\

R

4. UNIVERSITY
s OF TURKU

COLLABORATIVE AUTONOMY
IN HETEROGENEOUS
MULTI-ROBOT SYSTEMS

Jorge Pena Queralta

TURUN YLIOPISTON JULKAISUJA - ANNALES UNIVERSITATIS TURKUENSIS

PUBLICATION SERIES INFORMATION SHOULD GO HERE

University of Turku

Faculty of Technology

Department of Computing

Robotics and Autonomous Systems
Doctoral Programme in Technology

Supervised by

Associate Professor, Tomi Westerlund Professor, Zhuo Zou

University of Turku Fudan University

Reviewed by

Reader, Simon Watson Professor, Raivo Sell

The University of Manchester Tallinn University of Technology
Opponent

Associate Professor, Laura Ruotsalainen
University of Helsinki

The originality of this publication has been checked in accordance with the University
of Turku quality assurance system using the Turnitin OriginalityCheck service.

Serial F 18

ISBN 978-951-29-9116-7 (PDF)
ISSN 2736-9390 (PRINT)

ISSN 2736-9684 (ONLINE)
Printhouse, Turku, Finland, 2022

To my parents Paula and Victor, and my sister Laura...
...and to Lei

UNIVERSITY OF TURKU

Faculty of Technology

Department of Computing

Robotics and Autonomous Systems

PENA QUERALTA, JORGE: Collaborative Autonomy in Heterogeneous Multi-
Robot Systems

Doctoral dissertation, 227 pp.

Doctoral Programme in Technology

November 2022

ABSTRACT

As autonomous mobile robots become increasingly connected and widely deployed in
different domains, managing multiple robots and their interaction is key to the future of ubiq-
uitous autonomous systems. Indeed, robots are not individual entities anymore. Instead,
many robots today are deployed as part of larger fleets or in teams. The benefits of multi-
robot collaboration, specially in heterogeneous groups, are multiple. Significantly higher
degrees of situational awareness and understanding of their environment can be achieved
when robots with different operational capabilities are deployed together. Examples of this
include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars,
or the highly heterogeneous robot teams that explored caves and other complex environments
during the last DARPA Sub-T competition.

This thesis delves into the wide topic of collaborative autonomy in multi-robot systems,
encompassing some of the key elements required for achieving robust collaboration: solving
collaborative decision-making problems; securing their operation, management and interac-
tion; providing means for autonomous coordination in space and accurate global or relative
state estimation; and achieving collaborative situational awareness through distributed per-
ception and cooperative planning. The thesis covers novel formation control algorithms, and
new ways to achieve accurate absolute or relative localization within multi-robot systems. It
also explores the potential of distributed ledger technologies as an underlying framework to
achieve collaborative decision-making in distributed robotic systems.

Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements
and blockchain technology for securing the operation of autonomous robots, showing that
sensor data and mission instructions can be validated in an end-to-end manner. I then shift
the focus to localization and coordination, studying ultra-wideband (UWB) radios and their
potential. I show how UWB-based ranging and localization can enable aerial robots to oper-
ate in GNSS-denied environments, with a study of the constraints and limitations. I also study
the potential of UWB-based relative localization between aerial and ground robots for more
accurate positioning in areas where GNSS signals degrade. In terms of coordination, I intro-
duce two new algorithms for formation control that require zero to minimal communication,
if enough degree of awareness of neighbor robots is available. These algorithms are validated
in simulation and real-world experiments. The thesis concludes with the integration of a new
approach to cooperative path planning algorithms and UWB-based relative localization for
dense scene reconstruction using lidar and vision sensors in ground and aerial robots.

KEYWORDS: robotics, multi-robot systems, collaborative autonomy, edge computing, block-
chain, distributed ledger technologies, ultra-wideband localization, sensor fusion

iv

TURUN YLIOPISTO

Teknillinen tiedekunta

Tietotekniikan laitos

Robotiikka ja autonomiset jarjestelmat

PENA QUERALTA, JORGE: Collaborative Autonomy in Heterogeneous Multi-
Robot Systems

VaitOskirja, 227 s.

Teknologian tohtoriohjelma

Marraskuu 2022

TIVISTELMA

Robotit eivit enidd ole yksittdisid kokonaisuuksia vaan ovat nykydin kidytdssi osana su-
urempia kokonaisuuksia tai toimivat ryhmissé. Siten useiden robottien ja niiden vuorovaiku-
tuksen hallinta on avainasemassa kaikkialla ldsnd olevien autonomisten jérjestelmien tule-
vaisuuden kannalta. Usean robotin yhteistyon edut, erityisesti heterogeenisissid ryhmissi,
ovat moninaiset. Voimme esimerkiksi saavuttaa huomattavasti korkeamman tilannetietoisuu-
den ja ymmirryksen ympiristostd, kun eri toimintakykyisid robotteja kédytetidn yhdessi. Esi-
merkkeja tistd ovat Perseverance-monkiji ja Ingenuity-helikopteri, jotka NASA on kéyttinyt
Marsissa, tai erittdin heterogeeniset robottiryhmdit, jotka tutkivat luolia ja muita monimutkai-
sia ympdristojad viime DARPA Sub-T -kilpailun aikana.

Tama viitoskirja perehtyy laajaan aihealueeseen monirobottijirjestelmien yhteistyon au-
tonomiassa kisitellet seuraavia keskeisid elementtejd vahvan yhteistyon saavuttamiseksi: yh-
teisty0hon perustuvien paitoksenteko-ongelmien ratkaiseminen; niiden toiminnan, hallinnan
ja vuorovaikutuksen turvaaminen; vilineiden tarjoaminen autonomiseen koordinointiin tilassa
ja tarkan globaalin tai suhteellisen tilan estimointiin; ja yhteistyohon perustuvan tilanne-
tietoisuuden saavuttaminen hajautetun havainnon ja yhteistyon suunnittelun avulla. Viitos-
kirja esittelee uusia parvimuodostelmien ohjausalgoritmeja ja uusia tapoja saavuttaa tarkka
absoluuttinen tai suhteellinen lokalisointi monirobottijirjestelmissd. Viitoskirjassa tutki-
taan my0s hajautettujen tilikirjatekniikoiden mahdollisuuksia taustalla olevana teknologiana
yhteistyohon perustuvan paidtoksenteon saavuttamiseksi hajautetuissa robottijérjestelmissa.

Viitoskirjassa esittelen uusia ldhestymistapoja kryptografisten elementtien ja tilikirja-
teknologian hyddyntimiseen autonomisten robottien toiminnan turvaamisessa validoimaan
anturidataa ja tehtdviohjeita kommunikaatioketjun péistd pddhédn. Sitten siirrdn painopisteen
lokalisointiin ja koordinaatioon, tutkien ultralaajakaistaradioita (UWB) ja niiden mahdol-
lisuuksia. Niytidn, kuinka UWB-pohjainen etdisyyden arviointi ja lokalisointi voivat mah-
dollistaa ilmarobottien toiminnan ilman satelliittipohjaista navigointia (GNSS) huomioiden
my06s UWB-teknologian tuomia rajoituksia. Tutkin my0s ilmassa ja maassa liitkkuvien robot-
tien vilisen UWB-pohjaisen suhteellisen lokalisoinnin mahdollisuuksia tarkempaan paikan-
nukseen alueilla, joilla GNSS-signaalit heikkenevit. Koordinoinnin osalta esittelen kaksi
uutta parviohjausalgoritmia, jotka eivit vaadi yhtdén tai vain minimaalisesti viestintdd. Nama
algoritmit validoidaan simulaatioissa ja kenttdkokeissa. Vditoskirja padttyy uuden ldhes-
tymistavan integrointiin yhteistoiminnallisiin reittien suunnittelualgoritmeihin ja UWB-poh-
jaiseen suhteelliseen lokalisointiin kéyttimalld lidar- ja nidkoantureita maa- ja ilmarobot-
teissa.

ASTASANAT: robotiikka, monirobottijdrjestelmit, reunalaskenta, UWB-lokalisointi

Acknowledgements

I cannot thank enough my supervisor, and friend, Tomi Westerlund, for the all the
flexibility and support, with whom I have developed both professionally and person-
ally. Only working with Tomi I could have been able to enjoy the work as much as
I have, and to work on so many interesting topics. I would not have had this many
opportunities anywhere else. I am looking forward for what we can do together.

My biggest thanks have to go to my partner Lei, who was able to cope with me
over time and distance. I am extremely lucky to have you by my side. The pandemic
kept us apart for over two years, but we somehow managed to get out of it even
stronger. There are still plenty of challenges ahead, but I am looking forward to how
we can shape our future. Beyond the personal dimension, you have been the best
listener, and given a number of advice that have shaped different parts of this thesis
in both form and substance.

This journey would have never been the same without the increasing number of
colleagues and friends that have joined our research group over the past years. My
thanks go to Qingqing, who has been part of the evolution of the group and has been
a great colleague and a better friend during this journey. Xianjia is an irreplaceable
friend, thanks to you and Yuki for all the adventures together; you are now also a
key person in our lab. Thank you Paola and Salma for all the fun both in and out of
work. And thank you to everyone else that joined me in this journey and has helped
build a great team at TIERS: Farhad, Sahar, Daniel, Marius, Jiagiang and Iacopo. I
cannot forget those that have been there earlier: Tuan, without whom the first year in
Turku would have been very different, Sebastian, Anum, Victor, Reza, and Maxi; and
the master students that I have had the pleasure to supervise or work closely with:
Henrique, Carmen, Cassandra, Yuhong, Shule, Ha Sier, Phuoc, Eetu and Myrthe. 1
cannot leave out my colleagues Jani and Rameez, thank you for all those coffe times
together and the board game evenings with the most extravagant deliberations.

I also want to thank the collaborators that have helped and guided me, and with
whom I have had the pleasure to delve into interesting technical and personal dis-
cussions. My thanks go to Jenni Raitoharju, David Hétsbacka, Wenshuai Zhao, Fab-
rizio Schiano, Eduardo Castellé Ferrer, Matti Himéldinen, Kostantin Mikhaylov and
Juha Réning. I would also like to mention and thank my research director and close
colleagues in Turku: Hanu Tenhunen, Juha Plosila, Jukka Heikkonen, Paavo and
Hashem. Special thanks go to Harry Edelman for the countless hours of joint work,

Vi

jokes, travels, and definitely some of the most interesting conversations.

While my doctoral research has been in Finland, this journey started with my
master studies in Fudan University, in China, where I have continued to visit when-
ever it has been possible. 1 would like to thank Zhuo, Alexa and Lirong for their
support during this time.

I cannot leave out of these acknowledgments the thesis reviewers and pre-examiners,
who have provided valuable advice and suggestions on how to improve this thesis.
My thanks go to Lecturer Simon Watson and Professor Raivo Sell for their thorough
reviews and comments. I also would like to mention that this research has been sup-
ported by the University of Turku Graduate School, by the Nokia Foundation and by
the Finnish Foundation for Technology Promotion (TES).

I would like to close this with words for my family. My parents Paula and Victor
and my sister Laura have always been by my side and I would be nowhere near
where I am without their support and encouragement. The last few years have kept
us farther away from each other, but you kept supporting me, believing in me and
always shaping my path forward.

Turku, November 23rd, 2022
Jorge Peria Queralta

JORGE PENA QUERALTA

Jorge Pefia Queralta received two B.Sc. degrees in mathe-
matics and physics engineering from UPC BarcelonaTech,
Spain, in 2016, a M.Sc. (Tech.) degree in Information and
Communication Science and Technology from the Univer-
sity of Turku, Finland, and a M. Eng. degree in Electron-
ics and Communication Engineering from Fudan Univer-
s sity, China, in 2018. Since 2018, he has been a researcher
P& at the Turku Intelligent Embedded and Robotic Systems
(TIERS) Lab, Faculty of Technology, University of Turku,
and a doctoral candidate since 2019. His research interests
include multi-robot systems, collaborative autonomy, dis-
tributed perception, aerial robotics, and edge computing.

Vii

Table of Contents

Acknowledgements L. Vi
Tableof Contents viii
Abbreviations Xiii
List of Original Publications XV

1 Introduction 1
1.1 Motivation and objectives, 3

1.2 Multi-robot coordination algorithms 5

1.2.1 Multi-robot task allocation 6

1.2.2 Area coverage and path planning 6

1.2.3 Planning for different robots (UXVs) 8

1.2.4 Multi-robot path planning 10

1.2.5 Planning in heterogeneous multi-robot systems . . . 11

1.2.6 Sensor fusion and multi-robot perception 11

1.2.7 Sharedautonomy 13

1.2.8 Communication 15

1.2.9 Localization in GNSS-denied environments 16

1.3 Multi-robot systems for searchandrescue 17
1.4 Terminology 19
1.5 Contributions 20
1.6 Thesis organization 21
2 Multi-robot systems in the edge-cloud continuum 24
2.1 Reconfigurable swarm architecture 24
2.1.1 Swarm robotics and multi-agent systems in the loT 24

2.1.2 Models for reconfigurable swarms 27

2.1.3 Architecturallayers 30

2.1.4 Reconfiguration processes in a drone swarm 33
2.1.5 Architecture summary 35

2.2 Use case: offloading visual odometry tothe edge 35

viii

TABLE OF CONTENTS

221 CloudSLAM 37

2.2.2 Monocular visual-inertial odometry 38

2.2.3 Experimentalanalysis 38

224 Remarks 42

2.3 Use case: offloading lidar odometry with FPGAs 43
2.3.1 Initial implementation and analysis 43

2.3.2 FPGAimplementation 44

2.3.3 FPGA resource utilization 44

234 Remarks 44

2.4 Summary and conclusions L. 45
3 DLTs for distributed robotic systems 46
3.1 Consensus mechanisms in blockchains 46
311 Consensus 46

3.1.2 Smartcontracts 52

313 Sharding 53

3.1.4 Scalability 54

3.2 Blockchain-based services at the MEC layer 56
3.2.1 Multi-Access edge computing and network slicing . 58

3.2.2 Previousworks, 58

3.2.3 Managing MEC with permissioned blockchains . . . 59

3.2.4 Distributed robotic systems 59

3.3 MEC for autonomous robots in smart cities 61
3.3.1 Provision of HD maps inrealtime. 61

3.3.2 Online update oflocalHD maps 61

3.3.3 Distributed reinforcement learning 63
3.3.4 Offloading services 63

3.3.5 Securityconcerns 64

3.4 Consensus in swarms with blockchain technology 65
3.4.1 Blockchain-powered collaboration 68

3.4.2 PoW for online estimation of computational resources 72

3.4.3 Data evaluation - proof of quality 74

3.4.4 Peer-to-peer data sharing scheme 75

3.5 Initial assessment of a blockchain solution 77
351 PoWmetrics 77

3.5.2 Datasharingscheme 78

3.5.3 Initial implementation, 80

3.6 Discussion. e 82
3.6.1 Challenges 83

3.6.2 Opportunities 85

3.7 Summary andconclusions 85

Jorge Pefa Queralta

4 Securing single- and multi-robot missions 86
4.1 Premise and motivation 86
411 Novelty 88

41.2 Researchquestions. 90

413 Contributions. L. 91

4.1.4 Chapterorganization 92

4.2 Background andrelatedworks 92
421 Securityinrobotics 92
4.2.2 Indoor mobile navigation 93

4.2.3 Researchgapandnovelty 95

4.3 Encoded instruction graphs framework 96
4.3.1 Encoding robotic instructions 96
4.3.2 Validation modalities 97

4.4 Use case: encoded navigationgraph 102
4.41 Encoded graph definition 104

4.4.2 Deployment and navigation 106

4.4.3 Landmark-based localization 106

4.5 Navigation graphs: methodology 107
451 Simulation environment 108

4.5.2 Real-robot experimental settings 110

4583 Featurehashing 111

4.6 Simulation and experimentalresults 112
46.1 Metrics 112

4.6.2 Single-robot simulationresults. 113
4.6.3 Multi-robot exploration simulationresults 115
4.6.4 Experimentalresults 115

4.7 Summary and conclusions 116
471 Chaptersummary 116

4.7.2 Viability andusability 119

4.7.3 Trade-offs and security considerations 119

4.7.4 Validationofsensordata 120

4.7.5 Secure and trustable multi-robot systems 120

5 Localization 122
5.1 UWB-based localization 122
5.2 Previousworks 125
5.21 Formationcontrol 127

5.2.2 Multi-robotsystems, 127

5.2.3 Distributed estate estimation. 128

5.2.4 Contributions. L. 128

5.3 Characterization of UWB localization 129

TABLE OF CONTENTS

5.3.1 UWB characterization and existing datasets 130

53.2 TIERSUWBdataset 133

5.3.3 Dataset analysis, experimentation and results . . . 135
5.3.4 Autopositioningofanchors 141

5.3.5 Characterization of UWB localization accuracy . . . 142

5.3.6 Remarksonthe UWBdataset. 142

5.4 Cooperative localization 148
5.4.1 Cooperative UWB-based localization 149

5.4.2 Multi-robotsystem 150

5.4.3 Experimentalsettings. 151

5.4.4 Experimentalresults 151

5.5 Summary and conclusions 154
6 Spatial Coordination in Multi-Robot Systems 155
6.1 Index-free, communication-free formation control 156
6.1.1 Formation definition 156

6.1.2 Controlinputs 160

6.1.3 Numericalanalysis 162

6.1.4 Testinginalab environment 165

6.1.5 Discussion on index-free formation control 167

6.2 Progressive formationcontrol 169
6.2.1 Problem Formulation 171

6.2.2 Progressive Position Assignment Algorithm 174

6.2.3 Controlinputs 177

6.2.4 Pointsimulations 180

6.2.5 3D simulationswithROS 183

6.2.6 Gazebo simulationresults 184

6.27 Remarks 186

6.3 Summary and conclusions 186
7 CollaborativeSensing 189
7.1 Context and contributions, .. 189
7.1.1 Collaborative scene reconstruction 193

7.1.2 Chapter contribution 193

7.2 Background 194
7.3 Collaborative scene reconstruction 197
7.4 Methodology 198
7.5 Experimentalresults 200
7.6 Summary and conclusions 206
8 Concludingremarks 207

Jorge Pefa Queralta

8.1 Summary and contributions 207

8.2 Future directions and open research questions 208

8.2.1 Robots in the edge and DLT integrations 209

8.2.2 UWB-based localization and collaborative sensing . 210

8.2.3 Multi-robot systems inthewild 210

List of References 212

Xii

Abbreviations

Al Artificial intelligence

AloT Al in the internet of things

ASRE Application-specific resource ensemble
BVLOS Beyond visual line of sight

CNN Convolutional neural network
DAG Directed acyclic graph

DDS Data distribution service

DL Deep learning

DLT Distributed ledger technology
DMTSP Dubins traveling salesman problem
DMTSPN Dubins traveling salesman problem with neighborhoods
DRL Deep reinforcement learning

EKF Extended Kalman filter

EVM Ethereum virtual machine

FMU Flight management unit

FoV Field of view

GNSS Global navigation satellite system
GPS Global positioning system

FPS Frames per second

FPGA Field programmable gate array
IMU Inertial measurement unit

IPP Informative path planning

IoT Internet of things

LIO Lidar-inertial odometry

LOS Line-of-sight

LPWAN Low-power wide-area network
MANET Mobile ad-hoc network

MAS Multi-agent system

MAV Micro-aerial vehicle

MEC Multi-access edge computing (alt. mobile edge computing)
ML Machine learning

MOCAP Motion capture

MPC Model predictive control

Xiii

Jorge Pefa Queralta

MRS
MTSP
NBV
NDT
NLOS
PBFT
PoA
PoS
PoW
QoS
QoR
QR
RNA
RGB-D
RF

RL
RM
ROS
RSSI
RTLS
SAR
SDPG
StM
SIFT
SLAM
SwaaS
TDoA
ToA
ToF
UART
UAV
UGv
UuSv
uuv
UWB
VHDL
VHSIC
VIO
VLOS
VO
VSLAM
VTOL

Xiv

Multi-robot system

Multiple traveling salesman problem
Next best view

Normal distribution transform
Non-line-of-sight

Practical byzantine fault tolerance
Proof of authority

Proof of stake

Proof of work

Quality of service

Quality of results

Quick response (code)

Radio access network

RGB and depth

Radio frequency

Reinforcement learning

Resource manager

Robot operating system

Received signal strength indicator
Real-time localization system
Search and rescue

Spiral directed path graph
Structure from motion

Scale invariant feature transform
Simultaneous localization and mapping
Swarm-as-a-service
Time-difference of arrival

Time of arrival

Time of flight

Universal asynchronous receiver-transmitter
Unmanned aerial vehicle
Unmanned ground vehicle
Unmanned surface vehicle
Unmanned underwater vehicle
Ultra-wideband

VHSIC hardware description language
Very high speed integrated circuit
Visual-inertial odometry

Visual line of sight

Visual odometry

Visual SLAM

Vertical take-off and landing

List of Original Publications

This dissertation is based on the following original publications:

I Jorge Peiia Queralta, Li Qingqing, Eduardo Castell6 Ferrer, Tomi
Westerlund, ”Secure Encoded Instruction Graphs for End-to-End Data
Validation in Autonomous Robots”, IEEE Internet of Things Journal,
IEEE, 2022.

I Jorge Pefia Queralta, Li Qingqing, Fabrizio Schiano, Tomi Wester-
lund, ”VIO-UWB-Based Collaborative Localization and Dense Scene
Reconstruction within Heterogeneous Multi-Robot Systems”, IEEE
International Conference on Advanced Robotics and Mechatronics,
IEEE, 2022.

11T Jorge Peia Queralta, Carmen Martinez Almansa, Fabrizio Schiano,
Dario Floreano, Tomi Westerlund, "UWB-based System for UAV Lo-
calization in GNSS-Denied Environments: Characterization and Da-
taset”, IEEE/ RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2020.

v Jorge Pefia Queralta, Li Qingqging, Tuan Nguyen Gia, Zhuo Zou,
Hannu Tenhunen and Tomi Westerlund, “’Distributed Progressive For-
mation Control with One-Way Communication for Multi-Agent Sys-
tems”, IEEE Symposium Series on Computational Intelligence, IEEE,
2019.

\Y Jorge Peiia Queralta, Cassandra McCord, Tuan Nguyen Gia, Hannu
Tenhunen and Tomi Westerlund, ”Communication-free and Index-free
Distributed Formation Control Algorithm for Multi-robot Systems”,
Procedia Computer Science, Elsevier, 2019. Presented at the 10th In-
ternational Conference on Ambient Systems, Networks and Technolo-
gies (ANT).

VI Cassandra McCord, Jorge Peiia Queralta, Tuan Nguyen Gia and
Tomi Westerlund, ”Distributed Progressive Formation Control for Multi-
Agent Systems: 2D and 3D deployment of UAVs in ROS/Gazebo with

XV

Jorge Pefa Queralta

VII

VIII

IX

XI

XII

RotorS”, European Conference on Mobile Robots (ECMR), IEEE,
2019.

Jorge Peiia Queralta, Li Qingqing, Tuan Nguyen Gia, Hong-Linh
Truong, Tomi Westerlund, ”End-to-End Design for Self-Reconfigurable
Heterogeneous Robotic Swarms”, International Conference on Dis-
tributed Computing in Sensor Systems (DCOSS), IEEE, 2020.

Jorge Peiia Queralta, Li Qingqing, Zhuo Zou, and Tomi Westerlund,
“Enhancing Autonomy with Blockchain and Multi-Access Edge Com-
puting in Distributed Robotic Systems”, The Fifth International Con-
ference on Fog and Mobile Edge Computing (FMEC 2020), IEEE,
2020.

Jorge Peiia Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor
Kathan Sarker, Tuan Nguyen Gia, Hannu Tenhunen, Moncef Gab-
bouj, Jenni Raitoharju, Tomi Westerlund, ”Collaborative Multi-Robot
Search and Rescue: Planning, Coordination, Perception and Active
Vision”, IEEE Access, IEEE, 2020.

Yu Xianjia, Li Qingqing, Jorge Peiia Queralta, Jukka Heikkonen,
Tomi Westerlund, “Cooperative UWB-Based Localization for Out-
doors Positioning and Navigation of UAVs aided by Ground Robots”,
IEEE International Conference on Autonomous Systems (ICAS), IEEE,
2021.

Li Qingqing, Jorge Pefia Queralta, Tuan Nguyen Gia, Tomi Wester-
lund, ”Offloading Monocular Visual Odometry with Edge Computing:
Optimizing Image Quality in Multi-Robot Systems”, The 5th Interna-
tional Conference on Systems, Control and Communications, ACM,
2019.

Jorge Peiia Queralta and Tomi Westerlund, ’Blockchain for Mobile
Edge Computing: Consensus Mechanisms and Scalability”, Mobile
Edge Computing (Book Chapter), Springer (2021).

The following related publications are not directly included in this thesis:

XIII

XVi

Jorge Pefia Queralta, Tuan Nguyen Gia, Hannu Tenhunen and Tomi
Westerlund, ”Collaborative Mapping with IoE-based Heterogeneous
Vehicles for Enhanced Situational Awareness”, IEEE Sensors Appli-
cations Symposium (SAS), IEEE, 2019.

TABLE OF CONTENTS

X1V Jorge Peiia Queralta, Tuan Nguyen Gia, Zhuo Zou, Hannu Ten-
hunen, Tomi Westerlund, ”Comparative Study of LPWAN Technolo-
gies on Unlicensed Bands for M2M Communication in the IoT: be-
yond LoRa and LoRaWAN”, Procedia Computer Science, Elsevier,
2019. Presented at the 14th International Conference on Future Net-
works and Communications (FNC).

XV Jorge Pena Queralta, Tuan Nguyen Gia, Hannu Tenhunen and Tomi
Westerlund, "Edge-Al in LoRa-based Health Monitoring: Fall Detec-
tion System with Fog Computing and LSTM Recurrent Neural Net-
works”, 42nd International Conference on Telecommunications and
Signal Processing (TSP), IEEE, 2019.

XVI Jorge Peiia Queralta, Fu Yuhong, Lassi Salomaa, Li Qingqing, Tuan
Nguyen Gia, Zhuo Zou, Hannu Tenhunen, and Tomi Westerlund, "FPGA-
based Architecture for a Low-Cost 3D Lidar Design and Implementa-
tion from Multiple Rotating 2D Lidars with ROS”, Proceedings of the
IEEE Sensors Conference, IEEE, 2019.

XVII Tuan Nguyen Gia, Jorge Pefia Queralta, Tomi Westerlund, “Exploit-
ing LoRa, edge, and fog computing for traffic monitoring in smart
cities”, LPWAN Technologies for IoT and M2M Applications (book
chapter), Elsevier, 2020.

XVII Li Qingqing, Jorge Pefia Queralta, Tuan Nguyen Gia, Zhuo Zou,
Tomi Westerlund, ”Multi Sensor Fusion for Navigation and Mapping
in Autonomous Vehicles: Accurate Localization in Urban Environ-
ments”, Unmanned Systems (2020). Presented at the 9th IEEE In-
ternational Conference on Cybernetics and Intelligent Systems and
the 9th IEEE International Conference on Robotics, Automation and
Mechatronics (CIS-RAM).

XIX Carmen Martinez Almansa, Wang Shule, Jorge Peiia Queralta, Tomi
Westerlund, ”Autocalibration of a Mobile UWB Localization Sys-
tem for Ad-Hoc Multi-Robot Deployments in GNSS-Denied Environ-
ments”, International Conference on Localization and GNSS, CEUR
WS Proceedings, 2020.

XX Anum Nawaz, Jorge Pefia Queralta, Jixin Guan, Muhammad Awais,
Tuan Nguyen Gia, Ali Kashif, Haibin Kan, Tomi Westerlund, "Edge
Computing to Secure IoT Data Ownership and Trade with the Ethe-
reum Blockchain”, Sensors, MDPI, 2020.

XVii

Jorge Pefa Queralta

XXI

XXII

XXIII

XXIV

XXV

XXVI

xviii

Wang Shule, Carmen Martinez Almansa, Jorge Pefia Queralta, Zhuo
Zou, Tomi Westerlund, "UWB-Based Localization for Multi-UAV Sys-
tems and Collaborative Heterogeneous Multi-Robot Systems: a Sur-
vey”, Procedia Computer Science, Elsevier, 2020. Presented at the
15th International Conference on Future Networks and Communica-
tions.

Wenshuai Zhao, Jorge Pefia Queralta, Li Qingqing, Tomi Wester-
lund, ”Towards Closing the Sim-to-Real Gap in Collaborative Multi-
Robot Deep Reinforcement Learning”, Sth International Conference
on Robotics and Automation Engineering, IEEE, 2020.

Wenshuai Zhao, Jorge Pefia Queralta, Li Qingqing, Tomi Wester-
lund, “Ubiquitous Distributed Deep Reinforcement Learning at the
Edge: Analyzing Byzantine Agents in Discrete Action Spaces”, The
11th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN), Elsevier, 2020.

Wenshuai Zhao, Jorge Peia Queralta, Tomi Westerlund, Sim-to-
Real Transfer in Deep Reinforcement Learning for Robotics: a Sur-
vey”, IEEE Symposium Series on Computational Intelligence, IEEE,
2020.

Li Qingqing, Jussi Taipalmaa, Jorge Pefia Queralta, Tuan Nguyen
Gia, Moncef Gabbouj, Hannu Tenhunen, Jenni Raitoharju, Tomi West-
erlund, “Towards Active Vision with UAVs in Marine Search and Res-
cue: Analyzing Human Detection at Variable Altitudes”, IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics (SSRR),
IEEE, 2020.

Yu Xianjia, Jorge Pefia Queralta, Jukka Heikkonen, Tomi Wester-
lund, ”Federated Learning in Robotic and Autonomous Systems”’, Pro-
cedia Computer Science, Elsevier, 2021. Presented at the 18th In-
ternational Conference on Mobile Systems and Pervasive Computing
(MobiSPC).

1 Introduction

The robotics field has seen unprecedented evolution over the past decade, with robots
becoming increasingly intelligent [27]. This has happened in par with the boom of
deep learning and Al in general [28; 29]. Indeed, ubiquitous autonomous entities
are set to be the centerpiece behind the dynamic smart cities of the future, bringing
novel solutions to mobility, transportation and service creation [30]. For many, the
robotics revolution has started. Autonomous robots are already becoming an impor-
tant facet of the Industrial Internet of Things (IloT), with collaborative robots and
mobile robotic solutions powering more dynamic, flexible and reconfigurable indus-
trial production lines [31; 32; 33]. At the same time, robots are no longer isolated
entities that operate a very concrete task, but are more intelligent and programmable,
more connected, and more collaborative than ever before. Multi-robot systems are
being deployed across an ample range of domains, from factory automation in the
logistics sector to the management and control of hazardous materials, as well as in
multiple civilian domains [9]. Monitoring and inspection in multiple industrial set-
tings are growing areas of application for both ground and aerial robots [34]. Despite
the rapid advances in the robotics field in recent years, and the shift from robot units
to robot fleets, these increasingly autonomous entities are often managed individu-
ally, and mostly cooperate within homogeneous and well-defined teams. Challenges
also arise when accounting for constrained connectivity and limited computing re-
sources for intensive deep learning (DL) algorithms in many scenarios [27].

This thesis explores different aspects of the design of multi-robot systems from
a system-level and algorithmic perspective. The literature in this area has been tradi-
tionally focused towards autonomous ground vehicles or unmanned ground vehicles
(UGVs), with applications mainly in the industrial domains. However, recent years
have seen impactful solutions and multi-robot systems moving out of the lab formed
by aerial robots or unmanned aerial vehicles (UAVs) [35] and heterogeneous robot
teams [36]. A selection of robot swarm platforms relevant within a research and
education context is shown in Fig. 1.

A recurrent use case for robotics research, and multi-robot systems (MRS) re-
search in particular, is search and rescue (SAR) robotics, among other civil applica-
tion. The utilization of multi-robot systems within civil applications presents addi-
tional challenges owing to the interaction with humans and their deployment in po-
tentially unknown environments [37; 38; 39]. Among civil applications, search and

1

Jorge Pefa Queralta

'SO1)0qOJ ULIBMS PUE SW)SAS J0qOI-N[NW 0) PAB[AI Yoreasal ur pasn A[[esrd£) sutioperd o130qo1 JuaIolIp Jo uonensn[[*J Insig

wa)sAs Aen siwy/siw-njo/wod gnuib//isdpy
walshs AVN SHIN (P)

2ond-a/dyd-xapui/oop/wod-o1uo3obmmm//:sdny
Z%nd-3 (9)

esawed

UOISUIIXd JOSUdS
Buide)-piemioy

Buueaq pue abues

Eo——

SJaAIDSURA Y|
J33ndwod
Xnur] pappaquia

uoISUBIXd eJAWED
|euondaJIp-luwo

M3IA ,09€
sapiAoid Jey) Jouiw

/1L-g-91Azeio/s1onpoud/or-azeldnq mmmy/:sdiy
oljjAze1s sazeidlig (e)

"(2202) vseSWaes ‘2 040y “19S “PIM B} Ul S1oqol BUIAl 0101w Jo WIEMS
‘089 "4 'NX "D '0BD "A ‘N 'H ‘BuBA "L ‘BUBM "D 'I1°H ‘08D "A ‘BUBM "Z ‘USM "X NOyZ X
:ul paysiignd ‘yiun wiems suoip-oIolN (q)

(odoiny yxd)
uun 431003 Y6YI4

[s1010W " (0001 M@) gMA

(0€vQ 3suas|eay)
153 eawe)

(XN Ja1ex VIAIAN)

121ndwo) p1eoquo

Introduction

rescue operations present a key scenario where autonomous robots have the potential
to save lives by enabling faster response time [40; 41], supporting in hazardous en-
vironments [42; 43; 44], or providing real-time mapping and monitoring of the area
where an incident has occurred [45; 46], among other possibilities. A significant part
of the research in the thesis has been carried out within the umbrella of SAR robotics
projects.

When discussing recent advances in robotic intelligence, it is worth mention-
ing a set of major events featuring state-of-the-art autonomous robotics solutions:
the DARPA challenges, organized by the U.S. Defense Advanced Research Projects
Agency (DARPA). Humanoid robots [47] and human-robot interaction and coordi-
nation strategies [48] for SAR operations were presented in the 2013-2015 DARPA
Robotics Challenge. The DARPA Subterranean (SubT) Challenge, running in 2018-
2021, shifted the focus towards underground MRS for SAR operations, with ground
robots and UAVs collaborating in the tasks [49]. This challenge has demonstrated the
versatility and significant increase of flexibility of heterogenous MRS [50], with ro-
bust UAV flight in inherently constrained environments [51], and ground robots with
different locomotion modalities able of navigating complex environments and long-
term autonomy [52]. In 2020, due to the Covid-19 pandemic, the challenge moved
to a fully virtual edition with realistic simulation-based environments [53]. The win-
ning team during the Final Event, CERBERUS, has presented their approach in [36].
The system deployed by the team was highly heterogeneous, with legged robots,
different types of multi-rotor aerial robots and wheeled robots.

1.1 Motivation and objectives

The objective of this thesis is to advance in practical and theoretical aspects of multi-
robot systems. To that end, the thesis explores multiple aspects involved in the
design of multi-robot systems. In the different areas, the focus is consistently on
robustness, reconfigurability, or in enabling operations in more complex situations
(e.g., localization methods and collaborative sensing approaches for GNSS-denied
environments, coordination with minimal to no communication, or architectures for
self-reconfiguration).

The following are the key research questions that this thesis aims to answer
throughout the different chapters, from more general to more specific concepts:

1. From a high-level architectural point of view, we study how can large-scale
multi-robot systems or robot swarms leverage the increasing levels of con-
nectivity present in today’s hardware and software systems. To this end, we
discuss what is the role that cloud and edge computing can play in building
towards more resilient robotic systems. In addition to these, we also briefly
explore what is the potential of specialized hardware for accelerating work-
loads while enabling deterministic and real-time applications.

Jorge Pefa Queralta

2. With distributed ledger technologies (DLTs) identified as a promising platform
for distributed decision-making and management of robotic systems from edge
to cloud, we then move the focus towards exploring their potential. From tra-
ditional blockchains to newer, more scalable, and parallelizable solutions, dif-
ferent consensus algorithms naturally suit different use cases. From a general
point of view, we delve into how to leverage DLT's for designing a framework
for trustable collaboration in heterogeneous multi-robot systems. Connect-
ing to the previous questions, we can also ask how to go beyond distributed
resource orchestration at the edge towards seamless collaboration with dis-
tributed role allocation, multi-modal sensor fusion at the edge and collabora-
tive sensing. A key concept here is also the definition of the concept of trust
between autonomous agents, whether they are robots or other connected sys-
tems (e.g., connected infrastructure and sensors in the I1oT).

3. While DLTs enable secure and trustable collaboration, mainly from the per-
spective of a networked system, they do not a priori provide an out-of-the-box
methodology for securing the interaction of robots with their environment.
Partly inspired by some of the mechanisms utilized in DLTs, we ask whether
cryptographic hashes can be effectively utilized to encode instructions for au-
tonomous robots in a way that they serve to validate their correct operation
or interaction with their environment. This covers the definition in which ex-
pected sensor inputs can be encoded in a way that they remain reproducible for
robots under a predefined level of uncertainty once they are deployed to their
missions. We also explore the potential of such an approach for managing
multi-robot cooperation in a secure manner.

4. The first part of the thesis focuses on high-level design, while the latter part
deals with specific algorithms. While the open questions in the topics intro-
duced above are very wide, the last chapters shift the focus to specific algorith-
mic design problems. This starts with the problem of localization. To achieve
robust spatial coordination in a multi-robot system, and to be able to deploy
such a system in GNSS-denied environments, we study what is the potential of
wireless ranging based on ultra-wideband (UWB) transmissions for global or
relative positioning. We look into whether out-of-the-box systems are suitable
for agile robots with low-latency control requirements such as aerial drones,
and whether ground-to-air relative positioning between different robots outper-
forms GNSS solutions in urban environments where GNSS signals degrade.

5. We then explore what type of spatial coordination, or formation control, al-
gorithms can be robust to loss of most or all communication. To this end,
we study two different systems. First, we analyze whether communication-
free and anonymous spatial coordination is possible based on mutual sensing

Introduction

only, and what are the limitations. Second, we ask whether more generalizable
spatial distributions can be achieved introducing one-way communication but
only awareness of other robots within one’s field-of-view.

6. Finally, we seek to combine graph theory typically applied to formation con-
trol algorithms, connectivity and rigidity analysis, with UWB relative local-
ization for collaborative sensing in heterogeneous multi-robot systems. To this
end, we explore whether path planning for a collaborative scene reconstruc-
tion mission can be defined in a way that ground robots maintain line-of-sight
with aerial robots assuming limited field-of-view, which would lead to more
efficient collaborative autonomy. We then analyze whether the relative local-
ization systems developed during this thesis can be used for combining data
from different robots and different sensors to build a three-dimensional map of
the environment and, if possible, without further optimization.

1.2 Multi-robot coordination algorithms

This section, adapted from [9], introduces basic concepts related to algorithmic de-
sign for multi-robot system from a coordination and planning perspective. We de-
scribe the main algorithms required for multi-robot coordination and planning in
collaborative applications. These are key enablers of MRS capabilities in terms of
exploration and navigation over large areas. We discuss this mainly from the point
of view of cooperative multi-robot systems. The literature in multi-robot cooper-
ative exploration or collaborative sensing contains mostly generic approaches that
consider multiple applications. The main problems discussed in this section are the
following:

- Multi-robot task allocation: distribution of tasks and objectives among the robots
(e.g., areas to be searched, or positions to be occupied to ensure connectivity among
the robots and with the base station)

- Path planning and area coverage: global path planning covers area coverage (gen-
eration of paths to entirely analyze a given area) and area partition (dividing the
area between multiple robots). Local planning and deals mainly with obstacle and
collision avoidance, incorporating robot dynamics.

- Area exploration: coverage and mapping algorithms (or discover/ search for spe-
cific objects) in potentially unknown environments.

- Centralized multi-robot planning: decision-making on the actions of multiple robots
by either gathering and processing data in a single node, from which decisions are
distributed to others, or by achieving consensus through communication (often re-
quiring agents to be aware of all others, and stable communication).

- Distributed multi-robot planning: algorithms enabling agents to make independent
decisions individually or in subsets based only on their own data or data shared by

5

Jorge Pefa Queralta

their neighbors. These do not necessarily need agents to be aware of the existence or
state of all other agents in the system.

1.2.1 Multi-robot task allocation

A comparative study on task allocation algorithms for multi-robot exploration was
carried out by Faigl et al. in [54], considering five distinct strategies: greedy as-
signment, iterative assignment, Hungarian assignment, multiple traveling salesman
assignment, and MinPos. However, most of these approaches are often centralized
from the decision-making point of view, even if they are implemented in a distributed
manner. Others, such as MinPos, shift between the two modalities depending on the
availability of communication. Successive works have been presenting more decen-
tralized methods. Decentralized task allocation algorithms for autonomous robots
are very often based on market-based approaches and auction mechanisms to achieve
consensus among the agents [55; 56; 57; 58]. Both of this approaches have been ex-
tensively studied for the past two decades within the multi-robot and multi-agent
systems communities [59; 60]. Bio-inspired algorithms have also been widely stud-
ied within the multi-robot and swarm robotics domains. For instance, in [61], Kurdi
et al. present a task allocation algorithm for multi-UAV search and rescue systems
inspired by locust insects. Active perception techniques have also been incorporated
in multi-robot planning algorithms in existing works [62; 63].

Through this thesis, we explore task allocation from a general perspective when
we study the application of distributed ledger technologies for achieving consensus
within multi-robot systems. In terms of role allocation from a spatial coordination
perspective, we also study different formation control algorithms, which are then put
in the context of the relevant literature in the corresponding chapter.

1.2.2 Area coverage and path planning

A common problem that multi-robot systems solve is mapping or inspection of a
given area. For this purpose, path planning algorithms can be part of area cover-
age algorithms or implemented separately for robots to cover their assigned areas
individually. In any case, when area coverage algorithms consider path planning,
it is often from a global point of view, leaving the local planning to the individual
agents. A detailed description of path planning algorithms including approaches of
linear programming, control theory, multi-objective optimization models, probabilis-
tic models, and meta-heuristic models for different types of UAVs is available in [64].
While some of these algorithms are generic and only take into account the origin and
objective position, together with obstacle positions, others also consider the dynam-
ics of the vehicles and constraints that these naturally impose in local curvatures,
such as Dubin curves [64].

6

Introduction

Area coverage and path planning algorithms take into account mainly the shape
of the objective area to be surveyed. Nonetheless, a number of other variables are
also considered in more complex algorithms, such as energy consumption, range of
communication and bandwidth, environmental conditions, or the probability of fail-
ure. This data is not necessarily available a priori, and therefore it is also in the
interest of the robots to collect data affecting the planning outcome while operating.
The problem of maximizing the utility of data collection is called the informative
path planning (IPP) problem [65]. IPP approaches have been shown to outperform
more traditional planning algorithms such as greedy algorithms and genetic algo-
rithms [66].

The specific dynamics and capabilities of the robots being used can also be uti-
lized to optimize the performance of the area coverage, for example when comparing
the maneuverability of quadrotors and fixed-wing UAVs. Cabreira et al. have pre-
sented algorithms for coverage path planning with UAVs [67].

Area coverage algorithms can be broadly classified in terms of the assumptions
they make on the geometry of the area to be covered. The most basic approaches con-
sider only convex and joint areas [68], for which paths can be efficiently generated
based on area decomposition algorithms [69; 70].

Recent works have considered more complex environments. For instance, in [71],
Xie et al. presented a path planning algorithm for UAVs covering disjoint convex
regions. The authors’ method considered an integration of both coverage path plan-
ning and the traveling salesman problem. In order to account for scalability and
real-time execution, two approaches were presented: a near-optimal solution based
on dynamic programming, and a heuristic approach able to efficiently generate high-
quality paths, both tested under simulation environments. Also aiming at disjoint but
convex areas, Vazquez et al. proposed a similar method that separates the optimiza-
tion of the order in which the different areas were visited and the path generation
for each of them [72]. Both of this cases, however, provide solutions for individual
UAVs.

In the presence of known obstacles inside the objective area, the search area
can be considered non-convex [73]. However, non-convex approaches can often be
applied to more general environments. More realistic scenarios often require the
exploration of disjoint areas [72].

The problem of disjoint area search can be formulated as a multi-objective opti-
mization problem, where each of the joint subareas can be considered a single objec-
tive in the path planning object. This leads to the differentiation between multi-agent
single-objective planning and multi-agent multi-objective optimization and planning.
The former case is not necessarily a subset of the latter, as it also includes use cases
such as collaborative transportation, applicable in emergency scenarios, or can pro-
vide higher degrees of fault-tolerance and robustness against the loss of agents. The
latter case, nonetheless, is more significant within the scope of this section as multi-

7

Jorge Pefa Queralta

agent multi-objective optimization algorithms enable more efficient search in com-
plex environments with distributed systems [74; 75]. Finally, the most comprehen-
sive approaches also account for the existence of unknown environments in the areas
to be searched, with the existence of potential obstacles that are a priori unknown.
When multi-robot systems are utilized, the increased number of variables already
involved in single-agent planning increase the complexity of the optimization prob-
lems while at the same time bring new possibilities to more efficient area coverage.
For instance, energy awareness among the agents could enable robots with less oper-
ational time to survey areas near the deployment point, while other robots can be put
in charge of farther zones. The communication system being utilized and strategies
for connectivity maintenance play a more important role in multi-robot systems. If
the algorithms are implemented in a distributed manner or the robots rely on online
path planning, then the paths themselves must ensure robust connectivity enabling
proper operation of the system. Security within the communication, while also im-
portant in the single-agent case, plays again a more critical role when multiple robots
communicate among themselves in order to take cooperative decisions in real-time.
Furthermore, the optimization problems upon which multi-robot area coverage al-
gorithms build are known to belong to the NP-hard class of non-deterministic poly-
nomial time algorithms [76]. Therefore, part of the existing research has focused
towards probabilistic approaches.

1.2.3 Planning for different robots (UXVs)

Mobile robots operating on different mediums necessarily have different constraints
and a variable number of degrees of freedom. For local path planning, a key aspect
to consider when designing control systems is the holonomic nature of the robot. In
a holonomic robot, the number of controllable degrees of freedom is equal to the
number of degrees of freedom defining the robot’s state. In practice, most robots
are non-holonomic, with some having significant limitations to their local motion
such as fixed-wing UAVs [77], or unmanned surface vessels (USVs) [78]. However,
quadrotor UAVs, which have gained considerable momentum owing to their flexibil-
ity and relatively simple control, can be considered holonomic [79]. Ground robots
equipped with omniwheel mechanisms and able of omnidirectional motion can be
also considered holonomic if they operate on favorable surfaces [80].

Multiple works have been devoted to reviewing the different path planning strate-
gies for robots or unmanned vehicles across different mediums: aerial robots [64],
surface robots [81], underwater robots [82; 83], and ground robots for urban [84],
or wilderness [85] environments. From these works, we have summarized the main
constraints to be considered in path planning algorithms in Fig. 2.

The main limitations in robot navigation, and therefore path planning, in differ-
ent mediums can be roughly characterized by: (i) dynamic environments and move-

8

Introduction

JUQWIUOIIAUQ JTWRUA(]

93uer Sursues payrwuI|

$10q0I PAjeN)ORIAPU)
UTB1I0) UAQU()

IoJeM-pIW UT UONRZI[BIO]

UOTJEOTUNUILIOD WN-Tedy <

assaid 191epp
SMOp JojemIapu)

$10q0Yy
punoin <--
ueqin |
|
! SJUTBIISUOD)
, Suruuelqg
!
$10q0Y |
oEmPUN

"90uR)SUI 0] ‘SAS[] PUB SAV() Ul Jueuruiopaxd
9I0W SUWI093q INQ ‘SOTWRUAP ,$)0qOI 9} WOIJ SJUTENSUOD JUISYUL pue AOUaroyje ASI9Ua se yons ‘s10qol Jo sodA) JUSISIJIpP 9y} SS0Ioe
UOWWIOD ATk $30adse 95y} JO QWS “I0J JUNOIIE 0) PISU SUTRWOP JUAIJJIP UT S}0q0I snowouoine jey) syurensuod Juruuerd yjed urepy *g 2anSig

s10q0Y
QoejIng

$10q0Y
[eLIOY

> Wopaalj Jo $33139p parwir|

'>

>

|
>

YTV Ty

A

sypdop 1oyem pajrwuIy
SIUDLIND SULIBIN

somueuAp diys

QoUBUUIBW AJIATIOUUOD)
SuoneIwI| 9pmnry
Kouaroyye AS1oug
SOTWRUAD FUIM-PaXI]

Jorge Pefa Queralta

ment limitations in ground robots; (ii) energy efficiency, situational awareness, and
weather conditions in aerial robots; (iii) underactuation and environmental effects in
surface robots, with currents, winds and water depth constraints; and (iv) localization
and communication in underwater robots.

1.2.4 Multi-robot path planning

Research in the field of multi-robot path planning has been ongoing for over two
decades. An early approach to multi-robot cooperation was presented in [86] in 1995,
where the authors introduced an incremental plan-merging approach that defined a
global plan shared among the robots. A relatively simple yet effective mechanism
was utilized to maintain a consistent global plan: the robots would ask others for
the right to plan for themselves and update the global plan accordingly one by one.
This approach, while distributed, would not match the real-time needs and standards
of today, nor does it exploit parallel operations at the robots during the distributed
planning.

In [69], an early generalization of previous algorithms towards nonconvex and
nonsimply connected areas was presented, enabling deployment in more realistic
scenarios. The advances since then have been significant in multiple directions.
With the idea or providing fault-tolerant systems, in [68] the authors introduced a
reconfiguration process that would account in real-time for malfunctioning or miss-
ing agents, and adjust the paths of remaining agents accordingly. Considering the
need of inter-robot communication for aggregating and merging data, a coopera-
tive approach to multi-robot exploration that considers the range limitations of the
communication system between robots was introduced in [87]. Non-polygonal area
partitioning methods have also been proposed. Covering the topics of connectivity
maintenance and IPP, a multi-robot IPP approach to managing continuous connec-
tivity constraints appears in [88].

Existing approaches often differentiate between area coverage and area explo-
ration. In area coverage algorithms, algorithms focus on optimally planning paths
for traversing a known area, or dividing a known area among multiple agents to opti-
mize the time it takes to analyze it. Area exploration algorithms focus instead on the
coverage and mapping of potentially unknown environments. The two terms, how-
ever, are often used interchangeably in the literature. An overview and comparison
of multi-robot area exploration algorithms is available in [89].

A subset of multi-robot path planning algorithms are formation control algo-
rithms. Formation control or pattern formation algorithms are those that define spa-
tial configurations in multi-robot systems [90]. Most formation control algorithms
for multi-agent systems can be roughly classified in three categories from the point of
view of the variables that are measured and actively controlled by each of the agents:
position-based control, displacement-based control, and distance or bearing-based

10

Introduction

control [90].

1.2.5 Planning in heterogeneous multi-robot systems

Most existing approaches for multi-robot exploration or area coverage either assume
that all agents share similar operational capabilities, or that the characteristics of
the different agents are known a priori. Pre-defined optimization objectives are also
used in this thesis to plan the paths of UAVs that collaborate with UGVs in the last
chapter. In the following we point to some works introducing different coordination
approaches.

In building towards more robust and resilient multi-robot planning algorithms,
Mueke et al. introduced a system-level approach for decentralized coordination of
heterogeneous multi-robot systems [91]. The literature in this area is however scarce,
with the majority of the approaches in the literature and in international projects in-
volving a priori assignments. Indeed, in existing systems that are formed up by het-
erogeneous robots, the way in which they are meant to cooperate is often predefined.
From a general perspective, an extensive review on control strategies for collabora-
tive area coverage in heterogeneous multi-robot systems was recently presented by
Abbasi [92]. Another source of information with a detailed survey on cooperative
heterogeneous multi-robot systems is the work Rizk et al. available in [93].

1.2.6 Sensor fusion and multi-robot perception

Towards the end of this thesis, we explore the topic of multi-robot sensor fusion. We
do so from the perspective of combining relative localization with three-dimensional
pointcloud merging from different types of sensors (lidars and stereo cameras) in
different robots. However, the area of sensor fusion and multi-robot perception is an
active research topic, and thus we introduce here some key concepts.

Multi-modal information fusion aims at combining data from a multiple sources,
e.g., images and LiDAR. Information fusion techniques have been actively researched
for decades and there is a myriad of different ways to approach the problem. The ap-
proaches can be roughly divided into techniques fusing information on raw data/input
level, on feature/intermediate level, or on decision/output level [96]. An overview of
the main data fusion approaches in multi-modal scenarios is illustrated in Fig. 3.

Some of the main challenges include representation, i.e., how to represent multi-
modal data taking into account complementarity and redundancy of multiple modal-
ities, translation, i.e., how to map the data from different modalities to a joint space,
alignment, i.e., how to understand the relations of the elements of data from different
modalities, for example, which parts of the data describe the same object in an image
and in a point-cloud produced by LiDAR, fusion, i.e., how to combine the informa-
tion to form a prediction, and co-learning, i.e., how to transfer knowledge between

11

Jorge Pefa Queralta

l Sensor 1 ‘ --> ’ Sy features ‘ -
l Sensor 2 ‘ -=> ’ So features ‘ - >
Sensor N ‘ --> ’ S featuers ‘ - >

Heterogeneous
data
association

High-level
decision
making

and fusion

(a) Data integration (parallel processing of modalities)

l Sensor 1 ‘ -=> ’ S, features ‘ --> l Main source ‘ -

l Sensor 2 ‘ -=> ’ So features ‘

l Sensor N ‘ --> ’ S features ‘

|
A

Fused
Result

Fused
Result

(b) Sequential processing of modalities, from higher to lower confidence or quality sources.

l Sensor 1 ‘ --> ’ S features ‘ - >
l Sensor 2 ‘ --> ’ Sy features ‘ - >
l Sensor N ‘ -=> ’ S features ‘ -

Feature-level
data
fusion

High-level
decision
making

Fused
Result

(¢) True fusion using features (high-level features or multivariate features).

Sensor 1 -

Sensor N -

Raw /
signal-level
data
fusion

Combined
feature
extraction

High-level
decision
making

(d) True fusion with minimal reduction.

Fused
Result

Figure 3. Different multi-modal data fusion approaches: (a) parallel data integration with
high-level decision making, (b) sequential processing of modalities when different
modalities have difference confidence or quality levels, (c) true fusion with high-level
features or with multivariate features, and (d) true fusion with minimal reduction [94; 95]. In
gray, we highlight the stage in which the fusion happens.

12

Introduction

the modalities, which may be needed, for example, when one the modalities is not
properly annotated [97]. The main challenges related to multi-modal data are listed
in Table 1.

In research years, also the information fusion techniques have focused more and
more on big data and deep learning. Typical deep learning data fusion techniques
have some layers specific to each data source and the features can be then combined
before the final layers or processed separately all the way to the network output,
while the representations are coordinated through a constraint such as a similarity
distance [98; 97].

To design efficient collaboration within multi-robot systems, and to achieve col-
laborative perception or multi-robot situational awareness, there should be also data
fusion from sensors in different robots. For example, an object seen from two differ-
ent angles could be potentially recognized with a higher accuracy. The sensors car-
ried by different robots may be the same, typically cameras, or different as the pres-
ence of multiple agents makes it possible to distribute some of the sensors’ weight
between the agents, which is important especially in UAV applications. The goal
is that the perception the agents have of their environment is based on aggregating
information from multiple sources and the agents share data steadily among them-
selves or to a centralized control station (e.g., through the cloud).

The challenges described above for single-robot multi-sensor fusion systems are
further complicated by the fact that the data to be fused is located in different phys-
ical locations and the sensors are now moving with respect to each other. Some of
the challenges that need to be solved are where to perform data fusion, how to eval-
uate whether different agents are observing the same objects or not, or how to rank
observations from different agents. For many of the challenges, there are no efficient
solutions yet.

1.2.7 Shared autonomy

In multi-robot systems and robots involving complex manipulation (e.g., mobile ma-
nipulators) or with a high number of degrees of freedom, such as humanoids, the
concept of shared autonomy gains importance. Shared autonomy refers to the au-
tonomous control of the majority of degrees of freedom in a system, while designing
a control interface for human operators to control a reduced number of parameters
defining the global behavior of the system [99].

For instance, in [100] the authors describe the design principles followed in the
DARPA Robotics Challenge to give the operators of a humanoid robot enough situa-
tional awareness while simplifying the actual control of the robot via predefined task
sequences. This results in automated perception and control, avoiding catastrophic
errors due to and exceeding amount of unnecessary information overwhelming the
operator, while still enabling timely reaction and operation flexibility for unknown

13

Jorge Pefa Queralta

‘uoIsny ejep
oY 109JJ€ OSTe YSTW $90INO0S Y} JO UO WOIJ [BAISIUL SWIT} UTRIIID € I9A0 BIEP SUISSIJA "SOURISIP JUSISJJIP
18 $9[0®)SqO 10919p JYSIW (SIepel JO SISPUYIIULIT JOSE] ‘SIOSUAS [BNSIA) SIOSUS JO sadA) JUaIIp ‘sjoqol
snowouoINe Jo 9sed oy ur ‘o[dwrexs 104 "soInjeaj SUNOIPUOD PAIA JYSIW SI0INOS JUSIJIP WO} vIe(eyep Sunorguo)

‘uonnjosal ferodwa) pue [ereds Jo SWId) UI OS[E INQ ‘QOUIPYUOD
pue Ajenb Jo suiIo) Ul SONSLISIORIBYD JUAIIJIP YIIM BJBP SOAJOAUI UQJJO SOOINOS BIep JUAIQJIP Suraey ejep padue[equ()

*9SIOU [BWLIAY) O} SIOLIQ UOTIRIGI[ED WO ‘OSIOU JO SIOINOS SNOAUAZ0INAY YIIM SAWO0D A[[eINJeU S9OINOS
©Jep JO J9S SN0QUS019JaY Yy "9sIou Jo sopmyruSew pue sad£) JUSIOIP WOI) IOJNS SA0INOS BIEP JUAIPI ejep ASION

uondisa(q Adudqrey)

uoIsny Bjep 90In0s-N[NW pue [epowl-Ninw ur soSua[[eyo urejy °T d[qeL

14

Introduction

environments. In [101], a semi-autonomous trajectory generation system for mobile
multi-robot systems with integral haptic shared control was presented. The main
novelty was not only in providing an interface for controlling a system with a high
number of degrees of freedom through a reduced number of parameters defining the
path shape, but also in providing real-time haptic feedback. The feedback provides
information about the mismatch between the operator’s input and the actual behavior
of the robots, which is affected by an algorithm performing autonomous collision
avoidance, path regularity checks, and attraction to points of interest. The authors
performed experiments with a UAV, where different levels of control were given to
the operator. Other works by the same authors defining multi-UAV shared control
strategies are available in [102; 103].

1.2.8 Communication

Communication plays a vital role in an multi-robot systems due to the need of coor-
dination and information sharing necessary to carry out collaborative tasks. A mobile
ad-hoc network (MANET) is often formed for wireless communication and routing
messages between the robots. Owing to the changing characteristics in terms or
wireless transmission in different physical mediums, different communication tech-
nologies are utilized for various types of robots. An overview of the main MRS
communication technologies is available in [104].

Collaborative MRS need to be able to communicate to keep coordinated, but also
need to be aware of each other’s position in order to make the most out of the shared
data [105; 13]. Situated communication refers to wireless communication technolo-
gies that enable simultaneous data transfer while locating the data source [106].
Ubiquitous wireless technologies such as WiFi and Bluetooth have been exploited
to enable localization [107; 108; 109; 110; 111; 112; 113]. These approaches have
been traditionally based on the received signal strength indicator (RSSI) and the uti-
lization of either Bluetooth beacons in known locations [110; 111; 112], or radio
maps that define the strength of the signal of different access points over a prede-
fined and surveyed area [107; 109]. More recently, other approaches rely on angle-
of-arrival [108], now built-in in Bluetooth 5.1 devices [114]. Ultra-wideband (UWB)
technology has emerged as a more accurate and less prone to interference alternative
to Wi-Fi and Bluetooth [21]. With most existing research relying on fixed UWB
transceivers in known locations [3], this thesis focuses on advancing towards mobile
positioning systems or collaborative localization [19; 2; 10]. A recent trend has also
been to apply deep learning in positioning estimation [115].

From the point of view of multi-robot coordination, maintaining connectivity be-
tween the different agents participating in a mission is critical. Connectivity mainte-
nance in wireless sensor networks has been a topic of study for the past two decades [116].
In recent years, it has gained more attention in the fields of MRS with decentralized

15

Jorge Pefa Queralta

approaches [117]. Connectivity maintenance algorithms can be designed coupled
with distributed control in multi-robot systems [118], or collision avoidance [119].
Xiao et al. have recently presented a cooperative multi-agent search algorithm with
connectivity maintenance [120]. Similar works aiming at cooperative search, surveil-
lance or tracking with multi-robot systems focus on optimizing the data paths [121]
or fallible robots [122; 123]. Another recent work in area coverage with connectivity
maintenance is available in [124]. A comparison of local and global methods for
connectivity maintenance of multi-robot networks from Khateri et al. is available
in [125].

In environments with limited connectivity, building and maintaining communi-
cation maps with information about the coverage and reliability of communication
in different areas brings evident benefits. To this end, Amigomi et al. have presented
a method for updating communication maps in an online manner under connectivity
constraints [126]. A survey on multi-robot exploration of communication-restricted
environments is available in [127].

It is worth noting that this section has been restricted to in-air communication and
ground or aerial multi-robot systems. There is also a significant volume of research in
the area of aquatic communication, which presents significant challenges. Aquatic
multi-robot systems and their communication is, however, out of the scope of this
thesis.

1.2.9 Localization in GNSS-denied environments

Localization is one of the main challenges in the deployment of mobile robots. Lo-
calization approaches can be divided among those providing global localization, and
others focusing on relative localization (odometry) with respect to the initial position
during deployment. The former case is most notably represented by GNSS sen-
sors. However, robots are often deployed in GNSS-denied environments (e.g., un-
derground, indoor fires) or environments where GNSS sensors do not provide enough
accuracy (e.g., dense urban environments or forests). Global localization with other
onboard sensors can be achieved, for example, with image matching [128], or lidar
data matching [129].

Among the different approaches to onboard odometry, visual methods have gained
significant traction due to their low price, passive nature and flexibility [130]. This
is the case, for instance, of visual-inertial odometry with either monocular cam-
eras [131], or multiple sensors [132]. However, these sensors present limitations
in challenging environments with low-light or low-visibility conditions. In dense
urban environments, lidar-based odometry is the only viable solution for long-term
autonomy if high-accuracy localization is required [18].

Simultaneous Localization and Mapping (SLAM) approaches utilize odometry
algorithms to build local maps [133; 134], while utilizing those maps later on for

16

Introduction

more stable and global localization, where now the global term refers to the scope of
the mission since deployment, or since the process of building the map started. The
different teams participating in the DARPA SubT challenge have employed various
SLAM approaches with both lidar-based and vision-based approaches. Some of the
specific algorithms have been ORB-SLAM in [52], or Hector SLAM [49].

1.3 Multi-robot systems for search and rescue

Many of the algorithms, methods and approaches introduced in this thesis do not
target a specific application. However, the focus is often on operation in GNSS-
denied environments and multi-robot coordination. Two projects that have shaped
the research included in this thesis are AutoSOS! and RoboMesh2. The former
one deals with the design and development of multi-drone systems for search and
rescue, while the latter focuses on industrial applications and DLT solutions. It is
therefore relevant within the context of this thesis to review applications of multi-
robot systems within these application domains. The role that different robots can
play in SAR operations is summarized in Figure 4.

Search and rescue (SAR) operations can take significant advantage from support-
ing autonomous or teleoperated robots and multi-robot systems. These can aid in
mapping and situational assessment, monitoring and surveillance, establishing com-
munication networks, or searching for victims. Here we briefly discuss multi-robot
systems supporting SAR operations, with system-level considerations and focusing
on the algorithmic perspectives for multi-robot coordination and perception.

Autonomous or teleoperated robots have been playing increasingly important
roles in civil applications in recent years. Across the different civil domains where
robots can support human operators, one of the areas where they can have more im-
pact is in search and rescue (SAR) operations. In particular, multi-robot systems
have the potential to significantly improve the efficiency of SAR personnel with
faster response time [40; 41], support in hazardous environments [42; 43; 44], or
providing real-time mapping and monitoring of the area where an incident has oc-
curred [45; 46], among other possibilities.

Robotic SAR systems can differ in multiple ways: their intended operational
environment (e.g., urban, maritime, or wilderness), the amount and type of robots
involved (surface, aerial, ground or underwater - USVs, UAVs, UGVs, UUVs), their
level of autonomy, and the ways in which humans control the robotic systems, among
other factors.

1
2

AutoSOS project: https://tiers.utu.fi/project/autosos
RoboMesh project: https://tiers.utu.fi/project/robomesh

17

https://tiers.utu.fi/project/autosos
https://tiers.utu.fi/project/robomesh

Jorge Pefa Queralta

*$9FBJUBAPE UTBW JIIAY) PUB SOLIBUDS Y V'S JUAISLIP UI PIZI[IIN SJ0qOI snowouone Jo sadA], *p 9an3iy

‘sprezey SUIAJIIuopI ‘SWIOIA SUIYOILSS ‘SQUILI PUB SIABD punoiiopun ur pre

‘Seale 9)owl ul uoneuodsuen) pue ‘SULIO)UOW ‘SWIIOIA JO yoteds ‘Furddewr

"SIOALI PUE SBAIE [B)JSE0D papoop ur syun jroddns

SwMOIA 0) Juryoear pue ‘@oudsardore) Apoq-T[ny ‘vonerndruewr snoIdyxep jo o[qe

"QOUB[[IOAINS PUB ‘SYIOMISU AOUQSIOWID ‘JUSWISSISSE [BIIUL UL pIe

'soSewep I0JeMIopUN SSOSSE PUEB SWIOIA [OIBdS ‘SJUSWIUOIIAUD Usiey ul ojerado
‘swnorA 0) Suryoear pue uonelrodsuen Ul SI0)OR UIRUI

“ITe 9U) WIOJJ S)IUN 90BJINS JO SSOUQIBME [BUOTEMIS) SUIOUBYUS UI pIe

9NoOsoy pue YoIeas ul

Snoaua30191oH

sADn g | dVS
SAV < SSOUISP[IAA
PASILY, qvs

S |-

ADN A” ueqin
SAV(<

SAND qvS
SA <-4

ST oumepy

SAV(] <

L- 4 SwaIsAS 10qOY-NNA

18

Introduction

1.4 Terminology

Owing to the multi-disciplinary nature of this thesis, and the various domains cov-
ered, this section introduces a series of terms that are less common across fields. Ad-
ditionally, we aim at clarifying the use in this thesis of some terms that do not have a
unified meaning in the literature, such as the distinction between robot swarms and
multi-robot systems.

Multi-robot systems and robot swarms

The terminology used in the robotics field to refer to systems composed of multiple
robots is far from unified. Such systems are often called, in an interchangeable man-
ner, multi-robot systems (MRS), multi-agent systems (MAS), or robot swarms [135].
In this thesis, the focus is largely on multi-robot systems. However, we refer to robot
swarms when discussing more generic or abstract architectures, or when referring to
large-scale MRS.

In general, we follow the definitions introduced in [135] when differentiating be-
tween MRS and swarms. Swarms of robots are scalable systems where interactions
between robots are mostly local, driving emergent behaviors, and where members
share equivalent or similar operational capabilities. In contrast, when we discuss
about multi-robot systems, we often refer to a well-defined system composed of a,
maybe predefined, series of robots that may or may not share operational capabili-
ties, and where robot identities and global coordination often play an important role.
Therefore, a robot swarm is a special case of a multi-robot system. However, in parts
of this thesis we do use the term swarm referring to large-scale multi-robot systems,
where individual robots no longer play a significant role.

Technologies in edge and cloud computing

The first few chapters of this thesis cover topics at the intersection of the robotics and
IoT domains. Some of the terms introduced, such as network slicing or elasticity, are
not necessarily common within the robotics field. We also discuss more general
concepts such as application containerization. We refer the reader to our survey
paper in this area for reference of these and other terms and technologies [136].

Distributed ledger technologies and blockchains

Also in the first few chapters, we discuss about the potential of blockchain technol-
ogy and related cryptographic concepts. For an introduction to these terms, we refer
the reader to one of the earliest works in the literature exploring the integration of
blockchain and robotics [137]. A specific term worth noting here is, however, byzan-
tine robot. In many related works, byzantine robots are malicious agents that affect
the performance of a multi-robot system by any means, whether it is through alter-
ation or fabrication of sensor or communication data, or by performing adversarial

19

Jorge Pefa Queralta

attacks on consensus algorithms. Throughout this thesis, we refer to the term byzan-
tine robot more broadly within the context of a byzantine fault, which refers to any
fault in a component in a distributed system that results in the system failing in its
mission. Therefore, a byzantine robot is not necessarily malicious, but its byzantine
actions might be also caused by malfunctioning sensors or actuators, or by external
agents (e.g., within the context of data spoofing).

1.5 Contributions

The core objective of this thesis is to advance towards more robust multi-robot sys-
tems. The main design ideas pursued in this thesis are decentralization, collaboration
and adaptiveness to different environments and operational situations. While pursu-
ing those design principles, in turn, such a system must meet requirements in terms
of security, trust and collaboration (to achieve efficient decentralization), and flexi-
bility of the underlying collaboration mechanisms (to achieve solutions that do not
depend, e.g., on external infrastructure such as GNSS). It is also worth mentioning
that the thesis addresses, whenever possible, heterogeneity in the systems, from dif-
ferent types of robots to different operational capabilities. In the experiments, the
focus is on using ground robots and aerial robots with different types of sensors.
This thesis therefore explores intercorrelated yet transversal topics including:

i. Architectural design (Chapter 2): we introduce a high-level design of recon-
figurable robot swarms in the edge-cloud continuum [7], and blockchain-based
architectures for edge-assisted solutions [8]. We have also reviewed the state-of-
the-art in both key theoretical and practical aspects of multi-robot systems [9]
and blockchain solutions for the general edge computing domain [12]. We ex-
plore the intersection of edge computing approaches and autonomy in mobile
robotics [8; 11]. The key novelties in this chapter are in the study of edge com-
puting architectures and potential implementation advantages, and a position on
design architectures for multi-robot systems in the edge-cloud continuum.

ii. Security and trust (Chapters 3-4): this thesis introduces blockchain-based ap-
proaches to the design and implementation of secure and trustable multi-robot
systems, as well as for managing the collaboration between the robots. Im-
portantly, we propose a novel approach to securing autonomous robot missions
using encoded instruction graphs [1].

iii. Localization (Chapter 5): we explore approaches for GNSS-denied environ-
ments, from off-the-shelf and external UWB-based systems [3] to relative lo-
calization based on fusion of UWB ranging and VIO egomotion estimation [2],
an approach also applicable outdoors in environments where GNSS signals de-
grade [10]. The key contributions are in the analysis of novel localization tech-
nologies and their potential for single and multi-robot systems.

20

Introduction

iv. Spatial coordination (Chapter 6): we extend the state of the art with meth-
ods requiring zero to minimal communication (index-free and identity-free so-
lutions [5], for robust operation in the lack or inability to communicate, but
assuming robots can see each other) as well as signaling solutions with individ-
ual robot identities [4; 6]. In the latter approaches, UWB ranging can be used for
simultaneous signaling and relative localization, while a blockchain framework
can be leveraged for robot identities.

v. Collaborative sensing (Chapter 7): to pursue a higher-level result from an ap-
plication perspective, we leverage relative localization solutions for multi-robot
sensor fusion and collaborative scene reconstruction [2], in a work where we
also introduce a novel path planning approach and graph rigidity monitoring to
ensure a unique solution to the relative localization problem exists.

Parts of this thesis have already been published in different peer-reviewed pa-
pers. Other parts extend or further detail previous results, or have only been made
available in online preprints. A significant amount of the theoretical results and
approaches included in this thesis have been validated through different types of ex-
periments with real robots [1; 2; 3; 5; 10], while other results have been validated in
simulation [4; 6; 11; 13]. Finally, some of the works present peer-reviewed propos-
als to novel architectures or approaches in the design of multi-robot systems and the
underlying technologies [7; 8; 12].

1.6 Thesis organization

The rest of the thesis is organized in 7 chapters that can be grouped in three parts, in
addition to the conclusion chapter.

Part I. Architectures and design approaches. The first part of the thesis covers
the description of different approaches to the design and development of heteroge-
neous multi-robot systems.

» Chapter 2 focuses on architectures for heterogeneous multi-robot systems and
the benefits of integrating edge and cloud computing into distributed robotic
systems. We introduce and architecture leveraging the concept of elasticity
from the cloud computing domain, and explore an example of computational
offloading showing the potential benefits of edge computing architectures.

Part I1. System security, trust and secure coordination. The second part of
the thesis introduces the distributed ledger technologies and their potential for edge
computing architectures and multi-robot collaboration. This chapter also presents
a novel approach to securing single and multi-robot missions leveraging encrypted
instruction graphs.

21

Jorge Pefa Queralta

* Chapter 3 delves into the potential role of distributed ledger technologies at

the edge for multi-robot systems. We first describe the different consensus
algorithms that are used in blockchain frameworks and more recent DLT so-
lutions. We then propose a design approach to managing ad-hoc multi-robot
collaboration and data sharing through a public blockchain. Finally, we dis-
cuss the different ways in which blockchain technologies can be deployed at
the edge. We outline the main benefits and limitations of integrating distributed
ledger technologies into distributed robotic systems.

Chapter 4 introduces a robotic mission encoding method that serves as an
end-to-end validation framework for autonomous robots. In particular, we put
our framework into practice with a proof of concept describing a novel map
encoding method that allows robots to navigate an objective environment with
almost-zero a priori knowledge of it, and to validate operational instructions.
We also demonstrate the applicability of our framework through experiments
with real robots for two different map encoding methods.

Part ITI. Localization, coordination and sensing. The third and last part of the

thesis deals with both practical and theoretical aspects of multi-robot localization,
coordination and collaborative sensing. We first introduce specific localization ap-
proaches (mainly UWB-based) for both individual robots and multi-robot systems.
We then delve into spatial coordination or formation control algorithms requiring
minimal to no communication (for which the UWB localization can be leveraged,

but were formulated in earlier works). Finally, we show an example of collaborative

sensing for scene reconstruction relying on UWB for relative localization.

22

e Chapter 5 focuses on UWB-based localization for GNSS-denied environ-

ments. We first study the performance of state-of-the-art off-the-self systems
for aerial robots. We then delve into the potential for UWB-based relative
localization in heterogeneous ground and aerial multi-robot systems in areas
where GNSS signals are degraded. We also introduce different sensor fusion
approaches to UWB-VIO relative localization.

Chapter 6 introduces to new approaches to formation control. The first ap-
proach is index-free and communication-free, allowing for anonymous robots
that are able to see other robots in their surroundings to converge towards a
desired formation shape in a decentralized manner. However, this approach
is not generalizable to any shape or configuration. The second approach pre-
sented requires one-way, local-only and minimal communication (signaling
role self-allocation) and sensing of near robots. A progressive assignment of
positions in the desired configuration is proposed to ensure solvability, while a
leader-follower control approach is used to converge to the final configuration.

Introduction

e Chapter 7 combines approaches from the formation control domain (graph
rigidity theory) into a collaborative localization system that monitors the rigid-
ity of the localization graph to ensure uniqueneess of a relative positioning
solution.

The thesis is then closed with a last chapter discussing the different methods and
results, together with directions for current and future work.

* Chapter 8 concludes the work with a discussion of benefits and limitations
of the proposed approaches, as well as future research directions. We review
the main contributions of the thesis to the state-of-the-art. We describe open
issues and outline the advances in terms of designing and developing more
robust multi-robot systems.

23

2 Multi-robot systems in the edge-cloud
continuum

With robotic systems being increasingly connected, there is a growing intersection
between the IoT and Robotics domains, in what is often called the Internet of Robotic
Things (IoRT). This chapter covers the introduction of design approaches that lever-
age connectivity for decision-making and computational offloading. Through the
chapter, we look at the intersection of robotic systems with concepts and elements
from the IoT, lIoT, and multi-agent systems (MAS) domains. Throughout this chap-
ter, we use the term swarm to refer to large-scale multi-robot systems.

Portions of text and a subset of figures in this chapter are reproduced from our
previous works [7; 8; 11]

2.1 Reconfigurable swarm architecture

In this section, we present an architecture for reconfigurable multi-robot systems
leveraging concepts and technologies from the edge and cloud computing domain.
Parts and components of such an architecture are then presented across the rest of this
thesis. However, the focus in this section is to provide a high-level vision of future
robot swarms capable of self-reconfiguration (in terms of self-healing, role allocation
or coordination, for example). At the same time, such swarms will potentially be able
to exploit their heterogeneity in term of operational, computational and sensorial
capabilities.

2.1.1 Swarm robotics and multi-agent systems in the IoT

A recent trend in cyber-physical systems and the Internet of Things (IoT) domain is
to shift towards more distributed computation, a trend that has crystallized through
the edge computing paradigm [138]. Similarly, recent advances in containerization,
elastic computing, and dynamic resource management are materializing a decen-
tralized cloud [139; 140]. Multiple researchers have explored the possibilities of
integrating Multi-Agent Systems (MAS) theory within the IoT and cloud computing
towards IoT MAS and Cloud MAS [141]. On the other side, the combination of MAS
and robotics has brought swarms of robots with the potential for enhancing human
responses in safety-critical applications such as firefighting [142], or post-disaster

24

Multi-robot systems in the edge-cloud continuum

MULTI-AGENT . ;yas EDGE-CLOUD

SYSTEMS Cloud MAS COMPUTING
Multi-Agent Coordination Resource Management
Collaborative Decisions | Containerization
Consensus “ SELF Elasticity

| RECONFIGURABLE

HETEROGENEOUS
\ ROBOTIC
_ SWARMS

Multi-robot \\ Cloud
systems \\ Robotics
\\“
\ ROBOTICS /

Perception and Control
Autonomous Robots
Sensor Fusion

,/4

— _—

Figure 5. Intelligent and self-reconfigurable robot swarms can be designed at the
intersection of the multi-agent systems (MAS), robotics and Edge-Cloud computing (also
referred to as edge-cloud computing continuum) domains. This figure only represents a
concept within the chapter context and does not necessarily generalize to other works.

scenarios [143], among others.

We extend these two approaches (MRS and IoT MAS) towards the intersection
of edge computing and robotics. We then argue that with appropriate management
and distribution of computing, sensing and communication resources within a robotic
swarm, higher degrees of intelligence and operational flexibility and robustness can
be achieved. This concept is illustrated in Figure 5. The capabilities of robotic
swarms are currently limited by different factors, from the lack of methods and dis-
tributed collaborative sensing algorithms [144], to static and inflexible resource man-
agement with non-optimal utilization of hardware resources due to separate hard-
ware and software design. This includes embedded hardware with relatively con-
strained computational resources due to payload constraints and uniform resources
in swarms [145; 146; 147]. Some previous works have addressed these limitations
through computational offloading and the definition of edge-cloud robotics architec-

25

Jorge Pefa Queralta

tures [148]. More recently, heterogeneous robotic swarms have been proposed to
extend the flexibility and intelligence, opening the door to a wider array of more
complex application possibilities [144]. Nonetheless, multiple challenges remain in
terms of managing the collaboration within heterogeneous swarms [149].

Multiple research efforts within the fields of multi-robot systems and cloud com-
puting have been directed towards distributed task allocation and distributed load
management. For instance, autonomous mobile programs (AMPs) were an early in-
troduction of a dynamic computational load management framework [150]. AMPs
provided a distributed approach where autonomous agents were able to make de-
cisions on a shared computational load, being aware of their own computational
capabilities. AMPs share similarities with early load balancing techniques based
and colony optimization for cloud computing [151]. More recently, multi-agent load
balancing for resource allocation in a distributed computing environment has been
proposed [152]. From the point of view of task allocation in multi-robot systems,
K-means clustering and auction based mechanisms were introduced in [153]. In
terms of spatial allocation, a workspace partitioning method was presented in [154]
for indoor environments. In our work, we aim at combining these two approaches
considering full reconfigurability through tight integration of methods from the edge
computing domain and algorithms for cooperation in multi-robot systems. This is,
to the best of our knowledge, the first study presenting such an approach.

In [155], our co-authors define the concept of resource ensembles from the per-
spective of the edge computing domain. This concept serves as the basis for abstract-
ing edge resources and building dynamic management models on top of them. From
the point of view of collaborative swarms of robots, we have presented a blockchain-
based approach in [149]. In this chapter, we propose a blockchain as a medium
for achieving consensus for bandwidth allocation and data quality ranking in a dis-
tributed multi-robot system. This, again, serves as the starting point towards dis-
tributed sensing and data processing in swarms of robots, where sensing, network
and computational resources are abstracted and managed through collaborative deci-
sion making.

The techniques we propose have a clear impact, in particular, on swarms of
drones. Current solutions for drone swarms require operators to either manually
control drones or perform analysis of streamed data at a ground control center. This
is a limitation for the deployment of drones in large areas where there have been
natural disasters such as fires, or where people have gone missing, as the human
resources necessary are too large. Even if the data is processed by a computer at
the ground station, the need for a high-bandwidth channel between drones and the
base station still limits significantly their operational capabilities. Therefore, there
is an evident need for more intelligent drones that are able to perform data anal-
ysis independently and autonomously navigate large areas. Reconfigurable drone
swarms empower complex edge data analysis at the swarm level through distributed

26

Multi-robot systems in the edge-cloud continuum

edge computing. At the same time, this allows for long-term autonomous operation
when energy constraints allow, as well as reconnaissance in remote areas with poor
network connectivity.

The main objective of this section is to introduce a new design approach that
enables efficient and dynamic resource management and autonomous reconfigura-
tion of heterogeneous robotic swarms. We discuss the optimization of the various
computing resources and sensing capabilities of robots in the swarm through a hard-
ware (HW)/software (SW) co-design approach for the development of specialized
robots. In particular, we incorporate elastic principles for coordinating and engi-
neering collective capabilities of multiple heterogeneous robots. This elasticity takes
into account the coordination at the level of multi-agent systems, but also the spe-
cific resources and algorithms utilized for robotic perception and navigation, among
others.

Furthermore, we discuss how our proposed approach enables the reconfigura-
tion of drone swarms and realize a distributed collective intelligence. This requires
embedding intelligence and information processing in the drones themselves. With
current technology, deploying multiple drones requires coordination among their op-
erators, binding valuable resources from the actual mission. Even more, when mul-
tiple drones are being deployed in parallel [156; 157]. However, neither isolated
intelligent drones nor simple task list orchestration is sufficient [158; 159]. Thus, it
is essential to establish a collective intelligence that enables autonomous coordina-
tion and collaboration among the drones.

2.1.2 Models for reconfigurable swarms

We address the aforementioned challenges through an end-to-end design: from the
robot hardware and local decision making on the computational and sensing re-
sources to providing the swarm and its capabilities as a service for end-users. Two
key aspects in our work are:

* Reconfigurable hardware resources for flexible and resource-rich computation
platform at the swarm level

* Distributed data processing at the edge for collective swarm intelligence.

Reconfigurability and distributed intelligence provides more computational resources
for multi-modal sensor fusion and distributed computation. Our model leverages
methodologies and engineering techniques for distributed and dynamic management
of elastic resources for swarms improving quality of results. The models are:

1) Swarm-as-a-Service Model: A swarm provides services to end-users with a con-
trol interface or API through what we call a Swarm as a Service (SwaaS). SwaaS
offers an edge service model for swarm applications. In this view, each robot with its

27

Jorge Pefa Queralta

specialization is an edge services provider (or just an edge provider). Edge provider’s
sensing, computational and external communication resources are considered edge
resources. Edge resources (hardware and software) are co-designed to make robots
richer in terms of the resources that they can provide. With this approach, we bring
various concepts of edge computing and services models to the field of multi-robot
systems.

2) Application-Specific Resource Ensembles Model: Application Specific Resource
Ensembles (ASREs) [155] define a specific organized set of edge resources (ASRE
template or pattern) in swarms forming the edge infrastructure. An essential part of
ASREs is the coordination and monitoring of resources together with swarm con-
trol and coordination. Resource management techniques enable service discovery,
service end-to-end communication segmentation, and distributed task computation
under unreliable and uncertain environments by incorporating uncertainty and elas-
ticity [160]. For our knowledge, these have not been applied before to drone swarms.
For example, [161; 162] are dedicated for containers and virtual machines. The pro-
posed design for reconfigurable robotic swarms, therefore, includes the definition of
templates and patterns for ASREs which can be used to tailor resource ensembles for
application-specific needs.

In our end-to-end vision, the central point is to provide dynamic and flexible
swarms as an elastic heterogeneous multi-robot system. In the system individual
robots have different sensing and computational capabilities, a mesh network takes
care of intra-swarm communication, and distributed algorithms enable the swarm
to perform collective decision making as if it were a single unit. By elastic, we
mean that the different resources of robots are abstracted and can be reconfigured
depending on the application needs [163]. An illustration of this concept appears
in Figure 7, compared to current cloud robotic and swarm robotic systems in Fig-
ure 6. In Figure 6a, each drone is independently connected to a cloud server, where
it offloads part of its data processing. Any external control in this case goes through
the cloud application, but direct control of drones could be enabled as well (for ex-
ample, if the movement of the drone is controlled via a radio controller, and then
mapping or other algorithms are run in the cloud). In Figure 6b, the drones form
together a swarm. Each individual drone in the swarm has the same role initially,
and both sensing and data processing occur individually at each drone. Algorithms
describing the collaboration between drones could then run at the swarm level, but
each drone would be still a separate entity. Finally, our approach is illustrated in
Figure 7a, where all drones form a swarm as well. The key difference is that the
swarm and its applications and resources are abstracted from individual drones and
defined in a distributed manner at the swarm level. The communication with a con-
troller or cloud services occurs from the swarm as a whole, and not from individual
drones as separate entities. Moreover, sensing and computational resources, and the

28

Multi-robot systems in the edge-cloud continuum

L._.l “load L._.l

‘. Distribution . . ‘.

Q
” @ @

Computational Computational
Offloading Offloading
ey] - D i

é 57 é 57 é é

(a) A cloud robotics system.

(b) A swarm robotics system.

Z2) Mesh network Human command inputs

'l

Sensing node L

Cloud computing server

Computational node

@i

Figure 6. Sample typical architectures for cloud robotic and swarm robotic systems,
illustrating sensing and computing roles together with interaction modalities.

29

Jorge Pefa Queralta

s
TR

(a) A reconfigurable robotic swarm.

Mesh network Human command inputs

il

—> | Sensing node gt

Computational node

Cloud computing server

Figure 7. Illustration of proposed connectivity modalities for a swarm of drones, illustrating
sensing and computing roles together with interaction modalities. In a reconfigurable
swarm, roles may also be allocated beyond operational requirements considering also
computational and sensorial capabilities. For example, part of the robots in the swarm might
not be actively contributing to building a collaborative situational awareness model but
instead process data generated by sensors onboard other robots.)

corresponding roles, are assigned dynamically among the swarm members. In the
example illustrated in Figure 7a, half of the drones take a sensing role as their main
role while data processing is offloaded to other drones assigned as computing nodes.

2.1.3 Architectural layers

We design an architecture with three layers and building blocks as illustrated in Fig-
ure 8. The layers are:

30

Multi-robot systems in the edge-cloud continuum

19fe7 waems [eaishyd

UolEDIUNWWOY) WIeMS-.lju]|
$80In0SaYy alempieH
$90In0saYy Buisuag

ereg
losusg

suoljonJisu|

Bujuueld yred [eoo|
pUE 9OUEPIOAE UOISI||09 [800]
SOJWEUAP pue |013U09 10qoY

3oeqpasy

_o:cow
<

suononJisu|

1SeJlaiul
Jo suoibey

SJUIBISUOD
JUBWIUOJIAUT

10J3u09 Juabe-pny

uoleuIpJ009 [eneds

STASV pue SeeMS J0J S)o0[g SuIp[ing pue 21no)1ydry pasodoid °g 3angig

19Ae saoinlas abp3 painqglisia

Buiyew uoisiosp
BAljRIOqR([0D

19Ae] uonesyddy

—>
wn
s
$90IM9S Juswabeuey JYSY wn m
Buluoisinold 82inosay W 3
Q (@)
2l}Se|3 pue JlWweuAQq) S
=]
Jabeuepy aoinosay W =
= S
o)
-
<«
SANVININOD
N

1004 sulaped pue
seje|dwa) S3HSY

31

Jorge Pefa Queralta

Physical Swarm Layer. The actual control of robots is carried out at the physical
layer, where the different hardware and mesh communication solutions are defined.
The definition of a set of computing resources, sensors and actuators needs to be
carried out as part of the swarm design in order to enable higher degrees of optimiza-
tion when the sensing and computational resources are shared at the swarm level and
applications run in a distributed manner.

Edge Services Layer. This is the main focus of the swarm design in terms of
self-reconfigurability. This layer includes a Resource Manager (RM) for configuring
and managing resources provided by the Physical Swarm Layer. Based on applica-
tion requirements, the RM will assemble resources from edge providers into ASREs
for SwaaS. The RM supports the automatic creation of ASREs by requesting, provi-
sioning and orchestrating suitable resources.

This layer represents all the distributed services and processes running within the
swarm and executed at each individual robot. These processes are classified in three
main types: (1) spatial coordination (e.g., distributed formation control [5; 164]), (2)
collaborative sensing (e.g. cooperative mapping [13]), and (3) collaborative decision
making (e.g., role allocation [10]). These three apparently different parts of swarm
control and decision making have a high synergy and their optimal operation depends
on feedback from each other. These three topics have mostly been studied separately
in the previous works [90; 165; 166]. Therefore, we have focused on the design and
development of techniques for efficient communication between these processes. In
summary, the key novelty is that ASREs and the RM implicitly manage collaboration
within the swarm.

At runtime, ASREs will form an elastic and resilient edge mesh of services across
robots in a swarm. The RM will dynamically provision new resources from differ-
ent providers elastically. This kind of elasticity is carried out in an end-to-end and
bi-directional manner: the resources are provisioned dynamically when new services
are required or when the available resources change. The RM learns and optimizes
the provisioning based on the reliability of resources, performance variations, bottle-
necks, and failures. The RM provisioning is hidden from the application.

Application Layer. The application layer provides an interface for controlling
and interacting with the swarm. We refer to this interface as the Swaas API. An ex-
ternal party or swarm controller can select from a pool of ASRE templates, which
define the different patterns in which the swarm can be configured for different ap-
plications. By choosing an ASRE template through the SwaaS API, the swarm con-
troller is implicitly selecting a set of resources and services. These resources are then
provisioned and managed within the swarm itself through the RM. The services are
provided based on the available distributed algorithms for sensing and coordination.

32

Multi-robot systems in the edge-cloud continuum

2.1.4 Reconfiguration processes in a drone swarm

We now discuss the specific technologies that enable the realization of the self-
reconfigurable robotic swarm architecture.

Reconfigurability-enabling technologies

Currently, most small mobile robots and aerial drones rely mainly on CPUs in order
to perform all the navigation and mission related computation, and microcontrollers
for low-level control such as flight controllers [167]. We are leveraging existing
technologies from other domains to enable reconfiguration within a drone swarm.

As a computing platform, we utilize FPGAs with embedded processors to extend
the existing algorithms with custom hardware accelerators. FPGAs are reconfig-
urable hardware accelerators that can be exploited in computationally intensive and
highly parallelizable tasks for autonomous robots, with higher performance/size and
performance/power ratio as we have shown in previous works [168; 169]. Both the
size and power consumption of hardware are essential aspects to take into account
in drones. The use of FPGAs enables the RM to not only provision the existing re-
sources but also dynamically provision new hardware accelerators on-demand. Some
drones are equipped with FPGAs while others have embedded processors with GPU
such as the NVIDIA Jetson TX2.

At the software level, we utilize containers to enable dynamic resource manage-
ment and task execution. Container technologies are known but they have not been
exploited for drones. Our goal is to use containers to enable dynamic resources man-
agement and task execution. All algorithms, from spatial coordination to collabora-
tive sensing, are containerized and run in a distributed way. With efficient container
orchestration, we are able to add flexibility and reconfigurability to the swarm. We
bring specific techniques for computational load distribution, elasticity and resource
management from the edge-cloud domain to the robotics domain.

In order to interface sensors, actuators, communication and the containerized
algorithms, we utilize the Robot Operating System (ROS 2) which runs as a container
application as well. ROS is the de-facto standard for robotic development in both
academia and industry. ROS 2 focuses on distributed multi-robot systems and real-
time computing, and will allow us to exploit container technologies for drones.

For network interfacing, there are no general solutions that integrate ROS 2 and
mesh networking at the network level. Our experiments will utilize more traditional
solutions at first, with all drones connected to a single Wi-Fi access point. Nonethe-
less, we will work towards the integration of ROS 2 and a Bluetooth 5 mesh network.
Another recent technology that can provide significant advantages is ultra-wideband
(UWB) [170]. UWB enables accurate localization in multi-robot systems, including
drones [3], and has the potential for simultaneous communication and localization.

33

Jorge Pefa Queralta

We will work on extending our current works on UWB-based mobile localization
systems [19], studying the integration of UWB as a network interface between ROS 2
nodes.

Finally, we leverage blockchain-powered consensus algorithms suitable for multi-
robot systems. Recent works [171; 149; 137] have proposed design concepts for
integrating next-generation low-latency and scalable blockchains within heteroge-
neous multi-robot systems. Blockchains can be utilized as a distributed framework
to achieve consensus in a multi-robot system, and also validate identities. This can
be then utilized by ASRE management services, which could, in turn, be imple-
mented as distributed Smart Contracts for resource coordination. The idea of uti-
lizing a blockchain-based framework for managing edge resources has already been
explored in our previous works [8].

Some of these planned implementations are described in the rest of the thesis,
while others remain for future work.

Edge computing algorithms for sensing

We classify the algorithms in the edge layer in three main types: spatial coordination,
collaborative sensing, and decision making. In previous works, these are typically
defined with strong dependencies. For instance, depending on the sensing variable
robots might be required to be in a specific spatial formation [4]. However, in our
architecture these algorithms are designed independently and abstracted as edge ser-
vices. This modular architecture brings multiple advantages. For instance, spatial
coordination algorithms take feedback from the sensing algorithms regarding the lo-
cation of regions of interest that should be analyzed more closely. This feedback is
used to rearrange the drones in the proper shape and location. At the same time, the
role of each drone within the spatial pattern is given by the collaborative decision
making process. Analogously, the spatial coordination algorithms give feedback to
other processes about the movement constrains of the swarm surroundings.

Resource management

The RM provisions and manages all resources, from hardware to edge services.
Sensing resources are abstracted through ROS nodes (drivers) that produce data in
standard formats. Each edge service is broken down into sub-services (for example,
independent parts of an algorithm) and each of these is abstracted as a ROS node
that consumes and produces different types of data (always in standard formats). All
these ROS nodes are containerized and provisioned by the RM across the available
the computing resources. The computing resources are modeled based on the amount
and type of containers that they can run, and the performance for each containers.
The provisioning is an optimization process that takes into account communication

34

Multi-robot systems in the edge-cloud continuum

latency between data producers and consumers, and execution latency. The RM itself
runs as a distributed and containerized application across the swarm, and manages
the resources with elastic techniques.

Each application that utilizes the SwaaS API must define a Quality of Results
(QoRs) requirement. We bring this concept from elastic computing models in which
a QoR is defined in terms of performance, quality of data, type of output, and other
measurable information [172], which the swarm provides to the controller through
the SwaaS API. The QoR is essential for elastic resource management to dynamically
provision the different resources taking the QoR requirement as an optimization con-
straint. We will extend the work by Mariani ef al. on coordination-aware elasticity
for developing primitives and algorithms to control the elasticity of swarms [173].

2.1.5 Architecture summary

We have proposed an architectural definition for reconfigurability in heterogeneous
robotic swarms. This architecture is based on a combination of concepts and tech-
niques from the robotics domain, multi-agent systems domain and edge-cloud com-
puting domain. This is, to the best of our knowledge, the first work that proposes
the abstraction and management of both hardware (sensors, actuators, computation
and communication) and software (distributed sensing, coordination and decision
making) as edge resources with elastic techniques. In particular, we explain how we
are designing a reconfigurable drone swarm and what are the different hardware and
software that make reconfigurability and elasticity possible.

2.2 Use case: offloading visual odometry to the edge

As we have discussed in the first chapter of this thesis, a key aspect in an autonomous
robotic system is localization. In GNSS-denied environments, visual-inertial odom-
etry (VIO) is an increasingly adopted choice of localization source owing to the
ubiquity and availability of vision sensors. However, most existing VIO solutions re-
quire non-trivial computing resources to run in real-time. In building towards more
distributed and cloud-enabled solutions, we investigate as an example how the ac-
curacy of a reference VIO algorithm is affected by decreases in image quality. This
is an important factor as streaming high-resolution images from multiple robots in a
common network with low latency and at high framerates is not a trivial task.

In general, while visual-inertial odometry enables low-cost and accurate au-
tonomous operation for small mobile robots, it still requires robots to have a min-
imum of computational resources available on their on-board computers. Most of
the current research efforts are focused on algorithmic level optimization to achieve
higher levels of accuracy and reliability in visual odometry on different hardware
platforms. This has led to high-accuracy methods enabling long-term autonomy with

35

Jorge Pefa Queralta

efficient loop closure mechanisms [131]. However, small units such as micro-aerial
robots (e.g., crazyflie drones) usually have constrained resources, including limited
power and computational capabilities or reduced storage. In this situation, an aspect
to consider is how to reduce the robots’ computational burden while maintaining the
VIO algorithm’s high performance. If multiple cameras are utilized to reduce the
blind angles for obstacle avoidance, path planning, and mapping, then the computa-
tional burden can increase considerably. This can have a significant impact on the
performance and ability to autonomously navigate a complex environment in small
mobile robots, including aerial drones. If additionally, multiple robots are operating
in the same environment, accurate localization is essential to secure their operation
and avoid collisions. In a multi-robot system where robots have equivalent sensing
capabilities, the offloading part of the data processing can be a solution that not only
increases the reliability of the system but also reduces the unit cost of each robot
as the hardware can be simplified. In an industrial environment with large numbers
of autonomous robots operating within a controlled area, reducing the cost of each
robot can have a direct impact on the industrial ecosystem as a whole.

In recent years, some researchers have introduced the cloud robotics concept,
in which the capabilities of small mobile robots can be enhanced by moving part
or most of the computationally intensive data analysis tasks to a cloud environ-
ment [174; 175]. Nonetheless, streaming data to the cloud has the potential to
significantly reduce the overall system reliability with uncontrolled latency or un-
stable network connection [168; 176]. We extend the recent trend in the IoT to-
wards more decentralized network architectures with the fog and edge computing
paradigms [177; 178; 179]. Edge computing crystallizes the idea of keeping the data
processing as close as possible to where the data originates. With this approach,
raw data is processed at the local network level instead of the cloud, decreasing the
latency and optimizing the network load [180]. Furthermore, savings in hardware
platforms and overall power consumption can be optimized with proper integration
of edge computing [15]. In this work, we have moved the VIO computation towards
a smart edge gateway to open the possibility for more intelligent, yet simple, large
teams of autonomous robots that rely on edge services for offloading most of their
computationally intensive operation.

The main motivation behind the work presented in this section is to study the op-
timal relationship between image quality and accuracy of a monocular visual odom-
etry algorithm in a computational offloading scheme. Finding the proper trade-off
between accuracy and image size has a direct impact on the computational resource
consumption, algorithm runtime, network latency and, in consequence, the num-
ber of robots that can be supported simultaneously from a single smart edge gate-
way. Our goal is to provide a benchmark of the compression rate’s influence on the
VIO algorithm. To address these issues, we employ the state of art VIO algorithm
VINS-Mono [131] and analyze its performance on an open dataset, the EuRoC MAV

36

Multi-robot systems in the edge-cloud continuum

dataset [181], with varying image compression rate and picture quality. Our results
show that the computational offloading scheme can be optimized in terms of band-
width usage without compromising the accuracy of the visual odometry algorithm.
Furthermore, decreasing the image quality reduces the processing time at the edge
gateway. Therefore, finding the appropriate compression rate not only optimizes the
network load but also enables a single gateway to handle the odometry for a larger
number of connected robots.

The main contribution of [11] is on analyzing the performance of the state-of-
the-art in monocular visual odometry with varying image quality and compression
settings. We utilize the JPEG standard and examine the performance of a monocular
visual odometry algorithm with the JPEG image compression setting varying from
1% to 100%. The implications of this study can be significant in a computational
offloading scheme; an image size reduction of up to two orders of magnitude can be
achieved without a significant compromise on odometry accuracy.

2.2.1 Cloud SLAM

The problem of SLAM has been traditionally considered either as an offline prob-
lem, where all accumulated data is utilized to rebuild the path, or an online problem
for real-time image analysis with an on-board computer. However, if a large fleet
of robots is considered, then a computational offloading scheme can considerably
bring the cost down. To the best of our knowledge, computational offloading had
been considered for mobile robot navigation a mapping only from the cloud comput-
ing point of view with cloud-centric architectures and data processing in powerful
servers where the algorithms can be easily run in parallel at maximum efficiency.
Yun et al. proposed a robotics platform to be deployed in cloud servers, RSE-PF,
for distribution visual SLAM where data from different robots was aggregated and
combined in the cloud [174]. An average network latency of approximately 150 ms
was reported (round trip). Even with almost instantaneous data processing at the
cloud servers, this either limits the image analysis rate to around 6 frames/second
or induces a delay when parallel RX/TX channels are utilized. In the first case, an
on-board computer such as a Raspberry Pi 4 or an NVIDIA TX2 could be able to
provide a similar or better frame rate, while in the second case an accurate estima-
tion of network latency must be available at the robot in order to interpret properly
the processed information that the cloud servers return. The maximum number of
robotic units that could be supported simultaneously was not reported; however, the
authors utilized WebSockets in order to save bandwidth compared to HTTP. Dey et
al. proposed a similar offloading scheme in which a multi-tier edge+cloud architec-
ture was introduced [175]. Rather than concentrating on analyzing the performance,
the authors shifted the research focus towards defining and solving an optimization
problem in order to maximize the performance of the multi-tier architecture by of-

37

Jorge Pefa Queralta

floading different processes to different layers. Their approach was to utilize integer
linear programming for optimization of offloading design decisions utilizing the net-
work bandwidth as a variable and adding latency constraints.

2.2.2 Monocular visual-inertial odometry

Visual-Inertial Odometry (VIO) is a common part of Visual SLAM (VSLAM), but
is also used as a standalone state estimation method in robotic systems. VIO focuses
on the local consistency of the robot movement trajectory, using real-time visual and
inertial data to predict robot egomotion. The goal of SLAM is to achieve global
consistency between the odometry and maps. VIO can therefore be considered as a
building block for VSLAM, before tracking all the camera’s historical data to detect
loop closure and optimize the map.

Visual-inertial odometry algorithms combines camera and IMU data to imple-
ment SLAM or state estimation. The advantage of binocular VIO is that it can accu-
rately estimate the motion trajectory and is able to recover the exact physical units.
In Monocular VIO, it is only possible to obtain information regarding what the object
has moved as a certain number of relative units in a given direction, while the binoc-
ular VIO is able to map these relative units to a metric system representing the real
length or size. However, for objects that are far away, the binocular system degen-
erates into a monocular system. Monocular visual odometry has gained increasing
attention in recent years because of the lower price and ease of automatic calibration.
However, the data processing is more challenging.

VINS-Mono

VINS-Mono adopts a non-linear optimization-based sliding window estimator to
predict a robot’s position and orientation. This approach begins with the measure-
ment preprocessing which will collect sensor data to detect feature and IMU pre-
integration. Through the initialization procedure, all values for bootstrapping the
subsequent nonlinear optimization-based VIO will be calculated. The VIO with re-
localization modules tightly fuse integrated IMU measurement processing, feature
observation, and redetected features from a loop closure scheme. Finally, the pose
graph module implements global optimization to reduce drift.

2.2.3 Experimental analysis

We have utilized an open-source dataset, the EuRoC dataset, in order to evaluate
how the performance of the VINS-Mono algorithm varies when the image quality is
reduced [181]. This is an initial approach and we have utilized the standard JPEG
compression algorithm since it provides a high range of possible compression rates

38

Multi-robot systems in the edge-cloud continuum

(a) Easier environment. (b) Harder environment.

Figure 9. EuRoC dataset samples with easier and harder environments for VIO algorithms.

1.2 -
° 1% "l -v
. 5% (1] & \,
1.0 - o 10% = ¢ 4
" 4 -
50% ALY
[S
08 - 80% 1 Al VNV Y ~
100% I\ o
—_ 1Y ? $ \fandt g
g : X7 . ¢ S
L 06~ V M N 22 |
& . A 7 &a\” v ofF 34 T, 4
[sa} R . w%%?:f»*w Og. . ¥ d f,N
04 - ﬂ\\ﬂ: w B% '8P :,.,Q:‘ ¢ ..o
. Pone ouft S ¥ a‘f‘”
0.2 -
0.0 -
| | | | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 10. VINS-Mono error in the easier dataset.

through its image quality parameter. For instance, given a sample from the EuRoC
dataset that has a size of 362 kB in PNG format, its size in JPEG ranges from 6.7 kB
with 1% quality and 226 kB for 100% quality setting.

The EuRoC dataset is a binocular + IMU dataset for indoor micro aerial vehicles
(MAV). It contains two scenes, one is a machine hall, and the other is a normal room.
The dataset uses the flying robot AscTec Firefly as a data acquisition platform. It is
equipped with binocular camera MT9V034 and an IMU ADIS16448. The camera
frame rate frequency is 20 Hz, and the IMU frequency is 200 Hz. The authors utilize
a Vicon motion capture system and Leica Nova MS50 as ground-truth for bench-

39

Jorge Pefa Queralta

3
5%
- 10%
25 - 0%
50%
80% s
, .
2 100% .
pord »
~ 7 %
4 8.
E 15- y e
.
m 4 o o
y
1- ;L
aw
Y "z
~ .W basg
"zw<é‘ﬂ; o
0.5 - LV

”
. ; 8“.9." v
4

o, &
“es” £

2
Wipeeser®
0 — e ot

0 10 20 30 40 50 60 70 80 90
Time (s)

Figure 11. VINS-Mono error in the harder dataset. The error with 1% quality diverges
within seconds of starting the sequence, and is therefore not included in the results.

Table 2. Average execution time of the different processes and network latency for a subset
of image qualities.

Image Quality
1% 5% 10% 50% 100%
Image size (kB) 5.7 79 112 283 2022

Network latency (ms) 2.0 2.1 134 778 545.7
VIO computation (ms) 34.6 479 545 67.7 70.0

marking odometry algorithms. Due to the stable and reliable data provided, it has
currently become a popular dataset [182; 183].

Our experiments have focused on the analysis of two parameters: the latency of
the network and the accuracy of the odometry algorithm. We have also analyzed the
processing time required for the feature extraction process and the pose estimation
process for each of the image compression ratios. We have utilized two subsets of
the EuRoC dataset which are considered easy and hard for visual inertial odometry
algorithms, due to the extraction of less or more features. Samples from these two
subsets are shown in Figure 9, where it can be seen that the image corresponding to
the harder set is much darker and less features can be consequently detected. In fact,
in this case, even if an image compression ratio of 5% has an impact of around 25%

40

Multi-robot systems in the edge-cloud continuum

140 -

120 -

100 -

80 -

60 -

Execution Time (ms)

40 -

) b ol b4

|
1% 5% 10% 30% 50% 80% 100% RAW
JPEG Image Quality

Figure 12. Execution times: feature extraction (red) and pose estimation (blue).

of the error at the end of the sample path (0.8 m error with 5% quality versus 0.65 m
with 100% quality), and 1% quality renders a final error of around 1.1 m. In the
harder dataset, however, only up to 5% image quality allows for a convergent path,
as with 1% quality the algorithm is unable to calibrate the camera and IMU and the
path diverges from the start. The errors accumulated with the VINS-Mono odometry
algorithm over the easier and harder paths are shown in Figures 10 and 11, respec-
tively. These indicate that the data quality can be reduced to as little as 10% without
compromising the performance, while 50% quality gives the best performance in a
harder environment. In the easier case, a 10% quality image matches the best per-
formance with minimal odometry error while achieving two orders of magnitude of
reduction in the network latency with respect to broadcasting a raw image.

The two main processes in which an odometry algorithm can be divided are
feature extraction and pose estimation. The distribution of the execution times of
these processes for a range of image qualities (1% to 100%) is shown in the boxplot
in Figure 12, which have been obtained utilizing a 64-bit Intel Core 17-4710MQ
CPU with 8 cores at 2.50 GHz. Each of the distributions has been calculated with
1000 images for which the different compression rates have been applied. While
the feature extraction process has an execution time that remains constant with the
increasing image quality, the pose estimation increases as more features are found
in higher quality images. The network latency has an overhead effect that varies
from under 1% (image qualities under 10%) to over 700% (100% image quality)

41

Jorge Pefa Queralta

100 -

10 -

Round-Trip Latency (ms)

E] -

17

| | | | | | | |
1% 5% 10% 30% 50% 80% 100% RAW
JPEG Image Quality

Figure 13. Average round trip latency with a UDP server.

when compared to the data processing time (feature extraction and pose estimation).
The distribution of round-trip latency for a subset of image qualities is shown in the
boxplot in Figure 13, where samples of 100 images have been utilized to calculate
each of the distributions.

2.2.4 Remarks

We have evaluated the impact of image compression and quality in a visual inertial
odometry algorithm. Our results show that image quality can be reduced up to a cer-
tain threshold, which depends on the ability of the algorithm to extract features from
the environment, without a significant impact on odometry accuracy. This opens
the door to the utilization of an efficient computational offloading scheme with edge
computing. In turn, this enables the simplification of hardware onboard robots, a
consequent reduction of power consumption and the ability to utilize a single edge
gateway to offload the odometry computation from multiple robots. The latency of
the network adds an overhead between 0.3% and 780% with respect to the processing
time. In both datasets considered, a low accuracy loss could be achieved reducing
the image quality to as much as 10%, where the network overhead is below 1%. In
consequence, the offloading scheme does not induce significant delays to the odome-
try and has the potential to even improve the performance in terms of frame rate with
more powerful edge gateways. The proposed edge computing offloading scheme can
bring multiple benefits to a large multi-robot system, from cost reduction and energy

42

Multi-robot systems in the edge-cloud continuum

15.45

9.14 8.8

0.55 0.74

I I I I
LUT LUTRAM FF IO DSP

Figure 14. FPGA Resource Utilization Summary

efficiency to increased performance and reliability.

2.3 Use case: offloading lidar odometry with FPGAs

One of the key advantages of offloading computation is leveraging the same hard-
ware for multiple robots, while simplifying the onboard hardware in small mobile
robots. Lidar odometry algorithms use the lidar’s data to compute the motion of a
robot between two consecutive sweeps. In general, lidar odometry algorithms can be
divided into three steps. The first step is to extract features from lidar data, the fea-
tures can be the geometric distributions, or some stable points which can be observed
in the two consecutive sweeps. The next step is to find the feature correspondence
through the position difference between sweeps. The last step is estimating the li-
dar movement through the time between two sweeps [133]. FPGA’s have the ability
to process lidar data in real time with a limited resource utilization, and naturally
parallelize the processing of data from multiple lidars [169].

Our goal in this use case study is to design a pure VHDL implementation for
FPGAs. Instead of comparing complete lidar sweeps, as most recent implementa-
tions do, we aim at a implementation that analyzes lidar data as it is available and
compares features in real-time. With this, we expect to be able to increase odometry
accuracy and the positioning update frequency.

2.3.1 Initial implementation and analysis

In order to test the efficiency and usability of the feature-based odometry algorithm,
we have first implemented in C++ within ROS. We use an RPLidar A1 for our ex-
periment, a 360° two-dimensional lidar with 1° resolution at 10 Hz.

43

Jorge Pefa Queralta

2.3.2 FPGA implementation

We have utilized a Zybo Z7-20 board for implementing our algorithm. This relatively
small board is built around the Z-7010, the smallest chip in the Xilinx Zyng-7000
family. Even though the board integrates a dual-core ARM Cortex-A9 processor, we
only use the FPGA logic in order to provide a generic design that can be easily ported
to other platforms.

Implementing the proposed algorithm using VHDL hardware modelling presents
some challenges. On one side, the need for calculation of trigonometric functions.
In order to solve this, we utilize coordinate rotation digital computer (CORDIC) al-
gorithms implemented in VHDL. In particular, we generate sine samples and from
those calculate the values for cosine. On the other side, conversion types and in-
tegrating the CORDIC calculations into a state machine, requiring complimentary
intermediate signals.

2.3.3 FPGA resource utilization

In order to study the potential of the FPGA-based implementation to be parallelized,
we have synthesized an initial and unoptimized version of the design. The prelimi-
nary results show that the main resource utilization occurs with the IO banks (8.8%),
Logic LUTs (9.14%) and DSP modules (15.45%). Nonetheless, the IO banks can
be easily multiplexed, and additional lidars can be connected with a single input,
so they do not represent a significant limitation. Moreover, a single nRF or Wi-
Fi receiver can be utilized to receive information from multiple units. In terms of
DSP utilization, the modules are used in the CORDIC implementations. A single
CORDIC module can be shared among multiple parallel processes with a relatively
simple state machine. Therefore, the proposed algorithm is not limited by the num-
ber of available DSPs. Similarly, we have estimated that around 90% of the LUTs
can be shared. This is possible because the timing constraints that the frequency
of the lidar scanner impose are very relaxed compared to the maximum performance
that the VHDL implementation can deliver. Therefore, we expect that a single FPGA
board will be able to run in parallel over 50 lidar odometry calculations. This can
be combined with wireless communication solutions that provide enough available
channels, such as Wi-Fi or nRF. In contrast, on an Intel Atom x5-Z8350 CPU @
1.44 GHz x 4, the proposed algorithm can be executed approximately 5 to 15 times
in parallel, depending on whether other processes are being run.

2.3.4 Remarks

We have presented preliminary work on an odometry offloading solution for multi-
robot systems. We have designed and implemented a feature-based lidar odometry

44

Multi-robot systems in the edge-cloud continuum

Table 3. Performance Comparison Between FPGA and CPU Implementations

Xilinx Zynq XC7Z010 Intel Atom x5-Z8350

(VHDL Impl.) (C++ Impl.)
Aprox. Resource 10% (fixed) + 1% 4% (fixed) + 7% CPU
Max. concurrency >20-50%* < 5-15

*Expected range with optimized code.

Table 4. FPGA Resource Utilization Breakdown

Resource Type Used Available

Slice LUTSs 4961 53200
LUT as Logic 4865 53200
LUT as Memory 96 17400

Slice Registers 791 106400
F7 Muxes 32 26600
F8 Muxes 0 13300
Bonded IOB 11 125
DSPs 34 220

algorithm that is flexible and can accommodate to a variety of indoors or outdoors
environments, and implemented in an FPGA with pure VHDL modeling. The re-
sults presented in this section show potential for high parallelism and low-latency
odometry at the edge with relatively small FPGAs.

2.4 Summary and conclusions

Throughout this chapter, we have introduced a high-level architectural proposal for
designing large-scale distributed robotic systems able to leverage the edge-cloud
continuum. We also looked at the potential of integrating blockchain technologies,
which are discussed more in depth in the next chapter. At this point, these are just
proposals and the two use cases presented later in the chapter only implement part of
such architectures. The use cases have focused on analyzing the potential for lever-
aging shared computing resources at the edge in multi-robot systems. In the first use
case, the focus is on how networking constraints might limit offloading computation
from visual sensors, where lossy compression plays an important role. In the second
use case, we have focused instead on studying the potential of specialized hardware,
with FPGA-based accelerators for a lidar odometry algorithm. In summary, this
chapter presents a position on the design of distributed robotic systems and an initial
analysis of the potential implications for different state estimation algorithms.

45

3 DLTs for distributed robotic systems

Collaborative multi-robot systems are inherently distributed networked and mobile
systems. With the vast majority of the coordination and planning algorithms in the
literature requiring consensus among the different robots, DLTs are but a natural
choice when designing decentralized, trustable and secure systems. During this chap-
ter, we delve into the potential of DLTs for multi-robot systems. The focus is not on
implementing or integrating specific algorithms, but instead on exploring the possi-
ble application scenarios and use cases from a conceptual and architectural point of
view. This chapter discusses how different types of DLT's can serve as the underlying
platform for collaborative decision making in multi-robot systems. Portions of text
and a subset of figures in this chapter are reproduced from our previous works [8; 12].
In general, this chapter presents a position on the potential of blockchain and other
DLTs for distributed and multi-robot systems.

3.1 Consensus mechanisms in blockchains

In this section, we introduce background concepts and theory. We focus on the con-
cepts of consensus and, in particular, Proof of Work (PoW) and Proof of Stake (PoS),
smart contracts, and scalability through sharding.

3.1.1 Consensus

Consensus mechanisms in a distributed system or decentralized network are those al-
gorithms that allow agents to reach an agreement with respect to certain values, trans-
actions or parameters whenever it is needed. Consensus mechanisms allow nodes in
the network to trust others. The four most popular consensus mechanisms, according
to [184], are Proof of Work (PoW), Proof of Stake (PoS), Practical Byzantine Fault
Tolerance (PBFT) and Delegated Proof of Stake (DPoS), with other significant ap-
proaches including Proof of Authority (PoA), Proof of Elapsed Time (PoET) or Proof
of Bandwidth (PoB). Both Bitcoin and Ethereum, the two most popular blockchains,
utilize PoW, while Ethereum is shifting to a PoS-based consensus mechanism in
Ethereum 2.0, also with implementations of PoA consensus available. Figure 15
shows typical consensus algorithms, DLT frameworks that use them, and a selection
of their potential applications.

46

DLTs for distributed robotic systems

Smart Cities Agricultural loT
Applications Smart Healthcare Vehicular loT
Smart Grids Unmanned Vehicles

Ethereum and other PoW-based Blockchains

Distributed Ledger

Technologies Hyperledger: Fabric, Sawtooth, Indy, Burrow, and Iroha

Third-Generation DLTs: IOTA

Proof of Work / Proof of Stake /
Useful Proof of Work Delegated Proof of Stake
Distributed Practical Byzantine Fast Probabilistic
Consensus
Fault Tolerance Consensus
Protocols
Proof-of-Authority Paxos / Raft

Figure 15. Blockchain/DLT Consensus protocols, systems, and applications in integration
with the Internet of Things.

Proof of work

The consensus mechanism introduced by [185] as part of the Bitcoin was Proof of
Work (PoW), in what is the first known implementation of this mechanism as a way
of achieving consensus in a distributed system. Firstly introduced by [186] as a
filter to minimize the spamming capability of malicious email senders, the original
idea of a PoW system has been invariant: to require a node in a network to solve
a moderately computational intensive cryptographic problem in order to be able to
make a transaction in the network, or validate its identity. In other words, a PoW
is a cryptographic puzzle that is difficult to solve, while still being possible within a
certain time and given certain hardware resources, and that it is very easy to validate.

47

Jorge Pefa Queralta

Therefore, it takes a node a large amount of computing power to solve a PoW puzzle,
but it takes other nodes in the network a small amount of computational resources to
validate the solution.

In the Bitcoin and many successive blockchain systems, including Ethe-reum
[187], a PoW-based consensus is introduced in order to validate new blocks in the
blockchain. A block can be roughly described as a single entry in the distributed
ledger containing information about a set of transactions. Each of the transactions
in the block is confirmed when the block is validated by the network. In order to
validate or mine the data in a block, or body, a header is generated by hashing the
information in the block body. The PoW consists on adding an extra cell to the block
body, a random number denominated nonce, such that the block header meets some
predefined conditions. These conditions are set on a block header’s target hash as
a function of the hashes of previous blocks. Once a node finds a solution to the
PoW puzzle, i.e., a nonce with which the target hash is obtained, then it broadcasts
the block to the rest of the network. Other nodes can easily validate the proposed
solution, and then start mining a new block. The miner that solves the PoW for a
given block obtains a reward in the form of newly created, or mined, cryptocurrency.
When a block is mined by solving the corresponding PoW puzzle, it is added to the
blockchain and the transactions that it contains are considered validated.

A security concern arises when two nodes find a nonce at the same time or when
a second node, which has not received the proof yet, starts broadcasting the solution
as well. In Bitcoin, nodes accept the previous block for which they receive a proof. In
the case of two near-simultaneous proofs, the blockchain separates in two branches,
or forks. [185] introduced a rule in which the fork becoming longer or accumulat-
ing mining difficulty would be judged as the authentic one by the network. This is
a practical solution as it is highly improbable that two consecutive blocks will be
solved simultaneously by two pairs of nodes. In any case, even if two or more blocks
are solved at the same time, at some points one of the forks will become longer. This
defines the so-called 51% or double spending attack, as malicious nodes would need
to to control at least 51% of the network’s computing power in order to be able to
introduce a faulty transaction in a block, validate it, and keep validating consecu-
tive nodes in the corresponding fork so that it is accepted as the canonical fork by
the network. When the size of the network and the number of miners increases, the
probability of such attack is reduced, thus giving the blockchain its immutability and
data integrity properties. At this point, the incentive introduced as a reward for solv-
ing a PoW puzzle is a key aspect of the blockchain in order to increase the number
of miner nodes. The double spending attack is also one of the main vulnerabilities
of blockchains based on a PoW consensus mechanism.

The benefit of having an expensive PoW solution in terms of hardware, energy
consumption and time is that it is equally expensive for malicious nodes to attack
the network. Part of the security of PoW thus comes from disincentivizing attackers

48

DLTs for distributed robotic systems

because of the large a priori investment required in order to be able to attack and
gain control of the network, which would not pay off even if the attack is successful
[188]. However, this also means that miner nodes need to spend large amounts of
resources, including electricity, in order to successfully solve the PoW problem and
mine a block. This makes the blockchain growth unsustainable as all nodes in the
blockchain actively try to solve the PoW puzzles while only one of them obtains
the reward. In addition, it also creates inequality across the network and higher entry
cost; i.e., a new node joining the network needs a large initial investment in hardware
in order to be able to solve the PoW efficiently and compete for rewards, and nodes
with the best hardware accumulate most of the rewards.

The estimation of computing resources relying on Proof of Work has been stud-
ied earlier by [189] and others [190; 191]. In his work, Eyal describes how not only
full PoW solutions but also partial solutions can be utilized to ensure members in a
mining pool do contribute to the collective mining effort. A mining pool is an as-
sociation of nodes in a blockchain that utilizes PoW consensus in order to increase
the probability of solving the PoW problem first, and therefore obtaining the corre-
sponding reward. Nonetheless, if rewards are shared equally across the pool, then a
malicious node might join the pool but never share its PoW solutions. The solution
proposed by [189] is to ask all nodes in the pool to share partial proofs, which can
be validated by the rest of the pool members, and utilized to quantify the effort or
computational power that nodes are dedicating, in average, to the mining task. A key
aspect to take into account, however, is the distribution of complexity of the partial
proofs of work as described by [189]. This helps avoiding that an a malicious node
always submits a partial proof of work with some minimum complexity but never
tries to calculate the full proof. In a similar direction but with an opposite approach,
[192] proposed a mechanism for the definition of non-outsourceable puzzles which
would discourage miners from joining mining pools or creating mining coalitions
due to the inability of the pool members to estimate the partial progress of each
individual node.

Proof of useful work

Part of the research community has argued that taking into account the humongous
amount of computational resources and electric energy put into mining to solve PoW
puzzles, at least these could be defined in a way that the solutions found would help
research in other fields. As an example, [193] proposed the definition of PoW puzzles
that would find long chains of primes. Solving these PoW would be then dedicated
to solve a mathematical problem which consists on finding the distribution of the
Cunningham prime chain. In this case, the Fermat Primality Test would be used to
validate the PoW solutions.

A different research approach is the definition of simpler PoW requiring less

49

Jorge Pefa Queralta

computational resources in order to reduce the entry barrier and provide a more
uniform distribution of mined currency. [194] introduced the concept of Cuckoo
hashing, in which the PoW difficulty would remain constant over time.

Proof of stake

While PoW introduces a secure consensus mechanism in distributed networks, the
increasing amount of computational resources not only limits the options of new
nodes in the network to obtain mined currency, but also limits the maximum amount
of transactions that can be processed as it takes an average time of 10 minutes to val-
idate a block and all the transactions it includes [195]. In order to reduce the trans-
action validation latency, a Proof of Stake (PoS) mechanism was first implemented
within the Nxtcoin [196; 197]. A PoS mechanism chooses the block validator based
on the stake of different nodes, assigning a probability of being validator that is di-
rectly proportional to the amount of coins that a miner owns. A similar approach
was introduced by [198], where the pure stake a miner owns is directly related to the
probability of the miner to mine a new block, while the exact chance is calculated
also based on the state of the current block.

A direct consequence of a PoS-based consensus is that nodes accumulating large
amounts of cryptocurrency have a higher change of mining new currency, addition-
ally increasing their stake. Moreover, the network becomes more vulnerable to at-
tacks from these nodes or coalitions of nodes with large stakes. In Ethereum 2.0, a
PoS consensus mechanism will be introduced within the so-called Casper protocol
[199]. Nonetheless, rather than considering the stake a miner owns, miners are re-
quired to put part of their coins at stake and locking them in a virtual safe during
the validation process. Keeping the coins in a wallet without putting them at stake
is not considered sufficient to be elected a validator in this case. In consequence,
miners are incentivized to act in a honest manner as they risk losing all the coins they
put at stake if faulty transactions are detected in their validated blocks. The mecha-
nism through which a node loses the coins at stake because of faulty transactions are
detected is called slashing.

A clear benefit of PoS over a PoW mechanism is the much lower computational
complexity of the operations involved, thus having a much smaller footprint in terms
of energy consumption and computational resources required. Multiple authors, such
as [200] or [201], have studied the sustainability of Bitcoin’s growth and its energy
footprint, which researchers estimate to be the equivalent, on a yearly basis, to non-
renewable energy resources consumed by entire nations of the size of Czech Republic
or Jordan. Nevertheless, this also means that because miners do not need to dedicate
large amounts of computational resources to mining, it is easier to perform Sybil
attacks or spawn multiple identities within a single malicious node.

The 51% attack discussed in the PoW consensus mechanism is still a potential

50

DLTs for distributed robotic systems

attack vector in a PoS system. However, while in the PoW case attackers need to
obtain control over 51% of the network’s computing power, which becomes increas-
ingly easy as larger pools monopolizing the mining process are created, in a PoS
system an attacker needs control over 51% of the cryptocurrency’s total supply. This
is, in theory, a more difficult problem than gathering enough computing power. Fur-
thermore, the attack’s incentive is additionally reduced due to the potential evolution
of the cryptocurrency’s market capitalization during and after the attack: while an at-
tacker accumulates coins, the coin’s value is likely to increase significantly, causing
the attack to become increasingly expensive. In addition, if the coin’s value drops
after the attack due to a loss of trust in the network, the main adversely affected node
would be the attacker itself as the value of the initial investment would significantly
decrease.

In general terms, a PoS system relies on a validator or a set of validators which
are eligible after depositing part of their stake. In other words, as described by [199],
nodes earn the right to propose a block only after locking part of the coins they own
coins on the blockchain. This is an extended definition over the pure PoS system
firstly implemented by [202] as part of PPCoin, in which the total miner’s stake is
directly considered.

Practical byzantine fault tolerance

One of the most famous and successful blockchains to date is Hyperledger, a project
initiated in 2016 within the Linux Foundation [203]. Hyperledger is a permissioned
blockchain which has been successfully utilized in multiple industrial domains [204].
The objective of Hyperledger is the deployment of an open-source and cross-industry
framework that can be utilized as a standard platform to run smart contracts within a
decentralized ledger.

The consensus mechanism utilized in Hyperledger is a Practical Byzantine Fault
Tolerance (PBFT) algorithm [205], first proposed by [206]. PBFT was the first algo-
rithm with the ability to operate in large asynchronous networks such as the Internet,
while providing over one order of magnitude in processing power improvement over
previous methods, allowing for high-performance Byzantine state machine replica-
tion, and demonstrating thousands of requests per second. Byzantine fault tolerance
can be described as the capacity of a system to maintain proper operation when
multiple errors or unexpected behaviour occur within part of the system, but not its
totality [207]. In a distributed network and considering the consensus problem, this
is equivalent to the ability of the network to provide a robust consensus even in an
scenario where a subset of nodes act maliciously, failing to forward valid data or
sending invalid information.

In a PBFT system, nodes are distinguished between validating and not-validating
peers [203]. The validating nodes run the consensus algorithm, in which they repli-

51

Jorge Pefa Queralta

cate a state machine and evaluate its result. A client makes a request that is trans-
mitted over the peer-to-peer network through the non-validating nodes, which act as
proxies between clients and validators. Non-validating nodes do not participate in
the consensus mechanism, but are able to validate the results. The PBFT algorithm
is able to provide consensus across the network when at most one third of the nodes
behave arbitrarily or maliciously. Because the validator nodes need to arrive to the
same results regarding the client request, the state machine that is replicated must be
deterministic. Three types of transactions are valid operations: deploy, invoke and
query. These involve accepting the code to be deployed (a smart contract), invoking
it with a given series of accepted parameter and indicating the result, and querying a
state from another node, respectively. The client awaits for a predefined minimum of
replies with the same results, which depends on the maximum number of potentially
faulty nodes.

In comparison with PoW and PoS systems, in PBFT individual transactions can
be confirmed without the need to wait for a block including several transactions
to be added to the blockchain. In terms of energy efficiency, PBFT requires less
computational resources than a PoW consensus, but increases the probability of a
Sybil attack, where a malicious nodes would create multiple instances pretending to
be a large number of parties. In practice, PBFT is often combined with a PoW that
must be solved in order to join the network and within certain time intervals to ensure
that every node in the network is dedicating some minimum computational resources
to the collective validation effort. An important benefit of PBFT over PoW and PoS
is the low reward variance, as every node can be incentivized. This lowers the reward
variance across miners. Nonetheless, the scalability of PBFT is an issue due to the
large number of peer-to-peer communication exchanges required.

3.1.2 Smart contracts

The Ethereum blockchain [187] introduced one of the most notorious smart contract
platforms based on blockchain, by providing a Turing complete language as part of
its framework [208]. Ethereum introduced Solidity [209] as a language to implement
smart contracts. In Solidity, a smart contract can be seen as a set of code instructions,
or functions, and a set of initial, intermediate and final states (data). Both the data
and the code resides at a specific address within the Ethereum blockchain. In general
terms, a smart contract is simply a program that is run within the blockchain. In
practice, it means that all nodes participating in the consensus algorithm run the
same program and validate its output.

Smart contracts are part of the Ethereum Virtual Machine (EVM) [210]. The
EVM is a completely isolated environment for executing smart contracts within
Ethereum, with no access to other processes, network connectivity or files in the
system. In addition, the way smart contracts can access data from other smart con-

52

DLTs for distributed robotic systems

tracts is also limited. The EVM is based on the existence of contract accounts, which
extend the functionality of external accounts, those controlled by a human or network
node through a public-private key pair. Contract accounts operate in an automated
way as a function of the code stored within the account. While external accounts are
defined based on their key pair, with an address determined based on the public key
being assigned to each node joining the network, contract accounts have addresses
that are determined when the contract is created. In Ethereum, the address space is
shared among both types of accounts.

Contract accounts are created through transactions that have a null or empty re-
cipient. Those transactions must contain code that outputs the smart contract’s code,
which is then generated when the transaction’s code is executed within the EVM.
In general terms, transactions including a payload and Ether (Ethereum’s cryptocur-
rency) between external accounts in Ethereum are extended so that when a transac-
tion’s target account is a contract account counting a set of code instructions, these
are executed given the payload in the transaction. A key concept in Ethereum is gas.
Upon creation, transactions are assigned a definite quantity of gas. The gas is a mea-
sure of the processing power that will be dedicated to that transaction. In other words,
the gas is the transaction fee. The gas is initially charged into the transaction, and its
reserve gradually decreases as a function of a set of predefined rules when the EVM
executes the different transaction instructions. The gas that is left is refunded to the
transaction creator. The gas price, which is paid upfront, is decided by the creator
node. Miners, which obtain the gas price as a reward, decide which transactions to
mine based on the amount of gas included. Therefore, the gas price is decided based
on the market and the desired priority that miners will give to a specific transaction.
In these terms, the Ether that a given node accumulates can be related to its ability
to utilize the Ethereum network — the EVM — to perform computation based on
instructions included in the transactions that the node initiates.

3.1.3 Sharding

One of the main disadvantages of the consensus algorithms presented above, spe-
cially PoW due the large computational resources required, is scalability [211]. While
Bitcoin only requires one broadcast per block, PBFT is based on multicast mes-
sages and also suffers from scalability in terms of communication cost [212]. In
all three cases, nonetheless, security does increase as the network becomes larger.
[213] presented Elastico in order to overcome the scalability limitations of previ-
ous blockchains, with an approach in which the network is partitioned into a set
of smaller subnetworks or committees, also called shards. The definition of such
committees is referred to as sharding, and Elastico was the first implementation of
a sharding protocol for permissionless blockchains that is able to tolerate a prede-
fined fraction of byzantine nodes in the network. Another early proposal of sharding

53

Jorge Pefa Queralta

in blockchains was proposed by [214], in which Merklix trees, or Merkle Patricia
trees [215; 216] are utilized to merge the state of different shards into a global state.
These trees are, in general terms, an extension of Merkle trees for unordered sets that
enable addition and removal of elements or branches in the tree with a logarithmic
complexity and without the need of full tree recalculation.

Perhaps the biggest effort that is currently being put into the development of
a truly decentralized, permissionless and scalable yet secure blockchain is the de-
sign and development of Ethereum 2.0 [217], where huge amounts of computing re-
sources will be no longer required for mining [218]. In oder to do this, the Ethereum
Foundation and other developers behind Ethereum 2.0 have embraced Proof of Stake
as the main consensus mechanism, while still utilizing PoW to secure the network,
and the concept of sharding towards scalability. The consensus is based on the Casper
protocol [219], which incentives for mining have been described by [199].

While the impact that shards have on transaction scalability is relatively clear,
with a much larger throughout being possible in terms of transactions validated per
second, it is not straightforward to extend the implementation of smart contracts with
sharding. As smart contracts have associated a series of data states corresponding to
their code, each state change can be though of as a transaction. There are two basic
approaches in order to deploy smart contracts in a network with shards: either con-
tracts are executed within a single shard, or a cross-shard synchronization mechanism
exists that allows for data to flow between shards. This also affects to transactions
involving tokens that are assigned to different shards, as cross-shard communication
is needed.

3.1.4 Scalability

The main goals of Ethereum 2.0 can be summarized in five items: decentralization
(to allow single-shard or system-level validation with consumer off-the-shelf hard-
ware), resilience (to maintain operational conditions through network partitions and
even if a significant fraction of the network goes offline), security (to deploy ad-
vanced crytographic strategies that enable a large-scale participation and validation),
simplicity (to keep the consensus layer and top-level definitions as simple as possi-
ble), and longevity (to utilize either quantum secure components and mechanisms, or
design the system in a way that it can be easily updated when possible for quantum
secure equivalents), according to the Ethereum 2.0 specification [218; 220].

The roadmap to Ethereum 2.0 [221] includes only a basic sharding approach
in its initial phase, with no support for the EVM. The key innovations in the first
phase of the Ethereum 2.0 deployment will be the utilization of the beacon chain
with a PoS-based consensus mechanism [222; 223]. In the beacon chain, the full
blockchain is not stored at all nodes. Instead, each shard has its own full record of
transactions, i.e., its own blockchain, and the beacon chain can be understood as a

54

DLTs for distributed robotic systems

central blockchain that coordinates the shards and stores a chain of global states. In
this architecture [224], there are different types of nodes: (i) super-full nodes storing
the beacon chain and every block from each shard’s blockchain, (ii) top-level nodes
storing and processing the blocks in the beacon chain and the headers in the shards’
blocks, (iii) single-shard nodes, which are top-level nodes that process and verify
at least one full shard, and (iv) light nodes which only process the headers of the
main chain blocks. A full Ethereum 2.0 deployment with cross-shard transactions,
support for light nodes and flexible smart contracts being able to be executed within
a dynamic number of shards is still in early development stages. Nonetheless, most
of the concepts have been laid down and development work is in progress. One of the
main challenges is on how to support a dynamic reallocation of validators to different
shards, i.e., the shuffling of shards that each single-shard node is validating. In this
process, there is a trade-off between reshuffling overhead, as a single-shard node in
charge of a new shard needs to download the corresponding data, and the time than
an attacker needs in order to infiltrate a single shard once its validators are known to
the rest of the network.

Some of the main ideas of Ethereum’s solution in order to enable cross-shard
communication, and the distribution of validators or shards for single-shard nodes,
are the following [224]. First, the introduction of receipts, which are objects that
are not stored in the shard’s state but are defined in a way that Merkle proofs of their
existence can be generated. This is useful for the simplest case where a larger number
of applications have each a reduced number of users and do not need to share data
often, so that each application can be contained within a shard and utilize receipts
to communicate with other applications. Second, to offer transparent sharding, i.e.,
to dynamically create, merge or divide shards without the need for an application to
be aware. Therefore, the sharding process is transparent to developers and they do
not need to take sharding into account when defining smart contracts for different
applications. Third, a solution for asynchronous cross-shard communication where
receipts could be generated in order to revert transactions if necessary. If the system
is biased such that reverts propagate faster than cross-shard requests, then this can
effectively solve the problem of asynchronous cross-shard communication. Fourth,
an strategy to avoid that an attacker sends multiple cross-shard requests from within
a single shard. A proposed approach is to require an application that makes a cross-
shard call to pre-purchase an amount of gas at the receiving shard (where the pre-
purchase transaction occurs), which would be set as congealed. The amount of gas
that can be congealed in a single shard is predefined, thus setting a limit to the amount
of calls that can be made from other shards. Congealing gas avoids issues with
volatile gas prices. In addition, a demurrage rate is included, such that the congealed
gas is lost at a preset rate if it is not used within a receipt. Finally, congealed gas has
the potential to be used for reliable intra-shard scheduling, even if only for the short
term.

55

Jorge Pefa Queralta

A security analysis of scalable blockchains through sharding has been carried out
by [225] as part of the definition of Omniledger. While still in a proof-of-concept
phase, the authors claim that Omniledger is the first decentralized ledger that is able
to scale to Visa-level transaction throughput securely. Omniledger focuses on token
transactions only, even though the authors lay down the directions for future work
in order to support cross-shard communication for smart contracts. While the main
concepts behind Omniledger will most probably have an impact in future blockchain
implementations with sharding, the Ethereum approach is more robust in terms of
strategy and definitions, as well as from the point of view of a thorough security
analysis.

3.2 Blockchain-based services at the MEC layer

5G and beyond connectivity has the potential for bringing together the telecom-
munications, robotics [226], artificial intelligence (AI) [227], Internet of Things
(IoT) [228] and blockchain domains [229], all of which share a recent trend in which
computation is shifting towards more distributed architectures [230; 149; 231]. This
comes together with the concept of network slicing and edge computing, key pil-
lars behind the low-latency and network load optimization in 5G and beyond net-
works [232]. Through multi-tenant slicing, new business opportunities are being
created at the edge of the network [233]. This section aims at connecting the po-
tential that edge computing brings to multi-robot systems (presented in the previ-
ous chapter), to the opportunities brought by blockchain and other distributed ledger
technologies from the perspective of decentralized robotic systems. We explore the
potential for combining the backbone of today’s autonomous robotic navigation and
localization, the Robot Operating System [234], with the latest development in 5G
and slicing strategies at the MEC layer. The MEC layer is an inherently distributed
computing platform that enables high-performance computing (HPC) services with
minimal latency [235]. The most direct application is to extend existing offloading
schemes [236], and integrate them within the 5G stack [237]. This has clear poten-
tial in vehicular and robotic navigation, especially when combined with predictive
schemes [238]. In addition, we envision that FPGA-based hardware accelerators
at the base stations will provide new levels of reconfigurability, energy efficiency,
and processing power within the offloading orchestrators. Moreover, we take into
account integration between distributed robotic systems [239], and distributed com-
putation platforms defined within a blockchain [187]. We argue that permissioned
blockchains backed by a large public and trusted infrastructure will be a key element
of MEC-based services. These blockchains will be able to provide a transparent
and secure channel for connected vehicles to interact with third parties. Slicing at
the MEC layer in 5G and beyond can reduce the computational load in connected
robots and vehicles. This will allow units with more constrained resources, such as

56

DLTs for distributed robotic systems

Tenant PP Tenant Blockchain Services Edge Edge oo Edge
Application Application Management Resource Resource Resource
Virtualized Infrastructure Harware Abstraction Layer
‘ Physical Infrastructure (Hardware) ‘ ‘ Modular/Reconfigurable Hardware ‘
‘ Networking ‘ ‘ Computing ‘ ‘ Storage ‘ ‘ FPGAs ‘ CGRAs ‘ AT Acc. H VPUs ‘

Figure 16. 5G-MEC Computational Building Blocks

delivery drones, to enhance their situational awareness and increase their autonomy.
In terms of safety and reliability in long-term autonomous operation in both self-
driving vehicles and autonomous robots, challenges arise from the point of view of
(1) localization accuracy [240], (2) situational awareness and level of understand-
ing of the environment [241], and (3) limitations of computational capabilities in
smaller robots or drones, with algorithms that might take longer to run depending
on the complexity of the environment [242]. Slicing at the MEC layer has potential
for providing services to support the operation of connected autonomous vehicles
and robots by providing in respect to the above challenges (1) streaming services of
high definition (HD) maps for accurate localization with online updates whenever the
environment changes; (2) semantic information of the environment, as well as meta-
data from other connected vehicles; and (3) an adaptive algorithm that autonomously
provides in real-time map models and environment data according to the operational
and computational capabilities of the vehicle requesting data.

We see the main opportunities as part of smart cities, where the blockchain can be
supported by either RAN or 5G-connected public infrastructure, as well as industrial
environments where there exists trust. The concept of Smart City has been mostly
tied to the IoT since its inception [243]. Nonetheless, the IoT and the robotics domain
have since been integrated as connected robots become the standard in industrial,
civil and other application domains. The new edge and fog computing paradigms
have only increased this synergy between the two domains [13]. Figure 16 illustrates
a generic SG-MEC architecture with a blockchain to manage services (tenant appli-
cations) and edge resources (reconfigurable and on-demand hardware). In a smart
city, a public blockchain for data sharing could boost the deployment of autonomous
robots from both private and public entities. Besides, the role of the infrastructure
should be considered not only as a platform to manage the blockchain lifecycle but
also as a static data source and validating platform, where traffic cameras and other
sensors that already exist can be integrated.

57

Jorge Pefa Queralta

3.2.1 Multi-Access edge computing and network slicing

The standardization of Multi-Access Edge Computing (MEC) has been promoted by
the European Telecommunications Standards Institute (ETSI) [244], with the MEC
Industry Specification Group (ISG) launched at the end of 2014. The ETSI MEC ISG
aims at defining a multi-tenant distributed cloud platform to be located at the edge of
the radio access network (RAN) [245]. Moving computation and data intensive tasks
towards the edge of the network enables the low-latency and high-bandwidth require-
ments of 5G and beyond connectivity. Other fundamental technologies towards this
end include containerization and virtualization, software defined networking (SDN),
and network function virtualization [246].

One of the key pillars enabling multiple verticals within MEC, and opening the
RAN edge to a wide variety of industries and users, is network slicing [247]. Net-
work slicing consists of the co-existence of multiple logical software-defined net-
works (slices) on a common hardware infrastructure, i.e., a multi-tenant cloud infras-
tructure at the edge of the network, with each of the slices being optimized to meet
the requirements of a particular application [248]. We are particularly interested in
slicing for the automotive sector, where 5G will be the key in vehicle-to-everything
communication [249].

3.2.2 Previous works

The literature shows that the integration of blockchain technology at the MEC layer
has been proposed by multiple authors [250; 251; 252]. Nonetheless, these have
been mostly focusing on the blockchain as a secure way of sharing or data or an
immutable ledger to store transactions. However, one of the key applications of
blockchains is their utilization as a robust decentralized computer that ensures the
validity of execution of pieces of code called smart contracts [187]. We exploit these
and the consensus protocols of blockchains to provide a framework for managing
edge resources and services.

Xiong et al. proposed the utilization of edge services to offer resource-constrained
devices opportunities to join a blockchain by mining at the edge. Then, the end-
devices share the data with third-party applications through a pricing scheme, mod-
eling the interactions within the IoT as market activities. While their focus is on
utilizing blockchains as a cryptocurrency and auditable platform, we focus on the
distributed computation that smart contracts enable instead.

Liu et al. presented a similar approach, where the MEC layer is used to offload
mining operations [253]. Nonetheless, this was part of a wider offloading framework
where the focus was on deciding which offloaded operation would be cached. A
similar scheme can be integrated within the offloading slice proposed in this study.

Zhu et al.’s EdgeChain is the closest work to this work [254]. EdgeChain is a

58

DLTs for distributed robotic systems

blockchain-based architecture that is utilized to place third-party applications across
the MEC. We extend this idea for dynamic reconfiguration with smart contracts based
on client-provider interactions, rather than considering the service providers only.

3.2.3 Managing MEC with permissioned blockchains

A consortium blockchain such as Hyperledger deployed across the MEC layer and
connected public infrastructure, which are the nodes acting as validators, can be
utilized to manage the interaction between connected clients and service providers,
and at the same time orchestrating the hardware resources at the MEC layer. The
proposed system architecture is illustrated in Fig. 17

We envision the existence of at least three separate network slices in order to sup-
port the aforementioned services. On one side, efficient offloading can be achieved
with the on-demand reconfiguration of hardware accelerators, as well as Al accel-
erators. This slice focuses on low-latency in terms of fast data processing and opti-
mization of computing resources to support as large number of connected devices as
possible.

Some key benefits of this architecture are (i) identities are managed directly by
the consortium blockchain and all transactions are signed and immutably recorded;
(ii) the distribution of hardware resources or computing power is done through smart
contracts and agreed across the MEC layer, with blockchain-enabled mobility; and
(iii) a connected client, such as an autonomous robot or a self-driving car, requests a
service from a third-party through the blockchain slice; if the smart contract approves
the service, then the corresponding resources are configured and provisioned at the
corresponding slice.

3.2.4 Distributed robotic systems

So far, the proposed architecture considers a distributed network architecture with
distributed consensus algorithms. The last part of the piece is a distributed frame-
work for deploying distributed robotic systems and algorithms to provide services
to connected vehicles and robots. The Robot Operating System (ROS) has been the
de-facto standard in production-ready robotic development for the past years [234].
However, wider adoption requires several challenges to be solved, including auto-
mated node discovery, real-time systems, non-ideal networks and distributed multi-
robot deployments. These and other use cases are being developed within ROS 2 [239].
We believe that ROS 2 will be an essential piece in connected vehicles and robots
by providing a common framework and standardization to the MEC-based services.
ROS 2 can solve key challenges in flexible service definitions at the MEC layer. It
will provide standardization of data formats, channels and deployment of algorithms,
with a common underlying logic for all service providers as will be discussed in the

59

Jorge Pefa Queralta

$Q0IAIOS Awouony DN Peseg-ureyoyoo[g J0J aInoayory *L] 3ansLy

SOPIOA POIOUN0,) ‘SOSSOUTSIE] [RI0T]
SIOPIAOL] 9IIAIOS)R] -PIT,

!

UOLRINGTIU000Y]
[eqors)

Loy Juonoseuey
ey (1H gt

SO TYUIPT UTRYYDO[E]

JO yuomwsRuRy

&

SUILIOS Y SUIproljjO

SU)LIOS Y SuIproyjjO)

SUILIOS[Y SUIprojj0

(VD) /VHAD SPPOIN
DIV O[RINGTJUOIY]

(VUD) /VOAD SPPOIN

DOV O[qRANSIFU0IY]

(VHD) /VOdeD SPPPOIN
DIV O[RINSTIU0Y]

QUISUG] UOIRINSTJU000Y]
1eqory)

_L‘

SUNILIOSTY SUIprojj0)

(VUD) /VHAD SPPOIN
DY O[qRINSTIU0IY]

_ . SOIAN([
i : Poruuo))
i :
: |
. | .
_ ; _
_ _ A
I U0 RZINOIIUAS i soseqeye(] AOPRISOI() oy SIOJRID[90DY
i Surweoy _ POIqLYSI(] SOAIIG [RI0'] —‘—.. Gy Gy pnor)
uonesIssY vye(] -~ _ opepd)) depy pesory suonepIRA = SIOJRID[9IDY DI
OPIYIA DI\ > I PUR OIS] J0SUIS HOIRSURL],) QIRMPICE]
_ v
UOIRI)SODI() SOTAIIS
Soassy _ UOTYRIISII() [RGOX _ 10JR1)SO _ A
AR [soseqeie(l [vqor) .«v...w...a . w. . fw_._.“._,v. ! duy _a. " _.~..C Y [
puR SUDURY 9208 RR(] _ JusesBURIN Sey) [BqOH) i SUIPROLJJO [BqOLD) _ puoypRg
: i : pnorg)

TOPIAOL]
WIS

e —

OIS SUTLIRY T PoqEISI(L ,,‘.
7

./.

WIS Sutuorsiaodg depy

IS UTRYNDO[E]

e —

OIS SIS gurpvoyjjo
- 7

!

60

DLTs for distributed robotic systems

next section.

3.3 MEC for autonomous robots in smart cities

The proposed architecture can be utilized as a general framework to provide ser-
vices through MEC slicing. Nonetheless, we focus on how this architecture can be
integrated to support the autonomous operation of autonomous robots and vehicles,
opening the door to new applications and business opportunities in cities or areas
which support such seamless integration of third-party services within the telecom-
munications network stack. We also outline the role of ROS2 and the blockchain
in the different application scenarios. The key areas of the system are illustrated in
Fig. 18. In the following, we propose different areas where this technologies have
potential, with a purely hypothetical discussion.

3.3.1 Provision of HD maps in real time

Autonomous navigation in dense urban areas requires self-driving cars and more
diverse autonomous robots to have the ability to localize themselves with very high-
accuracy. This is enabled by high definition (HD) maps of the environment [255].
However, HD maps are expensive to generate, update and maintain [256]. In terms of
generation and real-time updates, the proposed architecture can smoothly integrate
within the streaming slice a data fusion module that gathers information from differ-
ent sources to obtain these maps, as described below. Regarding the maintenance,
the main disadvantage of HD maps is that they require large storage on-board the ve-
hicles, and it is impractical to keep maps of large areas within vehicles themselves.
An evident solution is to provide streaming services at the MEC layer. However, this
requires tight mobility and latency control. We believe that this can be achieved with
the combination of ROS2 as a standardization framework, 5G and beyond networks
for low-latency and predictive mechanisms to provide in advance data about the ar-
eas that robots or vehicles will travel through. ROS messages serve as a standard for
data formats, which can be then processed by multiple third parties without requiring
extra communication to instruct on the data structure. Moreover, the nature of ROS
topics enables consistent integration within streaming services to provide HD maps,
with subtopics defining various parameters, e.g. location or point cloud density.

3.3.2 Online update of local HD maps

In Smart Cities, administrators can provide a framework to support the online update
of HD maps and utilize existing infrastructure as a source of data. Traffic cameras
and other sensors utilized for monitoring can be repurposed and their data forwarded
to a data fusion scheme within a dedicated MEC slice. Moreover, connected infras-

61

Jorge Pefa Queralta

Service Provider

HD Maps for |

: Navigation |
l :
| |
| — g1 |
: 3 |
2 \ —= ’ i
= |l :“ o
é | . W Data | %
2 |: . R Connected |z
ol Computational . 01'111((“ H Other Autonomy || &
B Offloading ‘ Vehicles and Support Services | 7
=l T Robots R ' | S
£ Data J R i| &
@
a T g B IE
: _ I
| = :
| B0 g & i
| i
: Distributed I
! Reinforcement |
| Learning :
| |
! MEC Layer

Service Provider

Figure 18. Autonomy Support Services at the Multi-Access Edge Computing (MEC) layer.
Requests (small yellow arrows) go through the blockchain slice (BC), which is in charge of
the local service orchestration. Data is streamed directly to end-users to reduce latency and

increase throughput.

tructure with enough processing power can serve to increase the range or capacity
of the streaming network. The role of ROS open source algorithms is essential to
deploy the state-of-the-art in multi-source and multi-sensor data fusion in public in-
frastructure. Moreover, the smart contracts within the blockchain can be utilized to
rank the available sources of data.

By providing an open framework, city administrations open the door to new local
applications such as drone delivery or various types of autonomous robots surveying,
monitoring and performing other tasks across the city. This has the potential to boost
both the city’s economy and technology innovation.

62

DLTs for distributed robotic systems

3.3.3 Distributed reinforcement learning

As the robotic field has evolved over the past two decades, deep learning has become
an essential aspect in complex robotics systems [28]. In particular, reinforcement
learning has allowed for traditional dynamics models to be replaced for neural net-
works that have been able to outperform any previous approaches.

With the first semi-autonomous cars roaming the roads of large cities around the
world, humongous amounts of data are being collected to improve the performance
of deep learning algorithms. This is a process that requires offline training of neural
networks. However, various distributed reinforcement learning algorithms enable
robots and autonomous vehicles to have online improvements of their models not
only from the real-time data and experiences but also from those of cooperating
vehicles.

Offering a distributed reinforcement learning service at the MEC layer would
enable connected vehicles to take advantage of the data and experiences of other
vehicles to learn faster and better, with more and different experiences being ana-
lyzed in shorter periods of time. Nonetheless, such as a service would require a tight
control on identities and a mechanism to ensure that model updates are valid and
do provide an improvement. A permissioned blockchain provides a transparent and
secure identity management framework, while the robustness and vulnerabilities in
distributed multi-agent reinforcement learning is still an open problem [257]. If raw
data is provided to the learning service, then the model updates can be validated.
If data is protected due to privacy concerns and only the model updates are shared,
then it becomes considerably more challenging to determine the validity of a given
update. A blockchain can provide part of the solution to this problem through its
consensus mechanisms. They have been shown to outperform traditional consensus
mechanisms in the presence of erroneous or malicious data in other scenarios within
the robotics domain [171].

3.3.4 Offloading services

Reliable connectivity and existence of MEC services in a large area opens the doors
to robots and vehicles relying on network-enhanced intelligence for their operation.
Instead of developing and building complex robotic systems able of long-term self-
supported autonomy, local organizations and businesses can build simpler products
with similar capabilities, relying on computational offloading to achieve certain func-
tionalities. Not only does this reduce the development and production cost, it also
potentially decreases time-to-market, further boosting innovation.

We propose a separate slice for the offloading orchestrator and services because
the focus is on optimizing computing power and reducing execution time when pos-
sible, compared to the storage and mobility requirements of the streaming slice. Even

63

Jorge Pefa Queralta

if the underlying hardware is the same, a different degree of reconfiguration is ex-
pected in order to optimize the offloading scheme.

GPU-based and FPGA-based accelerators have been widely used in sensor de-
velopment and deep learning acceleration over the past few decades, being a perfect
match for the requirements of edge computing [258]. More recently, autonomous
navigation, localization and mapping algorithms have started to use FPGA-based
implementations for real-time matching of HD maps or odometry [168]. Some of
these operations are inherently parallelizable, and therefore FPGA-based accelera-
tors have the potential for decreasing the latency by several orders of magnitude. In
the proposed architecture, we envision that dynamic reconfiguration of FPGA-based
hardware accelerators will play an important role in optimizing edge resources for
computational offloading, increasing the number of nodes that can be supported and
reducing the execution time of different processes.

ROS services can be directly utilized in offloading schemes, where third party
services simply offer these to the network. In addition, there has been a recent in-
terest in developing ROS-compliant accelerators to match the rising computational
needs [259]. Having reconfigurable hardware available on-demand at the edge can
help third-party service providers integrate these solutions. The reconfiguration and
provisioning of resources can then be made through smart contracts executed in the
MEC-hosted blockchain. Hardware accelerator models can be naturally abstracted in
terms of the number of processing units or resources required, and multiple models
can co-exist within a single chip. Finally, data partitioning schemes at the blockchain
level and its modular architecture with the aforementioned concepts put together an
efficient, open and flexible framework for offering offloading services.

3.3.5 Security concerns

The blockchain is a key piece in the proposed architecture as a source of trust. We
consider that the main security concerns in a MEC service framework is not the ex-
posure of data but instead its validity and reliability. This is exemplified by threats
identified by ENISA such as the manipulation of the network resources orchestrator
(unreliable orchestration or invalid data regarding the resource orchestration) [260].
As we are discussing services that support the operation of autonomous vehicles,
we need to take into account that this is a safety-critical application scenario where
sending wrong data to a connected vehicle or robot might put in danger pedestrians
and drivers. While the blockchain is not able to provide a robust way to validate data
by itself, a ranking of the different identities offering services can be created and up-
dater in real-time. Moreover, by implementing the resource orchestration and man-
agement of edge resources with smart contracts, the reliability of services providing
mission-critical data can be kept under tighter control. Finally, the immutability of
the transaction record can be utilized as a posteriori to assign liability and ensure

64

DLTs for distributed robotic systems

accountability.

Figure 19 shows a classification of edge computing services that can benefit from,
integrate or leverage blockchain technologies. Distributed robotic applications can
be found within all these areas, as well as other, more generic, [oT use cases.

3.4 Consensus in swarms with blockchain technology

We now move towards the opportunities within collaborative robot swarms. The
last two sections covered the potential of blockchain technology and multi-access
edge computing for distributed robotic systems. In this section, we define an strat-
egy for managing collaboration and establishing consensus in a collaborative robotic
swarm utilizing a blockchain. Furthermore, we discuss how different aspects of the
blockchain could be adapted to the specifics of robotic cooperation, where the most
valuable token that can be exchanged between robots is data. Therefore, part of the
security focus is shifted from the transaction validation point of view to the data
quality aspect. In that regard, a blockchain can be utilized to establish a secure way
of evaluating and ranking the quality of data provided by the different robots.

The approach presented in this section can be generalized towards achieving con-
sensus in a large multi-robot system, or swarm. Nonetheless, we focus on a specific
problem that is particularly significant: cooperative mapping and collaborative sens-
ing or perception within a heterogeneous team of autonomous robots operating in
the same environment. With perception, localization and mapping being three of the
cornerstones behind fully autonomous operation, the problem of collaborative sens-
ing for enhancing the situational awareness of each of the individual robots sets the
basics towards more complex collaboration.

We focus on heterogeneous robotic systems because of their dynamism and the
wider variety of applications that they enable. Heterogeneous multi-robot systems or
larger swarms have been studied for over two decades [261; 262; 263; 264; 265]. In
addition, we consider ad hoc swarms where the number of robots can change over
time, and their properties are not within a predefined set. These changes present
multiple challenges from the perspective of a heterogeneous resources management
system. In a homogeneous ad hoc robotic system, different parameters such as com-
putation power, bandwidth distribution or type and amount of data to be shared can
be either predefined or calculated based on a preconfigured strategy. This means
that, in most cases, the way that robots interact with each other will not suffer from
sudden changes. However, the same does not apply to heterogeneous robotic sys-
tems, where a new robot joining the collaboration effort might have a sensor suite or
computational resources very different from the rest of collaborating robots. In that
case, all the robots need to adapt their collaboration schemes, with potentially signif-
icant changes in the way information flows within the network and in the selection
of robots that have priority over others to either share or receive information.

65

Jorge Pefa Queralta

UC1: Blockchain for Edge Resource Orchestration

Pool of Edge Resources
Pool of Software-Defined
Edge Services

1

| . o o a9
- 1 Blockchain-Managed Resource Allocation and Service Provision

1

1

Application 1 Application 1

1
1
1
= Active Edge Services :
1 1
1 1
Application M, Application My 1 1
= &
1
1End-Users 1

UC2: Blockchain Marketplace at the Edge

Application 1 Application 2 e Application N

.Y B T N U S

End-Users

UC3: Blockchain-Enhanced Edge Services (Privacy, Security, Identity Management)

1 1
: Application 1 : : Application 2 : : Application N :
1 1 1 1 1 :
1 1 1 1 1 1
: 1 : 1 : 1
= 1 . 1
1 Blockchain 1 1 Blockchain 1 D00 1 Blockchain :
' ! ' ! ' !
1
1 1 1 1 1 1
1 1 1 1 1
: S B B} | : :
Lboocoooococooooo 4 Lboocoooocoooooo 4 S Kl

Figure 19. Main use cases for blockchain within edge computing systems. (UC1)
Blockchain-powered resource allocation and service provision; (UC2) Blockchain-powered
marketplace for interfacing users and services; (UC3) Blockchain-enhanced individual edge
services relying on blockchain technology for security, privacy, data management and audits
or identity management, among others.

66

DLTs for distributed robotic systems

An additional assumption that we make is that robots can be anonymous and
that all robots have the same role within the blockchain. However, some conditions
must be set in this regard. As we are utilizing a blockchain in order to manage
the collaboration and consensus between the different individual robots, a minimum
number of nodes must remain in the network in order to keep the blockchain alive.
Alternatively, infrastructure in the operation environment can be utilized in order to
provide the backbone of the blockchain, making sure that it stays alive and with a
minimum level of security so that previously stored data can still be trusted or utilized
by new robots joining the collaborative network.

Keeping the blockchain alive and all previous records has the disadvantage of
a higher overhead when a robot joins the network. Nonetheless, in this section we
present an approach to evaluate the quality of data provided by the different robots
and utilize a ranking based on this metric in order to manage the collaboration. In the
case of having robots operating only at sparse time intervals, with long idle periods
in which the robots are off or offline, these might lose their status and need to regain
it every time they join the network. This has a negative impact not only in the robot
itself, which would need to regain the trust of its peers in terms of data quality,
but also for the rest of robots, which might be receiving less accurate data until
the previous status of the new collaborating peer is regained. Therefore, the level
of optimality of the collaboration might be reduced. In general, there is a trade-
off between the benefits that the data history stored in the blockchain brings to the
collaboration with the drawbacks in terms of synchronization and overhead when
robots join or leave the network. It is left as a design decision up whether only the
blocks generated in a certain recent time frame are downloaded by new robots or the
whole blockchain is. Not having the complete blockchain is not an issue in terms
of transaction validation because we introduce a demurrage effect inspired by the
design ideas of Ethereum 2.0 to the network’s cryptocurrency. Therefore, the tokens
that individual robots had in their stake earlier than a certain time threshold are no
longer usable.

Having a connected infrastructure that supports the blockchain is an interesting
approach that has the potential to enable multiple applications in the era of 5G and
beyond connectivity. With network slicing, softwarization and virtualization, and the
ability to support a variety of different verticals, blockchains and other systems could
be deployed within the base stations. In those cases, permissioned blockchains might
be considered a more suitable solution, where the role of the infrastructure could be
more related to validating and increasing the level of security. In any case, in this sec-
tion we also consider fully distributed and anonymous permissionless blockchains.
A more in depth analysis on this topic is given within the discussion of the design
principles.

We focus on providing a strategy with potential to solve two existing challenges
in heterogeneous multi-robot collaboration: (1) the management of bandwidth in a

67

Jorge Pefa Queralta

peer-to-peer network between different robots, potentially having a myriad of sens-
ing capabilities and computational resources, choosing which robots have priority to
transmit their data and which robots will receive specific data batches; and (2) the
decision making in terms of what specific data do robots share in order to optimize
the benefits that results from the collaboration process. Both concepts are closely
related; if a specific robot is able to obtain higher quality data, then a more optimal
collaboration can be achieved if its data is shared among the interested peers. In that
case, this particular robot should have priority in terms of bandwidth usage. While
this argument utilizes only the sensing capabilities of robots, a similar approach can
be taken in terms of the computational resources of each robot. In a smart city en-
vironment, an autonomous delivery drone with limited sensing abilities, for example
running visual inertial odometry with a single onboard camera, could benefit from
the data extracted by a self-driving car equipped with multiple cameras, radars and a
high-quality multi-channel 3D lidar. However, if the car simply streams its data, the
drone would be barely able to process most of it due to constrained computational
resources in its onboard computer. Therefore, it might either discard most of the data
when receiving it, or accumulate it and induce a delay in the processing with the
consequent latency increase in localization or mapping tasks.

In summary, the main difference of our approach with respect to previous works
is that robots do not need to share information about their sensing and computational
capabilities, yet they can be able to optimize the way they are collaborating. We
understand collaboration optimality as the enhancement of each of the robot’s situa-
tional awareness resulting from the analysis of data provided by their collaborating
peers. By utilizing a blockchain framework, and adapting the latest developments
in the blockchain field, we are able to provide robots with means for more efficient
ways of collaboration without having to share, trust and interpret specific data about
their sensors or data processing capabilities.

3.4.1 Blockchain-powered collaboration

The utilization of a blockchain for managing the collaboration between robots, based
on the assumptions and situations described above, can have multiple benefits. How-
ever, multiple design aspects that can significantly affect the way the blockchain is
utilized have not been specified so far. It is not the aim of this section to provide a spe-
cific set of methods for heterogeneous robotic collaboration, but instead to provide a
set of basic strategies and design concepts that can be utilized towards the definition
of advanced collaboration schemes in the future. In this section, we overview the
different approaches that can be taken in different blockchain aspects.

68

DLTs for distributed robotic systems

Blockchain genesis

The first design decision is whether a longevous blockchain is preferred, or ad hoc
blockchains are created when needed. Both options present significant challenges
from the implementation point of view, and both can be utilized in different environ-
ments or specific application scenarios. We overview the main benefits and draw-
backs of each of them. In future work, we will put into practice these two options
and evaluate different parameters in order to provide more insight.

I. Long-term support

In the case of a single longevous blockchain (i.e., persistent in time even with nodes
entering and leaving the nerwork) with ad hoc collaboration where new robots might
join the network, and other robots might go offline for long periods of time, the
main challenge is to ensure that a minimum number of nodes is able to securely
maintain the blockchain state. We believe that this type of blockchain can only be
effectively implemented when connected infrastructure is added into the blockchain.
Whether it is a private or semi-private blockchain in an industrial environment, or
an open permissionless blockchain that robots can join to improve their operational
performance in a smart city, there must be a minimum set of nodes that are fixed
in the environment and are able to support the blockchain even in the case that no
robots are active. Furthermore, connected infrastructure, such as mobile network
access points or smart gateways near public Wi-Fi hotspots around a city, can be
utilized to define a standard for communication within the blockchain and to publish
its existence so that anyone can decide to join it.

An immediate question that raises when considering connected infrastructure,
which naturally has a different role from robots joining the network, is whether a per-
missionless blockchain is the best option, or a permissioned consortium blockchain
where the infrastructure nodes have a predefined role of validators is more secure.
We favour the permissionless and open blockchain option because its benefits in
terms of flexibility and because the key aspect of a blockchain for robotic collabora-
tion does not rely as much on the transaction security as it rather does in the integrity
and quality of shared data, which can not be validated with a traditional blockchain
approach.

Il. Ad-hoc blockchains

An alternative to a single blockchain, potentially supported by connected infrastruc-
ture, is to create and destroy collaborative networks on the fly. The main disadvan-
tage of this approach is on how to define the conditions under which the blockchain
is started, and which entities are allowed to initiate the process. This option is not

69

Jorge Pefa Queralta

suitable for applications where individual and anonymous robots are collaborating,
with potentially independent developers. Instead, this might be a more suitable ap-
proach for situations where a single controller or developer is deploying a large
robotic swarm, which may already include a collaboration scheme or not. In that
case, the blockchain genesis can be established by the developer, and its existence
made public, opening the door to other robots or swarms to join and share data. In
this case, the newly joined members should put trust on the blockchain initiators.

A similar situation where an ad hoc blockchain could be applied is in the case
of multiple end-devices, vehicles or robots being produced by a single manufacturer
but utilized by different individuals. For instance, this could be the case of a com-
pany selling self-driving cars. These could be preconfigured to automatically detect
other cars from the same manufacturer in the vicinity. In the event of multiple cars
converging in a near area, a blockchain could be started without the car owners being
aware of it, and these could start benefiting from the data collected at other vehicles,
with enhanced autonomous operation. It would be then a decision of the manufac-
turer whether to broadcast the existence of this network for other vehicles to connect
or not. In comparison with a direct cooperative data sharing approach, the utilization
of the blockchain and the data quality validation strategies presented in this section
would ensure that faulty sensors or tampered sensor data can be detected by the net-
work if certain conditions are met under which vehicles are able to validate each
other’s data.

Consensus mechanism

While PoW shows an additional potential other than providing a means for consen-
sus, its many drawbacks described in Section 2 make it unsuitable for long-term
scalability. In consequence, we propose the utilization of a Proof-of-Stake system
for validating transactions, while maintaining a periodic PoW for computational re-
source estimation. In any case, the energy and time spent by miners towards the PoW
is not futile, as it will be utilized by the network to estimate the available computa-
tional resources at different nodes. In general, we propose the utilization of a protocol
similar to the Casper PoS protocol in Ethereum 2.0, while a PoW is required to be
executed periodically for nodes to be still considered part of the peer-to-peer network
[219; 218].

In a traditional blockchain architecture, a transaction is validated when the cor-
responding block where it has been included is mined. In our case, transactions in
the proposed network architecture are data exchanges between one robot and a sub-
set of its peers. The data itself is shared within the peer-to-peer network but outside
of the blockchain. A certain sample is shared within the blockchain as part of the
transaction body so that the whole network can run the data quality evaluation and
ranking procedure. Robots do not wait for transactions to be validated within a block

70

DLTs for distributed robotic systems

before sharing the data. Rather than coining new cryptocurrency though the con-
sensus mechanism, we propose the utilization of of the periodic PoW mechanism to
provide robots with a preconfigured and fixed amount of cryptocurrency. While in
the case of the Ethereum blockchain the Ether can be utilized both to perform trade
between peers, and to purchase the network’s execution time, in this section we only
consider the latter scenario. Therefore, the only use of the cryptocurrency is to be
able to perform data transactions and be sure that data will be forwarded through the
peer-to-peer network.

Rather than providing rewards for block mining as an incentive, the PoW puzzles
are compulsory for nodes to be considered part of the network. The time between
PoW requests can be preset within the network configuration, as well as the proce-
dure by which the next PoW is automatically calculated based on the blockchain’s
state or other parameters. In order to ensure that nodes do not collect a large amount
of coins, we propose the implementation of a demurrage mechanism as in Ethereum
2.0, where all the cryptocurrency is effectively congealed and disappears within a
certain time interval. In addition, penalties must be included to further control the
utilization of cryptocurrencies. In doing so, we can limit the amount of data that
dishonest nodes are able to send over the peer-to-peer network.

Security concerns

In a robotic collaboration system, data exchanges are the most valuable tokens. How-
ever, including all data in the blockchain would significantly reduce its usability be-
cause of the impact on scalability and the latency that such amount of data processing
and validation in all nodes would induce. Therefore, in order to provide basic means
for the collaborating robots to decide the level of trust that they put into a certain
robot, data samples are submitted to the blockchain and evaluated within the net-
work through smart contracts. These samples are then ranked and utilized in order
to estimate whether a robot is honest or not, but also which robot is able to provide
more accurate or useful data given a particular request.

It is not within the scope of the collaborative decision making presented in this
section the definition of how the data quality ranking is taken into account at each
individual robots. This is for application developers and must be implemented sepa-
rately at each robot controller.

Scalability

In order to ensure efficient scalability of the proposed blockchain architecture, we
propose the utilization of spatial shards for local decision making in terms of data
quality evaluation. Therefore, both a local ranking and a global ranking are kept in
record at the shard chains and global chain. This is a useful approach in order to re-

71

Jorge Pefa Queralta

duce the network load and induced latency. The consensus mechanisms would run in
parallel shards which would be defined based on the Ethereum 2.0 standards. A sin-
gle validator thus belongs to two kinds of shards, spatial shards utilized for running
local smart contracts regarding local data quality ranking, and randomized shards
running the consensus mechanism and maintaining a global ranking with separate
smart contracts. More insight into the definition of the local and global rankings is
given in the data evaluation section.

3.4.2 PoW for online estimation of computational resources

In this section, we propose a methodology for estimating the computational resources
of each of the collaborating robots by exploiting the PoW puzzles utilized in the
blockchain in order to validate blocks. The time required to solve a PoW puzzle can
be utilized as an indicator of the available computational resources at a given robot,
and partial proofs can be used in case robots are not able to solve a PoW puzzle
within a certain predefined time interval. We utilize the term available, rather than
total computational resources, because we assume that robots are able to operate
autonomously on their own, and utilize the collaboration in order to improve the ac-
curacy of the different methods that they already run. Therefore, robots must decide
which amount of resources do they want to reserve for the collaborative effort; the
more resources they put into solving PoW puzzles, the more data they are able to
obtain, as the amount of data is calculated based on the available processing power
in order not to overload the receiving robot with more data that it is able to process.

In a typical PoW utilization for block mining in a blockchain, once a miner finds
a solution to the PoW puzzle and broadcasts it, all other miners automatically discard
their solutions and start working on mining a new block. However, this can only give
an idea about the processing power of the node that was able to mine the block.
In order to be able to obtain useful information regarding all nodes in the network,
partial proofs of work can provide more insight into the effort that different nodes
put towards the PoW puzzles.

The utilization of partial proof of works has been previously been proposed in
different mechanisms that secure and raise the level of fairness in mining pools
[189; 266; 190; 267; 191]. Mining pools utilize various payout systems in order
to distribute the mined coins between their miners even if individual nodes have not
been able to provide a full PoW solution. For the estimation of computation in a
robotic system, a simplistic approach is enough. One naive solution is, for instance,
that each robot is assigned a different POW puzzle with equivalent complexity. This
helps to avoid two robots submitting the same partial or full PoW solution while only
one is actually calculating it. In this case, we do not need to consider the presence of
malicious nodes that put less computational resources towards solving PoW that they
can. This is because the conclusion from the network would be that the processing

72

DLTs for distributed robotic systems

power is more limited at those nodes, and other robots would therefore send less data.
In this approach, solving PoW puzzles is not the means towards a monetary reward,
but instead towards a data reward. The faster a PoW problem is solved, the more
data a robot is likely to receive from its peers. Therefore, individual nodes would
gain nothing and only incur in their own detriment by lying to the network with less
complex partial PoW solutions. Because the result of the PoW has to be shared with
the rest of robots and can be easily validated by each of them, robots cannot pro-
vide fraudulent data regarding their computing capabilities. The reason robots might
perform such malicious actions could be because either they want to destabilize the
network or they want to increment the amount of data they are receiving in a network
with limited bandwidth where most robots might have extra processing power that is
not being put into use.

The mining difficulty should be set to a fixed value, in contrast with Ethereum’s
adaptable PoW complexity, so that robots with lower computational resources can
also be part of the collaborative sensing scheme. Nonetheless, the complexity should
be enough to ensure that only robots with a minimum level of computational ca-
pabilities are able to participate. In a similar way, the network connectivity of
the robots must be put to test before joining the network in order to avoid bottle-
necks and dub-optimal collaboration. At the same time, if the PoW is too easy
to solve, then the communication overhead might play a more significant role. In
general, if the network-wide communication latency is at least one order of magni-
tude smaller than the minimum time required to solve a PoW puzzle, then a sim-
ple averaging could suffice for more accurate, long-term estimation. Nonetheless,
the estimation should be able to adapt to changes in the available computational re-
sources. This can happen because robots might be running other computation inten-
sive processing algorithms that are only executed at certain intervals, or only when
a series of events occur. In order to do this, a naive approach would be, for in-
stance, to select the last N PoW proofs or partial proofs such that for all (or most)
M < N, the estimated computational capabilities C; and C' have low variance,
ie., oy — ooy < oy < pey +oc,, - However, potential outliers should be taken
into account and a minimum number of partial PoW solutions N > ¢ utilized in the
collective estimation procedure. If the nature and capabilities of robots collaborating
through the network changes, with significant increase or reduction of the average
computing power, an alternative approach to adapting the PoW complexity is to set a
maximum time that robots dedicate to the mining effort, even if none of them is able
to produce a full PoW solution. In this case, however, the maximum latency in the
peer-to-peer network should be taken into account in order to calculate the timeout
interval, and its value should be negligible in comparison.

73

Jorge Pefa Queralta

3.4.3 Data evaluation - proof of quality

We are basing the collaboration management in two parameters: the estimation of
the available computational resources and the evaluation and ranking of the quality
of data provided by different robots. For the first aspect, we have proposed the uti-
lization of a PoW scheme in order to maintain an online estimation during operation.
For the second aspect, the main idea presented in this section is to share within the
blockchain a data stamp, or sample, whenever a data exchange transaction between
two robots, has been made. Thus, not all the data is stored in the blockchain, but can
be transmitted through a direct connection, an external network or the peer-to-peer
network. We assume that the only connection between robots is the peer-to-peer
network. This matches with the assumption that robots are anonymous, and there-
fore they do not necessarily have any means of contacting their peers. The main
argument behind this assumption is that collective decision making in terms of what
data is shared between certain pairs of robots is strongly affected by the constraints
of bandwidth or latency inherent to the peer-to-peer network. In external channels
exist, it is not straightforward to consider them within this distributed process.

The cryptocurrency in the proposed collaborative network has no real value. In-
stead, the most valuable asset is data. Therefore, we put the focus around the data
and how to evaluate and rank its quality. The following parameters are utilized to
evaluate the data stamp: (i) the type of data that has been provided; (ii) the density or
resolution of the data sample; and (iii) the comparison of this data sample with his-
torical samples from other robots that are or have been operating in a close location.
Regarding the type of data that is being shared, it can be classified, for instance, into
visual data (camera images), point cloud data (from lidars, depth cameras), or radar
data. Then, the resolution of these images, or the density of a lidar point cloud is also
taken into account. Based on this evaluation, penalties can be defined for nodes that
fail to provide certifiable data stamps by providing a reduced share of newly coined
cryptocurrency.

A ranking of the quality of data is not kept within the blockchain. This is because
the type of data can only be evaluated based on the global needs of the system, which
can considerable change over time. What is stored in the blockchain is the results
of comparison of data stamps from the same environment. This result can be (i) a
confirmation that the data matches, with no ability to provide further information;
(ii) a confirmation that the data matches and that the current sample is either less
dense and included in the sample, or that the new sample has more resolution; or (iii)
a mismatch event where the robot has been unable to confirm that both the historical
sample and its new sample represent the same object or environment.

A trustability concern arises when considering the event of a subset of nodes
submitting bogus data stamps to the blockchain, which are in turn validated by other
robots in an attack coalition. However, in order to do this, the attacker coalition must

74

DLTs for distributed robotic systems

hold a majority in a given spatial localization. We propose the utilization of a valida-
tion graph, where two nodes are connected if any one has validated the other’s data
stamp, and its analysis in order to detect fully connected or almost fully connected
subgraphs, or whether it is a disconnected graph with multiple separated compo-
nents. While this can give an idea of trust, the decision-making process from this
information is not straightforward. Consider for instance the case in which a certain
group of honest robots are sharing and validating each other’s real data, and an equiv-
alent number malicious nodes is sharing and validating counterfeit data. If these are
the only collaborating robots in the vicinity, then for a robot in another location it is
impossible to discern between them. However, this might not necessarily be a prob-
lem if no other robot is utilizing data from that particular location. In the long-term,
given a majority of honest collaborating robots, and assuming that most locations
are visited by a large enough number of the honest robots, then the counterfeit data
stamps will be eventually detected and the set of malicious nodes will be labelled as
dishonest.

3.4.4 Peer-to-peer data sharing scheme

So far we have provided an approach that assumes that robots do not share explicit
information about their sensors, or the on-board hardware resources. This means that
the maximum level of optimality that can result from such collaboration is limited by
how well can the different proposed approaches abstract and model the robots’ re-
sources and capabilities. In other words, if the estimation of computational resources
that is obtained via PoW cannot be performed in an accurate manner, this inherently
limits the maximum level of performance of the proposed system. A similar situation
occurs with the estimation of data quality and robot trustability level.

If robots decide to share data without filling a transaction within the blockchain,
it must occur either through a direct link or outside of the peer-to-peer network. If a
third node receives a request to forward data between a given pair of robots, it only
does so if the corresponding hash of the data sample has been already included in the
blockchain.

In the same sense than in Ethereum nodes buy gas in order to execute smart con-
tracts, each transaction consumes a given amount of cryptocurrency. In order to avoid
a situation in which a malicious node would start multiple transactions, effectively
double-spending its stake, sending large amounts of data in order to collapse the net-
work, we propose that a strategy similar to the gas congealing scheme in Ethereum
2.0 can be utilized. The key difference is that all the cryptocurrency that a robot has
in its stake is congealed and subject to the demurrage effect.

The decision making in terms of the data to be transmitted can be established
as an optimization problem where the bandwidth of the peer-to-peer network and
the available computational resources at the nodes receiving the data are considered

75

Jorge Pefa Queralta

constraints. The function to be maximized is a weighted sum of the data that robots
receive based on their requests, and a measure of the trust put into the quality of
that data. In this section, we provide a high-level approach and do not delve into the
details of specific calculations, which will be considered in future work.

Consider that at a certain time instant the blockchain is formed by a coalition of
N nodes, with their indexes represented by the set [N] = 0,..., N. A new PoW
problem is considered by all robots, where L represents the size of the PoW hash
in bits, and PoW; Vi < N is the full or partial solution that robots provide and is
verifiable by their peers, PoW, € Z§ " The available processing power at each robot
is then estimated relatively to that of other robots, and mapped to the interval R:1 =
{z € R|z € [0,1]}. We denote the estimator with C : Z5#" — RN01 which takes
as input the set { PoW;};c;n] and outputs the set {C}}ie[~]- During the estimation
calculation, an additional parameter D, is calculated, which defines the maximum
amount of data that the robot with the most computing power is able to process per
second, in bytes. Upon submitting a PoW full or partial solution, each robot 7 also
submits a data request, denoted D R;, which contains a requested amount, in bytes,
type of data (image, point cloud, radar or others) and a minimum and maximum
resolution or density DR; ; = struct{type, max_size, min_res, mazx_res}, where
J varies for each different data type. Additionally, robots submit information about
the data they are able to provide, or available data, with the same type of information
AD; ; = struct{type, max_size, min_res, max_res}, where again j iterates over
the available data types. We suppose that an error function Epg, ; pa, ; > 0is given
that increases as the mismatch between the desired data size and resolution in a data
request from robot ¢ and the available data at robot k. Finally, robots share their
position in a global reference frame and an estimation of its error. This is utilized
in order to divide the robots in spatially-defined shards, and at individual robots to
decide how they utilize the received data.

We assume that the data quality evaluation provides a value Q; # 0 € R that
can be negative and represents the trust that the network puts on robot 7. We do
not provide a specific formula to calculate this value, but instead refer to the guide-
lines described in the previous section. Given the maximum bandwidth of the link
between robots ¢ and j in the peer to peer network, BW; ;, we can now formulate
the optimization problem that is solved as part of a smart contract deployed in the
network in order to make decisions with respect to the data that is shared between
robots:

76

DLTs for distributed robotic systems

Table 5. Hashing power of different boards typically utilized as onboard computers in
robotics (in hashes per second). The hashing algorithm was SHA256 and the tests involved
solving PoW puzzles with 22, 23 and 24 bits of difficulty. The hashing puzzles were solved
running within a single thread. The standard deviation shows NA when it is below

1000 hashes/second.

Intel Up Intel Up Gateway NVIDIA Jetson TX2 Intel i5-6200

wy, (h/s) 89000 79000 184000 561000
oy, (his) NA NA 1000 16000

N
1
agmax f(X) =3 | 3 aQi+fgr
i=1 \jlzi;€X Y
subject to: Tij,size < Dmaa - Ci Vay € X

Tij, size < BW, 5 Va;; € X

where X = {x;;} represents a data exchange between the pair (7,j) with a
given size yj size, and £(xi;) = Epg, DA, ;- The parameters o and 3 define a
weighted sum between data usability and data trustability that must be set depending
on the range than the data quality and data error match functions can give. We have
considered that the bandwidth BW; ; of the link between robots i, j is independent
of data that might travel between the same link but does have a different recipient.
This is a unrealistic assumption in a peer-to-peer network that potentially relies on
a mesh network for communication. However, that is a problem more related to the
graph theory domain and we do not consider within the scope of this section.

3.5 Initial assessment of a blockchain solution

In this section, we partly evaluate the potential of the proposed methods. In par-
ticular, we focus on studying the correlation between the computational resources
required to solve a PoW problem with the execution of different algorithms widely
utilized in robotics. In addition, we show different data samples that could be utilized
within the data evaluation scheme.

3.5.1 PoW metrics

We have utilized four different computing platforms to evaluate the consistency of
the relationship between the hashing power and different types of algorithms that
autonomous robots might run during their operation. The PoW solver has been im-
plemented a single-thread process so that it can then be run in parallel in order to

77

Jorge Pefa Queralta

Table 6. Classification latency in tensorflow for a CNN classifying the CIFAR-10
dataset [268], and visual odometry (VO) latency for the Kitti dataset [269]. The standard
deviation shows NA when it is below 10us.

Intel Up Intel Up GTW Jetson TX2 Intel i5-6200

,U/class,latency (MS) 4400 5000 700 770
Uclass,latency (/1‘5) 500 NA 40 60
VO latency (MS) 200 210 108 59
OVO_latency (1S) 112 119 50 29

take into account also the number of available threads or cores in the robot’s onboard
computer. The four computing platforms are (1) an Intel Up board, (2) an Intel Up
Gateway, (3) an NVIDIA Jetson TX2, and (4) an Intel i5-6200U CPU. The NVIDIA
Jetson TX2 has been specifically selected because it has an embedded Pascal GP. As
the PoW relies only on a processor, it is not able to model accurately the processing
power for applications that can be inherently accelerated with a GPU.

The hashing power of the different devices is shown in Table 5. The number of
hashes varies almost an order of magnitude between the least and most capable ones.
The standard deviation of the hashing is below 3% for all the devices under test.
Table 6 then shows the latency of two different types of data processing processes: a
convolutional neural network (CNN) classification for the CIFAR-10 dataset [268],
and visual odometry for the Kitti dataset [269]. The standard deviation in the case of
the CNN classification latency is always lower than 12%, while the visual odometry
latency is more variable and has a standard deviation of over 50% in some cases.

Figures 20 and 21 show the relationship between the hashing power and the per-
formance of the classification and odometry algorithms, respectively, for the different
devices. In the case of the CNN classification, the ratio is mostly constant, except for
the NVIDIA Jetson TX2. This shows that the PoW puzzle can model the processor
capabilities with high fidelity, but fails when other types of resources (GPU in this
case) play a significant role. The CNN classification runs at lower latency on the
NVIDIA Jetson TX2 than on the Intel i5 processor.

In a full system implementation, multiple POW schemes should be designed to
model the different types of computing resources that could be available within the
collaborating robots. In future works, we will analyze different types of PoW puzzles
and hashing algorithms, and to avoid specialized accelerators such as ASICs.

3.5.2 Data sharing scheme

For the data sharing scheme, we show the amount of data that would need to be
shared within the blockchain to compare it between different vehicles. We also show
how the data characterization can depend on the point of view or distance to the fea-

78

DLTs for distributed robotic systems

400 - A + + -

Hashing power * inference latency

300 - -
200 — -
A
| | | |
¥ Q v IN)
S S & &
& g

Computing platform

Figure 20. Relation between hashing power and classification latency for the different
computing platforms. The ratio is mostly constant except for the NVIDIA Jetson TX2,
which offers higher performance owing to its integrated Pascal GPU.

g .10
3
=
z
g4 :
g
< k
o
*
o}
g 2- -
Q
o
on
g
E@ | | | |

S 2 v Q

© s & I

Y g

Computing platform
Figure 21. Relation between hashing power and visual odometry latency for the different

computing platforms. The ratio is maintained mostly constant if the high variance is taken
into account, due to the task being run completely on the CPU.

79

Jorge Pefa Queralta

ture that is being utilized for the data sample. This is important to take into account
when comparing the same feature from data samples submitted to the blockchain by
different vehicles or robots at different times. Because the point of view of the object
in the data sample and the distance to it might affect the properties of the data in the
sample, a relation between these must be defined beforehand. Then, different data
samples can be compared appropriately.

We have utilized 3D lidar data from a 32-channel Velodyne laser scanner, which
has been previously utilized for localization in [18], where the platform utilized for
gathering the data is described in detail. We have focused on analyzing how the data
can be characterized based on the distance to the object that is being utilized for
the data sample. Figure 22 shows the extracted point cloud from a car in a parking
lot next to the road. In this case, both the distance to the object and the visible are
important factors because there are other objects nearby. Therefore, different parts
of the car are visible from different points of view, and the relationship between the
segmented point cloud size and the distance to the object is no longer linear. In this
case, moreover, the number of channels that have a projection over the car varies
with the distance. We have extracted only eight of the channels from the lidar data
to show that ratio between a 16-channel and an 8-channel point cloud size is not
constant.

Taking into account the above data, in order to design the data characterization
function different types of objects or features and their characteristics must be con-
sidered. From these, we can then define a function that defines the data density based
on the distance to an object (as in the tree), the area of the feature being encoded in
the data sample (as in the case of the building corner), or both the distance and the
visible area (as with the car). These are just some examples and by no means do they
provide an exhaustive classification. However, in this section, we have focused on
showing different possibilities to define the data characterization scheme and justi-
fied them with different real-world cases.

3.5.3 Initial implementation

An initial implementation with Ethereum has been made, where the data samples are
submitted as data payloads in individual transactions between devices. In this setting,
smart contracts are not yet utilized to implement the data ranking. Instead, the data is
submitted as a payload in standard Ethereum transactions together with 1 Ether. To
do this, a private Ethereum network has been deployed with PoW difficulty set to 0
bits. Therefore, the mined blocks and the Ethereum generated is only limited by the
time between blocks specified in the genesis file. Table 7 shows the gas necessary
to submit a transaction for inclusion in a blockchain block depending on the size of
the data payload. This relationship must be taken into account when deciding the
amount of ether or gas given to each robot based on the amount of data that they are

80

DLTs for distributed robotic systems

(a) Car at 8 m (in blue) (b) Car at 5.5 m (in blue)

[[
2 1,000 - 16 channels
'g —@— 8 channels
2.
=
2
g 500 - -
&
1%
H*+
| | | | | | |
4 5 6 7 8 9 10

Distance to Object (m)

(c) Size of the segmented tree point cloud seen at different distances

Figure 22. Size of 3D lidar data samples for a car in a roadside parking (point cloud data).
The number of points does not follow a linear ratio with the distance because the area of the
car visible to the sensor increases with the distance, together with the density of the point
cloud. We show the number of points in the data samples for a 16-channel and a (simulated)
8-channel lidar, where the number of points depends on the number of channels that are
projected onto the car surface. Data described in [18].

Table 7. Gas needed in order to attach a given amount of data to a Ethereum transaction.
All transactions involved 1 ether and a data payload.

Transaction
#1 #2 #3 #4 #5
Payload (bytes) 20 1080 2160 4320 8640
Gas 21680 57720 94440 167880 314760

going to share with their collaborating peers. Then, the amount of data in each data
sample can be predefined based on the total amount of data shared, and checked by
the nodes receiving the data. This helps ensuring fair use of the bandwidth in the
peer-to-peer network.

81

Jorge Pefa Queralta

3.6 Discussion

In general terms, the approach proposed in this section requires more maturity of
some blockchain technologies that are not widely in use yet. Some of these can be
seen within the roadmap towards Ethereum 2.0. The collaboration process described
in the previous section can be summarized with the following steps:

1.

82

Genesis of the blockchain. A decision is taken regarding whether it is sup-
ported by fixed assets, such as infrastructure, or automatically destroyed when
the number of collaborating robots reaches a minimum threshold.

A new robot is able to join the network by providing a PoW solution, in order
to avoid Sybil attacks and ensure that all robots have a minimum of available
computational resources. Upon joining, the bandwidth of the connection be-
tween the robots and the peers that it is connected to is put to test. This can be
done periodically in order to have an estimation of the peer-to-peer network
bandwidth, if other means of calculating its capacity are not available.

. Periodic submission of partial or full PoW solutions. This is utilized to have

an online estimation of the available computational resources at the different
robots. Together with the PoW solution, a series of data stamp is submitted.
Each data stamp must represent the type and density of data that the robot is
able to share with the rest of the network. An estimation of the maximum data
throughput that it can stream for each of the types must be included as well.
If the robot is located in a location where previous data stamps exist, and it is
able to capture comparable data, then additional data stamps are submitted as
well. These additional stamps must be accompanied by a comparison result
and corresponding details, which must be verifiable by robots with enough
computing power.

. Together with the PoW and data stamps, robots inform their peers about the

type of data and a range of resolutions that would benefit their autonomous
operation.

If data stamps which can be comparable to previous entries in the blockchain
are submitted, then all robots with enough processing capabilities must per-
form the comparison. An PoS approach is utilized in order to validate a com-
parison, where the stake is calculated based on the number of positively con-
firmed data stamps submitted by each individual robot.

. Upon receiving all partial PoW and the corresponding data stamps, a smart

contract is executed to perform the online estimation of available processing
power.

DLTs for distributed robotic systems

7. Utilizing the processing capabilities at the receiving robots and the peer-to-
peer network bandwidth as constraints, an optimization problem is solved in
order to decide the usage of the network.

8. Robots receiving data must confirm that its properties are equivalent to those
of the submitted data stamp. In the event of a mismatch or the inability of
the receiving robot to verify that the data stamp is part of the received data,
a negative receipt is issued which affects the evaluation of data quality and
trustability together with the stamp-to-stamp matching process.

An illustration of some of the steps summarized above is provided in Fig. 23,
where different robots have various computational capabilities and share data stamps,
partial or full PoW solutions, data requests and information about available data in
order to collaborative decide on the best usage of the peer-to-peer network and the
data that will be shared. After this, robots start collaborating, utilizing the newly
coined cryptocurrency to make data exchange transactions until the next PoW puz-
zle has to be solved. Therefore, the behaviour of the collaborating robots in terms
of communication and data sharing is static between two consecutive PoW solving
rounds.

3.6.1 Challenges

In order to arrive to a successful implementation of the strategies presented in this
section, numerous challenges need to be overcome. Nonetheless, the main objective
of this section is to define a basic set of design strategies and architectures that have
potential to enable secure and efficient ad hoc robotic collaboration in the near future.

Some of the main challenges of the proposed, which will be studied further in
future work, are the following: (i) the management of blockchain lifecycles, or the
management of trust where a predefined set of assets is in charge of maintaining the
blockchain; (ii) the prevention of broad-scale attacks where a large group of attack-
ers submit counterfeit data to the network and continuously provide new stamps and
confirmations of such data; and (iii) how to ensure that robots do not join the net-
work only to obtain data but do not show the real quality of their data, for instance
by downsampling point clouds or inducing blur in images. This last point presents
particular complexity because it is virtually impossible for robots to evaluate whether
their peers do have more sensing capabilities or not, and limiting the amount of data
that robots receive based on the quality of data that they provide would have a signif-
icant negative impact in resource-constrained robots with limited sensor suites such
as drones or small delivery robots.

83

Jorge Pefa Queralta

Robot 0 Robot i

Peer-to-Peer
Network Link

Peer-to-Peer
Network Link

Raw Senso:bata

Data Raw Sensor Data
(RGB Camera) Stamp Blockchain (Thermal Camera) Blockchain
Consensus Consensus
Full / Partial Proof of Work Mechanism Full / Partial Proof of Work Mechanism

Available Data AD, Available Data

Data Request Multi-Source Data Request Multi-Source
Multi-Sensor Multi-Sensor
Robot Position (x0, Y0, Z0) Fusion Robot Position (i, yi» 21) Fusion
Algorithms

\ Periodic Updates Periodic Updates Algorithms

i foerme i

Computational

Computational

Quality of Data q Quality of Data .
Resources Estimator Rataisharing Resources Estimator Ratgioharing
5 A Scheme 5 q Scheme
Estimator tamp matching H Estimator stamp matching i
sC’ . SC . scf S| SC/ . SC’
Ethereum Virtual Machine (EVM) Ethereum Virtual Machine (EVM)
S N N
S & s s
N &£ &£
Q Q

Robot N i @ i @

Peer-to-Peer
Network Link

Computational p
Resources ! {CO’

®

Raw Sensor Data
(3D Lidar Point Cloud)

Blockchain Data Quality | {Qo, -
Consensus h
Mechanism

Full / Partial Proof of Work

Available Data

Cryptocurrency for each robot

Data Request Multi-Source (Devaluates due to demurrage)
Multi-Sensor
Robot Position (XN, VN> ZN) Fusion

Periodic Updat Algorithms
erfodiel-pcates / Data Sharing Scheme Optimization
@ (Bandwidth and Processing Power Constraints)

4Ll &L

Robots start sharing data according to the collective
decision makinguntil the next PoW solving round

| Computational
Resources
Estimator

Quality of Data
Estimator
(stamp matching)
SC: - SC
Ethereum Virtual Machine (EVM)

Data Sharing
Scheme

SC¢

Figure 23. Illustration of the inputs utilized in order to estimate computational resources
and data quality. The data stamps are taken from specific features from the environment that
can be easily recognized by other robots, such as the structure of windows or the corners in a
building.

84

DLTs for distributed robotic systems

3.6.2 Opportunities

We see the main opportunities of the proposed system as part of smart cities, where
the blockchain can be supported by deployed infrastructure, as well as industrial en-
vironments where there exists trust between parties but different actors deploy robots
in the same environment. In a smart city, a public blockchain for data sharing could
boost the deployment of autonomous robots from both private and public entities. In
addition, the role of the infrastructure should be considered not only as a platform to
manage the blockchain lifecycle but also as a static data source and validating plat-
form, where traffic cameras and other sensors that already exist can be integrated.
With this sensor data, connected infrastructure can validate data stamps from the
robots, but also provide data to interested parties.

3.7 Summary and conclusions

This chapter covers a position on the use of blockchain and other distributed ledger
technologies within multi-robot systems. Throughout the chapter, we discuss poten-
tial uses at the edge from the perspective of distributed systems, but also in terms of
driving collaboration within multi-robot systems. Within the scope of this thesis, this
chapter presents a more generalist view of the opportunities, while in the next chapter
we delve into a particular implementation using only a small subset of technologies.
This chapter also extends the previous chapter with a mode in-depth discussion of
the blockchain potential. Out of the scope of this thesis, the ideas presented in this
chapter have matured with our ongoing work in the use of both permissionless and
permissioned blockchains. For instance, in [270] we explore the integration of the
Hyperledger Fabric blockchain framework with ROS 2 and show its potential for
managing robot fleets and a proof of concept in multi-robot inventory management.
We also present a methodology for integrating the IOTA DLT platform with ROS 2
in [271].

85

4 Securing single- and multi-robot
missions

Throughout the thesis, we have presented different design architectures that are based
in distributed ledger technologies. In this chapter, we delve into more specific meth-
ods for securing robot behaviour. We extend previous works from our co-authors [272],
where Merkle trees (data structures typically employed in blockchain frameworks
for validating data) are used to create secret mission instructions. In this chapter, we
only utilize cryptographic hashing methods for encoding instructions and defining
new secure ways in which an autonomous robot can interact with its environment.

Portions of text and a subset of figures in this chapter are reproduced from our
previous work [1].

4.1 Premise and motivation

With robots and autonomous robots having an increasing penetration across multi-
ple aspects of our society, more attention is being paid to the safety and security
aspects in robotic operation [273]. The differentiation between safety and security
often becomes fuzzy, with the safety term being utilized to refer to human-robot in-
teraction [274], or to the safety of the robot itself [275]. In either case, safe operation
of an autonomous robot requires tight control over the security of the data being
used, from data defining mission instructions to sensor data. Figure 24 shows a lay-
ered classification of stages in which information is either collected or processed by
an autonomous robotic system. This figure extends the cyberattacks categorization
in [276], and also takes into consideration that the internal processes can be mod-
eled as a software-defined network from a more abstract point of view [277]. Many
robotic frameworks, such as the Robot Operating System (ROS) fall into this con-
sideration [278]. From the cybersecurity domain point of view, the acquired sensor
data needs to be secured as well. This represents an additional challenge. Therefore,
an essential aspect in the operation of autonomous robots is to be able to validate
both data being shared among subsystems and external systems (a controller or other
robots), but also data defining or characterizing the way the robot, seen as a cyber-
physical system, interacts with its environment.
A relevant precedent in securing multi-robot cooperation was introduced by Castell6

Ferrer et al. in [272], were the authors leveraged Merkle trees to cope with byzan-

86

Securing single- and multi-robot missions

N ~

|
Mission Control i
and :

|

|

External Controller
l External Communication !

Network security and
@4y Encoded O @ communication security
Instructions

P

I ~

Control and Decision-
Making Systems

A

Application security and
internal networking

Environment
exploration

End-to-End Data Validation

Data security and
data integrity

Encoded
Sensor data

Sensors and Actuators

Goo T

Physical security, external inputs

?
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l ‘
[! i
! i
' i Hardware Infrastructure |
I i i
| ! i
|
[0 !
|
i
v

Figure 24. Classification of data acquisition and analysis processes in autonomous robots
and matching security layers.

tine robots in cooperative missions within swarms of robots. The key objective is
to improve the security and secrecy aspects of swarm robotics missions. The main
novelty of their work is the introduction of a framework for validating data in robots
without relying on the data itself, by encoding mission instructions in Merkle trees.
Merkle trees are cryptographic structures that enable validation of data through cryp-
tographic proofs that do not involve the data itself. In their approach, robots ran-
domly navigate the environment because they have no knowledge about it. In the
study presented in this chapter, we go beyond separating data verification from the
data itself, towards defining new implicit ways of guiding robots without any direct
instructions. Only by interacting with the environment can the appropriate instruc-

87

Jorge Pefa Queralta

tions be decoded by the robot, in a process that serves as a simultaneous end-to-end
validation of both sensor inputs and mission instructions. The methods introduced
in this chapter can provide full mission instructions that ensure a robot is able to
complete a task while keeping the almost-zero a priori knowledge about the mission
objective and its steps. What is more important, the robot is not only able to validate
the integrity of both the mission instruction and its sensor data, but also that it is
actuating as expected as chained instructions are decoded sequentially.

A common aspect across different robotic frameworks is that robots are given
raw information about their operational environment before the mission starts. For
example, this is a common step in autonomous navigation processes. In the case of
robots running SLAM, they accumulate raw data by themselves. Self-driving cars
in dense urban areas, for instance, often rely on high-definition maps for localiza-
tion by matching their sensor data with a part of the map [255]. This arises security
concerns from two points of view regarding data integrity. First, if a robot sensor
malfunctions or the data is tampered with, then wrong landmarks could be matched
or the data could match a wrong part of the map. Second, if the map or landmarks
given to robots are either corrupted or modified intentionally, then a robot might be
tricked into following wrong directions. In a worst case scenario, all sensor inputs
(either modified or not) could match wrong mission instructions and a robot could
be navigating towards a different position without being aware of it. The same rea-
soning can be applied to other types of missions where a robot has to interact with
its environment, such as assembly robots or healthcare robots.

4.1.1 Novelty

We aim at extending previous works into a more general framework focusing on
encoding not only mission instructions but also the relationship between the possi-
ble ways in which a mission can be completed. In [272], one of the main research
questions is whether it is possible to provide the “blueprint” of a robotic mission
without describing the mission itself. In this chapter, we delve into the possibilities
and limitations of encoding instructions, exploring different application scenarios
and developing more specific ways in which this idea can be integrated into real
robotic missions. In this work, we go beyond separating data verification from the
data itself, as introduced in [272], towards exploring new implicit ways for defining
complex robotic workflows. One of the key differentiating points with respect to the
previous work is that the complete mission is encoded, whereas in previous works
the robots would perform a known mission (e.g., exploration with random walks)
and only specific actions are defined whenever the robots are able to reproduce pre-
defined encoded sensor data. In addition, in this work we utilize a graph structure,
which can be directed, to provide a specific mission flow and explicit topology on the
connection between the possible mission instructions or states. Through the chap-

88

Securing single- and multi-robot missions

Validation of
Mission Instructions and
Human-Robot Interaction

Chained Reactive
Instructions behavior
Validation of Validation of
actuators and sensor data
interaction and
with the sensor
environment interfaces
Simultaneous Collaborative
Validation actions

Validation of
Robot-Robot Interaction
and Cooperative
Actions

Figure 25. Our end-to-end validation framework can be utilized for single autonomous
robots but also in human-robot and robot-to-robot cooperation.

ter, we first describe the framework and the different possibilities, from human-robot
interaction to collaborative robots, and then provide a proof of concept with naviga-
tion instructions. This proof of concept demonstrates that traditional robot behavior
can be maintained with minimal impact on robustness and applicability even when
providing full mission codification, opening the door to more secure and safe deploy-
ment of autonomous robots.

The basis of the framework described in this chapter is that only by interact-
ing with the environment can the appropriate instructions be decoded by the robot.
This decodification process serves as a simultaneous end-to-end validation of both
sensor inputs and mission instructions. The methods introduced in this chapter can
provide full mission instructions that ensure a robot is able to complete a task while
keeping an almost-zero a priori knowledge about the mission objective and its steps.
What is more important, the robot is not only able to validate the integrity of both
the mission instruction and its sensor data, but also that it is actuating as expected
as chained instructions are decoded sequentially. We also show how this can be ex-
tended to interaction with humans or other robots. The potential validation processes
are illustrated in Fig. 25.

89

Jorge Pefa Queralta

We propose the utilization of one-way cryptographic hashes to encode a set of
features or elements in the objective environment, which are then utilized as land-
marks for exploration. This requires robots to know in advance the procedure for
calculating the hashes, which is equivalent to robots being able to understand high-
level mission instructions in a traditional deployment. By utilizing cryptographic
hashes, we encode the landmarks in a way that no explicit information about the en-
vironment is exposed even if the data is accessed by a non-trusted third party. These
hashes can be defined by extracting different features of the environment: from raw
sensor data (e.g., objects with a certain color) to processed data (e.g., the output of a
deep learning classifier), or extracting geometric properties of the environment (e.g.,
position and size of doorways or rooms). Additionally, the content of traditional
landmarks can be encoded, such as the position of wireless localization beacons or
the content of QR codes. Nonetheless, an important aspect to consider is that small
changes in the hashed information can produce significant changes in the resulting
hash. Therefore, the definition of the features must be done in a way such that hashes
can be reproduced by robots with a certain noise tolerance. In this chapter, we dis-
cuss the different options for generating hashes and defining landmarks. Then, we
utilize a certain set of geometric features that can be extracted from the environment
utilizing range sensors (e.g., lidars) and provide experimental simulation results to
validate the encoding scheme.

With the proposed approach, an external controller can provide new mission in-
structions to one or more robots even over an untrusted network, assuming that robots
are aware of the procedure to calculate the hashes. This can be utilized, for instance,
in remote areas or in order to enhance the security of the information if new instruc-
tions are provided for groups of robots in industrial warehouses at various locations
from outside their local network. An additional requirement is that at least one of the
positions in the navigation graph must be known to robots. In a cooperative explo-
ration task, different robots can share the positions that they have visited by simply
sharing the hashes. If, additionally, these hashes are generated by combining two or
more other hashes (for instance, different properties of a single feature), then these
can be shared instead so that robots can prove to their peers that they have visited the
location and still not reveal explicit information.

4.1.2 Research questions

Summarizing the previous considerations, we have found an unexplored research
gap in robust data validation schemes for autonomous or semi-autonomous robots.
The main research questions that we find so far unanswered extend the work in [272]
towards broader data validation in autonomous robots:

* Is it possible for a robot to safely and securely interact with its environment,

90

Securing single- and multi-robot missions

operators or other robots in a way that it has zero a priori knowledge of the
mission itself;

* can encoded information revealing no explicit mission instructions maintain
the level of efficiency and applicability of current robotic workflows; and, fi-
nally,

* can these encoded mission instructions be utilized to simultaneously validate
their integrity but also the progress of the mission, together with local infor-
mation such as sensor inputs and operation of actuators.

The first of the above questions applies to a wide variety of situations. For in-
stance, whether a robot in a factory can be given assembly instructions that it cannot
understand until the assembly process starts, or whether a robot can be given a map
that it can only understand when it starts to navigate its environment. An even more
interesting situation occurs when a robot can interact with a human or another robot
in a predefined way only when a series of conditions are met. The latter two ques-
tions extend the same concept towards more concrete aspects: whether these encoded
instructions can be adapted to current robotic algorithms and workflows, extending
previous works relying on random movement, and, finally, whether instructions un-
derstood by the robots can, simultaneously, validate that all processes are working
properly. Thus, we are asking whether a single framework can define both end-to-
end data validation and define encoded instructions that enable a robot to securely
and safely interact with its environment.

These considerations cover the validation of a robot’s operation from end to end:
from validating sensor data and the correct operation of actuators to validating mis-
sion instructions and information received from an external controller. In our exper-
iments, we consider a navigation or exploration mission where a priori information
(features) about the environment is available to the mission controller or robot op-
erator (operator hereinafter). In this scheme, an operator generates a set of encoded
instructions by hashing the description of a set of landmarks (waypoints) in the envi-
ronment. The set of encoded landmarks is then given for autonomous robots which
utilize them to navigate the objective environment with zero a priori knowledge of
it. The encoded landmarks are given to the robots in the form of a navigation graph
which also includes information about how to navigate between consecutive land-
marks. Because all information is encoded, we minimize the amount of raw data a
priori exposed at the robots.

41.3 Contributions

The main contributions of this chapter are

91

Jorge Pefa Queralta

1. the definition of an end-to-end validation framework for autonomous robots
based on encoded instruction graphs;

2. the introduction of a novel approach that encodes a navigation graph utilizing
cryptographic hashes to encode environment features, and

3. the definition of a set of methods that allow robots to follow encoded mission
instructions while validating their sensor data without external feedback.

4.1.4 Chapter organization

In the next section, we focus on describing encoded instruction graphs for securing
missions and enabling end-to-end data validation. We also delve into the different
possibilities and application scenarios, describing how the encoded graphs can be de-
fined for different situations or interaction modalities. We also explore the different
opportunities in terms of data validation, and on how interaction with the environ-
ment or other robots creates different forms of validating instructions, sensor data
and the robot’s own actuators.

The second part of the chapter is then related to applying the aforementioned
framework to a navigation problem in autonomous robots. We study two different
scenarios in which (1) geometric and topological information is extracted from the
environment to define the landmarks, and (2) markers are placed in the environment
and utilized as waypoints for navigation. In the former case, the operator only needs
minimal information about the geometry and topology of the environment. In the
latter, the operator needs to place the markers in the environment before the mis-
sion starts. Through simulations and experiments with real robots, we show that
these methods do not add a significant computational overhead compared to existing
navigation methods while maintaining similar levels of accuracy and performance.

4.2 Background and related works

There has been a growing interest in securing robotic systems, partly owing to the
increased connectivity with which robots are equipped. Indeed, there is an increasing
amount of data exchange modalities with new attack vectors in remote control com-
mands [279], telemetry [280], offloading computation [281], robot-to-robot commu-
nication [272], and human-robot interaction [282].

4.2.1 Security in robotics

Multiple research efforts have been devoted to studying cybersecurity issues in robotics.
In [276], Clark et al. review and discuss the main security threads to robotic systems,
from spoofing sensor data to denial of service attacks, and including other typical

92

Securing single- and multi-robot missions

vector attacks such as malicious code injection or signal interference. However, this
analysis only takes into account the security aspect in robotics from the cybernetic
point of view, without considering the physical dimensions in which robots oper-
ate. The interaction of a robot with its environment presents key issues that can-
not be addressed with traditional risk mitigation techniques from the cybersecurity
domain. An early work in this direction was presented by Py et al. in 2004 [283],
where the authors introduced an execution control framework for autonomous robots
that would analyze the data obtained from the behavior of the robot through a state
checker. A more recent work taking into account the nature of robotic operations
was presented by Tang et al. [284], where sensor data was estimated through a denial
of service attack. Similarly, in [285], Tiku et al. introduced a methodology for over-
coming security vulnerabilities in a deep learning localization method by introducing
adversarial training samples. All these approaches, however, take the point of view of
data security in information systems and do not explicitly involve the cyber-physical
nature of autonomous robots and their interaction with the environment, which is
the objective of this chapter. In terms of distributed and multi-robot systems, most
efforts have been directed towards the analysis and mitigation of security issues from
a networking perspective [286].

From the point of view of data validation, Legashev et al. described an ap-
proach for monitoring, certification, and validation of the operation of autonomous
robots [287]. The authors’ aim was to define a generic framework from a legislative
approach, relying on periodic telemetry data obtained from autonomous robots and,
in particular, autonomous vehicles. The framework focuses on validating the robot’s
operation but not the data itself. The only method available to validate the data itself
in this work is through statistical analysis and detection of statistical abnormalities.
Data integrity was also the objective of Yousef’s et al. study on cyber-physical threats
on robotic platforms [288].

4.2.2 Indoor mobile navigation

In this chapter, we focus on demonstrating the applicability of the proposed approach
to different indoor navigation methods. As such, we here review

Early works on indoor mobile robot navigation utilized landmarks in order to
enable localization of the robot through longer missions. Lazanas et al. presented a
method that allows for bounded navigation errors and localization uncertainties given
a properly distributed set of landmarks along the path [289]. However, landmark-
based localization with limited sensor capabilities introduces high sensitivity to noise.
To cope with this problem, Madsen et al. provided an online localization algorithm
that optimizes the selection of landmarks utilized for localization [290], assuming
that there is a variable and large enough number of detected landmarks.

More recently, high-accuracy landmark-based localization has been possible with

93

Jorge Pefa Queralta

the utilization of wireless sensor networks [291], wireless or light-based beacons (IR,
UWRB, Bluetooth), and QR codes [292] or other identifiable images[293; 294; 295].
Nazemzadeh et al.’s approach to utilizing inertial and odometry data to increase the
accuracy can be directly leveraged to improve the robustness of our proposed meth-
ods in terms of hash reproducibility [292]. It increases the probability of robots being
able to match encoded features with positions in the navigation graph. One benefit of
utilizing landmarks that are already encoding certain information, such as QR codes
or other text representations, is that additional information can be embedded into the
landmarks. In an industrial scenario, this can be utilized to provide further instruc-
tions for robots [296]. Wireless sensor networks or beacons can, on the other side,
only provide location information in most cases. However, it is not strictly neces-
sary to install certain infrastructure beforehand in order to enable robust navigation.
For instance, Gadd et al’s work on infrastructure free navigation can be modified to
provide an encoded topological map rather than storing raw features [297].

Recent advances in high-accuracy odometry methods show that robust autonomous
operation is possible, specially in short distances, without the need for real-time map-
ping or a pre-built map [298; 131]. An estimation of a robot’s motion can be obtained
with the integration of inertial data [299]. Alternatively, different odometry methods
can be applied based on non-inertial sensors. Visual odometry algorithms utilize
feature extraction and tracking from cameras [300; 301], while lidar-based odometry
uses mostly geometric information [133]. These can be leveraged in our approach
for robust navigation between landmarks and ensure that the inter-landmark local-
ization error is within the noise tolerance of the hashing scheme. In known outdoors
environments, high-accuracy positioning can be achieved through differential GNSS
measurements [302].

In the case of image-based localization, scale-invariant feature transform (SIFT)
descriptors can be encoded with a certain resolution. Zamir et al. introduced a
tree-based indexing scheme for SIFT descriptors to find the GPS location of im-
ages based on a dataset built from Google Maps Street View [293]. Additionally,
the authors proposed the utilization of group-based localization with multiple im-
ages match where there was less confidence for individual images. If an encoding
approach is integrated with this, the group-matching approach might be affected as
the confidence measure would be instead whether hashes can be reproduced or not.
Thus, there is a clear trade-off between flexibility and security. Rather than extracting
features from individual images, Sattler ef al. introduced an efficient and effective
method for reconstructing scenes with an structure-from-motion approach [294]. In
their work, a 3D-to-2D search was utilized to cope with matches lost due to quantiza-
tion. If a method of this nature is utilized within an encoded navigation approach as
the one proposed in this chapter, this search needs to be modified to be done after the
one-way hashes have been calculated. More recently, Thoma ef al. have shown the
resurgence of image-based landmark definition for navigation and localization with

94

Securing single- and multi-robot missions

the recent advances in feature representations for image retrieval [295]. The authors
focused on generating a set of landmarks from a larger subset of images. This work
can be directly integrated with the encoding approach presented in this chapter.

In terms of cooperative exploration, an early approach to multi-robot mapping
was proposed in 2002 by Williams et al [303]. An adaptive methodology for col-
laborative localization and mapping was proposed with novel map fusion techniques
with estimation of transformations between relative frames of reference. Michael
et al. used multi-robots to realize collaborative 3D mapping after the Tohoku earth-
quake in 2011 [304]. Over the last two decades, more advanced algorithms have been
proposed for map matching [305] and map merging in collaborative SLAM [306].
The benefits of collaborative mapping are clear and have been presented by multi-
ple authors [307]. Of special interest to this work is Dedeoglu et al.’s work on a
landmark-based matching for multi-robot cooperative mapping [308]. The author’s
approach to matching topological maps could be extended to matching a subset of
hashes, in a situation in which robots would explore an unknown environment and
map different parts separately.

4.2.3 Research gap and novelty

In general, we see a research gap in terms of addressing the physical dimension in
robotic operation from a security and safety point of view. This becomes even more
evident when analyzing the most widely used robotic frameworks. Among them,
the Robot Operating System (ROS) has become a standard across both industry and
academia. Multiple researchers have studied the security flaws of ROS [309], and
proposed different approaches to address these issues [310]. Moreover, many of
these are being mitigated in the newest version, ROS 2 [311]. However, these efforts
are again mostly directed at securing ROS as a distributed and networked system,
and not from the point of view of a robotic framework meant for robots to interact
with their environment. While it is highly important to provide security from the data
flow point of view, we direct our efforts in this chapter towards the gap in securing
and validating the way robots are controlled and interact with their environment.

In this chapter, we focus on providing a framework for validating data integrity.
Other types of cyberattacks such as denial of service attacks, in which the commu-
nication channels are congested, are not considered. Nonetheless, it is worth noting
that our proposed approach can provide some benefits even in such situations. While
the communication channel utilized to transmit the encoded commands to the robot
might be known to an attacker, the sensor data or inputs triggering the different ac-
tions are unknown even to the robot itself, if multiple possibilities exist. Therefore,
our framework also provides partial mitigation for other types of cyberattacks where
the channel utilized to trigger a robot’s actions might be disguised within the encoded
instruction graph sent to the robot before the mission starts.

95

Jorge Pefa Queralta

4.3 Encoded instruction graphs framework

This section covers the main framework components and how it can adapted to dif-
ferent application scenarios from a design perspective, before delving into a specific
use case in the remainder of this chapter.

4.3.1 Encoding robotic instructions

We follow up on the instruction encryption ideas from [272], where missions in-
structions are given to a robot by encoding combinations of sensor inputs and a set
of robot actions. We do not consider explicitly multi-robot cooperation at this point
but instead focus on describing robust options for encrypting and decrypting mis-
sion instructions. Moreover, we also evaluate the performance degradation inherent
to encrypting data when compared to standard robotic operation, avoiding random
behavior. In order to do that, the first step is to not only encode a set of actions and
features from sensor data, but also at least one more variable that enables a hash
search, a trial-and-error process in which a robot does not need to be able to repro-
duce a specific hash but instead can try multiple hashes until finding a match. An
example of this is the addition of a spatial or temporal component. The second step
is then to define not only a series of encoded actions but also encoded states, which
can be defined based on a combination of variables (e.g., position, time, sensor data
or other external inputs). By encoding both states and actions, we can then wrap
the set of encoded information into a graph structure, such that the encoded infor-
mation in an edge of the graph gives the robot information about how to arrive to
a different state or process. We call this an encoded instructions graph. A sample
encoded instructions graph is shown in Fig. 26. In this graph, the initial instruc-
tion is encoded into a hash H;, which the robot is able to decode by combining a
predefined action (e.g., movement in one specific direction) with equally predefined
sensor data (e.g., visual or geometric features extracted from the environment). Most
of the nodes in the graph represent states, with the majority of the nodes in this ex-
ample being defined by a position and a specific feature defined a priori on the basis
of specific sensor data (e.g., predefined landmarks). However, the information that
nodes encode is not restrictive, as it can be both actions or states. The edges, how-
ever, should encode information that enable the robot to transit between nodes, and
therefore should include one of the robot’s possible actions or an external input, such
as a message from a controller or another robot. An edge can also be empty, i.e.,
if the robot can gather enough information to decode a different node without any
intermediate step. In the example in Fig. 26, the initial node triggers an action by the
robot whenever it is able to acquire sensor data that reproduces a hash in the graph. It
can then proceed to two different states in which it must to be able to reproduce both
its position and sense a different variable. The encoded information in the second

96

Securing single- and multi-robot missions

node, Ho, can then be decoded after a certain time, which can for example be used
as a failsafe to go back to the initial state if the sensor data defining H3 cannot be ac-
quired in time. In practice, the robot is not aware of the type of information encoded
in each hash, and must therefore perform a continuous trial and error process to try
to reproduce the hashes by all the different means it has been preprogrammed for. In
our experiments, we show that this process of trial-and-error has a mostly negligible
impact compared to the computational cost of extracting features or processing sen-
sor data in standard robotics algorithms. In any case, the process of deciding how
to define the encoded instructions is not trivial, as they must be reproducible, while
concise enough to avoid data mismatches.

An encoded instruction graph as described above is a directed graph. For a mis-
sion that has only one possible solution and where each step is followed by one and
only one other step, then the graph is reduced to a path or linear graph. In many cases,
the graph will be acyclic. This happens when there are multiple options to complete
a mission, but once a set of steps is taken then the same ones cannot be taken again.
For instance, in a manufacturing process, the order in which a set of parts are moved
to a working bench might not matter, yet every part must be moved exactly once. In a
general case, the graph can be arbitrarily complex and contain any number of cycles.
For instance, a reconnaissance mission in which a robot has to navigate an objective
area without any specific order could have multiple cycles. Higher mission control
embedded at the robot should then be able to understand these more complex graphs
and provide a planning strategy that is not directly sent by the mission controller. An
example of this will be given in our experiments.

4.3.2 Validation modalities

The proposed approach can be extended to multiple scenarios, as the encoded infor-
mation cannot only be a set of predefined actions and features extracted from sensor
data, but also other external inputs, variables defining the state of the robot, or even
timing constraints. The possibility of utilizing external inputs is particularly inter-
esting as it enables secure and secret multi-robot cooperation but also new ways of
defining under which conditions human-robot interaction can happen. Since the in-
puts can already be encoded, the information exchanged between robots or utilized
as external signals triggering robot actions can be defined in a way that they are to-
tally meaningless and only usable when combined with other data. Therefore, if the
data is spoofed or a third party gains access to this communication medium, no real
data is actually compromised. Different possibilities for encoding and decoding in-
structions are shown in Fig. 27. In the figure, we show the different approaches to
encoding a robot’s interaction with its environment. From left to right, the options
include (i) simply encoding a predefined action, (ii) combining actions with a times-
tamp when they should be carried out, (iii) actions triggered by specific sensor data

97

Jorge Pefa Queralta

‘uotssiw oY) ut 3urssai3oid Jo Aem 9[3UIS B A[LIBSS209U JOU ST I3} JBY) 910N ‘A[[eriuanbas
PapOo3p A1k saysey aY) JI A[uo A[[nJssaoons paio[duiod 9q ued UOISSIW Y], "SUOTIOR S[QR[IBAR I} JO AIOW JO JUO PUE ‘BJEp UONBZI[BIO] ‘BIEp
JOSUQS JO SUONBUIQUOD JO ‘UOTBUWLIOJUT [BJUSWIUOIIAUS JUIIJJIP WOIJ pauyap ureq saysey yPim ‘yder3 uononnsur popodu? ojdwes *9g 3angig

(andu| pspoou3 |eusaix3 (40suas (40suas
+UOIISOd)H = “H +UOISOd)H = £H +UOISOd)H = °H
(40suas . . ¢
+ UOIHSOd)H (uonay + Josuasg H « (uoipy H (uonoy H « (uonoy +
=6y + UOINSOd)H = ®H +5H)H =4SH +EH)H =5 JOSUas)H ='H
reudyy gy (uonoy (uondy + "H)H T
?atu_\MUEI ZH)H = H (uomoy (Pwiy + e H
=ty +OH)H = (dosuas)H = H UOIIY)H = °H
(uondy i
9 v +EH)H ="*H 4 .
(Indu| papoou3 |eusaix3 H (uomy H H
+ UOIISOd)H = °H +'HH =""H

A ssa4304d UOISSIIAI

98

Securing single- and multi-robot missions

obtained from the environment, and (iv) the combination of all the previous. The
actions can then be chained including the previous hash or action within the next
codified node in the graph. These approaches are described in more detail and put
into context in the following subsections:

Independent validation

The simplest approach is to encode mission instructions individually and indepen-
dently. In this case, an encoded instruction set can be sent to the robot, similar to the
approach followed in [272] but where only the leaves of the Merkle tree would be
sent. This set of instructions does not define a graph structure and does not represent
the main interest of this chapter. However, these instructions can be utilized as the
root of an encoded instruction graph, or as a trigger for starting a parallel process at
the robot.

An additional layer of security can be added by introducing time or spatial con-
straints. Time constraints (e.g., introducing a timestamp in the hash) provide an extra
layer of security against attacks that could spoof the encoded data and reproduce it
later, even if the data itself cannot be decoded. Similarly, spatial constraints can be
added by including the robot’s location in the hash. This, however, only prevents the
replication of the robot’s behavior in other locations.

lterative validation

An iterative validation happens when a robot is able to validate its own actions. This
particular modality will be the case studied in the next sections with the introduction
of an encoded navigation graph.

Encoded instruction graphs defining an iterative validation process can contain
different types of encoded data in their nodes and edges. For instance, sensor data
can be encoded in the graph nodes, which serve the purpose of validating the pro-
cess. Additionally, this sensor data can encode other information, such as positional
information or time information that can be utilized as a part of the control loops at
the robot. Then, the actual instruction for the robot to move towards the next step is
encoded in the edge of the graph, which encodes both the data in the current node
being validated and the action or actions that will enable the robot to decode the
next node. An illustration of this process is shown in Fig. 28. In the figure, we show
how, at each step, instructions can be validated simply by being able to reproduce the
corresponding hash. Moreover, as actions accumulate leading to new reproducible
states (defined through chained hashes in the encoded instruction graph), we are able
to iteratively validate the actions confirming their output with an expected outcome.

99

Jorge Pefa Queralta

le T

“UOTJRITUNWITIOD JOQOI-H[NW IO ‘SUOTIONITISUT PAUTRYD ‘SPUBTUTOD
PISLQ-1USAD ‘SUOTIONIISUT UOISSIW [ENPIAIPUI J0J PAZI[n oq ued yoroidde swes oy, "SMOJJ ©Iep pPUE SINI[EPOW UOTJEPI[EA JUIPI(°LT dInSL

$J01eNn)dy 100y

$Jojenioe JO uollepllep <« —

(paseq painieay/uoliedo))

SuomPNISy|

———— UIB3S YSeH —— ——————

+
1

e1ep J0SUas papodul

)

v |

A
|

JUBWUOJIAUD JuaWwuoJIAUg A
ayrAq ayrAq suonoe suoiYy %
1epleA
suondy pautey paJa8sL) suonde paJadsiL paydayd-awi] 0a1q s P
paxayd-awiL SuoRdY 19211 q
¥ x x » x » ¥ + L 3
[ittt b Sutttel N SN [T I
L _C R — [—

" u‘_mw_ mr 1ood
uonezwonpusuoy | TR moooooo >4 m; H === suonoy
SpuBWWO) papodul yoteas awi| 1

|
1

— ejeQ Josuas mey fa— —

jusWuUOIIAUT
|euonesadQ ay3 Sulieys syoqoy Jayio

sdwejsawi] papooul Spuewwo) papoou3

+
1

t t
I I

|
sdooq |
[01UO) [———— _
|eusaju| 1 1
T Sulpueisiapun auads
| Suidden/Aawopo
|
|
|
|
|
|
e N

jusWUOoIIAU] [euonesadQ

SUOI3ONJISU| UOISSIIA

100

Securing single- and multi-robot missions

Iterative Data Validation — From Sensors to Actuators

Environment Interaction Autonomous Controller
t Sensing | Actuation Robotic Agent External
________________ Encoded
; Instructions Graph
Decode Initial
H Action
Actuation and Data
Acquisiton 7777 v
______________ Feature extract.
: encoded search
N Episodes :
1
1
v
Actuationand Data
Acquisition i
Feature extrgct. ,
encoded search v
Mission Outcome
Validation
________________ Encoded
é Instructions Graph
___________ Decode Initial
; Action
Actuation and Data
Acquisition
:
v
v :

Validation of sensor data

Validation of mission instructions

Validation of agent actuators

Validation of mission completeness

Figure 28. Illustration of an iterative validation process.

101

Jorge Pefa Queralta

Multi-robot simultaneous and mutual validation

As we have mentioned earlier, one significant scenario where this validation frame-
work can be applied is in multi-robot cooperative behavior. Complementing the ideas
proposed in [272], we are now also able to break down a mission in two disjoint parts
that can be given to two different robots. An example of this is shown in Fig. 29,
which illustrates a collaborative inspection process. In the example in Fig. 29, an
encoded instruction is defined by combining a set of different signals or parameters.
First, data triggering an action is set from features extracted by the robot from its
own sensor data. In addition, once multiple robots share the same operational en-
vironment, we can now also differentiate between hashes obtained from sensing the
environment and those obtained from sensing the behavior of other robots. Second,
the two or more robots can also exchange messages in order to trigger each other’s
actions. These messages do not hold any valuable data to the sender but only to
the receiver as part of a hash decoding process. The messages can be predefined
and based on the robot state, or generated as a function of the features sensed in the
environment.

4.4 Use case: encoded navigation graph

One of the most fundamental ways in which a robot interacts with its environment
is by navigating it. Maps have long been utilized for autonomous navigation and
exploration in mobile robots to increase the robustness of long-term autonomous
operation [312; 313]. Maps or landmarks provide robots means for localization in a
known reference frame, while enabling the calibration and adjustment of on-board
odometry and localization algorithms.

Maps can be either given to robots, or built by themselves through a simultane-
ous mapping and localization (SLAM) approach [133; 300; 314], and allow robots to
continuously localize themselves within a global reference system through different
map matching techniques, such as iterative closest point (ICP) [315], perfect match
(PM) [316], or normal distribution transforms (NDT) [317] algorithms.. Landmarks,
on the other side, enable robots to utilize odometry methods for short-term localiza-
tion and correct their position when a landmark is identified [290; 318].

Landmark-based navigation has been successfully implemented in various mo-
bile robots with quick response (QR) codes [319; 320; 292] or other identifiable
images[293; 294; 295], wireless sensor networks [291], or ultra-wideband (UWB)
markers [19; 170; 321], among others including IMU fusion [292], or topological
maps in for infrastructure-free navigation [297]. When utilizing landmarks that are
already encoding certain information, such as QR codes or other text representa-
tions, additional information can be embedded into the landmarks. In an industrial
scenario, this can be utilized to provide further instructions for robots [296].

102

Securing single- and multi-robot missions

Collaborative Inspection — Encoded Instructions

I, = M, M, S; S, C2 * S,? S,t B
°
.
°
Iy = M, M, S; S, CZ Gt S,? S,? F
- \
-~ \
-~ \
il \
\
(M5 [e2atst] ¢] \
\
o \
N, Actionse
. (v] s Jefe]se] v |
e = e :

® N, Actions
°

(M et fer|s]]

7

M, Encoded instruction to robot i: encoded action + triggering data (S;/ S/ Cj/ F).

S Sensor data triggering instruction M,, describing the operational environment.
Si Sensor data at robot i, describing robot j’s actions.

CJ Encoded message that robot i sends to j to trigger action M;.

F Indicates whether the action is triggered directly at either robot (first action).

Figure 29. Illustration of a collaborative inspection process where robots only have partial
instructions.

103

Jorge Pefa Queralta

In order to analyze the viability of this idea and discuss the potential directions
for solving the research questions defined in Section I of this chapter, we consider
the most essential aspect of a robot’s interaction with its environment: the naviga-
tion. Therefore, we capsulize the research questions to more concrete considerations
regarding the navigation of autonomous robots:

1. Is it possible to provide a description of the environment (e.g., a map or a set
of landmarks and how to travel between them) to an autonomous robot, in a
way that the robot is unable to understand the map until it starts navigating,
and such that it can only decode the information in that map if a series of
conditions on how it sees its environment are met?

2. Is there a way of defining navigation instructions for an autonomous robot
such that any modification of those instructions automatically renders them
unusable ensuring that if wrong sensor data is fed to the robot’s controller, the
instructions cannot be followed?

4.4.1 Encoded graph definition

Rather than modeling a map of the objective exploration area and utilize it for navi-
gation, we utilize a landmark-based navigation graph that encodes the position of the
different landmarks and the navigable directions between landmarks. In this graph,
each vertex represents one encoded position in the map, and each edge represents a
straight or unique path between two positions. By unique we mean a path that might
not be straight but such that the robot can realistically follow. A sample map and the
corresponding encoded navigation graph are illustrated in Fig. 30. In this and latter
sections, we utilize the following notation. A graph is an ordered pair G = (V, E),
where V represents a set of vertices, and E represents a set of edges associated with
two distinct vertices, i.e., a set of tuples {(V;,V;) | V;,V; € V}. We consider a
directed graph, were the order of these tuples matters.

The most straightforward approach to landmark encoding is to define the hash
of a position given its coordinates ¥ € R®. Thus we would define H; = H(7;). In
order to ensure that hashes will be reproducible, the coordinates need to be given in a
coarse grid with a resolution that is dependent on the accuracy of the robots’ onboard
odometry.

If the environment is accessible a priori, elements can be installed that facili-
tate the localization of robots when they are nearby, such as QR codes, or Blue-
tooth/UWB beacons. The QR codes contain hashed data and can encode additional
information, for example, instructions for a robot to operate in a given room or area.
An alternative approach is to utilize the environment geometry and topology. The
coordinates of the features can still be utilized to define their hash without using a

104

Securing single- and multi-robot missions

(b) Corresponding navigation graph to floorplan in (a).

ID Hpy (256 bits)

Ho = 5341dfa945ca%e52334 ... 8446048
1 Ho = a6340c2ed221f55a475 ...c3e92b4

24 Hoy = 2522cfaa21faaad5a ... d9de50a

(c) Landmark hashes given to robots. The hashes are calculated based on the position
(x,y, z) and the landmark type (LT): H; = H(LT; + x; + y; + 2;), where H is the hashing
function and 4+ means concatenation.

0 0 0
0 0 0 0 HZO,IG H10,17 HAO,24
16 16 16 15 X ; X
HA16,0 H416,1 H416,2 HL16,15 0 0 0
0 0 0 0 0 ... H?**

/24,0

(d) Adjacency matrix with the edge hashes to aid navigation between landmarks. The edge
hashes are HZA” = H(LT; + z; + y; + z; + /i,7), where /i, j represents the navigation
direction from % to j.

Figure 30. Encoded navigation graph construction process.

105

Jorge Pefa Queralta

predefined grid. Rather than having a robot utilizing its own or near position to cal-
culate the hash, it can calculate it based on the coordinates of a position that depends
on the robot’s current local environment.

4.4.2 Deployment and navigation

We assume that the position where a robot is deployed is either known in an absolute
reference frame, or utilized as a common reference in the robots’ local coordinate
system. If only local references are utilized, these must have a common orientation.
The initial position is encoded with a hash but also known to robots.

In the encoded navigation graph, each edge in the graph is given two hashes,
as the robots might reach these from different directions. Therefore, the adjacency
matrix containing the edge hashes shown in Fig. 30 is not symmetric. Only minimal
information about the local environment required for navigation purposes needs to
be stored at the robots. Odometry-only (map-free) navigation, when possible, would
be preferred to minimize the amount of raw information that robots store.

The directions between features, or the initial position and near features, is en-
coded in a way that can be matched by robots on a basis of trying multiple possible
directions until finding one that produces the corresponding hash. The edge hashes
are calculated on a trial-and-error basis, and thus they can be defined with an arbi-
trary division of the [0, 2] interval. However, this decision must take into account
the trade-off with the inherent computational overhead. Furthermore, not all the
navigable directions are necessarily selected, and therefore the real topology of the
objective environment can be, to some extent, hidden. In addition, multiple features
can be selected within a single room or small area, but even if all are detectable at
the same time, a fully connected subgraph does not need to be generated within the
navigation graph. In general terms, there is a trade-off between the number of actual
connections between features that are encoded in the navigation graph, and the ro-
bustness of the navigation in the event of robots not being able to reproduce a certain
subset of hashes.

4.4.3 Landmark-based localization

The accuracy of the feature’s position directly affects the error tolerance for the
odometry method utilized for navigation when no landmarks are detected. In order to
cope with the odometry error, if it can be estimated then it can be taken into account
to calculate the hashes from the position of landmarks, following a trial-and-error
approach within a certain spatial area around the landmark. The number of trials that
a robot needs to perform depends on the accuracy of the odometry method utilized,
and the granularity of the grid utilized to define the position of the landmarks and
calculate the hashes. Additionally, the possibility of the robot identifying a wrong

106

Securing single- and multi-robot missions

landmark that is nearby must be taken into account. Therefore, there is a trade-off
between accuracy and robustness with multiple factors to take into consideration.

4.5 Navigation graphs: methodology

In order to test the feasibility of the encoded navigation approach presented in this
chapter, we have run a series of simulations and experiments. In these, we analyze
the overhead and performance impact from calculating hashes and utilizing the en-
coded navigation graph. In all cases, we make the assumption that the environment
is known to the mission controller.

The nature of the information to be hashed can vary significantly depending on
the operational environment of the robots, and how accessible it is to the mission
controller. The main bottleneck is in defining hashes from a selection of features that
robots can identify with high probability. Because hashes have to be reproducible,
features have to be constant over time, and be identifiable in a variety of conditions
affecting either sensors or actuators. These can range from environmental conditions
affecting sensors to taking into account the different possibilities for traversing a
given room through various paths. Based on these considerations, we have devised
two types of application scenarios in which we test the proposed framework.

First, we consider an environment where only robots operate. In this case, we
have simulated the interior of a building with empty rooms. For this scenario, we
utilize a simulation environment, in which we encode geometric features in the navi-
gation graph: doorways, corners and rooms. For the simulations, we consider a fully
automated environment with no dynamic obstacles and known geometry. This can
be applied, for instance, to logistic warehouses where only autonomous robots oper-
ate. It can also be applied to autonomous cleaning machines operating at night, or,
in general, any scenario where the environment does not change significantly over
time. In our simulations, the robot relies on a two-dimensional laser scanner for
feature detection.

Second, we consider a real office setting with a dynamically changing environ-
ment, people moving in it and a wide variety of objects populating the different
rooms. The experiments are carried out relying on visual markers that can be placed
in multiple fixed locations. For this application scenario, real experiments are carried
out in an office environment with people and a variety of furniture across different
rooms. Because of the large amount of desks, chairs and other equipment, detect-
ing geometric features from the environment would render irreproducible hashes and
multiple situations in which features can not be detected due to either objects or peo-
ple blocking the field of view of sensors. To tackle this issue, we have utilized QR
codes as markers to encode the landmark positional information.

107

Jorge Pefa Queralta

T 7 3 T g g 7 g

Figure 31. Floorplan of the simulation environment. All doors, rooms and corners are
utilized as encoded landmarks.

451 Simulation environment

The proposed encoding approach has been implemented within the Robot Operat-
ing System (ROS) in Python. ROS is the current de-facto standard for production-
ready robot development [234; 322]. The simulations were carried out within the
ROS/Stage environment. A TurtleBot 3 is simulated with a 2D lidar and wheel
odometry. The robot is set to explore an indoor environment with a floorplan il-
lustrated in Fig. 31. The environment is 40 x 40 m?, and the robot has a circular
shape with a diameter of 0.35 m. The simulated environment contains 9 rooms with
a single entrance and 6 more spaces and corridors in between. The starting explo-
ration position of the robots is near the main door, in the bottom-left. The 2D lidar
has a field of view of 270° and produces 1080 samples (0.25° resolution) in each
scan, with a scan rate of 10 Hz. This work presents a proof of concept, and therefore
we do not study the effect that different odometry methods have in the exploratory
mission. Instead, we utilize wheel odometry and vary its error to study the impact
that the corresponding computational overhead has due to a larger number of hashes
being calculated.

Feature extraction

In the simulation experiments, we utilize three types of features to localize the robot
and navigate the environment: doorways, concave corners and rooms. These are
defined from the same set of F' feature points which we denote as Features of In-
terest Fol = {fp1,..., fpr}, where fp; € R3. The feature extraction process is

108

Securing single- and multi-robot missions

Algorithm 1: Feature Extraction and Hash Calculation
1 Callback:

2 Calculate:
3 F = getF(data); /1 Orientation-ordered F set
4 F., = getCv(F) CF; /I Set of concave features
5 F.. = getCz(F) C F; /I Set of convex features
6 Define:
7 | H=1; // List of hashes
8 foreach fp;, fp; € F., do
9 if || fpi — fpjl|< daw then
10 L H .append(doorwayHash(fp;, fp;));
11 foreach fp; € F do
12 if fpir; € Fop Vj € {—1,0,1} then
13 | H.append(roomHash(fpi1, fpi, fpin));
14 foreach fp; € F., do
15 if isCorner(fp;) && notDoor(fp;) then
16 L H.append(corner Hash(fp;));
17 /1 Utilize any matching hashes to update the robot’s
18 /I position with respect to the global reference frame
19 if3h € H|he NavGraph then
20 | updateAbsolutePosition(H)); // Use matching hashes

outlined in Algorithm 1. The NavGraph variable stores a list of hashed positions
as well as an adjacency matrix with the edge hashes. A sample of this is shown in
Fig. 30, subfigures (c) and (d). The function search() calculates a certain number
of hashes over a predefined area around the identified feature until it either finds a
matching hash from NavGraph or ends the search unsuccessfully. This function
ensures that the hashes are reproducible even if odometry error accumulates over the
inter-landmark navigation. The search area is defined based on the expected odom-
etry error as well as the granularity of the grid utilized to define the hashes. Finally,
the function update Absolute Position() takes the matching hashes as arguments,
calculates the relative position of the robot with respect to the landmarks that have
been identified and utilizes the known position of the landmarks (which is encoded
in the hashes) to recalculate its own position and restart the odometry estimation.

109

Jorge Pefa Queralta

Doorways

We define doorways as any set of two concave feature points that are within two
predefined distances (04w min, Odw,maz) from each other. In our simulations and ex-
periments, we set these distances t0 dgy min = 1.2M, Odw,maz = 2.5 m. Note that
these feature points might not be consecutive if we consider the ordered set of feature
points by orientation. We define the corresponding waypoint to be encoded accord-
ing to (1):

Haw(fpi, fp;) = H (”doorway”, w, Zsz‘fPJ‘))

Corners

For each concave corner not in a doorway, we define its corresponding hash with (2):

Hcv(fpz) =H (”COI'I'ICI'”, fpza prz) (2)

where / now represents the orientation of the normal vector to the wall surface at the
position of the corner.

Rooms

A room waypoint is defined as the centroid of any three consecutive convex points,
calculated as the arithmetic mean of their positions. To reduce the probability of hav-
ing a mismatch in rectangular rooms where two consecutive subsets of three convex
corners are visible by a robot, we add the area A of the triangle that the points define:

Haw (fpis fPig15 [Pig2) =
I <”r00m”, foi + fpi;;l + [Dit2

, Ai7i+1,i+2> 3)

4.5.2 Real-robot experimental settings

The experimental environment has a size of 30m by 25m. For the experiments,
an EAIBOT DashGo D1 has been utilized. We have installed on the mobile robot
a 16-Channel Leishen 3D Lidar, an SC-AHRS-100D2 IMU, and a Logitech c270
USB camera. The DashGo platform also provides wheel odometry from its differ-
ential drive system. The 3D lidar is utilized to accurately localize the landmarks and
provide ground truth with map-based localization algorithms for three-dimensional
point clouds introduced in [255], with the ground truth trajectory shown in Figure 32.

110

Securing single- and multi-robot missions

Figure 32. 3D point cloud (bird’s eye view) of the experiment environment utilized as
ground truth in our experiments. The path of the robot is shown with colored points, where
red represents the start of the mission and purple the end.

The camera is utilized to detect the QR codes and extract the encoded information
in them. Figure 33 show the implementation diagram with different ROS nodes.
The 3D lidar odometry and mapping are adapted from the LeGo-LOAM-BOR pack-
age [323]. The QR code decoding node has been written in Python using OpenCV
and the Zbar library. The hash based localization node utilizes the QR codes for
localization when available and the wheel and inertial odometry as an estimation be-
tween landmarks. The QR codes utilized during the experiment are of known size
(12cm by 12 cm), and the localization node has been calibrated to map the size in
pixels of a detected QR code in the camera to the distance to it. The localization also
takes into account the relative orientation of the QR code.

4.5.3 Feature hashing

We utilize SHA3-256 for hashing [324], which generates 32 byte hashes. It takes an
average of under 500 ns on an Intel(R) Core(TM) i5-6200U CPU with the pysha3
implementation in Python. If additional security is required against offline attacks
on exposed hashes, other hashing algorithms such as Berypt [325] can be utilized.
Bcerypt needs around 300 ms to generate a hash with the same CPU. However, there
is a trade-off between security and real-time operation as robots need to calculate

111

Jorge Pefa Queralta

Thoeo
| ()X:):;: tlry | IMU | | Camera | Encoded Graph
S S S
! Odom |. ... » QR Hash [LLLCCIIER
! i ! search i
: o N v ,,,,,,,,,, | Iterative
fieeereremseressseresssennasenes . | Hash-based I' validation
I Localization |
v V
Odom Error H“fh —
Error
4 A
| Ground truth | 3D M;
3D Lidar freereeeeeereeeesennnn > ”("”T(‘1_“ 1 |<. ¢ . ap
I localization | (pointcloud)

Figure 33. Data flow in the experiments. Each box represents a ROS Node which has been
implemented either in C++ or Python. The outputs are the ground truth, odometry (odom)
error and has-based localization error (loc. error).

multiple hashes per lidar scan. We believe that, in most applications, SHA3-256 is
enough and can be utilized even in resource-constrained devices.

4.6 Simulation and experimental results

We have carried out a series of simulations with one and multiple robots to evaluate
mainly the cost of utilizing hash matching for localization and navigation, but also
the impact on accuracy of the encoded landmarks.

4.6.1 Metrics

In order to evaluate the simulation results, we measure the absolute localization error
of the robot with odometry only and hash matching. Furthermore, we analyze the
distribution of the computational load among the different tasks that the robots are
carrying out: feature extraction, hash calculation and hash matching. In the simula-
tions, we also measure the effect of the odometry-based localization noise and the

112

Securing single- and multi-robot missions

choice of spatial granularity for landmark positions.

4.6.2 Single-robot simulation results

The aim of the simulations is to prove whether our encoded landmark localization
and navigation scheme is viable and adds a significant computational overhead or
not.

Figure 34 (a) shows the path recovered from odometry measurements and hash-
based localization with doorway hashes only, and all three types of hashes, together
with the ground truth (GT). The data is recorded over 150 s; the translation odometry
noise is set with o; = 0.03, and rotation noise with o,, = 0.05. The error distribution
for the two methods is given in Fig. 34 (c). Because the doorway-type landmarks are
predominant in the chosen simulation environment, the localization error does not
decrease significantly when also considering rooms and concave corners.

In the simulated environment, we have predefined the position of landmarks with
an accuracy of 0.1 m. Therefore, when analyzing the errors in Fig. 34 (b), any values
below 0.15 m represent virtually zero error. Figure 34 (b) shows that the localization
method is robust even when the odometry error increases significantly (o; = 0.05).
However, there is a limit, around o; = 0.06, for which the size of the environment is
big enough so that the robot is unable to match landmark hashes due to accumulated
odometry drift. In order to calculate these hashes, we assume an error tolerance
with respect to its estimated position of 0.5 m, independently of the size of the
grid utilized to locate the landmarks and generate the hashes. This limit defines the
computational time required for the hash search together with the grid size.

Regarding the computational overhead necessary to calculate the hashes, esti-
mate the robot’s position, and perform path planning accordingly, Fig. 34 (c) shows
the distribution of computational time utilized to extract the set of features, or points
of interest, from the raw lidar data and the distribution of computational time utilized
in calculating and matching hashes. For an error tolerance of +0.5m, the graphic
shows situations in which the robot tests up to 9, 25, 121, 441 and 1681 grid posi-
tions, respectively. The search for a hash match is gradually done in a spiral manner
around the estimated position and within the aforementioned error tolerance. These
results show that even with fine-grained grid search, in average the time required
to localize the robot based on hashes is two orders of magnitude smaller than the
time required to extract features from lidar data. In the worst-case scenario, the time
required can be comparable, with an equivalent order of magnitude for both hash
matching and feature extraction.

113

Jorge Pefa Queralta

40
30
E 2
>~
10
0
0 2 4 6 8 10 12 14 16 18 20 22 24
X (m)
(a) Ground truth and estimated path during simulation.
3 —
- 075 4 4 s s 4]
g é
1
= Z
g 2 -
20 |
No1- .= E
= &= :
g —4
0- - I
| | 1077 2]

[[
(0.03,0) (0,0.05) (0.05,0) (0.075,0) L

Lo
Std. of odometry noise (o, o) in meters (translational, rotational). 4 2 .1 .05.025
Grid size (A) in meters

(c) Execution time for a varying
(b) Odometry and hash-based localization error for grid size.
different odometry noise levels.

Figure 34. Simulation results. Subfigure (a) shows the reconstructed path with ground truth
(GT) wheel and inertial odometry (O), only doorway hashes (D), and all features: doors(D),
rooms (R) and concave corners (CC). Subfigure (b) shows the odometry and hash-based
localization errors for different odometry noise levels. Finally, (c) shows the execution time
distribution for the feature extraction (red) and hash matching (blue) processes, where the
grid size represents the search space when trying to find a hash match.

114

Securing single- and multi-robot missions

=

-

Figure 35. Illustration of the paths followed by four robots during the multi-robot
collaborative exploration simulation.

Table 8. Environment knowledge distribution during the collaborative exploration
simulation.

Hashes found Area
Robot; (purple) 12/32 23%
Robot, (orange) 16/32 29%
Robot; (red) 15/32 41%
Robot, (cian) 11/32 27%

4.6.3 Multi-robot exploration simulation results

In terms of cooperative exploration, we provide a qualitative analysis of a four-robot
cooperation. Figure 35 shows the paths of four robots exploring different areas of
the same simulation environment. By utilizing encoded landmarks, these robots can
share their progress upon meeting in the center of the maze without revealing the raw
data they have acquired. If the mission’s nature is to perform surveillance or detect
a series of items, robots do not need to store raw map data at all. Nonetheless, even
if they did, the knowledge of the objective environment remains divided, as shown
in Table 8. In this case, robots acquire in average raw data form only 30% of the
objective exploration environment, and 41% at most.

4.6.4 Experimental results

Figure 36 (a) shows the path recovered from odometry measurements and hash-based
localization (QR codes). The error in the odometry is significantly higher than in
the simulation experiments due to a drift in the yaw measurements. However, the

115

Jorge Pefa Queralta

translational odometry error is much smaller. The hash-based localization is able to
correct this orientation whenever a QR code is within the field of view, and therefore
it does not suffer from the yaw drift. The maximum hash-based localization error
that we observed was of 41.3 cm (between observations of landmarks and owing to
the accumulated odometry drift). This allowed the utilization of a fine grid of 2cm
for calculating the landmark hashes. We set, experimentally, a 1 m? hash search area
around the estimated location.

A total of 23 QR codes were installed in the office environment, and the tests were
done with a small number of persons in their offices. Out of those, 17 QR codes were
utilized by the robot during its navigation.The mission times at which at least one
code was in sight, the error from each observation, and the global error distribution
are shown in Fig. 36 (b). The execution time of the hash matching algorithm was
on average over one order of magnitude smaller than the time required to extract the
QR codes from camera images. Thus, the overhead was mostly negligible. Only in a
reduced number of occasions was the latency of these two processes comparable, as
Fig. 37 shows.

4.7 Summary and conclusions

The work discussed in this chapter was motivated by the problem of securing robot
actions in the real world. While much research has been recently devoted to in-
crease the security of robotic systems from the cyber-security point of view, we see a
gap in the literature in terms of securing a robot’s interactions with its environment.
This chapter suggests a new approach with a framework to secure robotic work-
flows by encoding mission instructions. The process of decoding the instructions
serves, simultaneously, to validate the correct operation of sensors and actuators.
This framework can be better applied in controlled environments or when there is
a priori knowledge of the operational environment of the robot. We show that the
integration of this framework within robotic navigation algorithms has little to no
impact in the robot’s performance or the computational costs.

4.7.1 Chapter summary

Security and safety in robotics are crucial aspects to take into account with the cur-
rent surge of autonomous robots penetrating multiple aspects of our society and the
increasing interaction between robots, and between robots and humans. In this direc-
tion, further research needs to focus on the validation of data at the different layers of
robotic systems, and in particular the validation of the interaction of a robot with its
environment. This interaction often starts with navigation, which has been the main
aspect studied in this chapter.

Navigation and localization in autonomous robots require large amounts of raw

116

y (m)

15

10

—10

Error (m)

GT

Odom
Hash

Securing single- and multi-robot missions

T
‘%..,——\\
,——‘L:J \\
//’ \
5 \’_\\’
// /
< /
-— -
\l“\i‘-f) i“\
S a
— /
— /
10 15 20 25 30
X (m)

(a) Estimated path and ground truth during the experiment.

0
0.3
0.2
0.1 ..
A
=
0

~r

0.3 -

0.25 -

0.2 -

aD o

0.15 -

Error (m)

0.1~

5.1072

500
Time (s)

1,000

Distribution

(b) Localization error when a QR code is in sight over the complete experiment (left) and

distribution of the error (right).

Figure 36. Experiment results. Subfigure (a) shows the reconstructed path with ground
truth (GT), wheel and inertial odometry (Odom) and hash-based localization (Hash). In (b),
we show a scatter plot with the localization error every time that a QR code is within the
field of view of the camera, and a boxplot with the global error distribution. Finally, (c)
shows the execution time for the different processes involved in the localization, with the
hash search and matching being one to two orders of magnitude below the image processing
processes that would still be in use in a traditional approach.

117

Jorge Pefa Queralta

107t =
- g
B .
— H
1072 =
\O/ _
E -
=
1072 =
1074 = —
| | | |
QRV QRG HQR HS

Processes involved in the hash based localization.

Figure 37. Execution time for the different processes involved in the localization: QR code
extraction when in view (QRV), global QR search (QRG), hash search for the detected code
(HQR) and hash matching (HS). We can observe that the hash search and matching methods
require one to two orders of magnitude less computation time than the image processing
processes. The latter would still be in use in a traditional approach.

data for long-term operation, either given a priori by a mission controller or acquired
by robots while performing their missions. In addition, validating the integrity of
both mission instructions and sensor data without any external feedback is an open
problem. We have presented a framework that enables robots to validate both the cor-
rect operation of their onboard hardware and sensors, and the integrity of information
received from an external controller.

In particular, to the best of our knowledge, this chapter introduces and evaluates
the first end-to-end validation framework that focuses on navigation and localization
with encoded landmarks, which allows robots to effectively perform their missions
while performing end-to-end validation of information. We have shown that utilizing
an encoded navigation graph adds only a negligible computational overhead even
when high-accuracy positioning is required.

The end-to-end validation scheme demonstrated in this work for navigation tasks
can be naturally extended to cover virtually all domains of robotic operation. In
future work, we will focus our research efforts towards experimentation in more
relevant environments, and in particular industrial settings. We will aim at extending
this approach to other interaction forms between a robot and its environment, from
multi-robot collaborative assembly to human-robot interaction and control.

118

Securing single- and multi-robot missions

4.7.2 Viability and usability

We have seen that the computational overhead added when encoding landmarks is
mostly negligible. Thus, our approach could be incorporated on top of many existing
navigation and localization schemes, whether they are landmark-based or not, to
increase the level of security if the error tolerance allows.

This approach has additional uses when more than one robot is taken into consid-
eration. In multi-robot cooperation, different robots can share their plans, progress
or position (based on the navigation graph only) with others by utilizing the same
hashes or parts of them. This would reduce the possibility of raw data being ex-
posed but also virtually eliminate the options for attackers or byzantine agents to
affect the mission, as has been shown in [272]. Moreover, as we have shown with the
multi-robot simulations, the framework allows for multi-robot exploration or other
collaborative mission, reducing the fraction of raw data or environment information
that has to be made available to each individual unit.

4.7.3 Trade-offs and security considerations

We have shown through simulation and real-world experiments that the proposed
framework has negligible impact in terms of usage of computational resources. In
the simulations, performing a hash search in a grid map with a resolution of 2.5 cm
requires in average over an order of magnitude less computational resources than the
lidar feature extraction that is inherent to any localization process. Nonetheless, for
each specific application in which an encoded instruction graph is used, there will be
a certain size of the hash search space where the instruction decoding is no longer
negligible.

Another trade-off occurs between real-time operation and security. The larger
the hash search space, the more computational resources are needed to perform a
brute-force attack on the encoded information. Nonetheless, performing such attack
requires information on the encoding process and algorithm, in turn requiring phys-
ical access to the robot or access to the autonomy algorithms and data processing
stack. The specific threshold will be defined, among other factors, by the hash-
ing algorithm, and the ways in which the hashes are generated (e.g., involving time
or unknown external inputs from the controller can, in many situations, render the
brute-force attacks unfeasible).

In terms of the resilience of the proposed framework against adversarial attacks,
the main security vulnerability that we have detected is the ability of an attacker
to reproduce the encoded commands even without decoding them, potentially trig-
gering the robot into repeating actions. If data is spoofed when transmitted to the
robot, the robot’s behavior could be studied under different encoded commands, and
then an attacker could trigger a known mission. While this cannot be completely

119

Jorge Pefa Queralta

mitigated within our proposed approach, we have introduced time-checked actions
and event-triggered actions. If a one-time action is required and either the start of
the mission or its timing is known, then it is feasible to include the time component
into the encoded instructions to avoid repeated actions even if the encoded data is
spoofed. Moreover, other generic strategies designed against data spoofing could be
introduced on top of our framework.

Another key issue is the potential deadlock state into which a robot could run
into if it is unable to decode an essential subset of the encoded instructions. This
can happen, for instance, if the sensor data drifts too much from the expected value
and beyond the maximum error tolerance. In that case, a robot might be unable to
reproduce the hash of one or more key features from its environment. While we
have shown that reasonable error tolerance can be taken into account in the encoded
navigation graph by doing a spatial search until matching the hash, this is an issue
that requires further study. Nonetheless, it is part of our objective to actually force
a deadlock state when a robot either malfunctions or data is tampered with. There-
fore, this behavior is expected based on the definitions introduced in this chapter,
and we will focus our future research not towards making hashes more reproducible
but instead towards designing strategies for getting out of the deadlock state. This
will involve estimating the origin of the error and defining the corresponding control
strategies. In the current framework, it might be unfeasible to conclude whether an
instruction cannot be decoded due to a sensor malfunction or a faulty actuator.

4.7.4 Validation of sensor data

With the navigation experiments, we are also able to leverage the encoded landmarks
for validating the sensor data leading to odometry estimations. Indeed, the robot is
able to estimate the drift or error in the odometry as a function of the computational
time required to decode the landmark position (i.e., the number of hashes that need
to be tested against the encoded map information). If the odometry error is too
large, or a sensor that is used for odometry data malfunctions, then the hash cannot
be decoded unless the hash search radius and computational timeout are extended
consequently. In the experiments, we utilize only IMU and wheel odometry data
(e.g., versus visual-inertial or lidar odometry) to evaluate the performance of the
proposed methods in more adversarial conditions where the odometry drift between
landmarks may increase significantly.

4.7.5 Secure and trustable multi-robot systems

The research in Chapters 3 and 4 of this thesis has opened the door to further uses of
blockchain technology and its components for building security and trust in multi-
robot systems. Below we outline some of our ongoing research in this area.

120

Securing single- and multi-robot missions

One of the key practical problems of utilizing blockchain technology in real-
world multi-robot systems is the strict requirements form the point of view of con-
nectivity and network topology. Most if not all existing approaches require either
global connectivity at all times or reliable networking solutions. To tackle this is-
sue, we have been working on a partition-tolerant and byzantine-tolerant multi-robot
collaboration framework in [271]. This is made possible by IOTA, a next-generation
blockchain solution that uses a directed acyclic graph (DAG) as its underlying data
structure instead of the traditional linked list in a blockchain. Our new framework
allows for robots to disconnect and reconnect from the network, while still trlying in
smart contracts to build byzantine tolerance.

We have also worked on extending to more realistic scenarios and use cases the
security considerations. For example, in [271], the partition-tolerant framework is
tested with cooperative mapping simulations and real-world experiments. We show
that with our approach, we are able to deliver a system that identifies and eliminates
fabricated lidar data that would otherwise affect the global map generated in cooper-
ation by multiple robots. In [326], we extend the framework to detecting a byzantine
robot based on visual data, leveraging our work in vision-based change and anomaly
detection [327]. While these experiments are proofs of concept, they also show the
potential of the approaches introduced in this thesis in real-world applications.

121

5 Localization

Autonomous robots that interact with their environment require means for localizing
themselves. Global or absolute localization, while essential for many applications
(e.g., drone logistics, self-driving cars, or many service robots) are not always neces-
sary. Simpler missions might find it sufficient to estimate relative localization (e.g.,
following a person or a robot leader) or might not need localization at all but only
obstacle and collision avoidance approaches (e.g., moving in a given direction).

In this chapter, we focus in localization in GNSS-denied environments and rela-
tive localization within multi-robot systems. In other works, we have studied local-
ization techniques based on GNSS and other sensors, mainly lidars, in both urban
environments [18] and in unstructured environments in the wild [328; 329]. Over
this and the next chapter, we rely on lidar odometry and visual-inertial odometry for
sensor fusion and as part of the localization methods. However, owing to the need for
robust and scalable relative localization in multi-robot systems, we focus our work
around UWB-based localization. For more details on lidar and visual odometry, we
refer the reader to related works that are not included in this thesis [330].

Portions of text and a subset of figures in this chapter are reproduced from our
previous works [3; 10; 19; 21; 331].

5.1 UWB-based localization

We first introduce the basic concepts and theory behind UWB-based localization.
These methods are common to other means of radio-based localization, where time-
of-flight (ToF), time-of-arrival (ToA) or angle-of-arrival (AoA) of signals is mea-
sured. Time-of-flight measurements directly lead to estimation on the distance be-
tween a transmitter and a receiver. Absolute ToA measurements can be used to
estimate the distance between synchronized pairs of nodes, while the distance dif-
ferences between a transmitter and a series of synchronized receivers can be esti-
mated with time-difference-of-arrival (TDoA). Additionally, passive TDoA can be
employed to estimate differences of distance from a passive receiver to an active
transmitter-receiver pair. These different approaches are described in more detail in
the following parts of the section.

Some commercial UAVs already utilize UWB for indoor localization. For in-
stance, Bitcraze’s Crazyflie [332], with its Loco positioning deck, utilizes a UWB

122

Localization

tag for indoor positioning. The Loco add-on relies on Decawave’s DWM1000. In
this chapter, we work with the latest generation of UWB transceivers, the DWM1001,
that provide improved localization accuracy. Another company that utilizes a simi-
lar, but undisclosed, technology, is Verity Studios [333]. Verity develops multi-UAV
systems for light shows indoors. In terms of UWB localization systems, higher-end
solutions integrated within ready-to-use systems are available from vendors other
than Decawave, such as Pozyx [334], Sewio and OpenRTLS [335].

UWRB wireless localization technologies have gained increasing attention in mo-
bile robot applications in the past few years. UWB is a mature technology that has
been studied for over two decades [336], with the IEEE 802.15.4a standard including
specifications for UWB over a decade ago. UWB systems can be utilized for commu-
nication and localization [337], or as short-range radar systems [338]. UWB systems
enable localization of a mobile tag from distance-only measurements between the
tag and fixed anchor nodes with known position. The distance can be estimated via
either time-of-flight (ToF) or time difference of arrival (TDoA). In the former case,
the tag can calculate the distance to each of the anchors separately, while the latter
estimation requires all anchors to be either connected in a local network or have a
very accurate clock synchronization [339].

More recently, with increased accuracy and more commercially available radios,
UWB has been applied for indoor positioning and navigation in the field of mobile
robotics [340; 321]. UWB-based positioning has been applied in mobile robots to aid
navigation as part of multi-modal simultaneous localization and mapping (SLAM)
algorithms [341], or for aiding odometry [342]. In the field of aerial robotics, it can
aid vision sensors during the approximation for docking in a moving platform [343],
or for navigation in warehouses [344].

The distance between a UWB emitter and a receiver node can be estimated, given
a known speed of transmission of the electromagnetic waves in air, from the time
of flight of the signal. In most cases, the clocks of the two nodes will not be syn-
chronized, or standard network-based synchronization is several orders of magnitude
larger than the actual time of flight of the UWB signal. To avoid the need of syn-
chronization, a two-way ranging approach can be utilized, following Eq. 4 to obtain
the propagation time:

TpTOp = 0.5 x (Tround - Treply) (4)

The method above is also called single-sided two-way ranging (SS-TWR). To
remove the need for calibrating intrinsic delays, a double-sided two-way ranging
(DS-TWR) approach is a more typical solution. Both are illustrated in Fig. 38 The
propagation time in DS-TWR can be calculated as shown in Eq. 5:

Troundl * TroundQ - Treplyl * T’reply?
Troundl + TroundQ + Treplyl + Treply2

&)

Tprop =

123

Jorge Pefa Queralta

"SQNI[EPOW JUQISIJIP UI SOPOU AL) Uoam)aq SurSuelr 10y paxrnbar suorssiwsuel], *g¢ 3InSIy

HAL-SA (@ HMAMIL-SS (©
O]
TOT)RUITISO 95 URY rooph X :MHV ¢ E:bm
gLy v Auldy ; Aulsy
]] (]

sapou (AN (] Jo dnods v usamjoq sursuer Aem-omy Auewr-o03-ou() ()

uonjesedoxd 1,
omy
] A JTopuodsoyy
..._ V Aqdax 1,
..] [1opuodsoy]
' ; -, '_.
] (0 Topuodsoyp
; ; A
] I 1] topey T
"Nxyg XYL Xy M IR ¢ | X

124

Localization

Alternatively, and given a synchronized set of UWB nodes in known locations,
a signal by an emitter can be localized utilizing the time difference of arrival to the
different nodes. The position in this case is found at the intersection of a set of hy-
perbolas. If the set of nodes in known positions is actively communicating, a passive
listener can also localize itself based on a TDoA scheme, given that the messages
include enough information about timing relative to each transmission. More de-
tails of such an approach can be found in [345]. Some of the above possibilities for
localization are illustrated in Fig. 39.

5.2 Previous works

UWB ranging has been used in multiple mobile robots to air localization or naviga-
tion, often when fused with data from other sensors. For instance, UWB has been
utilized to bypass the complexity of visual loop closure detection in [340]. In lidar-
based SLAM, UWB ranging has been utilized to avoid laser range limitations of
inexpensive 2D scanners in tunnel-like environments [321], where the UWB mea-
surements are not utilized for positioning but as part of range-only SLAM. This
simplifies the installation, as the position of the UWB anchors can be unknown.

UWB in mobile and aerial robots

Multiple works have utilized UWB-based localization systems to enable indoor UAV
flights. In one of the earliest implementations of such system, Tiemann ef al. study
the robustness of a predefined UAV flight that relies on UWB ranging [31]. This
has potential applications in the logistics sector. For instance, in [31] the authors
rely on UWB-based UAV navigation for fast and flexible automated stocktaking in
a warehouse by scanning the good’s QR-codes. A similar study for UWB-based au-
tonomous flight in warehouses was carried out in [346]. When mapping with UAVs,
accurate UWB-based positioning allows to shift the focus from odometry and po-
sition estimation to sensing, enabling high-fidelity three-dimensional reconstruction
with RGB-D cameras [341].

A more complex experiment was carried out in [347], where the authors show
how UWB-based localization can be combined with vision position estimation for
docking UAVs on a ground vehicle. The work is extended in [343] with a focus on
GNSS-denied environments. In their setting, four UWB anchor nodes are placed in
the ground robot while one UWB tad is placed on the drone. However, the ground
robot is relatively large, 2 m long and 1.5 m wide. In our dataset, we experiment with
different anchor configurations, including a setting that can be installed on a small
ground robot of about 0.6 m by 0.6 m, and a case where all four anchors are near to
the ground.

125

Jorge Pefa Queralta

jou st sanIIqrssod Jo ISI pajensnyr oy,

(IAISSVYd) TVAINYY 40
IONINI4HIA IWIL

aui8ua
uoljez||esdo]

ogouy . /
amn \

‘sjuawAo[dap uowrwod Jsour oy} sjuasaIdal ng sAnsSNeYXd

(3IAILOV) TVAINYY 40
JONINI441a IWIL

Jogouy . opuy
amn amn

J

aui8ua
uoljez||eso7

‘SurSuer gar N Sursn uoreZI[Ed0] SUTASIYOR 10F SANIIqIssod JUSISHIP JO uonensny[*¢¢ 2INSL]

1HOIT4d
40 JNIL

Jogouy oy
amn amn

aui8ua
uolez||eso

Jogouy
amn

ooy
ann

126

Localization

5.2.1 Formation control

One of the first applications of UWB in multi-UAV systems is formation control algo-
rithms. Formation control refers to the design of multi-robot control systems for spa-
tial coordination [4]. In many cases, these rely only on distance measurements [348],
but more often relative positioning between the robots is required [164]. Some al-
gorithms do not need accurate localization but only rough estimations of neighbor
positions, and collision avoidance is often a part of the control scheme [5].

UWRB has already been utilized in formation control algorithms for multi-UAV
systems. K. Guo et al. [349] and S.Q. Cao et al. [350] both proposed a distributed
formation control scheme. In their work, a UWB ranging and communication net-
work was used for relative localization (RL) estimation in two dimensions. From
such a network, the distances and relative speed between the UAVs can be esti-
mated.In [349], the authors achieved formation flights with three UAVs. Finally,
in [350] the authors realized a leader-follower formation flight with two UAVs. In
this latter work, the authors also performed an outdoor positioning comparison be-
tween UWB and GPS, concluding that UWB can fully meet the requirements of
relative positioning for formation control algorithms at a similar level than GNSS
Sensors.

A more recent application of UAVs has been their utilization in light shows both
indoors and outdoors. At the 14th Moscow International Aerospace Expo (MAKS),
a Chinese drone company: DAMODA, performed a “human-machine dance” with
UWB-aided UAVs [351]. The entire indoor UAV formation is based on UWB lo-
calization technology to achieve precise positioning and precise control. Another
notable company utilizing undisclosed UWB technology for indoor shows is Ver-
ity Studios, a Swiss company that designs multi-UAV systems for indoor specta-
cles [333].

5.2.2 Multi-robot systems

In multi-robot systems, having multiple UWB nodes in each robot enables robust rel-
ative localization, both in position and orientation [352]. In the case of multi-robot
coordination with an anchor-based positioning system, UWB distance measurements
can be utilized in formation control algorithms [353], also fusing them with odome-
try estimation [354]. Finally, the positioning system can also be decentralized with
individual node-to-node distance measurements in a cooperative multi-agent sys-
tem [355].

Multi-modal sensor fusion in heterogeneous multi-robot systems can signifi-
cantly increase the situational awareness of individual robots [149]. However, the
data fusion mechanisms often need accurate relative localization between the robots.
The high-accuracy short-range distance estimation that UWB enables can then be ex-

127

Jorge Pefa Queralta

ploited in this direction. Deploying multiple UWB transceivers in each robot enables
not only relative localization between each pair of robots in terms of position but also
orientation. Nguyen et al. demonstrated the viability of this idea by designing an ex-
tended Kalman filter for robust target-relative localization in a heterogeneous multi-
robot system, where UWB was utilized for both ranging and communication [352].
In utilizing UWB for relative positioning, one of the most relevant publications to
date in this area is Nguyen et al.’s work on the first autonomous docking of UAVs in
a mobile UGV platform that relies on UWB localization for approaching the mobile
docking station [343]. The final docking maneuvers, however, are based on onboard
vision and known markers on the docking platform. While the size of the mobile
platform was relatively large, 2 m long and 1.5 m wide, recent datasets with multi-
ple anchor configurations show the viability of this idea maintaining relatively high
accuracy [3]. Other works have focused on utilizing UWB for specific maneuvers.
In [356], a multi-robot collision avoidance scheme was developed and tested with
UWRB transceivers for global localization of the agents via deep reinforcement learn-
ing. Qiang et al. developed a multi-robot localization platform built on top of the
Robot Operating System (ROS) [357]. Their platform, which can accommodate var-
ious types of robots, was then extended and applied to a formation control problem
in [358].

5.2.3 Distributed estate estimation

More recently, a series of works have emerged in which UWB ranging, fused with
other onboard sensor data, is used for distributed estate estimation in robot swarms.
This has been shown to be especially effective in swarms of aerial robots [359; 360;
35; 361]. Xu et al. have presented a robust multi-modal sensor fusion algorithm
exploiting UWB ranging and VIO that provides a decentralized and collaborative
localization framework for multi-UAV systems [359]. In a subsequent work, the au-
thors further developed the system for robust localization both indoors and outdoors.
In [35], Zhou et al. present a novel aerial swarm capable of operating in dynamic un-
known environments. The methods presented by the authors are also robust to partial
observations, with the swarm being capable of complex behaviour such as follow-
ing a person that is only visible by part of the swarm through a forest. As indicated
in [361], the aerial swarm presented by Zhou et al. is probably the first one capable
of operating in unstructured environments, with the presence of dynamic obstacles,
and in a fully decentralized manner with only onboard computation and sensing.

5.2.4 Contributions

The main contributions of this chapter are the following:

128

Localization

1. The introduction of a novel dataset that relies on ToF measurements of UWB
signals for positioning of UAVs, meant for fast and mobile deployments with
ground robots acting as anchors. This includes an accuracy and latency anal-
ysis of the auto-positioning of the anchors. To gather this dataset, we also
develop new firmware for UWB nodes to be able to perform all required local-
ization and calibration calculations.

2. The characterization of the UAV positioning accuracy as a function of the spa-
tial distribution of the anchors, the distance of the UAV to the center of mass
of the anchors, and its speed and height. Moreover, initial experiments show
the feasibility of stable autonomous flight based on the proposed localization
system. We also provide open-source code for the automatic calibration of an-
chor positions, as well as the ROS nodes used for interfacing with the UWB
devices in different modes.

3. The introduction of a relative localization method based on a least-squares es-
timator for ground and aerial multi-robot systems. We show that this approach
is more accurate than GNSS in areas where GNSS signals degrage (e.g., near
tall buildings).

5.3 Characterization of UWB localization

We investigate the properties of a mobile and inexpensive ultra-wideband (UWB)
wireless positioning system that can be quickly deployed in GNSS-denied emer-
gency scenarios, or in general for indoor environments. Compared with other indoor
localization systems such as motion captures [362], a drastic decrease in both sys-
tem complexity and price only has a relatively small impact on positioning accuracy.
More importantly, even if the accuracy is reduced, the localization estimation is sta-
ble and does not threaten the smooth flight of a UAV. These type of system can
complement existing motion capture (MOCAP) systems providing more flexible and
mobile deployments.

Several datasets and analysis reports exist for indoor localization of mobile robots
based on UWB [363; 364], including UAVs [365]. However, we have found that all
previous studies involving the localization of UAVs are based on TDoA measure-
ments which are more accurate but limit significantly the mobility of the system as
a whole. Instead, we rely on ToF distance estimation only and analyze the self-
calibration of anchor positions for a mobile setting.

Finally, we study the localization accuracy as a function of the UAVs speed,
height and position with respect to the anchors, both within and outside the convex
envelope defined by the anchor positions. This type of characterization based on the
operational details of the UAV does not exist in previous works. In this chapter, we
utilize Decawave DWM1001 UWB modules, the latest generation with an advertised

129

Jorge Pefa Queralta

= —— = =

(a) UWB Node. (b) Quadrotor in the MOCAP system.

Figure 40. (a) The DWM1001 DEV board with and without case. (b) The F450 quadrotor
used in the experiments in the Optitrack MOCAP arena.

accuracy of up to Scm. The data is acquired using the Robot Operating System
(ROS). Custom ROS packages have been written for interfacing with the DWM1001
modules depending on their configuration (anchor, active tag, passive tag) and made
publicly available, while the position information is given by Decawave’s UART
API, which is closed source.

5.3.1 UWB characterization and existing datasets

There are some previous works which have already characterized UWB localization
systems [366], including in the field of aerial robots [344]. However, to the best of
our knowledge, previous analysis of the localization accuracy were done based on a
fixed and well-calibrated anchor system. Moreover, existing datasets are small and
very specific. Therefore, we believe there is a need for a more comprehensive un-
derstanding of the advantages and limitations of UWB-based flight for autonomous
UAVs, in particular with fast ad-hoc deployments and movable anchor systems where
the relative position of the anchors can also change over time. Through the rest of
this section, we explore recent works in UWB-based or UWB-aided localization for
mobile robots and, in particular, UAVs. This covers use cases in both industry and
academia. Then, we analyze existing datasets for UWB-based localization of mobile
robots and compare then with ours.

Raza et al. introduced a dataset for indoor localization with narrow-band and
ultra-wideband systems [363]. The dataset includes data from both a walking subject
and a remotely operated radio control car. This dataset only one specific anchor
position, and the UWB tag in the remotely operated car is at a constant height. In
consequence, the analysis of the data can only be partly extrapolated to other use
cases, such as aerial robots.

Barral et al. presented a dataset acquired using ROS and Pozyx UWB de-
vices [364]. This dataset only contains range information between two tags. It

130

Localization

Table 9. Latency and Accuracy of the Autopositioning method from Decawave’s DRTLS
localization system compared to a custom self-calibration method for anchors.

Latency Distance Max. Error
RTLS Autopositioning 40s+t5s 10m 1.2m
4m 0.75m
Custom Calibration (x50) 2.55+0.1s 10m 0.4m
4m 0.25m
Custom Calibration (x5) 0.9s+0.05s 10m 0.5m
4m 0.3 m

enables the characterization of inter-device distance estimation in both line of sight
(LOS) and non-line of sight (NLOS) conditions. A similar study was carried out by
Bregar et al. in [367] and [368] with Decawave’s DWM1000. In both cases, the
distance between a single anchor and a tag was estimated in multiple locations, with
both LOS and NLOS ranging.

Regarding the utilization of UWB localization for UAVs, Li ef al. published a
dataset recorded over an indoor flight of a UAV with UWB-aided navigation [365].
In their paper, the authors also introduce an Extended Kalman Filter (EKF) that en-
ables very accurate 3D localization by fusing UWB and IMU data. Their dataset,
however, contains data from a single flight with a single anchor setting. In contrast,
our objective is to analyze how different anchor configurations affect the accuracy of
the localization. In particular, most of our subsets of data have been recorded with
anchors situated in a two-dimensional plane, so that it can mimic a more realistic and
quick deployment in, for example, post-disaster scenarios, where the anchors might
be mounted on ground robots. As most drones have some type of accurate onboard
altitude estimation (sonar, lidar, or infrared), it is enough if the UWB system pro-
vides position information in two dimensions only. Moreover, we provide subsets
of data were the quadrotor is equipped with one, two or four UWB tags, therefore
enabling orientation estimation as well. Finally, commercially available UWB-based
localization systems have significantly improved over the past two years since the
previous dataset was published [365]. In this section, we report even smaller local-
ization errors out of the box, without the EKF to fuse with IMU data. The device we
have utilized, the DWM1001 from Decawave, is illustrated in Fig. 40 (a).

Another key difference of our dataset is that we rely on ToF measurements only
for the UWB position estimation. While this can reduce the accuracy when compared
to TDoA, it does not require the anchors to be connected and synchronized. We
believe this is an essential enabler of ad-hoc mobile deployments. A more detailed
comparison of our dataset with existing ones is shown in Table 10.

131

Jorge Pefa Queralta

UWB Anchor . Optitrack
System > | UWB Active Tag Motion Capture
Fr-TTTT T =" [
1 ; [
TFMini Lidar > Rekfmv? 1 9 | Error Estimation
' Localization .
B oo oo oo oo o o omm omm 1
""""""""""""""" : T | T
Flight Control <« ! OnboardLocal ' _ ' Onboard Global !
(PX4 stack) : :Navigation Control : :Navigation Control :
L e e e === = 1 b e e e = = 1

UAV Predefined flight
Motor Control program

Figure 41. Controller blocks in the UWB-aided autonomous flight. The boxes with
continuous border represent data acquisition ROS nodes, while dotted lines represent the
custom ROS nodes where the actual control happens. The PX4 stack has not been modified.

132

Localization

5.3.2 TIERS UWB dataset

This subsection describes the data that is included in the dataset as well as the steps
followed when recording the different subsets. All the data, ROS nodes and firmware
for the UWB devices is made publicly available in Github L

The dataset has been recorded using two different methods, with recordings on
the UAV or at a ground station. The first case includes data which has been acquired
using an onboard computer on a quadrotor equipped with an active UWB tag and
flying autonomously. The second case refers to data from a passive tag connected to
a ground station, while the quadrotor is being flown manually. In the second case,
a delay exists between the ground truth data given by the motion capture system
and the UWB data due to the passive nature of the tag being used for recording the
positions.

The autonomous flight tests have been done with an F450 quadrotor equipped
with a Pixhawk 2.4 running PX4, an Intel Up Board as a companion computer run-
ning Ubuntu 16.04 with ROS Kinetic and MAVROS, and a TF Mini Lidar for height
estimation. The quadrotor flying in the motion capture arena (Optitrack system) is
shown in Figure 40 (b).

Data subsets

The dataset presented in this chapter contains 7 subsets listed in Table 11. In all cases,
the number of anchors in use was either 3, 4 or 6. Four anchors is the minimum
required for robust localization, as the position of a tag can still be calculated if
the connection with one of the anchors is intermittent. However, at some points
we disconnected one of the anchors to emulate the situations in which not all four
anchors are reachable and study the impact on accuracy. Besides, while a larger
amount of anchors can lead to an increase in accuracy, having ad-hoc and movable
anchor networks with very large numbers might be impractical. In general, based
on our experiments we believe that four anchors give enough accuracy to enable
autonomous flight of an UAV, and therefore we find it the most suitable solution. The
only scenario with 6 anchors was set in order to analyze if the vertical accuracy would
change significantly, also when some of the anchors were positioned at different
heights.

The first four subsets were recorded in a more traditional setting with all anchors
located in the corners of the motion capture arena. In the case of six anchors, the two
extra ones were located on the walls at different heights from the original four. Then,
the subset #6 was recorded with four anchors in a single corner and near the ground,
emulating a setting that could be installed onboard a single ground robot. Finally,
subset #7 was recorded with 4 anchors at a height of 10 cm and a separation of about

1

https://github.com/TIERS/UWB_DRONE_DATASET

133

https://github.com/TIERS/UWB_DRONE_DATASET

Jorge Pefa Queralta

100TIAMA ac LNO/NI Cl 4 s A TeprT+dMN dOL sanQ
urewogowly, g NI I I - A amn vodlL (8102) [S9¢] T
XAzog air - - - - - - J0L (6102) [¥9¢] Teireg
[00TINMA ac NI ! I - A - vodl (6100) [€9€] eZRY
000TIAMd at - - - - - - dOL (8107) [89¢] Tesarg
000TIAMA at - - - - - - dOL (9100) [L9¢] TeSarg
9PON adojeauyg s3umjes sioyoue s3e} 1sq 159
amn SWI(] ~ X9AUOD S1sqn§ Ioydouy J[IQOJN O[IQON WSy ouelsiq

"SI0 pue sjasejep Suruonisod pue UONBZI[EIO] Paseq-gAA) Sunsrxa jo uostredwo)) Oy Aqel,

134

Localization

1.8 m. This configuration can be achieved with 4 small ground robots porting a UWB
anchor each. While a bigger separation can result in better accuracy, our aim in this
case was to test the localization estimation robustness when flying both inside and
outside the convex envelope defined by the anchor positions.

Whenever more than one tag has been utilized, they were always part of a single
rigid body. In subsets #3 and #4, two tags separated 30 cm are mounted on top of the
UAY, one in the front and one in the back. In the experiments with 4 tags, these were
forming a rectangle of 20cm by 30cm. The position of the anchors is calculated
through triangulation, and the measurements are taken at the maximum frequency
allowed by the UWB module. This results in a higher frequency and larger number
of measurements when compared to Decawave’s solution, which is built to support a
larger number of UWB nodes simultaneously.

Dynamic anchor reconfiguration

The public dataset that we have made available contains only data that has been ac-
quired using Decawave’s RTLS system with their proprietary firmware flashed onto
the DWM1001 nodes. The product’s UART API has been utilized as an interface
to read distance and position information of the different nodes. However, we have
found the RTLS calibration of anchor positions to be slow, taking around 40 s, and
inaccurate, with errors exceeding 1 m in some cases. Therefore, we also make avail-
able an initial implementation of a custom anchor re-calibration system. Our system
does between 5 and 50 measurements for each of the distances, with a total latency
varying from just under 1 s to 2.5 s.

Energy efficiency

We have also analyzed the power consumption of the UWB nodes in different modes.
The power consumption has been monitored with Monsoon’s High Voltage (HV)
power monitor. While for UAVs the impact on total energy expenditure might be in-
significant during flight, this can be a key aspect to take into consideration in mobile
settings. For instance, if ground robots move only from time to time.

5.3.3 Dataset analysis, experimentation and results

To test the feasibility of an autonomous flight based only on UWB ToF measurements
and a 1D lidar for height estimation, we show a simple circular trajectory.

135

Jorge Pefa Queralta

2 - — Opti
e — UWB
— Obj
E g ..
> o
92
| | | | | |
—1 0 1 0 50 100
X (m) Time (s)
(a) UAV path in the XY plane (b) UAV position along X-axis
2- — Opti —Opti — UWB
— UWB — Obj — Lidar
2 —

— Obj

- E
= 0- =
= 2
e
_2 _
| | |
0 50 100
Time (s) Time (s)
(c) UAV position along Y-axis (d) UAV height over time

Figure 42. Autonomous flight based on UWB for localization in the XY plane and a 1D
lidar for height estimation. For the height error, only the lidar data was taken into account,
and only while on flight for the boxplot. The Optitrack (Opti) system gives the ground truth
reference, while the position is estimated based on the UWB system and 1D lidar. The
position control input (Obj) utilizes the position estimation as well.

136

Localization

0.1 —
0.1 —
~ 0.0 -
B o
= |
g ol 01—
m
0.2 - 02—
03 - —0.3 — :
| | | | | | . .
0 20 40 60 80 100 Distribution
Time (s)
(a) X-coordinate error
02—
0.1- 0.2-
E 00-
S O —
g -0.1-
m
02- —0.2 —
03 - _
|
| | | | | |
0 20 40 60 80 100 Distribution
Time (s)
(b) Y-coordinate error
02—
0.2 -
~ 00—
)
5 .02 - 0-
5 .
0.4 - :
—0.2 - :
0.6~ [[[[[[
|
0 20 40 60 80 100 Distribution
Time (s)
(c) Height error

Figure 43. Distribution of errors during the autonomous UAV flight shown in Fig. 42.

137

Jorge Pefa Queralta

N o I =
~) o o
| | | |

Cumulative Error Probability

<
o
|

\ [\ [[[[[[[| [
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Position error (m)

Figure 44. Cumulative probability distribution of the positioning accuracy for different
distances to the center of mass of the anchor system. The anchors are positioned in the room
corners forming a square of 16m?.

1.0 -
z
F 08—
E
£
g
&
E 0.6 -
m
o
2
= 04—
3
£ —0-1m/s —1-2m/s
© 02— —23m/s —3-4m/s
—4-5m/s
| | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Position error (m)

Figure 45. Cumulative probability distribution of the positioning accuracy for different
speeds of the UAV. The anchors are positioned in the room corners forming a square of
16m2.

138

Localization

mo ¥ uj SO € 00S¢ 71 14 w0 U0 WOOY [#
Mo skem[y SD I 00LI I 14 weo—-0 IOUI0D J[3UIS O#
ur skem[y AV I 0001 C 9 w0 SIQUIOD W00y C#
ur skem[y SD 6 000L C 7€ w g SIQUIOD WOOY ##
ur skem[y SO € 0006 I 7€ w eI SIQUIOD WIOOY ¢4
ur skem[y SD/AVN 1 0001 C 14 wg SIQUIOD WOy T#
ur skem[y (snowouony) AV I 0001 I % w gl SIQUIOD W00y [#

(CAUY X0AUOD) JIM) (SO/AVN) 1YSoH
uonisod AVN 3uIp1009y SIYSIJ# SeoN# SSe[# sloyouy# Joyouy suonisod toyouy

‘suonisod Joyoue Y} £q pouyep 2do[oAud X9AUOD

9y} ap1sino 10 aprisur pauaddey WSIP AV Y3 IoyIaym pue ‘3 daIssed e BIA uonelS 9seq Y Ik 10 ‘s3e) 9ANIE 0] PAjoauuod 1ndwod uoruedwod
AU} 1B JOUYIAYM ‘PIPIOOAI SeM BIEp o) 21oUym wiIope[d 93 2qLIOSIP M ‘UONIPPE U] “(Seawiy) ZH ()] 18 SUONewns? uonrsod Jo SJuuINSeaut
90UR)SIP [BNPIAIPUT JO IoqUINU [B10) 9y} ‘A[ojeedas papI1odar sjysSIy Jo Ioquinu) ‘sSe) Jo JaquInu pue SIOYOUR JO I9qUUINU Y} ‘PI[[LISUT 918
SIOUOUE 9y} YoIyM Je JYSIoY a1 ‘Suoned0] Joydue ay) Jo uondLiosap oY) opnour am Jasqns [yoea 10, 's3asqns ejep ay) Jo uonduosaq I dqeL

139

Jorge Pefa Queralta

Flight with UWB-based localization

Figure 42 shows the path and localization error recorded over an autonomous flight
using UWB for localization in the horizontal plane and a 1D lidar for height esti-
mation. The control input, in green in the figure, given to the drone in the form of
waypoints is described by (6):

Pob; = (Tobj (1), Oob; (£), 2ob; (1))
| (ro,00,20) if Wp@I = llpolll > & ©)
N (ro,0(t) + Ab, zy) otherwise

where p(t) = (r(t), 0(t), 2(t)) represents the current position of the UAV, p . is the
waypoint given to the UAV as its objective position, pg = (7o, 6y, o) is the entry
position to the circular path, ¢ is a threshold to consider that the UAV is within the
predefined path, and A# defines the angular speed when it is considered together
with the waypoint update rate and the maximum linear speed of the UAV. In the
experiment shown in Figure 42, we have defined py = (1.23,0,1.23), ¢ = 0.3m
and Af = 0.05rad. All the positions are represented in cylindrical coordinates, and
the radial distance and height are given in meters.

Spatial distribution of anchors

One of the novel analysis in this chapter is the study of different spatial anchor distri-
butions. The accuracy recorded during the autonomous drone flight in Fig. 42 (d)-(f)
relates to a typical setting where the anchors are positioned in the corners of a room.
One thing to note in this case, nonetheless, is the enhanced accuracy of the latest
DWM1001 transceiver. Through our experiments, we have also noted that over 50 %
of the samples acquired during the flight had an error under 10 cm. In particular, the
lower and upper quartiles in the case of the x-coordinate error in Fig. 42 (d) reflect
an error smaller than 5 cm.

An extreme case for the location of anchors would be when these are located in
a single robot or movable unit. This has been done, for instance, by Nguyen er al.
in [343] for an UAV to dock on a moving platform. However, in that article, the
authors report using a movable platform of 3 m?, which is impractical in most situa-
tions, in particular in post-disaster scenarios where access to the objective operation
area might be limited. In order to assess the viability of a more practical usage, we
have located four anchors in four corners of a cube, with one of them representing
the origin of coordinates and each of the other three the axes. The separation be-
tween the anchor in the origin and each of the others was just 60 cm. Fig. 49 shows
the position estimation error in this case. We can see that the position estimation
is highly unstable. However, the lower and upper quartile in the boxplot relate to

140

Localization

relatively low errors. With proper filtering and sensor fusion it might be possible to
utilize such anchor settings when the error margin allows.

The last anchor distribution included in the dataset represents, to the best of our
knowledge, the most usable for a moving platform, with four anchors near the ground
and separated only around 2 m. One of the flights recorded and the corresponding
errors are illustrated in Fig. 46. The localization accuracy in this case doubles but
still allows the possibility of autonomous flight.

5.3.4 Autopositioning of anchors

The localization estimation provided by Decawave’s UART API has given us bet-
ter results than the utilization of raw individual distance measurements applied to
multiple open-source multilateration algorithms. The code to interface the API with
ROS for both passive and active tags is made available, together with the data, in
the Github repository. However, Decawave’s function to autoposition the anchors
has not given good results in our experience. Moreover, the calculation takes around
40s, which is unassumable in some mobile settings. In order to tackle this issue,
we have written our own firmware for the anchors in order to recalculate their po-
sition if they move. In our experiments, we utilize separate UWB devices for the
autopositioning. Each anchor location is equipped with one device flashed with our
code for autopositioning only, and another one as an anchor for the localization of
the UWB tag, flashed with Decawave’s proprietary firmware. We utilize the UART
API to set the anchor positions after the autopositioning. In a real scenario, a single
device could be used as both but it would need to be reprogrammed on the fly.

Figure 50 shows the average error of the distance estimation between two an-
chors during the self-calibration process. The measurements are taken at over 35
different distances up to 22 m, with 50 measurements for each distance. The stan-
dard deviation for each particular distance ranged from O to 4 cm, while the standard
deviation of the error altogether was under 3 cm in over 50 % of the cases, as shown
in the boxplot in Fig. 50. The comparison between Decawave’s autopositioning and
ours is shown in Table 9.

In addition, we have measured the power consumption of the UWB devices in
different modes, as shown in Table 12 and Fig. 51. This includes anchors, active tags
and passive tags, as well as the device running our autopositioning firmware. In the
latter case, we provide an initial implementation with no power usage optimization,
and during the autopositioning the nodes are transmitting at high frequency. There-
fore the power consumption is very high. We differentiate between responder and
initiator types. Each of the four anchors takes the role of initiator one time, sending
a message one by one to each of the other three (in responder mode), and calculating
the distance via two-way ranging. The distance between two nodes is thus calculated
twice during the autopositioning.

141

Jorge Pefa Queralta

During the autopositioning process, the first anchor to become an initiator, which
is activated via a start command through the UART interface, is considered the origin
of coordinates. Then, we assume that some information about the position of the
other anchors exists. The minimum information required is to know the order of the
anchors over the boundary of their convex envelope in a counter-clockwise direction.
We also predefine the x axis to follow the direction of the vector that is defined from
the first to the second anchor following the aforementioned order.

5.3.5 Characterization of UWB localization accuracy

We have classified the accuracy of the UWB localization based on the distance to the
center of mass of the anchor system, the height of the UAV and its speed.

The dataset introduced in this chapter includes data of an UAV flying both inside
and outside the convex envelope defined by the anchor positions. In general, the
closer an UWB tag is to the center of mass of the anchor system, the higher the
position estimation accuracy is. This is illustrated in Fig. 48 (a) for the case where
the anchors are in the corners of the room, and in Fig. 47 (a) for the case in which the
anchors are in the center and close to the floor.

Based on the rest of the measurements in the same two figures, we can also
see that the position estimation error is smaller with lower speed, as illustrated in
Fig. 48 (c). Regarding the height, when the anchors were all near the floor, we did
not obtain significant differences, as sown in Fig. 47 (b). However, when the anchors
were at the height of 1.8 m in the corners of the room, higher flight altitudes resulted
in smaller errors, as Fig. 48 (b) shows. While LOS was always ensured during the
experiments, the error was smallest near the constant z plane defined by the anchor
positions.

The conclusions from the above characterization of accuracy based on speed,
height and distance to the center of mass of the anchor system allow a more efficient
control of autonomous UAVs in a real deployment, where strategies can be defined
to adjust the error estimation based on these parameters.

5.3.6 Remarks on the UWB dataset

We have presented a novel dataset for UWB-based localization of aerial robots. We
have focused on studying the localization accuracy for ad-hoc deployments with
fast self-calibration of anchor positions. Up to the authors’ knowledge, the dataset
presented in this section was the largest and most complete at the date of publica-
tion. The dataset includes multiple anchor configurations, as well as data from UAVs
equipped with a variable number of UWB tags. The dataset includes data from an
autonomous flight with an UAV. The ground truth in all cases has been recorded us-
ing an Optitrack motion capture system. It is also the first comprehensive analysis of

142

Localization

5 —— opti
—— TAGO
‘ — TAG1
() <) B, —— TAG2
——~\\) __.(}1‘4- éu; TAG3

0" e S

/) “{é-’_]
e\ i — A S -V A

B
~ L — S e ——— e
: /R
/) %‘“*’ 2 sy,
of (¢ A i) /8 A Al
2 Ay
N
_»/»‘-———A“‘-g".v St
| | |
-5 —4 -3 -2 -1 0 1 2 3 4 5
X (m)
(a) XY Pahts
0.5 :
0.5 —
E
5 0- 07
g
s3]
—0.5 - 1
—0.5 | i
| | | | | .
0 20 40 60 80 100 :
Time (s) Distribution
(b) X-coordinate error
0.5 -
0.5 —
E
5 0- 0-
g
s3]
_05 _
—0.5 - -+
| | |
0 20 40 60 80 100
Time (s) Distribution

(¢) Y-coordinate error

Figure 46. Data recorded with 4 tags (single rigid body) and four anchors positioned in the
center of the motion capture arena, separated 1.8 m only.

143

Jorge Pefa Queralta

1.0 -

=

E 08—

<

£O

<]

[a]

5

(o]

=

= 04- —1-1.5m —15-2m

E —2-55m —2.5-3m

© 3-3.5m —3.5-4m
0.2~ 4-45m —4.5-5m

I I I I I I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Position error (m)

(a) Cumulative error probability based on the distance to the center of mass of the anchor
system

1.0 - _—
0.8 -
0.6 -

0.4 -

0.2 -

Cumulative Error Probability

' —0.5-1m 1-1.5m
—1.5-2m
| |

I
0.2 0.4 0.6 0.8 1.0
Position error (m)

0.0 -

(b) Cumulative error probability for different heights.

Figure 47. Positioning error probabilities for anchor positioned at (1.79,0.58,0.1),
(0.01,0.58,0.1), (1.8, —1.2,0.1), and (0, —1.21,0.1).

the UWB localization accuracy based on the UAVs speed, height, and distance to the
center of mass of the anchor system.

We believe that the dataset presented in this section will enable the research com-
munity to further explore the possibilities of robust and accurate autonomous flight
in GNSS-denied environments with ad-hoc localization networks via a combination
of UAVs with reference ground robots.

144

Localization

—_
(=)
|

<o
=)
|

o
o
|

N
~
|

—0-1m —1-2m
—2-3m —3-4m
—4-5m —5-6m

Cumulative Error Probability

<
o
|

[[\ [[[[[[[\ [
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Position error (m)

(a) Error based on the distance from the UAV to the center of mass of the anchor system.

1.0 -
09 — ////

2

:E

2

] 0.8 —

[a}

-

g 07—

m

g

5 0.6 -

<

=

g 0.5 —

o —0-1m —1-2m

04 — —2-3m —3-4m
| | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
Position error (m)
(b) Error based on the height of the UAV.
1.0 -

2

E 08—

<

el

e

[a}

5 0.6 -

g

s3]

g

2 04 -

3

g —0-1m/s —1-2m/s

Y o02- —2-3m/s —3-4m/s

—4-5m/s

| | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Position error (m)

(¢) Error based on the speed of the UAV.

Figure 48. Cumulative probability distribution of the positioning accuracy of the UAV
when the anchors are positioned in the room corners forming a square of 64 m?.

145

Jorge Pefa Queralta

0" 0
E 4 PR g 0-
2 2o 5
& 2 - b —5-
0- 5= .
0- H
—2- ~10 -
\ [\ 9 _ \ [\ _10-
0 50 100 | 0 50 100 |
Time (s) 1 Time (s) Distribution
(a) X-coordinate error (b) Y-coordinate error

Figure 49. Localization error when all the four anchors are nearby, defining three faces of a
cube. While the average error is small, and 50 % of the measurements are relatively
accurate, the localization estimation is highly unstable. Further filtering is needed to enable
accurate flight in this case.

o b jf\./\A L

25—

2.5 -

UWB Error (cm)
] [}
W W
| |
r
——
\\
/
UWB Error (m)

-1.5 —

0 5 10 15 20 |
Distance (m) Distribution

Figure 50. Average distance estimation error between two DWM1001 nodes in line of
sight. The nodes have been calibrated to take into account the antenna delay. The mean error
is smaller than 1 mm while the standard deviation is 3.9 cm. The maximum error is 8.6 cm.

Table 12. Power conssumption of UWB tags and anchors.

Power (5V supply) Power (3.7 V supply)

Avg. (mW) Max. (mW) Avg. (mW) Max. (mW)

Anchor 171 699 129 545
Active Tag 161 687 115 543
Passive Tag 155 189 114 503
Custom Init. 440 726 341 554
Custom Resp. 523 731 358 557

146

Localization

150 —
<
E 100 -
=
&)
=
S 50 -
| | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (ms)
(a) DRTLS Anchor
150 —
<
E 100 -
=
0]
=
S 50 -
| | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (ms)
(b) DRTLS Active Tag
150 —
<
E 100 -
=
&)
=
S 50 -
LT ool Y e el T omad o
| | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (ms)
(c) DRTLS Passive Tag
150 —
<
E 100 -
=
&)
g
O 50 -

\ [[[[\ \ [\ \ \
0 20 40 60 80 100 120 140 160 180 200

Time (ms)

(d) Custom Calib. Anchor

Figure 51. Power consumption of the UWB anchors and tags in different modes. In the
self-reconfigurable anchor, the communication is constant and therefore the power
consumption is greater than in Decawave’s DRTL setup.

147

Jorge Pefa Queralta

<> UAV Transceivers (initiators)
+ UGV Transceivers (responders)
--- UWDB Ranging

X X .es TXG»X ‘V\')0
Initiator 7 I ey B - 1 A
Responder 0 ':|
]
Responder 1 1
Trepiy Y {
Responder NV 7

time

Figure 52. Cooperative localization approach based on UWB ranging measurements from
multiple transceivers in different robots

5.4 Cooperative localization

In this section, we now explore the potential of relative UWB localization in envi-
ronments where GNSS signals degrage. Outdoors, GNSS-RTK is the de-facto stan-
dard for gathering aerial data with UAVs [369]. For example, high-accuracy pho-
togrammetry [370], civil infrastructure monitoring [371], or in urban environments
where GNSS signals suffer more degradation [369]. As UAVs become ubiquitous
across different domains and application areas [9], having access to more flexible
and lower-cost solutions to precise UAV navigation can aid in accelerating adoption
and widespread use. In this section, we consider the problem of UAV navigation
through relative localization to a companion unmanned ground vehicle (UGV). We
consider a ground robot as a more flexible platform from the point of view of deploy-
ment, but in simulations, we also consider localization based on fixed beacons in the
environment, closer to how GNSS-RTK systems are deployed.

The system we analyze in this section consists of a UGV equipped with four
UWRB transceivers and a UAV equipped with two transceivers. The UAV transceivers
act as initiators, taking turns in sending signals to each of the UGV transceivers.
When these respond, the time of flight of the signal is calculated and the distance
between each pair of transceivers is calculated. This process is illustrated in Fig. 52.
The main contribution of this section is thus on evaluating how UWB-based rela-
tive localization can improve the positioning of UAVs when supported by ground
robots. We simulate different trajectories to evaluate the performance of the system

148

Localization

and compare the accuracy of the GNSS, UWB, and VIO approach to localization
with field tests in an urban environment. In the simulations, we consider different
configurations of transceivers in the ground to compare the localization and naviga-
tion performance.

5.4.1 Cooperative UWB-based localization

We consider the problem of relative localization between a UAV and a UGV based
on UWB ranging between transceivers installed onboard both robots. The objective
is to leverage this relative localization to improve the accuracy of the UAV navigation
outdoors. We are especially interested in improving the navigation performance in
urban areas where the accuracy of GNSS sensors is degraded due to the signal being
reflected at or occluded by nearby buildings.

Let us denote by I the set of IV transceivers onboard the UAV. These will act
as initiators, i.e., will actively transmit messages to initiate ranging measurements
between them and the responder transceivers on the ground. We denote the latter
ones by the set R of size M. An initial approach, which we implement, is to itera-
tively range between each initiator and the set of responders. If the number of nodes
increases significantly, more scalable approaches can be used where, for example, a
single initiator message is answered by several or all responders with different de-
lays [372].

We model the UWB ranges between an initiator ¢ and a responder j with

20" = [Ipi(t) — q; ()| + N (0, ovw) @)

where p; and q; represent the positions of the initiator and responder transceivers,

respectively, and A is Gaussian noise. Based on the ranges, different approaches

to localization include, e.g., multilateration or a least squares estimator (LE). We

implement the latter, and hence the position of each tag can be calculated based on
the known anchor positions by

M 9
p, = argmin 3" (247 — p 4, ®
peR3 =0
Alternatively, assuming that the position of initiators in the UAV ({p,}) is given
based on the UAV’s position and orientation (p and 6, respectively) by a set of rigid
body transformations f;, i.e., p; = f; (p,), then the estimator can be used to obtain
the full pose of the UAV directly with

N M
2
p, 0= argm?)in ZZ (Zg}%B — [l fi (p,0) — q]‘H) ©)
; EP(EE . i=0 j=0

149

Jorge Pefa Queralta

uwB uwB
Responders Initiators
g Can Custom UAV platform

GNSS Receiver
i i | iz
Realsense T265 VIO Module

A sl b hlm 4 luli 7 [S s

o = Livox Horizon 3D Lidar

usky UGV platform

Figure 53. UAV and companion ground robot utilized in the experiments.

Algorithm 2: Ground truth extraction

Input:

3D lidar point cloud: P

Last known MAV state: p% Ay, phrav
Output:

MAV state: {p%;4vs Pirav}

1 while new P, do

Generate KD Tree: kdtree < P;

, MAV pos estimation: Pk, 4y < pi 4y + pﬁ/l}iv ;
MAV points: Phiav = KNN (kdtree, phyav)i
MAV state estimation: p’fVIAV = W:W ZPGP@AV p;

5.4.2 Multi-robot system

The multi-robot system employed consists of a single ground robot and a UAV. The

ground robot is a ClearPath Husky outdoor platform equipped with four UWB re-
sponder transceivers for cooperative positioning and a Livox Avia lidar utilized to
obtain ground truth. Owing to the lack of a reference system such as a GNSS-RTK
receiver, we extract the UAV position from the lidar’s point cloud and utilize this as a
reference. The point cloud is automatically processed following the steps described
in Algorithm 2, and manually validated. We refer the reader to [373] for further
details on this method. Based on indoor testing with a reference anchor-based UWB

150

Localization

Test area

Figure 54. Test area for the outdoors experiments.

system, we have evaluated the ground truth accuracy to be in the order of 10cm. The
UGV and the custom UAV are shown in Fig. 53. The UAV is equipped with two
UWRB transceivers and a RealSense tracking camera T265 for VIO.

5.4.3 Experimental settings

The field experiments are carried out in Turku, Finland (the precise location can be
found with GNSS coordinates 60.4557389° N, 22.2843384°E, illustrated in Fig. 54.
The test site lies between a short line of trees and a large building that presumably
blocks and reflects GNSS signals. The UAV runs the PX4 autopilot firmware, which
is unable to obtain a stable GNSS lock in the test location. This location is chosen as
an example of an urban location where GNSS receivers operate in suboptimal mode.

5.4.4 Experimental results

Results from outdoors experiments with real robots are reported in Fig. 56 and
Fig. 57. The former shows a partial extract from the trajectory in 3D, where we can
observe that the UWB error is significantly smaller even when the altitude reaches
30m. In the latter plot we can see that the overall error more than 5 min flight time.
The cooperative UWB approach particularly outperforms both VIO and GNSS esti-
mations in terms of vertical accuracy. In terms of planar xy error, VIO is more ac-
curate but only during the first few seconds of flight, before it rapidly loses accuracy
and diverges when the UAV altitude increases. In any case, the cooperative UWB-
based localization provides consistent accuracy throughout the flight and therefore
has potential for better collection of aerial data through autonomous flights.

151

Jorge Pefa Queralta

—GT
6. —— VIO
UWB
E 4-
3
IS
S
R 2 —
S
=
0 —
—9
| | | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500 550
Time (s)
S —c' |
—— VIO
92— UWB
E
5 0-
IS
s
S
—4 -
| | | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500 550
Time (s)
—GT
15 —— VIO
UWB
E
[
2 10 -
s
Z
N
5 —
I I I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500 550
Time (s)

Figure 55. Extracted trajectory from experiments before the VIO estimations diverged.

152

s % ..‘AAA*:W.(‘.‘:‘:.&\‘? ‘c.'q.
)

a,la o% %cﬁ
;m‘wq.‘laﬁ

‘A“A AL A
A s, Al A >

ut :‘t
‘M"
WY Ve 1T

-2

[35

[30

T 25

T 20

T 15

Localization

a UwWB
GPS

Figure 56. Partial trajectory of the UAV during the outdoors experiment. VIO is not
included because it becomes unusable once the UAV reaches 8 m of altitude.

Error (m)

101

100

VIOyy UWBygy GPSyy

VIO,

.

|
UWwWB,

i

GPS.

Figure 57. Planar and vertical errors of the different methods during the outdoors flight.
The VIO has low error but was only valid for the first few seconds of flight. The UWB error
is particularly low in the vertical dimension owing to the horizontal planar distribution of
nodes mounted on the UGV.

153

Jorge Pefa Queralta

5.5 Summary and conclusions

Throughout this chapter, we have been looking at UWB-based localization approaches
for aerial robots and multi-robot systems. In the first part of the chapter, we in-
troduced a novel dataset for anchor-based UWB localization in autonomous aerial
robots, studying both the potential and the main limitations and constraints (e.g., an-
chor distributions and velocity constraints). In the latter part of the chapter, we have
focused instead on relative UWB-based localization. In particular, we show that
UWB-based state estimation has potential not only in GNSS-denied environments,
but also in locations where GNSS signals degrade.

This chapter does not go deep into localization algorithms or the different ap-
proaches to using UWB ranging in multi-robot systems. Out of the scope of this
thesis, in [345] we introduce a novel approach to more scalable UWB-based lo-
calization in multi-robot systems with a dynamic ToF and TDoA approach through
evolving active and passive roles. This is latter integrated in [374] with blockchain
smart contract for managing the role allocation process in a more secure and trustable
manner.

There is indeed still significant potential and open research areas in the use of
wireless ranging technologies for multi-robot systems. In other ongoing works, we
are currently exploring more advanced sensor fusion algorithms for (i) suboptimal
spatial distributions of nodes and (ii) single-range relative localization. The latter
focuses on fusing odometry and ranging measurements, while the former solves the
problem of a robot operating far outside the convex envelope of the anchor nodes.

154

6 Spatial Coordination in Multi-Robot
Systems

The problem of formation control in multi-agent systems has drawn increasing inter-
est of researchers in the past two decades [375; 376]. Formation control, or pattern
configuration, is the basis for cooperation among a multi-agent system [377]. With
an increasing number of applications for multi-agents systems, the significance in
having efficient, flexible and robust formation control algorithms is evident [378].

Pattern configuration and formation control algorithms for swarms of robots
have been extensively studied for the past decades [379; 380; 381; 382; 383; 384;
385; 386; 387]. We can classify pattern formation algorithms among those that re-
quire agent indexing or those in which agents are anonymous. Most of the work to
date in formation control algorithms for multi-agent systems lies in the former cat-
egory [388; 386; 389]. In a swarm of robots where all units are indistinguishable, a
more natural approach is arguably to assume a homogeneous set of agents without
identity. In practical deployments of multi-robot systems, however, different robots
have identities. These identities can also play a key role in securing the behaviour of
the multi-robot system and the interaction within it, as we describe in other chapters
of this thesis.

In this chapter, we introduce two novel approaches to index-free and indexed for-
mation control. The index-free approach requires only mutual sensing (e.g., relative
localization estimation methods introduced in the previous chapter), without explicit
peer-to-peer communication. The indexed approach requires mutual sensing in addi-
tion to mutual identification (e.g., through situated communication). Portions of text
and a subset of figures in this chapter are reproduced or adapted from our previous
works [5; 4; 6].

In summary, in this chapter we introduce two approaches to formation control in
multi-robot systems:

« Communication-free formation control, where we assume robots are able to
see each other (or at least those in their vicinity) but do not falk to each other.

* Progressive formation control with minimal, one-way communication where
robots are able to signal neighbors in their line-of-sight about their intentions
(their self-allocated role in the objective formation).

155

Jorge Pefa Queralta

6.1 Index-free, communication-free formation control

Many efforts have been devoted to the study and replication of collective motion in
nature, such as birds in a wedge formation or flocks of fishes. In these cases, agents
are anonymous and homogeneous, and therefore interchangeable. Algorithms that
model this behavior may use indexing for formulation but are not affected by an
indexing permutation as all agents are considered equal. To the extent of our knowl-
edge, algorithms that rely on anonymous definitions and do not require communi-
cation can only be applied in formations of trivial patterns such as flocks or regular
polygons, where all positions are equivalent. In the case of flocks, the algorithms are
usually based on distance-only measurements [387], while bearing-only measure-
ments can be used to achieve regular polygon configurations [380; 381; 382]. A lim-
itation of these algorithms is that the set of possible formations is restricted to those
configurations in which all agent positions are equal. More complex configurations
are possible with index-free control if communication is used throughout the system
to ensure consensus [379]. Index-free refers to the fact that agents are anonymous
and that a permutation of the indexes does not affect the calculation of the control
inputs. However, wireless communications between robots used in these algorithms
can cause a large overhead of latency and energy consumption. When the number of
agents increases, this becomes a serious issue. Some research has been focused on
generalizing index-free control by designing algorithms that are invariable to index-
ing permutations [390; 391; 392]. However, these often use an equivalence relation,
or are significantly affected by the non-scalable size of the permutation space with
respect to the number of agents in the configuration [393].

Distance-only measurements or bearing-only measurements also appear in the
literature within algorithms that are able to achieve more complex formation con-
figurations where the positions are not equivalent. For example, bearing-only mea-
surements are used in [394] to allow non-trivial pattern formations. Alternatively,
distance-only measurements are equally employed by [385; 389].

6.1.1 Formation definition

Formation control algorithms often define formation positions in a way that are di-
rectly related to the variables sensed by agents. Some widely used formation control
algorithms are position-based, distance-based and bearing-based algorithms [386].
Position-based formation control algorithms define the positions in the formation
with a set of points in space, which are assigned to individual agents. Distance-
based formation algorithms (e.g. algorithms for achieving flocking formation) de-
fine a position in the formation by distances which are calculated by the agent and its
neighbors. Similarly, bearing-based formation control algorithms define a position
by the set of bearings, given a common orientation for the measurement. In this sec-

156

Spatial Coordination in Multi-Robot Systems

tion, the proposed formation control algorithm is a distributed and index-free pattern
formation algorithm considering the position of neighbor agents simultaneously.

Comparing to index-based formation control algorithms, an index-free algorithm
has many advantages. For instance, it is challenging or even impossible for index-
based robots to form an accurate formation when one of the robots cannot get into
the predefined position due to a hardware failure or other errors. This issue of an
inaccurate formation can be avoided with an appropriate index-free formation control
algorithm as agents are interchangeable. Furthermore, the proposed algorithm is
communication-free, which helps to avoid the overhead of large energy consumption
and latency caused by wireless communicating between agents.

Spherical distribution

Our objective is to design an algorithm that requires, at most, position measurements,
and provide a definition for a formation configuration that is independent of the agent
indexing while allowing almost arbitrary patterns. Therefore, we introduce a new
definition for each of the positions in the formation.

Definition 6.1.1 (Spherical Indicator Distribution). Given a set of N agents with po-
sitions (x;,y;,2;) € R® Vi = 1,..., N, let N; be the set of agent i’s neighbors.
Their positions are measured within agent i’s local reference frame and represented
by (l’;, yj, z;) = (r;-, 9{ , 4,0{)Vj € Nj in Cartesian coordinates or spherical coordi-
nates, respectively. Then we define agent i’s spherical indicator distribution by

Uil00) = a Y w(r})(0.¢) %300 — 0,0 — 1) (10)
JEN;
where §(0, o) is the Dirac delta function defined in in the subset [0, 7) x [0, 27) C
R% o« > 0 is a constant and w(r)(0,) is a function of the type w(r)(0,¢) =
exp (—(0,)T Q(r)(8, p)) for a positive definite matrix Q(r) - 0.

The definition of the spherical distribution in (10) is inspired by an agent’s view
of its environment. The Dirac delta marks the two-dimensional bearing of each of
the neighbors while Q(r) shapes the space around those points as a function of the
distance. We have defined an agent’s spherical distribution over (6, ¢) only and not
over r as well because the bearing coordinates are defined over a compact subset
of R2. Thus, they can be represented by two-dimensional matrices if we consider
a discretization of R?. From a computational point of view, this means a finite and
fixed memory allocation. In particular, for our algorithm formulation, we define
Q(r) in Definition 6.1.1 as

2
an=5("y 2)+(g 7) an

157

Jorge Pefa Queralta

3r/4 /4 3n/4 /4 3r/4 /4
(]
| ee
[] []
[] {]
‘ Sr/4 Tr/4 Sr/4 Tr]4 Sr/4 Tr/4
(a) Pattern (b) —orr0(8), —oir=08) () —hrijr—0(8), —¥1ir0(8) (d) —r3je=0(6), —W3ies0(6)

Figure 58. Illustration of the spherical indicator distribution. Figure (a) shows a wedge
configuration of 7 agents. Figures (b), (c) and (d) show the spherical indicator distribution of
the first, second and fourth (top) agents, if indexed from left to right, for 7 = 0 and 7 > 0.

for constants 8,7 € R, 3,7 > 0. The value of 3 is the same for all agents and
governs the variable width of w(r) along (6,), while 7 adds a constant minimum
width. We can think of 1/(8r?) and 1/7 as variances of two convoluted Gaussian
distributions. We extend on the significance of 7 later in this document. Then we can
expand an agent’s spherical distribution (10) into (12). illustrated in Fig. 58,

wte)=ad e (- (87 +7) (0o -o)7) a2
JEN;
Autonomous Position Assignment

The first step in a formation control problem is the position assignment. In displacement-
based control this is predefined beforehand, whereas in anonymous distance or bearing-
based control this step is skipped due to all positions being equivalent, for instance.

In our algorithm, agents perform autonomous self-position assignment as described
by Definition 6.1.2.

Definition 6.1.2 (Position objective). Given a desired position \; and an agent in a
position 1;, we define the cost of achieving the position j for agent i as

2 T
Dy (47) = / / 14400,) — 36, 0)||? b (13)

and, therefore, an agent v decides its objective position by minimizing

v = v; : j = argmin Dy, (v7), DY = Dy, (45) (14)
=1,

from where we define the cost of achieving the objective position

158

Spatial Coordination in Multi-Robot Systems

In order to achieve the objective position, we give the following problem formu-
lation. Given a formation shape defined by a set of N positions {z;};—1,. n, and
their corresponding spherical indicator distributions {¢;(6, ©)}, then

Definition 6.1.3 (Formation objective). Given a pattern configuration defined by a
set of N positions, from which we can calculate their individual spherical distri-
butions, the desired formation shape of a group of agents is represented by the set
Ey = {¢],..., YN} of desired spherical indicator distributions. Therefore, the for-
mation objective is to have a permutation o € Sy such that D, (;(i)) < dfora
constant 6 € R, § > 0. The value of ¢ is the minimum error allowed to assume
a successful convergence to the desired position. The set {1);(0,)} represents the
agents’ positions and {17 (0,)} the desired positions.

The definition for the position objective in (6.1.2) does not ensure, in its current
form, that there exists a permutation o that maps the set of agents into the set of
formation positions. This section presents a preliminary exploration of the potential
of the position definitions introduced in this section. The results included in this
document involving simulations and tests are obtained under the assumption that the
initial distribution of agents in space ensures the existence of o.

After the autonomous self-position assignment is made by each of the agents,
the next step is to minimize some cost function in order to arrive to the convergence
conditions given in Definition 6.1.3. When minimizing the cost of achieving the
objective position introduced in (14), however, a problem arises from the nature of
the definition we are using for 1;(0,) in (12). If the value of 7 is too small, as
happens in the example illustrated in Fig. 58, then the minimization problem can
be non-convex. This might happen because 1;(6, ¢) is a function formed up by
individual peaks with almost-zero intervals in between. Local minima exist when
some of the peaks in an agent’s spherical distribution and its objective position’s
spherical distribution are overlapped but others are not. Therefore, depending on the
desired pattern configuration, the value of 7 must be adjusted to prevent this from
happening. We have developed a graphical interface for simulation purposes where
we can adjust the parameters of the algorithm in real-time and during a simulation to
see how this affects the position definitions as well as the algorithm performance.

Collision avoidance

So far, our algorithm does not take into account collision avoidance; for example, in
the limits r; — 0 and r; — oo, the contribution of an agent j to 1); is reduced to
a constant over 6 or a Dirac delta function in 6, respectively. In the limit r; — 0,
this might lead to collisions between agents in the case of distributions in which
the angular positions of neighbors are densely distributed across all §. In that case,
1; would be an almost-constant function, and the error incurred when inter-agent is

159

Jorge Pefa Queralta

'j[k] ()’,[/(v 1]

Figure 59. Tllustration of the calculation of %[k + 1 and 6} [k + 1].

reduced would be negligible.

In order to introduce collision avoidance to our algorithm, we consider the fol-
lowing modification of the spherical indicator distribution for a position. Suppose an
agent is considered to move safely when its distance with respect to all other agents
is bigger than a threshold r;. An agent is considered to be in collision danger if its
distance with respect to a neighbor is below a threshold ;. Then we can modify (10)
into

vil0.0) =3 agexp (= (B +7) 10~ 650 2)).

JjEN;
Q if re <7y (15)
aj =q 1i/(rj—rq) if ra<r;<rs
00 if ra <y

where we have introduced the constant « inside the sum and now varies for each
of the agents, which always ensures that r; > 74 and therefore agents are safe from
collisions.

6.1.2 Control inputs

In this section, we introduce the control laws that define our algorithm for both a
single and double integrator dynamics model for the agents. For simplicity, we re-
duce the problem from here on to the two dimensional case. Therefore, an agent’s
spherical distribution is given now in polar form v;(#).

First, we suppose that the dynamics of each of the agents in the swarm follow a
single-integrator model given by p; [k + 1] = p;[k] + Tsu;[k] where p;[k], u;[k] € R?
denote the position and velocity, respectively, of agent ¢, at the time step &, and 7 is

160

Spatial Coordination in Multi-Robot Systems

the sampling period. We use radial and angular control inputs w;[k] = (u;, [k], u;, [k])
that represent the speed and direction of movement, respectively. The polar input
is well defined because all agents share a global orientation. Now we can calculate
r;'- [k+1and 9; [k + 1] based on the control input for agent ¢, using basic trigonometry
(following Eq. 16 and Eq. 17, as illustrated in Fig. 59, and define a cost function.

7“;- [k + 1]2 = ré [k}Q + Tfuir [k]2 — 2Ts7“§- [k]u;, [k] cos (9; [k] — uig) (16)

, ri[k] cos (0i[k]) — Tsu,, [k] cos (ug,[k])
i _ J j " 0
0k + 1] = arccos (S (17)
Definition 6.1.4 (Cost function). Given an agent with dynamics described by a single
integrator, its position represented by 1;(0), and its position objective by 1); b (9),

then we define its cost function at a time step k by

2m N 2 .
Bk = [(6= 9) @0+ AlwlP= DR+) (18)
0
where v > 0 controls the weight of the closed loop control.

From Definition 6.1.4 we propose a control law that minimizes (18). First, we use
numerical methods to calculate the angular control input, obtaining v; [k 1| u,[k] =6

from (16) and (17). Regarding the control input u; ., we propose a control law based
on the instantaneous position error.

ui, k] =6:0 = %rgmin /027r (@Z)i [k+1 | ui, [k] = 5} — [k;])2 o (19)

€[0,27)

obj
w;, [k] = Do - (20)
106 + Dy’

where § is the maximum error allowed for each position to assume that the system
has converged to its formation objective, as defined in the problem formulation in
Definition 6.1.3. The factor 10 introduced in the equation is motivated by a preferred
faster convergence of ufr to 0, with respect to the position error term of the cost
function (18).

If we suppose that the dynamics of each of the agents follow a discrete double-
integrator model, then the position of a agent at the next time step is given by p;[k +
1] = pi[k]+Tsqi[k], gilk+1] = q;[k]+ Tsu;[k], where p;[k], ¢;[k] and u;[k] are agent
1’s position, velocity and acceleration (control input), respectively. Then, we adapt

161

Jorge Pefa Queralta

the cost function (18) to take into account the agent’s velocity as J;[k] = Dz‘Zj (k] +
Vi, [k] 4+ Yo |wi, [k]|. Now u;, and u;, represent the radial and angular acceleration,
respectively. We take into account the radial acceleration to avoid rotations. In this
case, instead of defining the control inputs at each time step by a closed formula, we
adapt the desired angular speed from (19) into

gy k) =0:6
= argmin /27r (v,/;i {k‘ + 1| u,[k] = 5} — o [k;])Qd@
0

56 |:q7;9 7u7-,;nam Wig +ui'g1az)

21

where we have only changed the minimization interval by adding the maximum
allowed radial acceleration and taking into account that the operations w;, — u;pa=
and u;, + u;mes are modulus 2. Equivalently, we calculate the ideal radial speed
using (20) and then limit the radial acceleration. Then the control inputs are simply
Uig = Gig k] — qip[k — 1] and w;, = g;, [K] — g, [k — 1.

6.1.3 Numerical analysis

In this section, we show the computational simulations results that we have obtained
after implementing our algorithm for non-trivial T-shaped and wedge formation con-
figurations. The algorithm has been implemented using Python. The implementation
models the robots as single points in space.

Figs. 60 and 61 show the result of two simulations. The wedge formation is
achieved using a single integrator model for the dynamics of the agents, while the T-
shaped formation is achieved with a double integrator dynamics. We have tested both
single and double integrator models for those two and other formation configurations,
including a square, a square with a fifth agent in the center, and a diamond. We
have found little difference in the performance of the algorithm under the single
and double integrator models. The main difference can be seen in Fig. 60 (b) and
Fig. 61 (b), where we can see that there is an acceleration limit.

We set the maximum speed to v = 1, and the maximum position error allowed
to assume convergence is set to § = 1. This means that when the position error of
an agent is Dz}lzj = 1, then its radial speed is ¢;, = v - szzj/(l() + Dfplzj) ~ 0.11.
We can see that this effectively happens in Fig. 61, (b) and (c), around iteration 50,
in which the total error of the system is approximately » Dzzj ~ b and the speeds
are ¢;, ~ 0.1.

We also partially test the role of the neighborhood set, IV;, in the convergence of
the algorithm. In the wedge configuration simulation, we assume that agents are able
to sense the position of all other agents. In the case of the T-shaped configuration,
we introduce a sensing radius, and define each position in the formation based only
on the visible positions. Throughout the simulation, we impose that Agents 0, 3 and

162

Spatial Coordination in Multi-Robot Systems

100

50

50 100

(a) Single integrator paths.

1.0 -
0.8 -
0.6 -
04 -
0.2 -
0.0 -
- — DYk
102 = Dfl?j [k]
E ¢bl_[]
. —— DK
K2}
10t = obj
= D "’g]. (k]
n —_— DO J k
100 = L Z)l;lj[]
- D¢5_[k]
- = —— Dy (k)
: | | | | | | | |
0 10 20 30 40 50 60 70

(¢) Single integrator individual errors

Figure 60. A wedge configuration of 7 agents is achieved, where the movement of the
agents is displayed with increasing opacity over time.

163

Jorge Pefa Queralta

100 —

50

0 50 100

(a) Double integrator paths.

1.0 -
0.8 -
0.6 -
04 -
0.2 -

0.0 -

0 10 20 30 40 a0 60 70 80

(b) Double integrator speeds.

— S DIk
102

10*

109

0 10 20 30 40 50 60 70 80

(c) Double integrator system error.

Figure 61. A T-shaped configuration of 5 agents is achieved using double integrator models.

164

Spatial Coordination in Multi-Robot Systems

4 are not able to see each other, and the same for Agents 0 and 2. Agent 1 is the only
one able to sense the position of all other agents. The definitions that we have given
so far do not take into account the possibility that the number of neighbor positions
that is used to define a given position might differ from the number of agents that an
agent trying to reach that same position is able to sense. This is an important aspect
of the algorithm under study and more results will be reported in future works.

6.1.4 Testing in a lab environment

We have made an initial test of the proposed algorithm with real robots. In order
to analyze the effectiveness of our algorithm in a real scenario, we use a small RC
car, a radio controlled car where we have replaced the radio receiver by a Raspberry
Pi. The motion of the car is controlled via two servo motors, one for the turning
direction and one for speed control. The turning direction is limited to the interval
(—0.35rad, 0.35rad), of about 40 degrees, 20 in each direction. This is the value of
the maximum radial acceleration u;ma=. While each iteration of the algorithm needs
a relatively low execution time, reading and processing the lidar data takes more
computing resources. Moreover, we run a web server on the Raspberry Pi in order
to have real time monitoring and visualization of the lidar data and agent view, as
well as calculated control inputs. As a result, instead of keeping the car moving in a
continuous way, we move the car in steps. The car speed given by the control input
is translated into the distance that is moved in each step. This can be improved with
a more powerful computing platform.

To obtain the position of other cars we use a RPLIDAR A1MS lidar with a range
of 12m that offers a 360-degree view of the car environment. In order to calculate
the car orientation, we use a column in the testing environment as a reference. We
calculate the instantaneous car orientation supposing that the two walls closer to the
column represent north and east directions. In a real scenario, potentially unknown,
agents would be equipped with digital magnetometers or other sensors in order to
ensure a shared global orientation. However, the settings we use are enough for the
purpose of the experiment.

The results of our test are shown in Fig. 63. We use 4 cars and choose a square
pattern configuration as the formation objective. The first four graphs, (a) to (d) show
the definition of the four positions in the square. The lab environment is illustrated in
(e), with the white column used as an orientation reference. The column is not used
for localization but only for aligning the orientation of local reference frames. We
follow the movement of a car placed near the center of the room. The initial position
of the car and the other three cars can be inferred from the initial lidar view shown
in (f), where the car being monitored is in the center of the graph. The four cars are
initially placed in a nearly-triangular configuration where one of the cars is near the
center of the other two.

165

Jorge Pefa Queralta

270"

(b) Position 2
90°
e
7 \ N
13;/ \\45°
"y Somn
]
180° 0°

L

\
225\°\ \ 15°
=

270° 270%

(c¢) Position 3 (d) Lab environment

270°

(e) Lidar output (f) Initial Car Vision

Figure 62. Experiment with the lidar-equipped RC cars. Figures (a) to (c) show the
definition of 3 positions in a square configuration (they are all equivalent with respect to a
rotation). Figure (d) shows the lidar output, with one point for each degree, for a car placed
near the center of the room detecting three other cars and the reference column. Figures (e)
and (f) show the view of the car, 1(6), at iterations it = 0 and it = 5, respectively.

166

Spatial Coordination in Multi-Robot Systems

(a) Car unit. (b) Test environment.

Figure 63. Experiment setup: one of the four cars used in the experiments equipped with a
2D lidar and 3D model of the test environment.

Due to the non-negligible size of the cars compared to the room space, and the
fact that they are not small robots that can turn around while keeping their posi-
tion, the formation can only be achieved to some extent, and the maximum required
error is achieved in just 5 iterations. Graphs (g) and (h) show the initial and final
agent view after those 5 iterations, where the car is trying to achieve the position
defined in (b). This experiment proves that convergence to the desired configuration
is possible in a real scenario without communication or predefined assignments. The
angular distribution of the four position definitions makes the role assignment sim-
pler in this case, but more complex configurations have been simulated. Future work
will include extensive testing in larger environments and more complex formation
configurations. We will also take into account more realistic models for the agent
dynamics.

6.1.5 Discussion on index-free formation control

In this section, we have proposed a formation control algorithm that enables almost
arbitrary shapes to be formed up without the need of communication between the
agents and without identifying each of the agents with a unique label. This algorithm
is based on an index-free definition for a position within a formation that requires
distance and bearing measurements to express the position of a neighbor agent in
spherical coordinates. Moreover, the definitions can be adapted to avoid collision
between agents.

The algorithm introduced in this section consists of a set of preliminary ideas
and is in an early stage of development. Therefore, further development is required
for a robust formulation and implementation. We have assumed the existence of a

167

Jorge Pefa Queralta

‘suoneIn3yuod uoneuIoy

Jo sadA) Juazeygip 103 s1ojowered [apowr jo jusunsnlpe oy osea 0} 19pio ul padoforsp weiSoid uonenuwirs Y} Jo JOYSURIOS 9 AN

[ot
|) [A 4 al) =/ | ,
Lo j [= | .
08

uopuyeq

— T

soydesb uolsod

¥ 4

aneg
S0 To
L Iy L)
£
100 1
[])
[4 S
@3uEIsIp uoIssI03 @auelsip ajes
08 00T
23ue3sip Ul abues Buisuas
ozt 61 LLERe] a¥vmMH0d oaNn 1uv1S3y Lavls £17nv43a z1nv43a T1nv43a 3dVHS M3N
suoneial Xew uonesR3 JuaInd

uoneinbyuon

punoibAe|d uoljeanBiuo) uonewsod

168

Spatial Coordination in Multi-Robot Systems

permutation that ensures a surjective mapping to the set of desired positions. We
base this assumption in the use of an initial distribution that naturally produces such
surjection. Moreover, the role of the neighborhood set in the convergence has not
been studied in depth.

To the extent of our knowledge, other distributed algorithms that are able to
achieve wedge configurations, or a T-shaped formation, require either communi-
cation among the agents to achieve consensus or agent labeling and a predefined
assignment of the positions in the formation to specific agents. The algorithm pre-
sented in this section is inspired by the anonymous nature of a homogeneous system.
It only requires measurement of the position of other agents, and a shared global
orientation. The former can be obtained through multiple solutions such as lidars or
cameras together with computer vision, while the latter can be easily achieved by
using a digital compass or similar sensors.

6.2 Progressive formation control

We propose a distributed formation control algorithm that requires no a priori po-
sition assignments and minimal one-way communication between agents. Positions
are assigned autonomously by the agents in a progressively through a directed acyclic
graph.

Different distributed approaches exist depending on the communication within
the agents, and the a priori information given such as predefined position assign-
ments. If no assignments are made, when no communication is allowed, only forma-
tion configurations where all positions have an equivalent definition in terms of their
neighbors is possible. This is the case of flocks, where distance between neighbors
is constant, or regular polygons, where the angle between the positions of the two
nearest neighbors is also constant [387; 383]. When agents can achieve consensus
through communication, then arbitrary formation shapes are possible. This can be
done either by using system-wide communication to achieve consensus or via local
interactions only. In the former case, auction mechanisms have been used to perform
task allocation, which is equivalent to assign positions in a formation [395; 384]. Re-
garding the latter scenario, a very interesting approach has been proposed by Pinciroli
et al., in which positions are assigned progressively via local interactions between
neighboring agents [396; 397]. The authors propose a solution that is easily scalable,
robust, and specifically suited for the natural scenario where agents are deployed
progressively and not at once. Moreover, only minimal communication is required at
the time of joining the formation, and a given agent only needs to exchange informa-
tion with two agents that are already part of the objective configuration. Compared
to their approach, we propose a method that reduces further the amount of necessary
communication. The proposed algorithm only requires one-way communication by
broadcasting status information. However, this simplification limits the number of

169

Jorge Pefa Queralta

possible configurations. We prove that if the set of initial positions of deployed
agents is a convexly layered set with a constraint below the agents’ sensing range,
then agents converge to the objective formation. This mainly requires that agents
can be assigned to the vertices of a series of convex polygonal layers, such that they
follow an inclusion relation, and all pairs of agents forming a polygon edge are within
sensing range.

The progressive position assignment inherently introduces latency in the system
when compared to algorithms that do not require communication between agents
as it has been presented previously in this chapter [5]. However, it also allows us
to ensure the existence of consensus during the position assignment and enables
the convergence to almost arbitrary configurations. Distributed formation control
algorithms that require, to some extent, communication between agents and mea-
suring the relative positioning of neighboring agents often rely on situated commu-
nication [398; 164]. This type of communication refers to data exchanges using
wireless technology and devices capable of estimating the relative position of a mes-
sage sender. Two-way situated communication enables mutual localization of agents.
Other approaches have been proposed for very-large-scale systems where individual
positions are not assigned but instead a certain number of agents must be located in
a particular area or volume in space. This idea, introduced by Bandyopadhyay et
al., uses probability distributions to define the formation configuration [379]. Even
though agents do not communicate to achieve consensus regarding their objective
positions, they need to be aware of the global spatial distribution of the swarm.

Our work in this section has been partially inspired from previous works from
Pinciroli et al. [396; 397]. Nevertheless, the differences are significant. First, we
propose a method that requires only one-way communication. Second, we also as-
sume that agents share a common orientation reference. This, which can be imple-
mented via inexpensive magnetometers or other kind of inertial sensors or digital
compasses, enables us to define configurations with a predefined orientation. This
has an important impact when agents should move towards a given direction after or
while converging towards the objective configuration. Furthermore, our algorithm
does not require of a predefined pair of identified agents which are necessary for
assigning the rest of roles in Pinciroli’s work. Instead, we propose a method that
enables autonomous self-assignment of all roles or positions in the objective pattern.

The main contributions of this section are the following: (i) the definition of
an algorithm that enables distributed and autonomous position assignment in multi-
robot systems with one-way communication; (ii) the introduction of a control law
that ensures convergence and utilizes the information acquired during the position
assignment; and (iii) the simulation and analysis of multiple scenarios and pattern
configurations showing that our proposed approach is scalable and. A more realistic
simulation has been implemented and analyzed using the Robot Operating System
(ROS), the Gazebo simulator and the RotorS module for dynamics modelling. These

170

Spatial Coordination in Multi-Robot Systems

tools enable a more advanced modelling of unmanned aerial vehicle (UAV) dynamics
and simulation and have allowed us to demonstrate the efficiency and applicability of
our algorithm. Nonetheless, in this section we focus on the theoretical foundations of
our algorithm and on analyzing its performance and scalability for different objective
patterns and initial distributions of an increasing number of agents.

6.2.1 Problem Formulation

In this section, we use the following notation. We use [N] = {k € Z* : k < N} to
denote the set of the first N positive integers. Given a set of vectors z1,...,Ty €
R™, x = [2T,..., 2] € R"" denotes the stacking of the vectors. Given a set of
points in R", the convex envelope, hull or closure is the smallest convex set con-
taining all points. We denote by C'onwv(q) the convex hull of q and by 6Conv(q) its
boundary. The algorithms presented in this section are formulated for two-dimensional
formation control, and therefore we implicitly assume n = 2 and all points belong
to R2.

Consider a planar formation configuration defined as a set of points, represented
by asetq = [q1,-.-,qn] € R?Y. Given a set of N agents with positions p(t) =
[p1(t),...,pn(t)] € R?Y, we address the problem of achieving a spatial distribution
equivalent to q with respect to a translation.

Problem 6.2.1 (Formation Objective). Given an objective point set q and a set of
agents represented by their positions p(t), we consider that the formation has been
achieved at a time t = t' if a permutation o : [N] — [N] exists such that

1p:(¥') = po(t') + doi) — do(o)ll <€
Ip:(¥)[|< 0

for predefined constants ,6 > 0 that represent the maximum error allowed for
positions and speed. We assume that agents are able to measure the position of any
other agent in line of sight up to a predefined sensing distance §.

(22)

In order to solve Problem 6.2.1, we provide a methodology for uniquely assign-
ing a position in the formation to each agent through the definition of a directed
path graph. One-way communication is used to progressively assign positions in the
formation. The definition of the path graph requires the following two conditions,
where the sensing range of agents is taken into account.

Assumption 6.2.1. The set of points can be divided in a set of L convex polygons,
or layers, {li,...,15} such that the polygonal areas they delimit {A;,, ..., A;, },
defined as compact sets in R?, follow a strict inclusion relation A;, D A, D --- D
Ay, . Any two consecutive points in a given layer are separated by a distance smaller
than the agents’ maximum sensing distance, ||lx; — lp(i41 mod Ly) |< 0s. We denote

171

Jorge Pefa Queralta

(a) Identifiers, layers (b) Assignment order

Figure 65. Representation of convex layers in a 2D point set and SDPG generation. Non
straight connections between nodes are merely illustrative.

by Ly, the number of points if the k-th layer, and define lj, = {l1,...,lkL, } in an
order such that any pair of consecutive points (i, lp(i+1 mod L)) defines an edge of
the convex polygon.

Assumption 6.2.2. For each point li;, 1 < k < L, there exists 1 < j < Ly
such that ||lr; — lg41);11< 6s and ||li — lg41)(j+1 mod L)< Os. Equivalently,
we assume that for each point l;, 1 < k < L, there exists 1 < j < Ly_1 such that
ki — lk—1); 1< 65 and || Ik — L—1)(j+1 mod L 1)||< Js. This essentially implies
that, for each point, there are at least two points in the previous and next layer within
sensing range, unless the point is in the first or last layer. If there is a single point
in the innermost layer, then at least three other points must be within sensing range.
Intermediate layers cannot have one or two points only, as any three points form a
triangle and all triangles are convex polygons.

The parameter 65 > 0 is a lower limit of the agents’ sensing range. This value is
different in each application scenario and should be chosen lower than the real range
to ensure agents are able to sense their neighbors consistently through time.

The first layer 1; is the boundary of the convex hull or convex envelope of the
point set 1. Therefore, we can easily calculate the points in any layer using the fol-
lowing relations:

I, = 6Conv(q), k =dConv [q\ |J W | VI<k<L (23)
1<k'<k

The convex hull of a finite point set in R?, or R?, can be calculated in O(n log h)
time with Chan’s algorithm, where h is the output size, i.e., the number of points
defining the convex hull [399].

Definition 6.2.1 (Convexly layered set). Given a set of points in the plane, repre-
sented by a stacked vector q = [qF, ..., q%] € R?N, and a distance 55 € R, §; > 0,

172

Spatial Coordination in Multi-Robot Systems

we define the pair (q,05) as a convexly layered set with constraint 05 if Assumption
1 and Assumption 2 hold.

We should note than given any set q, there always exists a value J, large enough
such that (q,ds) is a convexly layered set with constraint §5. This can be easily
proven from the definition of 15 in Eq. 23, as the layers can be calculated first and
then the minimum sensing range is obtained from the conditions in Definition 6.2.1.
Figure 65 (a) shows three convex layers for a set of 19 points. The first digit of
each node’s identifier references the layer number {1, 2, 3} and the rest of digits are
unique for each layer, with layer sizes {12, 5,2}. This identifiers have been merely
chosen for illustration purposes; in a real application, a sequence of increasing natu-
ral numbers can be used as agents are given a priori information about the objective
configuration. This information can then include the number of agents in each layer.

We can now define a directed path graph on the point layer that uniquely assigns
identifiers to each point progressively. The directed path graph is generated as fol-
lows. First, a node is chosen as the graph root. Any edge node can be chosen at
this point. A node is an edge node if it is a point ¢; = (g;,, ¢;,) that belongs to the
convex hull and there exist constants m,n > 0, defining a line f(x) = ma + n, and
constants sq, s2 € {—1, 1}, such that the edge node ¢; belongs to the line, all other
points in the set belong to only one of the two half-planes defined by the line, and
other points that belong to the line belong to only one of the two half-lines in which
q; divides the line. Mathematically, this means that

¢, = f(4,)
a, < s1f(q;,) Vi €IN], j#i (24)
Vi#ilq, = fg,) = ¢, <s24q,

Second, a clockwise or counterclockwise assignment direction is chosen. This
direction is used in all layers to define the order in which identifiers are assigned
to points in the set. Finally, starting at the graph root, the next node in the graph
is one of the two points that share an edge with the root in the outer layer, chosen
accordingly with the assignment direction. The assignment continues iteratively in
the same direction through the outer layer until all points in the layer have been
assigned an identifier. When the last point in the first layer has been identified, the
assignment continues to inner layers by choosing the closest point in the next layer
and repeating the same process as in the first layer. This process continues until all
points in the set have been assigned a position.

Definition 6.2.2 (SDPG from a convexly layered set). Given a convexly layered set
(q,05), we define a Spiral Directed Path Graph (SDPG) following the next steps:

1. Choose an edge node as the graph root, and constants m,n, s1, sy that
uniquely define the point within the set q. The constants m, sy, so will be used by

173

Jorge Pefa Queralta

agents to self decide whether they are the root node after deployment. The value n
is not necessary because we consider any configuration equivalent with respect to a
translation. Therefore, any line from the set of parallel lines defined by m can be
used to uniquely identify the root, together with constants Sy, So.

2. Choose an assignment direction, clockwise or counterclockwise.

3. Identify the nodes following the assignment direction, starting from the root
node, and following the previous indications when all nodes in a layer have been
identified.

A path graph is a tree where only two nodes have degree one, and all other nodes
have degree two. Because the SDPG is a directed graph, the root and terminal nodes
have degree one. All nodes except the root have a parent node, and all nodes except
the terminal have a child node.

To solve Problem 1, we first assign a unique identifier to the positions in a given
formation configuration by generating an SDPG. Then agents perform a progressive
self-assignment of positions until an equivalent SDPG is generated from the moment
they are deployed. This analog process is defined in Section III. At this point, agents
actively control their position with respect to the nodes they are connected with in
the SDPG according to the displacement defined in the objective formation configu-
ration. The desired pattern is achieved when all agents error are below a predefined
threshold. However, agents are not aware of the global error due to the lack of com-
munication, and local errors are used instead to estimate the global system state.

Figure 65 (b) shows the SDPG generated from a given set of points as the desired
formation configuration. The edge node is given by constants m = 0,n = q1,,, defin-
ing a line f(x) = q1,, where q; is the point with identifier /7. The half-plane where
all other points lay is defined by s; = 1. The value s is not relevant in this case
because there is no other point in the line, i.e., g;, # q1, Vj # 1. However, the origin
choice might affect the graph generation in the agent set when assigning positions in
the corresponding SDPG. Therefore, even if not significant, a value for s, € {£1}
must be chosen. The assignment direction is counter-clockwise in this case. We use
the term spiral to refer to the directed path graph because of the decreasing distance
to the center of mass when considering different layers, even though this does not
necessarily happen within a certain layer.

6.2.2 Progressive Position Assignment Algorithm

In this section, we describe a position assignment algorithm that only requires one-

way, minimal communication between agents. One-way communication is used to
enable the assignment of positions in a random spatial distribution of agents.

Suppose a set of N agents is given with positions represented by p(t) = [p? (¢),

., ph(#)] € R* and maximum sensing range J, is given. We now define an

objective formation configuration by a point set q = [¢f,...,qk] € R?*"N. We

174

Spatial Coordination in Multi-Robot Systems

assume that the set p(0), together with the agent sensing range Js, is a convexly
layered set {p(0), 05}

During the position assignment process, agents can have one of three different
states: (1) Assigned: agents that know their position and identifier; (2) Known layer:
agents with unassigned position but that are aware of their layer; and (3) Unknown
layer: agents with unknown layer.

All agents in the outer layer are in the known layer state immediately after de-
ployment, and all other agents in the unknown layer state. Agents continuously
transmit their state through a broadcast signal. Situated communication can be used
to both transmit the signal and measure the position of other agents [398]. The
broadcasted signal is used by neighboring agents to track the position of the trans-
mitting agent while, at the same time, make decisions with respect to their objective
position. If an agent is in the assigned state, then the broadcast signal includes infor-
mation about its objective position. We assume that if agent ¢ is able to receive agent
j’s signal at a certain time, then agent j is able to receive agent’s ¢ signal at the same
time.

The progressive position assignment (PPA) then proceeds as follows: (1) With
the same constants m, s1, s used in the definition of the SDPG from the objective
configuration, each agent in position p; = (p;,, p;,) checks if the three conditions in
Equation 24 hold for n = p;, — p;,m. with f(z) = max + n. If an agent 4 fulfills all
three conditions, with f(z) = m(z — p;,) + p;,, then the agent is the root node and
it changes its state to assigned. (2) The root agent starts broadcasting signal. Then,
there are two agents next to it in the outer layer which self-decide whether they are
or not the next node in the graph based on the assignment direction. In the case
of a positive decision, then the next node starts broadcasting signal as well. After
all nodes in the outer layer have a position assigned, then nodes in the next layer
can automatically change their state to known layer. (3) Finally, each node starts to
actively control its position immediately after it is in the assigned state.

Theorem 6.2.1 (Uniqueness of the PPA). Let p € RN represent the spatial dis-
tribution of a set of N agents with sensing range 65 > 0, and capable of one-way
communication by continuously broadcasting a signal over time. If {p, 0} is a con-
vexly layered set, then the position assignment process defined by the previous three
steps uniquely assigns a position to each agent.

Proof. Positions are self-assigned in an autonomous way by agents, based on the
positions and states of neighboring agents. Therefore, in order to prove the theorem,
we first need to demonstrate that a single agent will self-assign itself the role of graph
root, and that at every step the appropriate agent, and only that agent, will self-assign
the next node in the SDPG.

Suppose there are two agents such that, immediately after deployment, claim that
they are the root agent. Let p;, p; be the two positions of such agents. Without any

175

Jorge Pefa Queralta

loss of generality, we can assume j > ¢. With constants m, s;, each of the points
defines a half-plane. If both half-planes are the same, then p; and p; lay on the same
line. If agents ¢ and j are within sensing range, then s, has different value for each
of them and this is a contradiction. If they are not able to sense each other, then
there exists another agent in the outer layer with position px, ¢ < k < j, such that it
belongs to the half-plane defined by the p; and p;. If it belongs to the boundary, then
the same problem arises with the sign of s, (and new points can be equally generated
if k is not within sensing range of both ¢ and j). If it belong to the interior of the half-
plane, then the segment p;p; is outside of the convex outer layer, and this contradicts
the definition of convex polygon and breaks Asumption 1.

If the half-planes are not the same, we can assume without any loss of generality,
and based on the value of ss, that the half-plane generated by p; is contained within
the half-plane generated by p;. This necessarily means that they do not sense each
other. Let k be now the nearest edge to ¢ in the outer layer, such that it is between
1 and j. Then p; necessarily belongs to the half-plane defined by p; based on Eq.
24. However, then p;p;, which lies completely outside of that same half-plane, is not
within the outer layer and a contradiction arises.

The above implies that all agents in the external layer can be uniquely identi-
fied following the SDPG generation, without two agents claiming to have the same
objective position. Now we just need to prove that a single agent in the next layer
will claim to have the appropriate objective position. The problem can be reduced to
prove that a single agent will claim to be the closest to the last agent identified in the
outer layer. Let p; be the position of the last agent assigned to the outer layer, and
assume that two agents in position p;, pj, claim to be the closest. Both p; and pj, know
that they are in the next layer in the same manner than initially all agents in the outer
layer are aware of that, since all these have been already identified. If p; and py, are
within sensing range, then they can both masure the other’s distance to p;, and only
one will claim to be the closest. In case of equivalent distance, the decision is made
based on the assignment direction. Therefore, for agents j and k to make the claim,
they cannot be within sensing range of each other. Based on Assumptions 1 and 2,
this means there is at least one other agent & in the same layer in between. However,
because h is farther from 4, it is outside the triangular area formed by agents ¢, j, k.
This implies that the segment p;py, lays outside any convex poligonal area with ver-
tices including p;, pr, pn, that also leaves p; outside. This contradicts the definition
of convex polygon, and we started assuming that p;, px, p.

O

As previously noted, all agents except the root have a parent node, and the root
can be uniquely identified. This allows us to propose a control law for each agent
based on a basic leader-follower formation, where the parent is the leader and the
agent itself is the follower. We assume that the parent and child nodes of any agent,
which are within sensing range at time { = 0, stay within sensing range at any

176

Spatial Coordination in Multi-Robot Systems

time ¢ > 0. If a new objective configuration is required, then agents loose their
assignments and the process is restarted.

Deployment of 3D configurations

The position assignment described for two-dimensional configurations can be lever-
aged to deploy a group of agents into a three-dimensional configuration. When aerial
robots such as UAVs are deployed, their initial positions are a set of points in R2.
Therefore, for three-dimensional deployment of aerial robots, we propose to distribu-
tively perform the position assignment before they take-off, and define an equivalent
directed path graph on the objective configuration.

In particular, we reduce the problem to three-dimensional configurations where
all points belong to the boundary of their convex hull. This is to avoid dealing with
agents passing through the convex hull boundary, which might cause unpredictable
behavior because of collision avoidance triggers in the case of a dense objective
configuration. In this case, a sufficient condition if that the triangulation of the hull
boundary must have at least one Hamiltonian path. In this case, the definitions of
the directed path graphs in the two-dimensional initial distribution and the objective
three-dimensional configuration are completely independent.

For these 3D formation configurations, we do not provide a methodology for
identifying a locally convex directed path graph. Instead, we assume that a Hamilto-
nian path over the 3D hull boundary has been defined beforehand.

6.2.3 Control inputs

We propose a control law that enables agents to converge to the objective configura-
tion while avoiding inter-agent collisions. A natural solution is for agents to actively
control the displacement with respect to their parent node in the path graph. How-
ever, this has the disadvantage of increasing the system error with small drifts in the
displacement of each parent-child pair. We propose a methodology for reducing the
system error after individual agent errors are below a certain threshold, but its anal-
ysis is not wihin the scope of this section. The main contribution of this section is
on the progressive assignment algorithm that uniquely generates a SDPG given an
spatial distribution of agents, and not on the control input that enables convergence.
Multiple leader-follower formation control solutions exist in the literature and can
be easily adapted to work with our proposed progressive position assignment algo-
rithm [386; 400; 401; 402].

Let q be a set of N points representing the objective formation, and p(t) the
position of IV agents actively trying to converge to a spatial configuration equivalent
to q with respect to a translation @(t). Without any loss of generality, we assume
d, = qo — po(t) and agents are indexed such that p;(t) o et d,,. Let pi(t)

177

Jorge Pefa Queralta

100 — 100 —
3 2 1
° ° ° o © °!
.8
10 9 o’
° ° ol0
.ll
50 — ol o3 o8 50 — o’
o4 PYE
.12 .7 ‘6
.12
o4 o’ of
0- 0- o’
| | | | | |
0 50 100 0 50 100
(a) Objective formation F1 (b) Initial positions
[[] i []
y % >
80 A 1) 40 —
60 A %
/ ° /ﬁr
20 a 20 -
20 4
T @ st
[2 [0-—
0 | | | | |
0 20 40 60 80

—-40 —‘20 6 2‘0 4‘0 6‘0 8‘0 160 120
(c) Agent paths (d) Agent errors

Figure 66. Illustration of 13 agents in random initial positions converging towards the
formation configuration F1 defined in (a).

be the position of agent j measured by agent ¢ in its local reference frame, p;'» (t) =
p;(t) — pi(t). Then, agent i’s objective is fulfilled at time ¢', from the point of view
of a leader-follower formation, if p!_, (') = ¢;_1 — ¢;, fori > 1. Let \V; be the set of
agents that agent 7 is able to sense. Necessarily, this set contains at least the parent
node, p;_1 € N; Vi > 0.

In order to test the feasibility of this method, we propose a simple control law
based on a single integrator model, p; = w;, where w; is the control input for agent 1.
For agent ¢ = 0, a trivial solution is to have u; = 0 forallt > 0. For all other agents,
a simple follower equation can be written generically as u; = p(pi_;(t) — qi—1 + ;)
such that is ensures asymptotical convergence towards the objective displacement.
This function should minimize a cost function such as

Ji(t) = ylpia () — g + @l + 72 Y 1P — a5+ @l +sllpl® @25)
J<i, JEN;

178

‘3 .2 '1
100 — (X o8
.13 '6
o2 o’
50 —
o!! o5
.10
0o- et
[[[
0 50 100
(a) Objective formation F2
=) o []
140 A
120 A
100 A
80
60
40 -
g
20 A
0+

-20 0 20 40 60 80

(c) Agent paths

100 120 140

Spatial Coordination in Multi-Robot Systems

150 — [2 o!
®3 e
.12
100 — oll
.10
50 — Sl (
‘4
0 o [o’
| | | |
0 50 100 150

(b) Initial positions

100 —

0 50 100 150
(d) F2 errors

Figure 67. Illustration of 13 agents in random initial positions converging towards the

formation configuration F1 defined in (a).

In this section, we use 7, = 0. However, we introduce this term as a proposal to
reduce the overall system error when the parent-child displacement is already within
a predefined limit. We introduce the constraint j < ¢ because the smaller the index,
the smaller the agent position error due to less accumulated drift. Moreover, agents
with smaller index converge faster as they are closer to the static root node from the
point of view of the directed path graph. Therefore, agents can take as reference any
other agents that they can sense, and that precede them in the SDPG.

For collision avoidance, we use a potential such as [403]:

"’(“”_R}) B> r

Vi;(t) =

(mm {0

O] Rt

Ip5®)ll<r

(26)

179

Jorge Pefa Queralta

o2 o! o? o!
100 — o’ o 100 — of o’
.]2 o!l Y .9
13 10
50 — 50 —
.9 Y 10 .8
o8 @5 o4
0- @3 ot 0- o3
[[[[[[
0 50 100 0 50 100
(a) Objective formation F3 (b) Objective formation F4

Figure 68. Formation configurations F3 and F4.

where R, r represent the warning and danger distance, respectively. These con-
stants are defined in a way such that an agent actively tries to avoid another agent
when the distance that separates them is smaller than the warning distance, and it
must never be below or equal to the danger distance. During the simulations we as-
sume that, for any given agent other than the root, its parent agent is always within
sensing range. However, this is unrealistic as even line of sight could be lost when
another agent passes by through both. To solve this, since parent agents are also able
to measure the position of their child agent, we propose to reduce the parent speed
closer to 0 as the distance between parent and child increases towards the sensing
range or a predetermined limit.

6.2.4 Point simulations

In order to test the feasibility and effectiveness of the proposed algorithm, we have
run a set of simulations to analyze its performance under favorable and unfavorable
conditions. Figures 66 and 67 show two example configurations, F1 and F2, with 13
agents each. Both configurations can be divided in a set of three convex layers. In
both cases, random initial distributions have been used. These two examples serve
as an initial illustration of the feasibility of our proposed algorithm. Figure 70 shows
the number of agents that have at least one neighboring agent closer than the warning
distance.

Common to all simulation results presented in this section are the following pa-
rameters. When distributing agents randomly, a minimum distance of 15 is kept be-
tween agents. The inter-agent warning distance to avoid collisions is set to 8, and the
danger distance to 4. The maximum speed of agents is 1. The assignment direction is
counterclockwise, and the root node is chosen with constants m = 0,51 = 1, 59 = 1.

180

Spatial Coordination in Multi-Robot Systems

500 —
400 —
300 —
100 —
- T
0 | | | |
F1 F2 F3 F4

Figure 69. Boxplot illustrating the number of iterations (vertical axis) needed to converge
to different objective patterns. In each simulation, the initial distribution of agents is either
random (red) or has been generated adding noise to the objective distribution (blue). In the
horizontal axis, each of the objective formation configurations introduced earlier.

2]
1.5 47
1 —
2 1
0.5 4
0— T T 0-
0 50 100 0 50 100 150

(a) Collision avoidance while converging to (b) Collision avoidance while converging to
FI. F2.

Figure 70. Number of occurrences when collision avoidance potential is triggered while
converging to formations F1 (a) and F2 (b).

In order to avoid that agents lose sight of their parent node, we have also successfully
tested a modification of the collision avoidance scheme in which roles are assigned
a priority based on their distance to the root node in the graph. When the collision
avoidance potential is activated, only the agent with lower priority actively avoids
the collision. Moreover, if a parent node notices that its follower is getting to a dis-
tance near the maximum sensing range, it can reduce its speed until the distance is
reduced.

181

Jorge Pefa Queralta

800 —
800 —
600 —
600 — o I ;
B (| 400 — ‘ o
400 . ° 1 2 '
. s i o 5
200 — i t x 200 — g
i '
I | .
0- . 0- I I I
! | ! 10 20 30
10 20 30
(b) Noise addedd to a fixed initial

a) Random initial distributions. RS
@ distribution.

Figure 71. Number of iterations needed to converge to a random configuration.

In Figures 69 and 71, we analyze how the objective configuration and the ini-
tial distribution of agents affect the performance of the algorithm in terms of time to
convergence. Figure 69 summarizes the number of iterations needed to converge to
the objective formations F1, F2, F3 and F4 over 800 simulations, 100 for each con-
figuration and type of initial distribution. In red is shown the results of simulations
where the initial distribution of agents is random over an area similar to the objective
one. Formation F1 clearly requires less time. This is due to the sparse distribution of
agents in space. Formations F2, F3 and F4 show similar complexity, with F4 requir-
ing fewer iterations presumably due to the lower number of agents. The box graphs
in blue show the number of iterations needed to converge in the case in which the
initial positions of agents are calculated by adding a random drift to the objective
positions. In this case, the space sparsity of the formation does not play such a sig-
nificant role, as the initial distribution is similar. Therefore, very similar complexity
is shown by the different formations.

In Figure 71, we show the result of running 280 simulations for 2 different types
of initial distributions and 7 different number of agents. The objective configura-
tion is a random distribution of N agents over an area with side length L.;q =
50v/2+/N /5. In Figure 71 (a), the initial distribution of agents is also random over
an area of the same size. However, in (b), agents are individually deployed nearby the
objective distribution, in areas of side length 30. This resembles the idea of adding
noise to the objective system. We can see that the complexity of the system rapidly
grows in the case of a random distribution, while the number of iterations increases
slower when the shapes are more similar. In a real scenario, a person deploying
agents in an objective scenario probably has an idea of the final spatial distribu-
tion that agents will converge to. Therefore, it is natural to expect that the original
distribution is not totally random and is in some way correlated to the objective dis-
tribution.

182

Drone 1 Drone 2
PX4 PX4
MAVROS MAVROS
Drone Drone
Code Code
mavros mavros
interface interface
A A
assignment assignment
and control and control

Spatial Coordination in Multi-Robot Systems

Drone N

PX4

MAVROS

Drone
Code

mavros
interface

A

assignment
and control

ROS

Gazebo Sim

Formation Broadcaster

Figure 72. ROS/Gazebo implementation architecture as it appears in [6].

6.2.5 3D simulations with ROS

The previous simulations are relatively simple and use points in space that follow
predefined dynamics. We have performed two different simulations with ROS and
Gazebo. Traditionally, works introducing formation control algorithms simulate
agents with single or double integrator models. In order to show how these models
adjust to a real scenario, we have implemented both a single-integrator simulation
using Python and a more realistic approach using UAVs in ROS with the Gazebo

simulator and RotorS.

183

Jorge Pefa Queralta

During the ROS simulations we assume that, for any given agent other than the
root, its parent agent is always within sensing range. However, this is unrealistic as
even line of sight could be lost when another agent passes by through both. To solve
this, since parent agents are also able to measure the position of their child agent,
we propose to reduce the parent speed closer to O as the distance between parent and
child increases towards the sensing range or a predetermined limit.

Fig. 72 shows the Gazebo simulation environment consisting of the ROS master
process, the Gazebo simulator, a set of processes for each drone in the simulation
and a formation broadcaster. Each drone runs a PX4 SITL, MAVROS for communi-
cating with PX4, and the formation control process which has two threads, one for
communicating with MAVROS through ROS and the other for assigning and high-
level movement planning. PX4 is an open source flight controller. It can also be used
for simulation in Gazebo on top of RotorS. The formation broadcaster is responsible
for ordering the objective configuration. This process may be computationally ex-
pensive and therefore it is computed once and the encoded path graph is transmitted
to agents upon deployment. In a real implementation, each drone would only need
to run the formation control process and MAVROS since PX4 runs on separate hard-
ware. The formation definition could either be embedded, or broadcast using other
protocols. The assignments in the simulation broadcast through ROS.

The same environment is used for both 2D and 3D simulations. For the 3D
environment, the on-drone code does not require any changes since the assignment
is still done in 2D. The formation broadcaster requires the most substantial changes
since the algorithms for ordering 2D objective configurations do not easily translate
to 3D. In this case, we have precomputed a Hamiltonian path over the triangulation
of the convex hull of the objective configuration.

6.2.6 Gazebo simulation results

We have compared the performance of the single integrator simulation and results
obtained with ROS/Gazebo in terms of convergence time and agent paths. In order
to be able to compare the single integrator implementation in Python with the ROS
implementation, we have adjusted the time steps and speeds to match both simula-
tions.

Figure 73 (a) and (b) show the objective configuration and initial distribution of
the agents. We chose a line along the y-axis as the initial pattern and a 3x3 grid
for the objective configuration. Rather than a random initial distribution, we have
chosen a line in order to show the efficacy of our method in a disadvantageous initial
distribution. The paths taken by both the single integrator simulation and the Gazebo
drone simulation are similar, with moments where collisions were being avoided
being more clear in the Gazebo simulation. The single integrator converges much
faster, owing to the simpler model used. This is shown in Fig. 73 (c) and (d), where

184

Spatial Coordination in Multi-Robot Systems

°
° ® L] o
(a) Single integrator paths. (b) Paths in Gazebo.
X
(c) Single integrator errors. (d) Errors in Gazebo.

Figure 73. Simulation of a 3x3 grid formation in both the Python point simulation and the
more realistic Gazebo simulation.

instantaneous errors of individual agents are illustrated. These errors are calculated
as the norm of the difference of the current leader-follower displacement and the
objective one.

Drones have an approximate size of 55 cm by 55 cm, and the size of the area
displayed in Fig. 73 (a) is 9 m x 9 m, (b) is 4 m x 25 m and (c-d) 20 m x 30 m.
Although our control input to the drones are velocity that the drone is not capable of
instantaneously achieving. The maximum speed was 1 m/s. The Gazebo simulation
took 35 seconds to converge, which could be improved with better control. The
positions of the drones were sampled at 1Hz for the single integrator simulation and
10Hz for the Gazebo simulation. Figure 74 shows the final results in Gazebo. For
the collision avoidance potential, we have utilized are r = 1.5 m and R = 0.75 m.

To demonstrate the validity of our algorithm for deploying drones into three-
dimensional configurations, we chose a pseudo-icosahedron as our objective config-

185

Jorge Pefa Queralta

Figure 74. Final 2D configuration in Gazebo with PX4 software-in-the-loop simulations.

uration, which is illustrated in Fig. 75 (b). The 3D Hamiltonian path was generated
manually. The initial configuration was random. It took roughly 70 seconds to con-
verge, with the same agent speed and collision avoidance parameters used in the
two-dimensional case.

6.2.7 Remarks

We have presented a distributed progressive formation control algorithm that enables
a wide range of formation configurations. Any formation configuration is possible
if the sensing range enables the definition of a convexly layered set. Compared to
a previous progressive formation control algorithm proposed by Pinciroli et al., our
approach requires only one-way communication, and all agents are equivalent and
anonymous upon deployment. Therefore, the proposed methodology does not re-
quire any agent to have a preassigned role or objective position. Furthermore, we
assume that agents share a common orientation reference. This enables convergence
to a formation configuration with respect to a translation, keeping the desired ori-
entation. Finally, we propose a control law based on a leader-follower scheme that
requires only the same information utilized during the role assignment process. The
algorithm is lightweight and can be implemented in resource constrained devices.

6.3 Summary and conclusions

In this chapter, we have been looking at algorithms for formation control in multi-
robot systems requiring minimal interaction. This chapter complements the previous
chapter, focused on localization, with an extension to spatial coordination. It remains

186

Spatial Coordination in Multi-Robot Systems

o

(b) 3D configuration (pseudo-icosahedron)
and Hamiltonian path..

(a) 2D deployment

_ AV VAR A

(c) Agent Errors (d) Agent paths

Figure 75. Simulation of pseudo-icosahedron

out of the scope of this thesis the integration of these formation control algorithms
with the UWB-based localization approaches. However, it is clear that there is sig-
nificant potential. For instance, UWB ranging and relative localization with basic
signaling can directly be applied to the progressive formation control algorithm in-
troduced in the latter part of this chapter. At the same time, anonymized UWB mes-
sages, even if noisy, can be used within the earlier formulation of the index-free and
communication-free formation control approach. More interestingly, multiple syn-
chronized receivers in a robot, or a receiver with multiple antennas, could be used

187

Jorge Pefa Queralta

to estimate both distance and angle of arrival, without two-way ranging. This would
provide a direct way to calculate the spherical indicator distribution and enable for-
mation control without explicit communication.

We are exploring the integration possibilities and further researching these topics
in other ongoing works. For example, in [374] and [404], we are integrating role
allocation, absolute and relative UWB localization, and blockchain smart contracts
for building more secure and trustable multi-robot systems.

188

7 Collaborative Sensing

This chapter extends the collaborative localization approaches introduced in Chap-
ter 5 ensuring uniqueness of the relative localization solution and involving more than
two robots, with a graph theory approach that also extends the work in Chapter 6. The
main objective in this chapter is to apply UWB-based localization for collaborative
multi-robot scene reconstruction. This chapter does not introduce a novel approach
to the localization methods themselves, but demonstrates instead their direct use in
collaborative sensing. As such, this chapter introduces a novel approach to collabora-
tive localization for dense scene reconstruction in heterogeneous multi-robot systems
comprising ground robots and micro-aerial vehicles (MAVs). We solve the problem
of full relative pose estimation without sliding time windows by relying on UWB-
based ranging and Visual Inertial Odometry (VIO)-based egomotion estimation for
localization, while exploiting lidars onboard the ground robots for full relative pose
estimation in a single reference frame. During operation, the rigidity eigenvalue
provides feedback to the system. To tackle the challenge of path planning and ob-
stacle avoidance of MAVs in GNSS-denied environments, we maintain line-of-sight
between ground robots and MAVs. Because lidars capable of dense reconstruction
have limited FoV, this introduces new constraints to the system. Therefore, we pro-
pose a novel formulation with a variant of the Dubins multiple traveling salesman
problem with neighborhoods (DMTSPN) where we include constraints related to the
limited FoV of the ground robots. Our approach is validated with simulations and
experiments with real robots for the different parts of the system.

Portions of text and a subset of figures in this chapter are reproduced from our
previous work [2].

7.1 Context and contributions

In GNSS-denied environments, different approaches to multi-robot cooperative ex-
ploration have been showcased during the DARPA Subterranean challenge [49; 51],
as we have described in more detail in previous chapters. The participants of the
challenge deployed both unmanned ground vehicles (UGVs) and micro aerial vehi-
cles (MAVs). Localization and collaborative sensing represented two of the main
challenges. Indeed, solving these problems would allow robotic systems to go out of
laboratory settings. In this section, we address the problem of collaborative multi-

189

Jorge Pefa Queralta

1 Multi-lidar setup: spinning, solid-state and lidar cameras. |

' ;!I_Hm‘

SO 0S-0
._u_;mm

Horizon

Figure 76. Example setup with spinning and solid state lidars. The Livox Horizon lidar is
used in the experiments included in this chapter.

robot 3D dense scene reconstruction involving UGVs and MAVs.

Solid-state lidars represent the state-of-the-art regarding sensors for high-accuracy
and long-range dense point cloud scanners, often with limited Field of View (FoV)
owing to the lack of rotating parts [405; 406]. However, the stringent payload con-
straints of MAVs make RGB-D cameras a more viable solution for dense scene re-
construction [407]. Therefore, to achieve collaborative sensing, we chose to em-
bed 3D lidars only on UGVs with MAVs equipped with depth cameras. A sample
setup with spinning and solid-state lidars, as well as a lidar camera (with equivalent
functionality to RGB-D sensors) is shown in Fig. 76. We also show in Fig. 77 the
scanning patterns of the solid state lidar used in this chapter (a) and data samples (b).

From the point of view of MAVs, advances in both monocular and stereo dense
reconstruction and navigation have arrived to a point where commercial solutions
such as Skydio II are able of high degrees of autonomy and situational awareness [408].
Nonetheless, deployment in GNSS-denied environments with limited visibility and
potentially dynamic environments is still challenging [39].

Regarding localization approaches for multi-robot systems in GNSS-denied envi-
ronments, ultra-wideband (UWB) wireless ranging transceivers have recently emerged
as an inexpensive and relatively accurate method for point-to-point ranging [3; 21].
Full pose estimation can be achieved by fusing UWB with visual-inertial odometry
(VIO)-based egomotion estimation. However, previous works are not able to provide

190

Collaborative Sensing

t=0s t=1ms t=2ms t=4ms t=20ms

(a) Illustration of the field of view (FoV) coverage with different point cloud integration
times in a non-repetitive lidar scanning device.

(b) Sample pointclouds obtained with different integration times using a Livox Horizon
solid-state lidar.

Figure 77. Sample lidar devices and data from solid-state Livox lidars.

full position estimation within a single common reference unless robots move [359].

At the same time, over the past two decades research in both distance-based [409]
and bearing-based [410; 411; 412] rigidity maintenance control have been shown to
be robust and efficient methods for distributed collaborative localization in multi-
robot systems. Different rigidity maintenance approaches have been proposed to
ensure that the collaborative localization problem can be solved. However, up to our
knowledge, none of the works of the literature integrate rigidity theory as a feedback
to a localization system while, at the same time, achieving a navigation goal given
by a high-level planner.

The proposed approach is illustrated in Fig. 78. First, we show conceptually in
Fig. 78a how the localization employs a projected 2D graph that is monitored for

191

Jorge Pefa Queralta

=== UWB ranging
— |ocalization graph
— — - Planar projection

(a) Conceptual illustration of collaborative localization in a heterogeneous multi-robot
system where the localization graph is globally rigid.

Obstacles might occlude the UGVs sensing
field and limit its ability for independent

scene reconstruction. —W—

A UGV is equipped with
high-accuracy and long-
range sensors with
potentially limited

field of view.)

l ’ A MAV can fly within
the field of view of the

UGV and leverage the higher accuracy data for local
path planning, while still contributing to the scene
reconstruction with downward-facing RGB-D sensors.

(b) Conceptual illustration of collaborative scene reconstruction with a heterogeneous
UGV+MAV multi-robot system.

Figure 78. In this chapter, we explore the problem of UWB-based collaborative localization
based on graph rigidity (a) for collaborative sensing (b) and dense scene reconstruction.

192

Collaborative Sensing

global rigidity, ensuring uniqueness of the relative localization solution. We then
show in Fig. 78b how MAVs can aid in scanning areas occluded to sensors onboard
UGVs. In addition, by flying within the FoV of UGVs, MAVs can leverage ground-
based data for avoiding obstacles while navigating the environment.

7.1.1 Collaborative scene reconstruction

Over the last decade we witnessed an increasing adoption of inexpensive 2D lidars,
3D scanners, and depth cameras on mobile robots. Also, several advancements have
been presented in monocular dense SLAM. These aspects pave the way for the de-
velopment of multiple approaches for cooperative mapping and collaborative scene
reconstruction. Collaborative SLAM and collaborative mapping in general have been
widely studied problems. However, the focus is often on the map merging or area
coverage distribution among the robots [413; 414]. Relevant to this work is collabo-
rative RGB-D reconstruction [415].

We take a different approach by focusing on path planning with constraints to
visit a series of interest regions. In this direction, a recent work by Dong et al. on
collaborative dense scene reconstruction that takes an initial map and focuses on
task allocation is similar to ours from the formulation point of view [416]. Another
related area is next best view (NBV) planning. In [417], Sukkar et al. present a
multi-robot region-of-interest reconstruction with RGB-D cameras. Compared to
these approaches, we focus on the integration of sensing constraints (e.g., limited
FoV) in LoS path planning.

7.1.2 Chapter contribution

Taking the above considerations into account, we present a novel approach to col-
laborative dense scene reconstruction within heterogeneous multi-robot systems that
address several of the aforementioned challenges. First, we propose a UWB-VIO-
based collaborative localization framework that exploits sensors onboard UGVs to
detect the position of MAVs at startup for a unique localization graph realization.
Second, we leverage the UGVs’ sensors high accuracy and range for real-time path
planning and obstacle avoidance of MAVs. At the same time, we use the collabo-
rative localization framework to extract data from the UGVs’ point clouds relative
to the MAVs’ positions. Third, we propose a different formulation to the collab-
orative scene reconstruction problem that solves a variant of the Dubins Multiple
Traveling Salesman Problem with Neighborhoods (DMTSPN). In this problem the
neighborhoods are defined as the parts of the environment which are occluded, due
to obstacles, for the UGVs’ sensors. Finally, to account for the limited FoV of lidars,
we solve the DMTSPN by adding UGV-to-MAV line-of-sight (LoS) constraints.

Compared to previous approaches in rigidity maintenance for collaborative lo-

193

Jorge Pefa Queralta

calization, we focus on path planning while ensuring LoS, which, in turn, ensures
that the graph is rigid within the UWB range. Compared to previous works on dense
scene reconstruction with map merging or point cloud alignment, we focus on team-
ing the different robots and the distribution of locations to be surveyed. Our results
show good alignment of point clouds without further optimization, which can then
be improved based on existing algorithms.

In summary, the main contributions of this chapter are the following:

1. A framework for single-shot collaborative localization based on UWB ranging,
VIO and lidar fusion for full relative pose estimation, which uses the rigidity
eigenvalue of the localization graph as feedback to the system.

2. A path planning algorithm for multi-robot scene reconstruction based on solv-
ing a variant of the DMTSPN for UGV-to-MAV LoS maintenance. The algo-
rithm can handle sensing constraints such as limited FoV and it enables MAV's
to rely on UGV for local path planning.

7.2 Background

We use the following notation for the remaining of this section. We consider a group
of N robots, or agents, with positions denoted by p;(t) € R3, withi € {1,..., N}.
Agents are able to measure their relative distance to a subset of the other agents in
a bidirectional way, i.e., with both agents calculating a common ranging estimation
simultaneously. The set of robots and estimated distances between them are modeled
by agraph G = (V, &), where {1,..., N} is aset of IV verticesand £ C V x Visa
setof M < N(N — 1)/2 edges. We consider undirected graphs, i.e., (i,j) € £ <
(7,9) € €.

We consider robots in three-dimensional space. Nonetheless, for the purpose
of collaborative localization, we assume that the position of each agent is given
by p; € R2 The pair (G,p) with the position vector p = [p?,...,pL]T is a
framework. We denote the incidence, degree and adjacency matrices by E(G) €
REIVIA(G) € REV and A(G) € RIEIVI, respectively, and the graph laplacian
by L((G)) = E(G)E(G)T = A(G) — A(G). It is worth noting that an important
result from algebraic graph theory states that G is connected if and only if the second
smallest eigenvalue of L(G) is positive [418].

The solution of the collaborative localization problem is related to the uniqueness
of graph realizations in space. There will be a unique graph realization (except for
rototranslations in R?) if the framework (G, p) is rigid. Intuitively, a rigid graph is a
graph that cannot be deformed without breaking the constraints put over the edges. A
sufficient and necessary algebraic condition similar to that of the graph connectivity
can be given. We first define an edge constraint function gg : RI€IIVl — RI€I that

194

Collaborative Sensing

through gg(p) defines a constraint over each of the edges g;;(p;, p;)V(4,7) € €. We
will use g;;(p;, P;) = ||p; — p;||” to use distances as constraints.

Two frameworks that represent realizations of the same graph, (G, p,) and (G, p,),
are said to be equivalent if gg(p;) = gg(p-), and congruent if gx(p;) = gx(Ps)s
where K is the complete graph with the same vertex set V as G. A framework is
locally rigid if ¥p € RIEIM 3P < RIEIVI p € P such that g_C:l (9g(p)) NP =
g% (g (p)) NP and globally rigid if ¥p € REIM, g1 (g5(p)) = g (gx(p))-

Even if a locally rigid graph is achieved, the null space of the transformations
is defined by rototranslations of the graph realization in R?. In our experiments,
we will consider the position of one of the agents as the origin of coordinates of
the system, and utilize sensors onboard the UGVs to establish the orientation of the
graph realization, after rigidity is ensured and MAVs take off. Therefore, all the
measurements are relative to the agent chosen as the origin.

We now consider infinitesimal rigid frameworks as those where constraints are
met under infinitesimal perturbations dp. In order to maintain the constraints over
edges, we can compute the Jacobian matrix

)

o) P = Ro®)p=0)
where Rg(p) € RYU€IM is the rigidity matrix [409], with d = 2 because we are

considering points in R?. Translations and rotations in the Cartesian space make up

the non-trivial kernel of Rk (p), and therefore we can say that a framework (G, p) is

infinitesimally rigid if the rank of Rg(p) is the same as that of R (p): 2N — 3 in R?

(equivalently, 3N — 6 in R?).

In this chapter, we are considering a heterogeneous multi-robot system com-
prising both UGVs and MAVs, and therefore their relative positions must be given
in a three-dimensional space. While the above conditions for rigidity hold for three-
dimensional graphs, the amount of information required is larger (more edges needed
in G). Since MAVs are already equipped with relative altitude sensors and capable
of VIO estimations, we only consider graph rigidity in 2D and project the ranging
information to the plane using data from other onboard sensors. The relative altitude
is estimated primarily based on a downward facing single-beam lidar sensor. We
model UWB measurements with Gaussian noise:

96 (p(t)) = 0 =

Zg,‘%,B(i,j)es = [Ip;(t) — p; O +N(0,00wB) (28)

where oy g is obtained experimentally from our previous work [19]. VIO egomo-
tion estimations are modeled with

1o, Ri(t—gt)Ri(t) ||p¢(t)—l;i(t—5t)|| L N0, 0v0) (29)

195

Jorge Pefa Queralta

where we utilize oy ;0 < oywp/10, estimated experimentally, and 0t is the output
frequency of the VIO algorithm, R;(#) is the orientation matrix for agent i and R, (¢)
the relative egomotion estimation in the interval (¢t — Jt, t]. The relative altitude is
estimated based on the lidar

. { plidar if A(Rlidar pUWB pVIO) - q

Z; jcy = hZUWBJrVIO ; ' ' (30)
; otherwise

where A(-) estimates the mismatch between the different sensors. We use a filter to

smooth the UWB ranges using the VIO translational estimations at both agents.

UWB-based ranging information provides only the position of the full pose of the
agents. Therefore, we rely on VIO-based orientation to estimate the orientation and
achieve full pose estimation. We assume that all agents share a common reference.
However, in order to match the graph realization with the agents’ reference, we need
to be able to measure the relative position, and not just distance, of at least one pair
of agents. To do so, we assume that each MAV is within at least one UGV’s field
of view when the mission starts, and that the MAV can be detected from the UGV
after taking off. Let Vygy and Vys 4y be the sets of UGVs and MAVs, respectively,
with N = Nyagv + Nyay = ‘VUGV‘+‘VMAV|- Then, let Gg = (Vs,gs) be the
UGV sensing graph with the same vertex set Vg = V as G where (i,j) € Es < @ €
Vuev, 7 € Vaay and j is visible from sensors onboard i (e.g. 3D lidar). We denote
by N; the set of neighbor nodes in G and N, the neighbor set in Gg. The actual
localization is done by minimizing triangulation errors.

We now assume that the sensors on the UGVs produce accurate and dense point
clouds but with limited FoV. Let P; C R3 be the point cloud generated at agent i.
For a point p € R, we denote by N'(P) = {q € P | [|p — ¢||[< R} the set of
points in P within a distance R of p. Finally, given a graph realization orientation 6,
we denote by p;(#) the estimated position of agent 7 in the global reference frame,
where the position of agent 0 is used as the origin of the frame. We then calculate the
orientation 6 of the graph realization in the common reference frame by minimizing

N (P)]
0= argmm Z Z RMAV G
i€Vuav jENS; (9) () |+1

where R 4y is the radius of the circumscribed sphere to a MAV point cloud, roughly
half the width of a MAV (we consider homogeneous MAVs, otherwise the different
sizes must be taken into account). The localization process is summarized in Algo-
rithm 3.

While the assumption of having MAVs within UGVs field of view could be di-
rectly leveraged towards measuring relative positions (together with a common ori-
entation reference and VIO estimations at each robot), we still rely on UWB as the
main source of localization when the mission starts and during the entire mission.

196

Collaborative Sensing

Algorithm 3: Collaborative localization process.
Input:
UWB Ranges : {z{;"/ "} € Rl;
3D lidar point cloud {P; };
Relative altitude of MAVs: {z/};
VIO odometry: {z)7°}
Output:
Full robot poses p(f) € RS

1 while /graph_is_connected(L(G)) do

2 leeep();

while /graph_is_rigid(Rg(zV"V 7)) do
L sleep();

p < minimize_triangulation_error();
takeoff MAVs();

Calculate graph orientation 0 as follows (init. 6 = 0):

F)

A~

while not exit_condition(6) do

error = 0; theta+ = A0,

10 foreach i € Vy ¢y do

1 Generate K-D Tree from point cloud: kdtree; < P;;

12 foreach j € N, do

13 error+ = size (kdtree;.radiusSearch(p;, Ryrav))/
14 L size (kdtree;.radiusSearch(p;, 2Ry av))

IR

15 if error < threshold then
16 | 0=06;

17 Calculate full pose: p(d) | p, = (0,0), p, = (0,1%‘7/‘1/)3);

The reason for doing so is twofold: first, UWB ranging is more accurate than es-
timating the position of an object extracted from a point cloud accounting for its
size, shape and orientation; and second, we do not need to consider uncertainties
in the point-cloud-based detector (whether it detects MAVs or other similarly sized
objects).

7.3 Collaborative scene reconstruction

The main objective of this chapter is to provide methods for collaborative dense
scene reconstruction. This serves simultaneously as a validation of the collaborative
localization framework owing to the unavailability of high-accuracy tracking systems

197

Jorge Pefa Queralta

such as those utilized in the CoLo evaluation [419].

In order to formulate the problem, we use the following notation. Let q €
R2M q = [qf,...,q%]" be a stacked position vector for the M locations to be
visited. We make the following assumptions: (i) M > Nyav > Nygv; and
(i) if H(pyegy) is the convex hull defined by the positions of the UGVs, then
q N H(pyay) = 0, i.e., all locations to be surveyed by the MAVs lay beyond the
positions of the UGVs.

We consider the problem of utilizing multiple MAVs to obtain information about
the areas of the scene that are occluded to the UGVs, with each MAV always staying
within the FoV of one UGV (its tracker). The collaborative scene reconstruction
process then proceeds as follows (see Algorithm 4). First, the ground robots scan the
scene and estimate blind spots based on their movement constraints due to uneven
terrain or near obstacles. Second, each of the occluded regions behind obstacles
blocking the FoV of UGVs is considered a neighborhood for the DMTSPN problem.
We distribute the locations to be surveyed among the MAVs by solving DMTSPN
problem where each location represents a neighborhood.

Multiple works have been devoted to solving DMTSPN [420; 421]. However, to
the best of our knowledge, the current literature does not consider scenarios where
the paths have to meet LoS with limited FoV constraints with respect to a certain
point in the environment. In particular, considering limited FoV is a topic largely
unaddressed in the multi-robot systems literature [422].

To address this, we assign each MAV to one of the UGVs based on their initial
positions, and proceed to assign the neighborhoods to MAVs based on their angular
position with respect to their tracker UGV when considering their position in polar
coordinates from the UGV’s local reference. Then, the MTSPN problem is solved
based on the constraints defined above, with the neighborhood assignment to MAVs
changing until an exit condition is met. Finally, the Dubins paths are generated
smoothing turns over the neighborhoods, and the speed of the MAVs is adjusted to
ensure LoS maintenance (the DMTSPN solution does not consider time).

Since the different parts of the problem are decoupled (diving neighborhoods
among MAVs, solving the TSPN for each MAV, and smoothing the paths with Dubns
curves), we will obtain a sub-optimal solution. However, this already happens when
introducing the LoS with limited FoV constraints, since in general optimal solutions
to the MTSPN will not ensure that MAVs can stay within LoS of UGVs. Because
our focus is on providing an initial approach that also combines the collaborative
localization framework, we leave the optimization of the DMTSP solution to future
works.

7.4 Methodology

In this section, we introduce our experimental setup.

198

Collaborative Sensing

Algorithm 4: Collaborative scene reconstruction process.
Input:
Dense UGV lidar point clouds: {P}icvy oy
Dense MAV depth point clouds: {PP}icy,, 41
UGV FoV: {(A0F A0Y)}
Output:
UGV+MAV paths {p,(¢)}

1 P = merge_point_clouds ({PF});
2 NBH = neighborhoods_from_blind_spots(P);
3 {NBH,) }icvyay = assign-nbh(NBH, pM4V);

4 foreach i € Vygy do

5 while /neighborhood_exit_condition() do

6 foreach j € N, do

7 run_tspn_solver(N;, p,;, A0H A0Y);
8 L calculate_dubins_path(i);

iSVuyagv

9 | mergewhile_navigating({P*}, PP});

Heterogeneous Multi-Robot System. In our experiments, we utilize a single
ground robot, one MAYV, and a set of UWB transceivers (Fig. 79). The ground robot
is an EAI Dashgo platform equipped with a Livox Horizon lidar (81.7° x 25.1°
FoV). We also use one custom-built MAV based on the X500 quadrotor frame. The
MAV is embedded with a Pixhawk flight controller running the PX4 firmware. A
TF Mini Lidar is utilized for height estimation on the MAYV, also equipped with Intel
RealSense D435 depth camera for sensing and 3D reconstruction. An AAEON Up
Square with dual-code Intel Celeron processor is used as a companion computer on
both robots. Both robots use RealSense T265 cameras for VIO-based egomotion
estimation.

UWB Ranging and Position Estimation. The distance between each pair of
robots is estimated using Decawave DWM1001 UWB transceivers. In order to en-
sure a safe fallback for the MAV autonomous flight, we utilize both an anchor-based
localization system as well as ranging between robots for collaborative localization.
We also compare the localization from both methods.

Software. The system has been implemented using ROS Melodic, with all robots
running the same version under Ubuntu 18.04. All the code utilized in this chapter is
open-source and will be made freely available in our GitHub page1 . Specifically for
this chapter we have developed the following ROS packages: uwb-graph-rigidity,
uwb-collaborative-sensing and offboard-control. We also use dashgo-dI-ros, ros-

lhttps ://github.com/TIERS

199

https://github.com/TIERS

Jorge Pefa Queralta

<«— | Livox 3D Lidar with 81.7°x25.1° FoV

UWB Onboard
Computer

Wi-Fi

T265 VIO
Camera

- Wi-Fi

UwB

TFMini

T265 VIO
Camera

R435 Depth
Camera

Figure 79. UGV and MAV utilized in the experiments.

dwml1001-uwb-localization and tfimini-ros for sensor interfacing. Most of the code
has been written in Python or C++. In particular, the point cloud library (PCL) [423]
is utilized to extract the position of the MAV for estimating the localization graph
orientation, and extracting the point cloud around it. We use MAVROS to interface
the onboard computer with the PX4 controller.

7.5 Experimental results

This section reports the results from the simulations and experiments carried out to
validate the proposed methods. First, we perform test flights to assess the viability
of the collaborative localization framework, using the UGV and MAV and additional
UWRB transceivers on the ground that are also considered as graph vertexes to en-
sure rigidity. Second, we introduce simulations to show that an UGV is able to track
and maintain in its FoV two MAVs while they are exploring the occluded locations
around the UGV (not possible with a basic DMTSPN solver). Then, we show that
we achieve good alignment of raw data collected from the UGV and MAV simulta-
neously for 3D reconstruction, and without further local map merging optimization.
Finally, we discuss the system’s scalability.

Collaborative Localization Framework. Fig. 80 shows the positions of the
MAV based on Decawave’s anchor-based localization system (DRTLS) and our col-
laborative localization framework over a test flight. The UGV is taken as the origin
of coordinates in the latter scenario. We also show the evolution of the rigidity eigen-

200

Collaborative Sensing

3 - ——DRTLS
—— Collab.

~ 2 B
g
>

1 |

0 | | |

-1 0 1 2 3 4
X (m)

(a) Localization based on Decawave’s fixed-anchor DRTLS and the collaborative
localization framework (collab), using the UGV’s position as the origin of coordinates, and
therefore giving relative localization only (rototranslation from DRTLS except for
measurement errors)

20 -

15 -

10 -

A4 of Rg(29V%) RT (29V%)

0 T | | | | | | |
0 2 4 6 8 10 12 14

Time (s)
(b) The rigidity eigenvalue is monitored during flight to ensure that the graph is always rigid.

Figure 80. Sample localization estimation and eigenvalue monitoring.

201

Jorge Pefa Queralta

. - - - Baseline 1
50 - P——— ~ -~ Baseline 2
1 N0
B Foan LoS-FoV 1
N 4 N
LoS-FoV 2
40 - S o
l\\ \\\
g 307 77777777 \:7\ 77777 . \\
y % Mav (t\\())
I 1 = \\
0- vy,
& MAV, (¢ = 0)
i - \
' //// 1
- /
107 ‘\ - -~

-30 -20 -10 0 10 20 30 40
X [m]

(a) Solution to the DMTSPN (MAV paths). The neighborhoods are
shown in blue, representing the locations to be visited.

velocity (m/s)
acceleration (m/s?)

time (s)

(b) Velocity and acceleration profiles for each of the MAVs (solution with
LoS-FoV constraints only).

Figure 81. Simulations for two MAVs and one UGV with limited FoV. Subfigure (a) shows
both a baseline DMTSPN solver, and our solver with LoS constraints, with (b) showing the
velocity and acceleration profiles of our solver. This particular example was chosen to
illustrate how the MAVs follow an anticlockwise direction from the UGV’s reference.

202

Collaborative Sensing

~
)
<
=
=
2
s 7w/2—
<
=9
2
-
=
=}
50
)
07

I I
LoS-FoV Baseline

Figure 82. Distribution of angular distance between MAVs. Only with our DMTSPN solver
we can ensure that MAVs are always within LoS with limited FoV at the UGV (angular
separation always below a predefined FoV of 7r/2), with baseline solutions potentially
giving any random distribution.

value. Because our framework provides relative localization only, the two paths in
the figure are congruent with respect to a rototranslation, except for measurement
errors. However, by detecting the MAV from the UGV after take-off, we are able
to fix the orientation of the localization graph in the common orientation frame (not
necessarily the same than the DRTLS system). The DRTLS localization is based on
8 fixed anchors, and therefore the accuracy can be considered higher. Monitoring the
rigidity eigenvalue will play a more important role in applications where the robots
operate in a larger environment, and this is, to the best of our knowledge, the first
time it is used as a health indicator to the system for higher-level planning.
Multi-MAV Path Planning. The multi-robot path planning with UGV-to-MAV
LoS constraints in limited FoV scenarios is tested through simulations with random
distribution of neighborhoods. The simulations are done with a fixed UGV that can
only rotate and two MAVs that have to visit all locations in the map as fast as pos-
sible while staying in LoS within the FoV of the UGV. We pick one representative
example, and compare in Fig. 81a the difference between the paths calculated by a
baseline DMTSPN without constraints, and ours. Fig. 82 shows the angular distance

203

Jorge Pefa Queralta

(a) Global scene with boxes in the center and (b) Picture of the test environment while the
MAV in the bottom right. MAV is hovering.

(c) Aligned point clouds using UWB+VIO for relative localization. The white point cloud is
recorded with the RealSense D435 depth camera on the MAV, while the colored point cloud
comes from the Livox lidar on the UGV (both poses shown, D345 is inclined 36°).

Figure 83. Validation of the collaborative sensing algorithm. Figures (a) and (b) show the
scene from opposite corners. The UGV is not visible in (a) because it is being used to
capture the point cloud. Figure (c) shows the limited FoV of the Livox lidar and a single
frame alignment of pointclouds from both the lidar and the camera on the drone.

204

Collaborative Sensing

between the two MAVs from the UGV’s referece when considering polar coordi-
nates. For the solver with constraints, the FoV is limited to 7/2 rad. We can see that
there are multiple times where the UGV would be unable to maintain both MAVs
within its FoV (points where the angular distance is larger than 7 /2 rad) with the
baseline DMTSPN implementation. By introducing the limited FoV constraints, we
are therefore able to obtain results that can be better ported to real-world applica-
tions. Additionally, we show in Fig. 81b the velocity and acceleration profiles of the
two drones, where the speeds are limited by the path curvature as well as the FoV
constraints embedded in the DMTSPN solver.

Collaborative Scene Reconstruction. We perform experiments in an indoors
facility and show the performance of the collaborative localization and sensing al-
gorithms for matching raw point clouds (see Fig. 83). First, the UGV scans the
scene. To create a map, we utilize an implementation of lidar odometry and mapping
(LOAM) optimized for limited-FoV lidars: Livox LOAM [406]. We then detect the
blind spots to the UGV based on a standard elevation occupancy map. In the exper-
iments, owing to the limited space available, we only use one UGV and one MAYV,
together with two more UWB transceivers placed on the ground to ensure global
graph rigidity. The UGV is set to rotate and move within a limited space to always
maintain the MAV within its FoV and in LoS. Fig. 83 shows the aligned point clouds
of the MAV and UGYV, together with their poses in a given instant. The colored point
cloud is obtained from the Livox lidar, with the non-repetitive scan pattern being
recognizable by the waves in the ground. Two stacked boxes in the middle of the
test area are scanned from complementary points of view simultaneously, showing a
good point cloud alignment directly with the raw data. This opens the door to fur-
ther optimization, and providing feedback to the localization framework based on the
alignment of local point clouds. The area behind the boxes occluded to the UGV’s
lidar corresponds to a neighborhood in the DMTSPN formulation. Intuitively, the
neighborhoods can be mapped to the UGV lidar’ shadows as those seen in Fig. 83a.

Scalability. In terms of the system’s scalability, the localization framework is
based on UWB ranging and the VIO egomotion estimation is done on a separate
processor on the T265 camera. The UWB ranging is only limited by the number of
robots in terms of the available bandwidth, and therefore the localization frequency
must be decreased as the number of robots increases (the current frequency of 10 Hz
can accommodate approximately 20 robots within line-of-sight of each other). As
to the number of robots involved in scene reconstruction, because the MAVs are
assigned to one UGV and the DMTSPN solved from each UGV’s reference, the
computational load of the path planning algorithm can be maintained even when the
number of robots grows. The assignment of MAVs to UGVs has linear complexity.

In summary, we provide an initial implementation of all parts of the proposed
system, which can then be leveraged for collaborative scene reconstruction in GNSS-
denied environments. In particular, we show that the localization framework has

205

Jorge Pefa Queralta

potential to take multi-robot systems out of the lab with good results in local map
merging for scene reconstruction, lifting the need for more accurate but significantly
less flexible motion capture systems or UWB localization systems based on fixed
anchors. Finally, the fact that UGVs are continuously tracking MAVs and keeping
them within their FoV in LoS means that the more accurate lidar data they capture
can be used for local path planning on the MAVs. This opens the door to operating
the MAVs in more complex and dynamic environments even with limited onboard
sensing.

7.6 Summary and conclusions

We have addressed some of the challenges in multi-robot dense scene reconstruc-
tion, with a focus on (i) collaborative localization, and (ii) path planning with LoS
and FoV constraints. We have first presented a framework for collaborative local-
ization with UWB-based ranging and VIO fusion in heterogeneous UGV+MAV sys-
tems, exploiting sensors onboard the UGVs to establish a common reference frame
for all agents. Then, we have utilized this framework for collaborative scene recon-
struction in a heterogeneous multi-robot system comprising UGVs and MAVs. With
simulations, we show that the proposed algorithm effectively ensures MAVs are al-
ways within the UGVs FoV, and with real experiments we show that the localization
framework is accurate enough to provide good alignment of point clouds even at the
raw data level.

In future works, we will look into improving the DMTSPN solution by allowing
dynamic tracking of a single MAV from different UGVs during the scene reconstruc-
tion mission. We will also investigate the possibilities of integrating the navigation
of the UGVs within the DMTSPN solver.

206

8 Concluding remarks

This thesis brings together research in a relatively broad set of topics that converges
with their potential application to achieve more efficient collaborative autonomy in
heterogeneous multi-robot systems. In this chapter, we summarize the key contribu-
tions and outline future research directions, some of which we are already actively
exploring.

8.1 Summary and contributions

The goal of this thesis was to advance towards more robust and collaborative multi-
robot systems. The different studies presented in this thesis have provided new so-
lutions, methods or ideas for such advances from different directions, in varying
technical depth.

In Chapter 2, we have proposed different architectures and use-cases for recon-
figurable robot swarms and for distributed robotic systems in the edge-cloud con-
tinuum. In particular, we explored the potential of computational offloading at the
edge within multi-robot systems, with our results showing that offloading computa-
tion can lead to more cost-effective robots in some cases. We have also studied the
impact that typical image compression techniques have on a standard visual odom-
etry method to assess the potential drawbacks in bandwidth-constrained situations.
Finally, we have also shown how specialized hardware allowing for acceleration of
computation can bring benefits if available at the robots or shared at the edge.

With some the architecture for reconfigurable swarms proposing the use of DLT's
for collaborative decision making, Chapter 3 moves the focus to exploring the inte-
gration of DLTs in multi-robot systems. We propose an approach that could leverage
new concepts being introduced in Ethereum 2.0 for managing dynamic robot swarms,
while providing an initial assessment of the ability of POW puzzles to model avail-
able computational resources. We also propose potential integrations of blockchains
for MEC services.

Continuing with the topic of security that DLTs arise, in Chapter 4, and partly
inspired by data structures used in blockchains, we present a cryptographic approach
to securing single- and multi-robot missions through encoded instruction graphs.
Through the chapter, we present a design methodology for encoding robot instruc-
tions with cryptographic hashes that are only reproducible by a robot when a series

207

Jorge Pefa Queralta

of conditions are met, e.g., when operating in the right environment and in the right
way. This allows for validating the robot behaviour while keeping missions secret
until they are carried out. We demonstrate the applicability of such approach in both
simulation and real-world experiments with a mobile robot.

In Chapter 5, the focus shifts towards localization systems and relative local-
ization in multi-robot systems, a key element necessary to enable more complex
multi-robot interaction. We focus our work in UWB-based localization, with an as-
sessment of the viability of off-the-shelf UWB localization systems for autonomous
aerial robots. We then explore the potential of relative UWB localization between
a ground and an aerial robot in comparison with GNSS sensors in areas where the
GNSS signals are degraded, such as urban environments. Our experiments show sig-
nificantly better accuracy for the UWB solution, which in turn is more reliable than
some off-the-shelf visual odometry solutions that diverge for aerial robots at certain
height.

Accurate localization between robots in turn enables spatial coordination or dis-
tributed formation control. Novel methods requiring minimal to no communication
are presented in Chapter 6, where we show that relatively complex shapes can be
achieved with only one-way communication or with only mutual sensing, both of
which could be achieved with simple UWB-based solutions.

Finally, Chapter 7 closes the gap between planning, localization and sensing with
an approach to collaborative 3D mapping, or scene reconstruction, with a heteroge-
neous team of ground and aerial robots. The experiments show that UWB-based
relative localization approaches are accurate enough for merging raw sensor data
from lidars in the ground robots and stereo cameras in the aerial robots without
further optimization. At the same time, we introduce a cooperative path planning
approach solving a multiple traveling salesman problem with neighborhoods under
line-of-sight and field-of-view constraints that would enable the aerial robots to rely
on more accurate and longer-range data from the ground robots for local obstacle
avoidance and situational awareness.

8.2 Future directions and open research questions

This thesis has covered multiple topics in varying depth, with experiments in sim-
ulation, with real robots, or with conceptual proofs of concept. In addition, some
of the ideas in Chapters 2 and 3 have only been formulated but not implemented.
The secure mission definitions introduced in Chapter 4 can be applied to different
use cases, defining new types of encoded instruction graphs, e.g., exploring their
practical use in human-robot or human-swarm interaction. There are also diverse di-
rections in which to further improve the localization systems presented in Chapter 5,
much to study in the integration of DLTs for formation control algorithms with more
communication than those introduced in Chapter 6, and endless ways in which all

208

Concluding remarks

the previous technologies can be leveraged for collaborative sensing in multi-robot
systems as shown in Chapter 7. The rest of this section covers some of the potential
future research directions and open questions within these topics.

8.2.1 Robots in the edge and DLT integrations

Parts of this thesis have been devoted to introducing architectural designs for future
large-scale multi-robot systems or robot swarms, especially in terms of exploiting
the potential of the edge-cloud continuum for computational offloading, reconfigu-
ration and overall system elasticity. In terms of relying on DLTs for collaborative
decision-making and distributed data management, the field of DLTs itself is rela-
tively immature. The literature is scarce in their integration with distributed robotic
systems in the wild, where assumptions to network connectivity do not hold or la-
tency and real-time requirements are hard to meet. While we have presented, for all
of these, different proofs of concept and experimental results for specific elements of
such architectures (e.g., in terms of computational offloading or studying the poten-
tial for PoW-based computational resource estimation), there is still a gap between
the theoretical possibilities and the practical reality out of the lab. Our near-future
efforts in this area will be targeted at dynamic migration of ROS 2 nodes within con-
tainers between edge and cloud, or between different hosts at the edge (e.g., robots or
robots and local connected infrastructure). Some recent research has targeted more
efficient cloud integration into ROS 2 systems, such as FogRos2 [424].

The vast majority of literature in the area of DLTs and robotics covered until
very recently only traditional blockchains, mainly basing the solutions on Ethereum
smart contracts. However, we argue that two other type of DLTs have significant
potential in the robotics field. Multi-robot systems, managed centrally or in a dis-
tributed manner, can often be considered a single entity where, a priori, there is trust
between the involved parties (e.g., cloud servers providing services to robots, both
deployed or owned by the same party). Therefore, within traditional blockchain ar-
chitectures, permissioned blockchains such as Hyperledger Fabric have significant
advantages in terms of identity management, access control and visibility of shared
data to subsets of the network, among others. We have started work in this direc-
tion by integrating distributed ROS 2 applications with a Fabric network, with smart
contracts for recording data [270], assigning roles [374] or managing multi-robot in-
teraction [404]. Nonetheless, further work is required for enabling more widespread
use and integration with ROS 2 systems as well as studying the performance in larger-
scale systems.

Another family of DLTs relevant to multi-robot systems is DAG-based technolo-
gies, owing to the wider flexibility in terms of network topologies. IOTA is one of the
most mature DLTs in this domain. The recent introduction of smart contracts within
chains that are anchored to partitions of the DAG enables the design and implemen-

209

Jorge Pefa Queralta

tation of distributed byzantine-tolerant decision making processes, as in Ethereum,
but that are also tolerant to network partitions under certain conditions. We have
also initiated work in this direction, with the integration of ROS 2 and IOTA, and the
first byzantine-tolerant and partition-tolerant DLT-based solution for distributed con-
sensus in multi-robot systems [271]. Further study needs to be carried out into the
performance of such system in the real world, an specially under dynamic network
topologies and evolving latency and bandwidth that are so far simulated.

8.2.2 UWB-based localization and collaborative sensing

Another area of research that started as part of this thesis and we are now continu-
ing with new studies is UWB-based relative localization, specially in terms of de-
signing and developing more scalable solutions. To this end, we have also started
research with dynamic role allocation enabling hybrid ToF and TDoA localization
schemes based on the spatial distribution of robots [345]. We have also explored
recently the integration of DLTs for running the role allocation process within a
smart contract [374]. Next steps will explore the integration of a mesh network for
achieving situated communication, applicable in many spatial coordination and for-
mation control problems. Multiple open research questions can also be found in
the integration of UWB for cooperative state estimation together with other sen-
sors. Recent literature has been delving into various types of sensor fusion ap-
proaches [343; 359; 360; 425]. Yet many challenges remain in developing more scal-
able methods (e.g., without relying in ToF only) and non-complete ranging graphs
where some of the links need to be estimated from others.

In terms of collaborative sensing, the approach introduced in this thesis focuses
around path planning to meet sensor constraints within a heterogeneous multi-robot
system but relies on the localization system alone for merging data from different
robots. Introducing optimization techniques and feedback from the data merging
into the localization system would allow for higher accuracy in both areas. Therefore,
there are multiple possibilities in the design of coupled and distributed localization
and perception algorithms and methods.

8.2.3 Multi-robot systems in the wild

Many of the methods introduced in this thesis aimed at deploying robots in the wild.
However, the experiments often remained under laboratory conditions. As more ro-
bust methods become available for robust operation in dynamic, unstructured and
chaotic environments that occur in the real world, more research will move out of
the lab. The integration of such uncertainty and the operation under challenging en-
vironmental conditions, among others, will require research that focuses more on
the robustness of the methods, and the ability of multi-robot systems to adapt, self-

210

Concluding remarks

heal and reconfigure when necessary. Power-on-and-go methods are also an area to
enable higher degrees of autonomy, specially in new or unknown environments. A
selection of open problems in the design of resilient multi-robot systems is intro-
duced by Prorok et al. in [426]. These range from achieving efficient collaborative
and federated learning to long-term operation, and including evolving world models
and their validity, among many others.

211

List of References

(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

(9]

[10]

(1]

[12]

212

Jorge Pefa Queralta, Qingqing Li, Eduardo Castell6 Ferrer, and Tomi Westerlund. Secure en-
coded instruction graphs for end-to-end data validation in autonomous robots. IEEE Internet of
Things Journal, 2022.

Jorge Pefia Queralta, Qingqing Li, Fabrizio Schiano, and Tomi Westerlund. Vio-uwb-based
collaborative localization and dense scene reconstruction within heterogeneous multi-robot sys-
tems. In IEEE International Conference on Advanced Robotics and Mechatronics (ARM). IEEE,
2022.

Jorge Pefia Queralta, Carmen Martinez Almansa, Fabrizio Schiano, Dario Floreano, and Tomi
Westerlund. UWB-based system for UAV localization in GNSS-denied environments: Charac-
terization and dataset. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4521-4528. IEEE, 2020.

Jorge Pefia Queralta, Li Qingqing, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund.
Distributed progressive formation control with one-way communication for multi-agent systems.
In 2019 IEEE Symposium Series on Computational Intelligence, 2019.

Jorge Pefa Queralta, Cassandra McCord, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Wester-
lund. Communication-free and index-free distributed formation control algorithm for multi-robot
systems. Procedia Computer Science, 2019. The 10th ANT Conference.

Cassandra McCord, Jorge Pefia Queralta, Tuan Nguyen Gia, and Tomi Westerlund. Distributed
progressive formation control for multi-agent systems: 2D and 3D deployment of UAVs in
ROS/Gazebo with rotors. In European Conference on Mobile Robots (ECMR), pages 1-6. IEEE,
2019. doi: https://doi.org/10.1109/ECMR.2019.8870934.

Jorge Pefia Queralta, Li Qingqing, Tuan Nguyen Gia, Hong-Linh Truong, and Tomi Westerlund.
End-to-end design for self-reconfigurable heterogeneous robotic swarms. In 2020 16th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS), pages 281-287. IEEE,
2020.

J. Pefia Queralta, L. Qingging, Z. Zou, T. Westerlund. Enhancing autonomy with blockchain and
multi-acess edge computing in distributed robotic systems. In The Fifth International Conference
on Fog and Mobile Edge Computing (FMEC). IEEE, 2020.

J. Pefia Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia, H. Tenhunen, M. Gab-
bouj, J. Raitoharju, and T. Westerlund. Collaborative multi-robot search and rescue: Planning,
coordination, perception and active vision. /EEE Access, pages 1-1, 2020.

Yu Xianjia, Li Qingqing, Jorge Pefia Queralta, Jukka Heikkonen, and Tomi Westerlund. Cooper-
ative UWB-based localization for outdoors positioning and navigation of UAVs aided by ground
robots. In IEEE International Conference on Autonomous Systems (IEEE ICAS 2021). IEEE,
2021.

Li Qingqing, Jorge Pefia Queralta, Tuan Nguyen Gia, and Tomi Westerlund. Offloading monoc-
ular visual odometry with edge computing: Optimizing image quality in multi-robot systems.
In The 5th International Conference on Systems, Control and Communications, pages 22-26.
ACM, 2019. doi: https://doi.org/10.1145/3377458.3377467.

Jorge Pefia Queralta and Tomi Westerlund. Blockchain for mobile edge computing: Consensus
mechanisms and scalability. In Mobile Edge Computing, pages 333—357. Springer, 2021.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

LIST OF REFERENCES

Jorge Pefia Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi Westerlund. Collaborative
mapping with IoE-based heterogeneous vehicles for enhanced situational awareness. In IEEE
Sensors Applications Symposium (SAS). IEEE, 2019.

Jorge Pefia Queralta, Tuan Nguyen Gia, Zhuo Zou, Hannu Tenhunen, and Tomi Westerlund.
Comparative study of Ipwan technologies on unlicensed bands for m2m communication in the
iot: beyond lora and lorawan. Procedia Computer Science, 2019. Presented at the 14th Interna-
tional Conference on Future Networks and Communications (FNC).

J. Pefia Queralta et al. Edge-Al in LoRa based healthcare monitoring: A case study on fall de-
tection system with LSTM Recurrent Neural Networks. In 2019 42nd International Conference
on Telecommunications, Signal Processing (TSP), 2019.

Jorge Pefia Queralta, Fu Yuhong, Lassi Salomaa, Li Qingqing, Tuan Nguyen Gia, Zhuo Zou,
Hannu Tenhunen, and Tomi Westerlund. Fpga-based architecture for a low-cost 3d lidar design
and implementation from multiple rotating 2d lidars with ros. In IEEE Sensors Conference.
IEEE, 2019.

Tuan Nguyen Gia, Jorge Pefia Queralta, and Tomi Westerlund. Exploiting lora, edge, and fog
computing for traffic monitoring in smart cities. LPWAN Technologies for loT and M2M Appli-
cations, 2020. doi: https://doi.org/10.1016/B978-0-12-818880-4.00017-X.

Li Qingqing, Jorge Pefia Queralta, Tuan Nguyen Gia, Zhuo Zou, and Tomi Westerlund. Multi
sensor fusion for navigation and mapping in autonomous vehicles: Accurate localization in urban
environments. Unmanned Systems, 2020. doi: https://doi.org/10.1142/S2301385020500168.
The 9th IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and the
9th IEEE International Conference on Robotics, Automation and Mechatronics (RAM).

C. Martinez Almansa et al. Autocalibration of a mobile uwb localization system for ad-hoc
multi-robot deployments in gnss-denied environments. arXiv preprint arXiv:2004.06762, 2020.
Anum Nawaz, Jorge Pefia Queralta, Jixin Guan, Muhammad Awais, Tuan Nguyen Gia, Ali
Kashif, Haibin Kan, and Tomi Westerlund. Edge computing to secure IoT data ownership and
trade with the ethereum blockchain. Sensors, 2020. doi: https://doi.org/10.3390/s20143965.
Wang Shule, Carmen Martinez Almansa, Jorge Pefia Queralta, Zhuo Zou, and Tomi Wester-
lund. UWB-based localization for multi-UAV systems and collaborative heterogeneous multi-
robot systems: a survey. Procedia Computer Science, 175:357-364, 2020. doi: https:
//doi.org/10.1016/j.procs.2020.07.051. The 15th International Conference on Future Networks
and Communications.

Wenshuai Zhao, Jorge Pefa Queralta, Li Qingqing, and Tomi Westerlund. Towards closing the
sim-to-real gap in collaborative multi-robot deep reinforcement learning. In 5tk International
Conference on Robotics and Automation Engineering. IEEE, 2020.

Wenshuai Zhao, Jorge Pefia Queralta, Li Qingqing, and Tomi Westerlund. Ubiquitous distributed
deep reinforcement learning at the edge: Analyzing byzantine agents in discrete action spaces.
In The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020). Elsevier, 2020.

Wenshuai Zhao, Jorge Pefia Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In IEEE Symposium Series on Computational Intelli-
gence. IEEE, 2021. doi: https://doi.org/10.1109/SSCI47803.2020.9308468.

Li Qingqing, Jussi Taipalmaa, Jorge Pefia Queralta, Tuan Nguyen Gia, Moncef Gabbouj, Hannu
Tenhunen, Jenni Raitoharju, and Tomi Westerlund. Towards active vision with UAVs in ma-
rine search and rescue: Analyzing human detection at variable altitudes. In IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2020.

Yu Xianjia, Jorge Pefia Queralta, Jukka Heikkonen, and Tomi Westerlund. Federated learning
in robotic and autonomous systems. In Procedia Computer Science. Elsevier, 2021. doi: https:
//doi.org/10.1016/j.procs.2021.07.041. 18th International Conference on Mobile Systems and
Pervasive Computing (MobiSPC-2021).

Guang-Zhong Yang, Jim Bellingham, Pierre E Dupont, Peer Fischer, Luciano Floridi, Robert

213

Jorge Pefa Queralta

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

214

Full, Neil Jacobstein, Vijay Kumar, Marcia McNutt, Robert Merrifield, et al. The grand chal-
lenges of science robotics. Science robotics, 3(14):eaar7650, 2018.

Niko Siinderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jiirgen Leitner, Ben
Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al. The limits and potentials of
deep learning for robotics. The International Journal of Robotics Research, 37(4-5):405-420,
2018.

Laura Lopez-Fuentes, Joost Weijer, Manuel Gonzdlez-Hidalgo, Harald Skinnemoen, and An-
drew D. Bagdanov. Review on computer vision techniques in emergency situations. Multimedia
Tools Appl., 77(13), July 2018. ISSN 1380-7501.

Nader Mohamed, Jameela Al-Jaroodi, Imad Jawhar, Ahmed Idries, and Farhan Mohammed.
Unmanned aerial vehicles applications in future smart cities. Technological forecasting and
social change, 153:119293, 2020.

J. Tiemann et al. Scalable and precise multi-uav indoor navigation using tdoa-based uwb local-
ization. In IPIN. IEEE, 2017.

Jiafu Wan, Shenglong Tang, Qingsong Hua, Di Li, Chengliang Liu, and Jaime Lloret. Context-
aware cloud robotics for material handling in cognitive industrial internet of things. IEEFE Inter-
net of Things Journal, 5(4):2272-2281, 2017.

Romulo Gongalves Lins and Sidney N Givigi. Cooperative robotics and machine learning for
smart manufacturing: platform design and trends within the context of industrial internet of
things. IEEE Access, 9:95444-95455, 2021.

Leijian Yu, Erfu Yang, Peng Ren, Cai Luo, Gordon Dobie, Dongbing Gu, and Xiutian Yan.
Inspection robots in oil and gas industry: a review of current solutions and future trends. In 2019
25th International Conference on Automation and Computing (ICAC), pages 1-6. IEEE, 2019.
Xin Zhou, Xiangyong Wen, Zhepei Wang, Yuman Gao, Haojia Li, Qianhao Wang, Tiankai Yang,
Haojian Lu, Yanjun Cao, Chao Xu, et al. Swarm of micro flying robots in the wild. Science
Robotics, 71(66):eabm5954, 2022.

Marco Tranzatto, Takahiro Miki, Mihir Dharmadhikari, Lukas Bernreiter, Mihir Kulkarni, Frank
Mascarich, Olov Andersson, Shehryar Khattak, Marco Hutter, Roland Siegwart, et al. Cerberus
in the darpa subterranean challenge. Science Robotics, 7(66):eabp9742, 2022.

Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey. Artificial
Intelligence, 247:10 — 44, 2017. ISSN 0004-3702. Special Issue on Al and Robotics.

Changjian Deng, Goumin Liu, and Fucun Qu. Survey of important issues in multi unmanned
aerial vehicles imaging system. 2018.

Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Almaita, Issa
Khalil, Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen Guizani. Unmanned aerial
vehicles (uavs): A survey on civil applications and key research challenges. Ieee Access, 7:
4857248634, 2019.

Saqib Mehmood, Shakeel Ahmed, Anders Schmidt Kristensen, and Dewan Ahsan. Multi crite-
ria decision analysis (mcda) of unmanned aerial vehicles (uavs) as a part of standard response to
emergencies. In 4th International Conference on Green Computing and Engineering Technolo-
gies; Niels Bohrs Vej 8, Esbjerg, Denmark, 2018.

William Roberts, Kelly Griendling, Anthony Gray, and D Mavris. Unmanned vehicle collabora-
tion research environment for maritime search and rescue. In 30th Congress of the International
Council of the Aeronautical Sciences. International Council of the Aeronautical Sciences (ICAS)
Bonn, Germany, 2016.

Bing L Luk, David S Cooke, Stuart Galt, Arthur A Collie, and Sheng Chen. Intelligent legged
climbing service robot for remote maintenance applications in hazardous environments. Robotics
and Autonomous Systems, 53(2):142—-152, 2005.

Giacomo Lunghi, Raul Marin, Mario Di Castro, Alessandro Masi, and Pedro J Sanz. Multimodal
human-robot interface for accessible remote robotic interventions in hazardous environments.
IEEE Access, 7:127290-127319, 2019.

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

LIST OF REFERENCES

Yoonchang Sung. Multi-Robot Coordination for Hazardous Environmental Monitoring. PhD
thesis, Virginia Tech, 2019.

Luis Merino, Fernando Caballero, JR Martinez-de Dios, and Anibal Ollero. Cooperative fire
detection using unmanned aerial vehicles. In Proceedings of the 2005 IEEE international con-
ference on robotics and automation, pages 1884-1889. IEEE, 2005.

Sven Brenner, Sebastian Gelfert, and Hendrik Rust. New approach in 3d mapping and localiza-
tion for search and rescue missions. CERC2017, page 105, 2017.

Matthew Spenko, Stephen Buerger, and Karl lagnemma. The DARPA robotics challenge finals:
humanoid robots to the rescue, volume 121. Springer, 2018.

Stefan Kohlbrecher, Alberto Romay, Alexander Stumpf, Anant Gupta, Oskar Von Stryk, Felipe
Bacim, Doug A Bowman, Alex Goins, Ravi Balasubramanian, and David C Conner. Human-
robot teaming for rescue missions: Team vigir’s approach to the 2013 darpa robotics challenge
trials. Journal of Field Robotics, 32(3):352-377, 2015.

Tomas Roucek, Martin Pecka, Petr él’iek, Tomas Petricek, Jan Bayer, Vojtéch galansky, Daniel
Hett, Matéj Petrlik, Tomas B4ca, Vojéch Spurny, et al. Darpa subterranean challenge: Multi-
robotic exploration of underground environments. In International Conference on Modelling
and Simulation for Autonomous Systesm, pages 274-290. Springer, 2019.

Vojtech Spurny Saska, Tomas Béca, Matej Petrlik, Tomas Krajnik, and Tomas Roucek. Darpa
subt stix qualification submission: Ctu-cras.

Matéj Petrlik, Tomd$ Baca, Daniel Heit, Matou§ Vrba, Tomas$ Krajnik, and Martin Saska. A
robust uav system for operations in a constrained environment. /EEE Robotics and Automation
Letters, 5(2):2169-2176, 2020.

Yi-Wei Huang, Chen-Lung Lu, Kuan-Lin Chen, Po-Sheng Ser, Jui-Te Huang, Yu-Chia Shen,
Pin-Wei Chen, Po-Kai Chang, Sheng-Cheng Lee, and Hsueh-Cheng Wang. Duckiefloat: a
collision-tolerant resource-constrained blimp for long-term autonomy in subterranean environ-
ments. arXiv preprint arXiv:1910.14275, 2019.

Anton Koval, Christoforos Kanellakis, Emil Vidmark, Jakub Haluska, and George Nikolakopou-
los. A subterranean virtual cave world for gazebo based on the darpa subt challenge. arXiv
preprint arXiv:2004.08452, 2020.

Jan Faigl, Olivier Simonin, and Frangois Charpillet. Comparison of task-allocation algorithms in
frontier-based multi-robot exploration. In European Conference on Multi-Agent Systems, pages
101-110. Springer, 2014.

Ahmed Hussein, Mohamed Adel, Mohamed Bakr, Omar M Shehata, and Alaa Khamis. Multi-
robot task allocation for search and rescue missions. In Journal of Physics: Conference Series,
volume 570, page 052006, 2014.

Wanging Zhao, Qinggang Meng, and Paul WH Chung. A heuristic distributed task allocation
method for multivehicle multitask problems and its application to search and rescue scenario.
IEEE transactions on cybernetics, 46(4):902-915, 2015.

Jian Tang, Kejun Zhu, Haixiang Guo, Chengzhu Gong, Can Liao, and Shuwen Zhang. Using
auction-based task allocation scheme for simulation optimization of search and rescue in disaster
relief. Simulation Modelling Practice and Theory, 82:132-146, 2018.

Tadewos G Tadewos, Laya Shamgah, and Ali Karimoddini. On-the-fly decentralized tasking of
autonomous vehicles. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
2770-2775. IEEE, 2019.

M Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-based multirobot
coordination: A survey and analysis. Proceedings of the IEEE, 94(7):1257-1270, 2006.
Alejandro R Mosteo and Luis Montano. A survey of multi-robot task allocation. Instituto de
Investigacin en Ingenierta de Aragn (I3A), Tech. Rep, 2010.

Heba Kurdi, Jonathon How, and Guillermo Bautista. Bio-inspired algorithm for task allocation
in multi-uav search and rescue missions. In Aiaa guidance, navigation, and control conference,
page 1377, 2016.

215

Jorge Pefa Queralta

[62]

[63]
[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(77

(78]

[79]

[80]

216

Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal R Mettu, and Robert Fitch. Dec-mcts:
Decentralized planning for multi-robot active perception. The International Journal of Robotics
Research, 38(2-3):316-337, 2019.

Graeme Best, Jan Faigl, and Robert Fitch. Online planning for multi-robot active perception
with self-organising maps. Autonomous Robots, 42(4):715-738, 2018. ISSN 15737527.
Shubhani Aggarwal and Neeraj Kumar. Path planning techniques for unmanned aerial vehicles:
A review, solutions, and challenges. Computer Communications, 149:270-299, 2020.

Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Informative path planning for an
autonomous underwater vehicle. In 2010 IEEE International Conference on Robotics and Au-
tomation, pages 4791-4796. IEEE, 2010.

Yongyong Wei and Rong Zheng. Informative path planning for mobile sensing with reinforce-
ment learning. arXiv preprint arXiv:2002.07890, 2020.

Taud M Cabreira, Lisane B Brisolara, and Paulo R Ferreira Jr. Survey on coverage path planning
with unmanned aerial vehicles. Drones, 3(1):4, 2019.

Ivan Maza and Anibal Ollero. Multiple uav cooperative searching operation using polygon area
decomposition and efficient coverage algorithms. In Distributed Autonomous Robotic Systems
6, pages 221-230. Springer, 2007.

Susan Hert and Vladimir Lumelsky. Polygon area decomposition for multiple-robot workspace
division. [International Journal of Computational Geometry & Applications, 8(04):437—466,
1998.

JF Araujo, PB Sujit, and Jodo B Sousa. Multiple uav area decomposition and coverage. In 2013
IEEE symposium on computational intelligence for security and defense applications (CISDA),
pages 30-37. IEEE, 2013.

Junfei Xie, Luis Rodolfo Garcia Carrillo, and Lei Jin. Path planning for uav to cover multiple
separated convex polygonal regions. IEEE Access, 8:51770-51785, 2020.

Juan Irving Vasquez-Gomez, Juan-Carlos Herrera-Lozada, and Mauricio Olguin-Carbajal. Cov-
erage path planning for surveying disjoint areas. In 2018 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 899-904. IEEE, 2018.

Yiannis Kantaros, Michalis Thanou, and Anthony Tzes. Visibility-oriented coverage control of
mobile robotic networks on non-convex regions. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1126-1131. IEEE, 2014.

Samira Hayat, Evsen Yanmaz, Timothy X Brown, and Christian Bettstetter. Multi-objective uav
path planning for search and rescue. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 5569-5574. IEEE, 2017.

Paraskevi S Georgiadou, Ioannis A Papazoglou, Chris T Kiranoudis, and Nikolaos C
Markatos. Multi-objective emergency response optimization around chemical plants. In MULTI-
OBJECTIVE OPTIMIZATION: Techniques and Application in Chemical Engineering, pages
355-378. World Scientific, 2017.

M. Garey, D. Johnson, and H. Witsenhausen. The complexity of the generalized lloyd - max
problem (corresp.). IEEE Transactions on Information Theory, 28(2):255-256, 1982.

Israel Lugo-Cardenas, Gerardo Flores, Sergio Salazar, and Rogelio Lozano. Dubins path gen-
eration for a fixed wing vav. In 2014 International conference on unmanned aircraft systems
(ICUAS), pages 339-346. IEEE, 2014.

Yulei Liao, Lei Wan, and Jiayuan Zhuang. Full state-feedback stabilization of an underactu-
ated unmanned surface vehicle. In 2010 2nd International Conference on Advanced Computer
Control, volume 4, pages 70-74. IEEE, 2010.

Ertugrul Cetinsoy. Design and flight tests of a holonomic quadrotor uav with sub-rotor control
surfaces. In 2013 IEEE International Conference on Mechatronics and Automation, pages 1197—
1202. IEEE, 2013.

Riichiro Damoto, Wendy Cheng, and Shigeo Hirose. Holonomic omnidirectional vehicle with
new omni-wheel mechanism. In Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No. 01CH37164), volume 1, pages 773-778. IEEE, 2001.

[81]

[82]

[83]
[84]

[85]

[86]

[87]

[88]

[89]
[90]

[91]

[92]
[93]

[94]

[95]
[96]
[97]

[98]

[99]

[100]

LIST OF REFERENCES

S Campbell, Wasif Naeem, and George W Irwin. A review on improving the autonomy of
unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews
in Control, 36(2):267-283, 2012.

Zheng Zeng, Lian Lian, Karl Sammut, Fangpo He, Youhong Tang, and Andrew Lammas. A
survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean
Engineering, 110:303-313, 2015.

Daoliang Li, Peng Wang, and Ling Du. Path planning technologies for autonomous underwater
vehicles-a review. IEEE Access, 7:9745-9768, 2018.

Yugang Liu and Goldie Nejat. Robotic urban search and rescue: A survey from the control
perspective. Journal of Intelligent & Robotic Systems, 72(2):147-165, 2013.

Luis C Santos, Filipe N Santos, EJ Solteiro Pires, Anténio Valente, Pedro Costa, and Sandro
Magalhdes. Path planning for ground robots in agriculture: a short review. In 2020 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC), pages
61-66. IEEE, 2020.

Rachid Alami, Frédéric Robert, Félix Ingrand, and Sho’ji Suzuki. Multi-robot cooperation
through incremental plan-merging. In Proceedings of 1995 IEEE International Conference on
Robotics and Automation, volume 3, pages 2573-2579. IEEE, 1995.

Jing Yuan, Yalou Huang, Tong Tao, and Fengchi Sun. A cooperative approach for multi-robot
area exploration. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1390-1395. IEEE, 2010.

Ayan Dutta, Anirban Ghosh, and O Patrick Kreidl. Multi-robot informative path planning with
continuous connectivity constraints. In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 3245-3251. IEEE, 2019.

Rajnesh Kumar Singh and Neelu Jain. Comparative study of multi-robot area exploration algo-
rithms. International Journal, 4(8), 2014.

Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation
control. Automatica, 53:424-440, 2015.

Karl Muecke and Brian Powell. A distributed, heterogeneous, target-optimized operating sys-
tem for a multi-robot search and rescue application. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, pages 266-275. Springer,
2011.

Farshid Abbasi Doustvatan. Coverage control for heterogeneous multi-agent systems. PhD
thesis, University of Georgia, 2016.

Yara Rizk, Mariette Awad, and Edward W Tunstel. Cooperative heterogeneous multi-robot sys-
tems: A survey. ACM Computing Surveys (CSUR), 52(2):1-31, 2019.

Md Nazmuzzaman Khan and Sohel Anwar. Paradox elimination in dempster—shafer combination
rule with novel entropy function: Application in decision-level multi-sensor fusion. Sensors, 19
(21):4810, 2019.

Dana Lahat, Tiilay Adali, and Christian Jutten. Multimodal data fusion: an overview of methods,
challenges, and prospects. Proceedings of the IEEE, 103(9):1449-1477, 2015.

Tong Meng, Xuyang Jing, Zheng Yan, and Witold Pedrycz. A survey on machine learning for
data fusion. Information Fusion, 57:115 — 129, 2020. ISSN 1566-2535.

T. Baltrusaitis, C. Ahuja, and L. Morency. Multimodal machine learning: A survey and taxon-
omy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):423-443, 2019.
Jia Liu, Tianrui Li, Peng Xie, Shengdong Du, Fei Teng, and Xin Yang. Urban big data fusion
based on deep learning: An overview. Information Fusion, 53:123 — 133, 2020. ISSN 1566-
2535.

Inkyu Sa, Stefan Hrabar, and Peter Corke. Inspection of pole-like structures using a vision-
controlled vtol uav and shared autonomy. In 2014 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 4819-4826. IEEE, 2014.

Pat Marion, Maurice Fallon, Robin Deits, Andrés Valenzuela, Claudia Pérez D’ Arpino, Greg
Izatt, Lucas Manuelli, Matt Antone, Hongkai Dai, Twan Koolen, et al. Director: A user interface

217

Jorge Pefa Queralta

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

218

designed for robot operation with shared autonomy. In The DARPA Robotics Challenge Finals:
Humanoid Robots To The Rescue, pages 237-270. Springer, 2018.

Carlo Masone, Paolo Robuffo Giordano, Heinrich H Biilthoff, and Antonio Franchi. Semi-
autonomous trajectory generation for mobile robots with integral haptic shared control. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages 6468-6475. 1EEE,
2014.

Antonio Franchi, Cristian Secchi, Markus Ryll, Heinrich H Bulthoff, and Paolo Robuffo Gior-
dano. Shared control: Balancing autonomy and human assistance with a group of quadrotor
uavs. IEEE Robotics & Automation Magazine, 19(3):57-68, 2012.

Dongjun Lee, Antonio Franchi, Hyoung Il Son, ChangSu Ha, Heinrich H Biilthoff, and
Paolo Robuffo Giordano. Semiautonomous haptic teleoperation control architecture of multi-
ple unmanned aerial vehicles. IEEE/ASME Transactions on Mechatronics, 18(4):1334-1345,
2013.

Imad Jawhar, Nader Mohamed, Jie Wu, and Jameela Al-Jaroodi. Networking of multi-robot
systems: architectures and requirements. Journal of Sensor and Actuator Networks, 7(4):52,
2018.

Ashley W Stroupe, Martin C Martin, and Tucker Balch. Distributed sensor fusion for object
position estimation by multi-robot systems. In Proceedings 2001 ICRA. IEEE international
conference on robotics and automation (Cat. No. 01CH37164), volume 2, pages 1092—-1098.
IEEE, 2001.

Kasper Stgy. Using situated communication in distributed autonomous mobile robotics. In
Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, SCAI *01, page
44-52, NLD, 2001. IOS Press. ISBN 1586031619.

Joydeep Biswas and Manuela Veloso. Wifi localization and navigation for autonomous indoor
mobile robots. In 2010 IEEE international conference on robotics and automation, pages 4379—
4384. IEEE, 2010.

Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. Spotfi: Decimeter level
localization using wifi. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, pages 269-282, 2015.

Wei Sun, Min Xue, Hongshan Yu, Hongwei Tang, and Anping Lin. Augmentation of finger-
prints for indoor wifi localization based on gaussian process regression. I[EEE Transactions on
Vehicular Technology, 67(11):10896-10905, 2018.

Marco Altini, Davide Brunelli, Elisabetta Farella, and Luca Benini. Bluetooth indoor localization
with multiple neural networks. In IEEE 5th International Symposium on Wireless Pervasive
Computing 2010, pages 295-300. IEEE, 2010.

Pavel Kriz, Filip Maly, and Tomas Kozel. Improving indoor localization using bluetooth low
energy beacons. Mobile Information Systems, 2016, 2016.

Juthatip Wisanmongkol, Ladawan Klinkusoom, Taweesak Sanpechuda, La-or Kovavisaruch, and
Kamol Kaemarungsi. Multipath mitigation for rssi-based bluetooth low energy localization. In
2019 19th International Symposium on Communications and Information Technologies (ISCIT),
pages 47-51. IEEE, 2019.

Loizos Kanaris, Akis Kokkinis, Antonio Liotta, and Stavros Stavrou. Fusing bluetooth beacon
data with wi-fi radiomaps for improved indoor localization. Sensors, 17(4):812, 2017.

Nitesh B Suryavanshi, K Viswavardhan Reddy, and Vishnu R Chandrika. Direction finding
capability in bluetooth 5.1 standard. In International Conference on Ubiquitous Communications
and Network Computing, pages 53—65. Springer, 2019.

Aftab Khan, Stephen Wang, and Ziming Zhu. Angle-of-arrival estimation using an adaptive
machine learning framework. IEEE Communications Letters, 23(2):294-297, 2018.

Di Tian and Nicolas D Georganas. Connectivity maintenance and coverage preservation in wire-
less sensor networks. Ad Hoc Networks, 3(6):744-761, 2005.

[117]

[118]

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]
[131]
[132]
[133]
[134]

[135]

[136]

LIST OF REFERENCES

Lorenzo Sabattini, Nikhil Chopra, and Cristian Secchi. Decentralized connectivity maintenance
for cooperative control of mobile robotic systems. The International Journal of Robotics Re-
search, 32(12):1411-1423, 2013.

Lorenzo Sabattini, Cristian Secchi, Nikhil Chopra, and Andrea Gasparri. Distributed control of
multirobot systems with global connectivity maintenance. IEEE Transactions on Robotics, 29
(5):1326-1332, 2013.

Li Wang, Aaron D Ames, and Magnus Egerstedt. Multi-objective compositions for collision-free
connectivity maintenance in teams of mobile robots. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 2659-2664. IEEE, 2016.

Hu Xiao, Rongxin Cui, and Demin Xu. Cooperative multi-agent search using bayesian approach
with connectivity maintenance. Assembly Automation, 2019.

Qian Zhu, Rui Zhou, and Jie Zhang. Connectivity maintenance based on multiple relay uavs
selection scheme in cooperative surveillance. Applied Sciences, 7(1):8, 2017.

Jacopo Panerati, Marco Minelli, Cinara Ghedini, Lucas Meyer, Marcel Kaufmann, Lorenzo
Sabattini, and Giovanni Beltrame. Robust connectivity maintenance for fallible robots. Au-
tonomous Robots, 43(3):769-787, 2019.

Cinara Ghedini, Carlos HC Ribeiro, and Lorenzo Sabattini. A decentralized control strategy
for resilient connectivity maintenance in multi-robot systems subject to failures. In Distributed
Autonomous Robotic Systems, pages 89-102. Springer, 2018.

Luca Siligardi, Jacopo Panerati, Marcel Kaufmann, Marco Minelli, Cinara Ghedini, Giovanni
Beltrame, and Lorenzo Sabattini. Robust area coverage with connectivity maintenance. In 2019
International Conference on Robotics and Automation (ICRA), pages 2202-2208. IEEE, 2019.
Koresh Khateri, Mahdi Pourgholi, Mohsen Montazeri, and Lorenzo Sabattini. A comparison
between decentralized local and global methods for connectivity maintenance of multi-robot
networks. IEEE Robotics and Automation Letters, 4(2):633-640, 2019.

Francesco Amigoni, Jacopo Banfi, Nicola Basilico, Ioannis Rekleitis, and Alberto Quattrini Li.
Online update of communication maps for exploring multirobot systems under connectivity con-
straints. In Distributed Autonomous Robotic Systems, pages 513-526. Springer, 2019.
Francesco Amigoni, Jacopo Banfi, and Nicola Basilico. Multirobot exploration of
communication-restricted environments: A survey. I[EEE Intelligent Systems, 32(6):48-57,2017.
Yicong Tian, Chen Chen, and Mubarak Shah. Cross-view image matching for geo-localization
in urban environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3608-3616, 2017.

Bo Zhou, Zhongqgiang Tang, Kun Qian, Fang Fang, and Xudong Ma. A lidar odometry for
outdoor mobile robots using ndt based scan matching in gps-denied environments. In 2077
IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and
Intelligent Systems (CYBER), pages 1230-1235. IEEE, 2017.

Y. Lu et al. A survey on vision-based uav navigation. Geo-spatial information science, 21(1),
2018.

T. Qin et al. Vins-mono: A robust and versatile monocular visual-inertial state estimator. /[EEE
Transactions on Robotics, 34(4), 2018.

T. Qin et al. A general optimization-based framework for local odometry estimation with multi-
ple sensors, 2019.

J. Zhang et al. Loam: Lidar odometry and mapping in real-time. In Robotics: Science and
Systems, volume 2, page 9, 2014.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and
accurate monocular slam system. /EEE transactions on robotics, 31(5):1147-1163, 2015.
Aufar Zakiev, Tatyana Tsoy, and Evgeni Magid. Swarm robotics: remarks on terminology and
classification. In International conference on interactive collaborative robotics, pages 291-300.
Springer, 2018.

Jiagiang Zhang, Farhad Keramat, Xianjia Yu, Daniel Montero Hern, Jorge Pefia Queralta, and
Tomi Westerlund. Distributed robotic systems in the edge-cloud continuum with ros 2: a review

219

Jorge Pefa Queralta

[137]
[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

220

on novel architectures and technology readiness. In The Seventh International Conference on
Fog and Mobile Edge Computing (FMEC). IEEE, 2022.

Eduardo Castell6 Ferrer. The blockchain: a new framework for robotic swarm systems. In
Proceedings of the Future Technologies Conference, pages 1037-1058. Springer, 2018.

W. Shi, G. Pallis, and Z. Xu. Edge computing [scanning the issue]. Proceedings of the IEEE,
107(8):1474-1481, Aug 2019. doi: 10.1109/JPROC.2019.2928287.

Ana Juan Ferrer, Joan Manuel Marques, and Josep Jorba. Towards the decentralised cloud:
Survey on approaches and challenges for mobile, ad hoc, and edge computing. ACM Comput.
Surv., 51(6):111:1-111:36, January 2019. ISSN 0360-0300. doi: 10.1145/3243929.

Fatemeh Jalali, Olivia J. Smith, Timothy Lynar, and Frank Suits. Cognitive iot gateways: Au-
tomatic task sharing and switching between cloud and edge/fog computing. In Proceedings of
the SIGCOMM Posters and Demos, SIGCOMM Posters and Demos ’17, pages 121-123, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-5057-0. doi: 10.1145/3123878.3132008.
Davide Calvaresi, Mauro Marinoni, Arnon Sturm, Michael Schumacher, and Giorgio Buttazzo.
The challenge of real-time multi-agent systems for enabling iot and cps. In Proceedings of the
international conference on web intelligence, pages 356-364. ACM, 2017.

Jacques Penders, Lyuba Alboul, Ulf Witkowski, Amir Naghsh, Joan Saez-Pons, Stefan Her-
brechtsmeier, and Mohamed El-Habbal. A robot swarm assisting a human fire-fighter. Advanced
Robotics, 25(1-2):93-117, 2011.

Joachim De Greeff, Nanja Smets, Koen Hindriks, Mark A Neerincx, and Ivana Kruijff-
Korbayova. Incremental development of large-scale human-robot teamwork in disaster response
environments. In /2th Annual ACM/IEEE International Conference on Human-Robot Interac-
tion, HRI 2017, pages 101-102. ACM, IEEE Computer Society, 2017.

Ellips Masehian, Marjan Jannati, and Taher Hekmatfar. Cooperative mapping of unknown en-
vironments by multiple heterogeneous mobile robots with limited sensing. Robotics and Au-
tonomous Systems, 87:188-218, 2017.

Ajay Kattepur, Harshit Dohare, Visali Mushunuri, Hemant Kumar Rath, and Anantha Simha.
Resource constrained offloading in fog computing. In Proceedings of the 1st Workshop on Mid-
dleware for Edge Clouds & Cloudlets, page 1. ACM, 2016.

Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng. Qos-aware cooperative computation of-
floading for robot swarms in cloud robotics. IEEE Transactions on Vehicular Technology, 68(4):
4027-4041, April 2019. doi: 10.1109/TVT.2019.2901761.

D. Palossi, F. Conti, and L. Benini. An open source and open hardware deep learning-powered
visual navigation engine for autonomous nano-uavs. In 2019 15th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages 604-611, 2019.

Li Qingqing, J Pefiia Queralta, Tuan Nguyen Gia, Hannu Tenhunen, Zhuo Zou, and Tomi West-
erlund. Visual odometry offloading in internet of vehicles with compression at the edge of the
network. In 2019 Twelfth International Conference on Mobile Computing and Ubiquitous Net-
work (ICMU), pages 1-2. IEEE, 2019.

Jorge Pefia Queralta and Tomi Westerlund. Blockchain-powered collaboration in heterogeneous
swarms of robots. arXiv preprint arXiv:1912.01711, 2020. Symposium on Blockchain for
Robotic Systems, MIT Media Lab.

Xiao Yan Deng, Phil Trinder, and Greg Michaelson. Autonomous mobile programs. In 2006
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 177-186.
IEEE, 2006.

Zehua Zhang and Xuejie Zhang. A load balancing mechanism based on ant colony and complex
network theory in open cloud computing federation. In 2010 The 2nd International Conference
on Industrial Mechatronics and Automation, volume 2, pages 240-243. IEEE, 2010.

Soumya Banerjee and Joshua P Hecker. A multi-agent system approach to load-balancing and
resource allocation for distributed computing. In First Complex Systems Digital Campus World
E-Conference 2015, pages 41-54. Springer, 2017.

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

LIST OF REFERENCES

Murugappan Elango, Subramanian Nachiappan, and Manoj Kumar Tiwari. Balancing task allo-
cation in multi-robot systems using k-means clustering and auction based mechanisms. Expert
Systems with Applications, 38(6):6486-6491, 2011.

Avinash Gautam, SP Arjun Ram, Virendra Singh Shekhawat, and Sudeept Mohan. Balanced
partitioning of workspace for efficient multi-robot coordination. In 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pages 104-109. IEEE, 2017.

Hong-Linh Truong. Asre -towards application-specific resource ensembles across edges and
clouds, 2020. Preprint, working paper.

Jason Gregory, Jonathan Fink, Ethan Stump, Jeffrey Twigg, John Rogers, David Baran, Nicholas
Fung, and Stuart Young. Application of multi-robot systems to disaster-relief scenarios with
limited communication. In Field and Service Robotics, pages 639-653. Springer, 2016.
Menglan Hu, Weidong Liu, Kai Peng, Xiaogiang Ma, Wenqing Cheng, Jiangchuan Liu, and
Bo Li. Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Internet
of Things Journal, 6(2):1781-1790, 2018.

Nuno Mendes, Mohammad Safeea, and Pedro Neto. Flexible programming and orchestration of
collaborative robotic manufacturing systems. In 2018 IEEE 16th International Conference on
Industrial Informatics (INDIN), pages 913-918. IEEE, 2018.

Vincenzo Lomonaco, Angelo Trotta, Marta Ziosi, Juan de Dios Yafiez Avila, and Natalia Diaz-
Rodriguez. Intelligent drone swarm for search and rescue operations at sea. arXiv preprint
arXiv:1811.05291, 2018.

Hong-Linh Truong, Luca Berardinelli, Ivan Pavkovic, and Georgiana Copil. Modeling and provi-
sioning iot cloud systems for testing uncertainties. In Proceedings of the 14th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages
96-105. ACM, 2017.

V. Medel, O. Rana, J. A. Bafiares, and U. Arronategui. Modelling performance amp; resource
management in kubernetes. In 2016 IEEE/ACM 9th International Conference on Utility and
Cloud Computing (UCC), pages 257-262, Dec 2016.

Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, Fetahi Wuhib, and Jodo Monteiro
Soares. Edge computing resource management system: a critical building block! initiating the
debate via openstack. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18),
Boston, MA, 2018. USENIX Association.

Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong Linh Truong. Principles of elastic
processes. IEEE Internet Computing, 15(5):66-71, 2011. doi: 10.1109/MIC.2011.121.

C. McCord et al. Distributed Progressive Formation Control for Multi-Agent Systems: 2D and
3D deployment of UAVs in ROS/Gazebo with RotorS. In ECMR. IEEE, 2019.

Minh T Nguyen, Hung M La, and Keith A Teague. Collaborative and compressed mobile sensing
for data collection in distributed robotic networks. IEEE Transactions on Control of Network
Systems, 5(4):1729-1740, 2017.

Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. A survey of swarm intelligence
for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation,
33:1-17, 2017.

Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen
Koltun, and Davide Scaramuzza. Beauty and the beast: Optimal methods meet learning for
drone racing. In 2019 International Conference on Robotics and Automation (ICRA), pages
690-696. IEEE, 2019.

L Qingqing, F Yuhong, J Pena Queralta, Tuan Nguyen Gia, Hannu Tenhunen, Zhuo Zou, and
Tomi Westerlund. Edge computing for mobile robots: multi-robot feature-based lidar odometry
with fpgas. In 2019 Twelfth International Conference on Mobile Computing and Ubiquitous
Network (ICMU), pages 1-2. IEEE, 2019.

Jorge Pefia Queralta, F Yuhong, L Salomaa, L Qingqing, TN Gia, Z Zou, H Tenhunen, and
T Westerlund. Fpga-based architecture for a low-cost 3d lidar design and implementation from
multiple rotating 2d lidars with ros. In 2019 IEEE SENSORS, pages 1-4. IEEE, 2019.

221

Jorge Pefa Queralta

[170]

[171]

[172]

[173]

[174]
[175]

[176]

[177]

[178]
[179]
[180]
[181]
[182]
[183]
[184]

[185]
[186]

[187]
[188]
[189]

[190]

222

W. Shule et al. Uwb-based localization for multi-uav systems and collaborative heterogeneous
multi-robot systems: a survey. arXiv preprint arXiv:2004.08174, 2020.

Volker Strobel, Eduardo Castell6 Ferrer, and Marco Dorigo. Managing byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario. In AAMAS,
pages 541-549, 2018.

Hong Linh Truong and Schahram Dustdar. Principles of software-defined elastic systems for big
data analytics. In Proceedings of the 2014 IEEE International Conference on Cloud Engineering,
IC2E 14, pages 562-567, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-
4799-3766-0. doi: 10.1109/IC2E.2014.67.

Stefano Mariani, Hong-Linh Truong, Georgiana Copil, Andrea Omicini, and Schahram Dustdar.
Coordination-aware elasticity. In Proceedings of the 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing, UCC ’14, pages 465-472, Washington, DC, USA, 2014.
IEEE Computer Society. ISBN 978-1-4799-7881-6. doi: 10.1109/UCC.2014.59.

P. Yun et al. Towards a cloud robotics platform for distributed visual slam. In Computer Vision
Systems. Springer, 2017.

S. Dey et al. Robotic slam: A review from fog computing and mobile edge computing perspec-
tive. In MOBIQUITOUS. ACM, 2016.

Victor Kathan Sarker, Jorge Pefia Queralta, Tuan Nguyen Gia, Hannu Tenhunen, and Tomi West-
erlund. Offloading slam for indoor mobile robots with edge-fog-cloud computing. In Interna-
tional Conference on Advances in Science, Engineering and Robotics Technology. IEEE, 2019.
doi: 10.1109/ICASERT.2019.8934466.

Aly Metwaly, Jorge Pefia Queralta, Victor Kathan Sarker, Tuan Nguyen Gia, Omar Nasir, and
Tomi Westerlund. Edge computing with embedded Al: Thermal image analysis for occupancy
estimation in intelligent buildings. In INTelligent Embedded Systems Architectures and Applica-
tions, INTESA@ESWEEK 2019, page 1-6. ACM, 2019. doi: https://doi.org/10.1145/3372394.
3372397.

T. N. Gia et al. Artificial Intelligence at the Edge in the Blockchain of Things. In 8th EAI
Mobihealth, 2019.

A. Nawaz et al. Edge Al and Blockchain for Privacy-Critical and Data-Sensitive Applications.
In The 12th ICMU, 2019.

T. N. Gia et al. Edge Al in Smart Farming IoT: CNNs at the Edge and Fog Computing with
LoRa. In 2019 IEEE AFRICON, 2019.

M. Burri et al. The euroc micro aerial vehicle datasets. The International Journal of Robotics
Research, 35(10):1157-1163, 2016.

C. Cadena et al. Past, present, and future of simultaneous localization and mapping: Toward the
robust-perception age. IEEE Trans. on robotics, 2016.

Raul et al. Mur-Artal. Visual-inertial monocular slam with map reuse. IEEE Robotics and
Automation Letters, 2(2):796-803, 2017.

Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the security of
blockchain systems. Future Generation Computer Systems, 2017.

Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. Working Paper, 2008.
Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Annual
International Cryptology Conference, pages 139—147. Springer, 1992.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus algorithms used in
blockchain. Journal of Information processing systems, 14(1), 2018.

Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages
89-103. IEEE, 2015.

Saide Zhu, Wei Li, Hong Li, Chunqgiang Hu, and Zhipeng Cai. A survey: Reward distribu-
tion mechanisms and withholding attacks in bitcoin pool mining. Mathematical Foundations of
Computing, 1(4):393-414, 2018.

[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]

[204]

[205]

[206]
[207]

[208]

[209]
[210]
[211]
[212]

[213]

LIST OF REFERENCES

Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility
of bitcoin mining pool reward functions. In International Conference on Financial Cryptography
and Data Security, pages 477-498. Springer, 2016.

Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonoutsourceable scratch-off
puzzles to discourage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pages 680—691. ACM, 2015.

Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work. July 7th, 1:6, 2013.
Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):
122144, 2004.

Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better—how to make bitcoin
a better currency. In International Conference on Financial Cryptography and Data Security,
pages 399-414. Springer, 2012.

Serguei Popov. A probabilistic analysis of the nxt forging algorithm. Ledger, 1:69-83, 2016.
Nxt Wiki. Whitepaper: Nxt. Nxtwiki. org [online] https://nxtwiki. org, 2018.

Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In In-
ternational Conference on Financial Cryptography and Data Security, pages 142—157. Springer,
2016.

Vitalik Buterin, Daniel Reijsbergen, Stefanos Leonardos, and Georgios Piliouras. Incentives in
ethereum’s hybrid casper protocol. arXiv preprint arXiv:1903.04205, 2019.

Karl J] O’Dwyer and David Malone. Bitcoin mining and its energy footprint. 1ET, 2014.

Alex De Vries. Bitcoin’s growing energy problem. Joule, 2(5):801-805, 2018.

Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper, August, 19, 2012.

Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on distributed
cryptocurrencies and consensus ledgers, volume 310, page 4, 2016.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, An-
gelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, page 30. ACM, 2018.

Joao Sousa, Alysson Bessani, and Marko Vukolic. A byzantine fault-tolerant ordering service
for the hyperledger fabric blockchain platform. In 2018 48th annual IEEE/IFIP international
conference on dependable systems and networks (DSN), pages 51-58. IEEE, 2018.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

RM Keichafer, Chris J. Walter, Alan M. Finn, and Philip M. Thambidurai. The maft architecture
for distributed fault tolerance. IEEE Transactions on Computers, 37(4):398-404, 1988.

Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight
Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, et al. Kevm: A complete
formal semantics of the ethereum virtual machine. In 2018 IEEE 31st Computer Security Foun-
dations Symposium (CSF), pages 204-217. IEEE, 2018.

Ethereum Revision 7709ece9. Solidity Documentation. Solidity Read The Docs [online]
https://solidity.readthedocs.io/en/v0.5.12/. Accessed October 2019., 2016-2019.

Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.

A brief overview. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH),
pages 1-6. IEEE, 2018.

Marko Vukolié. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In
International workshop on open problems in network security, pages 112-125. Springer, 2015.
Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Sax-
ena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 17-30. ACM, 2016.

223

Jorge Pefa Queralta

[214]

[215]

[216]
[217]
[218]
[219]

[220]

[221]
[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

224

Deadalnix’s den. Using Merklix tree to shard block validation. Accessed October 2019 [online]
https://www.deadalnix.me/2016/11/06/using-merklix-tree-to-shard-block-validation/, 2016.
Deadalnix’s den. Introducing Merklix tree as an unordered Merkle tree on steroid. Ac-
cessed October 2019 [online] https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-
as-an-unordered-merkle-tree-on-steroid/, 2016.

Bo Qin, Jikun Huang, Qin Wang, Xizhao Luo, Bin Liang, and Wenchang Shi. Cecoin: A
decentralized pki mitigating mitm attacks. Future Generation Computer Systems, 2017.

Vitalik Buterin et al. A next-generation smart contract and decentralized application platform.
white paper, 3:37, 2014.

Serenity Ethereum Foundation et al. Ethereum 2.0 Specifications. Accessed October 2019 [on-
line] https://github.com/ethereum/eth2.0-specs, 2018.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437,2017.

Ben Edington. Exploring Ethereum 2.0 Design Goals. Consensys. Accessed October 2019 [on-
line] https://media.consensys.net/exploring-the-ethereum-2-0-design-goals-fd2d901b4c01, Jan-
uary 2017.

EthHub. Ethereum 2.0 (Serenity) Phases. Accessed October 2019 [online]
https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/, 2018.

Ben Edington. State of Ethereum Protocol #1. Consensys. Accessed October 2019 [online]
https://media.consensys.net/state-of-ethereum-protocol-1-d3211dd0f6, August 2018.

Ben Edington. State of Ethereum Protocol #2. Consensys. Accessed October 2019 [online]
https://media.consensys.net/state-of-ethereum-protocol-2-the-beacon-chain-c6b6a9a69129, Oc-
tober 2018.

Vitalik Buterin and others. On sharding blockchains. Ethereum Wiki.
Sharding FAQ. Accessed October 2019. Version April 18th, 2019 [online]
https://github.com/ethereum/wiki/wiki/Sharding-FAQ, 2016-2019.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 583-598. IEEE, 2018.

Mischa Dohler, Toktam Mahmoodi, Maria A Lema, Massimo Condoluci, Fragkiskos Sardis,
Konstantinos Antonakoglou, and Hamid Aghvami. Internet of skills, where robotics meets ai,
5g and the tactile internet. In 2017 European Conference on Networks and Communications
(EuCNC), pages 1-5. IEEE, 2017.

Rongpeng Li, Zhifeng Zhao, Xuan Zhou, Guoru Ding, Yan Chen, Zhongyao Wang, and Hong-
gang Zhang. Intelligent 5g: When cellular networks meet artificial intelligence. IEEE Wireless
communications, 24(5):175-183, 2017.

Maria Rita Palattella, Mischa Dohler, Alfredo Grieco, Gianluca Rizzo, Johan Torsner, Thomas
Engel, and Latif Ladid. Internet of things in the 5g era: Enablers, architecture, and business
models. IEEE Journal on Selected Areas in Communications, 34(3):510-527, 2016.

Jere Backman, Seppo Yrjold, Kristiina Valtanen, and Olli Mdmmelid. Blockchain network slice
broker in 5g: Slice leasing in factory of the future use case. In 2017 Internet of Things Business
Models, Users, and Networks, pages 1-8. IEEE, 2017.

F. Voigtliander er al. 5g for robotics: Ultra-low latency control of distributed robotic systems. In
2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pages
69-72. IEEE, 2017.

Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen. In-edge
ai: Intelligentizing mobile edge computing, caching and communication by federated learning.
IEEE Network, 33(5):156-165, 2019.

Rami Akrem Addad, Tarik Taleb, Miloud Bagaa, Diego Leonel Cadette Dutra, and Hannu Flinck.
Towards modeling cross-domain network slices for 5g. In 2018 IEEE Global Communications
Conference (GLOBECOM), pages 1-7. IEEE, 2018.

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]
[245]

[246]

[247]
[248]
[249]

[250]

[251]

[252]

LIST OF REFERENCES

Syed Husain, Andreas Kunz, Athul Prasad, Konstantinos Samdanis, and JaeSeung Song. Mobile
edge computing with network resource slicing for internet-of-things. In 2018 IEEE 4th World
Forum on Internet of Things (WF-1oT), pages 1-6. IEEE, 2018.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In /CRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

Dario Sabella, Alessandro Vaillant, Pekka Kuure, Uwe Rauschenbach, and Fabio Giust. Mobile-
edge computing architecture: The role of mec in the internet of things. IEEE Consumer Elec-
tronics Magazine, 5(4):84-91, 2016.

Li Qingqing, Jorge Pena Queralta, Tuan Nguyen Gia, and Tomi Westerlund. Offloading monoc-
ular visual odometry with edge computing: Optimizing image quality in multi-robot systems. In
Proceedings of the 2019 5th International Conference on Systems, Control and Communications,
pages 22-26, 2019.

Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng, Li Pan, Sabita
Maharjan, and Yan Zhang. Energy-efficient offloading for mobile edge computing in 5g hetero-
geneous networks. IEEE access, 4:5896-5907, 2016.

Ke Zhang, Yuming Mao, Supeng Leng, Yejun He, and Yan Zhang. Mobile-edge computing for
vehicular networks: A promising network paradigm with predictive off-loading. IEEE Vehicular
Technology Magazine, 12(2):36-44, 2017.

Agata Barei$, Michal Barei$, and Christian Bettstetter. Robots that sync and swarm: a proof
of concept in ros 2. In 2019 International Symposium on Multi-Robot and Multi-Agent Systems
(MRS), pages 98-104. IEEE, 2019.

Heiko G Seif and Xiaolong Hu. Autonomous driving in the icity—hd maps as a key challenge
of the automotive industry. Engineering, 2(2):159-162, 2016.

Joey Hong, Benjamin Sapp, and James Philbin. Rules of the road: Predicting driving behavior
with a convolutional model of semantic interactions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8454-8462, 2019.

Dario Floreano and Robert J] Wood. Science, technology and the future of small autonomous
drones. Nature, 521(7553):460-466, 2015.

Kehua Su, Jie Li, and Hongbo Fu. Smart city and the applications. In 2011 international
conference on electronics, communications and control (ICECC), pages 1028—-1031. IEEE, 2011.
S Kekki ef al. Mec in 5g networks. ETSI white paper, 28:1-28, 2018.

Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. Mobile edge
computing—a key technology towards 5g. ETSI white paper, 11(11):1-16, 2015.

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and Dario Sabella.
On multi-access edge computing: A survey of the emerging 5g network edge cloud architecture
and orchestration. IEEE Communications Surveys & Tutorials, 19(3):1657-1681, 2017.

3GPP. Study on architecture for next-generation system rel. 14. Techical Report, 23.799, 2016.

N. Alliance. Description of network slicing concept. NGMN 5G P, 1:1, 2016.

Fabio Giust, Vincenzo Sciancalepore, Dario Sabella, Miltiades C Filippou, Simone Mangiante,
Walter Featherstone, and Daniele Munaretto. Multi-access edge computing: The driver behind
the wheel of Sg-connected cars. IEEE Communications Standards Magazine, 2(3):66-73, 2018.
Zehui Xiong, Yang Zhang, Dusit Niyato, Ping Wang, and Zhu Han. When mobile blockchain
meets edge computing. IEEE Communications Magazine, 56(8):33-39, 2018.

MD Abdur Rahman, M Shamim Hossain, George Loukas, Elham Hassanain, Syed Sadiqur Rah-
man, Mohammed F Alhamid, and Mohsen Guizani. Blockchain-based mobile edge computing
framework for secure therapy applications. IEEE Access, 6:72469-72478, 2018.

Yueyue Dai, Du Xu, Sabita Maharjan, Zhuang Chen, Qian He, and Yan Zhang. Blockchain and
deep reinforcement learning empowered intelligent 5g beyond. [EEE Network, 33(3):10-17,
2019.

225

Jorge Pefa Queralta

[253]

[254]
[255]
[256]
[257]
[258]
[259]
[260]

[261]
[262]

[263]

[264]

[265]

[266]
[267]
[268]
[269]
[270]

[271]

[272]
[273]

[274]

226

Mengting Liu, F Richard Yu, Yinglei Teng, Victor CM Leung, and Mei Song. Joint computation
offloading and content caching for wireless blockchain networks. In IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 517-
522.IEEE, 2018.

He Zhu, Changcheng Huang, and Jiayu Zhou. Edgechain: Blockchain-based multi-vendor mo-
bile edge application placement. In 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), pages 222-226. IEEE, 2018.

Li Qingqing, Jorge Pena Queralta, Tuan Nguyen Gia, Zhuo Zou, and Tomi Westerlund. Multi
sensor fusion for navigation and mapping in autonomous vehicles: Accurate localization in urban
environments. The 9th IEEE CIS-RAM, 2019.

Synced. The golden age of hd mapping for autonomous driving. Medium, 2018.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in byzantium. arXiv preprint arXiv:1802.07927, 2018.

Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. Are fpgas suitable for edge computing?
In {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18),2018.

T Ohkawa, Y Ishida, Y Sugata, and H Tamukoh. Ros-compliant fpga component technol-
ogy—fpga installation into ros, 2017.

The European Union Agency for Cybersecurity. Threat assessment for the fifth generation of mo-
bile telecommunications networks (5g). ENISA THREAT LANDSCAPE FOR 5G NETWORKS,
2019.

Ronald C Arkin and Tucker Balch. Cooperative multiagent robotic systems. 1997.

Matt Quinn, Lincoln Smith, Giles Mayley, and Phil Husbands. Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors. Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 361(1811):2321-2343, 2003.

Elio Tuci, Muhanad H Alkilabi, and Otar Akanyeti. Cooperative object transport in multi-robot
systems: A review of the state-of-the-art. Frontiers in Robotics and Al, 5:59, 2018.

Zeng-Shun Zhao, Xiang Feng, Yan-yan Lin, Fang Wei, Shi-Ku Wang, Tong-Lu Xiao, Mao-Yong
Cao, and Zeng-Guang Hou. Evolved neural network ensemble by multiple heterogeneous swarm
intelligence. Neurocomputing, 149:29-38, 2015.

Zohreh Akbari and Rainer Unland. A novel heterogeneous swarm reinforcement learning
method for sequential decision making problems. Machine Learning and Knowledge Extrac-
tion, 1(2):590-610, 2019.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable. Commu-
nications of the ACM, 61(7):95-102, 2018.

Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980, 2011.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.

Salma Salimi, Jorge Pefia Queralta, and Tomi Westerlund. Towards managing industrial robot
fleets with hyperledger fabric blockchain and ROS 2. arXiv preprint, 2022.

Farhad Keramat, Jorge Pefia Queralta, and Tomi Westerlund. Byzantine-tolerant and partition-
tolerant decision-making for distributed robotic systems with iota and ros2. arXiv preprint,
2022.

E. Ferrer et al. Secure and secret cooperation in robot swarms. Science Robotics, 6(56), 2021.
doi: 10.1126/scirobotics.abf1538.

L. A. Kirschgens et al. Robot hazards: from safety to security. arXiv preprint arXiv:1806.06681,
2018.

S. Braganca et al. A brief overview of the use of collaborative robots in industry 4.0: human role
and safety. In Occupational and Environmental Safety and Health. Springer, 2019.

[275]

[276]
[277]

[278]

[279]

[280]

[281]
[282]

[283]
[284]

[285]

[286]

[287]

[288]

[289]
[290]

[291]

[292]

[293]
[294]
[295]
[296]

[297]
[298]

[299]

[300]

LIST OF REFERENCES

J. Huang et al. Rosrv: Runtime verification for robots. In International Conference on Runtime
Verification. Springer, 2014.

G. W. Clark et al. Cybersecurity issues in robotics. In CogSIMA, 2017.

A. Akhunzada et al. Securing software defined networks: taxonomy, requirements, and open
issues. IEEE Communications Magazine, 2015.

S. Rivera et al. Ros-defender: Sdn-based security policy enforcement for robotic applications.
In Security and Privacy Workshops. IEEE, 2019.

J.N. K. Liu et al. iBotGuard: an internet-based intelligent robot security system using invariant
face recognition against intruder. IEEE Transactions on Systems, Man, and Cybernetics, 35,
2005.

N. M. Rodday. Exploring security vulnerabilities of unmanned aerial vehicles. In NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Symposium, pages 993-994. IEEE, 2016.
J. Wan. Cloud robotics: Current status and open issues. IEEE Access, 4:2797-2807, 2016.

J. Miller et al. A case study on the cybersecurity of social robots. In ACM/IEEE HRI, page
195-196. Association for Computing Machinery, 2018. ISBN 9781450356152.

Py, Frédéric et al. Dependable execution control for autonomous robots. In IEEE/RSJ IROS,
volume 2, pages 1136-1141. IEEE, 2004.

Y. Tang et al. Event-based tracking control of mobile robot with denial-of-service attacks. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2018.

S. Tiku et al. Overcoming security vulnerabilities in deep learning—based indoor localization
frameworks on mobile devices. ACM Trans. Embed. Comput. Syst., 18(6), November 2019.
ISSN 1539-9087.

A. H. Rahman et al. Evaluation of peer robot communications using cryptoros. Evaluation, 10
(7), 2019.

L.V. Legashev er al. Monitoring, certification and verification of autonomous robots and intel-
ligent systems: Technical and legal approaches. Procedia Computer Science, 150:544 — 551,
2019. ISSN 1877-0509.

A. Yousef et al. Analyzing cyber-physical threats on robotic platforms. Sensors, 18(5):1643,
2018.

A. Lazanas et al. Landmark-based robot navigation. Algorithmica, 1995.

C. B. Madsen et al. Optimal landmark selection for triangulation of robot position. Robotics and
Autonomous Systems, 23, 1998.

L. Cheng et al. Indoor robot localization based on wireless sensor networks. /EEE Transactions
on Consumer Electronics, 57(3), 2011. doi: 10.1109/TCE.2011.6018861.

P. Nazemzadeh et al. Indoor localization of mobile robots through qr code detection and dead
reckoning data fusion. IEEE/ASME Transactions on Mechatronics, 22(6), Dec 2017. doi: 10.
1109/TMECH.2017.2762598.

A. Zamir et al. Accurate image localization based on google maps street view. In ECCV.
Springer, 2010.

T. Sattler et al. Efficient & effective prioritized matching for large-scale image-based localiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 2016.

J. Thoma et al. Mapping, localization and path planning for image-based navigation using visual
features and map. In /EEE CVPR, 2019.

Q. Qin et al. Sorting system of robot based on vision detection. In IWAMA Workshop. Springer,
2017.

M. Gadd et al. A framework for infrastructure-free warehouse navigation. In /CRA, 2015.

S. Hilsenbeck et al. Scale-preserving long-term visual odometry for indoor navigation. In /PIN,
2012.

H. Ahmed et al. Terrain-based vehicle localization using low cost mems-imu sensors. In 83rd
VTC Spring. IEEE, 2016.

J. Zhanget al. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 2174-2181. IEEE, 2015.

227

Jorge Pefa Queralta

[301]
[302]
[303]
[304]
[305]
[306]
[307]
[308]

[309]

[310]
[311]
(312]

[313]

[314]

[315]

[316]

[317]

[318]
[319]
[320]
[321]
[322]
[323]
[324]

[325]

228

S. A. S. Mohamed et al. A survey on odometry for autonomous navigation systems. [EEE
Access, 7, 2019.

C. Rizos et al. Precise point positioning: is the era of differential gnss positioning drawing to an
end? 2012.

S. B. Williams et al. Towards multi-vehicle simultaneous localisation and mapping. In Proceed-
ings 2002 IEEE International Conference on Robotics and Automation, volume 3, May 2002.
N. Michael er al. Collaborative mapping of an earthquake damaged building via ground and
aerial robots. In Journal of Field Robotics, volume 92, 07 2012.

B. Kim er al. Multiple relative pose graphs for robust cooperative mapping. In 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010.

H. Lee et al. A survey of map merging techniques for cooperative-slam. In 2012 9th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Nov 2012.

R. Madhavan et al. Distributed cooperative outdoor multirobot localization and mapping. Au-
tonomous Robots, 17(1), 2004.

G. Dedeoglu et al. Landmark-based Matching Algorithm for Cooperative Mapping by Au-
tonomous Robots. Springer Japan, Tokyo, 2000.

N. DeMarinis et al. Scanning the internet for ros: A view of security in robotics research. In
2019 International Conference on Robotics and Automation (ICRA), pages 8514-8521. IEEE,
2019.

R. Amini e al. Cryptoros: A secure communication architecture for ros-based applications.
International Journal of Advanced Computer Science and Applications, 9(10):189-194, 2018.
J. Kim et al. Security and performance considerations in ros 2: A balancing act. arXiv preprint
arXiv:1809.09566, 2018.

B. R. Hilnbrand et al. Automated vehicle map localization based on observed geometries of
roadways, 2019. US Patent 10,289,115.

H. Sobreira et al. Map-matching algorithms for robot self-localization: a comparison between
perfect match, iterative closest point and normal distributions transform. Journal of Intelligent
& Robotic Systems, 2019.

A. S. Huang et la. Visual odometry and mapping for autonomous flight using an rgb-d camera.
In Robotics Research : The 15th International Symposium ISRR. Springer, 2017.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611. International Society for Optics and Photonics,
1992.

Martin Lauer, Sascha Lange, and Martin Riedmiller. Calculating the perfect match: an efficient
and accurate approach for robot self-localization. In Robot Soccer World Cup. Springer, 2005.
Peter Biber and Wolfgang Strafer. The normal distributions transform: A new approach to laser
scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003)(Cat. No. 03CH37453), volume 3. IEEE, 2003.

S. A. Rahok et al. Odometry correction with localization based on landmarkless magnetic map
for navigation system of indoor mobile robot. In 4th ICARA, 2009.

R. S. Andersen et al. Fast calibration of industrial mobile robots to workstations using QR codes.
In IEEE ISR 2013, Oct 2013. doi: 10.1109/ISR.2013.6695636.

H. Zhang et al. Localization and navigation using qr code for mobile robot in indoor environ-
ment. In IEEE ROBIO, Dec 2015. doi: 10.1109/ROBIO.2015.7419715.

Y. Song et al. Uwb/lidar fusion for cooperative range-only slam. In IEEE ICRA, 2019.

Anis Koubaa. Robot Operating System (ROS). Springer, 2017.

T. Shan et al. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on
variable terrain. In /ROS. IEEE, 2018.

J. Czajkowski et al. Quantum preimage, 2nd-preimage, and collision resistance of sha3. JACR
ePrint, 302, 2017.

P. Sriramya et al. Providing password security by salted password hashing using berypt algo-
rithm. ARPN journal of engineering and applied sciences, 10(13), 2015.

[326]

[327]

[328]

[329]

[330]

[331]

[332]
[333]

[334]
[335]

[336]
[337]
[338]
[339]
[340]
[341]
[342]
[343]
[344]

[345]

[346]

[347]

[348]
[349]

LIST OF REFERENCES

Sahar Salimpour, Farhad Keramat, Jorge Pefia Queralta, and Tomi Westerlund. Decentralized
vision-based byzantine agent detection in multi-robot systems with iota smart contracts. In In-
ternational Symposium on Foundations and Practice of Security (FPS). Springer, 2022.

Sahar Salimpour, Jorge Pefia Queralta, and Tomi Westerlund. Self-calibrating anomaly and
change detection for autonomous inspection robots. In IEEE Robotic Computing. IEEE, 2022.
Paavo Nevalainen, Parisa Movahedi, Jorge Pefia Queralta, Tomi Westerlund, and Jukka Heikko-
nen. Long-term autonomy in forest environment using self-corrective slam. Book Chapter, 2020.
doi: https://doi.org/10.1007/978-3-030-77860-6_5. Presented at FinDrones 2020.

Li Qingqing, Paavo Nevalainen, Jorge Pefia Queralta, Jukka Heikkonen, and Tomi Westerlund.
Localization in unstructured environments: Towards autonomous robots in forests with delaunay
triangulation. Remote Sensing, 2020. doi: doi:10.3390/rs12111870.

Li Qingqging, Yu Xianjia, Jorge Pefia Queralta, and Tomi Westerlund. Multi-modal lidar dataset
for benchmarking general-purpose localization and mapping algorithms. In /EEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

Yu Xianjia, Li Qingqing, Jorge Pefia Queralta, Jukka Heikkonen, and Tomi Westerlund. Ap-
plications of UWB networks and positioning to autonomous robots and industrial systems. In
Cyber-Physical Systems of Systems (CPSoS) and Internet of Things (IoT) Conference. 1EEE,
2021.

W. Giernacki et al. Crazyflie 2.0 quadrotor as a platform for research and education in robotics
and control engineering. In MMAR, 2017.

Cirque du Soleil. Zurich, and verity studios. sparked: A live interaction between humans and
quadcopters. ETH, 2014.

Pozyx Labs. Pozyx accurate positioning. 2018.

M. Contigiani ef al. Implementation of a tracking system based on uwb technology in a retail
environment. In IEEE/ASME MESA, 2016.

Robert J Fontana. Ultra wideband precision geolocation system, April 25 2000. US Patent
6,054,950.

Zafer Sahinoglu. Ultra-wideband positioning systems. Cambridge university press, 2008.
James D Taylor. Ultra-wideband radar technology. CRC press, 2018.

R. Mazraani et al. Experimental results of a combined tdoa/tof technique for uwb based local-
ization systems. In ICC Workshops. IEEE, 2017.

C. Wang et al. Ultra-wideband aided fast localization and mapping system. In /EEE/RSJ IROS.
IEEE, 2017.

F. J. Perez-Grau et al. Multi-modal mapping and localization of unmanned aerial robots based
on ultra-wideband and rgb-d sensing. In /EEE/RSJ IROS. IEEE, 2017.

V. Magnago et al. Robot localization via odometry-assisted ultra-wideband ranging with stochas-
tic guarantees. In /ROS, 2019.

T. M. Nguyen et al. Integrated uwb-vision approach for autonomous docking of uavs in gps-
denied environments. In /ICRA. IEEE, 2019.

N. Macoir et al. Uwb localization with battery-powered wireless backbone for drone-based
inventory management. Sensors, 19, 2019.

Paola Torrico Morén, Jorge Pefia Queralta, and Tomi Westerlund. Towards large-scale relative
localization in multi-robot systems with dynamic UWB role allocation. arXiv preprint, 2022.
Janis Tiemann, Andrew Ramsey, and Christian Wietfeld. Enhanced uav indoor navigation
through slam-augmented uwb localization. In 2018 IEEE International Conference on Com-
munications Workshops (ICC Workshops). IEEE, 2018.

T. M. Nguyen et al. An integrated localization-navigation scheme for distance-based docking of
uavs. In IEEE/RSJ IROS, 2018.

K. K. Oh et al. A survey of multi-agent formation control. Automatica, 53, 2015.

K. Guo, X. Li, and L. Xie. Ultra-wideband and odometry-based cooperative relative localization
with application to multi-uav formation control. /[EEE Transactions on Cybernetics, 2019.

229

Jorge Pefa Queralta

[350]

[351]
[352]

[353]
[354]
[355]
[356]
[357]
[358]

[359]

[360]

[361]
[362]
[363]
[364]
[365]
[366]

[367]

[368]

[369]

[370]

[371]

[372]

230

C. Shugiang et al. Uwb based integrated communication and positioning system for multi-uavs
close formation. In MECAE. Atlantis, 2018.

Damoda News. The 14th moscow uav air show, 2019.

T. M. Nguyen et al. Robust target-relative localization with ultra-wideband ranging and commu-
nication. In /CRA. IEEE, 2018.

L. Qiang et al. Formation control of multi robot based on uwb distance measurement. In CCDC.
IEEE, 2018.

K. Guo et al. Ultra-wideband and odometry-based cooperative relative localization with appli-
cation to multi-uav formation control. IEEE transactions on cybernetics, 2019.

R. Liu et al. Cooperative relative positioning of mobile users by fusing imu inertial and uwb
ranging information. In /CRA. IEEE, 2017.

T. Fan et al. Fully distributed multi-robot collision avoidance via deep reinforcement learning
for safe and efficient navigation in complex scenarios. arXiv preprint arXiv:1808.03841, 2018.
L. Qiang et al. Design and implementation of multi robot research platform based on uwb. In
29th CCDC. IEEE, 2017.

H. Wei et al. Consensus algorithms based multi-robot formation control under noise and time
delay conditions. Applied Sciences, 9(5), 2019.

Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen. Decentralized visual-inertial-
uwb fusion for relative state estimation of aerial swarm. In IEEE International Conference on
Robotics and Automation (ICRA), pages 8776-8782. IEEE, 2020.

Hao Xu, Yichen Zhang, Boyu Zhou, Luqi Wang, Xinjie Yao, Guotao Meng, and Shaojie Shen.
Omni-swarm: A decentralized omnidirectional visual-inertial-uwb state estimation system for
aerial swarms. IEEE Transactions on Robotics, 2022.

Enrica Soria. Swarms of flying robots in unknown environments. Science Robotics, 7(66):
eabq2215, 2022.

J. S. Furtado. Comparative analysis of optitrack motion capture systems. In Lecture Notes in
Mechanical Engineering. Springer, 2019.

U. Raza et al. Dataset: Indoor localization with narrow-band, ultra-wideband, and motion cap-
ture systems. In 2nd DATA Workshop, 2019.

V. Barral et al. Multi-sensor accurate forklift location and tracking simulation in industrial indoor
environments. Electronics, 8, 2019.

J. Li et al. Accurate 3d localization for mav swarms by uwb and imu fusion. arXiv preprint
arXiv:1807.10913, 2018.

K. M. Mimoune et al. Evaluation and improvement of localization algorithms based on uwb
pozyx system. In SoftCOM. IEEE, 2019.

K. Bregar et al. Nlos channel detection with multilayer perceptron in low-rate personal area net-
works for indoor localization accuracy improvement. In 8th JoZef Stefan Int. Conf., volume 31,
2016.

K. Bregar et al. Improving indoor localization using convolutional neural networks on compu-
tationally restricted devices. IEEE Access, 2018.

Tuan Li, Hongping Zhang, Zhouzheng Gao, Qijin Chen, and Xiaoji Niu. High-accuracy po-
sitioning in urban environments using single-frequency multi-gnss rtk/mems-imu integration.
Remote sensing, 10(2):205, 2018.

Jae-One Lee and Sang-Min Sung. Assessment of positioning accuracy of uav photogrammetry
based on rtk-gps. Journal of the Korea Academia-Industrial cooperation Society, 19(4):63-68,
2018.

Kiyoung Kim, Jaemook Choi, Junyeon Chung, Gunhee Koo, In-Hwan Bae, and Hoon Sohn.
Structural displacement estimation through multi-rate fusion of accelerometer and rtk-gps dis-
placement and velocity measurements. Measurement, 130:223-235, 2018.

Bernhard GrofSwindhager, Michael Stocker, Michael Rath, Carlo Alberto Boano, and Kay
Romer. Snaploc: An ultra-fast uwb-based indoor localization system for an unlimited num-

[373]

[374]

[375]
[376]
[377]

[378]

[379]

[380]
[381]
[382]

[383]

[384]

[385]
[386]
[387]

[388]

[389]

[390]
[391]
[392]

[393]

LIST OF REFERENCES

ber of tags. In 2019 18th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pages 61-72. IEEE, 2019.

Li Qingqing, Yu Xianjia, Jorge Pefia Queralta, and Tomi Westerlund. Adaptive lidar scan frame
integration: Tracking known MAVs in 3D point clouds. In 20th International Conference on
Advanced Robotics (ICAR). IEEE, 2021. doi: 10.1109/ICAR53236.2021.9659483.

Paola Torrico Morén, Salma Salimi, Jorge Pefia Queralta, and Tomi Westerlund. Uwb role
allocation with distributed ledger technologies for scalable relative localization in multi-robot
systems. arXiv preprint, 2022.

Y. Q. Chen and Z Wang. Formation control: a review and a new consideration. In /EEE/RSJ
IROS, 2005.

Wei Ren and Yongcan Cao. Distributed coordination of multi-agent networks: emergent prob-
lems, models, and issues. Springer Science & Business Media, 2010.

B. D. O. Anderson et al. Rigid graph control architectures for autonomous formations. /EEE
Control Systems Magazine, 2008. ISSN 1066-033X. doi: 10.1109/MCS.2008.929280.

R. D’Andrea. Guest editorial: A revolution in the warehouse: A retrospective on kiva systems
and the grand challenges ahead. IEEE Transactions on Automation Science and Engineering, 9
(4), Oct 2012. ISSN 1545-5955. doi: 10.1109/TASE.2012.2214676.

S. Bandyopadhyay et al. Probabilistic and distributed control of a large-scale swarm of au-
tonomous agents. [EEE Transactions on Robotics, 33(5):1103-1123, Oct 2017. ISSN 1552-
3098.

M Basiri et al. Distributed control of triangular formations with angle-only constraints. Systems
& Control Letters, 59(2):147 — 154, 2010. ISSN 0167-6911.

A. N. Bishop. A very relaxed control law for bearing-only triangular formation control. I[FAC
Proceedings Volumes, 44(1):5991 — 5998, 2011. ISSN 1474-6670.

A. N. Bishop er al. Bearing-only triangular formation control on the plane and the sphere. In
2010 18th MED, June 2010.

S. L. Smith ez al. Stabilizing a multi-agent system to an equilateral polygon formation. In Proc.
of the 17th International Symposium on Mathematical Theory of Networks and Systems, pages
2415-2424, 2006.

D. Morgan et al. Swarm assignment and trajectory optimization using variable-swarm, dis-
tributed auction assignment and sequential convex programming. The International Journal of
Robotics Research, 35(10):1261-1285, 2016.

K. K. Oh ef al. Formation control of mobile agents based on inter-agent distance dynamics.
Automatica, 47(10), 2011. ISSN 0005-1098.

Sherif A.S. Mohamed et al. A survey on odometry for autonomous navigation systems. [EEE
Access, 2019.

G. Visdrhelyi et al. Outdoor flocking and formation flight with autonomous aerial robots. In
IEEE/RSJ IROS, 2014. doi: 10.1109/IROS.2014.6943105.

S. A. Barogh and H. Werner. Cascaded formation control using angle and distance between
agents with orientation control (part 1 and part 2). In 2016 UKACC 11th International Confer-
ence on Control (CONTROL), pages 1-6, Aug 2016.

M. C. Park, Z. Sun, M. H. Trinh, B. D. O. Anderson, and H. S. Ahn. Distance-based control of
k4 formation with almost global convergence. In 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 904-909, Dec 2016.

S. Kloder et al. A configuration space for permutation-invariant multi-robot formations. In 2004
ICRA, volume 3, April 2004.

N. P. Hyun et al. Collision free and permutation invariant formation control using the root locus
principle. In 2016 ACC, July 2016.

M. M. Zavlanos et al. Distributed formation control with permutation symmetries. In 2007 46th
IEEE CDC, Dec 2007.

P. Kingston et al. Index-free multi-agent systems: An eulerian approach. IFAC Proceedings
Volumes, 43(19):215 — 220, 2010. ISSN 1474-6670.

231

Jorge Pefa Queralta

[394]
[395]
[396]
[397]

[398]

[399]

[400]

[401]

[402]

[403]

[404]

[405]

[406]

[407]
[408]

[409]

[410]

[411]

[412]

[413]

232

N. Shiell et al. A bearing-only pattern formation algorithm for swarm robotics. In Swarm
Intelligence. Springer International Publishing, 2016. ISBN 978-3-319-44427-7.

M. Hoeing et al. Auction-based multi-robot task allocation in comstar. In Proceedings of the 6th
AAMAS, pages 280:1-280:8, 2007. ISBN 978-81-904262-7-5. doi: 10.1145/1329125.1329462.
C. Pinciroli et al. Decentralized progressive shape formation with robot swarms. In DARS,
pages 433-445. Springer, 2018.

Guannan Li et al. Decentralized progressive shape formation with robot swarms. Autonomous
Robots, Oct 2018. ISSN 1573-7527. doi: 10.1007/s10514-018-9807-5.

Kasper Stgy. Using situated communication in distributed autonomous mobile robotics. In
Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, SCAI *01, pages
44-52.10S Press, 2001. ISBN 1-58603-161-9.

T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discrete & Computational Geometry, 1996. ISSN 1432-0444. doi: 10.1007/BF02712873.

S. A. Barogh and H. Werner. Cascaded formation control using angle and distance between
agents with orientation control (part 1 and part 2). In UKACC 11th International Conference on
Control, Aug 2016.

J. Ghommam et al. Cascade design for formation control of nonholonomic systems in chained
form. Journal of the Franklin Institute, 348(6):973 — 998, 2011. ISSN 0016-0032. doi: https:
//doi.org/10.1016/j.jfranklin.2011.03.008.

L. Consolini et al. Leader—follower formation control of nonholonomic mobile robots with input
constraints. Automatica, 44, 2008. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2007.09.019.

S. Ahmadi Barogh et al. Formation control of non-holonomic agents with collision avoidance.
In American Control Conference, 2015. doi: 10.1109/ACC.2015.7170825.

Salma Salimi, Paola Torrico Morén, Jorge Pefia Queralta, and Tomi Westerlund. Secure het-
erogeneous multi-robot collaboration and docking with hyperledger fabric blockchain. arXiv
preprint, 2022,

Kailai Li, Meng Li, and Uwe D Hanebeck. Towards high-performance solid-state-lidar-inertial
odometry and mapping. arXiv preprint arXiv:2010.13150, 2020.

Jiarong Lin and Fu Zhang. Loam livox: A fast, robust, high-precision LIDAR odometry and
mapping package for LIDARSs of small FoV. In IEEE International Conference on Robotics and
Automation (ICRA), pages 3126-3131. IEEE, 2020.

A. S. Huang et al. Visual odometry and mapping for autonomous flight using an rgb-d camera.
In Robotics Research. Springer, 2017.

Evan Ackerman. Skydio’s new drone is smaller, even smarter, and (almost) affordable. IEEE
Spectrum, 2019.

Daniel Zelazo, Antonio Franchi, Frank Allgower, Heinrich H Biilthoff, and P Robuffo Giordano.
Rigidity maintenance control for multi-robot systems. In Robotics: science and systems, pages
473-480, 2012.

Fabrizio Schiano, Antonio Franchi, Daniel Zelazo, and Paolo Robuffo Giordano. A rigidity-
based decentralized bearing formation controller for groups of quadrotor UAVs. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5099-5106. IEEE,
2016.

Fabrizio Schiano and Paolo Robuffo Giordano. Bearing rigidity maintenance for formations of
quadrotor UAVs. In IEEE International Conference on Robotics and Automation (ICRA), pages
1467-1474. 1IEEE, 2017.

Fabrizio Schiano and Roberto Tron. The dynamic bearing observability matrix nonlinear observ-
ability and estimation for multi-agent systems. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3669-3676. IEEE, 2018.

Patrik Schmuck and Margarita Chli. Multi-uav collaborative monocular slam. In /EEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3863-3870. IEEE, 2017.

[414]

[415]

[416]

[417]

[418]

[419]

[420]

[421]

[422]

[423]

[424]

[425]

[426]

LIST OF REFERENCES

Nesrine Mahdoui, Vincent Frémont, and Enrico Natalizio. Communicating multi-uav system
for cooperative slam-based exploration. Journal of Intelligent & Robotic Systems, pages 1-19,
2019.

Michael Zollhofer, Matthias NieBner, Shahram Izadi, Christoph Rehmann, Christopher Zach,
Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian Theobalt, et al.
Real-time non-rigid reconstruction using an rgb-d camera. ACM Transactions on Graphics
(ToG), 33(4):1-12, 2014.

Siyan Dong, Kai Xu, Qiang Zhou, Andrea Tagliasacchi, Shiging Xin, Matthias Niener, and
Baoquan Chen. Multi-robot collaborative dense scene reconstruction. ACM Transactions on
Graphics (TOG), 38(4):1-16, 2019.

Fouad Sukkar, Graeme Best, Chanyeol Yoo, and Robert Fitch. Multi-robot region-of-interest
reconstruction with dec-mcts. In IEEE International Conference on Robotics and Automation
(ICRA), pages 9101-9107. IEEE, 2019.

Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science &
Business Media, 2013.

Shengkang Chen and Ankur Mehta. Colo: A performance evaluation system for multi-robot co-
operative localization algorithms. In /IEEE International Conference on Robotics and Automation
(ICRA), pages 1458-1464. IEEE, 2019.

Jason T Isaacs, Daniel J Klein, and Joao P Hespanha. Algorithms for the traveling salesman
problem with neighborhoods involving a dubins vehicle. In American Control Conference, pages
1704-1709. IEEE, 2011.

Jason T Isaacs and Joao P Hespanha. Dubins traveling salesman problem with neighborhoods:
A graph-based approach. Algorithms, 6(1):84-99, 2013.

Enrica Soria, Fabrizio Schiano, and Dario Floreano. The influence of limited visual sensing on
the reynolds flocking algorithm. In /IEEE International Conference on Robotic Computing (IRC),
pages 138-145. IEEE, 2019.

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1-4. IEEE, 2011.

Jeffrey Ichnowski, Kaiyuan Chen, Karthik Dharmarajan, Simeon Adebola, Michael Danielczuk,
Victor Mayoral-Vilches, Hugo Zhan, Derek Xu, Ramtin Ghassemi, John Kubiatowicz, et al.
Fogros 2: An adaptive and extensible platform for cloud and fog robotics using ros 2. arXiv
preprint arXiv:2205.09778, 2022.

Thien-Minh Nguyen, Shenghai Yuan, Muqing Cao, Thien Hoang Nguyen, and Lihua Xie. Viral
slam: Tightly coupled camera-imu-uwb-lidar slam. arXiv preprint arXiv:2105.03296, 2021.
Amanda Prorok, Matthew Malencia, Luca Carlone, Gaurav S Sukhatme, Brian M Sadler, and
Vijay Kumar. Beyond robustness: A taxonomy of approaches towards resilient multi-robot sys-
tems. arXiv preprint arXiv:2109.12343, 2021.

233

	Acknowledgements
	Table of Contents
	Abbreviations
	List of Original Publications
	Introduction
	Motivation and objectives
	Multi-robot coordination algorithms
	Multi-robot task allocation
	Area coverage and path planning
	Planning for different robots (UXVs)
	Multi-robot path planning
	Planning in heterogeneous multi-robot systems
	Sensor fusion and multi-robot perception
	Shared autonomy
	Communication
	Localization in GNSS-denied environments

	Multi-robot systems for search and rescue
	Terminology
	Contributions
	Thesis organization

	Multi-robot systems in the edge-cloud continuum
	Reconfigurable swarm architecture
	Swarm robotics and multi-agent systems in the IoT
	Models for reconfigurable swarms
	Architectural layers
	Reconfiguration processes in a drone swarm
	Architecture summary

	Use case: offloading visual odometry to the edge
	Cloud SLAM
	Monocular visual-inertial odometry
	Experimental analysis
	Remarks

	Use case: offloading lidar odometry with FPGAs
	Initial implementation and analysis
	FPGA implementation
	FPGA resource utilization
	Remarks

	Summary and conclusions

	DLTs for distributed robotic systems
	Consensus mechanisms in blockchains
	Consensus
	Smart contracts
	Sharding
	Scalability

	Blockchain-based services at the MEC layer
	Multi-Access edge computing and network slicing
	Previous works
	Managing MEC with permissioned blockchains
	Distributed robotic systems

	MEC for autonomous robots in smart cities
	Provision of HD maps in real time
	Online update of local HD maps
	Distributed reinforcement learning
	Offloading services
	Security concerns

	Consensus in swarms with blockchain technology
	Blockchain-powered collaboration
	PoW for online estimation of computational resources
	Data evaluation - proof of quality
	Peer-to-peer data sharing scheme

	Initial assessment of a blockchain solution
	PoW metrics
	Data sharing scheme
	Initial implementation

	Discussion
	Challenges
	Opportunities

	Summary and conclusions

	Securing single- and multi-robot missions
	Premise and motivation
	Novelty
	Research questions
	Contributions
	Chapter organization

	Background and related works
	Security in robotics
	Indoor mobile navigation
	Research gap and novelty

	Encoded instruction graphs framework
	Encoding robotic instructions
	Validation modalities

	Use case: encoded navigation graph
	Encoded graph definition
	Deployment and navigation
	Landmark-based localization

	Navigation graphs: methodology
	Simulation environment
	Real-robot experimental settings
	Feature hashing

	Simulation and experimental results
	Metrics
	Single-robot simulation results
	Multi-robot exploration simulation results
	Experimental results

	Summary and conclusions
	Chapter summary
	Viability and usability
	Trade-offs and security considerations
	Validation of sensor data
	Secure and trustable multi-robot systems

	Localization
	UWB-based localization
	Previous works
	Formation control
	Multi-robot systems
	Distributed estate estimation
	Contributions

	Characterization of UWB localization
	UWB characterization and existing datasets
	TIERS UWB dataset
	Dataset analysis, experimentation and results
	Autopositioning of anchors
	Characterization of UWB localization accuracy
	Remarks on the UWB dataset

	Cooperative localization
	Cooperative UWB-based localization
	Multi-robot system
	Experimental settings
	Experimental results

	Summary and conclusions

	Spatial Coordination in Multi-Robot Systems
	Index-free, communication-free formation control
	Formation definition
	Control inputs
	Numerical analysis
	Testing in a lab environment
	Discussion on index-free formation control

	Progressive formation control
	Problem Formulation
	Progressive Position Assignment Algorithm
	Control inputs
	Point simulations
	3D simulations with ROS
	Gazebo simulation results
	Remarks

	Summary and conclusions

	Collaborative Sensing
	Context and contributions
	Collaborative scene reconstruction
	Chapter contribution

	Background
	Collaborative scene reconstruction
	Methodology
	Experimental results
	Summary and conclusions

	Concluding remarks
	Summary and contributions
	Future directions and open research questions
	Robots in the edge and DLT integrations
	UWB-based localization and collaborative sensing
	Multi-robot systems in the wild

	List of References

