
perform a specific task. By a task, we mean the prediction of an output variable
for an unseen data point. Formally, let X = (z1,...,2m) € (X™)T be a sequence
of inputs and y € R™ a vector of outputs, where X, called the input space, is
the set of possible inputs. Here, (Xm)T denotes the sets of row vectors, which
contain m elements belonging to the set X, while R denotes the set of real
valued column vectors of size m. Further, let S = (X,y) be a training set of m
training instances. Unless stated otherwise, we assume that S is independently and
identically distributed (i.i.d.) and drawn from an unknown probability distribution
D over X x R. Notice that while we call S a training set, it is actually an ordered
sequence of data points.

Training a supervised learner can be seen as a process of selecting a function
among a set of candidates that best performs the task in question. We assume
that the algorithms under consideration may not be deterministic but randomized.
That is, training a learner twice with the same training data set may result in two
different learners. By following Elisseeff et al. (2005), we formalize the training
algorithm as follows: An algorithm A, which selects the function given the training
set S of m instances, can be considered as a mapping

A: (X xR)" xR = F, (S,r)— f, (3)

where the hypothesis space F C RY is a set of functions among which the algorithm
selects an appropriate hypothesis f € F and R is a space consisting of elements r
modeling the randomization of the algorithm and is endowed with a probability
measure P. With RY = {f | X — R} we denote the set of all functions from X
to R. We assume that R and P do not depend on the training set but they may
depend on m.
Let
p(f,z) : FxX =R

denote the performance of a hypothesis f : X — R on example z = (x,y), that is, it
measures how well the prediction f(z) approximates y. The performance function
can be, for example, the squared loss (f(z) —).

Now let us consider a prediction function f returned by a randomized learning
algorithm based on a fixed training set S and a fixed random seed r. We are

6 Tapio Pahikkala et al.

interested in how well f will predict on unseen future data. This can be measured
by the expectation of the performance p(f) on D, that is

Ezw]D)p(f: Z) (4)

We call this measure the expected performance of the predictor f. In the literature,
this is sometimes called the true performance or conditional performance (Schiavo
and Hand, 2000) as it is conditioned on a fixed training set S and a fixed random
seed r.

If we are interested in the performance of a learning algorithm A itself on the
task under consideration, we need to measure the performance without tying it to
a fixed training set or random seed:

Eg~pm rop,z~nP(A(S,7), 2). (5)

In the literature, this is sometimes called the unconditional performance in contrast
to the conditional one (Schiavo and Hand, 2000). In this paper, we refer to (5)
this as the expected performance of the learning algorithm A.

As discussed for example by Dietterich (1998) and Schiavo and Hand (2000),
the expected performances of predictor (4) and learning algorithm (5) correspond
to two different statistical questions of interest. The former corresponds to the
question of how well we expect a certain trained predictor to perform with future
data points. This is of interest in majority of real world problems. The latter
measures the quality of the learning algorithm itself in solving a learning task
under consideration. That is, we assume a certain learning algorithm and train it
with a data set of a given size. This results in a predictor and (5) indicates how
well, on average, it generalizes to new data points. In addition, (5) can be useful
in real world problems having a moving target, such as in the task of detecting
junk mail, for example.

In practice, we can almost never directly access the probability distribution D
to calculate (4) or (5). Rather, we are limited to their estimation instead. One such
estimate is obtained from CV. Depending on the algorithm, it may be possible to
access P but it may still be difficult to calculate the expectation over it due to
the computational reasons. Therefore, in order to measure (5), one has to rely on
estimates obtained from a finite set of labeled data drawn from D and a finite set
of random elements drawn from P.

Let us first consider ways to compute estimates (5) with CV. Given a training
set S of m examples, let Z = {1,...,m} denote an index set in which the indices
refer to the instances in the training set. If the algorithm is trained with a randomly
chosen r € P and with the training set of all but one example indexed by Z, and
the performance is measured with the example which is not used in training, we
get an estimate of (5) which is unbiased for training sets of size m — 1. In addition
to the unbiasedness, we would also prefer the estimate to have a small variance.
This is achieved straightforwardly by averaging over several experiments of the
above type. According to the central limit theorem, the average of such i.i.d.
experiments approaches a normally distributed variable, whose variance decreases
as the number of experiments increases.

However, in order to the experiments to be independent, we would have to
sample a completely new training set, test instance, and r. This is not possi-
ble in real world situations, because of the lacking computational resources and

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 7

having scarce data. Therefore, we usually have to permute our labeled data be-
tween training and testing when creating the sequence of experiments. This has
the drawback that, while we can ensure the unbiasedness of the estimates of (5),
the experiments are not completely independent. This complicates the theory and
mathematics concerning the behavior of such estimates.

In CV or repeated hold-out, we have a sequence

((H177’17i1),4“,(’Ht,n,it)) (6)

of t experiments. In the jth, 1 < j <t, experiment (H;,7;,i;), H; C T is the set
containing the indices of examples in S that are not used for training, r; € R,
and i; € H; is an index of an example in S used for testing. That is, in the jth
experiment, the learner is trained with r; and examples indexed by H; = T\ H;,
and it is tested with example z;;. Note that the hold-out sets in (6) can overlap
with each other partially or even completely. The CV performance estimate for a
randomized learning algorithm can be written as

t
ZP(A(SH_]7 T'j),Zij), (7)
=1

where Sz~ denotes the sequence of training examples containing the ones in S
J

indexed by H;. If we assume that |H;| = H Vj € {1,...,t}, then (7) is an unbiased
estimator of the expected performance of the learning algorithm A for training
sets of size m — H.

As an example, let us consider N-fold CV in which the training set is parti-
tioned to N disjoint subsets of size H = m/N called CV folds. In N-fold CV, each
example in the training set is used for testing at a time, and thus the number
of experiments in the sequence (6) is ¢ = m. Moreover, i; € H;, if and only if
Hp = Hj, and Hp NH; = 0 if and only if i; ¢ Hy,, that is, each CV fold is used as
a set H; in H of the m experiments and each example associated to the CV fold
is used once as a test example in one of the H experiments. In case of randomized
algorithms, we often also require that r;, = r; whenever H; = H; in order to save
training time. This is because the training has to be repeated only N times, once
for each CV fold, and the same predictor can be used for several experiments in
the sequence (6). Note that the notation also covers other types of CV approaches
such as, say, N-fold CV repeated several times with different fold partitions (see
e.g. Kohavi (1995)). In repeated N-fold CV, a single data point can be used as a
test example several times together with different sets H;, that is, for the jth and
hth experiments, we may have i; = ij, while H; # H,,.

In addition to the unbiasedness, we would also prefer the CV estimators to
have a small variance. The variance can be decreased by increasing the number of
experiments we average over. However, the covariance between these experiments
counters this aim. The variance of the CV estimator can be expressed via the sum
of covariances between the experiments as follows:

Var(OV) = o 3 Cov(p(A(Sy i), 20,) p(A(Sr) 2,)) ()

h.j=1

where Var and Cov denote the variance and covariance, respectively. Here, the
covariance between two experiments can be affected by several factors. Namely,

8 Tapio Pahikkala et al.

the covariance depends on whether z;, = Ziss whether r;, = r;, and how much Hy,
overlaps with H_J For a more detailed analysis of the covariance structures in case
of deterministic algorithms, we refer to Nadeau and Bengio (2003).

Finally, let us briefly consider how to obtain estimates for the expected perfor-
mance of the predictor f. This task is difficult without having a separate test set
not used in the training phase (Dietterich, 1998). We could use similar hold-out
estimates as those used for estimating the expected performance of the learning
algorithm A4 but they would be biased: holding out a subset of training examples
means that the obtained predictor is not the same as the one, whose performance
we aim to measure. Nevertheless, estimates based on hold-out are useful tools also
for this purpose, since the bias is not necessarily severe, especially if the amount
of training data is large. Still, care must be taken when designing the experiments
as we show in Section 6.

3 Regularization Framework

Next, we consider the hypothesis space F. For this purpose we define so-called
kernel functions. Let X denote the input space, which can be any set, and P
denote the feature vector space. For any mapping @ : X — P, the inner product
k(z,2") = (®(z),#(2)) of the mapped data points is called a kernel function. We
define the symmetric kernel matrix K € R™*" where R™*™ denotes the set of
real matrices of type m x m, and the entries of the kernel matrix are given by
K; j = k(z;, ;). For simplicity, we assume that K is strictly positive definite. This
can be ensured, for example, by performing a small diagonal shift.

Let a = (a1,...,am)T € R™ be a vector determining a solution of (1) and let
fa(z) be the function determined by a. By overloading our notation, we write

k(z, X) = (k(z,21), ..., k(z,zm)) € (R™)T,

where z € X. Using this type of matrix notation, we can write fa(x) = k(z, X)a.
Similarly, the column vector fa(X) € R™, that contains the label predictions of
the training data points obtained with the function fa, is fa(X) = Ka. Further,
according to the properties of the RKHS determined by the kernel k, the regularizer
can be written as A||fa||7 = A\a’Ka.

Using the matrix forms, we can rewrite (1) as

A(S) = argmin {(y — Ka)T(y —Ka) +)\aTKa} .
aeR'ﬂL

The solution can be found by first taking a derivative of the objective function
with respect to a, setting it to be zero, and solving with respect to a. As a solution,
we obtain

a= (KK + \K) 'Ky. (9)
Due to the positive definiteness of K, the matrix KK + AK is always invertible.

Calculating the coefficient vector a from (9) involves an inversion of an m x m
-matrix whose computational complexity is O(m3) in the worst case.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 9

4 The Sparse Regularized Least-Squares

The computational complexity of training an RLS learner, O(m?), may be too
tedious, if the number of training instances is large. However, several authors have
considered sparse versions of RLS in which only a part of the training instances,
often called the basis vectors, have a nonzero coefficient in (2). This means that
when the training is complete, the rest of the training instances are not needed
any more, when predicting the output variables of the new data points. Another
advantage of the sparse RLS is that its training complexity is only O(an), where
n is the number of basis vectors. Further, as we will show below, there are efficient
algorithms for CV and selection of the regularization parameter for sparse RLS
that are analogous to the ones for the standard RLS.

As discussed above, we focus in this mainly on the random selection of basis
vectors. We assume a uniform sampling of the n basis vectors among the training
set of size m. That is, training sparse RLS can be considered as a randomized
learning (3), where the random element r determines the set of basis vectors.

Before continuing, we introduce some notation. Let Mgz,y denote the set
of matrices whose rows and columns are indexed by the index sets = and ¥,
respectively. With any matrix M € Mzyy and index set 77 C =, we use the
subscript 7" so that a matrix My € My .y contains only the rows of M that are
indexed by 7. For M € Mz=yy, we also use My € My, to denote a matrix
that contains only the rows and the columns that are indexed by any index sets
T C = and 2 C ¥, respectively.

We now follow Rifkin et al. (2003) and define the sparse RLS algorithm using
the above defined notation. Recall that Z = {1,...,m} denotes an index set in
which the indices refer to the instances in the training set. Instead of allowing
functions like in (2), we only allow

f(z) = Z aik(x,x;),

i€B

where the set B C Z indexing the basis vectors is selected in advance. In this
case, the coefficient vector a can be considered as an n-dimensional vector, whose
entries are indexed by B. The label predictions for the training data points can be
obtained from

fa(X) = (Kp)"a (10)

and the regularizer can be rewritten as A\a®Kpgga. Therefore, with a given X, the
vector a is a minimizer of

(v — (Kp)"a)" (y - (Kp)"a) + Xa" Kppa. (11)
By setting the derivative of (11) with respect to a to zero, we get
a=P 'Kgy, (12)
where

P=Kg(Kp)" + \Kgp € Mpyz. (13)

10 Tapio Pahikkala et al.

The matrices Kgg and Kz(Kg)T = (KK)gp are principal submatrices of the
positive definite matrices K and KK, respectively, and hence the matrix P is
also positive definite and invertible (Horn and Johnson, 1985, p. 397). In contrast
to (9), the matrix inversion involved in (12) can be performed in O(n®) time.
Because n << m, the overall computational complexity of (12) is dominated by
the complexity of calculating Kz(Kp)T which is O(mn?).

We now reformulate sparse RLS so that its coefficient matrix can be efficiently
calculated for different values of the regularization parameter. Notice that this
reformulation is already known in the machine learning community. Let

Kpp = CCT (14)

be the Cholesky factorization of Kgp, where C € Mpyp is a lower triangular
matrix with strictly positive diagonal entries. Moreover, let

C'Kp(Kp)'(CcHT =vavT (15)

be the eigendecomposition of C'Kz(Kp)T(C™1)T, where V. € Mgy is the
matrix containing the eigenvectors and A € Mgy is a diagonal matrix containing
the eigenvalues of the decomposition. Further, we define

A= (A+D)""and

Q= (CHV e Mpys. (16)

Then, the matrix P! can be expressed as

P! = (Kg(Kp)" + \Kpp) '
= (Kp(Kp)" +rccth)™
= (CcTHT(CcTKp(Kp) (CTHT +anCT!
= HTvAavT +an~tc!
= HTvAavTc!
= QAQ”. (17)

The computational complexities of calculating (14), (15) and (16), are O(n?®) (see,
e.g., Golub and Van Loan (1989) for in depth discussion of the computational
complexities of the decompositions).

Finally, let us first calculate Q*Kpy (in O(mn) time) and store it in the
memory. After this, (12) can be computed for different values of the regularization
parameter from a = QAQTKpy with the complexity of Q(nQ). This is because
the multiplication of the shifted and inverted eigenvalues A with QTKpy can be
performed in O(n) time and the multiplication of the resulting matrix from left
by Q can be performed in O(n?) time.

5 Fast Computation of Hold-out Error

For a start, we note (see, e.g., Quiionero-Candela and Rasmussen (2005)) that the
sparse approach can also be considered as performing the standard RLS regression
using the modified kernel function

k(z,2") = k(z, X)(Kpp) k(X z). (18)

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 11

Therefore, a straightforward way to construct hold-out estimates for sparse RLS
would be to use the hold-out algorithms proposed by Pahikkala et al. (2006a); An
et al. (2007) for the standard RLS regression with the modified kernel function
(18). The computational complexity of this approach is O(|H|?*m), where m is the
number of training examples and || is the size of the hold-out set. The presence
of the coefficient m may make it computationally too expensive in practice and
especially for CV estimates. Further, if a data point in the hold-out set is a basis
vector, its effect is not completely removed from the training process, because the
kernel (18) depends on it.

We now derive an algorithm for calculating a hold-out performance and, by
that, a CV performance for sparse RLS. The computational complexity of com-
puting the CV performance with our algorithm is no larger than the complexity
of training sparse RLS. The algorithm presented in this section improves our pre-
viously proposed one (Pahikkala et al., 2009b). Recall that Z = {1,...,m} is the
index set for the whole training data set and B C Z is the set indexing the basis
vectors. Let

HCT
denote the set of indices of the hold-out data points, and let
H=T\H,E=HNB,and L =HNB.

Further, let fz7 = A(Sﬁ) be the predictor obtained by training the sparse RLS
algorithm with the training set S7; from which the training instances indexed by
H are removed. Then, fz(X3) consists of the predictions for the hold-out data
points X3, that are predicted by fz. According to (12), the coefficient vector
corresponding to fz7 is GflKﬁﬂyﬁ, where G = K ,77K5; . + AK .. The entries of
this coefficient vector are indexed by L. Therefore, according to (10), the output
values corresponding to the hold-out set H can be obtained from

Fr(Xn) = Ko G K oy (19)

This is, of course, too cumbersome to be used in CV, but fortunately, it is possible
to calculate the outputs more efficiently, if we have trained in advance the sparse
RLS with the whole data set.

Proposition 1 Suppose that we have trained a sparse RLS predictor by calculating
(14), (15) and (16) with the whole data set indexed by I, and we have the following
matrices stored in memory:

KB € MBXI (20)

A e Mpyp (21)

Q€ Mpxs (22)
(Kp)"'Q € Mz, (23)
Kpy € Mpx1 (24)
Q"Kpy € M. (25)

Let us assume that € =H N B # 0. Then, the hold-out predictions for a set H can be
calculated from

F(X3) =~ =17 'r, (26)

12 Tapio Pahikkala et al.

where
J = UAU" - UA(Qs) (QeA(Qe)) ' Qe AU, (27)
r = UAz— UA(Qs) "(QeA(Qe) ") ' QeAz, (28)
U =KycQc (29)
= ((K5)"Q)n — KyeQg, and (30)
z=(Qc) K zyz (31)
= Q"Kuy — (Qe) "(Kpy)e — (Q"Kp)suyn + (Qe) "Kenyu. (32)

The computational complexity of this calculation is O(min(|H|*n, |[H[n?)).

Proof We start by showing the tenability of (26) and continue by considering the
computational complexities. Recall from (19) that the output matrix for the hold-
out set can be obtained from

Fa7(Xn) = Kue G 'K o7y, (33)

where
G =K 7zK5z, +Kce

=Ko(Kg)" — KenKpe + \K e

=Prr —KenuKye
and P is defined in (13). Now, due to the positive definiteness of K, both G and
P, are always invertible. Let

W= (Pc) "

Using the block inverse formula (see e.g. Horn and Johnson (1985)) we get

W=P =P Nee((P Hee) ' (P Hes (34)

Further, using the Sherman-Morrison-Woodbury (SMW) formula (see e.g. Horn
and Johnson (1985)), we obtain

G '= (W' —KyKye) !
=W - WKy (—T1+ Ky WKpry) 'Ky W. (35)

The invertibility of the matrix —I + K4 WK 4 follows from the invertibility of
G and from the Schur’s determinantal formula (see e.g. Horn and Johnson (1985,

p. 21)).
According to (34), (17), and (29), we get
Ky WKy =Ky e (P Koy

*Km:(fﬁl)cs((Pfl)ss)fl(Pfl)sz:Kz:H

= Knc(QAQT) coKey B
~K2(QAQ") e ((QAQ)ee) H(QAQT)e K oy

= UAU"
~UA(Qs)"(QeA(Qe)") 'QeAUT

=J.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 13

Analogously, according to (34), (17), and (31), we get

KHCWKCﬁyﬁ =7r.

Finally, we substitute (35) into (33) and we get

far(X3) = Ky (W = WK (J - 1) 'Ky, WK
=(I-JJ -1 YHr
=((I-D@-D'—JI-1) Hr
= —(J — I)_lr.

LHYH

We now consider the computational complexity of using (26). The matrix U can
be calculated from (20), (22), and (23) using (30) in O(min(|H|*n, |H|n?)) time, be-
cause |€| < min(|H|, |B]). Moreover, the matrix z can be calculated from (20), (22),
(23), (24), and (25) using (32) in O(|H|n) time. The computational complexity of
calculating J and r using (27) and (28) is O(|H|? +|#H|?n). This is because multipli-
cation of an |H| x n -matrix with a diagonal matrix A can be computed in O(|H|n)
time, the matrix inversion involved in the calculations needs O(min(|#|*,n?)) time,
and all the other matrix products need at most O(min(|H|*n, |H|n?)) time, if per-
formed in the optimal order. Finally, we substitute these matrices into (26). Now
if n > |H|, we obtain the the solution by inverting the matrix I—J in O(|H|*) time.
However, if n < |H|, the inversion can still be accelerated by taking advantage of
the SMW formula. Namely, we can write J = AB, where A and B are the following
[H| x n and n x |H| matrices:

A = UA
B=U"—(Qe)"(QeA(Qe)") 'QeAU™.

Then, we have
(I-AB) '=I-A(-I+BA) 'B, (36)

where the identity matrices are of conformable size. The right hand side of (36)
can be computed in O(|’H|n2 +n3) time, and hence the complexity of inverting the
matrix I —J becomes O(min(|#|?n, |H|n?)) time, as we can choose whether to use
the right or the left side of (36). O

The above proposition concerns the case in which £ # 0, that is, the basis
vectors that belong to the hold-out set are removed from the basis vector set, and
hence the predictions for the hold-out examples are performed with a predictor
trained with training examples indexed by H and with basis vectors indexed by
L. Next, we consider an approach for the case in which & = . Note that, this
approach can also be used if we do not intend to remove the basis vectors indexed
by &, that is, the predictions for the hold-out examples would be performed with
a predictor trained with training examples indexed by H and with basis vectors
indexed by B, even if & # . This is accomplished by setting the index set £ to
empty. We formulate the approach as a corollary to the above proposition.

Corollary 2 Proposition 1 also holds, if £ = 0.

14 Tapio Pahikkala et al.

Proof If € = 0, then J = UAUT, r = UAz, U = (Kg)"Q)y, and z = QTKpy —
(QTKB)BHyH. The corollary can be proved the same way as Proposition 1 ex-
cept the use of the above matrices simplifies the computation of Ky WK 7, and
KHCWKﬁﬂyﬁ O

We further note that the calculation of matrices (20) - (25) requires O(mn?)
time, and hence the training of the sparse RLS as in Proposition 1 is computa-
tionally as efficient as the training in the ordinary way. Here it is, of course, again
presupposed that the set of basis vectors used in the hold-out computation is a
subset of the set of basis vectors used in computing the matrices.

We next consider different estimators for the expected performance of the learn-
ing algorithm (5) that can be constructed with our efficient hold-out algorithm. In
order to minimize the variance of the performance estimator obtained by averaging
over the sequence of experiments (6), we should average over as many experiments
as we can afford with our computational resources, while also minimizing the co-
variance (8) between the experiments. Analogously to the deterministic learning
algorithms, the covariance between two experiments usually increases if the over-
lap between the training sets increases. Similarly, the covariance is larger if the test
instance is the same in the two experiments than if the test instance is different.

The randomized part of our learning algorithm is determined by the random
selection of the set of the basis vectors. Intuitively, the covariance between two
experiments increases if the overlap between the sets of basis vectors increases.
Therefore, we should preferably have experiments, where sets of basis vectors
overlap with each other as little as possible. However, this counters the efficiency
requirement, because training with different sets of basis vectors requires a lot of
computational resources. Nevertheless, via our efficient hold-out method, we can
vary the set of basis vectors by holding out different subsets of the original basis
vector set in different experiments. These effects are investigated more in detail in
our experiments in Section 6.

Since in N-fold CV the training set is partitioned into N parts of approximately
equal size, the number of training instances in each fold is |H| ~ m/N. Then, CV
is performed by using each fold as a hold-out set at a time and calculating the
corresponding hold-out label predictions. According to Proposition 1, the compu-
tational complexity of each CV round is O(min(|H|*n, |H|n?)), and hence we get
the following corollary:

Corollary 3 The owverall computational complexity of the N-fold CV s
O (min(m|H|n, an)). Further, the computational complexity of LOOCYV is O(mn) if
combined with the training process of the sparse RLS predictor.

Thus, we observe that the computational complexity of N-fold CV is at most the
training time of a sparse RLS predictor. The method is less complex for smaller
hold-out sets (especially so for the extreme case of LOOCV) and it can be used,
for example, to select the value of the regularization parameter \ efficiently from
its candidate values. We formalize this in the following result:

Corollary 4 Let ¢ be the number of candidate values for the reqularization parameter
A. The computational complexity of calculating the N-fold CV output for all differ-
ent candidate values is O (c min(m|H|n, an)). Further, the analogous computational
complezity for LOOCV is O(cmn).

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 15

Thus, if ¢|/H| < n, the selection of the regularization parameter via CV is not
computationally more complex than the training process of sparse RLS.

The above considerations can be generalized for RLS that can be simultane-
ously trained to predict multiple outputs. This is achieved by using, instead of the
label vector y, a label matrix having v columns, where v is the number of outputs.
It is straightforward to see from (12) that the complexity of training a sparse RLS
predictor for v outputs is O(mn(n + v)). Now, we may want to compute CV for
each output separately. This gives us the following corollary:

Corollary 5 The computational complexity of calculating the N-fold CV output for
all of the v outputs is O (v min(m|H|n, mnz)). Further, the analogous computational
complezity for LOOCV is O(vmn).

Again, if v|H| < n, computing CV for v outputs is dominated by the training
complexity.

6 Experiments

In Section 6.1, we measure the speed of the proposed hold-out approach in selec-
tion of hyperparameters with LOOCV. In Section 6.2, we compare three unbiased
estimators of the expected performance of the sparse RLS learning algorithm and
confirm our hypothesis of obtaining a lower variance for the performance estimate
by varying the set of basis vectors in each CV round. Section 6.3 deals with experi-
ments using artificially generated data. In Section 6.3.1, we repeat the experiments
of 6.2 with a larger number of basis vectors. The bias on CV results caused by
greedy selection of basis vectors is measured in Section 6.3.2. In Section 6.4, we
consider the issues related to measuring the expected performance of a sparse RLS
predictor.

6.1 Speed Comparisons

To test the computational speed of the proposed CV method in practise, we make
an experimental speed comparison between that and the fastest previously pro-
posed CV approach for sparse RLS, the O(mn?) time LOOCYV algorithm proposed
by Cawley and Talbot (2004). We only test LOOCV without removing the basis
vectors, because the baseline method is defined only for that setting. To implement
the algorithms, we use NumPy, a computationally efficient scientific computing li-
brary for Python programming language. As a test platform, we use a single core
of an AMD Phenom IT X6 1090T Processor. The speed comparisons are done with
an artificially generated data set of 5000 examples and the number of basis vectors
is varied as 500, 1000, 1500, 2000, and 2500.

We first measure the time spent for a single LOOCV run. The results are
shown in Table 1. As expected, both approaches scale quadratically with respect
to the number of basis vectors. The running time of the new approach is about
twice as long as that of the previously proposed approach. This is due to the
computation of the cache matrices required for the efficient CV computations and
retraining with different regularization parameter values. Next, we measure the
time spent for computing the LOOCV with the new method after the caches have

16 Tapio Pahikkala et al.

n =500 n=1000 n=1500 n=2000 n =2500
RLS+LOOCV Method 1 | 0.707 2.482 5.435 9.625 15.891
RLS+LOOCYV Method 2 | 1.287 5.119 11.813 22.558 38.589
LOOCYV Method 2 0.007 0.014 0.022 0.029 0.036
MS Method 1 14.163 49.652 108.732 192.529 317.873
MS Method 2 1.428 5.402 12.258 23.139 39.326

Table 1 The running times in CPU seconds of the baseline (Method 1) and the proposed
algorithm (Method 2) with different amounts of basis vectors. The first two rows contain the
time spent in combined training and LOOCYV. The third row presents the LOOCYV time of the
proposed algorithm after a RLS learner has been trained. The last two rows contain the overall
time spent in cross-validated selection of the regularization parameter A for the two methods.

already been computed. We observe that this time is negligible compared to the
time required for constructing the caches. Finally, we measure the overall time
required for performing a cross-validated selection of the regularization parameter
A with a set of 20 candidate values, that is, the time includes 20 LOOCYV runs
with different values of A\. The baseline method is run from scratch for each value
of A\, while the caches used by the new method are only constructed once as the
same caches can be used for each LOOCV run as shown in Section 5. Because
of the negligible LOOCV time of the new approach, the overall hyperparameter
selection time is about the same as the time spent for a single LOOCV run. For
the baseline method, this is not the case and the hyperparameter selection time
is 20 times longer than the time spent for a single LOOCV run as the baseline
method saves only the time required for constructing the kernel matrix.

To conclude, the proposed approach for LOOCV requires some extra com-
putational resources for filling the caches required for computing LOOCV and
performing hyperparameter selection. However, after the caches have been con-
structed once, the hyperparameter selection can become orders of magnitude faster
that done without the caches if the regularization parameter is searched from a
large grid.

6.2 Variance in Estimates of Expected Performance of the Learning Algorithm

Here, we consider using N-fold CV for measuring the expected performance of the
sparse RLS learning algorithm. We select the basis vectors randomly via uniform
sampling from the training set. This causes some extra variance to the performance
estimates in addition to the variability caused by the training set and unseen test
examples. Taking the variability caused by the basis vector set into account can be
accomplished, for example, by averaging over many hold-out experiments for which
the set of basis vectors is randomly reselected. However, this requires the sparse
RLS to be completely retrained for each CV round, which may be prohibitive in
practice, especially if the number of CV rounds is large as in the case of LOOCV.
With our hold-out method, taking the variability into account can still be achieved
to some extent if holding out a subset of the basis vectors in each CV round.

For example, let us assume that we aim to use ten-fold CV to estimate the
prediction performance of sparse RLS algorithm which randomly selects n basis
vectors. We start by training sparse RLS predictor with 11n/10 randomly selected
basis vectors. Then, we hold out n/10 of the basis vectors and one tenth of the

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 17

non-basis vectors in each round. Consequently, this CV estimate provides an ap-
proximation of the standard CV estimate in which one tenth of the basis vectors
is changed in each round instead of the whole set of basis vectors being changed.
Compared to selecting the basis vectors randomly and separately for each CV
round, this approach retains the computational efficiency, because we have no
need to train RLS again with new basis vectors. Note also that as the original set
of 11n/10 basis vectors is randomly selected from the original training set, the set
of n basis vectors not belonging to a hold-out set can be considered to be randomly
selected from the training examples not in the hold-out set. Thus, the hold-out
experiment provides an unbiased estimate of the prediction performance of sparse
RLS algorithm which randomly selects n basis vectors, and hence the average of
the ten hold-out experiments also provides unbiased estimates.

We test the variability caused by the basis vector selection in four regression
tasks: Ailerons, Elevators, Pole Telecomm and Pumadyn®. Ailerons contains 7,154
instances and forty features per instance. The respective numbers are 8,752 and
eighteen for Elevators; 5,000 and 48 for Pole Telecomm; and 4,499 and 32 for
Pumadyn. In a pre-processing step, we scale the values to be regressed in the
Ailerons and Elevators tasks by a factor of 1,000 because they are very small.

The kernel matrix K is formed by using a Gaussian radial basis function kernel
k(z,a') = exp (—v|z — 2'|*), where v € R is a positive constant determining the
width of the kernel. We select a suitable value for v in a preliminary experiment
for each data set (i.e., Ailerons v = 2718 Elevators v = 279, Pole Telecomm
v =272 Pumadyn v = 272!) and use this value in the actual experiment. We
ensure the positive definiteness of K by shifting it diagonally with 10~ 71, where
the identity matrix I has the same order as K. In addition, we found shifting to
reduce numerical errors. The tested domain for the regularization parameter A is
{2715, ... ,2*} in all four tasks.

We test the following three approaches for estimating the expected performance
of the sparse RLS learning algorithm in the four tasks:

1. Approach 1: We select thirty basis vectors randomly from the training set.
Then, the training set is divided randomly into ten folds so that each fold
contains three basis vectors. Finally, the sparse RLS regressor is trained and
CV error is computed using the fold partition.

2. Approach 2: We select randomly 27 basis vectors and divide the training set
randomly into ten folds so that no basis vectors are included in any fold.

3. Approach 3: We divide the training set randomly into ten folds. The CV esti-
mate is obtained by selecting 27 basis vectors randomly among the examples
not in the hold-out set, separately for each CV round.

Each approach is tested one hundred times with different fold partitions and dif-
ferent sets of basis vectors.

In all three approaches, the hold-out computations in the CV rounds corre-
spond to the situation in which a sparse RLS regressor trained with 27 basis
vectors is performing predictions for the hold-out instances. This also holds for
Approach 1, where the predictor is originally trained with 30 basis vectors but
three of them is held out during each CV round. The sizes of the hold-out sets

4 Downloaded from http://www.liaad.up.pt/~1torgo/Regression/DataSets.html [cited
2010 October]

18 Tapio Pahikkala et al.

are approximately m/10 in the first and third experiment and (m — 27)/10 in
the second one. This difference is negligible when m is large as it is in all our
approaches.

The main difference between the three approaches is that three basis vectors
are switched in each CV round in Approach 1, the basis vectors are the same in
each CV round in Approach 2, while the sets of basis vectors may be completely
different between the CV rounds in Approach 3. Thus, each of the three approaches
is an unbiased estimator of the expected performance of the sparse RLS learning
algorithm used with 27 randomly selected basis vectors. However, the variance of
the estimates is likely to differ between the three approaches, because there are
different types of dependences present between the CV rounds.

With the 100 repetitions, we estimate the variability of CV estimates caused
by the selection of the basis vectors together with the fold partition in the training
set. Note that these are not the whole variances of the three estimates. In order
to measure the complete variability of the estimates, we should have new data
sets drawn from the underlying distribution for each of the one hundred repe-
titions. Nevertheless, these experiments are sufficient for our purposes, since we
are especially interested in the variance caused by the random selection of basis
vectors.

We use the mean squared error (MSE) as a performance evaluation
measure, and compute the variance estimate with the following formula:
%_T Z:Zl(MSE(i) —)%, where r is the number of repetitions, MSE® is MSE
obtained from the ith repetition, and u is the mean CV error estimated from the
sample of repetitions.

Comparing the variances in the three experiments provides supportive evi-
dence on our hypothesis of obtaining a smaller variance for the CV estimate by
varying the set of basis vectors in each round (Figures 1-4). From the MSEs, we
observe that the predictors underfit with large values of the regularization param-
eter, while some minor overfitting happens with the Pumadyn data set with the
smallest parameter values. As expected, the estimators, where the basis vectors
are separately selected in each CV round have the smallest variances caused by
the basis vector selection and fold partition. In addition, the estimates in which
some of the basis vectors are changed in each round have smaller variances than
the estimates that have a constant set of basis vectors. Since all three approaches
are unbiased estimators of the expected performance of the sparse RLS algorithm,
the MSEs averaged over the one hundred repetitions are about the same, though
some differences can be observed with the Pole Telecomm data set. The differences
are due to the variance of the estimators and, indeed, the variances corresponding
to the Pole Telecomm task are the largest among the four tasks.

To conclude, in order to decrease the variance of the CV estimate of the ex-
pected performance of the sparse RLS algorithm, one can change the set of basis
vectors in the CV rounds. However, changing the set completely in each round
may be computationally too expensive, because it corresponds to completely re-
training the predictor in each round. Nevertheless, the variance can be decreased
to some extent by changing a small subset of the basis vectors per CV round as
is done in Approach 1, while this does not require more computational resources
than training the predictor only once.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 19

0.18 0.012
— Approach 1 — Approach 1
0.16f| --- Approach 2 0.010F -~~~ --- Approach 2
Approach 3 -~ Approach 3
0.14 0.008
()
o
@ 5
Lo.12 -80.006,
©
>
0.10 0.004r
0.08| 0.002
00675 -10 -5 0 5 0.000 5 5
logy A logy A

Fig. 1 Mean and variance of the hundred MSEs as a function of log, A in the three approaches
in the Ailerons task.

48 0.14
all — Approach 1 L
--- Approach 2 0.12) IR e
46 Bt -
Approach 3 0.10
go.os — Approach 1
8 --- Approach 2
$0.06 --~ Approach 3
0.04
0.02
=15 -10 0 5 0.0015 -10 0 5

=5 =5
logy A logy A

Fig. 2 Mean and variance of the hundred MSEs as a function of log, A in the three approaches
in the Elevators task.

400 30
— Approach 1
--- Approach 2
390f| -~ Approach 3

395

N
o

385 — Approach 1

--- Approach 2
Approach 3

@
380
=

375

Variance
o
S

370 15

|

360 10

Fig. 3 Mean and variance of the hundred MSEs as a function of log, A in the three approaches
in the Pole Telecomm task.

6.3 Experiments with Simulated Data
6.3.1 Experiments using a Larger Number of Basis Vectors

To study the behavior of the three approaches considered in Section 6.2 in a task
where the the selection of the regularization parameter plays a more important

20 Tapio Pahikkala et al.

1.6e-6

0.00078| — Approach 1
--- Approach 2
--~ Approach 3 1.2e-6|

1.4e-6|

0.00076|

0.00074|

Variance
-3
o
~

0.00072] -
4e-77| — Approach 1}

--- Approach 2| °
Approach 3

0.00070]

-15 ~10 =5 0 5 15 ~1o -5 o s
logy A logy A

Fig. 4 Mean and variance of the hundred MSEs as a function of log, A in the three approaches
in the Pumadyn task.

role than in the previous experiments, we perform a similar test on a regression
task in which the data is artificially generated. By generating a new data set from
scratch for each repetition of the experiment, we also obtain more comprehensive
view of the variance caused by sampling the training data from the underlying
distribution.

The function to be learned is a sinusoid contaminated with Gaussian noise
with standard deviation 2. The data points are uniformly sampled from the interval
[—20,20]. The test is done with 10-fold cross-validation, using 270 basis vectors and
with overall number of training examples being 3000. Again, we used the Gaussian
kernel. In this experiment, the whole data set is resampled for each repetition
used in the variance estimation. Because of this, the variability of the estimates
is considerably larger than in the experiments done with the real world data sets,
and therefore we increased the number of repetitions to 1000. An example of a
randomly sampled data and the learned function is given in Figure 5. The mean
and variance of this experiment for different values of the regularization parameter
are depicted in Figure 6.

From the behavior of the mean, one can easily observe that the learning pro-
cess overfits with the small values of the regularization parameter, underfits with
large values and the optimal values are in the middle, namely the values around
25. However, unlike in the experiments with the real world data, Approach 3 does
not seem to express smaller variance than Approach 1 for all values of the regu-
larization parameter. The large variance of Approach 2 can be explained by the
fact that since the basis vectors are never included in the hold-out sets and the
ratio between the number of basis vectors and the size of the training set is about
1/10, the size of the hold-out sets are one tenth smaller than those in the other
approaches. Otherwise, we can conclude that the variation of the set of basis vec-
tors does not play as important role in the sinusoid experiment as it does with
the four experiments done with real world data sets, and hence the effect is very
much dependent on the application. Thus, it is possible to be able to decrease
the variance of CV results by varying the set of basis vectors between CV rounds
somewhat, but in most cases, a fixed set of basis vectors works well enough.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 21

(O] T Q o]
¢ o Training data

e e Basis

Fig. 5 An example of a randomly sampled 3000 data points (circles), 300 basis vectors (filled
circles), the target function (dashed line) and the learned function (solid line).

0.0155

— Approach 1 00150l | Approach 1
aal| ~- Approach 2 ’ --- Approach 2
’ Approach 3 0.0145 Approach 3 !

0.0140| '

0.0135]

MSE

0.0130]

variance

0.0125f -

0.0120|

0.0115]

4.0 5 5 0.0110 5
logy A logy A

Fig. 6 Mean and variance of the thousand MSEs as a function of log, A in the three approaches
in the sinusoid task.

6.3.2 Bias Caused by Basis Vector Selection Outside C'V Loop

In many cases, it makes sense to use a clever heuristic for selecting the basis
vectors than the completely random selection. This can increase the prediction
performance considerably or the same prediction performance can be achieved with
much smaller amount of basis vectors than with random selection. The downside of
the heuristic-based selection is that they are often computationally more complex
than the random selection (Rifkin et al., 2003; Kumar et al., 2009).

To test the usability of the CV methods with typical basis vector selection
algorithms, we implemented a randomized greedy forward selection method which
is similar to the one proposed by Smola and Bartlett (2001). The pseudo code of
the method is given in Algorithm 1. In short, the selection method starts from an
empty set of basis vectors and iteratively adds one vector at a time until n have
been selected. During each iteration, the method first draws randomly a set of 60
candidate basis vectors which have not yet been selected. From the 60 candidates,

22 Tapio Pahikkala et al.

the method then selects the one which improves the training error the most. That
is, for each candidate h, a sparse RLS is trained with basis vectors BU {h}, where
B denotes the set of basis vectors selected so far, and tested with the training
data, and the candidate whose inclusion to the basis vector set provides the lowest
error on the training data is selected. In the algorithm description, the function
TrainingErr denotes the error on the training set made by the sparse RLS trained
using the given set of basis vectors. The constant 60 is based on the idea that to
find a basis vector that is with probability 0.95 among the best 0.05 ones of all
possible basis vectors, it is enough to search it among a random sample of size
60. We also note that, while the RLS has to be retrained 60 times during each
round of the greedy selection, the training process can take advantage of the RLS
predictor trained in the previous selection round using computational short-cuts
based on matrix algebra as shown by Smola and Bartlett (2001). Nevertheless,
the greedy selection method is still considerably slower than the method based on
completely random selection.

Algorithm 1 Randomized Greedy Selection of n Basis Vectors
1: B+ 0

2: forie {1,...,n} do

3: R + Randomly sample 60 indices from {1,...,m} \ B

4: J < argming, ¢ ¢ TrainingErr(B U {h})

5 B+ BU{j}

We run the same three approaches as above but this time using the basis
vectors selected with the randomized greedy method. With Approaches 1 and 2,
respectively, 30 and 27 basis vectors are selected first on the whole training set and
ten-fold CV is run afterwards. With Approach 3, 27 basis vectors are separately
selected in each round of the ten-fold CV with Algorithm 1. This experiment is also
repeated with a larger number of basis vectors, namely 300 and 270 depending on
the approach. Since the basis vector selection is done outside the CV loop in the
two first approaches, we expect the CV results to be optimistically biased, while
this should not be the case with Approach 3. The three approaches are again
repeated 1000 times and the sinusoid data is regenerated for each repetition. The
mean and the variance of the repetitions are illustrated for different values of the
regularization parameter in Figure 7.

From the results, we observe that, as expected, the performances of Approaches
1 and 2 with a small number of basis vectors are optimistically biased compared
to that of Approach 3. With a large number of basis vectors, Approach 1 does not
seem to suffer from the bias anymore, while Approach 2 still does. Thus, removal
of the basis vectors during CV rounds seems to counter the bias at least in some
cases. With these experiments, the bias does not seem to be considerably serious
if the CV results are used, for example, for parameter selection. Nevertheless, as
observed from the results, the size of the bias can depend a lot on the experimental
setting and we have no good means for predicting it in advance. To conclude, the
proposed CV short-cuts should be used with basis vector selection with caution
but the results may still be useful as approximate performance estimates if one
needs to save the computational resources required in the re-selection of the basis
vectors in each CV round, especially if LOOCYV is used.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 23

45 0.0135
— Approach 1 — Approach 1 N
aal| Approach 2 0.0130f| --- Approach 2 -
’ Approach 3 Approach 3 ,
0.0125 Y,
4.3 3
3 5
2 0.0120)
o
4.2 >
0.0115
41 g 0.0110]
0236 3z 4 6 & 10 1z 1 0.0105 12 14
logy A
4.6 0.016
— Approach 1 — Approach 1 Lo
44f| --- Approach 2 0.015 | --- Approach 2 ’
Approach 3 Approach 3
4.2 0.014
[B
9
& 5
Q40 JPPEEE 80.013
©
e >
3.8 0 0.012
36F -l Rt 0.011F—
347 =7 0 2 4 6 8 10 1z 14 0010756 2 4 6 8 10 1z 14
logy A logy A

Fig. 7 Mean and variance of the thousand MSEs as a function of log, A in the three approaches
in the sinusoid task and basis vectors selected with the randomized greedy method, with 27
basis vectors (top) and 270 (bottom).

6.4 Bias Caused by Basis Vectors in Hold-out Set

In order to use CV for measuring the expected performance of a fixed sparse RLS
predictor learned from a certain training set and a certain set of basis vectors, the
predictor learned without the hold-out set should be as close as possible to the
fixed predictor under consideration. The smaller the hold-out sets are, the smaller
is the change in the predictor in most of the practical cases. LOOCYV is usually
a good choice, because the hold-out sets are as small as possible. Moreover, the
original set of basis vectors should be used during CV, since changing the set may
change the predictor even more than holding out some training examples.

We address empirically the question of handling the basis vectors in the hold-
out computations and consider the following three approaches:

(i) We can remove the hold-out example from the basis vector set. This may
change the predictor too much which, in turn, may increase the bias of the
performance estimate.

(ii) If the training data set is large — as it is in cases where sparse algorithms
are needed — it is reasonable to skip the training examples that are also
basis vectors in LOOCYV in order to avoid biased results. This may cause a
slight increase in the variance of the performance estimate, since the whole
data set is not used in CV but the increase is usually tolerable because of
the small size of the basis vector set compared to the training set size.

24 Tapio Pahikkala et al.

(iii) The example can be kept in the basis vector set, while its effect is removed
from the squared error. This may lead to a bias, because the data points for
which the prediction is to be made do not usually belong to the set of basis
vectors.

Since sparse RLS is usually used when the amount of training data is large, the
second approach is usually preferred. However, tasks in which the training set
violates the often made i.i.d. assumption are common. In such cases, one must pay
careful attention on the experimental setup in order to avoid biased results caused
by the dependencies.

As an example of a task, where the training set contains certain dependency
structures, we consider the following regression problem. Given a sentence taken
from a free text document, an automatic parser is employed to generate a set
of alternative parses of the sentence. Some of the generated parses describe the
syntactic structure of the sentence more correctly than the others. To reflect this
correctness, a regressor is used to predict scoring for the parses. The regressor is
learned from a training set, which is in turn constructed from a set of sentences
and the parses extracted from the sentences. Due to the feature representation of
the parses, two parses originating from a same sentence have almost always larger
mutual similarity than two parses originating from different sentences. Hence, the
data set consisting of the parses is heavily clustered according to the sentences the
parses were generated from and this clustered structure of the data has a strong
effect on the performance estimates obtained by CV. This is because the data
instances that are in the same cluster as the hold-out instance have a dominant
effect on the predicted output of the hold-out instance. This does not, however,
model the real world use, because a regressor is usually not trained with parses
originating from the sentence from which the new parse with an unknown score
value is originated. The problem can be solved by performing CV on the sentence
level so that all the parses generated from a sentence would always be either in
the training set or in the test set.

With sparse RLS, performing CV on sentence level is still not the whole story,
though. Consider the case in which the aim to use CV in order to estimate the
prediction performance of the regressor trained with the available data set. More-
over, consider a hold-out set consisting of all the parses associated to a single
sentence. Further, one of the examples in the hold-out set belongs to the set of
basis vectors. The question still left open is whether the hold-out examples should
also be removed from the set of basis vectors or not. On one hand, removing one
example from the set of basis vectors in hold-out computation counters the aim
of measuring the performance of the regressor trained with the whole data set,
because removing a basis vector may change the regressor even more than only
removing some of the training examples. On the other hand, having a basis vector
that is very similar to the hold-out examples may cause a bias on the results,
because it does not model the reality at the time, when the predictions are made.

To study these issues in practice, we use a data set having altogether 2,354
instances: The total number of sentences is 501 and approximately five parse can-
didates are generated for each sentence. The feature representation of the instances
was generated using the method presented in Pahikkala et al. (2006b). This feature
representation is sparse and contains tens of thousands of different features. We
form the kernel matrix K by using a linear kernel and ensure its positive definite-

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 25

0.40 0.40
03 T — CVapproach 1 0.35 — CVapproach 1
.35 . .
RN --- CV approach 2 --- CV approach 2
0.30 - CV approach 3 0.30 -~ CV approach 3
* x x Separate test set x x Separate test set

0.25) 1 025 ,
& i 4
Lo.20 5 1 Qo2o0

0.15 - 0.15

0.10 0.10

0.05F x X X X X X X X X x x x x CxoxmX XX T 40005

0.005 0 5 10 15 00— s 0 5 10 15

logy A logy A

Fig. 8 Comparison of the MSEs of three CV approaches in the parse ranking task with a test
set error as a function of log, A and with unnormalized kernel (left) and normalized kernel
(right).

ness by a diagonal shift of 107 7I. In addition, we have a separate test set of 600
sentences with approximately twenty parses per sentence.

Due to the sentence-wise dependencies in the data, we perform CV on the
sentence level by holding out one sentence at a time. We randomly select one
training instance per sentence as a basis vector, totaling n = 501. This selection
is intuitive and we confirmed its superiority over a complete random selection
empirically in a preliminary experiment. We compare the MSE of the following
CV approaches against the performance obtained with the separate test set:

1. The examples in the hold-out set are completely removed from the training set
and from the set of basis vectors in each CV round.

2. The examples in the hold-out set are removed from the training set except the
example that belongs to the set of basis vectors, that is, the basis vector is
preserved and the square loss is evaluated on it in the training phase.

3. The examples in the hold-out set are removed from the training set but the
set of basis vectors is preserved, that is, the basis vector in the hold-out set
remains a basis vector but the square loss is not evaluated on it in the training
phase.

We make a separate comparison for each A value from 27° to 2'% and we
perform the experiments with both an ordinary and normalized linear kernel.
The kernel is normalized with the standard approach, that is, with the formula
k(z,2)/\/k(z,z)k(z,2), where k(x, 2) is the value of the unnormalized kernel func-
tion between data points x and z.

The results are illustrated in Figure 8. The first approach has only a small
pessimistic bias when compared to the results with a separate test set. The value
of X does not seem to have a noticeable effect on the bias, and hence this CV ap-
proach can be used to select an appropriate value. We also observe that the second
approach underestimates the regression error especially with the small values of
A. This is obvious, since one of the parses associated with the hold-out sentence is
left in the training set, and the prediction for the other parses is therefore much
easier than it would be in reality. Hence, the second approach is not reliable due
to its optimistic bias.

26 Tapio Pahikkala et al.

Basis vectors

40 60 80 100
Training points

I [_

250 500 750 1000 1250 1500 1750 2000

Training points

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 9 Heat maps of the original (top) and normalized (bottom) kernel matrices.

In addition, we observe that the third approach grossly overestimates the re-
gression error for the small values of \. We analyze this adverse effect in the follow-
ing way. First, we consider the kernel values between the basis vectors and training
examples. Heat maps illustrating parts of both the original and normalized kernel
matrices are shown in Figure 9. The rows are indexed by 20 basis vectors and
the columns by 100 training examples. Each of the 20 basis vectors are associated
with 5 training examples. As can be easily observed from the normalized kernel
matrix, the kernel values between a basis vector and the five examples associated
with it are much larger than the kernel values between the basis vector and other
training examples. The same phenomenon is also present in the original kernel
matrix but it is more difficult to distinguish due to the excessively high values in
certain entries of the matrix. The absolute value of the kernel evaluation between
a basis vector and a data point associated with it is, on average over the whole
training set, about three times larger than that between a basis vector and an
unassociated data point, for both the normalized and unnormalized kernels (see
Table 2). As discussed above, this is a property of the learning task in question
and the kernel function used.

Second, we consider the absolute values of the learned dual coefficients of the
basis vectors during CV. The values are measured using small values of the reg-
ularization parameter, namely A = 2° and A = 27!° for the unnormalized and
normalized kernels, respectively, for which the bias is large (see Table 2). On av-
erage over all CV rounds, the absolute value of the coefficient of the basis vector

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 27

k(z,z) kv, z) [ay azk(z,z) avk(v,z)
Unnormalized, A = 20 250628 72231 1.738 0.915 701.0 105.7
Normalized, A = 2710 | 4509 1456 486.4 191.9 439.6 55.97
Unnormalized, A = 210 | 250628 72231 0.058 0.233 22.53 30.16
Normalized, \ = 2° 450.9 145.6 35.42 89.79 31.92 26.0

Table 2 The average absolute values for the kernel values, coefficients, and their products,
during CV. The symbols z and v denote basis vectors inside and outside the hold-out set in
a CV round, a; and a,denote their coefficients, and z denotes a data point in the hold-out
set and associated with z. The measurements are done for both unnormalized and normalized
kernels and with low and high regularization.

belonging to the hold-out set is about two or three times larger than that of a basis
vector not in the hold-out set. With low regularization, RLS is close to the ordi-
nary least-squares method that is invariant to the scaling of the kernel evaluations
(Frank and Friedman, 1993), and hence the basis vector gets a larger coefficient
than the others as it is dissimilar with all training examples not in the hold-out
set, because all the similar data points are held out. This does not cause any prob-
lems in prediction time, because the data points for which the predictions are to
be made are not associated with the basis vectors. However, this is not happening
in the hold-out prediction, since all the hold-out data points are associated with
exactly the basis vector that is the most dissimilar with the data points used in
training. Indeed, when we measure the evaluations azk(z, z), where z is a basis
vector, ay is its coefficient in a CV round, and z is a data point in the hold-out set
of the CV round, we observe that the absolute values of the evaluations concerning
the basis vector in the hold-out set are, on average, about seven times larger than
the evaluations concerning the other basis vectors.

From the performance curves in Figure 8, we see that the adverse effect disap-
pears if the regularization is increased. To consider this in more detail, we made
the same measurements also with A = 2'° and A = 2° for the unnormalized and
normalized kernels, respectively (see Table 2). We observe that, with more power-
ful regularization, RLS is not invariant to the scaling of the kernel values (Frank
and Friedman, 1993), and the absolute values of the coefficients of the basis vec-
tors belonging to the hold-out set are, on average, smaller that those of the basis
vectors not in the hold-out set. This, in turn, counters the effect of the kernel
values in the evaluations azk(x,2), whose average absolute values are in this case
very similar among the basis vectors inside and outside the hold-out set.

We conclude that having one of the hold-out examples in the set of basis vectors
can also cause a serious bias on the regression results, because the circumstances in
the hold-out computations do not correspond well enough those in the prediction
time. Thus, the experiments clearly indicate that the ability to hold-out basis
vectors from training is necessary in the considered task.

7 Conclusion

In this paper, we presented a hold-out algorithm for sparse RLS that improves
result reliability and computational efficiency. Improvements in result reliability
are achieved by a capability to hold out basis vectors. That is, some of the basis
vectors used to train the sparse RLS predictor with the whole training set can

28 Tapio Pahikkala et al.

be removed from the basis vector set used in the hold-out computation. In our
experiments, we demonstrated that our algorithm is considerable faster in hyper
parameter selection with leave-one-out cross-validation than the baseline approach
without the proposed computational short-cuts. We have empirically studied the
effect of holding out basis vectors in each CV round for the the variance of the
CV estimate and found out that it indeed lowers the variance in certain cases. We
have also given empirical evidence on the necessity to hold out basis vectors in
order to avoid seriously biased CV estimates. Further, we empirically measured
the effect caused by greedily selecting the basis vectors outside the CV loop and,
as expected, confirmed the risk of optimistic bias in the CV results.

To summarize the computational efficiency, holding out |H| training examples
with our algorithm requires O(min(|#|?n,|#|n?)) time, if a sparse RLS predic-
tor is already trained with a set of m training instances and n basis vectors.
This, in turn, enables the efficient computation of cross-validation (CV) esti-
mates for sparse RLS. Namely, the complexity of N-fold CV estimates becomes
O(min(m|H|n,mn?)), where m, n and N are the numbers of training instances,
basis vectors and CV folds, respectively. Especially, in the case of LOOCV, the
algorithm has the complexity O(mn). Because the sparse RLS can be trained in
O(mn?) time for several different values of the regularization parameter in paral-
lel, the fast CV algorithm can be used to efficiently select the optimal parameter
value.

Acknowledgments

This work has been supported by the Academy of Finland (grants 134020 and
136653). NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program. We
express our gratitude to Dr Wray Buntine at NICTA for his helpful comments.

References

Airola, A., Pahikkala, T., and Salakoski, T. (2011). On learning and cross-
validation with decomposed Nystrom approximation of kernel matrix. Neural
Processing Letters, 33(1):17-30.

An, S., Liu, W., and Venkatesh, S. (2007). Fast cross-validation algorithms for least
squares support vector machine and kernel ridge regression. Pattern Recognition,
40(8):2154-2162.

Cauwenberghs, G. and Poggio, T. (2001). Incremental and decremental support
vector machine learning. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors,
Advances in Neural Information Processing Systems 13, pages 409-415. MIT Press.

Cawley, G. C. and Talbot, N. L. C. (2004). Fast exact leave-one-out cross-
validation of sparse least-squares support vector machines. Neural Networks,
17(10):1467-1475.

De Brabanter, K., De Brabanter, J., Suykens, J., and De Moor, B. (2010). Op-
timized fixed-size kernel models for large data sets. Computational Statistics &
Data Analysis, 54(6):1484-1504.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 29

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7):1895-1923.

Elisseeff, A., Evgeniou, T., and Pontil, M. (2005). Stability of randomized learning
algorithms. Journal of Machine Learning Research, 6:55-79.

Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics
regression tools. Technometrics, 35(2):109-135.

Golub, G. H. and Van Loan, C. (1989). Matriz Computations. The Johns Hopkins
University Press, second edition.

Green, P. and Silverman, B. (1994). Nonparametric Regression and Generalized
Linear Models, A Roughness Penalty Approach. Chapman and Hall.

Horn, R. and Johnson, C. (1985). Matriz Analysis. Cambridge University Press.

Karasuyama, M., Takeuchi, I., and Nakano, R. (2009). Efficient leave-m-out cross-
validation of support vector regression by generalizing decremental algorithm.
New Generation Computing, 27:307-318.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Mellish, C., editor, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, volume 2, pages 1137—
1143, San Mateo, USA. Morgan Kaufmann.

Kumar, S., Mohri, M., and Talwalkar, A. (2009). Sampling techniques for the
Nystrom method. In van Dyk, D. and Welling, M., editors, Proceedings of the
12th International Conference on Artificial Intelligence and Statistics, volume 5 of
JMLR Workshop and Conference Proceedings, pages 304-311. JMLR.

Nadeau, C. and Bengio, Y. (2003). Inference for the generalization error. Machine
Learning, 52(3):239-281.

Pahikkala, T., Boberg, J., and Salakoski, T. (2006a). Fast n-fold cross-validation
for regularized least-squares. In Honkela, T., Raiko, T., Kortela, J., and Valpola,
H., editors, Proceedings of the Ninth Scandinavian Conference on Artificial Intel-
ligence (SCAI 2006), pages 83-90, Espoo, Finland. Helsinki University of Tech-
nology.

Pahikkala, T., Pyysalo, S., Boberg, J., Jarvinen, J., and Salakoski, T. (2009a).
Matrix representations, linear transformations, and kernels for disambiguation
in natural language. Machine Learning, 74(2):133-158.

Pahikkala, T., Suominen, H., Boberg, J., and Salakoski, T. (2009b). Efficient hold-
out for subset of regressors. In Kolehmainen, M., Toivanen, P., and Beliczynski,
B., editors, Proceedings of the 9th International Conference on Adaptive and Natural
Computing Algorithms, pages 350-359. Springer.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Jarvinen, J., and Boberg, J. (2009c¢).
An efficient algorithm for learning to rank from preference graphs. Machine
Learning, 75(1):129-165.

Pahikkala, T., Tsivtsivadze, E., Boberg, J., and Salakoski, T. (2006b). Graph
kernels versus graph representations: a case study in parse ranking. In Gértner,
T., Garriga, G. C., and Meinl, T., editors, Proceedings of the ECML/PKDD’06
workshop on Mining and Learning with Graphs, pages 181-188.

Pelckmans, K., De Brabanter, J., Suykens, J., and De Moor, B. (2005). The
differogram: Non-parametric noise variance estimation and its use for model
selection. Neurocomputing, 69(1-3):100-122.

Pelckmans, K., Suykens, J., and De Moor, B. (2006). Additive regularization
trade-off: Fusion of training and validation levels in kernel methods. Machine
Learning, 62:217-252.

30 Tapio Pahikkala et al.

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Pro-
ceedings of the IEEE, 78(9):1481-1497.

Poggio, T. and Smale, S. (2003). The mathematics of learning: Dealing with data.
Notices of the AMS, 50(5):537—-544.

Quinionero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6:1939-1959.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. Journal
of Machine Learning Research, 5:101-141.

Rifkin, R. and Lippert, R. (2007). Notes on regularized least squares. Techni-
cal Report MIT-CSAIL-TR-2007-025, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA.

Rifkin, R., Yeo, G., and Poggio, T. (2003). Regularized least-squares classification.
In Suykens, J., Horvath, G., Basu, S., Micchelli, C., and Vandewalle, J., editors,
Advances in Learning Theory: Methods, Model and Applications, volume 190 of
NATO Science Series I1I: Computer and System Sciences, chapter 7, pages 131—
154. TOS Press, Amsterdam, Netherlands.

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression learning
algorithm in dual variables. In Shavlik, J. W., editor, Proceedings of the Fifteenth
International Conference on Machine Learning, pages 515-521. Morgan Kaufmann
Publishers Inc.

Schiavo, R. A. and Hand, D. J. (2000). Ten more years of error rate research.
International Statistical Review, 68(3):295-310.

Scholkopf, B., Herbrich, R., and Smola, A. (2001). A generalized representer
theorem. In Helmbold, D. and Williamson, R., editors, Proceedings of the 14th
Annual Conference on Computational Learning Theory, pages 416-426. Springer.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without
the agonizing pain. Technical report, Carnegie Mellon University, Pittsburgh,
PA, USA.

Smola, A. and Bartlett, P. (2001). Sparse greedy gaussian process regression.
In Leen, T. K., Dietterich, T. G., and Tresp, V., editors, Advances in Neural
Information Processing Systems 13, pages 619-625. MIT Press.

Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle,
J. (2002). Least Squares Support Vector Machines. World Scientific Pub. Co.,
Singapore.

Suykens, J. and Vandewalle, J. (1999a). Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293-300.

Suykens, J. and Vandewalle, J. (1999b). Multiclass least squares support vec-
tor machines. In International Joint Conference on Neural Networks (IJCNN’99),
volume 2, pages 900-903. Institute of Electrical and Electronics Engineers.

Vapnik, V. (1995). The nature of statistical learning theory. Springer, New York,
NY, USA.

Vincent, P. and Bengio, Y. (2002). Kernel matching pursuit. Machine Learning,
48:165-187.

Wahba, G. (1990). Spline Models for Observational Data. Series in Applied Mathe-
matics, Vol. 59, STAM, Philadelphia, USA.

Efficient CV for Kernelized Least-Squares Regression with Sparse Basis Expansions 31

Williams, C. K. I. and Seeger, M. (2001). Using the Nystrom method to speed
up kernel machines. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors,
Advances in Neural Information Processing Systems 13, pages 682-688. MIT Press.

