
Implementing Semantic Search to a Case
Management System

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Software Engineering
2022
Janne Marjalaakso

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Janne Marjalaakso: Implementing Semantic Search to a Case Management Sys-
tem

Master of Science in Technology Thesis, 84 p., 10 app. p.
Software Engineering
November 2022

The amount of information in today’s information society is immense, which cre-
ates a need for intuitive and effective search functionalities and applications. In
addition to openly available search applications, organizations need internal search
functionalities for optimizing their information management. This thesis provides
an implementation suggestion for JoutseNet semantic search application. JoutseNet
is a case management system used by the authorities and the employees of the city
of Turku.

Thesis begins by introducing some relevant fundamentals of natural language pro-
cessing and search engines. Literature review is utilized to find semantic search
implementation methods from previous research papers. Case JoutseNet is intro-
duced with some background information on the case management process and with
a brief user research and examination on the current state of the system. Learnings
from the fundamental guidelines and conducted research are combined to implement
the search application. After the implementation documentation, guidelines for op-
timizing and testing the application are given.

The value and performance of the implementation is yet to be determined because
the production data of the JoutseNet system could not be used for research purposes.
A comprehensive suggestion is provided, but further research and development is
still needed before delivering it to the production environment.

Keywords: natural language processing, semantic search, Elasticsearch, case man-
agement

Contents

1 Introduction 1

2 Natural Language Processing Fundamentals 4

2.1 Brief Definition and History of Natural Language Processing 4

2.2 The Role of Machine Learning in Improving NLP 7

2.3 Natural Language Processing Terms and Techniques 11

2.4 BERT . 13

2.5 FinBERT . 15

3 Search Engine Fundamentals 18

3.1 Brief History of Search Engines . 18

3.2 How to Create a Search Engine Application for an Organization . . . 20

3.2.1 Define the Requirements . 20

3.2.2 Select an Engine . 22

3.2.3 Implement Software Around the Search Engine 26

4 Semantic Search Theory and Possibilities 31

4.1 Definition of Semantics and Semantic Search 31

4.2 Literature Review on Semantic Search 33

4.2.1 Method of the Literature Review 33

4.2.2 Criteria for Selecting the Papers 35

i

4.2.3 Selected Papers . 35

4.2.4 Brief Description of Selected Papers 37

4.2.5 Findings . 40

5 Case JoutseNet - Introduction 42

5.1 Case Management Process . 43

5.2 Operational Environment of Case Management 44

5.3 User Research . 48

5.3.1 User Story: Maritta - Web Chief Editor 49

5.3.2 User Scenarios . 51

5.3.3 Conclusion . 52

6 Case JoutseNet - Implementing the Semantic Search 56

6.1 Defining the Index Structure . 58

6.2 Implementing the Backend . 60

6.3 Adding the Semantic Features . 62

6.4 Implementing the Frontend . 68

7 Case JoutseNet - Testing and Optimizing the Semantic Search 71

7.1 Optimizing the Indexing Process and the Query Request 72

7.2 User Testing . 74

7.3 Next Steps for Case JoutseNet . 77

8 Conclusion 80

8.1 Answers to Research Questions . 80

8.2 Discussion and Future Work . 83

References 85

Appendices

ii

A Query Examples A-1

A.1 The Main Query . A-1

A.2 Example of a Filter Query . A-4

B Document Embedding B-1

B.1 Embedding the Summary of a Document B-2

B.2 Embedding a Document in Smaller Chunks and Calculating the Av-

erage Vector . B-4

iii

List of Figures

2.1 The five stages of Natural Language Processing [4] 8

2.2 Accuracy of text classification with training data sizes from 1K to

100K. Yle news on left and Ylilauta online discussions on right.[21] . 16

3.1 The relevance/search engineer implements the search application and

works closely with a cross-functional team [27] 21

3.2 Transforming the database model to an indexed document [27] 27

5.1 Operational environment of case management [59] 44

6.1 JoutseNet semantic search application flowchart 57

6.2 Example of an Elasticsearch field mapping: Defining a field for the

JoutseNet index numbers ("diaarinumero") 59

6.3 Example of embedding a query string, which is intended to find in-

formation about or related to Port of Turku 64

6.4 Example of Elastiknn mapping . 66

6.5 Example of Elastiknn query . 67

6.6 The user interface of JoutseNet semantic search 69

7.1 People involved in relevance tuning [27] 75

7.2 Relevance feedback loop [27] . 76

iv

1 Introduction

The amount of information grows constantly in today’s information society. Web

search engines and various platforms providing a search functionality are quite so-

phisticated systems. Especially Google Search is familiar to practically everyone who

uses internet. On top of the basic Google Search, Google has developed optimized

search functionalities at least for images, videos, shopping, books, travelling, finance,

and academic publications. All these functionalities are quite easy to use even for

a new user, which generates high expectations for all other search applications and

functionalities.

In addition to Google Search and other openly available search applications,

search engines are also needed for finding information from organizational systems.

It is highly probable that some ready-made solution is not enough for an organi-

zational search. An internal search application must be tailored for the business

and the users’ needs. Having optimized search functionalities for information and

knowledge management can have a big impact on the overall performance of an

organization if the frequency of utilizing those functionalities by the personnel is

high.

City of Turku has showed interest in implementing a semantic search function-

ality for their case management system JoutseNet. The first version of JoutseNet

was created in the late 1990s and since then it has been used to store municipal

decisions, meeting transcripts and other important documents created by the gov-

CHAPTER 1. INTRODUCTION 2

ernmental bodies and the employees of the city. The system is used by various

users every day and the number of documents grows constantly. There are search

functionalities in the current version of the system, but they are not on par with

today’s search application standards. The current search capabilities can be very

cumbersome and retrieving the desired search results can be very difficult for an

average user.

The goal of this thesis is to design and create a semantic search implementation

for the JoutseNet system. Before discussing Case JoutseNet, the practical part of the

thesis, some fundamentals and known characteristics of natural language processing

(NLP), machine learning (ML), search engines and semantics are reviewed in the

first chapters. The relevant theories of NLP are explained in Chapter 2 and the

significance of ML in the development of NLP is also discussed briefly. Chapter 3

briefly discusses the history of search engines in a general level and presents a concise

theory on the creation of a search engine application. In Chapter 4, semantics and

semantic search are analysed as concepts and a literature review on semantic search

is conducted to gain an understanding on previously utilized methods and techniques

for implementing semantic search.

Chapter 5 starts the practical part of the thesis by introducing some background

information about the current state of JoutseNet – What is it and why a semantic

search functionality is needed? Then, an implementation suggestion for the semantic

search application is given in Chapter 6 with an appropriate level of detail so that

future developers and users of such application can gain an adequate understanding

on the process and used tools. Lastly, Chapter 7 discusses the next steps for Case

JoutseNet and some guidelines for testing and optimizing the implementation to

support future development of the implementation suggestion.

Chapter 8 concludes the thesis by discussing the results of the practical part

and reflecting them to the background theory. Concise answers for the research

CHAPTER 1. INTRODUCTION 3

questions are provided and some thoughts for future research and development are

shared. The research questions for this thesis are

RQ1: What kind of methods and techniques are used in previous use cases to enable

semantic search functionalities?

RQ2: What are the requirements for a JoutseNet semantic search application?

RQ3: How to create a semantic search functionality, which provides relevant search

results for the users of JoutseNet-system?

2 Natural Language Processing

Fundamentals

Humans use natural languages, such as English and Finnish, for communication

purposes. Natural Language Processing (NLP) is a subfield of artificial intelligence,

which studies these languages from computational perspective and, more specifically,

the interactions between computers and natural languages. Computer databases

are converted into readable language and human language is converted into some

formal representation so that computers would be able to process it. Many NLP

applications utilize both of these processes for providing a complete service for the

user. For example, some system takes a user input, transforms it into machine

format, processes the input in machine format and then gives an output, which

is first created in a machine format and then transformed to human language so

that the user can understand it. [1] The next section introduces some of the most

important events of NLP development from the past seven decades.

2.1 Brief Definition and History of Natural Lan-

guage Processing

The history of NLP started already in the 1950s. It was the branch of science that

brought artificial intelligence and linguistics together. The first attempts of utilizing

2.1 BRIEF DEFINITION AND HISTORY OF NATURAL LANGUAGE
PROCESSING 5

NLP included a Russian-to-English machine translation. However, especially homo-

graphs and metaphors caused difficulties for the translation. For example, with a

very simplistic word-for-word approach, sentence “the spirit is willing, but the flesh

is weak” was translated to “the vodka is agreeable, but the meat is spoiled”. In 1963

John Backus and Peter Naur created the Backus-Naur form (BNF), which is used to

specify context-free grammars (CFG). It is generally used to represent programming

languages, file formats and protocols and CFGs are also used to model structures of

natural languages. BNF specification collectively validates the specified entity with

a set of derivation rules. [2]

In 1970s, programming language implementation was simplified by utilizing

grammars with lexical-analyser (lexer) generators and parser generators. A lexer

takes text and transforms it into tokens and parser validates the generated token

sequence. The lexing and parsing decisions are determined by the code and lookup

tables, which are based on the predefined regular-expressions and BNF specifica-

tions. The programming language Prolog was published in 1972 and it was intended

to use for NLP applications with its syntax, which is designed to be well-suited for

writing grammars. Originally, NLP was not closely associated with text information

retrieval, but during the several decades of development, those two fields have come

closer to each other. Today, NLP diversely utilizes knowledge from various fields,

which makes it challenging to keep one’s knowledge up to date when researching

and developing NLP applications. [2]

From the history of NLP, it can be seen that there have been several attempts of

defining languages and grammars with strict rules. In most cases, these definitions

have not been suitable for natural languages because of their large size, unrestrictive

nature and ambiguity. The research has still been beneficial for computer science

since it has contributed to the development of programming languages as a positive

side effect. Standard parsing and formalized approaches have two main problems

2.1 BRIEF DEFINITION AND HISTORY OF NATURAL LANGUAGE
PROCESSING 6

when utilizing them with NLP: 1) It is impractical to hand-craft rules for a system

that is capable of extracting meaning from text, which is the main objective of NLP

and 2) ungrammatical spoken language is natural for a human, but it is very difficult

to write rules for such communication. [2] The first problem is about semantic char-

acteristics of language. The topic of semantics will be further explored in Chapter

4 of this thesis.

According to Kumar, the first attempts of NLP in the 1940s and 1950s are parts

of the so-called first era of NLP. The second era from 1950s to early 1970s added

natural language systems to be a part of artificial intelligence (AI) research and

started the utilization of beforementioned parsers. From early 1970s to early 1990s

the third era contributed heavily to language processing. Discourse models and

semantics were focused on by utilizing scripts, plans, goals and human organization.

These building blocks are referred as human conceptual knowledge and they were

used to create programs capable of understanding natural language. [1] The LUNAR

question answering system was first demonstrated at a lunar science convention

in 1971 and it was one of the first systems to use predicate logic as a semantic

representation by combining natural language and logic-based paradigms. [3] In the

1980s, more accurate evaluation was performed and large bodies of text were used

to train algorithms that utilized probabilistic machine-learning methods. [2]

The current fourth era of NLP, which started in the early 1990s, has standard-

ized the data driven and probabilistic approach. Evaluation strategies from speech

recognition and information retrieval are utilized in NLP algorithms. The rapid

development of hardware and web applications have provided broad opportunities

for NLP. For example, smart assistants, translators, spell-checking and many other

implementations would not be possible without the extensive development in the

field of NLP. Language-based information retrieval and extraction are important

topics especially in the context of web, searching and data analysis. [1] However,

2.2 THE ROLE OF MACHINE LEARNING IN IMPROVING NLP 7

NLP applications are still far from perfect. It is easy to understand the difficulty

of language understanding and semantics when using some translator tool and the

tool cannot take the surrounding context into account.

2.2 The Role of Machine Learning in Improving

NLP

Machine Learning (ML) and Natural Language Processing are both important sub-

fields of Artificial Intelligence (AI). Furthermore, Deep Learning (DL) is a subfield of

ML, which also has gained much popularity during the past decade and has provided

intelligent implementations for various domains. ML and DL have a significant role

in improving the efficiency and accuracy of NLP. One could also say that NLP gives

the means to communicate with the intelligent systems. Thus, all these subfields

enhance each other, and it is appropriate to study the most important intersections

of ML and NLP to gain a coherent understanding on the topic. The purpose of this

section is to give an overview and a starting point on ML methods as part of NLP,

not to thoroughly explain some specific ML methods.

ML enables problem-solving without explicitly programming the computer for

the task. For many problems, it is impractical to create an explicit algorithm that

provides a solution after it has reviewed all possible inputs. ML and DL help the

computers to learn from given data and the systems can make their conclusions

and decision based on the learnings. Like in learning generally, with ML methods

the machines can be prepared for new problems by basing the solution on their

past experiences. Especially DL techniques often require quite a lot of computing

resources because of its nature on learning from large amounts of data without

explicit instructions. Today, the immense amount of available data and powerful

hardware enable wide use of intelligent systems. It is relatively effortless to create a

2.2 THE ROLE OF MACHINE LEARNING IN IMPROVING NLP 8

Figure 2.1: The five stages of Natural Language Processing [4]

proof of concept for some ML system with modern tools and frameworks, but deeper

implementation still usually requires extensive research and knowledge on the field.

[4] Furthermore, one has to keep in mind the uniqueness of a specific use case and

carefully craft the system requirements by taking the data, performance, users and

other characteristics into account.

NLP is divided into five major stages. These can be seen in Figure 2.1. Nagarhalli

et al. have conducted a study on how ML has impacted on each of the stages of NLP.

[4] The first stage is morphological analysis, which is about identifying the words

2.2 THE ROLE OF MACHINE LEARNING IN IMPROVING NLP 9

and sentences in the given collection of documents. This can be done by tokenizing

and stemming the pieces of language. Learning techniques provided by ML can be

utilized to improve the performance and accuracy of morphological analysis. For

example, sequence labelling, which is a type of pattern recognition, has proven to

be a beneficial ML task that improves accuracy and performance of tokenization

process. [5]

The second stage, syntactic analysis, includes checking the processed text against

the rules of a language. This check ensures that the correct meaning is got from the

sentences. However, rules of languages are generally defined explicitly, and syntax

can be efficiently checked with rule-based parsers. Thus, there has not been notable

usage of ML for the syntactic analysis. [4]

Semantic analysis is the third stage, and it is about understanding the meanings

of words and sentences in the given sample. This is a difficult task because, for

example, language is ambiguous, and many words have multiple meanings. Context

determines the meaning for many words, which is usually natural for a human to

understand but can be difficult for a computer to process correctly. The problem

of word sense disambiguation (WSD) is considered to be an AI-complete problem,

which means that it is at least as hard to solve as the most difficult problems in

AI. [6] According to Nagarhalli et al. [4] various ML methods have been used to

disambiguate the meaning of words. All types of learning, supervised, unsupervised

and even semi supervised, are utilized in different implementations and they have a

significant role in solving the problem.

The fourth stage, discourse analysis, goes beyond individual sentences and mod-

els language phenomena by uncovering several levels of linguistic structures. This

process supports various NLP applications such as machine translation, information

extraction and question answering. [7] Let’s have the two following sentences as an

example text for discourse analysis: “James went to John’s shop to check out the

2.2 THE ROLE OF MACHINE LEARNING IN IMPROVING NLP 10

new mobile phone. He looked at it for hours.” In the second sentence, ”He” can

refer to “James” or “John” and “it” can refer to “shop” or “mobile phone”. The task

of determining the references is called reference resolution. Reference resolution is

essential when analysing a large text. ML methods such as support vector machines

[8] and convolutional neural networks [9] have been used to enhance the performance

of discourse analysis.

Sometimes the actual intended meaning of a sentence is different from the written

meaning. The intended meaning is picked with pragmatic analysis, which is the

fifth and last stage of NLP. [4] For example, sentence “the wedding couple ran

around like headless chickens” does not make sense, if it is taken literally as it

is written. The intended meaning is that the wedding couple is panicking and

senselessly moving from some place to another. Sarcasm detection is one important

problem of pragmatic analysis. Sarcasm can quite easily create situations, where the

written meaning of text is the complete opposite of the intended meaning. Support

vector machine, logistic regression method and random forest algorithm and some

other ML approaches have been used for sarcasm detection. [10]

As can be read from the previous chapters, machine learning is an important

factor on enhancing the accuracy and performance of many NLP stages and tasks.

If some NLP task needs to be improved, it is highly probable that there already is

some ML method that can be used as a supporting aid. In the context of this thesis,

ML mostly concerns the important topic of semantics and how ML can be possibly

utilized to improve the search functionality’s ability to return relevant search results.

2.3 NATURAL LANGUAGE PROCESSING TERMS AND TECHNIQUES 11

2.3 Natural Language Processing Terms and Tech-

niques

NLP utilizes various techniques for different purposes. This section introduces some

of the most common techniques and terms of NLP so that there is enough back-

ground knowledge for Chapters 4-7. Understanding the terms helps to understand

the NLP process in practice.

Tokenization

In the context of NLP, Tokenization is a fundamental technique, and it is used for

most NLP tasks. Sentences or documents are split into tokens. The tokens can be

words or phrases. Tokenization method depends on the processed language. For

example, it is trivial to split English sequences by spaces but languages without

explicit word boundary markers, such as Chinese and Japanese, require additional

methods for word segmentation. Some stop words, such as articles “the”, “a” and

“an” can also be removed already as part of the tokenization. [11]

Stop Words Removal

Stop words are common words, which provide very little useful information. They

are excluded from further processing of the documents. Some stop words are domain

specific. This means that different domains, such as computer domain and medical

domain have different stop words. List of domain specific stop words can be created

based on the specific domain knowledge. [12]

Stemming and Lemmatization

Inflectional and derivationally related forms of words are reduced with stemming

and lemmatization. For example, “speaks” and “speaking” are derived from the

2.3 NATURAL LANGUAGE PROCESSING TERMS AND TECHNIQUES 12

same root form “speak”. Furthermore, semantically related forms of a word, such as

“history” and “historic”, are reduced to the same root form. [12]

Upper Case and Punctuation Removal

With upper case removal, all processed text is transformed into lower case. This

procedure also reduces unnecessary variation of words. For example, “Natural” and

“natural” are the same word when all the text is in lower case. Removing punctuation

is also beneficial because they increase the size of the data and are not very useful

in text analysis. [12]

Part of Speech Tagging and Parsing

Lexical and syntactic information are analysed with Part of Speech (POS) tagging

and parsing. Each token is given a POS tag, which tells if the word is a noun, an

adjective, a verb or some other part of speech. Some use cases can highly bene-

fit from this information. For example, in opinion surveys, adjectives are usually

opinion words and nouns are the targets of opinions. Parsing brings structure to

the information and provides the syntactic side of the analysing with a grammatical

tree. [11]

N-grams

N-grams are one of the most fundamental text features and it is commonly used in

NLP. An n-gram is a sequence of occurring n items in a sample of text or speech.

The items can be letters, syllables, words or even phonemes. Window size defines

the sequence length. Window size of one is a unigram, two is a bigram, three is a

trigram etc. For example, unigrams of “natural”, “language” and “processing” and

bigrams of “natural language” and “language processing” can be picked from the

phrase “natural language processing”. [11][12]

2.4 BERT 13

Term Frequency - Inverse Documents Frequency (TF-IDF)

TF-IDF expresses how important a word is to a document in a collection. Terms

appearing frequently within one document are more important than terms appearing

frequently in multiple documents. [13] The value of TF-IDF is calculated with the

following equation:

TF − IDF =
(︂nt

N

)︂
· log

(︃
K

DFt

)︃
(2.1)

where:

nt = occurrence of term t within a document

N = number of terms in the document

K = total number of documents

DFt = number of documents containing term t

Named Entity Recognition

Named entity recognition (NER) groups words and phrases to pre-defined categories.

For example, the categories could be people, organizations, time, and locations. In

sentence “Janne has lived in Turku since 2015”, “Janne” is a person, “Turku” is a

location and “2015” is put in the time category. [2]

2.4 BERT

In 2018 Google published a language representation model called BERT: Bidirec-

tional Encoder Representations from Transformers. According to the original re-

search paper of BERT, the model is “conceptually simple and empirically powerful”.

Just one additional output layer is enough to create state-of-the-art models for var-

ious NLP tasks. [14] BERT has been a significant actor in rapidly advancing NLP

generally during the past few years [15] and it is even considered to be the new

2.4 BERT 14

industry standard for word processing. [16] Thus, it is relevant to introduce BERT

when composing a brief overview of NLP. Furthermore, BERT is a noteworthy can-

didate for aiding a semantic search functionality, which ties it naturally as a part of

this thesis. [17]

BERT is a pre-trained language model, which means that it has been trained

with a very large corpus and it can be further finetuned with some specific collection

of texts for some specific purpose. [18] For BERT, the pre-training was performed

with BooksCorpus (800 million words) and English Wikipedia (2,500 million words).

Lists, tables and headers were ignored from the Wikipedia material, which left only

the text passages to be extracted for the training. [14] BERT uses transformers to

teach how to represent text. Generally, transformers are a type of neural network

that is used for ML problems where inputs and outputs are sequences. [16] They

were first introduced by Google in 2017 and they enable bidirectionality, which is

a core characteristic of the BERT model. Bidirectionality means that the model is

able to read text from both directions, left-to-right and right-to-left, at once. Before

this feature, language models could only read text sequentially in one direction by

using recurrent neural networks (RNN) and convolutional neural networks (CNN)

for NLP tasks. With the new capability, BERT is trained on two NLP tasks, which

are Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). MLM

hides a word in a sentence and then the model predicts the hidden word based on

the context. NSP predicts the relationship of two sentences: They either have a

sequential connection or their relationship is random. With the ability of processing

data in any order, transformers can train on larger amounts of data and models like

BERT are possible with their substantial training data. [19]

Already in the research stages, BERT achieved impressive results in many NLP

tasks. Previous popular language models, such as word2vec and GloVe, were not

capable of such advanced interpretation of context and polysemous words. Even

2.5 FINBERT 15

ambiguity can be addressed with BERT, which brings it closer to human-like com-

mon sense. Again, this is enabled by transformers, which process each word in a

sentence in relation to all other words in that sentence and builds context with the

observed relations. Google emphasizes that it is not recommended to optimize one’s

web content for BERT: The goal is to have a natural search experience with natural

content. [19] BERT is also constantly being developed to work better with more lan-

guages. Already in 2020, multilingual BERT (mBERT) achieved good performance

on multiple NLP tasks and was applied to over 104 languages. [20]

One important aspect of BERT from the developers’ perspective is that it is

open source. Anyone can use the model and train it to some specific need. Many

organizations and research groups are fine-tuning the model to specialize it and

to optimize its efficiency. For example, there is docBERT, which is fine-tuned for

document classification and SciBERT, which is fine-tuned for scientific text. BERT

has already had a large impact on various NLP tasks and the impact is expected

to grow even larger. Voice search and text-based search are both benefitting highly

from this new approach. BERT even has potential for providing an exceptional

boost for AI systems in general with the efficient ability of training the machines to

“understand”. [19]

2.5 FinBERT

As mentioned in the previous section, there are many projects, that have fine-tuned

BERT for a specific purpose. One of these projects has produced FinBERT, which is

a BERT model for Finnish published by Turku NLP group in 2019. [21] Turku NLP

group is a group of researchers at the University of Turku and the UTU graduate

school. According to their website, they mainly focus on researching various aspects

of NLP, language technology and digital linguistics. Their applications have mainly

focused on the domain of biological, biomedical, and clinical text. Additionally,

2.5 FINBERT 16

Figure 2.2: Accuracy of text classification with training data sizes from 1K to 100K.

Yle news on left and Ylilauta online discussions on right.[21]

methods and resources for syntactic and semantic analysis of Finnish and modelling

of web-based language use is researched. [22]

Multilingual BERT models have managed to handle high number of languages

impressively well. However, monolingual models can still remarkably outperform the

multilingual ones. By developing FinBERT, the research group aimed to provide

a model, which outperforms the multilingual options. Finnish news, online discus-

sions and an internet crawl were used for pretraining the model. The news were

extracted from the corpora of Yle (national public broadcasting company) and STT

(Finnish News Agency). The Yle news were from years 2011-2018 and the STT news

were from 1992-2018. Altogether, the news sources resulted in 4M documents, 68M

sentences and 0.9B tokens. The source for the online discussions were the Suomi24

corpus, which contained all Suomi24 posts from years 2001-2017 and it provided

4.5B tokens. The internet crawl data was obtained from crawl of Finnish internet

that was performed during years 2014-2016 and from Common Crawl Project [21],

which is an open repository of web crawl data. [23] These two sources resulted in

8.1B tokens. Thus, before cleaning up the data, there were a total of 13.5B tokens.

The cleaning up and filtering included removing headers, tags, documents with low

average sentence length, duplicates, and other redundant pieces of data. After that,

2.5 FINBERT 17

the number of tokens were 3.3B, which still was around 30 times the size of the

Finnish Wikipedia that was included in the training of multilingual BERT. [21]

Multiple NLP tasks, such as part of speech tagging, named entity recognition

and text classification were used to evaluate the model and to compare FinBERT

to multilingual BERT. For example, the text classification had over 20% higher

performance with FinBERT when using a small set of training data. The research

shows that for Finnish, which is a lower-resourced language, it is possible to create a

model that performs better than the multilingual BERT. [21] BERT and multilingual

BERT are good options, but it is advisable to look for other possibilities also, when

one is designing an NLP system for some specific purpose.

3 Search Engine Fundamentals

3.1 Brief History of Search Engines

Search engines have become a common part of everyday lives. They can be used to

find information about almost any existing entity. For example, one could search the

location of a restaurant or the birthday of some celebrity. Search engines, mainly

Google Scholar, are heavily utilized to find source material for this thesis. According

to Seymour et al. web search engine can be defined as follows: “Web Search Engine is

a software program that searches the Internet (bunch of websites) based on the words

that you designate as search terms (query words). Search engines look through their

own databases of information in order to find what it is that you are looking for.

Web Search Engines are a good example for massively sized Information Retrieval

Systems.” [24]

Google search is clearly the most well-known search engine, which has led to

the fact that “googling” is used as a synonym for searching information on the web.

However, there are many other search engine alternatives and Google has not been

the first or the only actor in the field at any point. The first software for searching

on the Internet was created in 1990 by computer science students Alan Emtage, Bill

Heelan and J. Peter Deutsch at McGill University in Montreal. The searching tool

was called Archie and it created a searchable database of file names by downloading

the directory listings of all files stored on public anonymous FTP sites. [24] The

3.1 BRIEF HISTORY OF SEARCH ENGINES 19

last known Archie search tool is offered by a Polish university. [25]

The number of websites started to grow in the mid-to-late 1990’s, which resulted

to increasing development of search engines. WebCrawler was published in 1994

and it was one of the first full text crawler-based search engines. With WebCrawler

it was possible to search for any word in any webpage and it steered the direction

towards the searching standards we have today. [24]

In the late 1990s, there was a surge of investing in internet applications. Search

engines were a significant part of this surge and many companies managed to receive

record gains with their initial public offerings. Some companies started with a public

search engine but have taken down it since and offer only enterprise editions of their

services. The dot-com bubble also delivered major investments to some search engine

projects, which turned out to be completely fruitless. [24]

In the turn of the millennium, Google’s search engine started to gain its pop-

ularity. Google introduced PageRank, which helped the engine to achieve better

search results when compared to competitors. PageRank is an iterative algorithm,

which uses the number and PageRank of other web pages that link there to rank all

searchable pages. The ranking is based on the fact that desirable pages are linked

to more than others and it managed to achieve a good correlation with the human

concept of importance. Previously used keyword-based methods mainly used the

frequency or association of the search terms to rank the search results. Google

search was also one of the first search engines to have a very minimalist interface,

which gave an edge over the web portal implementations of the competitors. The

most notable competitors for Google Search have been Yahoo! Search and Microsoft

Bing (formerly MSN Search). [24] During recent years, DuckDuckGo has become

one of the most significant competitors for Google. DuckDuckGo claim that they do

not collect or share any of the user’s personal information, which is an advantage in

today’s world, where more and more users are aware of the constantly encountered

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 20

privacy issues. [26]

3.2 How to Create a Search Engine Application for

an Organization

Public search engine applications such as Google Search, Microsoft Bing and Duck-

DuckGo are generally good tools for information retrieval and their capabilities are

quite vast, but companies still need to create their own solutions for searching infor-

mation from their own databases and to optimize the workflow of their employees.

The amount of stored information grows constantly, and organizations have to de-

velop and maintain search functionalities, which enable efficient utilization of the

stored information. This section will go through the most important parts and

theories of search engine software development.

3.2.1 Define the Requirements

Creating a search engine application is not a straightforward task. Like most soft-

ware development projects, search engine development also starts with defining the

requirements. Every search engine created for a specific purpose is different and

one is required to ask the right questions so that the users can find relevant results:

What kind of content is searched? Who are the users? What kind of queries are

used and how is the vocabulary? How much data is there? How large will the

index be? How many searches the software should be able to handle? How often

should the index be updated? Which features are relevant and should be included?

These questions are not enough to tell the whole truth about the requirements, but

they provide a good starting point for the development process. Additionally, the

organization’s ultimate intent for the search functionality should be evaluated: Is

it important to gain profit or page views with the solution or is it only for finding

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 21

Figure 3.1: The relevance/search engineer implements the search application and

works closely with a cross-functional team [27]

documents from an internal database and making the employees life easier? [27]

Relevance is the most important attribute when creating a search engine and it

has to be in mind during the whole process, from defining the requirements to de-

ploying and maintaining the software. Relevance may also be the most challenging

part of the development process. Doug Turnbull’s and John Berryman’s book Rele-

vant Search (2016) focus on the relevancy problem and tell the reader how it should

be approached when building a relevant search experience. Creating an appropriate

relevance ranking requires research and effort, which may cause a shift to developing

the less problematic parts of the application like performance or user interface. [27]

Relevance and search engine software overall are hard to implement because users

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 22

are used to easy and intuitive searching and information retrieval. Users expect to

find relevant results with low effort and without extensive knowledge about the

search functionality. Users get easily frustrated and lost if they have to use an

information system, which does not have a search bar that is easy to access and use.

Relevance expectations are different with each search application and they should be

carefully defined when gathering the requirements. For example, an expert search

application created for medical professionals should understand that “heart attack”

is the same as “myocardial infarction”. [27]

According to Turnbull and Berryman, “a relevance engineer transforms the search

engine into a seemingly smart system that understands the needs of users and the

business”. Relevance engineer or search engineer is the technical person, who imple-

ments the search application. Despite the title of relevance engineer, other nontech-

nical people involved in the process usually are the experts when defining relevant

results. People who understand the content, business and users are the ones that

can define the appropriate search experience with their knowledge and experience.

[27]

3.2.2 Select an Engine

The next step is choosing an engine for the application. There are various options

to choose from. According to DB-Engines ranking of search engines, Elasticsearch,

Splunk and Solr are the most popular enterprise search engines at the time of writing

this thesis. [28] However, Splunk is a platform for observing machine-generated data,

not a platform suitable for searching documents, which takes it out of the context

of this thesis. [29]

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 23

Comparing Solr and Elasticsearch

Apache Solr was first released to open source in 2006, when it was established as a

subproject of Apache Lucene. In 2021 Solr was established as a separate top level

project. [30] During its first years, Solr led the search engine field, and it was the

first choice for most enterprises wanting to implement a search functionality for their

own needs. In 2010, Elasticsearch was released, which provided a new prominent

option when choosing a search engine. It is also built around Apache Lucene, which

makes its basis similar to Solr’s, but functionalities and development direction in

general have defined differing strengths, weaknesses and use cases for these two

search engines. Elasticsearch did not dethrone Solr immediately after becoming

available, but its modern principles and its capabilities of handling large indices and

high query rates certainly did influence the gained traction on the market. [31]

Solr and Elasticsearch are both released under the Apache Software License, but

only Solr is genuinely open source. There is not a single company controlling the

source code of Solr and anyone can contribute to it. A group of developers, so called

committers, can directly write to the source repositories. Based on merit and con-

tinued contribution, developers can be elected to be committers. [30] Elasticsearch

has been defined as open source for most of its lifetime, but in 2021 Elastic com-

pany announced changes to their licenses. They shifted from licensing their source

code under the Apache 2.0-license to licensing under the Elastic License and SSPL

1.0 (Server Side Public License). After the changes, their software could not be

approved by the OSI (Open Source Initiative) and the company had to leave out

“open source” from their products. Now the products are referred to as “Free &

Open”, with which they emphasize that the product is free to use, the source code

is available for everyone, and they maintain an open and collaborative model in

GitHub. They promise to remain committed to transparency, collaboration, and

community, which are the principles of open source. However, only the employees

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 24

of Elastic company can become committers. [32]

Documentation does not directly define the quality of some software, but it is

an important factor, when developers choose the tools and frameworks they want

to use in their projects. Elasticsearch has some advantages over Solr when com-

paring their documentations. Elasticsearch provides clear structure, examples and

configuration instructions on its website. Solr’s documentation is a bit more difficult

to navigate and finding good technical tutorials and examples require more effort.

Some developers consider Solr’s documentation to be out-of-date and the coverage

of APIs to be too minimal. [33]

For Solr, Apache maintains APIs for Java, Flare, PHP, Python and Perl. The

Java one is most up-to-date and well maintained of the APIs. There are other

APIs also, but they are maintained by the community. Elastic company directly

develops and supports multiple APIs for Elasticsearch: Java, JavaScript, Groovy,

.NET, PHP, Perl, Python and Ruby. Some other APIs are also developed by the

community. [34]

The configuration of Solr and Elasticsearch indices have some fundamental dif-

ferences. The default procedure for Solr is to create a schema file, which defines the

index structure, fields and types. [31] Solr has a Schemaless mode, but it requires its

own configuration. [35] Elasticsearch can be used as schemaless from the start. In

practice this means that documents can be sent to a new instance of Elasticsearch

without any index schema and the engine tries to guess appropriate field types. This

eases the configuration process, but can introduce some inaccuracy, since the guesses

are not always right. The schemaless configuration may be a useful feature to have,

but defined index structure makes the entity easier to manage in the long run. [31]

Solr and Elasticsearch are both built around Apache Lucene, and they fully

take advantage of the near realtime search (NRT), which was added to Lucene’s

IndexWriter in version 2.9. NRT makes it possible to find documents within mil-

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 25

liseconds after they have been updated to the index. [31][36] However, there are

a few differences between the engines when comparing their search features. Both

are suitable for text search, but Solr has some advantages on the full-text search

capabilities and Elasticsearch has its own advantages on the analytic side. [33] For

example, Solr has flexible possibilities for using suggestions and spell checkers and a

highly configurable highlighting support. Elasticsearch provides a “suggesters” API,

which is easy to use, but a ready-made API limits the flexibility. The highlighting

of Elasticsearch is also less configurable. [31] Solr is more text-search oriented and

Elasticsearch has better capabilities for analytic purposes, such as filtering, grouping

and aggregation. [31][33] Elasticsearch focuses a lot on making the analytic queries

more efficient and lowering the needed computational power. These optimizations

are done also at the Lucene level in addition to the Elasticsearch level. [31]

In terms of performance, there are no big differences between Solr and Elastic-

search. Of course, some use cases require further testing with some particular data,

but in most cases the engines have equal performance levels. [31] According to the

analysis and comparison study of Akca et al., it is difficult to predict the perfor-

mance of either search engine before testing them on the particular purpose of work.

[37]

Conlusion

Thanks to the popularity of Solr and Elasticsearch, they both have large communi-

ties behind them and both engines have an extensive set of features already. They

are mature projects that have been the first choices for search application developers

for many years already. Solr may be more appealing to developers that value the

open-source aspect and want their tools to be truly open source. Solr may also be a

beneficial choice, if the receiving company or client has previously already invested

a lot of time in Solr or have used Apache products or some other frameworks that

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 26

are built to work with Solr. Elasticsearch is easier to get started with, easier to

scale and has a well-designed user interface and documentation, which makes it a

tempting choice, if the developer or company does not want to use much time on

configurating and studying the system. [31][34] Blasenak writes that “Solr is like

Linux. Elasticsearch is like Windows”. This refers to the customizability of Solr and

to the easier management and deployment of Elasticsearch. [34] All in all, there

are no clear guidelines on choosing between Solr and Elasticsearch and both are

definitely good choices for most use cases needing search functionalities.

3.2.3 Implement Software Around the Search Engine

Just a search engine is not enough for creating a search application. A search

application needs a user interface for it to be usable and approachable by the end

users and a backend service for implementing custom business logic. This section

will go through some of the most important building blocks for a search engine to

gain a high-level understanding on the development process and on the structure of

a search engine application.

Define the Index Structure

One of the first steps in configuring a search engine is defining the index structure.

Schemaless modes can also be used, but self-defined structure provides higher control

and predictability over the used data. For example, differentiating full-text string

fields and exact value string fields, using custom date formats and using some specific

data types is possible by defining the structure explicitly. It may even be beneficial

to index the same field in multiple ways to use it for different purposes. For example,

a text field can be indexed as a text field for full-text search and as a keyword field

for aggregation. [38]

Most search engines use a data structure called inverted index, which consists of

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 27

Figure 3.2: Transforming the database model to an indexed document [27]

two main parts: a term dictionary and a posting list. All terms that appear in the

indexed documents are listed and sorted in the term dictionary. The posting list

keeps track of the term occurrences in the documents. In other words, all terms are

pointed to lists of documents so that it is easy to retrieve the documents containing

the queried term. Usually, documents contain several fields, and the terms are first

sorted by field and then sorted lexicographically within the fields. It is common for

inverted indices to include some further structure and metadata for aiding the search

relevancy. For example, doc frequency is the number of documents that include a

particular term and term frequency is the count of term occurrences in a particular

document. These pieces of information can be enabled or disabled when optimizing

a search application. [27]

Search engineers must carefully design the index so that it answers to the needs

of the use case. According to Turnbull and Berryman, searching is often made

complex because of insufficient signal modelling. Signal is “any component of the

relevance-scoring calculation corresponding to meaningful, measurable user or busi-

ness information”. In other words, it is any information that can be used to rank

the search results. In many cases, the indexed data is not originally in an optimal

form for the search functionality. For example, in a database a person’s name could

be divided to first name, middle name and last name. For searching purposes, it is

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 28

likely to be more beneficial to index the names as single, combined strings, not as

three separate strings. [27]

Implement Backend for the Application

Like generally in software development, it is highly recommended, or even required,

to utilize a backend in a web application. In the context of search applications,

one of the most important benefits of backend implementation is the possibility to

customize the search queries and to use the appropriate attributes for answering the

users’ needs. More general purposes like central data access, privacy and security

are also relatively easy to satisfy and control with centralized backend operations.

To keep the search application up to date, the data has to be regularly updated

from the database to the search engine. In some cases, the data can be directly

steered to the search engine from the database, but it is likely that some additional

code is required for the update. Cyclic updates can be achieved with task queues,

such as Python Celery, or messaging libraries, such as ZeroMQ. The data update

latency depends on the use case. It may not be appropriate to update the search

engine index after every addition to the database. The general guideline is to keep

index updates quite rare, which is again a relative definition. Some use cases may

require updates every few minutes and for some other use cases updating once per

day or week may be enough. [39]

Retrieving the data and defining the index structure are good to have as parts

of the backend, but a quite large portion of it is probably reserved for receiving

the query, optimizing it and sending it further to the search engine. In this case,

optimizing means using the query parameters appropriately according to the specific

business logic, which includes targeting the correct document fields, filtering, sorting,

and many other possible operations. The goal is to generate a list of results, which

are properly scored and sorted. The definition of proper results is based on the

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 29

expectations of users.

Implement Frontend for the Application

Applications utilizing search functionalities are so common today that every per-

son using computers or mobile phones have some level of expectations on how a

search functionality should work and how it should look like. The current industry

standards are already so high that even relatively minor problems can cause major

frustration. Google and other major actors in the industry have created a mental

image of a simplified search bar that is very easy to use, and desired search results

are found quickly with very low effort.

According to Martin White, starting with the user interface (UI) may be a good

idea when developing an enterprise/organization search application. [40] Defining

the required filters, snippets, sorting options and everything else that is needed

for the UI helps to form an understanding on the needed backend operations. For

example, it may be redundant to implement a certain filtering possibility in the

backend, if that functionality is not needed by the users when they are interacting

with the frontend via the UI. From the defined requirements the developers can

derive, which functionalities and views are really needed for the UI and are not just

a waste of screen space.

Especially organizational information collections contain many documents that

are almost identical with each other. This is because many of those documents use

the same templates, and they are produced as a part of some routine operations.

Similar documents complicate the task of showing relevant search results and lifts

the importance of relevant filter and sorting options. It is also important to carefully

consider the appropriate snippets that are showed along the search results. For some

results, it may be essential to show a snippet with highlights, but some other results

may not benefit from that, and it is better to show just the higher-level information

3.2 HOW TO CREATE A SEARCH ENGINE APPLICATION FOR AN
ORGANIZATION 30

to make the result view more compact. [40]

According to a survey of Businesswire, 57 percent of employees state that compli-

cations in finding the correct information is a major actor for lagging productivity.

[41] This emphasizes the fact that the developers need to understand the users dur-

ing the whole development process. The logic in the backend has to be appropriate

for the use case but the UI has to also be convenient and to avoid confusing and

frustrating features. When comparing to web search, organizational search only

needs to deal with a fairly limited pool of information. Limited environment also

enables better awareness about the users and their intents and actions, which makes

it possible to design an optimal experience for the specific needs. If the used system

requires logging in, it is possible to analyse individual users and to provide pre-

filtered search results based on their roles. Differing information needs may require

some additional engineering with the search functionality. [42]

Inappropriately handled errors and waiting times can easily cause confusion

among the users of the search functionality. The state of search should be always

clear to the user. [42] If the performed search takes time, the user should at least be

informed about it with a simple but clear message in the UI. If there are no search

results at all, it should also be informed to the users. Technical errors should trigger

an informative message, which tells enough so that the user can react appropriately

and be in contact with right personnel to fix the problem. Too dramatic or technical

error messages are not a good idea. They only generate negative experiences and

the users may even get scared of the system. [43]

4 Semantic Search Theory and

Possibilities

4.1 Definition of Semantics and Semantic Search

Encyclopedia Britannica defines semantics as follows: “The philosophical and scien-

tific study of meaning in natural and artificial languages.” The noun semantics is

derived from a Greek adjective sēmantikos (“significant”), which is a derivative of

the verb sēmainō (“to mean” or “to signify”). Semantics, semiotics, semology and

semasiology are terms that are used interchangeably in literature, but semantics is

ultimately used as the name for the study of linguistic meaning. [44] In other words,

semantics studies the meaning of words, phrases, sentences, and other linguistic en-

tities, not the meanings of actions or phenomena. [45]

In semantics, meaning is divided into three levels. The levels are expression

meaning, utterance meaning and communicative meaning. Expression meaning can

be analysed from a phrase when it is studied in isolation without any context.

Utterance meaning is the meaning of a phrase in a given context, which gives the

utterance fixed reference and truth value. Communicative meaning takes the phrase

to a social setting and uses it as a communicative act. Furthermore, expression

meaning can be examined under the scope of lexical meanings, grammatical forms

and syntactic structure. Semantics is an extensive theory about everything related

4.1 DEFINITION OF SEMANTICS AND SEMANTIC SEARCH 32

to linguistic meaning and it includes concepts such as readings, logical properties of

sentences, predications in sentences, relation to cognition and language comparison.

[45]

Semantics works as a background theory for semantic search. Semantic search

can be described as a search with meaning. Fifteen years ago, even the biggest

web search engines were mostly lexical, which means that those engines utilized

only literal matches of the queries or at most some variant of the typed queries.

They were not capable to understand the meaning of the query words and use that

information for retrieving relevant results. [46] For example, search query “Port of

Turku” could only find results, which include exactly some of the query words, but

the search engine could not understand that port is a place for ships or that it is

a synonym for harbour or that Turku is a city in southern Finland. A semantic

search engine or application is designed to understand those facts and to retrieve

results that could be related to the query, even if the results do not include any

of the query words. Semantic search accepts a wider variety of queries for finding

relevant results. It makes searching easier for the user when it “understands” the

semantic aspects of the queries and the indexed documents. The “understanding”

behaviour can be achieved with various natural language processing tasks, such as

named-entity recognition, sentence parsing and word vectors. [46]

Semantic search does not have a clear and unambiguous definition. Researchers

from different fields work on a large set of distinct issues related to semantic search.

It brings various benefits and means different things to different people. This leads

to the fact that many fields of study or work have their own definitions of semantic

search with their own specific use cases. [46]

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 33

4.2 Literature Review on Semantic Search

This section reviews some previous studies and use cases of semantic search. The

gained knowledge is used for answering the first research question RQ1: What kind

of methods and techniques are used in previous use cases to enable semantic search

functionalities? The purpose of RQ1 and the literature review is to give ideas for

implementing the semantic search for the JoutseNet system. The implementation

of the case specific semantic search functionality is documented in Chapter 6.

4.2.1 Method of the Literature Review

A Systematic Literature Review (SLR) is followed to review groups of studies for

this thesis. With SLR, all studies of a field are captured, which can improve a

traditional review because it also includes many lesser-known publications, and the

studies are not biased towards the research area or the interest of the researcher.

[47] The captured studies are used to answer a research question. For this thesis,

the method has to be slightly modified and limited to avoid excessive workload.

The first step in the literature review is to find as many relevant semantic search

papers as possible. The search will be done with keyword combinations that are

introduced later in this section. There should be at least two applicable papers to

avoid too limited scope and bias towards some specific idea or result. If there are

more than 10 relevant papers found, then the first 10 papers are chosen for further

examination. The search process ends when at least 10 relevant papers are found,

or all predefined keywords are used. The selected papers must, at least on a high

level, describe the implementation methods for adding semantic characteristics to

some search engine, which preferably has a specific use case with relatively limited

environment. Limited and organizational search systems are preferred in this review,

but web search studies can also be utilized, if the semantic functionalities seem

relevant and could be utilized in case JoutseNet. Text retrieval is preferred over

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 34

any other type of information retrieval because case JoutseNet is about finding

documents, which are only in textual format.

Google Scholar is used widely for finding sources for this thesis. It will also be

utilized to find papers for the literature review. Searching, reading and selecting the

papers are all done manually. Each search query is a combination of keywords “se-

mantic”, “elasticsearch”, "document retrieval", "information retrieval", “implemen-

tation” and “case study”. Elasticsearch has already been selected to be the search

engine for case JoutseNet, so it is justified to use it as a keyword, which provides

relevant search results in the context of this thesis. It is expected that the keyword

filters out the results concerning web search implementatios as Elasticsearch is pri-

marily an enterprise search engine. After a keyword combination is used as a query,

the search results are examined within the first five pages of results. The searching

process is started with the initial search and if the initial search does not provide

enough relevant results, the searching will continue with another combination of

keywords, which most likely will retrieve more results. Keyword combinations are

used in the following order:

1. semantic elasticsearch document retrieval implementation case study

2. semantic elasticsearch document retrieval case study

3. semantic elasticsearch document retrieval implementation

4. semantic elasticsearch document retrieval

5. semantic elasticsearch information retrieval

6. semantic elasticsearch

Titles and abstracts are important factors on defining the relevancy of the studies.

If the title and abstract of some study indicate the study could provide valuable and

relevant insight on the topic, the content can also be scanned. A study can be

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 35

added to a list for further examination if the content proves to be useful. The list

of selected studies will be further examined to find answers for RQ1. The most

important parts of the studies are the main characteristics of the use cases, the

implementation method of the semantic comparison and the results.

4.2.2 Criteria for Selecting the Papers

There has to be some principles for choosing the papers in the literature review.

The following criteria is used to choose the papers for further examination:

• Paper is written in English

• Paper is freely available without special permission or fee

• Paper is found within first 5 pages of search results

• Paper discusses semantic search in the context of textual information retrieval

• Paper describes the method that enables the semantic characteristics

• Paper is published between 2012-2022

4.2.3 Selected Papers

P1. CodeSearchNet Challenge: Evaluating the State of Semantic Code

Search [48] keyword: "semantic elasticsearch document retrieval implemen-

tation case study"

P2. Geospatial and Semantic Mapping Platform for Massive COVID-

19 Scientific Publication Search [49] keyword: "semantic elasticsearch

document retrieval implementation case study"

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 36

P3. Semantic Vector Encoding and Similarity Search Using Fulltext Search

Engines [50] keyword: "semantic elasticsearch document retrieval implemen-

tation case study"

P4. Information retrieval and analysis for a Modern organization [51] key-

word: "semantic elasticsearch document retrieval implementation case study"

P5. Keyphrase Extraction Model: A New Design and Application on

Tourism Information [52] keyword: "semantic elasticsearch document re-

trieval implementation case study"

P6. Enhancing Clinical Information Retrieval through Context-Aware

Queries and Indices [53] keyword: "semantic elasticsearch document re-

trieval implementation case study"

P7. Semantic Search System using Word Embeddings for query expan-

sion [54] keyword: "semantic elasticsearch document retrieval implementation

case study"

P8. Natural language processing methods for knowledge management

— Applying document clustering for fast search and grouping of

engineering documents [55] keyword: "semantic elasticsearch document

retrieval implementation case study"

P9. Strings and Things: A Semantic Search Engine for news quotes

using Named Entity Recognition [56] keyword: "semantic elasticsearch

document retrieval case study"

P10. Corpus domain effects on distributional semantic modelling of med-

ical terms [57] keyword: "semantic elasticsearch document retrieval case

study"

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 37

The first 8 papers were found with the initial set of keywords: "semantic elas-

ticsearch document retrieval implementation case study". These keywords provided

4720 results. The last 2 papers were found with the second set of keywords "se-

mantic elasticsearch document retrieval case study", which provided 4900 results.

Almost all selected papers were found with the initial search. There were some

search results that initially seemed noteworthy but turned out to be irrelevant with

further examination: Some cases were more about the data structure and the data

flow than the search functionality and the implementation of the search functionality

was not the main topic of the paper. Some papers described the optimization of a

search engine for some specific use case, but they did not utilize any techniques for

extracting semantic characteristics from the used data. There were also some cases

regarding logging and big data analytics, which were left out of further examination.

4.2.4 Brief Description of Selected Papers

The first selected paper CodeSearchNet Challenge: Evaluating the State of Seman-

tic Code Search [48] describes the challenge of using natural language for searching

some specific snippets of source code. The authors of the paper hope that the in-

troduced challenge inspires further research on the topic and even that competition

and leaderboard are hosted to track the challenge. The codesearch use case is very

broad with a large corpus of many programming languages. The implementation

examples make the paper relevant for this literature review: Some baseline code-

search models are introduced with tokenization, sequence encoding and code/query

embedding. The semantic similarity is based on the angular distance between code

embeddings and query embeddings.

Geospatial and Semantic Mapping Platform for Massive COVID-19 Scientific

Publication Search [49] focus on delivering a platform, which helps in navigating the

large pool of COVID-19 research that has emerged quickly and is difficult to keep

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 38

up with. The visualization and geospatial map are important parts of the platform,

but semantic mapping is also there to equally provide value. The workflow of the

platform development includes data cleaning, embedding, dimension reduction and

visualization. The users of the platform can select from three supported embedding

methods: bag of words, GLOVE word vectors and BERT embedding.

In paper Semantic Vector Encoding and Similarity Search Using Fulltext Search

Engines [50] the authors demonstrate a method that enables vector similarity search-

ing for standard fulltext engines such as Elasticsearch. The solution is applied to a

dense vector representation of English Wikipedia. The vector encoding is done with

a specific process, which includes rounding and interval encoding. The vectors are

trimmed and ordered with high-pass filtering techniques.

Information retrieval and analysis for a Modern organization [51] introduces a

method for implementing a search engine system for a large multifaceted organi-

zation with large volumes of data. The amount of handled data is immense, and

it constantly grows even larger, which brings more challenge to unifying the data

systems. The paper lists some important requirements for a search engine of a large

organization. For example, it is important to support a large number of formats,

document metadata (such as authors and auditors) has to be preserved, content has

to be indexed and it is valuable to have a context search to enhance the information

retrieval. In this case, “context search” is the attribute that brings semantic charac-

teristics to the system. It is implemented with Latent Dirichlet allocation (LDA),

which is a probabilistic topic model. Specific weights are added to the indexed

documents with the LDA model and then contextually related documents can be

grouped based on those added weights.

Keyphrase Extraction Model: A New Design and Application on Tourism Infor-

mation [52] describes how keyphrase extraction can be done to enhance searching

techniques in tourism. Tripadvisor.com, Agoda.com and vietnam-guide.com are

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 39

used as sources for the tourism data. BERT and Glove embedding, Bidirectional

Long Short-Term Memory and Conditional Random Field are utilized for the imple-

mentation. Contextual embedding is done with BERT and Glove and the embed-

dings of these two models are compared in the paper. The results show that BERT

embeddings provide better overall results.

Enhancing Clinical Information Retrieval through Context-Aware Queries and

Indices [53] emphasizes the importance of context-aware search for clinical informa-

tion. According to the paper, information retrieval techniques have generally evolved

and delivered impressive results, but clinical domain is lacking behind. Especially

negation, temporality, certainty and subject are important in clinical context and

in defining relevant search results. Custom contextual analyser, trigger removal

and contextual relevance scoring are utilized to form relevant ranked results. More

specifically, a specific tokenizer, ConText algorithm and modification to the scor-

ing of Elasticsearch are used to achieve the semantic context support and those are

implemented to the system as an Elasticsearch plugin.

Semantic Search System using Word Embeddings for query expansion [54] is a

general proposition for implementing semantic search with word embeddings. This

paper is not a specific case study, but it is still relevant with its implementation

descriptions. Each indexed document is also represented as a vector, which is based

on the Word2Vec model. Before vectorization, the indexed data is pre-processed

by removing stopwords, numbers and strange characters, which do not semantically

contribute to the vectors. The query is also pre-processed and vectorized. The

vectorized documents and queries are passed to a cosine similarity function, which

will provide a synonym expansion for the query. Finally, the expanded query is

passed to the search engine, which provides relevant results for the user.

Natural language processing methods for knowledge management — Applying

document clustering for fast search and grouping of engineering documents [55]

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 40

demonstrates a method for searching engineering change request documents. These

documents contain unstructured data and there is a lack of solutions, which provide

accurate and relevant results with such data. The method includes pre-processing

with stop word removal, lemmatization, cleaning and concatenation. After pre-

processing the documents are transformed to vectors with Doc2Vec model. Finally,

the documents are post-processed by clustering them. The semanticity and rele-

vancy of the system is based on the clustered groups of documents, which will be

returned for the user as search results.

As the title of paper Strings and Things: A Semantic Search Engine for news

quotes using Named Entity Recognition [56] says, it introduces a system, which uti-

lizes data labelling with named entity recognition (NER). The labelling is done with

spaCY entity recognizer model and the labelled data is indexed into an Elasticsearch

index. Users of the search can use these entity labels by writing them as parts of

their queries.

Corpus domain effects on distributional semantic modelling of medical terms [57]

utilize clinical, biomedical, and general English domains to gain an understanding

on the effectiveness of word2vec model in capturing semantic relatedness between

medical terms. The results show that it is slightly beneficial to derive word vectors

from in-domain data. Additionally, it is sufficient to utilize open-access biomedical

literature when constructing semantic representations of clinical terms. Thus, dif-

ficult to access clinical corpora is not required to develop and to evaluate related

NLP methods and to utilize them in applications such as semantic search.

4.2.5 Findings

From the selected papers it can be concluded that there is not one definite way

of implementing a semantic search functionality. This may be an obvious state-

ment since generally every use case is different and is built around some explicit

4.2 LITERATURE REVIEW ON SEMANTIC SEARCH 41

requirements. However, there are various implementations that all have provided

appropriate results in their own field. Some use cases utilize some custom models

and algorithms and define equations that optimize the searching process of the case,

and some other cases focus on utilizing ready-made tools and models. All in all, it

can be said that vector embedding is the generally accepted technique of extracting

semantic characteristics from text.

The examined literature includes various methods for vector embedding. Bag of

words (BoW) is one of the simplest approaches for vectorization. It captures the

frequencies of word occurrences to represent documents. For BoW, a vocabulary has

to be defined. The vocabulary also defines the number of dimensions for the vectors.

For example, if the vocabulary was [“this”, “there”, “is”, “was”, “a”, “document”] the

embedding for text “This is a document” would be [1, 0, 1, 0, 1, 1] – In the text,

there is 1 occurrence of “this”, 0 occurrences of “there” and so on. [49]

In early 2010s models such as word2vec and GloVe were developed and intro-

duced to the public. They have the capabilities of vectorizing the semantic meanings

of words. The vectors of each word in a document can be combined to represent the

meaning of the entire document. [49] As mentioned in Section 2.4, Google’s BERT

revolutionized the NLP field. BERT can also be used to generate context-aware

embeddings for a semantic search, and it seems like BERT is now the go-to model,

or at least one of the most prominent options, for any NLP task. Thus, utilizing

BERT embedding, and more specifically FinBERT embedding, is most likely a good

approach for case JoutseNet. Additionally, it is probable that indexing metadata

such as authors and carefully defining the index structure eases the development

work and makes an enjoyable searching experience for the users.

5 Case JoutseNet - Introduction

JoutseNet is a case management system for the personnel of the City of Turku and it

has been in use from 1998. Although it is in continuous development, its architecture

has not been majorly modernized, which has led to outdated technical architecture

and user interface. The users of the system are experiencing significant problems,

when trying to utilize its complicated functionalities. All necessary operative actions

can still be done with JoutseNet, but efficient use requires extensive knowledge about

the case management process and the internal logic of the system. [58]

With JoutseNet, most users want to retrieve information that they need in their

everyday work tasks. For example, this information could include decisions or reg-

ulations of the city council. JoutseNet is the main tool for the personnel that are

responsible for preparing the meetings of boards and other parties. They use the

system to compose agendas and transcripts for the meeting sessions.

At the time of writing this thesis, there were three main problems in the Jout-

seNet system:

• Can be used only with Internet Explorer 11

• The searching functionalities are too complicated and the user needs to exten-

sively understand the system to be able to find relevant information

• The text editor is cumbersome because it is tied to Internet Explorer and

uploading and creating documents is problematic for the users

5.1 CASE MANAGEMENT PROCESS 43

This thesis will focus on implementing better search functionalities for the sys-

tem. Currently, the search logic of JoutseNet is very outdated, when comparing to

modern search engines. The user interface is also too complicated for the users, who

have gotten used to easy searching with the search capabilities of Google Search and

other industry leaders. The goal is to develop a semantic search functionality, which

is easy to use and retrieves relevant search results for the users.

5.1 Case Management Process

Case management is directing the management of cases and related documents of

processes in an organization. The management supports the process throughout

the whole life cycle of the cases. Its intend is to optimize the preparation, process-

ing, decision making, publishing, archiving, disposal and managing the document

information.

The Association of Finnish Municipalities has published a reference framework

for case management. [59] It is a general and unified description of processing

phases, processes, concepts and metadata, which together form the entirety of case

management. When municipalities utilize this framework, they do not have to use

resources for describing the basic concepts that are needed as a basis for their case

management. The framework also considers the obligations that are set for the case

management by legislation. The scope of these obligations is defined by the general

laws of information management.

The reference framework is meant to be utilized as a guideline when developing

an information system for the case management of a municipality. It is especially

needed in the digitisation of administrative procedures. It aims to unify the case

management processes and concepts and thereby improve the overall interoperability

of implemented solutions. The framework describes how different parts of case

management work together. These parts include generalized processes, stakeholders,

5.2 OPERATIONAL ENVIRONMENT OF CASE MANAGEMENT 44

Figure 5.1: Operational environment of case management [59]

roles, information and information system services. This reference framework is

used as a guide when defining the desirable implementations and improvements for

JoutseNet.

5.2 Operational Environment of Case Management

The Association of Finnish Municipalities has provided a visualization of the opera-

tional environment of case management (Figure 5.1) and listed some relevant terms

in their framework publication. [59] This chapter will introduce some of those terms,

because they are important in understanding the big picture. The original Finnish

terms are in parenthesis.

5.2 OPERATIONAL ENVIRONMENT OF CASE MANAGEMENT 45

Case (Asia)

Case is an entity, which an official receives or takes for processing. A case can include

one or more actions and each action can include documents.

Case Management (Asianhallinta)

Case management is directing the processing of cases and relevant documents through-

out their whole life cycle. Case management include case processing, document

management and archiving.

Case Processing (Asiankäsittely)

Case processing is a process, which is performed by an official who follows the lawful

administrative conduct. The main phases of case processing are becoming pending,

preparation, decision making, notification, enforcement and follow-up.

Document (Asiakirja)

Document includes the information that an organization has generated or received

while performing an action.

Document Management (Asiakirjahallinta)

Document information management throughout the whole life cycle of the document.

The life cycle starts from creating or receiving the document and ends in disposal

or permanent archiving of the document.

Information Management (Tiedonhallinta)

Information management is managing the information that an organization acquires,

produces, uses or preserves. With proper management and processing the informa-

5.2 OPERATIONAL ENVIRONMENT OF CASE MANAGEMENT 46

tion should be reliable and its utilization should be effective in every action it may

be needed.

Information Steering (Tiedonohjaus)

Information steering produces document information system metadata, which is

needed for processing and managing the document information.

Information Life Cycle Management (Tiedon elinkaarenhallinta)

With case management, document information is managed throughout its whole

life cycle. The phases of information life cycle are creating, saving, using, editing,

transferring, copying, sharing, archiving and disposal.

Managing with Information (Tiedolla johtaminen)

Managing with information include the procedures, which are used for refining infor-

mation and for utilizing information in management of the organization. Informa-

tion about the organizational actions, operational environment and environmental

changes are needed in the management of a municipal organization. Information

that is produced and managed in case management should be collected and refined

for management purposes.

Archiving (Arkistointi)

Archiving is the permanent or long-term preservation of a document. Archiving

follows a predetermined archiving plan.

5.2 OPERATIONAL ENVIRONMENT OF CASE MANAGEMENT 47

Service, Steering and Support Processes (Palvelu-, ohjaus- ja tukiproses-

sit)

In case management, a case can become pending via a municipal service, steering

or support process.

Electronic Services (Sähköinen asiointi)

Electronic services are services, which are provided with the help of information and

communication technology. For example, with electronic services, a client can follow

the status of a case or receive a notification about a decision.

Compiling statistics (Tilastointi)

The information that is produced or managed in case management has to be trans-

ferred for statistic compilation. Financial and operational statistics are compiled

based on the received information.

Stakeholders (Sidosryhmät)

Stakeholders can start a case management process or produce information or docu-

ments for case processing.

User Authorization Management (Käyttövaltuushallinta)

User authorization gives access to information. Managing the authorization is re-

quired to ensure the availability, security, originality, integrity, reliability and usabil-

ity of the information and documents, which are processed in case management.

Master Data Management (Master datan hallinta)

Master data is all the common information, which is utilized in case management by

a municipal actor. Employee data and client data are examples of such information.

5.3 USER RESEARCH 48

Process Steering (Prosessiohjaus)

Process steering is steering the actions of case management. It can be performed

with an information system.

5.3 User Research

In the context of this thesis, the main purpose of user research is to get an answer

to the second research question RQ2: What are the requirements for a JoutseNet

semantic search application? Additionally, this section helps to understand the

personnel who are using the search functionalities and the environment where those

functionalities are used.

For most users, JoutseNet system is a tool, which can be used to fulfil everyday

tasks. The system includes various functionalities that can be part of some task,

which also requires utilizing some other systems. With user research, it is important

to understand the user itself; user is a person who works as a part of their everyday

life. The software and systems they are using are only a small part of some larger

purpose. Thus, it is important to understand the personas and user stories and use

those as guidance for the development of the system.

Section 5.3.1 introduces a persona and a user story, which were created as a

part of a preliminary research conducted by ATR Soft Oy. Other personas and user

stories have also been created, but they are not relevant when focusing on the search

functionality. The personas and user stories have been created by interviewing the

users and by observing the usage of the system. The scenarios of Section 5.3.2 have

been gathered during the early development of the new search functionality. They

expand the understanding on the problems of the current search functionality with

a few simple and concrete steps.

5.3 USER RESEARCH 49

5.3.1 User Story: Maritta - Web Chief Editor

Maritta is a fictional persona, which is based on previously gathered research data.

[58] She is responsible of writing articles about municipal decisions to the website

of the city. For Maritta, JoutseNet is one tool among others and she uses it as

a source of information. She represents the majority of the userbase, which use

JoutseNet regularly but not in their everyday work. She visits JoutseNet once per

month to find something to write about. In the following story, Maritta tries to find

all decisions from previous month.

1. Opens JoutseNet

2. Clicks information search button (Tietojen haku) and then decision transcripts

button (Päätöspöytäkirjat) from the dropdown menu. New tab opens.

"I can only use this in one way or at least it is the way that has worked for

me. If I do not know the index number (diaarinumero), I start my search with

the dates. Index numbers are not usually easy to find."

3. Writes the starting and ending dates to the received (Saapuneet) field.

4. Writes a letter combination to the document type (dokumentin tyyppi) field.

"How does an ordinary guy in the municipality know the document type? I

just happen to know it, but how does he know it?"

5. A new tab opens. All document types are listed there and Maritta clicks the

one she is trying to search.

6. Clicks search button (Hae).

7. A new tab opens and it informs that there were zero search results (0 kpl

hakutuloksia).

5.3 USER RESEARCH 50

"This looks like there were not any transcripts produced during August."

(Which certainly is not the case)

8. Widens the date range.

9. Clicks search button.

10. A new tab opens: zero search results.

"I think it does not recognize this document type."

11. Tries to modify the search parameters and clicks the search button again. The

system gives a notification, which informs that search has already been done

with the same parameters.

"I cannot do it a second time. This got completely stuck now. This is inter-

esting. Are there too many search results?"

12. Changes the document type again and a new tab opens. Gets back to the

search page.

"It would be nice to hear the reasoning for these. Why are there so many

options, why do I have to double click here, why is it not steering me?" "Oh

now I get it. I have to write the date to the document date field, not to the

received field. I do not understand the receiving date. If it is important, why

was it not given for the documents I tried to search earlier?"

13. Modifies the document date. (Maritta gets a feeling that she has to fill out all

search fields)

14. Clicks the search button.

15. A new tab opens: 2000 search results.

"This is full of decision transcripts. Now I choose this because it seems inter-

esting."

5.3 USER RESEARCH 51

16. Opens the document by clicking the date of the document in the table of search

results. The document opens on an information tab, which is located on a new

document search tab. Maritta is a bit frustrated, but she is happy that she

finally found something useful.

5.3.2 User Scenarios

User scenarios are specific and brief examples gathered from real users, which have

basic understanding of the search functionality and represent majority of the user-

base. The scenarios provide background information on some basic information

retrieval tasks and on the types of used queries and filters.

Scenario 1 - Searching information about the schedule for filling the mar-

ket square pit

1. Query string: Market square (Kauppatori)

(a) Hundreds of irrelevant results. The user decides to filter the search query.

2. Type: Decision (Päätös)

(a) Lots of results. No results about schedule or plan.

3. "Schedule" (aikataulu) added to query string.

(a) No search results.

Scenario 2 - Searching decisions related to Aurafest

1. Query string: Aurafest, Date range: 1.1.2021-31.12.2021

(a) Only one result, which is a document related to selling of tobacco products

in Aurafest 2021.

5.3 USER RESEARCH 52

2. The user modifies the date range: 1.1.2018-31.12.2021

(a) Documents found from previous years, but not from current year (2021).

3. The user is wondering if there is no decision at all for the current year or if

the search functionality is faulty.

Scenario 3 - Searching decisions related to the terrace of the cathedral

square

1. Query string: Cathedral square (Tuomiokirkkotori)

(a) No results related to the terrace.

2. Query string modified: Terrace of the cathedral square (Tuomiokirkkotorin

terassi)

(a) No results.

3. Query string modified: Cathedral park (Kirkkopuisto)

(a) No results related to the terrace.

4. Other attempted query strings: Cathedral park terrace (kirkkopuiston terassi),

cathedral terrace (kirkkoterassi), terrace (terassi).

(a) No results related to the cathedral terrace

5. The user could not find the information they were searching.

5.3.3 Conclusion

This section concludes the preliminary research. The current search functionalities

of Joutsenet were examined and user research was conducted to derive a list of

5.3 USER RESEARCH 53

requirements (R1-R12) for the semantic search application. Before each requirement,

some context is provided in the brief discussion paragraphs.

The user stories and scenarios clarify the fact that the current JoutseNet search

functionality is very cumbersome and can even be frustrating to use for the majority

of the userbase. For an average user it is common to be stuck with a lot of irrelevant

search results or with no results at all. Also, the search happens only after pressing

the search-button. Real-time filtering and result listing is missing completely. The

users want a fast and clear search functionality that is on par with other modern

solutions. It can be quite confidently claimed that an improved functionality can be

created by following the modern search application creation principles and adjusting

them to the case management system and to the users’ needs.

R1. Search results are updated in real-time when a query string is being written

or when some filters are used.

R2. The columns of the search result table are sortable.

An optimal search experience provides relevant search results by only taking the

query string as an input, but it still is most likely a good idea to include some filters

to the functionality. In Chapter 6 the included columns of the search result table

will be chosen based on the available data. In addition to the most obvious filters,

the users have asked for a decision vacancy filter. Now, the vacancy filter for decision

records is inconvenient to use because the user has to know the organization of the

vacancy before selecting the vacancy from a list. For example, if dental director is

marked to be the decision vacancy for some decision record, the record should be

found by giving “dental director” as a vacancy filter.

R3. The columns of the search result table are based on the available data and on

the columns of the existing search functionalities of JoutseNet.

R4. There are some filters that are based on the columns of the search result table.

5.3 USER RESEARCH 54

R5. There is a decision vacancy filter in the semantic search application.

Index number is the explicit identifier for the cases in JoutseNet. If the user

knows some index number and they want to find the documents under that index

number, it should be possible to use the index number as a sole query string or as

a filter.

R6. It is possible to search with the index numbers of cases.

Even though the implementation is going to be new and modern, it has to ap-

propriately fit to the functionality and visual templates of the surrounding system.

The links in the search result table should match the functionality of the links in

the current search functionality to avoid confusion. For example, index number link

should direct to the case listing and double click should open the document. The vi-

sual side of the semantic search should follow the simplicity and colour palette of the

previously implemented user interface for it to be a natural part of the application.

R7. The semantic search application is visually in line with the existing JoutseNet

system.

R8. The search results include links, which match the links in the search results of

the existing search functionalities of JoutseNet.

From the gathered stories, scenarios, and comments it can be interpreted that

it may be quite easy to satisfy the relevancy needs of the users with a new and

improved search when the starting level is the very inconvenient search functionality

from 1990s. The user research has provided some answers for RQ2, and they are a

good starting point for the implementation work: Now it can be said that the users

want a search functionality, which is easy to use and provides understandable results

with exact keyword matches and can also suggest some additional results based on

the semantic similarity. RQ2 will remain as a guiding question in the background

5.3 USER RESEARCH 55

during the development and will help to form a more comprehensive and explicit

understanding on the topic when there is an application that can be tested by the

users.

R9. The semantic search application can retrieve search results with exact or al-

most exact matches.

R10. The semantic search application can retrieve semantic search results based on

the semantic similarities of the query and the indexed data.

Additional Requirements - General Data Protection Regulation (GDPR)

Logging certain actions is overall a good practice for security purposes. On top of

that, GDPR requires logging for some occurrences. In the context of JoutseNet

semantic search functionality, the logging concerns all decisions and documents that

contain sensitive data such as an address or a social security number of some person.

In other words, all views of restricted decisions/documents have to be logged. The

user can find restricted decisions/documents only if they are authorized to see them

with their credentials by belonging to a certain user group. These user groups have

to be taken into account when implementing the search functionality.

R11. Finding restricted documents with the search application is possible only if

the user belongs to a required user group.

R12. All views of restricted documents are logged.

6 Case JoutseNet - Implementing

the Semantic Search

This chapter will go through the implementation of semantic search functionality for

JoutseNet case management system and provides a partial answer to the third re-

search question RQ3: How to create a semantic search functionality, which provides

relevant search results for the users of JoutseNet-system? The main principles of

creating a search engine application introduced in Section 3.2 and the case solutions

examined in Section 4.2 are combined and adjusted so that the functionality meets

the needs that can be interpreted from the research in Section 5.3.

As mentioned in Section 4.2, Elasticsearch has been selected to be the search

engine for case JoutseNet. Elasticsearch is easy to get started with, and it has a

well-designed user-interface and documentation. The literature review also shows

that Elasticsearch is suitable for various use cases and supports functionalities that

enable semantic search. At least in the development phase, Elasticseasrch is installed

and run using Docker. Docker is a free application for running software in containers.

[60] Elasticsearch docker container is easy to set up by following the instructions

provided on the quick start page of Elasticsearch documentation. [61] Kibana, the

user interface for managing Elasticsearch data, is also run in a Docker container.

The backend search service is implemented with Python and the search appli-

cation user interface is implemented with React, which is a free and open-source

CHAPTER 6. CASE JOUTSENET - IMPLEMENTING THE SEMANTIC
SEARCH 57

Figure 6.1: JoutseNet semantic search application flowchart

6.1 DEFINING THE INDEX STRUCTURE 58

front-end JavaScript library. The current codebase of JoutseNet is mainly imple-

mented with PHP. The semantic search application UI is built and then this React

production build is added to the system as an html-template. The semantic search

application is developed as a separate element and the goal is to make minimal

modifications to the existing codebase. Some additions have to be made to the

JoutseNet PHP-application, because usernames and user rights need to be added

to the request on the way from the React-frontend to the Python-backend and a

ZeroMQ trigger has to be added for enabling cyclic indexing updates.

6.1 Defining the Index Structure

Before indexing anything in the Elasticsearch index, the JoutseNet database has to

be examined closely. There are three types of documents that has to be brought

from the database to the index: cases (asia), text references (tekstiviite) and files

(tiedosto). Cases are the top-level documents, and each index number refers to one

case in the system. Cases can include multiple text references and text references

can include multiple files. Additionally, each file can be referenced by multiple

text references. The database structure is not easy to understand, and it can get

complicated with its multiple reference possibilities. However, the most logical way

of indexing the data seems to be dividing the index into three parts: cases, text

references and files have all their own index. These three document types have their

own data fields, so it is convenient to define separate index structures for them. At

least in this case, separate indices make the structure easier to manage and it enables

straightforward filtering if the user wants to see only one of the three document types

in the search result listing.

Next task is to pick the data fields to be indexed. There are some obvious

selections such as titles, creation dates, authors and case/text reference/file types.

In addition, decision vacancies need to be included for text references and content

6.1 DEFINING THE INDEX STRUCTURE 59

"mappings": {

"properties": {

"dnr": {

"type": "text",

"fields": {

"raw": {

"type": "keyword"

}

}

}

}

}

Figure 6.2: Example of an Elasticsearch field mapping: Defining a field for the

JoutseNet index numbers ("diaarinumero")

of files need to be in the index to make them searchable. As stated in Section 3.2.3,

it may also be beneficial to define new field names for the indexed pieces of data

rather than just using the field names used in the database. For example, the index

field for case title is better as “case_title” than as “title”, because the search requests

are easier to fine-tune with distinguishable field names. Also, some database fields,

such as full versions and abbreviations of document types, can be combined for the

index so that users can seamlessly choose which version they want to use in their

search.

In Elasticsearch the indexed documents and fields are defined with mapping.

There is a schemaless mode/dynamic mapping option for Elasticsearch, but in this

case explicit mapping is utilized to gain control on the field structure, names and

formats. As mentioned in Section 3.2.2, schemaless mode is a convenient feature to

6.2 IMPLEMENTING THE BACKEND 60

have, but its inaccuracies can outweigh the benefits. Mainly two types of fields, text

and keyword, are indexed. Text field type is used for indexing full-text values, which

enables automatic analysing and searching for individual words within each full text

field. [62] This is the primary field type for all indexed textual JoutseNet data.

Additionally, some fields are indexed also as keywords to enable certain sorting and

aggregation features. For example, it is useful to aggregate some field values and

use the aggregated list as a dropdown selection for some filter. Date data is indexed

to date fields to enable appropriate sorting of the values and to have control on the

date format. Figure 6.2 shows how the field for JoutseNet index numbers is mapped.

Most indexed fields use this same structure. The described selections and decisions

in the index mapping have to be made so that it is possible to fulfil requirements

R2-R6 and R9 with the backend and frontend implementations. There will most

certainly be some modification to the mappings later. The index is constantly shaped

and adjusted to surrounding needs during the development work.

6.2 Implementing the Backend

From Section 3.2.3 it can be read that implementing a backend for a search applica-

tion is probably beneficial and that it is advisable to centralize some operations to

the backend. In this case, backend works as a middleman between the frontend and

the search index. It receives the search query request, processes it, and forwards it

to the Elasticsearch index instance. Elasticsearch conducts the search and returns

search results to the backend, which processes the results and forwards them to the

frontend so that all necessary data is available for the users and requirement R3

can be fulfilled. Additionally, the data needed for generating the search result links

defined in requirement R8 has to be passed to the frontend. The indexing is also

initiated and the data processing is done in the backend. Python is the implementa-

tion language for the search backend, because it generally is a good choice for data

6.2 IMPLEMENTING THE BACKEND 61

processing and natural language processing. And conveniently, there is an official

Elasticsearch client library for Python. [63]

The indexing is done with a python script, which fetches the data from the

JoutseNet Oracle-database to the Elasticsearch index. Cyclic indexing updates are

implemented with a ZeroMQ queue: There is a trigger for the indexing request in

the PHP-code of the JoutseNet application and the receiving end is in the Python-

backed of the search application.

Between receiving the data and indexing it to Elasticsearch index, the data needs

a little bit of processing. The content of files can be in various formats. There are

at least docx, pdf, xml, and html files in the database. The files have to be parsed

with appropriate parsers so that it easy to process all contents in the same format.

There are helpful tools for this purpose made for Python. For example, pdf-files can

be parsed with a tool called pdfplumber. [64]

The backend receives the query string and utilizes it to build a search request.

The query string is the most important part of the request but there are many other

fields in the request to consider when creating and optimizing it. The queries for

Elasticsearch are defined with Query DSL (Domain Specific Language), which is

based on JSON. [65] There are multiple query types, and those types have their

own subtypes. These different queries should be combined appropriately to achieve

the best possible results. For case JoutseNet, function score is used as the top-level

query to enable better control of scores with some boosting and additional functions.

Native queries of Elasticsearch are utilized to provide search results with exact or

almost exact matches and to enable searching with index numbers of cases and other

fields that are visible for the users in the user interface. Thus, requirements R6 and

R9 are fulfilled with these native queries.

In addition to the main query, some filters need their own queries so that filter

selection can be provided for the user and requirements R4 and R5 can be fulfilled:

6.3 ADDING THE SEMANTIC FEATURES 62

The user writes something to a filter input and then some possible values for the

filter are suggested. When a value is selected for a filter, a new query is formed with

the filter and Elasticsearch applies it to provide filtered results. Query examples for

the main query and for a filter query can be found in Appendix A.1 - A.2.

As defined by requirements R11 and R12, GDPR logging has to be implemented

in the new search functionality. A user may be authorized to find and view some re-

stricted documents if they have the rights for that. In case of finding some restricted

documents with the semantic search, timestamp of the search occurrence, username

of the user and the ids of the found restricted documents are logged to the Jout-

seNet database. If the user does not have the needed rights, restricted documents

are filtered out when the query is constructed.

6.3 Adding the Semantic Features

As stated in the literature review in Section 4.2, Elasticsearch has some built-in

capabilities for supporting vector-based semantic search. Based on previous research

reviewed in Sections 2.4, 2.5 and 4.2 it can be assumed that FinBERT embeddings

could be a valid approach for a semantic search implementation in a Finnish case

management system. Generating the embeddings and searching with them also

require some additional work and careful observations on the effects of them. This

section describes how to supplement the implementation suggestion with semantic

features, which are required by requirement R10.

In February 2022 Elastic published Elasticsearch 8.0 and introduced improve-

ments to vector search capabilities and natural language processing. [66] A new

API endpoint, _knn_search, was added and it enabled a native way of utilizing

query vectors with approximate nearest neighbour (ANN) search. NLP support was

enhanced by the possibility of adding NLP models directly into Elasticsearch. For

example, a BERT model could be added directly to Elasticsearch, and the language

6.3 ADDING THE SEMANTIC FEATURES 63

processing could be performed on the Elasticsearch instance. However, the new

endpoint is still in technical preview, which means that its future support is not

guaranteed, and separate endpoint makes combining the vector search results and

other results inconvenient, since the operations for those cannot be performed under

the same query. At the moment, the added NLP support requires a paid platinum

subscription, which takes away from the accessibility of these native functionalities.

They are good additions, but some other openly available solutions may still be

more tempting.

There is also the possibility of using the script score query of Elasticsearch to

calculate the measure of cosine similarity between the document vectors and query

vectors. [67] Elasticsearch has a built-in “cosineSimilarity”-function for that purpose.

This method is suboptimal, because it requires going through the entire index and

calculating the angular distances for all documents.

Alex Klibisz, an American software engineer, has developed an Elasticsearch plu-

gin called Elastiknn, which provides “efficient exact and approximate vector search

to Elasticsearch”. [68] It fills the gap formed by the limited native support for vectors

and enables combining traditional queries with vector search queries. Elastiknn has

quite comprehensive and clear documentation and it seems to serve well the pur-

poses of JoutseNet semantic search, so it is selected as the implementation technique

for the case. Elastiknn version 7.17.4 is used for the development since that was the

latest version when the development was started. The used version of Elasticsearch

must match the plugin’s version so the version of Elasticsearch is also 7.17.4 for this

project.

There are multiple exact nearest neighbour query types and approximate query

types to choose from in Elastiknn: L1 (taxicab geometry), L2 (Euclidean distance),

cosine similarity, jaccard index and hamming distance. It is not necessary to include

the explanations for all these functions and mathematical theories in this thesis.

6.3 ADDING THE SEMANTIC FEATURES 64

model = SentenceTransformer('TurkuNLP/sbert-cased-finnis-paraphrase')

query = ['Turun satama']

query_vector = model.encode(query)

Figure 6.3: Example of embedding a query string, which is intended to find infor-

mation about or related to Port of Turku

Based on previous literature and experiences, cosine similarity is determined to

be the preferred function for the implementation of the case. Simply put, cosine

similarity is based on the angle between two vectors. If the angle is small, the

vectors are very similar, and the represented documents are similar semantically.

[54] In this case, the compared vectors are the query string vectors and the indexed

vectors.

Before the vector search is possible, the vector embeddings have to be generated

somehow and those have to be added to the indexing process. Fortunately, the

embedding implementation is quite straightforward with today’s ready-made tools

and libraries. FinBERT seems to be a good model option for the case since it

is optimized for Finnish language. TurkuNLP has also trained Finnish Sentence

BERT from FinBERT and it is available on Hugging Face [69], which is a data

science platform for building, training and deploying ML models. The sentence

model can be utilized with a Python framework called SentenceTransformers. [70]

Figure 6.3 shows how simple SentenceTransformers is to use : The chosen model is

downloaded with a single line of code and then some textual data can be embedded

with another line of code.

In case JoutseNet, the titles of cases and text references, the contents of files

and the query strings are embedded. Embedding the titles and query strings is a

simple task because they are relatively short pieces of text. However, embedding the

contents of files brings a bit of challenge and it requires some further consideration.

6.3 ADDING THE SEMANTIC FEATURES 65

The maximum sequence length for FinBERT, and most BERT models, is 512 tokens.

Thus, the model can only embed strings that are not more than 512 tokens long.

In Finnish and with FinBERT sentence model 512 tokens is roughly 250 words.

The files in JoutseNet can be very long and easily exceed that limit. Therefore, a

separate solution for embedding the long documents has to be implemented.

Techniques and tools for embedding words and sentences are widely available

and they can provide quite impressive results. Document embedding has also been

researched for a few years already, but it is still a task that requires a bit more

experimental approach. Documents have different structures and content in different

systems, which amplifies the fact that there is no solution that can be presented as

a universal answer for the problem. Some data scientists have written prominent

and helpful blog posts in which they have presented the current possibilities for

document embedding. [71] [72] From these previous experiences it can be read that

there are at least three types of implementations that have provided acceptable

results: slicing off the document parts that go beyond the 512 tokens, summarizing

the document and taking the average of vectors, which have been encoded from

some smaller chunks extracted from the documents. Slicing is the easiest way, but

it possibly provides inaccurate results because a large part of the documents may be

completely ignored. Therefore, either summarization or averaging is proposed to be

the implementation technique for case JoutseNet. Implementation suggestions for

both techniques are provided, and some testing is utilized to determine which one is

the one to proceed with. Example code snippets for the implementation suggestions

can be found in Appendix B.1-B.2. Papers reviewed in Section 4.2 point out that

it is a good practice to preprocess the documents by excluding the semantically

irrelevant parts. [54] [55] Some basic cleaning is done for the file contents before

embedding them: digits and some other redundant parts, such as empty strings, are

removed because they do not provide practical value for the vector embeddings.

6.3 ADDING THE SEMANTIC FEATURES 66

"vector_field": {

"type": "elastiknn_dense_float_vector",

"elastiknn": {

"dims": 768,

"model": "lsh",

"similarity": "cosine",

"L": 99,

"k": 1

}

}

Figure 6.4: Example of Elastiknn mapping

The index mapping and query need to be modified to make the semantic features

functional. There are two vector types in Elastiknn: elastiknn_sparse_bool_vector

and elastiknn_dense_float_vector. The sparse bool vector type is intended for

vectors where the indices are either true or false and majority of them are false.

Only true indices are stored to save space. This datatype is suitable especially for

bag-of-words approach. The dense float vector type is optimized for vectors with

floating point numbers. Each number is a value of one vector dimension and in

optimal case there are no more than 1000 dimensions. The embeddings produced

with FinBERT have 768 dimensions. Thus, the dense float vectors type is suitable

for storing the embeddings of titles and contents of case JoutseNet. To select the

cosine lsh mapping as indexing type, the model is set to be “lsh” and the similarity

is “cosine”. From mapping snippet in Figure 6.4 it can be seen that there are also

values L and k to be determined. L is the number of hash tables and k is the number

of hash functions combined to form a single hash value. Increasing the value of L

increases recall and increasing the value of k increases precision. Higher recall means

6.3 ADDING THE SEMANTIC FEATURES 67

{

"elastiknn_nearest_neighbors": {

"field": "vector_field",

"vec": {

"values": query_vector

},

"model": "lsh",

"similarity": "cosine",

"candidates": 100000

}

}

Figure 6.5: Example of Elastiknn query

that higher percent of all relevant documents are found. Higher precision means that

higher percent of the found documents are relevant. [73] These two are competing

objectives so it is beneficial to set a high value for L and low value for k to get

as many relevant search results as possible. Finding the optimal mapping require

testing with various combinations of values.

Using and constructing the Elastiknn query is quite simple and convenient since

it can be combined with the native Elasticsearch queries. It is just one query type

more on the side of the multi match queries or other native queries that have been

chosen to be used. The Elastiknn query require defining the field of the vectors, the

value of the query vector, the model type, the similarity type, and the number of

candidates. Elastiknn first retrieves approximate nearest neighbours to the query

vector and then computes exact similarities to the number of documents that is

defined by the candidates value. Increasing the number of candidates increases

recall but it also increases latency. The goal is to determine as high number of

6.4 IMPLEMENTING THE FRONTEND 68

candidates as possible and to keep the latency acceptable.

6.4 Implementing the Frontend

Frontend defines the user interface for the application. Based on requirements R1-

R5, R7 and R8 defined in Section 5.3, the goal is to create a modern UI with

responsive and reactive capabilities while keeping it visually familiar for the users. It

is natural for the users to define requirements by expressing what they want to have

in the UI. The importance of UI in guiding the other parts of the implementation

is discussed in Section 3.2.3. In Case JoutseNet, the users’ needs for specific filters

and other UI partitions generate requirements for the backend, which includes the

functionality for defining and retrieving the information that is shown in the UI.

As mentioned in the beginning of this chapter, the implementation library is Re-

act. It is one of the most popular libraries for building user interfaces and it provides

tools for quite effortless building of a separate component and integrating it to an

existing system. A react component is most probably easy to maintain in the future

because many developers know it, it has a clear and well-maintained documentation

and the community actively develop and maintain component packages for various

UI purposes.

The frontend is developed with four JavaScript-files: App.js collects all the com-

ponents together and defines the search functionality and the columns for the search

result table, Styles.js defines the styles for the whole application, Table.js defines

the structure of the search result table and index.js renders the App-component to

the root element. Additionally, gulpfile.js determines how the application build is

transformed into a single index.html file, which can be integrated to the existing

JoutseNet source code. The input field states and indicators are implemented with

React state hooks [74], the result table is implemented with React Table library

[75] and the styles are implemented with styled-components [76] library. To make

6.4 IMPLEMENTING THE FRONTEND 69

Figure 6.6: The user interface of JoutseNet semantic search

the application work with Internet Explorer, some polyfills have to be added to the

index.js and some inputs and data lists have to be implemented with jQuery.

Figure 6.6 shows the first proposed version of the search UI. The simple char-

acteristics and the yellow colour are in line with the existing JoutseNet UI, which

satisfies requirement R7. To fulfill requirement R1, a search request is sent to the

backend every time a letter is written to the search box or the state of some filter

is changed, but there is also a search-button (“Hae”), which can be used to send the

request. The options-button (“Valinnat”) makes the filters visible when pressed. The

filters are not visible when first arriving to the search page. At the moment there

are five filters that are implemented to fulfill requirements R4 and R5: Limit the

search -filter (“Rajaa hakua”) gives the option to only show cases, text references or

files. With the second one, the user can select from a dropdown menu if they want

to filter with the author (“Laatija”) or with the recipient (“Vastaanottaja”). The

type-filter (“Tyyppi”) is for the different types of documents. Lastly, there are date

range (“Aikaväli”) and decision vacancy (“Päätösvakanssi”) filters. Author, recipi-

ent, type and decision vacancy filters all give suggestion below them on a dropdown

menu and the user selects the desired option from that menu. For the type filter,

abbreviations and full versions are both accepted.

6.4 IMPLEMENTING THE FRONTEND 70

The result table is paginated, and the page can be switched from the buttons

above the table. The user can also select if they want to see 10, 20, 30, 40 or 50 results

on one page. The ability to sort search results is required by requirement R2: All

column headers, except the content column (“Ote sisällöstä”), can be used for sorting

by clicking the header. A result row is highlighted with a yellow colour when mouse

is hovered over it. To save some space, the types are shown only as abbreviations

in the table, but the full version is shown as a tooltip, when mouse is hovered over

the type of some result row. Double clicking a result directs to the corresponding

document. Clicking the index number (“Diaari”) of a result always directs to the

case listing, which includes all documents that are under the case, which the index

number is assigned to. The document and case listing views are existing views in

the JoutseNet system. The semantic search application only generates links to those

views and attaches them to the results. These links match the links provided by

the existing search functionalities of JoutseNet, as defined by requirement R8. To

give an indication about the state of the system for the user, a “Loading the search

results” -message (“Ladataan hakutuloksia”) is shown below the search options. If

there are no search results, a “No search results” -message (“Ei hakutuloksia”) is

shown and in case of an error, there is a “Search server does not answer” -message

(“Hakupalvelin ei vastaa”).

7 Case JoutseNet - Testing and

Optimizing the Semantic Search

This chapter provides some ideas and guidelines for testing the implemented seman-

tic search functionality with production data and continues answering to RQ3: How

to create a semantic search functionality, which provides relevant search results for

the users of JoutseNet-system? When the development work and the writing process

of this thesis started, the initial plan was to test the functionality with the produc-

tion data and to document the results to this chapter. Unfortunately, getting the

production database turned out to be a prolonged process, because the database

includes sensitive data. Processing the data to be suitable for research purposes

would have required allocating extensive tasks to the development personnel of the

system. This led to the decision of finishing the thesis and the current development

phase without the production data. Test database has been available from the be-

ginning of the development, but it is valid only for testing the database connection

and the indexing process. The contents of the cases (asia), text references (tek-

stiviite) and files (tiedosto) are not realistic at all in the test database and the size

of the test database is much smaller when compared to the size of the production

database. The basic functionality of the search application can be verified with the

test database, but further analysis is unnecessary because the indexed data does not

provide realistic results and it is impossible to evaluate the relevancy of the results.

7.1 OPTIMIZING THE INDEXING PROCESS AND THE QUERY
REQUEST 72

7.1 Optimizing the Indexing Process and the Query

Request

Before testing the search itself, it has to be ensured that the indexing process de-

fined with the help of the test data is functional also with the production data. The

amount of data in the production database is quite immense. Thus, the indexing

process is better to test first with a small sample of the data. The overall structure

of the indexing process should not cause any problems since the test and production

databases supposedly have the same structure. However, the formats and contents

of files most probably vary quite a lot, and some unexpected errors could be en-

countered during the parsing and embedding process before they are ready to be

indexed. As mentioned in Section 6.3, some cleaning is done for the file contents be-

fore they are embedded. It should be checked if the suggested cleaning of digits and

other redundant characters is enough or if some modifications are needed to include

only the relevant information for the vector embeddings. Logging and observing the

parsed file contents is a good way to gain understanding on the contents as raw text

and on the embedding process.

The initial indexing of all production data may be a lengthy process because of

the large number of documents. Additionally, the embedding of the file contents

probably lengthens the overall indexing process significantly if the processing power

is limited. The embedding is done by the graphics processing unit (GPU) of the

system, so it is beneficial to have a development environment with a GPU, which is

sufficiently capable in needed NLP tasks. The processing power is essential especially

during the iterative and experimental development phase, because re-indexing of

large numbers of documents is needed after modifications are made to the index

mappings or to the overall process. The processing power is less relevant in the

production environment, because the large initial indexing has to be done only once

7.1 OPTIMIZING THE INDEXING PROCESS AND THE QUERY
REQUEST 73

and after that new documents are fetched from database to the index with cyclic

updates.

The most relevant parts for adjustments in the indexing process are the em-

bedding functions and the index mappings. As mentioned in Section 6.3, different

values for parameters L and k for the vector index mappings has to be tested so

that optimal values can be defined. The initial suggested values (L: 99 and k: 1) are

picked from the example in the Elastiknn documentation [68] and they are a good

starting point for the testing as the goal is to have a low value for k and a high value

for L. The optimal values for these parameters are different for every use case.

Two embedding technique suggestions are given in this thesis: summarization

and averaging. They both have their own possibilities for adjustments. The length

of the summary in the summarization alternative can be easily modified by ad-

justing the number of sentences used for forming the summary. For the averaging

alternative, the length of the chunks can be modified when trying to find the optimal

embedding function. The embedding functions could be sufficient in their suggested

forms, but they should not be accepted without experimenting with different values,

when optimizing the search functionality.

The query request is obviously a vital part of the search application, and it

probably is quite challenging task to optimize it for the use case. The given query

request suggestion uses function score as the top-level query type and uses multi

match queries to enable some additional features for the query. The adjustable

values, such as boost, slop and fuzziness, of the different multi match queries should

be adjusted when testing and optimizing the search functionality. Some additional

query types could be more optimal, and some suggested queries may turn out to be

completely redundant. For example, the fuzziness parameter of the best fields query

could be unnecessary and cause irrelevant search results if the query string is too

vague after the fuzziness parameter is applied. Furthermore, if the further analysis

7.2 USER TESTING 74

of the search application needs to distinguish the effect of the semantic features

from the other search features, it may be beneficial to retrieve the most relevant

search results with exact matches and complementary results with semantic features.

The suggested main query combines all subqueries under one larger query and the

significance of individual subqueries can be adjusted with their weight values.

7.2 User Testing

Like generally in software development, potential users and other key personnel

should be constantly involved in the development and testing process of a search

functionality. A lot of time and effort could be wasted if the implementation and op-

timization is based on assumptions without including domain and content expertise.

During the early development of the JoutseNet semantic search, the user interface

and the responsiveness of the functionality have been demonstrated to a few users

and the initial reactions have been very positive. It can be already said that the func-

tionality is seemingly on the right path, but actual testing of the search functionality

and feedback on the search results have not been possible with the provided test

database. Even if there was a production database or some accurate representation

of it, it would not be enough to perform testing without the input of representatives

from the userbase.

With the characters in Figure 7.1, Turnbull and Berryman demonstrate the roles

of the involved personnel. [27] In this scenario, the users are not content with

the search results, the manager notices the frustration and the domain expert can

explain why the search results are irrelevant. The content curator is aware of the

overall situation, which includes the content that is searched, the customers and the

business needs. Together with the content curator, the search engineer implements

adjustments to the search functionality so that it answers better to the business

needs and the users find it valuable. Content curator can be a permanent title for

7.2 USER TESTING 75

Figure 7.1: People involved in relevance tuning [27]

someone, but in many cases, it is someone who is appointed to temporarily to have

the appropriate responsibilities. Content curator should be someone who has the

sufficient expertise and seniority to own the correctness of the search. According to

Turnbull and Berryman, the content curator can be defined as the product owner

of the search application.

Having a content curator, and a domain expert, makes understanding the feed-

back and users more convenient, but individual users have the most important role:

They are the ones who actually do the testing and generate the raw feedback for

the development. Iterative development process enables delivering a real solution

quickly for evaluation. Figure 7.2 presents the simple but effective iteration for

adjusting search relevance. First, the search application is deployed to some envi-

ronment, where users can test it and generate feedback. After some testing, the

development team analyses the feedback and the relevance of the search results.

From that analysis the reasons behind the dissatisfaction of the users can be de-

rived to some extent and adjustments can be made. Defining the search relevance

7.2 USER TESTING 76

Figure 7.2: Relevance feedback loop [27]

for some specific business need is a difficult task and the first version of a search

functionality may not deliver results that are expected by the users. Sometimes

a fortuitous guess can provide good results, but some other guesses could lead to

unfortunate situations. Search engineers should not be afraid of failing fast and

adjusting with quick iterations. With small improvements it is easier to steer the

functionality to right direction and to avoid worse failures. The goal is to have a

user-focused organizational culture, which is committed to deliver accurate feedback

to the engineers and curators improving the search results and the application as a

whole. [27]

7.3 NEXT STEPS FOR CASE JOUTSENET 77

7.3 Next Steps for Case JoutseNet

This section describes the suggested configuration and testing steps before deploying

the created search functionality to the production environment. As can be read from

Section 7.1, the implementation includes multiple parts that can be adjusted when

optimizing the indexing process and the query request.

Pilot testing is suggested to be the method for delivering the first version of the

semantic search implementation to the users: The semantic search application is

deployed to a test environment, where users can test it. The data used in the test

environment should be as realistic as possible, preferably the production data, so

that the relevancy of the search results and the generated feedback are realistic, and

the behaviour of the application is identical or very close to how it would be in the

production environment. The iterative testing process introduced in Section 7.2 is

suggested to be utilized when performing the pilot testing.

Before deploying the application to the test environment, the compatibility with

the current JoutseNet version has to be ensured, because the system is in continuous

development. The semantic search implementation introduced in this thesis has

been developed in isolation from other development activities of JoutseNet. Thus,

the semantic search UI and other small additions made to the JoutseNet source code

may need to be updated.

To compare the two suggested embedding alternatives (summarizing and aver-

aging), it would be convenient to have the possibility to index the data with both

embedding methods to separate indices. Then search results provided by both alter-

natives could be examined and compared with each other in the test environment.

It is a good idea to experiment with the adjustable values of the indexing and em-

bedding process, most importantly the ones mentioned in Section 7.1, with a few

testing iterations. If one of the alternatives starts to show significantly better results,

it can be chosen for further development and the other can be left out. Especially

7.3 NEXT STEPS FOR CASE JOUTSENET 78

for evaluating the semantic search results found with the vector search, collecting

some realistic search queries from the users, and using the same queries iteratively

with the users, could help keeping track of the result changes after making some

adjustments to the embedding/index mapping values. During the development and

testing process, it has to be remembered that adjusting these values only affects

results retrieved with the Elastiknn-query, not the results retrieved with the other

simultaneous queries, such as multi-match-queries.

Adjusting the query is probably the part that takes the most effort and iterations

in the optimization process. It is beneficial to let the users test the search and

generate feedback freely so that the used search strings, filters etc. are as realistic

as possible, but there should also be some thoroughly documented user scenarios

that can be analysed together with the users. These user scenarios can be utilized

to generate comparable results between the iterations. Even though the semantic

features of the application largely define the overall functionality, they are only a

part of the implementation. Semantic search results are based only on the titles of

the cases and text references and on the contents of the files. There are many other

simpler fields, such as index numbers and types of documents, that are searched only

with the native Elasticsearch queries. When optimizing the query, the significance

and weights between the native queries and the vector search query have to be

solved: Is it enough to have exact matches with the native queries or are some

advanced features of the queries needed to complement the retrieved results? Should

the results retrieved with the native queries always be first in the result list and

after them the complementary semantic results or is some other more heterogeneous

approach better? As mentioned in Section 7.1, distinguishing the results retrieved

with the native queries and with the Elastiknn-queries could be beneficial for analysis

purposes, but the desired structure of search results in practice could be something

completely different and it can be validated only with appropriate user testing.

7.3 NEXT STEPS FOR CASE JOUTSENET 79

Search result relevance is the most central part of the suggested search applica-

tion, but the user interface is obviously an important part of the user experience,

and its optimization and development should not be forgotten in the testing pro-

cess. If there is something wrong with the user interface, the users will probably

have comments on the deficiencies. The suggested user interface is made to visually

fit the surrounding JoutseNet system, and the functionality of links embedded into

the search results are mimicked from the present search functionalities of the system.

Filters are based on previous functionalities and on the initial wishes made by the

users during the early development of the semantic search application. The users

should determine if the links, filters and the user interface as a whole are working

as expected or if something needs to be modified, removed or added.

8 Conclusion

8.1 Answers to Research Questions

RQ1: What kind of methods and techniques are used in previous use

cases to enable semantic search functionalities?

As stated in Chapter 4, the purpose of RQ1 is to collect ideas and techniques for the

implementation of the JoutseNet semantic search. A Systematic Literature Review

(SLR) was utilized to retrieve and review relevant studies regarding previous use

cases on semantic search. The most important learnings of the literature review

are the methods and techniques for the implementations, not the characteristics of

the use cases. However, including the use cases in the research question and in the

review process appropriately limited the search results to implementations with a

specific scope, which are relevant when designing the JoutseNet semantic search.

Some of the reviewed papers do not include a specific or a strictly limited use case,

but they are still relevant with their implementation techniques and examples.

The literature review emphasizes the fact that it may not be an easy task to select

the techniques for a semantic search and finding the correct tools may require exten-

sive experimenting. Generally, vector embedding is a widely utilized technique for

bringing semantic features to search applications. GLOVE word vectors, Word2Vec,

Doc2Vec, BERT and even some custom embedding methods are used to vectorize

pieces of text. Depending on the use case, the vectors are utilized to calculate an-

8.1 ANSWERS TO RESEARCH QUESTIONS 81

gular distances between queries and documents, to cluster documents or to provide

synonym expansions for queries. However, vector embedding is not the only way to

implement semantic search: bag of words, weighing the documents, custom context

algorithms and named entity recognition are also sufficient to achieve some level of

semantic functionalities. Additionally, some more fundamental NLP processes, such

as stop word removal, lemmatization and tokenization are beneficial when preparing

the documents.

RQ2: What are the requirements for a JoutseNet semantic search appli-

cation?

Conducting user research and examining the current search functionalities were uti-

lized in Section 5.3 to derive some requirements and guidelines for the semantic

search application. The high-level requirement is to have a modern and responsive

application, which is easy to use and which retrieves relevant search results for the

user of JoutseNet. The relevant results can be retrieved with exact or almost exact

matches, but they should be supplemented with semantically similar results. The

goal is to have a “Google-like” intuitive search, but the users want to have a few

filters, such as document type and date filters, so that it easy to be in control of the

searching process, especially if the initial string query provides a large number of

results. Index number of the cases in JoutseNet-system is an important data field

and it must be possible to search for documents with an index number.

Regarding the search experience and performance, the requirements drive the

application to be modern and close to the current industry standards, but the user

interface still must be kept more traditional so that the overall visuals and the func-

tionality of the search result links do not differ from the surrounding system and the

patterns of the users. These initial requirements help guiding the early development

of the application, but they are not enough to define a detailed implementation.

8.1 ANSWERS TO RESEARCH QUESTIONS 82

It seems like it is quite difficult for the users to express their needs before they

are given an example solution that they can test. Thus, the requirements will be

enhanced during further development. Especially requirements that steer the ap-

plication to retrieve relevant search results are defined when iteratively testing the

initial implementation with users.

RQ3: How to create a semantic search functionality, which provides rel-

evant search results for the users of JoutseNet-system?

The technical implementation suggestion documented in Chapter 6 partially answers

to RQ3. The implementation includes a backend implemented with Python and

a frontend implemented with React. Some modifications are made to the PHP

source code of JoutseNet for enabling the user interface of the semantic search

as part of the surrounding system, for passing user rights and for triggering the

indexing of new documents added to the database. Elasticsearch is selected to

be the search engine in the implementation and Elastiknn-plugin enables semantic

features in the Elasticsearch instance. FinBERT vector embeddings are utilized to

enable semantic search for the titles of cases and text references and for the contents

of files. Two implementation suggestions for embedding the file contents are given:

summarization and averaging. Example code snippets for these suggestions can be

found in Appendix B.1-B.2. The vector embeddings are indexed to the Elasticsearch

index as Elastiknn dense float vectors and all other necessary data fields are indexed

with the native mapping schemas of Elasticsearch. Search results are retrieved with

a query, where Elastiknn nearest neighbor query is combined with the native queries

of Elasticsearch. Examples of queries used in the implementation can be found in

Appendix A.1 - A.2.

Chapter 7 continues answering to RQ3 by providing suggestions on how to test

and optimize the application and by describing the concrete next steps in the devel-

8.2 DISCUSSION AND FUTURE WORK 83

opment process. Various parameters, such as the ones defined in the vector index

mappings, can be adjusted when experimenting with the application. An iterative

pilot testing process is suggested to be the method for adjusting the queries, the user

interface and all other optimizable parts of the application. The initial plan for the

thesis was to validate the functionality of the application with the production data.

Without the production data it had to be decided that a more theoretic discussion

of the further development process is enough, even though RQ3 is not fully answered

with validated results.

8.2 Discussion and Future Work

The outcome of this thesis is an implementation suggestion for a semantic search

application with two possible alternatives for vector embedding, which enable se-

mantic search results. Generating sufficient vector embeddings for short pieces of

text is rather easy with today’s tools and frameworks. However, doing the same

with longer pieces of text can still turn out to be relatively challenging, especially

when the used language is a small language such as Finnish. Summarization and av-

eraging for long text documents are suggested to be solutions for getting around the

limitations of BERT. Different kind of an approach to the problem could be creating

a completely new long model, which is optimized for Finnish language and which

accepts longer token sequences to be encoded at a time. For example, building and

training a Longformer [77] model for Finnish could provide solution possibilities for

many Finnish organizations.

Creating an optimized search application is not an easy task. Hopefully, the

suggested implementations for JoutseNet semantic search are steering the develop-

ment to right direction and provide value for the users of the system. Methods for

the implementation and optimization have been collected from various sources and

they are documented in the theory parts of this thesis. Especially book Relevant

8.2 DISCUSSION AND FUTURE WORK 84

search: With applications for Solr and Elasticsearch by Turnbull and Berryman [27]

has provided guidelines for developing a search application and for involving users

in the testing process. It is recommended to take a look at the book’s relevance

framework when trying to solve the relevancy problem of a search application.

In any case, there is probably still a lot to be done with the JoutseNet semantic

search before it can be considered to be a viable solution: An unspecified number of

testing iterations are needed to optimize the application and to sufficiently answer

to the users’ needs. Further research on the new search application could be con-

ducted by examining the provided value for the users. First indications of the value

could be evaluated during the initial testing of the application and the value mea-

surement process could be continued in the production environment by monitoring

the behaviour and feedback of the users. As an existing system, JoutseNet enables

comparative research by having the possibility of comparing new implementation

suggestions to the ones previously implemented.

References

[1] E. Kumar, Natural Language Processing, en. I. K. International Pvt Ltd, Dec.

2013, isbn: 978-93-80578-77-4.

[2] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language

processing: An introduction”, Journal of the American Medical Informatics

Association, vol. 18, no. 5, pp. 544–551, Sep. 2011, issn: 1067-5027. doi: 10.

1136/amiajnl-2011-000464. [Online]. Available: https://doi.org/10.

1136/amiajnl-2011-000464 (visited on 05/27/2022).

[3] D. Mollá and J. L. Vicedo, “Question Answering in Restricted Domains: An

Overview”, Computational Linguistics, vol. 33, no. 1, pp. 41–61, Mar. 2007,

issn: 0891-2017. doi: 10.1162/coli.2007.33.1.41. [Online]. Available:

https://doi.org/10.1162/coli.2007.33.1.41 (visited on 05/30/2022).

[4] T. P. Nagarhalli, V. Vaze, and N. K. Rana, “Impact of Machine Learning in

Natural Language Processing: A Review”, in 2021 Third International Con-

ference on Intelligent Communication Technologies and Virtual Mobile Net-

works (ICICV), Feb. 2021, pp. 1529–1534. doi: 10.1109/ICICV50876.2021.

9388380.

[5] M. Fares, S. Oepen, and Y. Zhang, “Machine Learning for High-Quality To-

kenization Replicating Variable Tokenization Schemes”, en, in Computational

Linguistics and Intelligent Text Processing, A. Gelbukh, Ed., ser. Lecture

https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1162/coli.2007.33.1.41
https://doi.org/10.1162/coli.2007.33.1.41
https://doi.org/10.1109/ICICV50876.2021.9388380
https://doi.org/10.1109/ICICV50876.2021.9388380

REFERENCES 86

Notes in Computer Science, Berlin, Heidelberg: Springer, 2013, pp. 231–244,

isbn: 978-3-642-37247-6. doi: 10.1007/978-3-642-37247-6_19.

[6] R. Navigli, “Word sense disambiguation: A survey”, en, ACM Computing Sur-

veys, vol. 41, no. 2, pp. 1–69, Feb. 2009, issn: 0360-0300, 1557-7341. doi:

10.1145/1459352.1459355. [Online]. Available: https://dl.acm.org/doi/

10.1145/1459352.1459355 (visited on 06/02/2022).

[7] S. Joty, G. Carenini, R. Ng, and G. Murray, “Discourse Analysis and Its

Applications”, in Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics: Tutorial Abstracts, Florence, Italy: Association

for Computational Linguistics, Jul. 2019, pp. 12–17. doi: 10.18653/v1/P19-

4003. [Online]. Available: https://aclanthology.org/P19-4003 (visited on

06/03/2022).

[8] H. Hernault, H. Prendinger, D. A. d. Verle, and M. Ishizuka, “HILDA: A

Discourse Parser Using Support Vector Machine Classification”, en, Dialogue

& Discourse, vol. 1, no. 3, pp. 1–33, Dec. 2010, Number: 3, issn: 2152-9620.

doi: 10.5087/dad.2010.003. [Online]. Available: https://journals.uic.

edu/ojs/index.php/dad/article/view/10670 (visited on 06/03/2022).

[9] A. Bilbao-Jayo and A. Almeida, “Automatic political discourse analysis with

multi-scale convolutional neural networks and contextual data”, en, Interna-

tional Journal of Distributed Sensor Networks, vol. 14, no. 11, p. 1 550 147 718 811 827,

Nov. 2018, Publisher: SAGE Publications, issn: 1550-1329. doi: 10.1177/

1550147718811827. [Online]. Available: https://doi.org/10.1177/1550147718811827

(visited on 06/03/2022).

[10] S. M. Sarsam, H. Al-Samarraie, A. I. Alzahrani, and B. Wright, “Sarcasm de-

tection using machine learning algorithms in Twitter: A systematic review”,

en, International Journal of Market Research, vol. 62, no. 5, pp. 578–598,

https://doi.org/10.1007/978-3-642-37247-6_19
https://doi.org/10.1145/1459352.1459355
https://dl.acm.org/doi/10.1145/1459352.1459355
https://dl.acm.org/doi/10.1145/1459352.1459355
https://doi.org/10.18653/v1/P19-4003
https://doi.org/10.18653/v1/P19-4003
https://aclanthology.org/P19-4003
https://doi.org/10.5087/dad.2010.003
https://journals.uic.edu/ojs/index.php/dad/article/view/10670
https://journals.uic.edu/ojs/index.php/dad/article/view/10670
https://doi.org/10.1177/1550147718811827
https://doi.org/10.1177/1550147718811827
https://doi.org/10.1177/1550147718811827

REFERENCES 87

Sep. 2020, Publisher: SAGE Publications, issn: 1470-7853. doi: 10.1177/

1470785320921779. [Online]. Available: https://doi.org/10.1177/1470785320921779

(visited on 06/03/2022).

[11] S. Sun, C. Luo, and J. Chen, “A review of natural language processing tech-

niques for opinion mining systems”, en, Information Fusion, vol. 36, pp. 10–

25, Jul. 2017, issn: 1566-2535. doi: 10.1016/j.inffus.2016.10.004. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S1566253516301117 (visited on 05/31/2022).

[12] F. Zhang, H. Fleyeh, X. Wang, and M. Lu, “Construction site accident anal-

ysis using text mining and natural language processing techniques”, en, Au-

tomation in Construction, vol. 99, pp. 238–248, Mar. 2019, issn: 0926-5805.

doi: 10.1016/j.autcon.2018.12.016. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0926580518306137 (visited on

05/31/2022).

[13] “Data Mining”, in Mining of Massive Datasets, A. Rajaraman and J. D. Ull-

man, Eds., Cambridge: Cambridge University Press, 2011, pp. 1–17, isbn:

978-1-107-73741-9. doi: 10.1017/CBO9781139058452.002. [Online]. Avail-

able: https://www.cambridge.org/core/books/mining- of- massive-

datasets/data-mining/E5BFF4C1DD5A1FB946D616D619B373C2 (visited on

08/02/2022).

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding”, arXiv, Tech.

Rep. arXiv:1810.04805, May 2019, arXiv:1810.04805 [cs] version: 2 type: arti-

cle. doi: 10.48550/arXiv.1810.04805. [Online]. Available: http://arxiv.

org/abs/1810.04805 (visited on 06/03/2022).

https://doi.org/10.1177/1470785320921779
https://doi.org/10.1177/1470785320921779
https://doi.org/10.1177/1470785320921779
https://doi.org/10.1016/j.inffus.2016.10.004
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://doi.org/10.1016/j.autcon.2018.12.016
https://www.sciencedirect.com/science/article/pii/S0926580518306137
https://www.sciencedirect.com/science/article/pii/S0926580518306137
https://doi.org/10.1017/CBO9781139058452.002
https://www.cambridge.org/core/books/mining-of-massive-datasets/data-mining/E5BFF4C1DD5A1FB946D616D619B373C2
https://www.cambridge.org/core/books/mining-of-massive-datasets/data-mining/E5BFF4C1DD5A1FB946D616D619B373C2
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

REFERENCES 88

[15] I. Tenney, D. Das, and E. Pavlick, “BERT Rediscovers the Classical NLP

Pipeline”, arXiv, Tech. Rep. arXiv:1905.05950, Aug. 2019, arXiv:1905.05950

[cs] type: article. doi: 10.48550/arXiv.1905.05950. [Online]. Available:

http://arxiv.org/abs/1905.05950 (visited on 06/03/2022).

[16] M. V. Koroteev, “BERT: A Review of Applications in Natural Language Pro-

cessing and Understanding”, arXiv, Tech. Rep. arXiv:2103.11943, Mar. 2021,

arXiv:2103.11943 [cs] type: article. doi: 10.48550/arXiv.2103.11943. [On-

line]. Available: http://arxiv.org/abs/2103.11943 (visited on 06/01/2022).

[17] A. A. Deshmukh and U. Sethi, “IR-BERT: Leveraging BERT for Semantic

Search in Background Linking for News Articles”, arXiv, Tech. Rep. arXiv:2007.12603,

Jul. 2020, arXiv:2007.12603 [cs] type: article. [Online]. Available: http://

arxiv.org/abs/2007.12603 (visited on 06/06/2022).

[18] S. Edunov, A. Baevski, and M. Auli, “Pre-trained Language Model Represen-

tations for Language Generation”, arXiv, Tech. Rep. arXiv:1903.09722, Apr.

2019, arXiv:1903.09722 [cs] type: article. [Online]. Available: http://arxiv.

org/abs/1903.09722 (visited on 06/06/2022).

[19] B. Lutkevich, What is BERT (Language Model) and How Does It Work?, en.

[Online]. Available: https://www.techtarget.com/searchenterpriseai/

definition/BERT-language-model (visited on 06/06/2022).

[20] S. Wu and M. Dredze, “Are All Languages Created Equal in Multilingual

BERT?”, arXiv, Tech. Rep. arXiv:2005.09093, Sep. 2020, arXiv:2005.09093

[cs] type: article. doi: 10.48550/arXiv.2005.09093. [Online]. Available:

http://arxiv.org/abs/2005.09093 (visited on 06/07/2022).

[21] A. Virtanen, J. Kanerva, R. Ilo, et al., “Multilingual is not enough: BERT

for Finnish”, arXiv:1912.07076 [cs], Dec. 2019, arXiv: 1912.07076. [Online].

Available: http://arxiv.org/abs/1912.07076 (visited on 02/15/2022).

https://doi.org/10.48550/arXiv.1905.05950
http://arxiv.org/abs/1905.05950
https://doi.org/10.48550/arXiv.2103.11943
http://arxiv.org/abs/2103.11943
http://arxiv.org/abs/2007.12603
http://arxiv.org/abs/2007.12603
http://arxiv.org/abs/1903.09722
http://arxiv.org/abs/1903.09722
https://www.techtarget.com/searchenterpriseai/definition/BERT-language-model
https://www.techtarget.com/searchenterpriseai/definition/BERT-language-model
https://doi.org/10.48550/arXiv.2005.09093
http://arxiv.org/abs/2005.09093
http://arxiv.org/abs/1912.07076

REFERENCES 89

[22] TurkuNLP. [Online]. Available: https://turkunlp.org/ (visited on 06/07/2022).

[23] Common Crawl, en-US. [Online]. Available: https : / / commoncrawl . org/

(visited on 06/07/2022).

[24] T. Seymour, D. Frantsvog, and S. Kumar, “History Of Search Engines”, en, In-

ternational Journal of Management & Information Systems (IJMIS), vol. 15,

no. 4, pp. 47–58, Sep. 2011, Number: 4, issn: 2157-9628. doi: 10.19030/

ijmis.v15i4.5799. [Online]. Available: https://www.clutejournals.com

(visited on 02/14/2022).

[25] Definition of Archie, en. [Online]. Available: https : / / www . pcmag . com /

encyclopedia/term/archie (visited on 04/01/2022).

[26] S. Hollingsworth, DuckDuckGo vs. Google: An In-Depth Search Engine Com-

parison, en, May 2021. [Online]. Available: https://www.searchenginejournal.

com/google-vs-duckduckgo/301997/ (visited on 04/02/2022).

[27] D. Turnbull and J. Berryman, Relevant search: With applications for Solr and

Elasticsearch. Manning Publications Co., 2016.

[28] DB-Engines Ranking, en. [Online]. Available: https://db-engines.com/en/

ranking/search+engine (visited on 04/26/2022).

[29] What Is Splunk? A Beginners Guide To Understanding Splunk, en-US, Section:

Big Data, Oct. 2016. [Online]. Available: https://www.edureka.co/blog/

what-is-splunk/ (visited on 04/27/2022).

[30] Who we are. [Online]. Available: https://solr.apache.org/whoweare.html

(visited on 04/27/2022).

[31] R. Kuć, Solr vs Elasticsearch: Performance Differences & More [2022], en-

US, Jan. 2022. [Online]. Available: https://sematext.com/blog/solr-vs-

elasticsearch-differences/ (visited on 04/27/2022).

https://turkunlp.org/
https://commoncrawl.org/
https://doi.org/10.19030/ijmis.v15i4.5799
https://doi.org/10.19030/ijmis.v15i4.5799
https://www.clutejournals.com
https://www.pcmag.com/encyclopedia/term/archie
https://www.pcmag.com/encyclopedia/term/archie
https://www.searchenginejournal.com/google-vs-duckduckgo/301997/
https://www.searchenginejournal.com/google-vs-duckduckgo/301997/
https://db-engines.com/en/ranking/search+engine
https://db-engines.com/en/ranking/search+engine
https://www.edureka.co/blog/what-is-splunk/
https://www.edureka.co/blog/what-is-splunk/
https://solr.apache.org/whoweare.html
https://sematext.com/blog/solr-vs-elasticsearch-differences/
https://sematext.com/blog/solr-vs-elasticsearch-differences/

REFERENCES 90

[32] FAQ on 2021 License Change, en-us. [Online]. Available: https : / / www .

elastic.co/pricing/faq/licensing#faq- on- 2021- license- change

(visited on 04/28/2022).

[33] Solr vs. Elasticsearch: Who’s The Leading Open Source Search Engine?, en-

US, Jul. 2020. [Online]. Available: https : / / logz . io / blog / solr - vs -

elasticsearch/ (visited on 04/28/2022).

[34] J. Blasenak, Solr vs. Elasticsearch | Open Source Search | Accenture, en. [On-

line]. Available: https://www.accenture.com/us-en/blogs/search-and-

content-analytics-blog/solr-elasticsearch-open-source-search-

engines (visited on 04/21/2022).

[35] Schemaless Mode | Apache Solr Reference Guide 7.0. [Online]. Available: https:

/ / solr . apache . org / guide / 7 _ 0 / schemaless - mode . html (visited on

04/28/2022).

[36] NearRealtimeSearch - Apache Lucene (Java) - Apache Software Foundation.

[Online]. Available: https://cwiki.apache.org/confluence/display/

lucene/NearRealtimeSearch (visited on 05/02/2022).

[37] T. Aydoğan, M. İlkuçar, and M. A. Akca, “An Analysis on the Comparison of

the Performance and Configuration Features of Big Data Tools Solr and Elas-

ticsearch”, en, International Journal of Intelligent Systems and Applications in

Engineering, vol. 4, no. Special Issue-1, pp. 8–12, Dec. 2016, issn: 2147-6799.

doi: 10.18201/ijisae.271328. [Online]. Available: https://dergipark.

org.tr/en/doi/10.18201/ijisae.271328 (visited on 04/27/2022).

[38] Data in: Documents and indices | Elasticsearch Guide [master] | Elastic, en-us,

Learn/Docs/Elasticsearch/Reference/master. [Online]. Available: https://

www.elastic.co/guide/en/elasticsearch/reference/master/documents-

indices.html (visited on 05/02/2022).

https://www.elastic.co/pricing/faq/licensing#faq-on-2021-license-change
https://www.elastic.co/pricing/faq/licensing#faq-on-2021-license-change
https://logz.io/blog/solr-vs-elasticsearch/
https://logz.io/blog/solr-vs-elasticsearch/
https://www.accenture.com/us-en/blogs/search-and-content-analytics-blog/solr-elasticsearch-open-source-search-engines
https://www.accenture.com/us-en/blogs/search-and-content-analytics-blog/solr-elasticsearch-open-source-search-engines
https://www.accenture.com/us-en/blogs/search-and-content-analytics-blog/solr-elasticsearch-open-source-search-engines
https://solr.apache.org/guide/7_0/schemaless-mode.html
https://solr.apache.org/guide/7_0/schemaless-mode.html
https://cwiki.apache.org/confluence/display/lucene/NearRealtimeSearch
https://cwiki.apache.org/confluence/display/lucene/NearRealtimeSearch
https://doi.org/10.18201/ijisae.271328
https://dergipark.org.tr/en/doi/10.18201/ijisae.271328
https://dergipark.org.tr/en/doi/10.18201/ijisae.271328
https://www.elastic.co/guide/en/elasticsearch/reference/master/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/documents-indices.html

REFERENCES 91

[39] A. Kryzhanovska and M. Sharapova, How to Make a Search Engine Soft-

ware for Your Business, en. [Online]. Available: https://gearheart.io/

articles/how-create-search-engine-software-your-business/ (visited

on 04/12/2022).

[40] M. White, Enterprise Search Development: Start With the User Interface, en.

[Online]. Available: https://www.reworked.co/information-management/

enterprise- search- development- start- with- the- user- interface/

(visited on 05/12/2022).

[41] Over 50 Percent of Knowledge Workers Cannot Find the Information They

Need at Work, National Survey Finds, en, Oct. 2019. [Online]. Available: https:

//www.businesswire.com/news/home/20191009005164/en/Over- 50-

Percent-of-Knowledge-Workers-Cannot-Find-the-Information-They-

Need-at-Work-National-Survey-Finds (visited on 05/13/2022).

[42] S. Verma, Designing for enterprise search, en, Dec. 2021. [Online]. Available:

https://uxdesign.cc/designing-for-enterprise-search-42015a9a467b

(visited on 05/13/2022).

[43] S. Minhas, How to Write Good Error Messages, en, May 2021. [Online]. Avail-

able: https://uxplanet.org/how- to- write- good- error- messages-

858e4551cd4 (visited on 05/13/2022).

[44] Semantics | Definition & Theories | Britannica, en. [Online]. Available: https:

//www.britannica.com/science/semantics (visited on 05/16/2022).

[45] S. Löbner, Understanding Semantics (Understanding language series). Rout-

ledge, 2013, isbn: 9781444122435.

[46] H. Bast, B. Buchhold, and E. Haussmann, “Semantic Search on Text and

Knowledge Bases”, en, Foundations and Trends® in Information Retrieval,

vol. 10, no. 1, pp. 119–271, 2016, issn: 1554-0669, 1554-0677. doi: 10.1561/

https://gearheart.io/articles/how-create-search-engine-software-your-business/
https://gearheart.io/articles/how-create-search-engine-software-your-business/
https://www.reworked.co/information-management/enterprise-search-development-start-with-the-user-interface/
https://www.reworked.co/information-management/enterprise-search-development-start-with-the-user-interface/
https://www.businesswire.com/news/home/20191009005164/en/Over-50-Percent-of-Knowledge-Workers-Cannot-Find-the-Information-They-Need-at-Work-National-Survey-Finds
https://www.businesswire.com/news/home/20191009005164/en/Over-50-Percent-of-Knowledge-Workers-Cannot-Find-the-Information-They-Need-at-Work-National-Survey-Finds
https://www.businesswire.com/news/home/20191009005164/en/Over-50-Percent-of-Knowledge-Workers-Cannot-Find-the-Information-They-Need-at-Work-National-Survey-Finds
https://www.businesswire.com/news/home/20191009005164/en/Over-50-Percent-of-Knowledge-Workers-Cannot-Find-the-Information-They-Need-at-Work-National-Survey-Finds
https://uxdesign.cc/designing-for-enterprise-search-42015a9a467b
https://uxplanet.org/how-to-write-good-error-messages-858e4551cd4
https://uxplanet.org/how-to-write-good-error-messages-858e4551cd4
https://www.britannica.com/science/semantics
https://www.britannica.com/science/semantics
https://doi.org/10.1561/1500000032
https://doi.org/10.1561/1500000032

REFERENCES 92

1500000032. [Online]. Available: http://www.nowpublishers.com/article/

Details/INR-032 (visited on 05/16/2022).

[47] S. Hosseinzadeh, S. Rauti, S. Laurén, et al., “Diversification and obfuscation

techniques for software security: A systematic literature review”, en, Infor-

mation and Software Technology, vol. 104, pp. 72–93, Dec. 2018, issn: 0950-

5849. doi: 10.1016/j.infsof.2018.07.007. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0950584918301484

(visited on 05/24/2022).

[48] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Code-

SearchNet Challenge: Evaluating the State of Semantic Code Search”, arXiv,

Tech. Rep. arXiv:1909.09436, Jun. 2020, arXiv:1909.09436 [cs, stat] type: ar-

ticle. doi: 10.48550/arXiv.1909.09436. [Online]. Available: http://arxiv.

org/abs/1909.09436 (visited on 06/08/2022).

[49] X. Ye, J. Du, X. Gong, S. Na, W. Li, and S. Kudva, “Geospatial and Semantic

Mapping Platform for Massive COVID-19 Scientific Publication Search”, en,

Journal of Geovisualization and Spatial Analysis, vol. 5, no. 1, p. 5, Jan. 2021,

issn: 2509-8829. doi: 10.1007/s41651-021-00073-y. [Online]. Available:

https://doi.org/10.1007/s41651-021-00073-y (visited on 06/08/2022).

[50] J. Rygl, J. Pomikálek, R. Řehůřek, M. Růžička, V. Novotný, and P. Sojka,

“Semantic Vector Encoding and Similarity Search Using Fulltext Search En-

gines”, arXiv, Tech. Rep. arXiv:1706.00957, Jun. 2017, arXiv:1706.00957 [cs]

type: article. [Online]. Available: http://arxiv.org/abs/1706.00957 (vis-

ited on 06/08/2022).

[51] T. Artyom, “Information retrieval and analysis for a Modern organization”,,

vol. 28, no. 4, pp. 7–28, 2016, issn: 2079-8156. [Online]. Available: https:

https://doi.org/10.1561/1500000032
https://doi.org/10.1561/1500000032
http://www.nowpublishers.com/article/Details/INR-032
http://www.nowpublishers.com/article/Details/INR-032
https://doi.org/10.1016/j.infsof.2018.07.007
https://www.sciencedirect.com/science/article/pii/S0950584918301484
https://www.sciencedirect.com/science/article/pii/S0950584918301484
https://doi.org/10.48550/arXiv.1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.1007/s41651-021-00073-y
https://doi.org/10.1007/s41651-021-00073-y
http://arxiv.org/abs/1706.00957
https://cyberleninka.ru/article/n/information-retrieval-and-analysis-for-a-modern-organization
https://cyberleninka.ru/article/n/information-retrieval-and-analysis-for-a-modern-organization

REFERENCES 93

//cyberleninka.ru/article/n/information-retrieval-and-analysis-

for-a-modern-organization (visited on 06/08/2022).

[52] H. N. L. Huy, H. H. Minh, T. N. Van, and H. N. Van, “Keyphrase Extrac-

tion Model: A New Design and Application on Tourism Information”, en, In-

formatica, vol. 45, no. 4, Dec. 2021, issn: 1854-3871. doi: 10.31449/inf.

v45i4.3493. [Online]. Available: https://informatica.si/index.php/

informatica/article/view/3493 (visited on 06/08/2022).

[53] A. Wen, Y. Wang, V. C. Kaggal, S. Liu, H. Liu, and J. Fan, “Enhancing

Clinical Information Retrieval through Context-Aware Queries and Indices”,

in 2019 IEEE International Conference on Big Data (Big Data), Dec. 2019,

pp. 2800–2807. doi: 10.1109/BigData47090.2019.9006241.

[54] M. A. Silva-Fuentes, H. D. Calderon-Vilca, E. F. Calderon-Vilca, and F. C.

Cárdenas-Mariño, “Semantic Search System using Word Embeddings for query

expansion”, in 2019 IEEE PES Innovative Smart Grid Technologies Confer-

ence - Latin America (ISGT Latin America), ISSN: 2643-8798, Sep. 2019,

pp. 1–6. doi: 10.1109/ISGT-LA.2019.8894992.

[55] I. Ö. Arnarsson, O. Frost, E. Gustavsson, M. Jirstrand, and J. Malmqvist,

“Natural language processing methods for knowledge management—Applying

document clustering for fast search and grouping of engineering documents”,

en, Concurrent Engineering, vol. 29, no. 2, pp. 142–152, Jun. 2021, Publisher:

SAGE Publications Ltd STM, issn: 1063-293X. doi: 10.1177/1063293X20982973.

[Online]. Available: https://doi.org/10.1177/1063293X20982973 (visited

on 06/08/2022).

[56] P. Kostakos, “Strings and Things: A Semantic Search Engine for news quotes

using Named Entity Recognition”, in 2020 IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM),

https://cyberleninka.ru/article/n/information-retrieval-and-analysis-for-a-modern-organization
https://cyberleninka.ru/article/n/information-retrieval-and-analysis-for-a-modern-organization
https://cyberleninka.ru/article/n/information-retrieval-and-analysis-for-a-modern-organization
https://doi.org/10.31449/inf.v45i4.3493
https://doi.org/10.31449/inf.v45i4.3493
https://informatica.si/index.php/informatica/article/view/3493
https://informatica.si/index.php/informatica/article/view/3493
https://doi.org/10.1109/BigData47090.2019.9006241
https://doi.org/10.1109/ISGT-LA.2019.8894992
https://doi.org/10.1177/1063293X20982973
https://doi.org/10.1177/1063293X20982973

REFERENCES 94

ISSN: 2473-991X, Dec. 2020, pp. 835–839. doi: 10.1109/ASONAM49781.2020.

9381383.

[57] S. V. Pakhomov, G. Finley, R. McEwan, Y. Wang, and G. B. Melton, “Corpus

domain effects on distributional semantic modeling of medical terms”, Bioin-

formatics, vol. 32, no. 23, pp. 3635–3644, Dec. 2016, issn: 1367-4803. doi:

10.1093/bioinformatics/btw529. [Online]. Available: https://doi.org/

10.1093/bioinformatics/btw529 (visited on 07/13/2022).

[58] Joutsenet käyttöliittymäkehityksen esiselvitys - loppuraportti, ATR Soft Oy,

Nov. 2020.

[59] Kuntasektorin asianhallinnan viitearkkitehtuuri, Kuntaliitto, 2016.

[60] Home - Docker, en-US, May 2022. [Online]. Available: https://www.docker.

com/ (visited on 07/21/2022).

[61] Quick start | Elasticsearch Guide [7.17] | Elastic, en-us, Learn/Docs/Elas-

ticsearch/Reference/7.17. [Online]. Available: https://www.elastic.co/

guide/en/elasticsearch/reference/7.17/getting-started.html (vis-

ited on 07/21/2022).

[62] Text type family | Elasticsearch Guide [7.17] | Elastic, en-us, Learn/Docs/E-

lasticsearch/Reference/7.17. [Online]. Available: https : / / www . elastic .

co/guide/en/elasticsearch/reference/7.17/text.html (visited on

07/21/2022).

[63] Python Elasticsearch Client — Elasticsearch 7.17.4 documentation. [Online].

Available: https://elasticsearch- py.readthedocs.io/en/v7.17.4/

(visited on 07/22/2022).

[64] J. Singer-Vine, Pdfplumber, original-date: 2015-08-24T03:14:48Z, Jul. 2022.

[Online]. Available: https://github.com/jsvine/pdfplumber (visited on

07/21/2022).

https://doi.org/10.1109/ASONAM49781.2020.9381383
https://doi.org/10.1109/ASONAM49781.2020.9381383
https://doi.org/10.1093/bioinformatics/btw529
https://doi.org/10.1093/bioinformatics/btw529
https://doi.org/10.1093/bioinformatics/btw529
https://www.docker.com/
https://www.docker.com/
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/text.html
https://elasticsearch-py.readthedocs.io/en/v7.17.4/
https://github.com/jsvine/pdfplumber

REFERENCES 95

[65] Query DSL | Elasticsearch Guide [7.17] | Elastic, en-us, Learn/Docs/Elas-

ticsearch/Reference/7.17. [Online]. Available: https://www.elastic.co/

guide/en/elasticsearch/reference/7.17/query-dsl.html (visited on

07/25/2022).

[66] Elastic 8.0: A new era of speed, scale, relevance, and simplicity, en-us. [Online].

Available: https://www.elastic.coen-us/blog/whats-new-elastic-8-0-

0 (visited on 07/25/2022).

[67] Text similarity search in Elasticsearch using vector fields, en-us, Aug. 2019.

[Online]. Available: https://www.elastic.co/blog/text- similarity-

search-with-vectors-in-elasticsearch (visited on 07/26/2022).

[68] Home, en. [Online]. Available: https://elastiknn.com/ (visited on 07/26/2022).

[69] TurkuNLP/sbert-cased-finnish-paraphrase · Hugging Face. [Online]. Available:

https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase

(visited on 07/26/2022).

[70] SentenceTransformers Documentation — Sentence-Transformers documenta-

tion. [Online]. Available: https://www.sbert.net/ (visited on 07/26/2022).

[71] S. Palachy, Document Embedding Techniques, en, Jun. 2022. [Online]. Avail-

able: https://towardsdatascience.com/document-embedding-techniques-

fed3e7a6a25d (visited on 07/27/2022).

[72] S. Verma, Semantic Search with S-BERT is all you need, en, Apr. 2022. [On-

line]. Available: https://medium.com/mlearning-ai/semantic-search-

with-s-bert-is-all-you-need-951bc710e160 (visited on 07/27/2022).

[73] M. Arora, U. Kanjilal, and D. Varshney, “Evaluation of information retrieval:

Precision and recall”, International Journal of Indian Culture and Business

Management, vol. 12, p. 224, Jan. 2016. doi: 10.1504/IJICBM.2016.074482.

https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/query-dsl.html
https://www.elastic.coen-us/blog/whats-new-elastic-8-0-0
https://www.elastic.coen-us/blog/whats-new-elastic-8-0-0
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch
https://elastiknn.com/
https://huggingface.co/TurkuNLP/sbert-cased-finnish-paraphrase
https://www.sbert.net/
https://towardsdatascience.com/document-embedding-techniques-fed3e7a6a25d
https://towardsdatascience.com/document-embedding-techniques-fed3e7a6a25d
https://medium.com/mlearning-ai/semantic-search-with-s-bert-is-all-you-need-951bc710e160
https://medium.com/mlearning-ai/semantic-search-with-s-bert-is-all-you-need-951bc710e160
https://doi.org/10.1504/IJICBM.2016.074482

REFERENCES 96

[74] Using the State Hook – React, en. [Online]. Available: https://reactjs.org/

docs/hooks-state.html (visited on 07/28/2022).

[75] React Table. [Online]. Available: https://react- table.tanstack.com/

(visited on 07/28/2022).

[76] styled-components, Styled-components, en. [Online]. Available: https://www.

styled-components.com (visited on 07/28/2022).

[77] I. Beltagy, M. E. Peters, and A. Cohan, Longformer: The Long-Document

Transformer, arXiv:2004.05150 [cs], Dec. 2020. doi: 10.48550/arXiv.2004.

05150. [Online]. Available: http://arxiv.org/abs/2004.05150 (visited on

10/19/2022).

[78] Sentence Transformers: Multilingual Sentence, Paragraph, and Image Embed-

dings using BERT & Co. original-date: 2019-07-24T10:53:51Z, Aug. 2022. [On-

line]. Available: https://github.com/UKPLab/sentence-transformers/

blob/b9db7b0255d183565926159d2b1c16e67a969cf8/examples/applications/

text-summarization/text-summarization.py (visited on 08/03/2022).

https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://react-table.tanstack.com/
https://www.styled-components.com
https://www.styled-components.com
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2004.05150
http://arxiv.org/abs/2004.05150
https://github.com/UKPLab/sentence-transformers/blob/b9db7b0255d183565926159d2b1c16e67a969cf8/examples/applications/text-summarization/text-summarization.py
https://github.com/UKPLab/sentence-transformers/blob/b9db7b0255d183565926159d2b1c16e67a969cf8/examples/applications/text-summarization/text-summarization.py
https://github.com/UKPLab/sentence-transformers/blob/b9db7b0255d183565926159d2b1c16e67a969cf8/examples/applications/text-summarization/text-summarization.py

Appendix A Query Examples

A.1 The Main Query

The following request is an example of the main query, which is used to retrieve

the search results to the search result table in the JoutseNet semantic search user

interface. In the application, most indexed fields are listed in the fields arrays so that

the query string is used to search from all of them, but it is not necessary to show

the long list of fields in this example. To enable flexibility for the query string input,

phrase_prefix and best_fields type queries are both utilized. Phrase_prefix accepts

transposed terms with its slop parameter and best_fields accepts some character

changes with its fuzziness parameter. Lastly, the highlight definition tells how to

highlight certain fields if exact matches are found in them.

1

2 request = {

3 "size": 300,

4 "query": {

5 "function_score": {

6 "query": {

7 "bool":{

8 "should": [

9 {

10 "multi_match": {

11 "query" : query ,

A.1 THE MAIN QUERY A-2

12 "type": "phrase_prefix",

13 "boost": 2,

14 "slop": 3,

15 "fields": ["case_title",

16 "textref_title",

17 "file_content"]

18 }

19 },

20 {

21 "multi_match": {

22 "query": query ,

23 "boost": 1.2,

24 "type": "best_fields",

25 "fuzziness": "AUTO:4,7",

26 "fields": ["case_title",

27 "textref_title",

28 "file_content"]

29 }

30 },

31 {

32 "elastiknn_nearest_neighbors": {

33 "field": "vector_field",

34 "vec": {

35 "values": query_vector

36 },

37 "model": "lsh",

38 "similarity": "cosine",

39 "candidates": 100000

40 }

41 },

42],

43 "minimum_should_match": 1,

44 "must": [

A.1 THE MAIN QUERY A-3

45 # User -defined filters are added to this 'must '

array

46],

47 "filter": [

48 {"terms": {"user_group": user_group }}

49]

50 },

51 },

52 },

53 },

54 "highlight" : {

55 "fragment_size" : 30,

56 "order" : "score",

57 "fields" : {

58 "case_title" : { "number_of_fragments" : 2 },

59 "textref_title" : { "number_of_fragments" : 2 },

60 "file_content" : { "number_of_fragments" : 3 }

61 }

62 }

63 }

A.2 EXAMPLE OF A FILTER QUERY A-4

A.2 Example of a Filter Query

The following function is for implementing the dropdown list of suggestions for the

author filter. Other filters with text input and suggestions are implemented with

the same structure. The suggestions are aggregated with the aggs parameter so that

there are no duplicates in the dropdown list. Flexibility for the input is enabled with

the wildcard notations (.*). The query string is converted to lowercase because the

aggregatable keywords are all in lowercase and the keyword search is case sensitive.

1

2 def _build_search_author_request(self , query):

3 include = ".*" + query.lower() + ".*"

4 return {

5 "query": {

6 "bool": {

7 "must": {

8 "multi_match": {

9 "query" : query ,

10 "type": "phrase_prefix",

11 "slop": 3,

12 "fields": ["author"]

13 }

14 }

15 }

16 },

17 "aggs": {

18 "unique_authors": {

19 "terms": {

20 "field": "author.raw",

21 "size": 100,

22 "include": include

23 }

24 }

A.2 EXAMPLE OF A FILTER QUERY A-5

25 }

26 }

The following function is the function for defining the author filter when an

author is selected from the dropdown list of suggestions. The filter is appended

to the must array of the main query: The search results not matching the filter

conditions are filtered out of the search results.

1

2 def author_filter(author):

3 return {

4 "match": {

5 "author.raw": author

6 }

7 }

Appendix B Document Embedding

There are two implementation suggestions for the document embedding in this ap-

pendix. The first one in appendix B.1 summarizes a parsed document and embeds

the summary. If the document length is shorter than the defined summary length,

the whole document is embedded. Document length is defined in the number of

sentences. This implementation is based on the suggested technique presented in

the SentenceTransformers documentation. [78] The document is split to sentences.

Then each sentence is embedded, and cosine similarity is computed for all sentence

pairs. Most central sentences are defined with the help of LexRank-algorithm and

the summary is formed from those sentences.

The second implementation suggestion in appendix B.2 takes the parsed docu-

ment text, splits it into smaller chunks, embeds the chunks and calculates the mean

vector of the chunk embeddings. Then it returns the mean vector for indexing.

B.1 EMBEDDING THE SUMMARY OF A DOCUMENT B-2

B.1 Embedding the Summary of a Document

1 from sentence_transformers import SentenceTransformer , util

2 import nltk

3 import LexRank

4 import numpy as np

5

6 model = SentenceTransformer('TurkuNLP/sbert -cased -finnish -

paraphrase ')

7

8 def on_embed_file_content(text):

9 prefixes = (' ', '.', '-')

10 try:

11 if text is not None:

12 summary = ''

13 text_without_digits = (''.join([i for i in text if not

i.isdigit ()])).replace('\n', '. ')

14 sentences = nltk.sent_tokenize(text_without_digits ,

language='finnish ')

15 cleaned_sentences = [i for i in sentences if not (i.

startswith(prefixes) or i == '')]

16 if cleaned_sentences and len(cleaned_sentences) > 10:

17 embeddings = model.encode(cleaned_sentences ,

batch_size =1)

18 cos_scores = util.cos_sim(embeddings , embeddings).

numpy()

19 centrality_scores = LexRank.

degree_centrality_scores(cos_scores , threshold=None)

20 most_central_sentence_indices = np.argsort(-

centrality_scores)

21 for idx in most_central_sentence_indices [0:10]:

22 summary += (cleaned_sentences[idx])

23 else:

B.1 EMBEDDING THE SUMMARY OF A DOCUMENT B-3

24 summary = text_without_digits

25 summary_vector = model.encode(summary)

26 return summary_vector

27 else:

28 text = ''

29 text_vector = [item for sublist in model.encode ([text

]) for item in sublist]

30 return text_vector

31 except Exception as ex:

32 print(ex)

33 embedding_error_logger.error("Exception occurred in

document embedding", exc_info=True)

B.2 EMBEDDING A DOCUMENT IN SMALLER CHUNKS AND
CALCULATING THE AVERAGE VECTOR B-4

B.2 Embedding a Document in Smaller Chunks and

Calculating the Average Vector

1 from sentence_transformers import SentenceTransformer

2 import numpy as np

3 from transformers import BertTokenizer

4

5 tokenizer = BertTokenizer.from_pretrained('TurkuNLP/sbert -cased -

finnish -paraphrase ')

6 model = SentenceTransformer('TurkuNLP/sbert -cased -finnish -

paraphrase ')

7 model.max_seq_length = 510

8

9 def on_embed_file_content(text):

10 try:

11 if text is not None:

12 text_without_digits = ''.join([i for i in text if not i

.isdigit ()])

13 tokenized_text = tokenizer.tokenize(text_without_digits

)

14 token_chunks = [tokenized_text[i:i + 510] for i in

range(0, len(tokenized_text), 510)]

15 untokenized_chunks = [tokenizer.

convert_tokens_to_string(i) for i in token_chunks]

16 if untokenized_chunks:

17 vectors = model.encode(untokenized_chunks ,

batch_size =1)

18 vectors_mean = np.mean(vectors , axis =0)

19 return vectors_mean

20 else:

21 text = ''

22 text_vector = [item for sublist in model.encode ([

B.2 EMBEDDING A DOCUMENT IN SMALLER CHUNKS AND
CALCULATING THE AVERAGE VECTOR B-5

text]) for item in sublist]

23 return text_vector

24 else:

25 text = ''

26 text_vector = [item for sublist in model.encode ([text

]) for item in sublist]

27 return text_vector

28 except Exception as ex:

29 print(ex)

30 embedding_error_logger.error("Exception occurred in

document embedding", exc_info=True)

	Introduction
	Natural Language Processing Fundamentals
	Brief Definition and History of Natural Language Processing
	The Role of Machine Learning in Improving NLP
	Natural Language Processing Terms and Techniques
	BERT
	FinBERT

	Search Engine Fundamentals
	Brief History of Search Engines
	How to Create a Search Engine Application for an Organization
	Define the Requirements
	Select an Engine
	Implement Software Around the Search Engine

	Semantic Search Theory and Possibilities
	Definition of Semantics and Semantic Search
	Literature Review on Semantic Search
	Method of the Literature Review
	Criteria for Selecting the Papers
	Selected Papers
	Brief Description of Selected Papers
	Findings

	Case JoutseNet - Introduction
	Case Management Process
	Operational Environment of Case Management
	User Research
	User Story: Maritta - Web Chief Editor
	User Scenarios
	Conclusion

	Case JoutseNet - Implementing the Semantic Search
	Defining the Index Structure
	Implementing the Backend
	Adding the Semantic Features
	Implementing the Frontend

	Case JoutseNet - Testing and Optimizing the Semantic Search
	Optimizing the Indexing Process and the Query Request
	User Testing
	Next Steps for Case JoutseNet

	Conclusion
	Answers to Research Questions
	Discussion and Future Work

	References
	Query Examples
	The Main Query
	Example of a Filter Query

	Document Embedding
	Embedding the Summary of a Document
	Embedding a Document in Smaller Chunks and Calculating the Average Vector

