
OSINT-based Email Analyzer for
Phishing Detection

Master of Science in Technology Thesis
Cyber Security (EIT)
University of Turku
Department of Computing
2023
Francesco Pavanello

Supervisors:
Seppo Virtanen (University of Turku)
Jouni Isoaho (University of Turku)
Massimo Giaimo (Würth Phoenix)
Simone Cagol (Würth Phoenix)

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Francesco Pavanello: OSINT-based Email Analyzer for Phishing Detection

Master of Science in Technology Thesis, 63 p.
Cyber Security (EIT)
February 2023

It is more and more common to receive emails asking for credentials. They usually
say that there is some kind of issue that must be solved by accessing the involved
service using the link inside the message text. These emails are often malicious,
thought to steal users’ or employees’ credentials and gain access to personal or cor-
porate areas.

This scenario is commonly known as phishing, and nowadays it is the most common
cause of corporate data breaches. The attacker tries to exploit human vulnerabil-
ities like fear, concern or carelessness to obtain what would be difficult to achieve
otherwise.

Even if it is easy from an expert point of view to recognize such attempts, it is not
so simple to automatize their detection, due to the fact that there are various tech-
niques to elude systematic checks. Nevertheless, Würth Phoenix wants to improve
their cyber defense against any possible threat, and hence they assigned me the task
of working on phishing emails detection.

This thesis presents a novel program that can analyze all emails delivered to a
specifically set up email server without any filtering on incoming traffic, which is
then called a "spam-trap-box." Additionally, it is configured with accounts registered
for domains owned by failed companies that used to operate in the same industry of
Würth Phoenix customers. This way it is more probable to analyze traffic similar
to the one in a real case scenario.

The innovative part of the analysis implemented is the use of Open Source Intel-
ligence (OSINT) to compare the most relevant parts of an email with evidence of
other phishing attempts indexed on the web, which are generally known as Indica-
tors of Compromise (IoCs).

After the inspection, if an email is categorized as malicious, new IoCs are created
to feed the Würth Phoenix Security Operation Center (SOC), which is the service
responsible for the protection against cyber threats offered to their customers. The
new indicators include more information than the ones used during the analysis,
and the findings are inherent to clients’ businesses, thus the SOC has more details
to use while analyzing their email traffic.

Keywords: phishing, email security, OSINT

Contents

1 Introduction 1

2 Technical Background 4

2.1 Email Message Formats . 4

2.2 Email Protocols . 6

2.2.1 Simple Mail Transfer Protocol (SMTP) 7

2.2.2 Post Office Protocol version 3 (POP3) 9

2.2.3 Internet Mail Access Protocol (IMAP) 10

2.3 Email Validation Against Spoofing 14

2.3.1 Sender Policy Framework (SPF) 14

2.3.2 DomainKeys Identified Mail (DKIM) 16

2.3.3 Domain-based Message Authentication, Reporting and Con-

formance (DMARC) . 18

3 Theoretical Background 20

3.1 Phishing . 20

3.2 Open Source Intelligence (OSINT) 24

3.3 Indicators of Compromise . 27

3.4 Spam filter . 29

4 Würth Phoenix SOC Infrastructure 31

i

4.1 Elastic Stack . 32

4.1.1 Elasticsearch . 33

4.1.2 Logstash . 34

4.1.3 Kibana . 36

4.1.4 Beats . 37

4.2 OpenCTI . 38

4.3 SATAYO . 39

5 Specification and Design 43

5.1 Motivation . 43

5.2 Integration . 44

5.3 Conception . 44

5.3.1 Spam Trap Box . 44

5.3.2 Analyzer . 46

6 Implementation and Verification 49

6.1 Spam Trap Box Configuration . 49

6.2 Analyzer Development . 50

6.2.1 Database . 50

6.2.2 Emails Download . 52

6.2.3 Data Extraction . 54

6.2.4 Data Analysis . 56

6.3 Detection Simulation . 60

7 Conclusion 61

References 64

ii

List of Figures

1.1 Average cost and frequency of data breaches by initial attack vector,

data taken from the IBM annual report "Cost of a Data Breach 2022"

[1] . 2

2.1 Email Exchange Scenario . 7

3.1 Lockheed Martin Cyber Kill Chain 27

4.1 Neteye Log Management Architecture 33

4.2 OpenCTI Main View Screenshot . 39

4.3 SATAYO Research Main View Screenshot 40

4.4 Exposure Assessment Example . 41

6.1 Database UML Representation . 51

iii

List of Snippets

6.1 Server Connection . 52

6.2 Login & "Analyzed" Mailbox Creation 53

6.3 List all the Mailboxes . 53

6.4 Email Download . 54

6.5 Data Extraction . 54

6.6 Email Relocation and Logout . 59

iv

List of Acronyms

ABAC Attribute-based Access Control

API Application Program Interface

ASCII American Standard Code for Information Interchange

DKIM DomainKeys Identified Mail

DMARC Domain-based Message Authentication, Reporting and Conformance

DNS Domain Name System

EBP Elastic Blockchain Proxy

ECS Elastic Common Schema

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IMAP Internet Mail Access Protocol

IoA Indicator of Attack

IoC Indicator of Compromise

IP Internet Protocol

v

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

MIME Multipurpose Internet Mail Extensions

OSINT Open Source INTelligence

PKI Public Key Infrastructure

POP3 Post Office Protocol - Version 3

RBAC Role-based Access Control

RFC Request for Comments

SIEM Security Information and Event Management

SMTP Simple Mail Transfer Protocol

SOC Security Operation Center

SPF Sender Policy Framework

TCP Transmission Control Protocol

TLS Transport Layer Security

TTPs Tactics, Techniques and Procedures

vi

1 Introduction

Data breaches caused by phishing are the most expensive in 2022, as reported by

the IBM annual report "Cost of a Data Breach 2022", available on their website

[1]. In fact, the average cost of a data breach in this case is USD 4.91 million, as

shown in Figure 1.1, extracted from the report, which means USD 0.26 million more

than the previous year. It is also reported that phishing is the second most common

cause of a breach, being the initial attack vector in the 16% of the cases happened

in the 2022.

Considering these data, it appears obvious that companies need to improve their

countermeasures against phishing, considering both the technological and human

aspects. Besides all the training that a company provides to their employees to

improve their awareness, it is known that people are and will always be the weakest

ring of the chain. This is why it is necessary to work also on the detection tech-

nologies, trying to reduce the number of malicious emails that reach the employees’

mailbox.

At Würth Phoenix they are developing a Security Operation Center (SOC), to

offer their clients a complete and constant monitoring of their infrastructure and the

related events.

In this thesis a new approach to recognize phishing emails is proposed. It is

innovative due to the fact that the evaluation of a message is based mainly on

data that is possible to gather using Open Source Intelligence (OSINT). These data

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Average cost and frequency of data breaches by initial attack vector,

data taken from the IBM annual report "Cost of a Data Breach 2022" [1]

are collected and made available for our analysis by two tools integrated into the

Würth Phoenix SOC: SATAYO, entirely developed internally to the company, and

OpenCTI. Both will be described in Chapter 4.

The idea is to configure a mail server without any traffic filter, hence called spam

trap box, since it allows any message to be delivered. It is to notice that the server

is configured using domains that were previously owned by companies operating in

the same industry of Würth Phoenix clients, so that incoming phishing emails would

probably target them too.

Then a Python program downloads all the emails stored on the server and ana-

lyzes them to determine if they are malicious. An email verification is done compar-

ing the email headers with information publicly available on the Internet regarding

known attacks and attackers, called Indicators of Compromise (IoCs), and consid-

ering some other factors and aspects of the messages. Finally, if that was the case,

new IoCs are created and ingested by OpenCTI, so as the SOC can count on more

CHAPTER 1. INTRODUCTION 3

information while monitoring the customers’ email traffic.

Besides the practical project, this thesis aims to answer the following questions:

• Which features of an email can reveal more than the others if it is a phishing

attempt?

• Which open source information are more useful to detect ongoing phishing

campaigns?

• How can the above data be combined to get the most accurate assessment?

The rest of the thesis is organized as follows. Firstly, in Chapters 2 and 3 the

theory necessary to understand the work done is explained, starting from the tech-

nical aspects, such as email messages formats, email protocols and email validation

against spoofing, moving to the description of phishing, Open Source Intelligence,

Indicators of Compromise and Spam Filter. Of course, for each topic it is also high-

lighted why they are relevant for the development of the thesis project. Chapter 4

presents Würth Phoenix SOC infrastructure, to let the reader know the system in

which the email analyzer is integrated. Finally, the idea behind the work and its

design are exposed in Chapters 5, while the implementation details are described

in Chapter 6, considering the results achieved by the first version developed. Final

thoughts and remarks are provided in Chapter 7, along with the future steps that

still need to be done.

2 Technical Background

Before discussing the core of the topic, it is necessary to introduce some technical

concepts needed to fully understand what we are talking about. This chapter starts

by explaining the protocols on which the exchange of electronic mails relay, outlin-

ing also the messages format. To be more precise, the dissertation will go through

Simple Mail Transfer Protocol (SMTP), Post Office Protocol - Version 3 (POP3)

and Internet Mail Access Protocol (IMAP). It is subsequently highlighted how secu-

rity was not a priority when they were conceived. In the end, it is explained which

mechanisms have been thought to patch the vulnerabilities over the years, in par-

ticular Sender Policy Framework (SPF), DomainKeys Identified Mail (DKIM) and

Domain-based Message Authentication, Reporting and Conformance (DMARC).

2.1 Email Message Formats

Based on what is defined in RFC 5322 [2], an email message is composed of two

parts: a header, containing all the information necessary to deliver it as well as the

data about the sender, and a body, i.e. the message itself. Those are separated by

an empty line.

In this original definition, the whole message must include only US-ASCII char-

acters, accordingly to the SMTP protocol, since, when SMTP was designed in the

1980s, transmission channel capacity did not permit to transfer large data. To over-

come this limitation, several other documents (RFC 2045 [3], RFC 2046 [4], RFC

2.1 EMAIL MESSAGE FORMATS 5

2047 [5], RFC 4288 [6], RFC 4289 [7], RFC 2049 [8]) defined the MIME standard,

which, as stated in RFC 6532 [9], "added support for the use of 8-bit character

sets in body parts, and also defined an encoded-word construct so other character

sets could be used in certain header field values". The latter RFC defines another

improvement, allowing the "use of Unicode in mail addresses and most header field

content".

Besides this character sets digression, the standard describes the email header as

a dictionary. This means that each header line constitutes a field, which consists of

a keyword, or field name, followed by its assigned value, called field body; the two

are separated by a colon. There is not a specific order in which the different fields

have to appear, and only the origination date field and the originator address fields

should always be set in order to guarantee interoperability between different clients.

The former has "Date" as field name, and a date-time as field body; it specifies the

moment in which the email is pushed into the mail delivery system by its creator.

The latter is composed of three fields: the from, the sender and the reply-to one.

The first, representing the author or authors of the message, is formed of the field

name "From" and a comma-separated list of one or more mailbox specifications.

In case the list contains only one element, the sender field, whose field name is

"Sender", is not necessary. Otherwise, it must be set with a single email address,

the one responsible for the transmission of the message. Finally, the reply-to may

be included to specify to whom replies must be sent. Its field name is "Reply-To"

and its field body is a comma-separated list of one or more mailbox specifications.

All the other fields are syntactically optional, accordingly to the RFC 5322 [2],

because, as Pete Resnick, the main RFC author, clarified me via emails, they have

not encountered clients that have trouble with messages that do not contain these

fields while they were writing the document. Anyway, it is necessary to specify

at least one email address of a receiver while writing an email using a dedicated

2.2 EMAIL PROTOCOLS 6

application, otherwise it is not able to send the message. This can be done by setting

at least one of the following three header fields: "To", "Carbon Copy" (or "CC")

and "Blind Carbon Copy" (or "BCC"). The field body of all the three possibilities

is a comma-separated list of one or more email addresses. The difference between

them is the fact that the "To" field contains the primary recipients of the message,

the "CC" contains the address of those recipients that the sender wants to inform

about the message, even if it is not directly thought for them. Finally, the "BCC"

contains the addresses that are not to be revealed to other recipients of the message.

Furthermore, every message should have a globally unique message identifier,

set in the "Message-ID" field, and a reply should refer to the message, or messages,

it is replying to by filling the "In-Reply-To:" and "References:" fields. The former

contains the message ID of all the parent messages, while the latter is used to refer

to a thread of the conversation. Another common field is the "Subject" one, which

contains human readable text that introduces the content of the message. If it is

a reply, the subject should start with "RE" followed by the content of the subject

field of the original message.

It is important to keep in mind that the specification described in an RFC are

not mandatory, they simply state that certain fields are required to interoperate

well, hence anyone can do as they prefer. Finally, the headers here reported are the

ones useful for the purpose of the thesis, but there are many others described in the

standard.

2.2 Email Protocols

Entities involved in an email exchange are shown in figure 2.1. It is possible to

notice that mail servers do not reside on user personal machines, otherwise they

should always be on. The mail servers are usually shared between a lot of users,

each having their personal mailbox hosted on it. A user interacts with the mail

2.2 EMAIL PROTOCOLS 7

Figure 2.1: Email Exchange Scenario

server through a user agent installed on their PC. Furthermore, each mail server

can act as both a client and a server, depending on whether it is on the sender or

recipient side respectively.

2.2.1 Simple Mail Transfer Protocol (SMTP)

As it is possible to deduce from figure 2.1, electronic mail exchange is principally

based on Simple Mail Transfer Protocol, defined in RFC 5321 [10]. This protocol

oversees the transfer of messages from the sender’s mail server (in this contest called

SMTP client) to the recipient’s one (referred to as SMTP server). In addition, it is

also responsible for the communication between the sender agent, the machine on

which an user compones the message, and SMTP client.

Since the TCP connection is opened by the machine that wants to send the

message, and hence push it into the communication channel, SMTP is defined as a

"push protocol". On the other hand, the protocol used to navigate on the Internet,

called HyperText Transfer Protocol (HTTP), is a "pull protocol", due to the fact

that the TCP connection is initiated by the machine that wants to retrieve a file,

mainly web pages [11].

Although in the previous paragraph we talk about TCP, it is not the only possible

transport over which electronic mails can be exchange. The only requirement is that

the communications go through a two-way reliable ordered data stream channel,

2.2 EMAIL PROTOCOLS 8

since the SMTP server responds to each SMTP client’s command with a reply

that "may indicate that the command was accepted, that additional commands are

expected, or that a temporary or permanent error condition exists" [10].

If TCP is used, IANA specifies that SMTP servers should constantly listen on

port 25 for incoming requests. The main commands are, in order as they are send

during an email transaction: EHLO, MAIL FROM, RCPT TO, DATA, QUIT. The

first one is used to identify the SMTP client to the SMTP server, the second and the

third to set, respectively, the sender and the recipient, the second to last is used to

communicate that all the following lines, until a line containing a single period, are

part of the mail data, while the last one is used to close the communication channel.

It is not mandatory for the mail transfer to be a peer-to-peer transaction, as

portrayed in the scheme 2.1. In fact, a mail server can act, not only as an originating

or delivery system, but also as a relay and gateway. The first two are represented in

figure 2.1, since they are respectively the SMTP client, which introduces mails into

the system, and the SMTP server, which is queried by the recipient’s user agent to

retrieve and read messages. Instead, both relays and gateways are not in the figure,

but they should be in the middle between the client and the server. Accordingly to

the SMTP RFC [10], the difference between them is that a relay transmits emails

without any changes, except adding trace information, to another SMTP server,

while a gateway performs the necessary transformations on the message in order to

transmit it from a transport environment to another one.

One interesting vulnerability related to the configuration of a mail server is often

exploited by spammers; it is known as "Open Relay". This configuration basically

allows anyone to send emails to anyone else, due to the lack of an authentication

requirement, and hence it leads to email address spoofing and spam. Often this is

the default mail server configuration, since it is the simplest one. Nowadays, many

servers maintain a blacklist of known open-relays, in order to not accept messages

2.2 EMAIL PROTOCOLS 9

coming from these ones [12]. To secure a relay, it should accept only:

• Messages from local addresses to local mailboxes

• Messages from local IP addresses to external mailboxes

• Messages from external IP address to local mailboxes

In other words, a relay should block emails coming from external IP addresses and

intended for external mailboxes; of course, all the messages must be from authenti-

cated and authorized users [13]. At section 2.3 countermeasures to email addresses

spoofing are explained.

Due to the fact that SMTP is a push protocol, the email exchange needs to

involve another protocol to retrieve the messages from the SMTP server, such as

POP3 or IMAP. They are defined as Mail Access Protocol, and are described in

Sections 2.2.2 and 2.2.3 respectively.

As a result of an increasing use of web apps to access one’s mailbox, it is nowadays

common to use also HTTP to interact with the mail server, both to send and retrieve

messages. Anyway, since this protocol is not specifically intended for email exchange,

it is not described in the thesis.

2.2.2 Post Office Protocol version 3 (POP3)

Post Office Protocol version 3 is defined in RFC 1939 [14]. It is a simple and

limited protocol: in fact, it does not have the ability to keep state information

across different sessions, and it does not offer a way to organize email messages on

the server. Anyway, it is possible to create a hierarchy of folders locally on a client

machine, even if this will not be synchronized on the other user’s devices. POP3

connections are opened on the server by the client on port 110. As for SMTP, the

server always answers the client, letting it know the outcome of the issued command.

2.2 EMAIL PROTOCOLS 10

A POP3 session progresses throughout three states: authorization, transaction and

update.

During the first one, the client must authenticate itself sending username and

password; if the operation is successful, the server retrieves all the resources associ-

ated to the client, giving it exclusive access.

The POP3 session enters hence the transaction state, and the client can retrieve

messages. The user agent can often be configured to operate in two modalities:

"download and delete" or "download and keep"; in the former case, it marks a

message as deleted after having downloaded it, while in the latter the message is left

on the server as it is. The possible commands issued to a POP3 server during this

state are: STAT, LIST, RETR, DELE, NOOP, RSET. The syntax of the commands

is described in the RFC 1939 [14].

When the client wants to log out, it issues the QUIT command; this makes the

session enter the update state, during which the server removes all the messages

marked as deleted from the mailbox.

2.2.3 Internet Mail Access Protocol (IMAP)

The most recent version of Internet Mail Access Protocol is defined in RFC 9051

[15]. This protocol overcomes POP3 limitations, for example giving the user the

possibility of organizing messages in remote folders, i.e. mailboxes. Consequently,

IMAP implementation is considerably more complex, since IMAP servers need to

keep state information across different sessions. It also allow users "to search remote

folders for messages matching specific criteria" and "to obtain components of mes-

sages", for example only the message header or just one part of a multipart MIME

message [11].

If the IMAP server communicates on TCP, it listens on port 143 for cleartext

communications or on port 993 for TLS ones. A message can be accessed using two

2.2 EMAIL PROTOCOLS 11

different identifiers: both are 32 bits numbers, but one is unique inside a mailbox,

while the other is relative to the number of messages in the mailbox.

The former, called Unique Identifier (UID), is incremented each time an email

is added to the mailbox; this means that UIDs are not contiguous, due to the fact

that an email can be expunged from the mailbox but the UID of the subsequent

messages are not updated. In fact, a UID should never change once it is assigned to

an email. If used with the unique identifier validity value assigned to the mailbox

(UIDVALIDITY), which usually is a 32-bit representation of the current date/time

when the value is assigned, it is possible to globally identify the message not only

inside the mailbox, but also in any subsequent mailbox with the same name forever.

The latter, referred to as Message Sequence Number, is a value between one and

the number of messages in the mailbox. Hence, if a message is permanently deleted,

all the subsequent messages’ sequence number is decreased by one. This is useful

both to access messages by relative position in the mailbox, as if it is an array, and

to do mathematical operations to calculate, for example, how many messages have

been arrived between other two how many massages in the mailbox have a greater

or lower UID.

Another important feature is the possibility of assigning one or more flags to a

message. Each flag represents a specific status or characteristic of the message, and

it can be permanent or valid only during the current session. These named tokens

are divided in two categories: system flags and keywords.

System flags are pre-defined in RFC 9051 [15], and begin with "\" and currently

are:

• \Seen, used to mark a message as read

• \Answered, for messages the user has already answered to

• \Flagged, for highlighting an email as important

2.2 EMAIL PROTOCOLS 12

• \Deleted, to tell the server to delete the message when executing the EX-

PUNGE command

• \Draft, for messages to be completed

• \Recent, which exists only for backwards compatibility with older versions

of IMAP, in the last one it is considered deprecated, and was used to mark

messages arrived after the previous session

Unlike system flags, keywords are defined by the server implementation, and it

may be possible for user to register new ones. They start with a "$", and some of

the most useful are described in the RFC 9051 [15]. For example:

• $Forwarded, set by the email client to mark a message that has been forwarded

to another email address

• $Phishing, set by the delivery agent to warn a user that the content of the

message can be malicious, specifically a phishing attempt

• $Junk and $NotJunk, set by the user to mark a message with undesired (or

desired) contents

As previously stated, IMAP introduces the possibility of organizing emails in

different mailboxes, giving a user the possibility of creating new ones. Usually,

all new messages are placed into the INBOX folder, which in fact is "the primary

mailbox for this user on this server" [15].

As POP3, an IMAP session progresses through different states: Server Greeting,

Not Authenticated, Authenticated, Selected, Logout. The first one is entered after

a connection is established between the client and the server. After that, if the

connection is not pre-authenticated, the connection enters the Not Authenticated

state, where basically the user supplies their credential to the server. Then, in the

Authenticated state, the client selects the mailbox that they want to access; once

2.2 EMAIL PROTOCOLS 13

this is done, the session progresses into the Selected state, during which the user is

able to perform actions over the messages inside the mailbox. Finally, in the Logout

state, the connection is being terminated. During each state, only a specific subset

of all the commands is accepted by the server. IMAP commands used during the

implementation of the email analyzer, divided per states as specified in the RFC

9051 [15], are:

• Not Authenticated State:

– STARTTLS, to start a TLS negotiation

– LOGIN, to identify the client to the server and use a plaintext password

to authenticate this user

• Authenticated State:

– LIST, to enumerate the mailboxes associated to the authenticated user

– CREATE, to create the a new mailbox "Analyzed" where to move the

analyzed emails

– SELECT, to select the "INBOX" mailbox and access new messages

• Selected State:

– SEARCH, to enumerate all the emails in the selected mailbox

– FETCH, to retrieve data associated with each enumerated message

– COPY, to copy the specified message into the "Analyzed" mailbox

– STORE, to associate the flag "\Deleted" to the message in the "INBOX"

– EXPUNGE, to permanently delete all the messages marked with the flag

"\Deleted"

• Any State:

– LOGOUT, to deauthenticate the current user and close the connection

2.3 EMAIL VALIDATION AGAINST SPOOFING 14

2.3 Email Validation Against Spoofing

Email spoofing is based on the fact that an attacker sends a message using an email

address that they do not own as sender address. It is usually done to impersonate

someone else, in order to gain the recipient’s trust and confidence; this is often the

starting point of a phishing attack.

As countermeasure to spoofing, three standards were designed: Sender Policy

Framework, defined in RFC 7208 [16], DomainKeys Identified Mail, defined in RFC

6376 [17], and Domain-based Message Authentication, Reporting and Conformance,

defined in RFC 7489 [18]; if used together, they provide both email authentication

and validation. "SPF primarily publishes information about what host addresses

are authorized to send mail for a domain. DKIM places cryptographic signatures

on email messages, with the validation keys published in the DNS. DMARC pub-

lishes policy information related to the domain in the From: header field of email

messages." [19]

2.3.1 Sender Policy Framework (SPF)

A Sender record consists of a special DNS TXT record that defines which mail server

can send emails for the domain the record is referred to. It is easily recognizable

since it always start with "v=spf1" followed by a list of rules that define the allowed

mail servers and are evaluated in order from left to right. Evaluations, carried out

comparing the rules with the "mail from" SMTP header field of the received email,

can match, not match, or return an exception. In the first and last case, process

ends, otherwise it continues checking the subsequent rule.

Mail servers are identified in different ways, called mechanisms: "all", "include",

"a", "mx", "ip4", "ip6", "exists" and "ptr" (this last one should not be used). They

can directly identify a server using its IP address or a CIDR block of addresses ("ip4"

and "ip6") or require additional DNS lookups to resolve a specific DNS record ("a",

2.3 EMAIL VALIDATION AGAINST SPOOFING 15

"mx", "exists", "ptr"), which can refer either to the domain itself or to another,

specified after the mechanism. The mechanism "include" is used to evaluate the

SPF record of the specified domain, while the "all" one always matches and hence

is used as explicit default in the end of the record. There is a limit of 10 DNS

lookups to evaluate an SPF record that, if exceeded, causes the process to return a

"permerror", and the record is considered invalid.

Mechanisms are used in conjunction with qualifiers that determine the result

of the rule evaluation. If not specified, the default one is "+", which causes the

eventual match to return a "pass" result, meaning that the server is allowed. The "-

" qualifier defines a "fail", thus the server is explicitly not authorized. The "softfail"

qualifier is represented by the " " and means that a strong policy on that host is

not in place even if it is not trusted and further analysis are suggested. Finally,

"?" stands for "neutral", which means that there is no definite assertion (positive

or negative) about the client; it is more or less the same as the "none" result that

is returned in case that none of the policies matches.

A simple example of SPF record can be:

v=spf1 ip4:154.10.12.252/30 mx include:example.com -all

which means that only the machines that has 154.10.12.253 or 154.10.12.254 as IP

address, are present in an MX record of the domain the SPF record is about, and

matches a policy in the SPF record of the domain "example.com" are allowed to

send email for this domain. Since the default policy is a "fail", all the other machines

are explicitly unauthorized.

It is to notice that SPF standard alone is not enough to prevent spoofing: since

it evaluates only the SMTP header information, it is still possible to use an arbitrary

email address in the "FROM" message header.

2.3 EMAIL VALIDATION AGAINST SPOOFING 16

2.3.2 DomainKeys Identified Mail (DKIM)

Unlike SPF standard, DKIM aims to authenticate the message header, instead of

the SMTP one. To achieve this, a special header, the DKIM-Signature header, is

added to the message; it contains the signature of the message headers, the signature

of the message body and all the information necessary to verify their validity. The

header value is a tag-list, the most relevant of which are:

• "v=", the version of DKIM. To be compliant to the RFC 6376 [17], it must

be 1

• "a=", the algorithm used to generate the signature

• "b=", the signature hash of the message headers listed in "h=" tag

• "bh=", the signature hash of the message body

• "d=", the Signing Domain Identifier (SDID), which is a domain name that

refers to the identity claiming responsibility for the current message. Hence,

it must correspond to the DNS name under which the DKIM key record is

published

• "h=", the colon-separated list of the headers field names concatenated to val-

idate the signature

• "s=’, the selector used to identify the correct public key inside the domain key

namespace

A simple example of DKIM-Signature header could be:

DKIM-Signature: v=1; a=rsa-sha256; d=example.com;

s=verona; h=from:to:subject:date;

bh=MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=;

b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+y

uU4zGeeruD00lszZVoG4ZHRNiYzR

2.3 EMAIL VALIDATION AGAINST SPOOFING 17

When receiving something like this, in order to verify the signature, the recipient

retrieves the public key from the key namespace of example.com that is assigned

to the selector "verona". This is made through a DNS query; since all the DKIM

keys are stored in a subdomain named "_domainkey", the query in this case will

be for ’verona._domainkey.example.com’. It returns a TXT record that in this case

should look like:

v=DKIM1; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQ

KBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkMoGeLnQg1fWn7/zYt

IxN2SnFCjxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v

/RtdC2UzJ1lWT947qR+Rcac2gbto/NMqJ0fzfVjH4OuKhi

tdY9tf6mcwGjaNBcWToIMmPSPDdQPNUYckcQ2QIDAQAB

where the "v=" tag represents the version of the DKIM key record, that, if present,

must be the first tag of the list and must be set to "DKIM1", while the "p=" tag

defines the public key requested. Other tags may be present.

After having retrieved the public key, it is possible to calculate the two signatures

by hashing both the headers, concatenated as described by "h=" header, and the

body of the message; this must be done using the algorithm indicated in the "a="

tag. To pass the validation, the hash of the body must match the value of the "bh="

tag, while the hash of the headers must match the value of the "b=" tag.

Also DKIM, used alone, has a weakness, since the domain specified by the "d="

tag is not required to be same as the domain used in the "From" header of the

message. This means that attackers can use a domain they control to pass the DKIM

validation in the DKIM-Signature header, while using a spoofed email address in

the "From" message header.

2.3 EMAIL VALIDATION AGAINST SPOOFING 18

2.3.3 Domain-based Message Authentication, Reporting and

Conformance (DMARC)

DMARC was introduced to ensure that the SPF or DKIM weaknesses are not ex-

ploited. In fact, in order to pass the DMARC authentication check, a message not

only needs to pass at least one between the SPF and DKIM checks, but it also re-

quires that the related domain specified in the SMTP "From" header or the domain

declared in the "d=" tag of the DKIM-Signature header matches with the domain

indicated in the message "From" header. Since the DKIM-Signature header does

not change if a message is forwarded, its alignment is more important than the SPF

one.

This standard also offers the domain owner a way to define actions that mes-

sage recipients must perform when they receive an email coming from that domain.

Basically, it is possible to define two things: the policy to apply when receiving an

email that seems to come from that domain but that does not pass the DMARC

alignment, and the type of the report to send back to the domain owner.

There are three possible policies:

• "none", which means that the owner does not require the execution of any

specific action

• "quarantine", which signifies that those emails that fail the DMARC check

should be considered malicious

• "reject", which indicates that the emails that do not pass the alignment should

not be forwarded further.

Instead, there are only two possible kinds of report:

• Aggregate reports, which usually are daily reports that sum up all the au-

thentication results, regardless of the outcome, in order to provide the domain

2.3 EMAIL VALIDATION AGAINST SPOOFING 19

owner with an overview of the real-world emails stream. This is useful to set

up the most appropriate policy

• Failure reports, which are usually generated and sent to the domain owner as

soon as an email fails the DMARC check. This type of report provide more

information about the failure than the previous one

DMARC specifications are published in a DNS TXT record at the _dmarc sub-

domain. It contains a list of tags, of which "v=" and "p=" are mandatory. The

former indicates the DMARC version, which must be the first of the list and its

value must be "DMARC1" for the entire record to be considered valid. The latter

specifies the policy that the recipient of an email that does not pass the DMARC

check has to apply. The possible values are "none", "quarantine" and "reject", as

previously described.

Other possible tags are the ones that tell recipients what kind of report to send

and to whom to direct them:

• "rua", whose value is a comma separated list of "mailto:" followed by the

address to send the aggregate report

• "ruf", which is a list as described for the previous tag, but it contains the

addresses which a failure report should be forwarded to

• "fo", which provides requested options for generating a failure report

An example of DMARC TXT record is:

v=DMARC1; p=quarantine; rua=mailto:owner@example.com;

ruf=mailto:owner@example.com

3 Theoretical Background

In this chapter the background knowledge necessary to understand the need and the

innovation behind the thesis will be explained. It starts with a brief description of

Phishing Attacks, clarifying what they consist in and why on the one hand they are

still feasible and common, while on the other so difficult to prevent. The chapter

then continues with an overview of Open Source INTelligence, that clarifies what

it is and why it became so important for the Cyber Security. Then it is illustrated

what Indicators of Compromise are, comparing them with Indicators of Attack, and

it is shown how to use them during an analysis. In fact, to create valuable IoCs is

the aim of the email analyzer. Finally, while describing what spam filters are, the

end of the chapter illustrates the difference between that technology and the one

proposed in this thesis.

3.1 Phishing

The most common attack based on email spoofing is phishing. It consists in the

attacker’s attempt to trick their victim into providing credentials or other sensitive

information, which can then be used to gain access to, for example, a bank account

or private corporate area. In fact, the use of a spoofed email address is useful to

gain the victim’s trust. Phishing can also be the attack vector used to introduce

a ransomware inside a company. In both cases, the message is thought to make

people click on a malicious link, which usually conducts to a fake login page, or open

3.1 PHISHING 21

attachments that then run malicious code on the victim’s machine, often installing

malicious software. [20]

All the attacks that, like phishing, exploit human ingenuity to gain sensitive

information are generally referred to as social engineering. In fact, their goal is to

persuade people in performing some action that the attacker is not able to do on

their own. These attacks usually rely on at least one of the following factors [21]:

• Reciprocation, or better the fact that people form implicit or explicit obliga-

tions towards each other

• Consistency, in the sense that people tend to be consistent with previous de-

cisions

• Social proof, because people tend to act like those around them, in order to

feel part of a group

• Likeability, which means that people trust who they like, find convincing,

attractive or similar to themselves

• Authority, since people tend to obey those they fear, to avoid punishment

• Scarcity, usually of time, to persuade people to act quickly without letting

them think too much about what they are doing

Moreover, there are different types of email phishing attacks [22] [23]:

• Mass or bulk phishing, which does not have a specific target, but rather the

message is as general as possible and a large number of emails is sent, hoping

that at least one recipient will be deceived

• Spear phishing, that on the other hand has a specific target, so the message

must be built specifically for each attack, in order to seem legitimate. In fact,

in these cases the attacker gathers as much information as possible before

writing the message

3.1 PHISHING 22

• Whaling, which is a special sort of spear phishing targeting the most important

profiles inside a company, in order to obtain administrative credentials

• Cloning, that consists in replicating or simulating a legitimate message, but

substituting links or attachments with malicious ones

• Business Email Compromise (BEC), in which an attacker impersonates a

prominent figure within a society, asking an employee or a partner outside

the company to perform some actions

From the above, a phishing email may contain an unexpected sender, for example

the team leader or another high profile of the victim’s company, a promise of some

gifts or benefits, a tone that conveys urgency or threat, misleading information about

the sender or the reason behind the request in the message.

In their work about email phishing detection [24], Fette et al. listed the ten

features they think are the most useful to implement a good phishing filter. Hence,

based on these features, a phishing email could present IP-based URLs, links to a

recently registered domain, links where the URLs displayed a domain that does not

match the one really linked, links’ text that contains words like "link", "click" or

"here", MIME, HTML or JavaScript sections. Other features are the number of

links, the number of domains, the number of dots in a single URL and the output

of a spam filter.

Even if it is enough clear how phishing emails look like, it is not really easy to

block any malicious attempts of delivering such emails. In fact, the sender can seem a

legitimate one, or even be a trusted one, if the mailbox was previously compromised,

the subject and the content may not look like malicious at all, and the IP address of

the mail server, or the hostname itself, might not be in any blacklists. Consequently,

if the filter fails to block it, the success of a phishing attempt depends exclusively

on the recipients awareness.

3.1 PHISHING 23

Lain et al. explained in their work about phishing in organization [25] that some

employees are particularly more vulnerable to this kind of attacks than others. They

stated that both younger and older employees are more at risk than the others, as

well as the ones with lower computer skills and the ones who use computers daily

for repetitive tasks using always the same software. They also pointed out that,

during the fifteen months of monitoring they carried out, more or less a third of

the 14733 participants of their study clicked on a link or attachment contained in

their simulated phishing emails, while a quarter performed dangerous actions; out

of these, a quarter performed dangerous actions on more than one sample.

Additionally, they investigated the effectiveness of phishing warnings and train-

ing. According to the literature, they discovered that contextual warnings are really

effective, although it is not true that the well detailed ones are significantly bet-

ter than the more concise ones. Instead, contradicting prior research results, they

found that the combination of simulated phishing exercises and voluntary embedded

training is not helpful at all. However, Jampen et al. in their literature reviewed

about phishing training [26] identified various factors that influence the effectiveness

of such training and outlined how an effective training program should be designed

and implemented.

Finally, Lain et al. also revealed that crowdsourced phishing detection can be

efficient and sustainable in large organizations, a solution suggested previously in

other two papers [27] [28]. The idea is detecting ongoing phishing campaigns thanks

to employees’ reports of suspicious emails. They believe that, if employees keep

reporting suspicious emails over long period of time and their reports are sufficiently

accurate and timely, organizations are able to detect and stop phishing campaigns

with a short delay from their start. They also observed that the operational workload

to process all the reported emails is acceptable even in large organizations.

To conclude, it is to mention that email is not the only mean used to carry out

3.2 OPEN SOURCE INTELLIGENCE (OSINT) 24

phishing attacks. They can be conducted by calling the victim on the phone, and in

this case it takes the name of vishing, from VoIP. Similarly, instead of using emails,

it is possible to deliver the malicious message via sms, known as smishing, or posting

a malicious link in a website, blog or social network [22] [29].

3.2 Open Source Intelligence (OSINT)

Open Source Intelligence is the branch of intelligence that collects and analyzes

information only from publicly available sources. Nowadays, the main open source is

the Internet, but OSINT gathers information also from offline data, like newspapers,

government public documents, gray literature, radio or television transmissions, and

generally everything that can be trustworthy and used to support a thesis or decision.

Anyway, only online sources are consulted while performing the email analysis.

As described by Hwang et al. [30], the OSINT process can be divided into 5

steps:

• Identifying the sources, to determine what data are needed and where to find

them

• Data collection, both using active and passive techniques

• Data processing, which means to filter and associate the findings

• Data Analysis, to derive a conclusion according to the investigation purpose

• Reporting, which means to summarize the evidence and write them in a report

The first big advantages of OSINT are the simplicity and the rapidity of gathering

a large amount of information from different sources, while usually there is a lot of

bureaucracy to fill before obtaining access to restricted documents and resources.

Moreover, most open sources are freely accessible, or very cheap. This means that,

3.2 OPEN SOURCE INTELLIGENCE (OSINT) 25

potentially, everyone is able to collect the information needed, and not only national

intelligence agencies. Of course, the ability to determine which data and sources are

more relevant and reliable is essential to take the best decision. Hence, with respect

to other forms of intelligence, the challenge shifts from the data gathering to the

data evaluation.

Other advantages are [30] [31] [32]:

• Clarity, since sources and information are validated during the processing step

and in general most of the reference materials are gathered from other open

sources

• Usability, due to the fact that there are not any communication restrictions

on the data found

• Efficiency, not only in terms of time, but also of resources (man-hours)

On the other hand, it is possible to identify also some disadvantages of using

OSINT [30] [32], first of all the fact that the amount of data collected may be

too large and too heterogeneous for a practical analysis, making the evaluation

more difficult. It is also important to keep in mind that not all the open sources

are reliable and trustworthy. Furthermore, some organizations still underestimate

the importance of OSINT data, due to the fact that they are publicly available,

and sometimes researchers cannot freely access open source data because of the

constraints of the internal computer network. Finally, malicious users can access all

these public information to commit cybercrimes.

In fact, Hwang et al. [30] recognized the fact that three possible threats exist in

the OSINT environment, that can lead to different cybercrimes:

• Data dissemination, in case confidentiality or availability of the open source

data collected are not guaranteed. An attacker can use those information to

3.2 OPEN SOURCE INTELLIGENCE (OSINT) 26

acquire knowledge about a specific victim and plan a targeted attack or delete

some data to delay the research or to modify the outcome of the analysis

• Data privacy breach, if data are not anonymized before their publication.

Typical uses of these data are spear phishing or identity theft

• Data forgery and alteration, which is possible when the integrity of the data

gathered is not ensure. It can cause a diversion of the analysis results or the

spread of fake news

Hence, it is fundamental to fulfill some security requirements while collecting

and using open source data, such as data encoding and encryption, maintenance of

backup and recovery, de-identification of personal information, environment moni-

toring against intrusion, use of signature or blockchain technology, user authentica-

tion, access control, forward secrecy [30].

Due to the number of sources to monitor, most of them accurately categorized

by the project "OSINT Framework" [33], a lot of tools were developed through

time to help people collect data. Generally, these tools are specialized in gathering

a specific type of data, like email addresses, IP addresses, hostnames, files, from

different sources.

They usually are open-source projects shared on GitHub, but we can mention

also programming libraries and search engines that help scraping social networks

and web pages. Anyway, there are also proprietary software that expose API for

querying their database of collected data, sometimes for free under a certain thresh-

old. Finally, it is possible to buy a license for big data analysis and visualization

platforms, with the aim of simplifying the analysis and the correlation of the data

gathered.

Yamin et al. [34] have been dealing with finding and categorizing according to

the "Lockheed Martin Cyber Kill Chain" the main solutions currently available. The

3.3 INDICATORS OF COMPROMISE 27

Figure 3.1: Lockheed Martin Cyber Kill Chain

Cyber Kill Chain developed by Lockheed Martin is a commonly used representation

of the various stages of a cyber attack, as represented in Figure 3.1.

Besides the tool used, what can make the difference during OSINT researches

is the ability of searching also inside the deep and the dark web, that actually

represent the major part of the Internet. Indeed, this obscure side of the web is

generally preferred by cybercriminals to share illegitimate content, because of the

anonymity provided to the user by its design. Hence, it is the perfect place where

to conduct OSINT investigations and to find evidence of a cybercrime, even if the

de-anonymization of the threat actor is not trivial [32]. An open-source project

on GitHub with the aim of collecting sources from this obscure part of the net is

"deepdarkCTI" [35], which enumerates for example forums, telegram channels, and

onion ransomware groups’ websites.

3.3 Indicators of Compromise

Indicators of Compromise (IoCs) are basically the proof that a malicious attempt

of compromising the machine was carried out. They are virtual artifacts that can

reveal who tried to attack the machine or infrastructure, what they did, which

3.3 INDICATORS OF COMPROMISE 28

vulnerabilities they exploited, the technologies used, and the data exfiltrated; hence

they are useful to determine the severity of the incident. In fact, no matter how

attackers try to hide themselves, it is always possible to find some clues about them

and what they did.

IoCs differ from Indicators of Attack (IoAs) since the latter are real time indi-

cations that an attack is underway, while the former are a posteriori traces of the

intrusion. As explained by CrowdStrike [36], IoAs focus on detecting malicious pat-

terns on the network or machine, hence they do not really care about which tools

or exploits are used; their aim is to detect that something malicious is going on to

stop it. Indeed, since IoAs look for tactics, techniques and procedures of targeted

attackers, they allow the recognition also for zero-day attacks, which is not possible

using only IoCs. However, these can be used to compare past episodes with what is

going on now, helping to contain attacks earlier in the attack life-cycle, thus limiting

their impact.

To better clarify, possible IoCs examples are:

• Malware signature, usually the md5 or the sha256 hash of the malicious soft-

ware

• Files signature, the hash of complex documents that hide malware inside them

• Anomalous traffic, recorded on unusual times, directed to unexpected IP ad-

dresses, or unusual for the amount of bandwidth used

• Anomalous IP addresses or hostnames, that tried to connect to the monitored

machines

• Anomalous geographical location of the machine that is trying to authenticate

to a service

While IoAs can be:

3.4 SPAM FILTER 29

• Anomalous code execution, which is performing suspicious actions

• Anomalous persistence, of allocated memory or established connections

• Unusual contact with a command and control site

• Lateral movement attempts

The scope of the email analyzer is to create valuable IoCs in order to feed the

Würth Phoenix SOC with information that can help to detect future malicious

emails. In this sense, we will extract the sender email address, the sender mail

server hostname and IP address, the signature of any attachments, and the text in

the subject header value field of those emails that, according to the heuristic OSINT

analysis performed on their characteristics and content, are evaluated as malicious.

The desired outcome is that this information can be correlated to the IoAs collected

by the monitoring engine to more confidently and accurately determine whether

incoming emails should be blocked or delivered.

3.4 Spam filter

Spam filters are programs that analyze emails to understand if they are spam or

not, in case of binary classification, but some are also able to distinguish spam into

different categories based on their topic [37] [38]. The analysis usually happens at

SMTP level, by inspecting the content, email headers, the sender email address,

attachments to decide whether to block the email or to deliver it. This means that

emails are checked before they arrive to the recipient’s inbox. Anyway, filters can

be set also for outgoing emails to block malicious emails sent by a compromised

mailbox. Those are commonly configured to block emails that contain viruses, ads,

or do not pass and authentication check based on the DMARC record (described at

Cap. 2.3.3).

3.4 SPAM FILTER 30

The simplest ones scan an email searching for text that matches regular ex-

pressions, or looking for keywords that may suggest it is some unwanted content

or a malicious attempt to make the reader perform some actions. Furthermore,

the sender IP and email addresses are both compared with the ones previously

blacklisted, to save the time of scanning the whole mail content. There is also the

possibility, using data-driven programming languages, to define conditions that, if

they occur, trigger some specific actions in response. It is finally possible to involve

artificial intelligence in order to detect spam emails without depending on previous

occurrences and analysis, and at the same time enabling more advanced features,

for example image content recognition.

However, spammers are constantly improving their techniques to evade filters

[39]. For example, they may manipulate the message using poisoning text or obfus-

cated words. The former refers to adding random words or specific ones targeted to

the anti-spam filter and the victim, avoiding well-known spam words. The latter ex-

ploits special characters or some encoding techniques to trick the spam filter. Other

possible methods to disturb textual filters are introducing random text in the email

background, for example hidden HTML tags, embedding the spam content into im-

ages or attachments, inserting URLs that redirect to malicious sites or download

harmful files, or including parts in different languages.

Spam filters differ from what is exposed here since this latter does not aim to

avoid malicious or unwanted emails to reach the recipient mailboxes. Indeed, it

works on emails that arrive to some mailboxes set up as honeypots or spam trap

boxes, where everything is allowed to be delivered. The proposed solution examines

all these emails, extracting IoCs that will be used by the email filter of the Security

Operation Center to determine whether emails directed to corporate email addresses

should be dropped.

4 Würth Phoenix SOC

Infrastructure

This chapter aims to describe the technologies that constitute the system in which

the email analyzer will be integrated into. The log management and Security Infor-

mation and Event Management (SIEM) module of Neteye is the first to be described.

Neteye is an ecosystem developed by Würth Phoenix able to monitor and control

the infrastructure in which it is installed. The module with which the email analyzer

interacts is basically composed by the ELK stack, so called since its components are

Elasticsearch, Logstash, Kibana, to which Beats was later added. It is often also

referred to as Elastic Stack. As stated on Elastic web site [40], Elasticsearch is a

search and analytics engine, Logstash is a server-side data processing pipeline that

ingests and elaborate data, making them available for Elasticsearch, Kibana is the

application used to create charts and graphs using the data in Elasticsearch and

finally, Beats is a family of lightweight, single-purpose data shippers.

Then there is the description of the Filigran platform called "OpenCTI", which

is an open source platform useful to collect, visualize and correlate in only one place

all the IoCs and Cyber Threat Intelligence knowledge collected by an organization.

This is the main source from which the SIEM acquires information and data about

threats, in order to be always updated; hence it will be in charge of collecting also

the IoCs created by the project described in this thesis.

4.1 ELASTIC STACK 32

Finally SATAYO is presented, since it is the platform used by the SOC to per-

form the Exposure Assessment of clients’ perimeter. It is connected with the email

analyzer since this latter will use SATAYO results to perform the analysis of emails.

In fact, each evidence showed in SATAYO is collected through an OSINT research,

and the correlation with OSINT findings is one of the main innovative features of

the proposed solution.

4.1 Elastic Stack

The Elastic Stack is the core of the log management and SIEM module of Neteye,

which is a solution developed by Würth Phoenix and adopted by its SOC to monitor

the environment of its clients. Therefore, it represents the final consumer of the

IoCs that the email analyzer creates, with the purpose of improving the detection

of phishing emails.

As mentioned before, it is composed by Elasticsearch, Logstash, Kibana and

Beats, which are described in this section. Basically, it is used to collect, organize,

analyze, enrich and visualize logs coming from the Neteye satellites installed inside

the client network. It really helps the analysts to have always a clear overview of

what is happening inside the client’s environment, making them able to immediately

notice if something is wrong thanks to a set of detection rules. This ability is

constantly tested by Würth Phoenix SOC penetration testers and ethical hackers,

that carry out all kind of attacks exploiting vulnerabilities thanks to the most recent

Tactics, Techniques and Procedures (TTPs) to verify if the SIEM detects their

malicious activities. This is why they define their SOC as Attacker Centric. In

Figure 4.1 it is possible to observe how the log management module of Neteye is

implemented using Elastic Stack components.

4.1 ELASTIC STACK 33

Figure 4.1: Neteye Log Management Architecture

4.1.1 Elasticsearch

Basically, Elasticsearch is the central component of the Elastic Stack and it consists

of a distributed database (written in Java) where the data are stored and indexed.

It receives raw data from various sources; this data can be, for example, logs or

system metrics, and they are ingested by Logstash before being indexed by Elas-

ticsearch. During the ingestion, as it is explained more in depth in Section 4.1.2,

raw data are parsed, normalized and enriched. After this process, each log becomes

a structured JSON document; hence, a document is a collection of fields that have

their datatype. An Elasticsearch index is a collection of documents that are related

to each other; indices are then divided into shards, which are Apache Lucene in-

stances, distributed across different nodes and replicated to improve performance

and resiliency. Cooperating nodes compose a cluster. Shards are also divided in

segments, that are read-only piece of data available for search when Elasticsearch

stops writing into them.

More specifically, an index is composed by settings and mappings. The former

4.1 ELASTIC STACK 34

establish where to store data, how many shards will an index have, how many replica,

or the index-life-cycle policy. Settings can be static or dynamics; the difference is

that dynamics can be updated. The latter define instead how documents and fields

are stored and indexed. Dynamic mappings allows Elasticsearch to add new fields

automatically while indexing a document based on matching conditions described

in the so called dynamic templates. This is particularly useful to define types for

unknown fields. Explicit mapping allows a user to precisely choose the set the type

for known fields. Mapping also enforced the Elastic Common Schema, described in

Section 4.1.2.

Finally, Elasticsearch uses a data structure called "inverted index", which enable

user to perform very fast full-text searches. In fact, it lists every unique word that

appears in any document and identifies all of the documents each word occurs in

[41].

4.1.2 Logstash

Logstash is used to aggregate and process data before letting Elasticsearch ingest

them. It ingests data from different sources, like logs, metrics, web applications, data

stores, and various AWS services. Then, it parses each event, identify named fields

to build structure, and transform them to converge on a common format known as

Elastic Common Schema (ECS). In fact, it is able to elaborate data regardless of

format or complexity [42]. For example, it can:

• Derive structure from unstructured data with grok

• Decipher geo coordinates from IP addresses

• Anonymize PII data, exclude sensitive fields completely

In the end, when data are ready, Logstash has the possibility of sending data to one

or multiple output. In Neteye, it sends output to Elasticsearch and to El Proxy. The

4.1 ELASTIC STACK 35

latter is described later in this section. Of course, it is able to orchestrate parallel

pipelines to improve performance and carry out different processes at the same time.

As mentioned before, the most important task of Logstash is to normalize data,

abstracting from the sources, to simplify searches. This is achieved defining a com-

mon set of document fields with their datatype for data ingested into Elasticsearch,

which is called Elastic Common Schema. For example, fields like client_ip, src_ip,

source_ip, nginx.src_ip are normalized to source.ip with type ip. ECS unifies all

modes of analysis available in the Elastic Stack, including search, drill-down and

pivoting, data visualization, machine learning-based anomaly detection, and alert-

ing. Hence, users can search with the power of both unstructured and structured

query parameters and automatically correlate data from different data sources [43].

Logstash is also essential for the purpose of the thesis project, since it is in charge

of enriching the events that arrive to the log management modules with additional

information from external sources. For example, it is able to:

• Identify web services or vendors based on known IP addresses

• Add product information to retail orders based on product IDs

• Supply contact information based on an email address

• Add postal codes based on user coordinates

Anyway, in our case it will correlate the data collected on phishing attempts and

obtained from OpenCTI with the new evidence that it receives in input, defining if

these ones are also malicious or not.

Elastic Blockchain Proxy (EBP), a.k.a. El Proxy, permits to sign the logs in

real-time in a blockchain stored in Elasticsearch in a dedicated index. Each log

contains the hash of the previous log (calculated on a set of defined fields), thus to

alter or delete a single log it is necessary to alter the entire blockchain from this

point.

4.1 ELASTIC STACK 36

4.1.3 Kibana

Kibana is the frontend application that acts as a presentation layer. It is mainly used

to visualize data, choosing among a lot of different libraries and representations, like

bar charts, pie charts, tables, histograms, and maps [44]. It is also possible to create

dashboards that aggregate what is stored by Elasticsearch in different visualizations,

enabling users to drill down on data. Hence, it is the interface that analysts use

to monitor their clients’ infrastructure and to implement KPIs based on the data

collected.

Furthermore, it offers the opportunity of detecting anomalies in the collected

data thanks to the use of unsupervised machine learning features. This is particu-

larly useful combined with the implementation of a mechanism to be notified when

particular conditions match a detection rule.

Kibana is also the place where it is possible to manage all the Elastic Agent

installed on every single host that the client wants to keep monitored. In fact,

using the Fleet app as a control plane, the user can centrally manage agents as a

fleet, having the possibility of obtaining "real-time view into agent status, remotely

upgrade agents, execute queries on each host, and contain security threats" [45].

Basically, The administrator defines in Kibana policies that may apply to multiple

servers; these policies are stored in Elasticsearch and when the Agent enrolls itself

to the Fleet-Server, it downloads its configuration. Then it periodically checks for

configuration changes.

Finally, Kibana is used to manage the security of the data collected and stored on

Elasticsearch. It lets the user check each data flow to ensure that, where and when

possible, the anonymization or pseudonymization of personal data are maximized,

while the distribution of such data is minimized. It also helps to ensure that only

authorized people have access to the data, by enabling both authentication, for

example through LDAP or PKI, and access control, supporting methods like RBAC

4.1 ELASTIC STACK 37

or ABAC.

4.1.4 Beats

Beats are single-purpose lightweight data shippers written in Go. They are usually

installed as a single unified Agents per host, having a single thing to install and to

configure, instead of deploying multiple Beats, which guarantees a better scalability

and maintenance over time [46]. In fact, usually multiple Beats are needed on

a single host. Elastic Agents can also be configured centrally in Kibana through

Fleet, as described in Section 4.1.3.

Beats accept inputs from different sources and write the output to either Logstash

or Elasticsearch [47]. Each single Beats agent provides pre-built dashboards and

parsing, based on ECS, for the most common sources through different modules.

Indeed, they use and share the libbeat library, which provides output, configuration

management, service and processing utilities.

There are several types of Beats, each one dedicated to ship and process a specific

kind of data. Würth Phoenix SOC uses mostly:

• Filebeat, which collects logs from servers and devices. The most common

sources are Apache, Squid and Paloalto, from which Filebeat gathers, for ex-

ample, server logs and filestreams, TCP/UDP/Unix Sockets logs, or network

devices Syslogs

• Winlogbeat, used to parse the Windows event logs, i.e. the logs that it is

possible to see in the EventViewer of Windows, which include the ones about

security, Powershell and Sysmon. This latter is a Windows daemon, that

provides detailed information about process creations, network connections,

and changes to file creation time

• Auditbeat, utilized to audit activities of users and processes on the system it is

4.2 OPENCTI 38

installed on, like the changes of critical files or the installation of new packeges

• Metricbeat, that polls periodically applications to gather metrics and statis-

tics, such as the usage of CPU and memory

• Heartbeat, applied to check if machines are up-and-running through ICMP

(ping), TCP, HTTP; using the last two it is also possible to check TLS Cer-

tificate Validity

• Packetbeat, which sniffs the traffic on the Servers, capturing only the network

metadata (e.g., source and destination IP address, network protocol), and

correlating the requests with the responses

4.2 OpenCTI

OpenCTI is an open source platform that allows organizations to manage their cyber

threat intelligence knowledge. It is useful to structure, store, organize and visual-

ize technical and non-technical information about cyber threats that is possible to

gather on the Internet. The former includes, for example, TTPs and observables,

while the latter can be suggested attribution and victimology [48]. Figure 4.2 rep-

resents the main view of the OpenCTI instance managed by Würth Phoenix Cyber

Security Team.

The OpenCTI platform provides a powerful knowledge management database

with an enforced schema especially tailored for cyber threat intelligence and cyber

operations. It offers multiple tools and viewing capabilities, making analysts able to

explore the whole dataset by pivoting on the platform between entities and relations.

It is also possible to set several levels of context for a given entity [49].

The most powerful feature of OpenCTI is that it can be connected to other

platforms by configuring an appropriate connector, which allows both the import

4.3 SATAYO 39

Figure 4.2: OpenCTI Main View Screenshot

and the export of data. For the purpose of the thesis, it represents the bridge

between the email analyzer and Elasticsearch, setting up a connector to retrieve the

IoCs regarding phishing emails and another one to push those information directly

into Elasticsearch, into a dedicated index. The additional value of going through

OpenCTI, instead of sending the data directly to Elastic Stack, is to further enrich

end correlate the IoCs with the information retrieved from the other sources the

platform is connected with.

Furthermore, the platform is queried before the IoCs are created. In fact, the

blacklists indexed into OpenCTI about IPs, domains and URLs are retrieved by our

email analyzer and used to determine if email senders have already been reported

as malicious in the past. These lists come from sources like AbuseIPDB, Phishing

Army, AlienVault and are constantly updated.

4.3 SATAYO

SATAYO stands for "Search All Things About Your Organization" and it is a plat-

form developed by Würth Phoenix to offer the service of Exposure Assessment to

4.3 SATAYO 40

Figure 4.3: SATAYO Research Main View Screenshot

their clients. I personally contributed to the birth of the tool some years ago, dur-

ing my bachelor thesis project, and I am still developing it. The service offered

consists in scanning the whole Internet using an OSINT approach to detect all the

possible information and access points an attacker can exploit to perform the first

step inside an organization’s virtual perimeter. Figure 4.3 provide an example of

the items collected by SATAYO. Indeed, it aims to reproduce in the most accurate

way possible the first stage of an attack, the reconnaissance, as represented in the

Cyber Kill Chain, see Figure 3.1.

An Exposure Assessment starts from the company domain or some keywords

and then, using different tools and techniques (like Google Dorks), it consists in

gathering every evidence that can be correlated with the starting input; it then

proceeds searching for additional information of those findings, going more and

more in depth to create the most complete overview possible. An example of part

of this process is provided by the Figure 4.4.

4.3 SATAYO 41

Figure 4.4: Exposure Assessment Example

Particularly relevant for the scope of the thesis project are the found domains

that are somehow related to the company one. They may have been discovered

because they have the same base name but a different top level domain, or because

they resemble the original domain but contain a typosquatting, that means they

might have a different letter, miss one, been created using punycode encoding or two

letters might be reversed. In the first case, they are the result of a top level domain

brute force, while in the second one of DNS fuzzing. Anyway, they are interesting

since they represent a possible phishing domain if they are not legitimate. The idea

is to compare the domains of the emails received with these domains to mark the

emails as most likely malicious in case of matching.

Another useful information that it is possible to get from SATAYO is the list of

registered email addresses. This is used in order to automatically detect if the sender

is trying to impersonate a company’s employee, comparing the sender email header

fields and the part before the "@" of the sender email address, called username, with

the one of the emails in the list. In case the domain in the received email address

differs from the legitimate one, and the usernames match or the employee’s name is

4.3 SATAYO 42

used to identify the sender, the email should be marked as malicious.

Finally, SATAYO enumerates all the subnet directly managed by an organization,

and identifies its email servers, collecting additional information about the SPF and

DMARC records. The email analyzer works with this data to understand if the email

addresses of the input emails are spoofed or if these emails come from legitimate

hosts.

5 Specification and Design

In the first pages of this chapter the idea behind the thesis project is explained,

focusing on the needs of Würth Phoenix. It also summarizes how this solution will

integrate with existing technologies described in Chapter 4. It is then explained how

the email analyzer was conceived and designed, illustrating the reasoning behind the

decisions made. It is also helpful to understand how all the knowledge presented in

Chapters 2 and 3 is applied.

5.1 Motivation

At Würth Phoenix, they are developing a new service, the Security Operation Cen-

ter, to offer a 24/7 monitoring service to their client. This thesis is about a part

of it, the improvement of the detection of malicious emails, focusing especially on

phishing attempts. Essentially, it is an email analyzer able to create valuable IoCs

that the Würth Phoenix SOC would consume while checking the email traffic of

their customers.

In fact, their infrastructure lacked something capable of generating internal evi-

dences of phishing attempts, and the spam filter utilized was fed only with general

IoCs publicly available on the Internet. The main advantage of implementing this

solution is having constantly updated evidence that is also customized based on

internal needs, since it is configured to analyze email traffic that simulates the one

of their SOC customer.

5.3 CONCEPTION 44

5.2 Integration

As described in Chapter 4, the SOC environment already includes the Log Man-

agement and SIEM module of Neteye based on the Elastic Stack (Sec. 4.1), the

Cyber Threat Intelligence platform OpenCTI (Sec. 4.2) and the OSINT platform

SATAYO (Sec. 4.3).

In practice, the new development consists in a "Spam Trap Box" that takes

advantage of the open source information collected by SATAYO and OpenCTI to

evaluate the emails received and that creates IoCs to report the phishing attempts

detected. This evidence is then passed to OpenCTI, which also enriches them with

additional information and makes them available to the Elastic Stack. The latter

uses these insights to spot attacks targeting Würth Phoenix SOC customers.

The technology developed is more or less a honeypot: basically, it is a mail

server where domains previously owned by failed companies are registered. These

companies used to operate in the same industry of Würth Phoenix customers, and

this fact allows to operate with traffic similar to the one observed by the SIEM.

In addition, any e-mail can be delivered, as no filter is placed, to have the widest

possible range of samples for examination.

5.3 Conception

In this section the design of each part is described, reporting the thinking behind the

decisions made. The structure of this section is similarly used in Chapter 6 to create

a correlation between the design and the implementation of every components.

5.3.1 Spam Trap Box

The first challenge faced was understanding how to start receiving the required

amount of emails. There were two possibilities, the first one would have been to

5.3 CONCEPTION 45

register a lot of email addresses with simple usernames, to make them be easily found

by spammers. In addition, to give them even more visibility, it would have been

useful to subscribe to different forums and websites using these emails. Nevertheless,

considering the time required for this option to be ready and its uncertain outcome,

I opted for the second one.

It was suggested to me by Corsin Camichel, a cyber security researcher who

also had worked on his own spam trap box. It consists in searching for domains

that once belonged to real companies that now are either bankrupt or have changed

name. Indeed, by using domains that were previously in use, it is possible to get

spam and malware practically within days of setting up the traps. This solution

saved the time that would otherwise have been spent on disseminating and giving

visibility to some new e-mail addresses specifically created to set up the spam trap

box.

Of course, the more email addresses they have connected, both leaked or spread

online, the more worthwhile it is acquiring them. Furthermore, for the purpose of

the project, it is better to search for companies that operate in the same fields of

Würth Phoenix clients. In fact, it is common that a phishing campaign targets or

is reused for more than one company in the same sector of interest.

To detect the domain to buy, since Würth Phoenix is an Italian company, it was

necessary to scrape the FALLCO portal, where all the documents and information

about Italian judicial liquidations and corporate bankruptcies are stored [50]. This

resulted in a list of interesting companies from which to search for possible domains

to acquire. The most recently failed companies still owned their domain, so the

research focused mainly on the legal procedures occurred between 2017-2020.

A subsequent skimming of the list was performed by considering how many emails

registered under those domains have leaked online. To verify it, the Intelligence X

search engine called Phonebook.cz [51] was employed. It allows a user to search

5.3 CONCEPTION 46

for subdomains, email addresses, or URLs starting from the given input domain.

Only domains for which more than ten e-mail addresses were found were considered

valuable.

The final step was checking on the Italian register website [52] if these domains

were for sale. Some were even sold for free, hence one of these was purchased to

develop the first test.

5.3.2 Analyzer

The following step was thinking about how to automate the analysis of the email

arrived to the spam trap box. The simplest and fastest approach to allow a program

to iterate over mailboxes is to store the credentials in a database, avoiding writing

them into the code. In addition, a database can be useful during the debugging

and testing phases of the program to store the results and manually verify that the

program is working properly before sharing the outcomes with OpenCTI.

Next, Python was picked as programming language to develop the code whose

aim is to retrieve and analyze the emails and, in case, also create the necessary IoCs.

In fact, it provides some useful libraries that suit perfectly for the purpose of the

thesis project.

The process starts with the download of each email: using the "imaplib" library

and the credentials stored into the database, it is possible to interact with each user’s

mailbox and look for the new emails. It is important to keep everything in order,

otherwise there is the possibility of working also with the already seen messages.

For this purpose, the read emails must be moved from the "INBOX" to another

folder. It is not a good move to delete them after the analysis, otherwise it would

be impossible to reuse them in case new controls are added to the analysis or if

something went wrong during the inspection, especially in the first phase of testing

and debugging.

5.3 CONCEPTION 47

The core of the project was indeed to determine what information might reveal

whether an email is malicious or not. For sure, the data contained into the header of

the messages are the most useful, since they disclose the most about the sender and

the origin of the email. For example, some clues are the presence in the "FROM"

header field of a string which is intended to identify the sender and which is not an

email, or if there is more than one email address but the "SENDER" header is not

set; both cases usually indicate a sender obfuscation attempt.

Moreover, the SPF, DKIM and DMARC records related to the sender domain

are checked, if they are set, to determine if they are valid or not. A negative result

may suggest that the sender email address is spoofed. However, also the absence of

this records related to the sender domain may indicate that the sender is not to be

trusted. In fact, a company usually cares about these mail server configuration, to

prevent the spoofing of their corporate email addresses.

In addition, the content of the "SUBJECT" header field is often another impor-

tant hint to take into consideration. In fact, in case of phishing emails it commonly

contains words that aim to make the user open the message and click on the link

inside it or download the attachment, if there is one. The latter are also inspected

to detect any eventual malware.

Finally, based on Section 3.1, the content of the message should also be taken into

consideration, to verify if there are any IP-based URLs, links to recently registered

domains, a high number of links or any other feature that may suggest that it is a

phishing email.

Most of the data can be extracted using "meioc" (Mail Extractor IoC) [53], which

is an open source project published on GitHub by Andrea Draghetti, an Italian cyber

security researcher, known especially for his work to contrast phishing. I personally

contributed to the project, fixing some bugs and implementing some new parts, such

as the extraction of the DKIM and DMARC check results or the identification of

5.3 CONCEPTION 48

text in the "FROM" email header that is not an email address, added to perform

sender obfuscation and impersonation.

Some checks involve the use of OSINT external sources, for example the one per-

formed on the source IP addresses, or the one on the domain of the sender’s email

address, that are compared with publicly available blacklists. This means that the

outcome strongly depends on the quantity and quality of the information gathered

and supplied by SATAYO and OpenCTI: the better these two work, the more ac-

curate will the results be. Anyway, this is the element of innovation introduced by

this thesis: to analyze the parts of the email both by themselves and in comparison

with OSINT evidences to get the best verdict possible.

In the end, if the email is considered a malicious one, an IoC is created. It

contains the sender email address, the origin IP address, the subject of the email

and eventually the link written inside the message text or the signature of the

attachment. These elements will be added to the ones of the same category already

collected by OpenCTI, and be ingested and indexed by the Elastic Stack in order

to improve the filter on clients’ email traffic.

6 Implementation and Verification

This chapter aims to explain how the thesis project was developed, going into imple-

mentation details. The email analyzer is currently a prototype that will be further

developed at the company to add more features and to improve the functionality

based on the findings in this thesis.

Anyway, the whole process is taken into consideration, starting from the identifi-

cation of interesting domains to buy, moving on the code responsible for downloading

the emails received, extracting the data considered more valuable for our purpose,

and performing the analysis of such data. Indeed, all the libraries, tools and APIs

integrated are presented, highlighting the changes made to some of these open source

programs to accommodate our needs. In the end, a test case is taken into analysis,

to point out how the first version of the email analyzer performs and to understand

what it is possible to improve.

6.1 Spam Trap Box Configuration

The first step of the thesis project was to set up a spam trap box, which means to

create a mail server that does not have any filters on the incoming traffic, letting

every message to reach the "INBOX" folder.

Following the process described in Section 5.3.1, a single domain was chosen.

It was previously owned by a company that operated in the sector of building and

installations, and Würth Phoenix has some costumers working in the same industry.

6.2 ANALYZER DEVELOPMENT 50

A Postfix-like mail server was configured registering all the 21 email addresses

found on Phonebook.cz [51], most of which have an employee’s "surname.name" as

username, while some others are more administrative ones and have for example

"reception" or "info" as username.

As it was expected, in a few days a sufficient amount of emails to start thinking

about how to conduct the analysis was collected.

6.2 Analyzer Development

The core of the thesis was the development of the email analyzer. It can be divided

in two parts, the creation of the database and the coding of the program. The latter

was written in Python and has itself been divided here into several parts, so as to

facilitate both explanation and understanding.

6.2.1 Database

The database was designed to be as simple as possible; it consists of only 5 tables,

in which all the data about the users created and their emails are stored. A UML of

the database is reported in Figure 6.1. Except for the "account" table, all the other

ones were created just as proof of the fact that the program is working correctly;

this means that they are read-only tables consulted when needed. In fact, IoCs will

be created and sent directly to OpenCTI.

In the "account" table are stored the credential to access to each different user

space created on the mail server. This was necessary to implement the automated

access to mailboxes on the server and the subsequent download of all the messages

in the "INBOX".

The "email" table is the place where the most important data extracted from

the analyzed messages are stored. In addition to the eml hash and the eml itself,

6.2 ANALYZER DEVELOPMENT 51

Figure 6.1: Database UML Representation

6.2 ANALYZER DEVELOPMENT 52

the IP address and the domain of the sender are saved. Furthermore, there are the

results of the SPF, DKIM and DMARC records verification, as well as two fields that

summarized the outcomes of the analysis, which are a flag that tells if the sender

if malicious or not and a score that indicates how the email is evaluated, from 0 to

100. The higher, the more malicious the message is to be considered. Finally, every

email is connected to the user from which it was downloaded.

The table "attachment" contains, instead, the information about any attach-

ments to each email. These are the filename, the hash obtained using the sha256

algorithm and a flag that reported if the file was already reported as a malware. Of

course each entry of this table is related to one email in the "email" table.

The remaining two table "malicious sender" and "malicious attachment" archive

additional information about, respectively, a malicious sender or attachment, indi-

cating the source where the report was found and any further comments extracted

from the source.

6.2.2 Emails Download

The first part of the Python program is responsible for downloading the messages

stored on the email server. It initially gets the list of accounts and credentials from

the database, and then it starts a cycle over this list. Thanks to the "imaplib"

library, it is possible to interact with each user’s mailboxes, after having established

a TLS connection.

1 imap_host = 'mail.sec4u.co'

2 list_account = select_all(select_list_account)

3 for account in list_account:

4 id_account = account [0]

5 imap_user = account [1]

6 print('\n========= ' + imap_user + ' ==============\n')

7 imap_pass = account [2]

6.2 ANALYZER DEVELOPMENT 53

8

9 # connect to host using SSL

10 imap = imaplib.IMAP4_SSL(imap_host)

Snippet 6.1: Server Connection

After the connection is up, the program logs into the user space, using the

"LOGIN" IMAP command. Then, it searches among all the mailboxes, through the

"LIST" command, for the folder "Analyzed". In case it is not present, it is created

using the "CREATE" command. This folder is important because it is the place

where messages are moved to after been analyzed, so that in the "INBOX" there

will always be only new messages that have still to be evaluated.

1 # login to server

2 resp_code , response = imap.login(imap_user , imap_pass)

3

4 # search and eventually create the Analyzed mailbox

5 resp_code , directories = imap.list(pattern="Analyzed")

6 if "Analyzed" not in directories:

7 imap.create(mailbox="Analyzed")

Snippet 6.2: Login & "Analyzed" Mailbox Creation

Subsequently, all the directories are listed, and the list is printed showing how

many emails there are in each folder. The number of messages is obtained by

running the "SELECT" command and reading the "EXISTS" response value for

each mailbox.

1 resp_code , directories = imap.list()

2

3 print("\n========= List of Directories =================\n")

4 for directory in directories:

5 directory_name = directory.decode ().split('"')[-2]

6 directory_name = '"' + directory_name + '"'

6.2 ANALYZER DEVELOPMENT 54

7 resp_code , mail_count = imap.select(mailbox=directory_name ,

readonly=True)

8 print(directory_name , ' - ', mail_count [0]. decode ())

Snippet 6.3: List all the Mailboxes

Finally, the "INBOX" folder is selected again, and using the "SEARCH" com-

mand it is possible to obtain the message identification number associated to every

email here stored. The program iterates over this number, and retrieves each mes-

sage using the "FETCH" IMAP command. Data extraction then begins.

1 #Select Directory

2 resp_code , mail_count = imap.select(mailbox="INBOX", readonly=

False)

3

4 #Retrieve Mail IDs for given Directory

5 resp_code , mails = imap.search(None , "ALL")

6 print("\n=================================\n")

7 print(f"Mail IDs : {mails [0]. decode ().split()}\n")

8

9 #Analyze Messages for given Directory

10 for mail_id in mails [0]. decode ().split():

11 print(f"===== Start of Mail [{ mail_id }] ====\n")

12 ## Fetch mail data.

13 resp_code , mail_data = imap.fetch(mail_id , '(RFC822)')

Snippet 6.4: Email Download

6.2.3 Data Extraction

As said in Section 5.3.2, the interesting data are extracted from a message using

"meioc" [53]. It requires in input an email provided as eml file, and it saves the

output on a json file.

1 # Construct eml from mail data

6.2 ANALYZER DEVELOPMENT 55

2 message_eml = email.message_from_bytes(mail_data [0][1])

3 eml_hash = hashlib.sha256(str(message_eml).encode('utf -8')

).hexdigest ()

4 # Saving the eml as a file to pass it as input to maioc

5 with open("mail.eml", 'w') as mail_file:

6 gen = generator.Generator(mail_file)

7 gen.flatten(message_eml)

8 # Run meioc

9 os.system(f'python3 {meioc_path} --spf --dkim -x mail.eml -

o meioc_results.json')

10 json_file = open('meioc_results.json')

11 meioc_results = json.load(json_file , strict=False)

Snippet 6.5: Data Extraction

The extracted data used during the analysis are:

• the eml of the message, extracted using the "email" Python library

• the hash of the eml, calculated through the "hashlib" Python library

• the sender IP address, taken from the list of relay IP address return by meioc

• the SPF check result, whose value is "True" if the check outcome is "pass",

"False" otherwise

• the DKIM check result, whose value is determined as the SPF one

• the DMARC check result, as above

• the attachments data, which includes the filename and the sha256 extracted

by meioc and the payload extracted instead thanks to the "email" Python

library

• the possible displayed name written in the "FROM" header field

6.2 ANALYZER DEVELOPMENT 56

• all the email addresses written in the "FROM" header field

• the value of the "SENDER" header field, whether present

• the value of the "RETURN PATH" header field, whether present

• the value of the "REPLY-TO" header field, whether present

• the email receipt date

• the value in the "SUBJECT" header field

• the list of URLs in the message

6.2.4 Data Analysis

This is the most important section of the code, even if it is not completely imple-

mented yet. Calibrating the influence given to each aspect analyzed on the final

outcome requires a lot of time and attention, since the aim is to limit false positives

as much as possible. Hence I sketched out a temporary score system that needs to

be reviewed with my team supervisors. For these reasons, in the current section

there is no code snippet, but rather everything is explained from a theoretical point

of view, as it is thought to be once it will be completed and fully integrated into the

SOC infrastructure.

It is possible to identify two approaches implemented to analyze the data ex-

tracted from an email. One consists in comparing header fields between each other,

or looking at the value of one field by itself, in order to detect inconsistencies, suspi-

cious information or structures that are not compliant with the RFC specifications.

The other, instead, involves the use of OSINT sources to compare what is taken

from the email with already existing indicators of compromise, to create new ones

of these latter providing additional information or evidence.

6.2 ANALYZER DEVELOPMENT 57

The first check is performed on the eventual name written in the "FROM" email

header field. Its presence is already somewhat suspicious, due to the fact that

the RFC 5322 [2] says that the value of this header is a list of one or more email

addresses, as explained in Chapter 2.1. Anyway, if present, this name is displayed in

the email client, often replacing the following email. Hence, this verification consists

in checking if the name is contained in the username of any of the following emails

in this header field. If this is the case, it is considered acceptable. Otherwise, the

email score representing how malicious the email is considered is increased.

Then, the "SENDER" header field value is also taken into consideration. This

header is often not included in an email, since usually the address specified in the

"FROM" header is also the real sender of the email, so adding also the "SENDER"

header would create useless redundancy. Hence, if present, the check consists in

understanding if its value is compliant with the RFC 5322 [2] specification. In case

of negative response, the malicious score is increased, but with a very low incidence.

In fact, this check alone is pretty much useless to identify phishing emails, but it

can assume a value if considered along with other factors.

The moment in which the email was received is also a factor that has to be

evaluated. Indeed, an attacker wants to contact the victims when they are more

vulnerable, which means when they are isolated and not, for example, in the office,

since we are considering phishing campaigns that target a company. Thus, emails

can be considered suspicious if received during the weekend or out of the office hours.

When this is the case, the score is increased.

The last check that does not involve any OSINT sources is the one performed

against spoofing. Inspecting the output of meioc, the program verifies the validity

of the DMARC, DKIM and SPF records, giving more importance to the DMARC

evaluation, since this is the strongest check and includes also the DKIM and SPF

verification, as described in Chapter 2.3.3. Anyway, each failure increases the score,

6.2 ANALYZER DEVELOPMENT 58

even if in different ways.

The first check performed using the information gathered by OpenCTI is the one

over the sender IP address. In fact, it is verified that the IP has not already been

reported in any blacklist that is publicly available and indexed in OpenCTI. The

main sources are AlienVault and AbuseIPDB. Furthermore, the API of VirusTotal

is called to make sure that the IP has not been notified there. Any match influences

the score.

Subsequently, all the emails in the "FROM", "SENDER", "REPLY TO" and

"RETURN PATH" email headers are analyzed. Firstly, each email username is

compared to the list of employees found by SATAYO, since it may suggest an imper-

sonation attempt, in case the domain does not match the company one. Moreover,

in the same case just described, despite the result of the username verification, the

domain is searched among the ones indexed by OpenCTI and SATAYO. The former

collects domains that have previously been blacklisted by any other publicly avail-

able source; the primary source for this list is Phishing Army. The latter instead

stored all the domains that are similar to the monitored one, which means that they

are different for example because of a typosquatting. As before, any match raises

the score.

The value of the "SUBJECT" header is analyzed using a list of words that are

often included in this header when the email is a phishing attempt. Each word

is searched inside the header value, which is commonly a short sentence. In a

phishing scenario, the sentence invites the reader to open the email and download

the attachment or click on the link written in the message, usually so as not to miss

an opportunity or to check their bank account. Again, in case of any match, the

score is increased.

Any attachment is then controlled using VirusTotal. Since the content might

be legitimate and contain sensitive information, even if the spam trap box is built

6.2 ANALYZER DEVELOPMENT 59

using domains that do not belong to real businesses anymore, it is a good practice

not to upload the whole file on the platform, but only its hash. Indeed, any user

that bought a VirusTotal subscription can access any document uploaded. Using

the hash, it is possible to check if it matches the one of any malware known by the

platform. Same as in the previous cases, a positive result affects the score.

Last but not least, every URL extracted from the message is parsed, in order to

verify if they include an IP address, a suspicious number of points, domains recently

created or if they are contained in any blacklist. In addition to these features, also

the number of links contribute to the incidence of this check on the final score.

When all checks are completed, the score is evaluated and if it is higher than an

expected threshold calculated on the basis of the fields that it was possible to verify,

the email is considered malicious, and an IoC created. This is added to a JSON file,

where each element is a different IoC that reports the IP address, the domain of the

sender email address, the value of the "SUBJECT" header field and the hash of any

attachment. This JSON is then retrieved by OpenCTI using a connector, with the

purpose of ingesting the new evidence. Subsequently, this information will be used

by the SOC, which will have to block any further emails intended for Würth Phoenix

customers having that IP or domain in the header fields reporting the sender data.

Finally, the analyzed email is moved to the "Analyzed" mailbox using the com-

bination of the IMAP commands "COPY", "STORE" and "EXPUNGE". Anyway,

the latter is run only after that the cycle on every email inside the "INBOX" ends,

to delete all the email there at once. Lastly, the IMAP command "LOGOUT" is

executed, to proceed with the next account.

1 imap.copy(mail_id , "Analyzed")

2 resp_code , response = imap.store(mail_id , '+FLAGS', '\\

Deleted ')

3

4 print(f"\n====== End of Mail [{ mail_id }] ======\n")

6.3 DETECTION SIMULATION 60

5

6 response = imap.expunge ()

7

8 imap.logout ()

Snippet 6.6: Email Relocation and Logout

6.3 Detection Simulation

After five weeks of execution, the first version of the email analyzer generated 367

IoCs about phishing emails, after having analyzed more than a thousand of emails,

1146 to be precise. Checking manually all the ones for which an IoC was created,

it was possible to assure that only 314 were actually to be reported. Furthermore,

among all the others, 21 malicious messages were not detected.

At Würth Phoenix, part of the SOC is specialized in performing simulations

of attacks to test both the infrastructure and the personnel of their costumers.

Hence, they are used to perform phishing campaigns against a wide range of different

targets. All their samples were sent to one of the accounts registered inside the spam

trap box, in order to let the program analyze them.

Observing both how these new samples are rated and the evaluation errors previ-

ously identified, it is possible to state that the program is giving too much incidence

to the structural analysis of the email headers, where it is performed the check to test

if they are RFC complaint. On the other hand, more importance should be given to

the analysis of both the "SUBJECT" header value and the URLs extracted, since

9 out of the 11 not identified cases contain in this header field at least one word

present in the list of the typical phishing subject redacted on OpenCTI or a URL

itself is contained in a blacklist.

7 Conclusion

Summing up the whole thesis, the task here addressed is creating an email analyzer

able to provide constantly new evidence of phishing attempts. This is to help keep

the Würth Phoenix SOC up-to-date with the latest information on cyber attacks.

The innovation introduced is the combination of email structural validation with

OSINT evidence comparison, making it possible to go beyond a mere text analysis.

The necessary open source information is previously collected from different sources

by other platforms that are part of the SOC, such as SATAYO and OpenCTI.

I contributed both theoretically and practically. First, I thought about what

information would be most useful to take into consideration and to analyze, and I

found out the best way to create the spam trap box. Then I wrote the code for

the entire analyzer. Of course, my supervisor helped me in case I had a doubt or I

needed to choose between more options or implementations. When I started, they

suggested me some ideas, for example how to identify domains previously owned by

failed companies, or tools from which I could have taken advantage, like meioc, but

the whole project was completely assigned to me and I was given full decision-making

autonomy, especially since I had already demonstrated my expertise by developing

SATAYO with them.

Based on what is explained in Chapters 2 and 3 and on how the final score

changes while adjusting the weight of each check, it emerges that the main features

of an email that reveal if it is a phishing attempt are:

CHAPTER 7. CONCLUSION 62

• the value of the headers that contain information about the sender

• the value of the "SUBJECT" header

• the validity of the DMARC record

• the domain in the URLs of the message

Moreover, the open source information that turned out to be the most useful

in identifying ongoing phishing campaigns are the blacklisted domains, but also the

fuzzed domains that are correctly registered and really similar to a company’s one,

the blacklisted IP addresses.

These data can be combined in order to get the most accurate assessment possi-

ble. It is worthwhile to search for the domains extracted from the sender headers or

the URLs in the message within the list of blacklisted and fuzzed domains. Similarly,

the sender IP address should be searched within the list of blacklisted IP addresses.

These checks should affect the final evaluation the most.

Immediately after, the greatest importance should be given to the value in the

"SUBJECT" header, which can also be compared with a list of known phishing words

or phrases, and to the validity of the DMARC record. All the other features taken

into consideration should be considered as additional information able to increase

or decrease the score, but alone they are pretty much useless to identify phishing

attempts.

In the end, it is possible to consider the overall thesis as a success. The suggestion

of looking for domains previously owned by another company let me save a lot

of time, and adds the value of considering phishing campaigns whose targets are

business sectors of interest. Furthermore, the outcomes are quite good, even if

the number of false positive was too high. In fact, 367 emails were identified as

phishing attempts, after having analyzed 1146 samples, but only 314 were actually

to be reported. Additionally, among all the others, 21 malicious messages were not

CHAPTER 7. CONCLUSION 63

detected.

I think that the problem lies more in the scoring system than in the verification

performed, hence the work is proceeding in the right direction. Perhaps it might be

useful to reconsider how to score, instead of simply adjusting the incidence of each

check, and add more sophisticated text inspection.

Hence, after the necessary improvements, starting from what is suggested in

the end of Chapter 6.3, and the appropriate verification, the next step is to create

the connector on OpenCTI to make it ingest the IoCs created by the analyzer.

Consequently, the SOC will benefit from this new source of malicious evidences,

created on the bases of its particular needs.

To conclude, I think that this work can be imported easily into any environment

able to provide the OSINT evidences needed for the analysis. In fact, it does not

depend on the technologies adopted in Würth Phoenix, but it was adapted to them.

The only thing to keep in mind is that the more pertinent the data furnished as

input to the program are, the more valuable the outcomes will be, and the same

holds for the domain chosen to configure the spam trap box.

References

[1] IBM, Enterprise security solutions. [Online]. Available: https://www.ibm.

com/security (visited on 10/15/2022).

[2] P. Resnick, Internet Message Format, RFC 5322, Oct. 2008. [Online]. Avail-

able: https://www.rfc-editor.org/info/rfc5322.

[3] N. Freed and N. S. Borenstein, Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies, RFC 2045, Nov. 1996. [Online].

Available: https://www.rfc-editor.org/info/rfc2045.

[4] N. Freed and N. S. Borenstein, Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types, RFC 2046, Nov. 1996. [Online]. Available: https:

//www.rfc-editor.org/info/rfc2046.

[5] K. Moore, MIME (Multipurpose Internet Mail Extensions) Part Three: Mes-

sage Header Extensions for Non-ASCII Text, RFC 2047, Nov. 1996. [Online].

Available: https://www.rfc-editor.org/info/rfc2047.

[6] J. C. Klensin and N. Freed, Media Type Specifications and Registration Proce-

dures, RFC 4288, Dec. 2005. [Online]. Available: https://www.rfc-editor.

org/info/rfc4288.

[7] J. C. Klensin and N. Freed, Multipurpose Internet Mail Extensions (MIME)

Part Four: Registration Procedures, RFC 4289, Dec. 2005. [Online]. Available:

https://www.rfc-editor.org/info/rfc4289.

https://www.ibm.com/security
https://www.ibm.com/security
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2047
https://www.rfc-editor.org/info/rfc4288
https://www.rfc-editor.org/info/rfc4288
https://www.rfc-editor.org/info/rfc4289

REFERENCES 65

[8] N. Freed and N. S. Borenstein, Multipurpose Internet Mail Extensions (MIME)

Part Five: Conformance Criteria and Examples, RFC 2049, Nov. 1996. [On-

line]. Available: https://www.rfc-editor.org/info/rfc2049.

[9] A. Yang, S. Steele, and N. Freed, Internationalized Email Headers, RFC 6532,

Feb. 2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6532.

[10] J. C. Klensin, Simple Mail Transfer Protocol, RFC 5321, Oct. 2008. [Online].

Available: https://www.rfc-editor.org/info/rfc5321.

[11] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down Approach.

Boston, MA, USA: Pearson, 2016.

[12] SecPoint, What is an Open Mail Relay? [Online]. Available: https://www.

secpoint.com/what-is-an-open-relay.html (visited on 08/25/2022).

[13] JANET, Repairing open mail relays. [Online]. Available: https://web.archive.

org/web/20080224195334/http://www.ja.net/services/mail/janet-

spam-relay-tester-and-notification-system/repairing-open-mail-

relays.html (visited on 08/25/2022).

[14] M. T. Rose and J. G. Myers, Post Office Protocol - Version 3, RFC 1939, May

1996. [Online]. Available: https://www.rfc-editor.org/info/rfc1939.

[15] A. Melnikov and B. Leiba, Internet Message Access Protocol (IMAP) - Version

4rev2, RFC 9051, Aug. 2021. [Online]. Available: https://www.rfc-editor.

org/info/rfc9051.

[16] S. Kitterman, Sender Policy Framework (SPF) for Authorizing Use of Do-

mains in Email, Version 1, RFC 7208, Apr. 2014. [Online]. Available: https:

//www.rfc-editor.org/info/rfc7208.

[17] M. Kucherawy, D. Crocker, and T. Hansen, DomainKeys Identified Mail (DKIM)

Signatures, RFC 6376, Sep. 2011. [Online]. Available: https://www.rfc-

editor.org/info/rfc6376.

https://www.rfc-editor.org/info/rfc2049
https://www.rfc-editor.org/info/rfc6532
https://www.rfc-editor.org/info/rfc5321
https://www.secpoint.com/what-is-an-open-relay.html
https://www.secpoint.com/what-is-an-open-relay.html
https://web.archive.org/web/20080224195334/http://www.ja.net/services/mail/janet-spam-relay-tester-and-notification-system/repairing-open-mail-relays.html
https://web.archive.org/web/20080224195334/http://www.ja.net/services/mail/janet-spam-relay-tester-and-notification-system/repairing-open-mail-relays.html
https://web.archive.org/web/20080224195334/http://www.ja.net/services/mail/janet-spam-relay-tester-and-notification-system/repairing-open-mail-relays.html
https://web.archive.org/web/20080224195334/http://www.ja.net/services/mail/janet-spam-relay-tester-and-notification-system/repairing-open-mail-relays.html
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/info/rfc7208
https://www.rfc-editor.org/info/rfc7208
https://www.rfc-editor.org/info/rfc6376
https://www.rfc-editor.org/info/rfc6376

REFERENCES 66

[18] M. Kucherawy and E. Zwicky, Domain-based Message Authentication, Report-

ing, and Conformance (DMARC), RFC 7489, Mar. 2015. [Online]. Available:

https://www.rfc-editor.org/info/rfc7489.

[19] J. R. Levine, Email Authentication for Internationalized Mail, RFC 8616, Jun.

2019. [Online]. Available: https://www.rfc-editor.org/info/rfc8616.

[20] A. Almomani, B. B. Gupta, S. Atawneh, A. Meulenberg, and E. Almomani,

“A Survey of Phishing Email Filtering Techniques”, IEEE Communications

Surveys & Tutorials, vol. 15, no. 4, pp. 2070–2090, 2013.

[21] A. Ferreira, L. Coventry, and G. Lenzini, “Principles of Persuasion in Social

Engineering and Their Use in Phishing”, in Human Aspects of Information

Security, Privacy, and Trust, T. Tryfonas and I. Askoxylakis, Eds., Cham,

CH: Springer International Publishing, 2015, pp. 36–47.

[22] P. Kalaharsha and B. M. Mehtre, “Detecting Phishing Sites - An Overview”,

CoRR, vol. abs/2103.12739, pp. 1–13, 2021. arXiv: 2103 . 12739. [Online].

Available: https://arxiv.org/abs/2103.12739.

[23] A. Draghetti, Phishing: Tecniche e strategie di un fenomeno in evoluzione,

2019. [Online]. Available: https://www.andreadraghetti.it/wp-content/

uploads/2020/08/2020.04.23-Tesi-Andrea-Draghetti-Web.pdf.

[24] I. Fette, N. Sadeh, and A. Tomasic, “Learning to Detect Phishing Emails”, in

Proceedings of the 16th International Conference on World Wide Web, New

York, NY, USA: Association for Computing Machinery, 2007, pp. 649–656.

[Online]. Available: https://doi.org/10.1145/1242572.1242660.

[25] D. Lain, K. Kostiainen, and S. Čapkun, “Phishing in Organizations: Find-

ings from a Large-Scale and Long-Term Study”, in 2022 IEEE Symposium on

Security and Privacy (SP), Los Alamitos, CA, USA, 2022, pp. 842–859.

https://www.rfc-editor.org/info/rfc7489
https://www.rfc-editor.org/info/rfc8616
https://arxiv.org/abs/2103.12739
https://arxiv.org/abs/2103.12739
https://www.andreadraghetti.it/wp-content/uploads/2020/08/2020.04.23-Tesi-Andrea-Draghetti-Web.pdf
https://www.andreadraghetti.it/wp-content/uploads/2020/08/2020.04.23-Tesi-Andrea-Draghetti-Web.pdf
https://doi.org/10.1145/1242572.1242660

REFERENCES 67

[26] D. Jampen, G. Gür, T. Sutter, and B. Tellenbach, “Don’t click: towards an

effective anti-phishing training. A comparative literature review”, Human-

centric Computing and Information Sciences, vol. 10, pp. 1–41, Dec. 2020.

[27] P. Burda, L. Allodi, and N. Zannone, “Don’t Forget the Human: a Crowd-

sourced Approach to Automate Response and Containment Against Spear

Phishing Attacks”, in 2020 IEEE European Symposium on Security and Pri-

vacy Workshops(EuroS&PW), Los Alamitos, CA, USA, Sep. 2020, pp. 471–

476.

[28] T. Moore and R. Clayton, “Evaluating the Wisdom of Crowds in Assessing

Phishing Websites”, in Financial Cryptography and Data Security, G. Tsudik,

Ed., Berlin, DE: Springer Berlin Heidelberg, 2008, pp. 16–30.

[29] A. Aleroud and L. Zhou, “Phishing environments, techniques, and counter-

measures: A survey”, Computers & Security, vol. 68, pp. 160–196, 2017. [On-

line]. Available: https://www.sciencedirect.com/science/article/pii/

S0167404817300810.

[30] Y. Huo, Y.-W. Hwang, I.-Y. Lee, H. Kim, H. Lee, and D. Kim, “Current

Status and Security Trend of OSINT”, Wireless Communications and Mobile

Computing, vol. 2022, pp. 1–14, 2022. [Online]. Available: https://doi.org/

10.1155/2022/1290129.

[31] D. Lande and E. Shnurko-Tabakova, “OSINT as a part of cyber defense sys-

tem”, Theoretical and Applied Cybersecurity, vol. 1, no. 1, pp. 103–108, 2019.

[32] J. Pastor-Galindo, P. Nespoli, F. Gómez Mármol, and G. Martínez Pérez, “The

Not Yet Exploited Goldmine of OSINT: Opportunities, Open Challenges and

Future Trends”, IEEE Access, vol. 8, pp. 10 282–10 304, 2020.

[33] Justin Nordine, OSINT framework. [Online]. Available: https://github.

com/lockfale/osint-framework (visited on 09/17/2022).

https://www.sciencedirect.com/science/article/pii/S0167404817300810
https://www.sciencedirect.com/science/article/pii/S0167404817300810
https://doi.org/10.1155/2022/1290129
https://doi.org/10.1155/2022/1290129
https://github.com/lockfale/osint-framework
https://github.com/lockfale/osint-framework

REFERENCES 68

[34] M. M. Yamin, M. Ullah, H. Ullah, B. Katt, M. Hijji, and K. Muhammad,

“Mapping Tools for Open Source Intelligence with Cyber Kill Chain for Adver-

sarial Aware Security”, Mathematics, vol. 10, no. 12, pp. 1–25, 2022. [Online].

Available: https://www.mdpi.com/2227-7390/10/12/2054.

[35] fastfire, deepdarkCTI. [Online]. Available: https://github.com/fastfire/

deepdarkCTI (visited on 09/17/2022).

[36] CrowdStrike, IOA VS IOC, May 2021. [Online]. Available: https://www.

crowdstrike.com/cybersecurity-101/indicators-of-compromise/ioa-

vs-ioc/ (visited on 09/18/2022).

[37] F. Jáñez-Martino, E. Fidalgo, S. González-Martínez, and J. Velasco-Mata,

“Classification of Spam Emails through Hierarchical Clustering and Super-

vised Learning”, CoRR, vol. abs/2005.08773, pp. 1–4, 2020. [Online]. Available:

https://arxiv.org/abs/2005.08773.

[38] U. Murugavel and R. Santhi, “Detection of spam and threads identification

in e-mail spam corpus using content based text analytics method”, Materials

Today: Proceedings, vol. 33, pp. 3319–3323, 2020. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S2214785320333903.

[39] F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castror, E. Fidalgo, and

E. Alegre, “A review of spam email detection: Analysis of spammer strategies

and the dataset shift problem”, Artificial Intelligence Review, vol. 56, pp. 1145–

1173, 2023.

[40] Elastic, What is the ELK Stack? [Online]. Available: https://www.elastic.

co/what-is/elk-stack (visited on 09/25/2022).

[41] Elastic, What is Elasticsearch? [Online]. Available: https://www.elastic.

co/what-is/elasticsearch (visited on 09/27/2022).

https://www.mdpi.com/2227-7390/10/12/2054
https://github.com/fastfire/deepdarkCTI
https://github.com/fastfire/deepdarkCTI
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/ioa-vs-ioc/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/ioa-vs-ioc/
https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/ioa-vs-ioc/
https://arxiv.org/abs/2005.08773
https://www.sciencedirect.com/science/article/pii/S2214785320333903
https://www.sciencedirect.com/science/article/pii/S2214785320333903
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch

REFERENCES 69

[42] Elastic, Logstash. [Online]. Available: https://www.elastic.co/logstash

(visited on 09/30/2022).

[43] M. Settle and M. Martin, Introducing the Elastic Common Schema, Feb. 2019.

[Online]. Available: https://www.elastic.co/blog/introducing-the-

elastic-common-schema (visited on 09/30/2022).

[44] Elastic, What is Kibana? [Online]. Available: https://www.elastic.co/

what-is/kibana (visited on 10/01/2022).

[45] J. Skowronski, Elastic Agent and Fleet make it easier to integrate your systems

with Elastic, Aug. 2021. [Online]. Available: https://www.elastic.co/

blog/elastic-agent-and-fleet-make-it-easier-to-integrate-your-

systems-with-elastic (visited on 10/01/2022).

[46] Elastic, Elastic Agent. [Online]. Available: https://www.elastic.co/elastic-

agent/ (visited on 10/02/2022).

[47] Elastic, beats. [Online]. Available: https://www.elastic.co/beats/ (visited

on 10/02/2022).

[48] Filigran, OpenCTI. [Online]. Available: https : / / github . com / OpenCTI -

Platform/opencti (visited on 10/08/2022).

[49] Filigran, OpenCTI. [Online]. Available: https://www.filigran.io/en/

products/opencti (visited on 10/08/2022).

[50] FALLCO, Portale dei Creditori. [Online]. Available: https://www.portalecreditori.

it (visited on 10/11/2022).

[51] Intelligence X, Phonebook.cz. [Online]. Available: https://phonebook.cz

(visited on 10/11/2022).

[52] Register.it. [Online]. Available: https://www.register.it (visited on 10/11/2022).

https://www.elastic.co/logstash
https://www.elastic.co/blog/introducing-the-elastic-common-schema
https://www.elastic.co/blog/introducing-the-elastic-common-schema
https://www.elastic.co/what-is/kibana
https://www.elastic.co/what-is/kibana
https://www.elastic.co/blog/elastic-agent-and-fleet-make-it-easier-to-integrate-your-systems-with-elastic
https://www.elastic.co/blog/elastic-agent-and-fleet-make-it-easier-to-integrate-your-systems-with-elastic
https://www.elastic.co/blog/elastic-agent-and-fleet-make-it-easier-to-integrate-your-systems-with-elastic
https://www.elastic.co/elastic-agent/
https://www.elastic.co/elastic-agent/
https://www.elastic.co/beats/
https://github.com/OpenCTI-Platform/opencti
https://github.com/OpenCTI-Platform/opencti
https://www.filigran.io/en/products/opencti
https://www.filigran.io/en/products/opencti
https://www.portalecreditori.it
https://www.portalecreditori.it
https://phonebook.cz
https://www.register.it

REFERENCES 70

[53] A. Draghetti, meioc. [Online]. Available: https://github.com/drego85/

meioc (visited on 10/13/2022).

https://github.com/drego85/meioc
https://github.com/drego85/meioc

	Introduction
	Technical Background
	Email Message Formats
	Email Protocols
	Simple Mail Transfer Protocol (SMTP)
	Post Office Protocol version 3 (POP3)
	Internet Mail Access Protocol (IMAP)

	Email Validation Against Spoofing
	Sender Policy Framework (SPF)
	DomainKeys Identified Mail (DKIM)
	Domain-based Message Authentication, Reporting and Conformance (DMARC)

	Theoretical Background
	Phishing
	Open Source Intelligence (OSINT)
	Indicators of Compromise
	Spam filter

	Würth Phoenix SOC Infrastructure
	Elastic Stack
	Elasticsearch
	Logstash
	Kibana
	Beats

	OpenCTI
	SATAYO

	Specification and Design
	Motivation
	Integration
	Conception
	Spam Trap Box
	Analyzer

	Implementation and Verification
	Spam Trap Box Configuration
	Analyzer Development
	Database
	Emails Download
	Data Extraction
	Data Analysis

	Detection Simulation

	Conclusion
	References

