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ABSTRACT

The classical setting in optimal stopping and optimal control theory assumes that the 
agent controlling the system can operate continuously in time. In optimal stopping 
this setting is highly stylized for many applications, for example, in mathematical fi-
nance due to illiquid markets. In optimal stochastic control this setting often leads to 
optimal strategies being singular with respect to the Lebesgue measure, and thus the 
strategies are not feasible in practice. Hence, it is of importance to study these prob-
lems from such a perspective that their solutions are practically more implementable.

In this thesis we alter the classical setting by introducing an exogenous constraint, 
in the form of a signal process, for the control opportunities of the agent. In order 
to keep the problems more tractable, especially time-homogeneous and Markovian, 
the signal process is assumed to be a Poisson process with constant intensity. Con-
sequently, the agent can only have influence on the system at discrete times. We call 
these control problems Poisson constrained control problems and study them when 
the dynamics are governed by linear diffusion processes.

Linear diffusions are particular enough to have a rich theory but still general 
enough to offer a class of interesting dynamics that are applicable in various situa-
tions. A key factor is also that many control problems with diffusions will lead to 
closed-form solutions. This thesis investigates to which extent the classical theory 
of diffusion can be applied in this class of control problems to form closed-form 
solutions.

KEYWORDS: Linear diffusions, Poisson process, Resolvent operator, Stochastic
control
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TIIVISTELM

Optimaalisen pysäyttämisen ja optimaalisen säätöteorian ongelmissa oletetaan usein, 
että systeemiä ohjaava agentti voi halutessaan toimia rajoituksitta. Tämän seurauk-
sena perinteisen säätöteorian ongelmissa optimaalinen strategia on usein säätää sys-
teemiä jatkuvasti. Useissa sovelluksissa tällaiset stretegiat eivät kuitenkaan ole to-
teutettavissa. Esimerkiksi matemaattisen rahoituksen portfolion optimointiongelmis-
sa ei myyminen ja ostaminen ole mahdollista milloin tahansa likvidisyysrajoitteista 
johtuen.

Tässä väitöskirjassa perinteisen säätöteorian ongelmiin lisätään signaaliprosessi, 
joka antaa agentille ajanhetket, joina säätäminen on mahdollista. Jotta säätöongelma 
olisi matemaattisesti ratkaistavissa, oletamme, että signaaliprosessi on vakiointen-
siteettinen Poisson-prosessi. Täten agentti voi vaikuttaa systeemin kulkuun vain 
diskreetteinä ajanhetkinä. Kutsumme näitä säätöongelmia Poisson-rajoitteisiksi säätö-
ongelmiksi ja tutkimme niitä, kun säädettävää systeemiä kuvaa lineaarinen diffuusio-
prosessi.

Lineaariset diffuusiot ovat kohtuullisen yleisiä dynamiikaltaan, mikä mahdollis-
taa niiden käytön useissa erilaisissa sovelluksissa. Lisäksi lineaaristen diffuusioiden 
teoria on hyvin tutkittua, mikä takaa niiden sujuvan matemaattisen käsittelyn. Usein 
säätöteorian ongelmat, joissa dynamiikkaa kuvaa lineaarinen diffuusio, ratkeavatkin 
suljetussa muodossa. Tässä väitöskirjassa sovelletaan klassisen diffuusioteorian tu-
loksia ja menetelmiä Poisson-rajoitettujen säätöongelmien ratkaisemiseksi.

ASIASANAT: Lineaariset diffuusiot, Poisson prosessi, resolventti, stokastinen kon-
trolli
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1 Linear diffusions

In this chapter we go through some of the basic definitions in the theory of stochastic
processes and the classical theory of diffusions at a level that is required for the rest
of this thesis. The reader should thus be able to follow this thesis by having basic
knowledge about probability spaces and Brownian motion.

We will consider a class of one-dimensional stochastic processes called regular
linear diffusions (diffusions for short). In order to define diffusions we present some
basics of stochastic processes in the first section. Unless otherwise indicated we refer
to [1] for the contents of this chapter.

1.1 Stochastic processes
Let (Ω,ℱ , {ℱ𝑡 }𝑡≥0,P) be a filtered probability space satisfying the usual condi-
tions (completion by P null sets and right continuity). A one-dimensional stochastic
process is a family of random variables 𝑋𝑡 defined on (Ω,ℱ , {ℱ𝑡 }𝑡≥0,P) that take
values on space (𝐼,ℬ), where 𝐼 is an interval called a state space and ℬ is the Borel
sigma algebra on 𝐼 . We denote by 𝑙 ≥ −∞ the left endpoint and by 𝑟 ≤ ∞ the right
endpoint of 𝐼 . The natural filtration with respect to 𝑋𝑡 is the filtration generated by
𝑋𝑡, that is 𝜎{𝑋𝑠, 𝑠 ≤ 𝑡 }.

Definition 1.1.1 (Markov process). Let 𝑓 : 𝐼 → R be a bounded Borel function.
Then 𝑋𝑡 is called a Markov process if it is adapted to {ℱ𝑡 }𝑡≥0 and

E𝑥[𝑓(𝑋𝑡+ℎ) | ℱ𝑡] = E𝑋𝑡
[𝑓(𝑋ℎ)], for all ℎ ≥ 0. (1)

Intuitively speaking, the future behaviour of a Markov process does not depend
on its behaviour in the past but only on the present state.

Definition 1.1.2 (Stopping time). A function 𝜏 : Ω → R+ ∪∞ is called a stopping
time if

{𝜔 : 𝜏(𝜔) ≤ 𝑡 } ∈ ℱ𝑡.

In other words, the random variable 𝜏 is a stopping time if one is able to decide,
based on the present information, if 𝜏 has occurred or not. Important stopping times
are lifetime and explosion time. The lifetime 𝜁 of a stochastic process 𝑋𝑡 is the time
until it is sent to a state Δ ̸∈ 𝐼 called a cemetery state, where it stays until the end.
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The cemetery state should be understood as an extra state that augments the state
space 𝐼 such that 𝐼Δ = 𝐼 ∪ Δ and ℬΔ = 𝜎{ℬ,Δ }. Let 𝜏𝐼 = inf{𝑡 ≥ 0 | 𝑋𝑡 =

𝑙 or 𝑋𝑡 = 𝑟} be the first hitting time to either of the endpoints of the state space.
Then the explosion time is defined as the minimum of the lifetime 𝜁 and the hitting
time 𝜏𝐼 .

Strong Markov processes are similar to Markov processes but (1) is assumed to
be satisfied for all finite stopping times 𝜏 .

Definition 1.1.3 (Strong Markov process). Let 𝑓 : 𝐼 → R be a bounded Borel
function. Then 𝑋𝑡 is called a strong Markov process if for all finite stopping times 𝜏
and all ℎ ≥ 0

E𝑥[𝑓(𝑋𝜏+ℎ) | ℱ𝜏 ] = E𝑋𝜏
[𝑓(𝑋ℎ)],

where ℱ𝜏 = {𝑁 ∈ ℱ | 𝑁 ∩ {𝜏 ≤ 𝑡 } ∈ ℱ𝑡, 𝑡 ≥ 0 }.

Let 𝜏𝑦 denote the first hitting time of 𝑋𝑡 to a state 𝑦, or in other words

𝜏𝑦 = inf{𝑡 ≥ 0 | 𝑋𝑡 = 𝑦}.

A stochastic process 𝑋𝑡 is called regular if

P𝑥(𝜏𝑦 <∞) > 0 for all 𝑥, 𝑦 ∈ 𝐼. (2)

In other words, a regular stochastic process 𝑋𝑡 can reach any state starting from any
other state with positive probability. If instead

P𝑥(𝜏𝑦 <∞) = 1 for all 𝑥, 𝑦 ∈ 𝐼,

so that the process𝑋𝑡 reaches any state from any other state with probability one, 𝑋𝑡

is called recurrent.
Another key concept in the theory of stochastic processes needed in this thesis is

that of a martingale. A stochastic process is a martingale if the best approximation
of the future is the present.

Definition 1.1.4 (Martingale). A stochastic process 𝑋𝑡 is called a martingale (with
respect to a filtration ℱ𝑡) if 𝑋𝑡 is ℱ𝑡-measurable, E𝑥[|𝑋𝑡|] <∞ and

E𝑥[𝑋𝑠 | ℱ𝑡] = 𝑋𝑡, for all 𝑠 ≥ 𝑡. (3)

If “=” in (3) is replaced by “≤” or “≥”, 𝑋𝑡 is called a supermartingale or sub-
martingale, respectively. Consequently, if 𝑋𝑡 is supermartingale and submartingale,
then 𝑋𝑡 is a martingale. A generalization of a martingale is given by a local martin-
gale.

2
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Definition 1.1.5 (Local martingale). Let 𝑋𝑡 be ℱ𝑡-measurable. If there exists a se-
quence of stopping times 𝜏𝑘 such that it is almost surely increasing and divergent.
Then 𝑋𝑡 is called a local martingale if the stopped process 𝑋𝜏𝑘

𝑡 = 𝑋min{𝑡,𝜏𝑘} is a
martingale for all 𝑘.

The name of a local martingale is descriptive as locally their paths are very simi-
lar to martingales and the difference occurs in the limit. Local supermartingales (sub-
martingales) are defined in an analogous manner by saying that the stopped process
is a supermartingale (submartingale). One can show that if a local supermartingale
is bounded from below, it is a supermartingale.

A sufficient condition for a local martingale to be a martingale is also given by
uniform integrability.

Definition 1.1.6 (Uniform integrability). A family {𝑋𝑡}𝑡≥0 of random variables is
said to be uniformly integrable if

sup
𝑡

E[|𝑋𝑡|1{|𝑋𝑡|>𝑐 }] → 0, 𝑐→ ∞.

A useful necessary and sufficient condition for uniform integrability is given in
section 2.6 of [2].

Proposition 1.1.7. A family {𝑋𝑡}𝑡≥0 of random variables is uniformly integrable if
and only if they are uniformly bounded

sup
𝑡

E𝑥[|𝑋𝑡|] <∞

and uniformly absolutely continuous

sup
𝑡

E𝑥[|𝑋𝑡|1𝐴] → 0, when P(𝐴) → 0.

We will need the uniform integrability of martingales in order to apply the fol-
lowing version of the optional stopping theorem that does not require the stopping
time to be almost surely finite.

Proposition 1.1.8 (Optional stopping). Let 𝑋𝑡 be a uniformly integrable martingale
and 𝜏 a stopping time with respect to the filtration ℱ𝑡. Then

E𝑥[𝑋𝜏 ] = E𝑥[𝑋0].

1.2 Linear diffusions
In this subsection we define the class of stochastic processes called linear diffusions
and study their main properties.

3
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Definition 1.2.1 (Regular linear diffusion). A regular linear diffusion (or regular one-
dimensional diffusion)𝑋 is a regular time-homogeneous strong Markov process that
has P𝑥 almost surely continuous paths and takes values in an interval 𝐼 .

Regularity is not usually included as part of the definition of a linear diffusion,
but we will only be working with regular diffusions throughout the thesis.

Definition 1.2.2 (Infinitesimal generator). The operator 𝒜 defined as

𝒜𝑓 = lim
𝑡→0+

E𝑥[𝑓(𝑋𝑡)]− 𝑓(𝑥)

𝑡
(4)

is called the infinitesimal generator of 𝑋𝑡. Here the function 𝑓 : 𝐼 → R is such that
the limit in (4) exists for all 𝑥 ∈ 𝐼 .

Essentially, the infinitesimal generator describes the average movement of the
diffusion 𝑋𝑡 in infinitesimal time interval. Hence, it is not too surprising that in
many cases it can be represented as a differential operator as we will shortly find out.

Let 𝑆 : 𝐼 → R be a continuous increasing function and 𝑘, 𝑚 non-negative
measures that satisfy

𝑚((𝑥, 𝑦)) =

∫︁ 𝑦

𝑥
𝑚(𝑑𝑧) <∞ and 𝑘((𝑥, 𝑦)) =

∫︁ 𝑦

𝑥
𝑘(𝑑𝑧) <∞

for all 𝑙 < 𝑥 < 𝑦 < 𝑟. Given such 𝑆,𝑚 and 𝑘, one can construct a diffusion whose
behaviour is characterized by this triplet (see for example in section 5.6 of [3] and
in section 7.2 of [4]). The functions 𝑆, 𝑚 and 𝑘 are the basic characteristics of the
diffusion, and called the scale function, the speed measure and the killing measure,
respectively. The names for the basic characteristics are rather descriptive: It can be
shown that the speed measure describes the expected time that the process spends
in small intervals, the killing measure is related to the distribution of the process at
its lifetime 𝜁 and the scale function has the property that it scales the state space in
terms of the probabilities of hitting various states (see e.g. section 15.3 of [5]). Also,
the scaled diffusion 𝑆(𝑋𝑡) turns out to be a local martingale.

We will consider the case where the basic characteristics are absolutely continu-
ous with respect to the Lebesgue measure and that they have smooth derivatives. In
this case

𝑚(𝑑𝑥) = 𝑚(𝑥)𝑑𝑥, 𝑘(𝑑𝑥) = 𝑘(𝑥)𝑑𝑥, 𝑆(𝑥) =

∫︁ 𝑥

𝑆′(𝑧)𝑑𝑧,

where 𝑚 > 0, 𝑆′ > 0 and 𝑘 ≥ 0 are continuous. Further, if 𝑆′′ is continuous, then
the infinitesimal generator 𝒜 can be written for 𝑓 ∈ 𝒞2 as

𝒜𝑓(𝑥) = 1

2
𝜎2(𝑥)

𝑑2

𝑑𝑥2
𝑓(𝑥) + 𝜇(𝑥)

𝑑

𝑑𝑥
𝑓(𝑥)− 𝑐(𝑥)𝑓(𝑥). (5)

4
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Here the infinitesimal parameters 𝜎, 𝜇, 𝑐 of 𝑋𝑡 are connected to the basic character-
istics by

𝑚(𝑥) = 2𝜎−2(𝑥)𝑒ℬ(𝑥), 𝑆′(𝑥) = 𝑒−ℬ(𝑥), 𝑘(𝑥) = 2𝜎−2(𝑥)𝑐(𝑥)𝑒ℬ(𝑥), (6)

where ℬ(𝑥) =
∫︀ 𝑥

2𝜎−2(𝑧)𝜇(𝑧)𝑑𝑧. When 𝑘(𝑥) = 0, the differential operator 𝒜 can
also be represented as a successive differentiations with respect to the scale function
and the speed measure. Indeed,

𝒜 =
1

2

𝑑

𝑑𝑚(𝑥)

𝑑

𝑑𝑆(𝑥)
,

which is referred to as the canonical representation. Further, we note that the scale
function 𝑆 solves the ordinary differential equation 𝒜𝑓(𝑥) = 0.

The basic characteristics can be shown to define the behaviour of the diffusion
completely for any open interval in state space 𝐼 . However, some boundary con-
ditions on 𝐼 are needed to have a full unique characterization. We will go through
the characterization for the left endpoint 𝑙 as similar definitions hold for the right
endpoint. Define the functions

𝑁(𝑧) =

∫︁ 𝑧

𝑙
(𝑚((𝑎, 𝑧)) + 𝑘((𝑎, 𝑧)))𝑆(𝑎)𝑑𝑎,

Σ(𝑧) =

∫︁ 𝑧

𝑙
(𝑆(𝑧)− 𝑆(𝑎))(𝑚(𝑎) + 𝑘(𝑎))𝑑𝑎.

The function 𝑁(𝑧) roughly describes the time it takes from the diffusion to reach a
point 𝑧 ∈ (𝑙, 𝑟) from the boundary 𝑙 and Σ(𝑧) roughly describes the time it takes to
reach 𝑙 from 𝑧 ∈ (𝑙, 𝑟) (see [5] section 15.6).

Definition 1.2.3. Let 𝑧 ∈ (𝑙, 𝑟). The left endpoint of an interval 𝐼 for a diffusion 𝑋𝑡

is

(𝑖) exit, if 𝑁(𝑧) <∞,

(𝑖𝑖) entrance, if Σ(𝑧) <∞,

(𝑖𝑖𝑖) regular, if it is exit and entrance,

(𝑖𝑣) natural, if it is neither exit nor entrance.

The regular boundaries are further classified based on the values of 𝑚(𝑙) and
𝑘(𝑙). However, when the basic characteristics are absolutely continuous with respect
to the Lebesgue measure the only two possibilities are reflecting boundary, when
𝑚(𝑙) = 𝑘(𝑙) = 0 and killing boundary, when 𝑚(𝑙) ̸= ∞ and 𝑘(𝑙) = ∞.

We will from here on focus on the case where 𝑘(𝑥) = 0 for all 𝑥 ∈ 𝐼 . Let
𝑟 > 0 be a constant killing rate or discounting rate. Given the characterization of

5
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the infinitesimal generator 1.2.2 as a linear second order differential operator, we can
study its properties from the perspective of ordinary differential equations. The two
linearly independent functions 𝜓𝑟(𝑥) and 𝜙𝑟(𝑥) of the ordinary differential equation

(𝒜− 𝑟)𝑓(𝑥) = 0

are called the fundamental solutions. The Wronskian is

𝐵𝑟 =
𝜓′
𝑟(𝑥)

𝑆′(𝑥)
𝜙𝑟(𝑥)−

𝜙′
𝑟(𝑥)

𝑆′(𝑥)
𝜓𝑟(𝑥) > 0,

and can be shown by direct differentiation to be independent of 𝑥. The fundamental
solutions can be characterized as the unique (up to a multiplicative constant) positive
solutions by demanding that 𝜓𝑟 is increasing, 𝜙𝑟 decreasing, and giving boundary
conditions on regular boundaries. When 𝑙 is reflecting, we have 𝜓′

𝑟(𝑙)
𝑆′(𝑙) = 0 and when

𝑙 is killing, we have 𝜓𝑟(𝑙+) = 0. The functions 𝜓𝑟 and 𝜙𝑟 also satisfy the following
properties at the left endpoint 𝑙 depending on the boundary behaviour of 𝑋𝑡:

(𝑖) if 𝑙 is entrance, 𝜓𝑟(𝑙+) > 0, 𝜓
′
𝑟(𝑙+)
𝑆′(𝑙+) = 0, 𝜙𝑟(𝑙+) = ∞, 𝜙

′
𝑟(𝑙+)
𝑆′(𝑙+) > −∞,

(𝑖𝑖) if 𝑙 is exit 𝜓𝑟(𝑙+) = 0, 𝜓
′
𝑟(𝑙+)
𝑆′(𝑙+) > 0, 𝜙𝑟(𝑙+) <∞, 𝜙

′
𝑟(𝑙+)
𝑆′(𝑙+) = −∞,

(𝑖𝑖𝑖) if 𝑙 is natural 𝜓𝑟(𝑙+) = 0, 𝜓
′
𝑟(𝑙+)
𝑆′(𝑙+) = 0, 𝜙𝑟(𝑙+) = ∞, 𝜙

′
𝑟(𝑙+)
𝑆′(𝑙+) = −∞.

As seen above the fundamental solutions carry information about the boundary be-
haviour of the diffusion 𝑋𝑡, and as we will see below, they also determine the distri-
bution of the hitting times of the diffusion to various states. Recall that 𝜏𝑧 denotes the
first hitting time of 𝑧 ∈ 𝐼 by the diffusion 𝑋𝑡. Then using the fundamental solutions
we can express the Laplace transform of 𝜏𝑧 as

E𝑥[𝑒−𝑟𝜏𝑧 ] =

{︃
𝜓𝑟(𝑥)
𝜓𝑟(𝑧)

, 𝑧 ≤ 𝑥,
𝜙𝑟(𝑥)
𝜙𝑟(𝑧)

, 𝑧 > 𝑥.
(7)

The differential operator (𝒜−𝑟) has an inverse for any 𝑟 > 0, and the inverse can
be given in terms of the diffusion that characterizes 𝒜. Let ℒ1

𝑟 be the set of functions
satisfying the integrability condition∫︁ 𝜁

0
𝑒−𝑟𝑡|𝑓(𝑋𝑡)|𝑑𝑡 <∞,

where 𝜁 is the lifetime of 𝑋𝑡. Then the inverse of (𝒜 − 𝑟) is the resolvent defined
below.
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Definition 1.2.4 (Resolvent). A resolvent of a function 𝑓 ∈ ℒ1
𝑟 is

(𝑅𝑟𝑓)(𝑥) = E𝑥
[︂ ∫︁ 𝜁

0
𝑒−𝑟𝑡𝑓(𝑋𝑡)𝑑𝑡

]︂
,

where 𝑟 > 0 and 𝜁 is the lifetime of 𝑋𝑡.

The following Proposition (see [1] pp. 4-5 and p. 11) highlights the main proper-
ties of the resolvent operator. Especially, the property (𝑖𝑣) is of interest as it connects
the fundamental solutions 𝜓𝑟 and 𝜙𝑟 to the resolvent operator in computationally
useful way. It will be one of the main tools used throughout the thesis.

Proposition 1.2.5. Let 𝑓 ∈ ℒ1
𝑟 . Then the resolvent

(𝑖) satisfies the resolvent equation

(𝑅𝑟 −𝑅𝜆) = (𝜆− 𝑟)𝑅𝑟𝑅𝜆, 𝜆 > 𝑟 > 0;

(𝑖𝑖) is an inverse operator of the infinitesimal generator in the sense that for 𝑓 ∈ 𝒞2

(𝑅𝑟(𝒜− 𝑟)𝑓)(𝑥) = −𝑓(𝑥);

(𝑖𝑖𝑖) is a contraction map,
||𝑅𝑟|| ≤ 1/𝑟,

where ||𝑅𝑟|| = sup{||𝑅𝑟𝑓 || | ||𝑓 || = 1 } and ||𝑓 || is the usual sup-norm;

(𝑖𝑣) can be represented using the fundamental solutions as

(𝑅𝑟𝑓)(𝑥) = 𝐵−1
𝑟

[︂
𝜙𝑟(𝑥)(Ψ𝑟𝑓)(𝑥) + 𝜓𝑟(𝑧)(Φ𝑟𝑓)(𝑥)

]︂
,

where

(Ψ𝑟𝑓)(𝑥) =

∫︁ 𝑥

0
𝑓(𝑧)𝜓𝑟(𝑧)𝑚

′(𝑧)𝑑𝑧, (Φ𝑟𝑓)(𝑥) =
∫︁ ∞

𝑥
𝑓(𝑧)𝜙𝑟(𝑧)𝑚

′(𝑧)𝑑𝑧;

(𝑣) has a derivative

(𝑅𝑟𝑓)
′(𝑥) = 𝐵−1

𝑟

[︂
𝜙′
𝑟(𝑥)(Ψ𝑟𝑓)(𝑥) + 𝜓′

𝑟(𝑧)(Φ𝑟𝑓)(𝑥)

]︂
.

The integral functionals (Ψ𝑟𝑓) and (Φ𝑟𝑓) that appear in part (𝑖𝑣) and (𝑣) of
Proposition 1.2.5 will play a key role in the next chapters and one of their main
properties is given in the next Proposition.
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Proposition 1.2.6. (A) Assume that 𝑓 ∈ 𝐶2, lim𝑥→𝑙+ |𝑓(𝑥)| < ∞ and (𝒜− 𝑟)𝑓 ∈
ℒ1
𝑟 . Then

𝑓 ′(𝑥)
𝑆′(𝑥)

𝜓𝑟(𝑥)−
𝜓′
𝑟(𝑥)

𝑆′(𝑥)
𝑓(𝑥) = (Ψ𝑟(𝒜− 𝑟)𝑓)(𝑥)− 𝛿,

where 𝛿 = 0 if 𝑙 is natural or entrance and 𝛿 = 𝐵𝑟
𝑓(0)
𝜙𝑟(0)

otherwise.

(B) Assume that 𝑓 ∈ 𝐶2, lim𝑥→𝑟− 𝑓(𝑥)/𝜓𝑟(𝑥) = 0 and (𝒜− 𝑟)𝑓 ∈ ℒ1
𝑟 . Then

𝑓 ′(𝑥)
𝑆′(𝑥)

𝜙𝑟(𝑥)−
𝜙′
𝑟(𝑥)

𝑆′(𝑥)
𝑓(𝑥) = (Φ𝑟(𝒜− 𝑟)𝑓)(𝑥).

Using the above Proposition the fundamental solutions 𝜓𝑟(𝑥) and 𝜙𝑟(𝑥) can be
shown to satisfy the following useful inequalities for 𝑧 < 𝑥 and 𝜆, 𝑟 > 0 (see lemma
4 in article IV)

𝜓𝑟+𝜆(𝑧)

𝜓𝑟(𝑧)
≤ 𝜓𝑟+𝜆(𝑥)

𝜓𝑟(𝑥)
≤ 𝜓′

𝑟+𝜆(𝑥)

𝜓′
𝑟(𝑥)

,

𝜙𝑟+𝜆(𝑧)

𝜙𝑟(𝑧)
≤ 𝜙𝑟+𝜆(𝑥)

𝜙𝑟(𝑥)
≤ 𝜙′

𝑟+𝜆(𝑥)

𝜙′
𝑟(𝑥)

.

In order to have more tools at our disposal to solve the stochastic control prob-
lems in the following chapters, we further restrict ourselves to consider a class of
diffusions called Itô diffusions. To define Itô diffusions, let 𝑊𝑡 be a one-dimensional
Brownian motion, 𝜇 : 𝐼 → R be the drift function and 𝜎 : 𝐼 → R+ be the volatility
function. Then stochastic process 𝑋𝑡 given as the unique weak solution to a stochas-
tic differential equation

𝑑𝑋𝑡 = 𝜇(𝑋𝑡)𝑑𝑡+ 𝜎(𝑋𝑡)𝑑𝑊𝑡, 𝑋0 = 𝑥, (8)

is called an Itô diffusion. Basically, a weak solution to (8) means that one can find
a probability space, and a Brownian motion 𝑊𝑡 defined on it, such that (8) holds for
the stochastic process 𝑋𝑡. Hence, uniqueness should be understood as uniqueness
in distribution. A set of sufficient conditions for a weak solution to the stochastic
differential equation (8) to exist is given by

𝜎2(𝑥) > 0 (non-degeneracy), (9)∫︁ 𝑥+𝜀

𝑥−𝜀

1 + |𝜇(𝑧)|
𝜎2(𝑧)

𝑑𝑧 <∞ (local integrability) , (10)

where the last condition means that for every 𝑥 ∈ 𝐼 there exists a 𝜀 such that the
given integral is finite.

The main tool that we will use related to stochastic differential equations is Itô’s
formula and its generalizations.
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Theorem 1.2.7 (Itô’s formula). Let 𝑓 be a twice continuously differentiable function.
Then

𝑓(𝑊𝑡)− 𝑓(𝑊0) =

∫︁ 𝑡

0
𝑓 ′(𝑊𝑠)𝑑𝑊𝑠 +

1

2

∫︁ 𝑡

0
𝑓 ′′(𝑊𝑠)𝑑𝑠.

The combination of tools from the classical theory of diffusions and stochastic
differential equations gives us an ideal framework for the rest of this thesis. Finally,
we give full statement connecting linear diffusions with Itô diffusions under our as-
sumptions.

Proposition 1.2.8. Assume that 𝜎 and 𝜇 are continuous, 𝑘 ≥ 0, and the non-
degeneracy (9) and local integrability (10) conditions hold. Then there exists a dif-
fusion 𝑋𝑡 such that it is given by a unique weak solution to the stochastic differential
equation

𝑑𝑋𝑡 = 𝜇(𝑋𝑡)𝑑𝑡+ 𝜎(𝑋𝑡)𝑑𝑊𝑡, 𝑋0 = 𝑥,

and its infinitesimal generator up to an explosion time can be written for 𝑓 ∈ 𝐶2 as

𝒜𝑓(𝑥) = 1

2
𝜎2(𝑥)

𝑑2

𝑑𝑥2
𝑓(𝑥) + 𝜇(𝑥)

𝑑

𝑑𝑥
𝑓(𝑥)− 𝑐(𝑥)𝑓(𝑥).

1.3 Examples of diffusions
We give some examples of the most common diffusions defined through stochastic
differential equations.

1.3.1 Brownian motion with drift

The diffusion 𝑋𝑡 defined by

𝑑𝑋𝑡 = 𝜇𝑑𝑡+ 𝑑𝑊𝑡, 𝑋0 = 𝑥, (11)

where 𝜇 > 0, is called a Brownian motion with drift. The state space of the process
is R and its infinitesimal generator is given by

𝒜𝑓 =
1

2

𝑑2

𝑑𝑥2
𝑓 + 𝜇

𝑑

𝑑𝑥
𝑓.

The fundamental solutions are in this case known to be

𝜙𝜆(𝑥) = 𝑒−
(︀√

𝜇2+2𝜆+𝜇
)︀
𝑥, 𝜓𝜆(𝑥) = 𝑒

(︀√
𝜇2+2𝜆−𝜇

)︀
𝑥,

and the scale density and density of the speed measure read as

𝑆′(𝑥) = 𝑒−2𝜇𝑥, 𝑚′(𝑥) = 2𝑒2𝜇𝑥,

respectively. Both endpoints of the state space are in this case natural.
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1.3.2 Geometric Brownian motion

The diffusion 𝑋𝑡 defined by

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡+ 𝜎𝑋𝑡𝑑𝑊𝑡, 𝑋0 = 𝑥, (12)

where 𝜇 > 0 and 𝜎 > 0, is called a geometric Brownian motion. The state space of
the process is R+ and the infinitesimal generator is

𝒜𝑓 =
1

2
𝜎2𝑥2

𝑑2

𝑑𝑥2
𝑓 + 𝜇𝑥

𝑑

𝑑𝑥
𝑓.

The scale density and the density of the speed measure read as

𝑆′(𝑥) = 𝑥−
2𝜇

𝜎2 , 𝑚′(𝑥) =
2

𝜎2
𝑥

2𝜇

𝜎2 −2.

Denote

𝛽 =
1

2
− 𝜇

𝜎2
+

√︃(︂
1

2
− 𝜇

𝜎2

)︂2

+
2𝑟

𝜎2
> 1,

𝛼 =
1

2
− 𝜇

𝜎2
−
√︃(︂

1

2
− 𝜇

𝜎2

)︂2

+
2𝑟

𝜎2
< 0.

Then the fundamental solutions for 𝑋𝑡 read as

𝜓𝑟(𝑥) = 𝑥𝛽, 𝜙𝑟(𝑥) = 𝑥𝛼.

Both endpoints of the state space are in this case natural.

1.3.3 Ornstein-Uhlenbeck process

Consider dynamics that are characterized by a stochastic differential equation

𝑑𝑋𝑡 = −𝛿𝑋𝑡𝑑𝑡+ 𝑑𝑊𝑡, 𝑋0 = 𝑥,

where 𝛿 > 0. This diffusion is often used to model continuous time systems that
have mean reverting behaviour. The state space is R and the infinitesimal generator
is

𝒜𝑓 =
1

2

𝑑2

𝑑𝑥2
𝑓 − 𝛿𝑥

𝑑

𝑑𝑥
𝑓.

The scale density and the density of speed measure are

𝑆′(𝑥) = exp(𝛿𝑥2), 𝑚′(𝑥) = 2 exp(−𝛿𝑥2),

10
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and the fundamental solutions read as

𝜙𝜆(𝑥) = 𝑒
𝛿𝑥2

2 𝐷−𝜆/𝛿(𝑥
√
2𝛿), 𝜓𝜆(𝑥) = 𝑒

𝛿𝑥2

2 𝐷−𝜆/𝛿(−𝑥
√
2𝛿),

where 𝐷𝜈(𝑥) is a parabolic cylinder function. We note that this process is positively
recurrent and its stationary probability measure is given by

𝑚(𝑑𝑥) =

√
𝛿√
𝜋
𝑒−𝛿𝑥

2

𝑑𝑥.

Both endpoints of the state space are in this case natural.
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2 Some optimal control problems

In this chapter we go through some control problems of linear diffusions that can be
solved using the tools presented in the first chapter. Thus, we assume for the rest of
this thesis, without further notice, that the linear diffusion 𝑋𝑡 satisfies the assump-
tions in Proposition 1.2.8, and that 𝑘(𝑥) = 0 for all 𝑥. As the reader will notice, the
choice of the framework to study the control problems allows the solutions to be pre-
sented rather explicitly (in a closed-form). The term explicit should be understood in
this case to mean that the solution can be given in terms of the fundamental solutions
𝜓𝑟, 𝜙𝑟 and their functionals defined in the first chapter.

Since the focus of this thesis is in the Poisson constrained control problems (de-
fined in chapter three), this chapter is mostly meant to highlight the aspects of these
classical problems, which are relevant when comparing to the solutions of the Pois-
son constrained control problems.

2.1 Optimal stopping problems and optimal stopping
games

2.1.1 Optimal stopping problems

Optimal stopping problems usually arise in applications where a decision maker (an
agent) is faced with a problem of timing his/her decision to maximize a reward. Such
problems appear, for instance, in stochastic analysis, sequential analysis, and mathe-
matical finance. We refer to [6] for these applications, and also for the discussion in
this subsection.

The optimal stopping problem is to find a value function 𝑉 such that

𝑉 (𝑥) = sup
𝜏

E𝑥[𝑒−𝑟𝜏𝑔(𝑋𝜏 )], (13)

where the supremum is taken over the set of all stopping times with respect to the
natural filtration of 𝑋𝑡, 𝑔 is a non-negative, continuous function and the discounting
factor 𝑟 ≥ 0 is such that

E𝑥[sup
𝑡≥0

𝑒−𝑟𝑡𝑔(𝑋𝑡)] <∞. (14)

The optimal stopping time 𝜏* is defined to be any stopping time for which the supre-
mum in (13) is attained. The function 𝑔 is usually called exercise payoff or reward.
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The theory of optimal stopping is well developed and there are multiple ways of
studying optimal stopping problems. One of the most celebrated results in optimal
stopping is the characterization of the value using 𝑟-excessive functions.

Definition 2.1.1 (𝑟-excessive function). Assume that 𝑓 : 𝐼 → R+ is measurable.
Then 𝑓 is called 𝑟-excessive (with respect to 𝑋𝑡) if

(𝑖) E𝑥(𝑒−𝑟𝑡𝑓(𝑋𝑡)) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝐼 and

(𝑖𝑖) lim𝑡→0 E𝑥(𝑒−𝑟𝑡𝑓(𝑋𝑡)) = 𝑓(𝑥) for all 𝑥 ∈ 𝐼.

Definition 2.1.2 (smallest 𝑟-excessive majorant). A function 𝑓 is called a smallest
𝑟-excessive majorant of 𝑔 if

(𝑖) 𝑓 is 𝑟-excessive and 𝑓(𝑥) ≥ 𝑔(𝑥) for all 𝑥,

(𝑖𝑖) every other 𝑟-excessive majorant 𝑓 of 𝑔 satisfies 𝑓(𝑥) ≥ 𝑓(𝑥) for all 𝑥.

Proposition 2.1.3. Let 𝑔 be a continuous, non-negative function, which satisfies (14).
Then the value function 𝑉 in (13) is given by the smallest 𝑟-excessive majorant of
the payoff 𝑔.

From our perspective, two important approaches to optimal stopping are Bell-
man’s principle (also called dynamic programming principle) and free-boundary
problems. In our case, Bellman’s principle can be written as the Hamilton-Jacobi-
Bellman variational inequality (HJB)

𝑉 (𝑥) = max{(𝒜− 𝑟)𝑉 (𝑥) + 𝑉 (𝑥), 𝑔(𝑥)},

where the first component describes the option to gain a discounted profit by contin-
uing over an infinitesimal period and the second component the option to stop and
gain the payoff 𝑔. Bellman’s principle is very general by itself and it reveals its use-
fulness for our approach after splitting the state space 𝐼 in two regions. We denote by
𝐶 = {𝑥 | 𝑉 (𝑥) > 𝑔(𝑥)} the continuation region, where the diffusion is allowed to
evolve and is never terminated, and by 𝑆 = {𝑥 | 𝑉 (𝑥) = 𝑔(𝑥)} the stopping region,
where upon entering the diffusion 𝑋𝑡 is immediately stopped. This split leads us to
the free-boundary problem defined as{︃

(𝒜− 𝑟)𝑉 (𝑥) = 0, 𝑥 ∈ 𝐶,

𝑉 (𝑥) = 𝑔(𝑥), 𝑥 ∈ 𝑆,
(15)

where 𝜕𝑆 is the boundary of the set 𝑆. However, to find the boundary 𝜕𝑆 additional
conditions are needed. Usually, the so-called principle of smooth fit is adequate.
This principle states that the value function 𝑉 should be continuously differentiable
across the boundary 𝜕𝑆 and that 𝑉 ′(𝑥) = 𝑔′(𝑥) for 𝑥 ∈ 𝜕𝑆.
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In practice it is often beneficial to start directly from (or derive using heuristic
arguments) Bellman’s principle or the free-boundary formulation and guess the shape
of the optimal rule. For example, in many applications it turns out that a good guess
for the shape of the continuation region is 𝐶 = (𝑙, 𝑦*), and consequently, the optimal
stopping time is likely to be a hitting time to a state 𝑦*, that is 𝜏* = 𝜏𝑦* = inf{𝑡 ≥
0 | 𝑋𝑡 = 𝑦*}. These type of optimal policies are often referred to as one-sided rules,
in contrary to two-sided rules, where 𝐶 = (𝑥*, 𝑦*) for some 𝑥* < 𝑦* and 𝑥*, 𝑦* ∈ 𝐼 .
For a one-sided stopping policy the free-boundary problem (15) takes the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝒜− 𝑟)𝑉 (𝑥) = 0, 𝑥 < 𝑦*,

𝑉 (𝑥) > 𝑔(𝑥), 𝑥 < 𝑦*,

𝑉 (𝑥) = 𝑔(𝑥), 𝑥 = 𝑦*,

𝑉 ′(𝑥) = 𝑔′(𝑥), 𝑥 = 𝑦*,

𝑉 (𝑥) = 𝑔(𝑥), 𝑥 > 𝑦*,

(16)

After finding a candidate solution by solving (16), one needs to verify using a sep-
arate verification theorem (for example the Proposition 2.1.3) that the candidate is
indeed the solution. This guess and verify approach is especially useful in time-
homogeneous problems, where it is to be expected that the optimal stopping time is
the first hitting time to some state or states of the state space.

We can see immediately from Proposition 2.1.3 that the fundamental solutions
𝜓𝑟 and 𝜙𝑟 are related to solving the optimal stopping problem, because they are also
identified as minimal excessive functions. The same is immediate from the free-
boundary problem as it implies that (𝒜 − 𝑟)𝑉 (𝑥) = 0, when 𝑥 ∈ 𝐶, and thus we
have 𝑉 (𝑥) = 𝑐1𝜓𝑟(𝑥)+𝑐2𝜙𝑟(𝑥),when 𝑥 ∈ 𝐶. These observations are not, however,
very surprising in the light of (7), as we notice that for one-sided rules, we have

E𝑥[𝑒−𝑟𝜏𝑧𝑔(𝑋𝜏𝑧)] =

{︃
𝜓𝑟(𝑥)
𝜓𝑟(𝑧)

𝑔(𝑧), 𝑧 ≤ 𝑥,
𝜙𝑟(𝑥)
𝜙𝑟(𝑧)

𝑔(𝑧), 𝑧 > 𝑥.

2.1.2 Optimal stopping games

We consider optimal stopping games between two players, a sup-player and a inf-
player. The sup-player attempts to maximize the expected present value of exercise
payoff, whereas the inf-player’s objective is to minimize the same quantity. This
differs from a standard stopping problem in that the players have to take into account
the strategy of the other player and possibly adjust their strategy. Some applications
of stopping games in mathematical finance are for example cancellable options and
convertible bonds. In what follows, we will focus on zero-sum stopping games called
Dynkin games, and we follow [7] and [8].
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Some optimal control problems

The players are assumed to have their respective exercise payoff functions 𝑔𝑠 and
𝑔𝑖, and are allowed to stop the process 𝑋𝑡 at any stopping times defined with respect
to the natural filtration of 𝑋𝑡. To define the value of the game we let

𝑅(𝜏, 𝜎) = 𝑔𝑠(𝑋𝜏 )1{𝜏<𝜎} + 𝑔𝑖(𝑋𝜎)1{𝜏>𝜎} + 𝑔𝑝(𝑋𝜏 )1{𝜏=𝜎},

where 𝑔𝑝 is the payoff that corresponds to the simultaneous stopping of the players,
and 𝑔𝑖(𝑥) ≥ 𝑔𝑝(𝑥) ≥ 𝑔𝑠(𝑥) for all 𝑥 ∈ 𝐼 . The lower and upper values of the game
are defined as

𝑉 (𝑥) = sup
𝜏

inf
𝜎

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
, 𝑉 (𝑥) = inf

𝜎
sup
𝜏

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
.

We naturally have
𝑔𝑠(𝑥) ≤ 𝑉 (𝑥) ≤ 𝑉 (𝑥) ≤ 𝑔𝑖(𝑥).

When 𝑉 (𝑥) ≥ 𝑉 (𝑥), the equality

𝑉 (𝑥) = 𝑉 (𝑥) = 𝑉 (𝑥) (17)

holds and the zero-sum game is said to have a value 𝑉 . The maximizing strategies
in 𝑉 and the minimizing strategies in 𝑉 are called optimal and any pair of optimal
strategies is a Nash equilibrium.

Dynkin games can be solved using methods similar to optimal stopping prob-
lems, even though they are usually mathematically more demanding. We refer to
[9] for a similar approach to 𝑟-excessive functions in optimal stopping, [8; 10] using
fluctuation theory, and [11] using variational inequalities.

2.2 Singular optimal control
Even though optimal stopping problems fit many applications it is usually necessary
to model cases, where the decision maker (agent) is allowed to take action more
than once instead of terminating the process completely once and for all. Applica-
tions in this direction are dividend payment problems [12] and rational harvesting of
renewable resources [13].

Assume for now that the agent can control the path of the diffusion 𝑋𝑡 down-
wards by applying a control 𝐷𝑠

𝑡 . We assume that the control 𝐷𝑠
𝑡 belongs to a

set admissible controls 𝒟𝑠, which is given by non-negative, non-decreasing, right-
continuous, and {ℱ𝑡}𝑡≥0-adapted processes. Then, following [14], the controlled
dynamics are given by the generalized stochastic differential equation

𝑋𝐷𝑠

𝑡 = 𝜇(𝑋𝐷𝑠

𝑡 )𝑑𝑡+ 𝜎(𝑋𝐷𝑠

𝑡 )𝑑𝑊𝑡 − 𝛾𝑑𝐷𝑠
𝑡 , 𝑋𝐷𝑠

0 = 𝑥 ∈ 𝐼,

where 𝐷𝑠
𝑡 denotes the applied control policy and 𝛾 is a positive constant called a

proportional transaction cost. The following control problems are called singular,
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because the set of admissible controls allows for control policies that are singular
with respect to the Lebesgue measure. These controls are usually also called reflect-
ing controls, or local time push controls, as in many cases of interest the optimal
policy is to prevent the process to cross some state of the state space by reflecting
it by infinitesimal amount downwards. This behaviour will be in sharp contrast to
the optimal policies in the Poisson constrained control problems defined in chapter
three.

In this thesis we will investigate two different control criterion: discounted cri-
terion and ergodic criterion. In discounted problems the agent is usually faced with
the problem of minimizing (or maximizing)

E𝑥
[︂∫︁ ∞

0
𝑒−𝑟𝑡(𝜋(𝑋𝐷𝑠

𝑡 )𝑑𝑡+ 𝛾𝑑𝐷𝑠
𝑡 )

]︂
, (18)

and in ergodic problems with minimizing (or maximizing)

lim inf
𝑇→∞

1

𝑇
E𝑥

[︂∫︁ 𝑇

0
(𝜋(𝑋𝐷𝑠

𝑡 )𝑑𝑡+ 𝛾𝑑𝐷𝑠
𝑡 )

]︂
, (19)

where 𝜋 is called a running cost and the minimization is done over the admissible
controls 𝐷𝑠

𝑡 ∈ 𝒟𝑠. In (18) and (19) the minimizers (or maximizers) are called op-
timal controls and the values attained with the optimal controls are called the value
function 𝑉𝑟(𝑥) and the minimum average cost 𝛽. Even though these two criteria look
quite different, their solutions are usually related. Indeed, in the literature the usual
way to solve an ergodic problem is to first solve a discounted problem and then prove
that the ergodic problem is solved by a so-called vanishing discount limit, where the
discounting factor 𝑟 goes to zero. More specifically, let

𝑉 (𝑇, 𝑥) = inf
𝐷𝑠∈𝒟𝑠

E𝑥
[︂∫︁ 𝑇

0
(𝜋(𝑋𝐷𝑠

𝑠 )𝑑𝑠+ 𝛾𝑑𝐷𝑠
𝑡 )

]︂
denote the value of an associated finite time horizon problem. Due to sufficient
ergodic properties of 𝑋𝑡, for large 𝑇 we expect that we can separate the value as

𝑉 (𝑇, 𝑥) ∼ 𝛽𝑇 +𝑊 (𝑥),

where 𝛽 is the minimum average cost and 𝑊 is called the potential value function.
It is now expected that

𝑟𝑉𝑟(�̄�) → 𝛽 and 𝐽𝑟(𝑥)− 𝐽𝑟(�̄�) →𝑊 (𝑥),

where �̄� is a reference point and 𝑉𝑟(𝑥) is the value function of the discounted problem
(see [15] and [16]).
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Analogously to optimal stopping problems we can form a HJB variational in-
equality associated with discounted and ergodic control problems. In discounted
problems it takes the form (see [17])

max{(𝒜− 𝑟)𝑉𝑟(𝑥) + 𝜋(𝑥), 𝛾 − 𝑉 ′
𝑟 (𝑥)} = 0,

and in ergodic problems (see [18])

max{(𝒜𝑊 (𝑥) + 𝜋(𝑥)− 𝛽, 𝛾 −𝑊 ′(𝑥)} = 0.

Using the variational inequalities we can proceed further by splitting the state space
into a continuation region and an action region. These regions are very similar to a
continuation and a stopping region in optimal stopping problems. Indeed, inside the
continuation region the diffusion 𝑋𝑡 is allowed to evolve without interventions, and
if the diffusion is in the action region, a sufficient amount of control is immediately
exerted to push the process to the boundary of the continuation region. This split
allows us to write the free-boundary problem for each of the control problems. We
will here directly consider the case where the split is assumed to be such that the
continuation region is (𝑙, 𝑦*) and the action region [𝑦*,∞). Then in the discounted
problem we have ⎧⎪⎨⎪⎩

(𝒜− 𝑟)𝑉𝑟(𝑥) + 𝜋(𝑥) = 0, 𝑥 < 𝑦*,

𝑉 ′
𝑟 (𝑥) = 𝛾, 𝑥 = 𝑦*,

𝑉 ′
𝑟 (𝑥) < 𝛾, 𝑥 > 𝑦*,

(20)

and in the ergodic problem⎧⎪⎨⎪⎩
𝒜𝑊 (𝑥) + 𝜋(𝑥) = 𝛽, 𝑥 < 𝑦*,

𝑉 ′
𝑟 (𝑥) = 𝛾, 𝑥 = 𝑦*,

𝑉 ′
𝑟 (𝑥) < 𝛾, 𝑥 > 𝑦*.

(21)

In order to fully solve the free-boundary problems it is often further assumed that
the value functions are twice continuously differentiable across the boundary points
𝑦*. After finding the solution to the free-boundary problem a separate verification
theorem can be used to prove that we have indeed found the solution to the problem.

The control problems defined above are termed as downward control problems
because the path of the process is usually controlled downwards at some state 𝑦*. In
a similar manner we could define upward control problems, where only controlling
upwards is allowed. The solutions to downward or upward problems are usually
given by a one-sided control policy as highlighted in the free-boundary problems (20)
and (21). An interesting generalization is to allow controlling both downwards and
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upwards (see e.g. [19] for a discounted problem and [20] for an ergodic problem),
where in the discounted case the agent minimizes (or maximizes)

E𝑥
[︂∫︁ ∞

0
𝑒−𝑟𝑡(𝜋(𝑋𝐷𝑠

𝑡 )𝑑𝑡+ 𝛾𝑑𝑑𝐷
𝑠
𝑡 − 𝛾𝑢𝑑𝑈

𝑠
𝑡 )

]︂
(22)

over admissible control policies 𝐷𝑡
𝑠 and 𝑈 𝑠𝑡 . Then the optimal solution is often two-

sided control, where the path of the diffusion is controlled upwards at some state
𝑥* and downwards at state 𝑦* > 𝑥*. The solution methods are similar to one-sided
problems but usually the assumptions are more demanding.
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3 Poisson constrained optimal control

3.1 Restrictions on control times
The solutions to the optimal control problems in Chapter two are often unrealistic, or
at least unfeasible in practice, as the optimal policies in the control problems include
not only continuous monitoring of the underlying diffusion but also local time type
optimal policies, where continuous controlling is required. There are various ways
considered in the literature to make the setting more realistic. One possibility is to
add a constant transaction cost to the control problems in section 2.2, so that a fixed
amount 𝐾 is paid every time that the agent applies the control. In this case the opti-
mal policy is under similar assumptions an impulse control, where the agent chooses
a set of stopping times {𝜏1, 𝜏2, . . .}, that describe when to exert the control, and
corresponding impulse sizes {𝜁1, 𝜁2, . . .}, which describe how much the diffusion is
controlled at each stopping time (see e.g. [21], [22] and references therein).

In this thesis we take another viewpoint and the main focus will be on the aspects
of restricting the continuous controllability of the diffusion such that the diffusion is
only controllable at discrete times given by an exogenous process. If the continuous
observability is also restricted, the problems transform to those studied for example
in [23]. Consequently, we introduce a signal process, or constraint, which we denote
by 𝑁𝑡.

Assumption 3.1.1. The process 𝑁𝑡 is assumed to be a Poisson process with param-
eter 𝜆 and it is assumed to be independent of 𝑋𝑡. Further, the filtration {ℱ𝑡}𝑡≥0 is
augmented such that it is rich enough to carry the process 𝑁𝑡. We denote by 𝑇𝑖 the
jump times of 𝑁𝑡 and by 𝑈 = 𝑇𝑖 − 𝑇𝑖−1 the exponentially distributed inter arrival
times.

The reason for restricting the signal process to be a Poisson process is to have
the inter arrival times be exponentially distributed, so that the memoryless prop-
erty of the exponential distribution keeps the problem setting time-homogeneous
and Markovian. One might expect that a restriction of control times to a given grid
{𝑛𝑡 | 𝑛 ≥ 0 } would make the problem more tractable, but this makes the problem
time-inhomogenous and closed form solutions even in simple cases are not likely to
exist. In this sense randomization of the control opportunities makes the problems
more tractable. For these reasons, the introduction of restricted control times given
by a Poisson process will not transform the problem to be very far from the standard
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problems introduced in Chapter two. This allows us to apply similar tools as in Chap-
ter two to obtain solutions, that can be presented using similar functional forms, and
consequently, enables rather direct comparisons between the solutions of the Poisson
constrained and classical problems. One example of such comparison is to consider
the case where the rate of the Poisson process 𝜆 tends to infinity. This corresponds to
the case where more and more control opportunities are given to the agent, and hence
we would expect that in the limit we would recover the related classical problem (see
article III for results in this direction).

The literature on problems where the controlling is allowed only at exogenous
times given by a Poisson (or more general) signal process has expanded quite rapidly
in the past decade or so. Thus, we postpone most of the considerations of the litera-
ture from the coming sections to a separate section at the end of this Chapter.

3.2 Poisson constrained stopping problems and Pois-
son constrained stopping games

In this section we go trough similar control problems as in section 2.1 but the control
times are restricted to jump times of a Poisson signal process as defined in section
3.1. As the reader will notice, the tools and solution methods coincide between the
Poisson restricted problems and the classical problems. Thus, it is worthwhile to
compare the problems defined in the sections below to Chapter two.

3.2.1 Poisson constrained stopping problems

We follow [24] and consider an optimal stopping problem, where stopping is only
possible at the jump times 𝑇𝑖 of a Poisson process 𝑁𝑡 as given in assumption 3.1.1.
We assume that 𝑇0 = 0 and denote

N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }.

The Poisson constrained stopping problem (constrained stopping problem or Poisson
stopping problem for short) is to find the value function 𝑉𝜆 and a Poisson stopping
time 𝜏𝜆 ∈ T1 such that

𝑉𝜆(𝑥) = sup
𝜏𝜆∈T1

E𝑥[𝑒−𝑟𝜏𝑔(𝑋𝜏 )],

where

T1 = {𝜏 is a ℱ𝑡-stopping time | for all 𝜔, 𝜏(𝜔) = 𝑇𝑛(𝜔) for some 𝑛 ∈ N}

is the set of Poisson stopping times and 𝑔 : R → R is sufficiently defined payoff.
Notice that in this formulation exercising is not possible immediately as 𝑇0 = 0 is
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not a possible Poisson stopping time. A related formulation is

𝑉 0
𝜆 (𝑥) = sup

𝜏𝜆∈T0

E𝑥[𝑒−𝑟𝜏𝑔(𝑋𝜏 )],

where stopping immediately is admissible. In other words, the set of admissible
Poisson stopping times is

T0 = T1∪{0} = {𝜏 is a ℱ𝑡-stopping time | for all 𝜔, 𝜏(𝜔) = 𝑇𝑛 for some 𝑛 ∈ N0}.

It is worth noting that the first problem is time-homogeneous. However, the second is
time-inhomogenous in the sense that at time 𝑡 = 0 we can stop, but at every 𝑡 > 0 we
have to wait for a jump. This remark also yields the dynamic programming principle

𝑉 0
𝜆 (𝑥) = max{𝑔(𝑥), 𝑉𝜆(𝑥)}, (23)

where the first component describes the option to stop at each Poisson jump to get
the payoff 𝑔 and the second component describes the option to wait until the next
stopping opportunity. Conditioning on the first jump time of the Poisson process we
further find that

𝑉𝜆(𝑥) = E𝑥[𝑒−𝑟𝑈𝑉 0
𝜆 (𝑋𝑈 )] = 𝜆(𝑅𝑟+𝜆𝑉

0
𝜆 )(𝑥),

where 𝑈 ∼ Exp(𝜆) and 𝑅𝑟+𝜆 is the resolvent operator (see definition 1.2.4). Hence,
using (23) we get

𝑉𝜆(𝑥) = 𝜆E𝑥
[︂ ∫︁ ∞

0
𝑒−(𝑟+𝜆)𝑡max{𝑔(𝑋𝑡), 𝑉𝜆(𝑋𝑡)}𝑑𝑡

]︂
.

Based on this identity we expect that 𝑉𝜆 will solve the variational inequality

(𝒜− 𝑟)𝑉𝜆(𝑥) + 𝜆(max{𝑔(𝑥), 𝑉𝜆(𝑥)} − 𝑉𝜆(𝑥)) = 0.

Analogously to the classical stopping problem, the state space can be divided to a
continuation region and a Poisson stopping region. The continuation region is de-
fined in a similar manner, but the Poisson stopping region has the additional property
that the agent is forced to wait there until a Poisson jump is observed (and the dif-
fusion remains in that region). Based on the variational inequality this allows us to
formulate the free-boundary problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝒜− 𝑟)𝑉𝜆(𝑥) = 0, 𝑥 < 𝑦*𝜆,

𝑉𝜆(𝑥) > 𝑔(𝑥), 𝑥 < 𝑦*𝜆,

𝑉𝜆(𝑦
*
𝜆) = 𝑔(𝑦*𝜆), 𝑥 = 𝑦*𝜆,

(𝒜− (𝑟 + 𝜆))𝑉𝜆(𝑥) = −𝜆𝑔(𝑥), 𝑥 > 𝑦*𝜆,

𝑉𝜆(𝑥) < 𝑔(𝑥), 𝑥 > 𝑦*𝜆,
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where we also assumed for simplicity that the optimal stopping rule is given by the
one-sided Poisson stopping rule or the Poisson entry time to an interval [𝑦*𝜆, 𝑙)

𝜏𝜆𝑦*𝜆 = min{𝑇𝑖, 𝑖 ∈ N | 𝑋𝑇𝑖
≥ 𝑦*𝜆 }.

Since the considered Poisson stopping problem is essentially discrete (the possi-
ble stopping times form a discrete set), we can proceed by formulating the problem
also in discrete time. The discrete time formulation is particularly useful in proving
a verification theorem (see section 2.3 of [25] or section 3.2 of [24]). Thus, the guess
and verify approach can be used to solve Poisson stopping problems in similar way
as classical stopping problems.

3.2.2 Poisson constrained stopping games

Next, we define the Poisson constrained stopping game following [26] and article II.
Similar to the stopping game considered in section 2.1.2, the players, sup and inf,
have their respective exercise payoff functions 𝑔𝑠 and 𝑔𝑖. The sup-player attempts to
maximize the expected present value of exercise payoff, whereas the inf-players ob-
jective is to minimize the same quantity. However, contrary to the classical stopping
game the players are allowed only to stop the diffusion at the arrivals of their respec-
tive signal Poisson processes 𝑁 𝑠 and 𝑁 𝑖, which are assumed to be independent of
each other and the diffusion 𝑋𝑡. We define

𝑅(𝜏, 𝜎) = 𝑔𝑠(𝑋𝜏 )1{𝜏<𝜎} + 𝑔𝑖(𝑋𝜎)1{𝜏>𝜎}.

Then the lower and upper values of the game are

𝑉 (𝑥) = sup
𝜏∈T𝑠

inf
𝜎∈T𝑖

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
, 𝑉 (𝑥) = inf

𝜎∈T𝑖
sup
𝜏∈T𝑠

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
,

where

T𝑠 = { 𝜏 is an ℱ𝑡-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇 𝑠𝑛(𝜔), for some 𝑛 = 1, 2, . . . }
T𝑖 = { 𝜏 is an ℱ𝑡-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇 𝑖𝑛(𝜔), for some 𝑛 = 1, 2, . . . },

and when the equality

𝑉 (𝑥) = 𝑉 (𝑥) = 𝑉 (𝑥) (24)

holds the zero-sum game is said to have a value 𝑉 . There are two key differences
compared to the classical stopping game. First, it is not necessary to include the
possibility of simultaneous stopping as independent Poisson arrivals do not, almost
surely, occur simultaneously. Second, the usual ordering of the payoffs 𝑔𝑠 ≤ 𝑔𝑖 is
not directly needed to solve the problem.
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To solve the problem (24), we could in principle proceed by heuristically forming
a free-boundary problem to receive a candidate solution. However, it turns out it is
easier to proceed by exploiting the discrete time aspects of the problem. Hence, we
introduce two auxiliary problems 𝐼 and 𝑆. Auxiliary problem 𝐼 is defined via the
lower and upper values

𝑉 𝑖
0(𝑥) = sup

𝜏∈T𝑠

inf
𝜎∈T𝑖

0

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
, 𝑉

𝑖
0(𝑥) = inf

𝜎∈T𝑖
0

sup
𝜏∈T𝑠

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
,

where

T𝑖
0 = { 𝜏 is a F-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇 𝑖𝑛(𝜔), for some 𝑛 = 0, 1, . . . }.

Similarly, the auxiliary problem 𝑆 is defined via the lower and upper values

𝑉 𝑠
0(𝑥) = sup

𝜏∈T𝑠
0

inf
𝜎∈T𝑖

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
, 𝑉

𝑠
0(𝑥) = inf

𝜎∈T𝑖
0

sup
𝜏∈T𝑠

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
,

where

T𝑠
0 = { 𝜏 is a F-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇 𝑠𝑛(𝜔), for some 𝑛 = 0, 1, . . . }.

If conditions analogous to (17) hold, the values 𝑉 𝑖
0 and 𝑉 𝑠

0 are said to exist. We
observe that the discrete time aspects of the problem is apparent in these auxiliary
problems. In the problem 𝐼 the inf-player is allowed to stop immediately, whereas
the sup-player has to wait until his next stopping opportunity. Similar remarks hold
for the problem 𝑆 but from the perspective of the sup-player. These auxiliary prob-
lems suggest, for each of the players separately, a dynamic programming principle
analogous to a Poisson stopping problem:

𝑉 𝑖
0 (𝑥) = min{𝑔𝑖(𝑥), 𝑉 (𝑥)}, (25)

𝑉 𝑠
0 (𝑥) = max{𝑔𝑠(𝑥), 𝑉 (𝑥)}, (26)

𝑉 (𝑥) = E𝑥
[︁
𝑒−𝑟(𝑈

𝑖∧𝑈𝑠)
(︀
𝑉 𝑖
0 (𝑋𝑈 𝑖)1{𝑈 𝑖<𝑈𝑠} + 𝑉 𝑠

0 (𝑋𝑈𝑠)1{𝑈𝑠<𝑈 𝑖}
)︀]︁
, (27)

where the exponential random variables 𝑈 𝑠 ∼ Exp(𝜆𝑠) and 𝑈 𝑖 ∼ Exp(𝜆𝑖) are inde-
pendent. The first equation (25) reflects that when the inf-player receives a stopping
opportunity, he/she either decides to receive the payoff 𝑔𝑖, or decides to wait. The
second equation (26) has a similar interpretation for the sup-player. The last condi-
tion (27) is the expected present value of the next stopping opportunity, which will
be for either of the players. This dynamic programming principle can be solved for
example by relying on the properties of the resolvent operator, and then verified to
solve the defined Poisson constrained Dynkin game using martingale techniques (see
article II). We refer to [26; 27; 28] for an another approach using backward stochastic
differential equations.
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3.3 Poisson constrained singular control problems
In this section we consider downward Poisson constrained singular control problems,
where the agent can act similarly as in section 2.2, but each action has to happen at a
jump time of an independent Poisson process. This framework was first considered in
[29]. Hence, we define the set of admissible control policies 𝒟 as those non-negative,
non-decreasing, right-continuous processes that can be represented as

𝜁𝑡 =

∫︁ 𝑡−

0
𝜂𝑠𝑑𝑁𝑠,

where 𝜂 is an {𝐹𝑡}-predictable process. Given the admissible controls 𝒟, the con-
trolled process 𝑋𝜁

𝑡 can be defined as the generalized Itô differential equation

𝑋𝜁
𝑡 = 𝑥+

∫︁ 𝑡

0
𝜇(𝑋𝜁

𝑠 )𝑑𝑠+

∫︁ 𝑡

0
𝜎(𝑋𝜁

𝑠 )𝑑𝑊𝑠 − 𝜁𝑡.

As in section 2.2, the discounted control problem is to minimize over the admissible
controls 𝜁 ∈ 𝒟 the quantity

E𝑥
[︂ ∫︁ ∞

0
𝑒−𝑟𝑠

(︀
𝜋(𝑋𝜁

𝑠 )𝑑𝑠+ 𝛾𝑑𝜁)

]︂
and the ergodic problem to minimize

lim inf
𝑇→∞

1

𝑇
E𝑥

[︂ ∫︁ 𝑇

0

(︀
𝜋(𝑋𝜁

𝑠 )𝑑𝑠+ 𝛾𝑑𝜁
)︀]︂
,

where 𝛾 > 0 is the proportional transaction cost and 𝜋 a running cost. The applied
solution methods to Poisson constrained singular control problems are again con-
nected to the classical counterparts. The HJB equation in the discounted Poisson
constrained problem takes the form

(𝒜− 𝑟)𝑉𝑟,𝜆(𝑥) + 𝜋(𝑥)− 𝜆max{𝑉 ′
𝑟,𝜆(𝑥)− 𝛾, 0} = 0 (28)

and in the ergodic Poisson constrained problem

𝒜𝑊𝜆(𝑥) + 𝜋(𝑥)− 𝜆max{𝑊 ′
𝜆(𝑥)− 𝛾, 0} = 𝛽𝜆. (29)

Analogous to (20) and (21), the split of the state space to continuation region and ac-
tion region leads to free-boundary problems. In a Poisson constraint problem the ac-
tion region has the property that the agent is, similar to constrained stopping, forced
to wait for a Poisson event instead of immediately acting upon the entry to the action
region. In a discounted problem the free-boundary problem takes the form (see [30])⎧⎪⎨⎪⎩

(𝒜− 𝑟)𝑉𝑟,𝜆(𝑥) + 𝜋(𝑥) = 0, 𝑥 < 𝑦*,

𝑉 ′
𝑟,𝜆(𝑥) = 𝛾, 𝑥 = 𝑦*,

(𝒜− 𝑟)𝑉𝑟,𝜆(𝑥) + 𝜋(𝑥) + 𝜆(𝑉 ′
𝑟,𝜆(𝑥)− 𝛾) = 0, 𝑥 > 𝑦*,

(30)
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and in an ergodic problem (see article I)

⎧⎪⎨⎪⎩
𝒜𝑊𝜆(𝑥) + 𝜋(𝑥) = 𝛽𝜆, 𝑥 < 𝑦*,

𝑊 ′(𝑥) = 𝛾, 𝑥 = 𝑦*,

𝒜𝑊𝜆(𝑥) + 𝜋(𝑥)− 𝜆(𝑊 ′
𝜆(𝑥)− 𝛾) = 𝛽𝜆, 𝑥 > 𝑦*.

(31)

Again, additional boundary conditions are needed to find the boundary point 𝑦*, and
usually a twice continuously differentiability requirement is sufficient as in the clas-
sical problems. These solutions to the free-boundary problems can then be verified
to be optimal using a verification theorem (see [30] for a verification theorem for dis-
counted Poisson constrained problem and article I for an ergodic Poisson constrained
problem).

The optimal one-sided policies, characterized by 𝑦*, implicit in the above free-
boundary problems can be summarized as follows. When the process is below the
threshold 𝑦* we do not act, but if the process crosses the boundary, and the Pois-
son process jumps, we immediately push it down to 𝑦* and start it anew. Hence,
the optimal control is no longer singular reflecting barrier policy as in the singular
control problems. However, the optimal policies in Poisson constrained problems
and singular problems are similar in the sense that the optimal strategy is always to
exert control at the ‘maximum possible rate’ when the process is at (or above) the
corresponding boundary 𝑦*, and otherwise leave it uncontrolled.

A generalization of the downward discounted Poisson constrained singular con-
trol to two-sided constrained control, similar to (22), is considered in article IV.

3.4 Literature on Poisson constrained control problems
The problems where independent Poisson processes alter the classical control prob-
lems in one way or another are rather new and mostly discussed in the literature
during the past two decades. However, due to increasing interest, especially in ap-
plied probability, option pricing, portfolio optimization, credit risk modelling and
actuarial risk models, it is of importance to see to what extent these problems are
studied. In principle, there are multiple ways that an independent Poisson process
can affect the classical control problems. These include admissible exercise times,
the parameters of the underlying diffusion, the payoff structure, the time-horizon of
the problem, or some combination of these.

The goal of this section is to give a short but rather extensive review of the lit-
erature associated with problems, where the exercise times are constrained to jump
times of a Poisson process (or by some other more general signal process). Even
though the problems in the aforementioned categories are very closely related, we
try to keep them at least to some extent separated below.
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3.4.1 Applied probability

The Poisson constrained stopping problem was first studied in [24], where stopping
is only possible at Poisson events with constant arrival rate. The authors solve the
problem for call-type payoff and geometric Brownian motion. This approach has
been generalized and modified to cover variety of control problems. A more general
payoff structure and linear diffusion structure is studied in [25], and the case where
the underlying is a spectrally negative Lévy process in [31; 32]. The monotonicity
and convexity of the value in Poisson constrained stopping for constant and state
dependent rate of the Poisson process, is considered in [33]. In [34], the agent is
also allowed to optimally choose the rate of the Poisson process to generate more
stopping opportunities when needed, and in [35], the stopping opportunities given
by the Poisson process are taken with a state dependent probability. Further, in [36]
a regime-switching geometric Brownian motion is considered, where in addition to
constrained stopping times, the stopping is possible only in one of the regimes. The
authors in [37] study a variation of the problem, where the agent is stopping at the
maximum of a geometric Brownian motion.

Multi-dimensional generalizations are considered in [38] and [39]. In [38] it is
shown that the solution to the Poisson constrained stopping problem can be given as a
solution to a penalized backward stochastic differential equation. In [39] the authors
add a running cost to the model and note that a so-called ”penalty method” is suitable
for solving the Poisson constrained stopping problem (see also [40] for application of
the penalty method for American options in this framework). Also, [39] notes that the
Poisson constrained problem in multiple dimensions is often more mathematically
and numerically tractable than the classical problem. A generalization for general
Markov-Feller processes and more general signal processes is given in [41], and a
similar generalization in a general Markovian framework is investigated in [42] using
least squares Monte-Carlo methods.

The Poisson constrained control problems that restrict the classical singular prob-
lems to allow only controlling at Poisson events were first considered in [29], where
the costs are assumed to be quadratic and the underlying process is a standard Brow-
nian motion. The problem was solved under discounted and ergodic criteria. The
discounted problem was generalized to a more general cost and underlying structure
in [30], the ergodic problem in [43] (article I), and these problems were connected to
each other and their classical counterparts in [44] (article III). The discounted prob-
lem was then considered in the case of two-sided controls in [45] (article IV). The
case of general Markov-Feller processes and more general signal processes is treated
in [46] for discounted criterion and in [47] for ergodic criterion.

Poisson constrained stopping games or constrained Dynkin games were first in-
troduced in [26] and [27] relying on penalized backward stochastic differential equa-
tions. In [26] the authors consider a case, where a single Poisson process gives the
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stopping opportunities to both of the players simultaneously and in [27] (see also
[28]) the case where each player has their own signal Poisson process. A similar
game is also studied in article II and in [48]. In article II the perpetual game is
solved relying on classical theory of diffusions and in [48] the authors consider Lévy
dynamics.

In addition to the above problems, an optimal switching problem with constraint
is studied in [49] and in [50]. In optimal switching the agent determines an optimal
sequence of stopping times for a switching system, which is often modeled by a
stochastic process with several regimes. Further, the studies [51; 52] are of interest
as they study the fluctuation theory of Lévy processes observed at Poisson arrival
times. Their results have been applied to Poisson constrained problems for example
in [53; 54; 48; 55; 56; 57].

3.4.2 Mathematical finance

The Poisson constraint on the possible actions by the agent was first proposed in
[58] as a simple model for liquidity effects (see also [59]). The authors consider the
classical portfolio problem of Merton, but the portfolio can only be rebalanced at
Poisson events with constant rate. The portfolio optimization problem under similar
restrictions is further studied rather extensively. The model of [58] is studied in the
case of finite time horizon in [60; 61; 62], and in [63] with proportional transaction
costs. A related setting, where not only the trading times, but also the observations
of the price process is allowed at the jump times of the Poisson process, leading to
a coupled system of integro-differential equations, was first explored in [23; 64; 65;
66]. This framework is further elaborated in [67; 68; 69; 70]. The case of two assets,
liquid (continuously tradeable) and illiquid or light stock (trading times modeled
by Poisson constraint), is investigated in [69; 70; 71; 72; 73]. On the other hand,
the authors in [67] consider finite time horizon with Lévy dynamics and in [68] the
constant rate Poisson process is replaced by a Cox process. The extensions where the
constraint is a Cox processes also appear in [74; 75]. A different direction compared
to [23] is studied in [76] and [77], where the optimal strategy is not always to stop
at the arrival of the Poisson events (in this case the Poisson events give information
about the underlying process to the agent but do not directly restrict the intervention
times). A portfolio insurance problem, where wealth is not allowed to fall under
some fixed amount, appear in [78; 79]. Finally, further applications include credit
risk, capital supply and default modelling [80; 81; 82; 83; 84; 85], optimal trade
execution [86], real estate construction [87] and control of energy storage [88].
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3.4.3 Actuarial risk models

Another application of constrained intervention times appears in actuarial risk mod-
els, where the surplus of a risky business is modelled by a stochastic process and the
business pays dividends. In these models, the Poisson constrained dividend strate-
gies are usually referred to as periodic strategies. The authors in [89; 90] study this
setting when the surplus is given as a classical compound Poisson process, the divi-
dend payments are done according to a Poisson constrained barrier strategy and ruin
(negative surplus) can also only happen at Poisson times. These studies are now
elaborated on in many aspects. In [91] the optimal barrier is derived when surplus of
the company is modelled as Brownian motion and in [92] for Cramér-Lundberg risk
process (see also [93]). The authors in [94] (see also [55]) investigate the situation
where ruin can occur continuously in time but dividend decisions are still made at
times given by a Poisson process.

Moreover, in [95] ruin is observed at Poisson events, but dividends can only be
paid at some of the Poisson events. Generalizations of the above considerations to
Lévy dynamics appear in [54; 56; 57; 96]. An extension to so-called hybrid strate-
gies, where the dividends can be paid either periodically at Poisson events or contin-
uously (with higher cost), are studied in [97; 98]. Other works include optimal divi-
dends under regime switching models [99; 100], Markov additive models [100; 101],
and bail-outs (restricting surplus to be nonnegative) [53].
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4 Summaries of the included articles

In this section we give short summaries of the optimal control problems and their
solutions in articles I-IV. We refer to earlier chapters for most of the notations used
below, instead of repeating it here.

4.1 Article I: Ergodic control of diffusions with random
intervention times

In the first paper, we consider the ergodic Poisson constrained problem, where the
agent minimizes the ergodic cost criterion

lim inf
𝑇→∞

1

𝑇
E𝑥

[︂∫︁ 𝑇

0
(𝜋(𝑋𝜁

𝑠 )𝑑𝑠+ 𝛾𝑑𝜁𝑠)

]︂
.

The controlled linear diffusion dynamics 𝑋𝜁
𝑡 are given by the Itô equation

𝑋𝜁
𝑡 = 𝑋0 +

∫︁ 𝜏𝜁
0∧𝑡

0
𝜇(𝑋𝜁

𝑠 )𝑑𝑠+

∫︁ 𝜏𝜁
0∧𝑡

0
𝜎(𝑋𝜁

𝑠 )𝑑𝑊𝑠 − 𝜁𝑡, 0 ≤ 𝑡 ≤ 𝜏 𝜁0 ,

where 𝜏 𝜁0 is the first exit time of 𝑋𝜁
𝑡 from the state space.

We first show, relying on heuristic arguments, that the solution (𝑊,𝛽) to this
problem is expected to be given by the free-boundary problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑊𝜆 ∈ 𝐶2,

𝒜𝑊𝜆(𝑥) + 𝜋(𝑥) = 𝛽𝜆, 𝑥 < 𝑦*,

𝑊 ′
𝜆(𝑥) = 𝛾, 𝑥 = 𝑦*,

𝒜𝑊𝜆(𝑥) + 𝜋(𝑥)− 𝜆(𝛾(𝑥− 𝑦*) +𝑊𝜆(𝑦
*)) = 𝛽𝜆, 𝑥 > 𝑦*.

(32)

We solve the free-boundary problem in closed-form and verify under mild additional
assumptions compared to the classical version of the problem, that the we have in-
deed found the unique optimal solution (see [13] and [20] for the classical problem
with similar structure). Further, we are able to show that the optimal strategy con-
verges to its classical counterpart in the limit 𝜆→ ∞.
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4.2 Article II: A zero-sum Poisson stopping game with
asymmetric signal rates

In the second paper, we solve a Poisson constrained Dynkin game. More specifi-
cally, we assume that the sup-player and the inf-player are only allowed to stop the
diffusion at the arrivals of their respective signal processes 𝑌 𝑠 and 𝑌 𝑖. The value of
the game is defined trough the lower and upper values

𝑉 (𝑥) = sup
𝜏∈T𝑠

inf
𝜎∈T𝑖

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
, 𝑉 (𝑥) = inf

𝜎∈T𝑖
sup
𝜏∈T𝑠

E𝑥
[︁
𝑒−𝑟(𝜏∧𝜎)𝑅(𝜏, 𝜎)

]︁
,

where

𝑅(𝜏, 𝜎) = 𝑔𝑠(𝑋𝜏 )1{𝜏<𝜎} + 𝑔𝑖(𝑋𝜎)1{𝜏>𝜎},

T𝑠 = { 𝜏 is a F-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇𝑛𝑠(𝜔), for some 𝑛𝑠 = 1, 2, . . . }
T𝑖 = { 𝜏 is a F-stopping time | for all 𝜔 : 𝜏(𝜔) = 𝑇𝑛𝑖(𝜔), for some 𝑛𝑖 = 1, 2, . . . }.

When the equality 𝑉 (𝑥) = 𝑉 (𝑥) = 𝑉 (𝑥) holds, the game has a value 𝑉 .
Using the resolvent operator we solve the dynamic programming principle (see

section 3.2.2)

𝑉 𝑖
0 (𝑥) = min(𝑔𝑖(𝑥), 𝑉 (𝑥)),

𝑉 𝑠
0 (𝑥) = max(𝑔𝑠(𝑥), 𝑉 (𝑥)),

𝑉 (𝑥) = E𝑥
[︁
𝑒−𝑟(𝑈

𝑖∧𝑈𝑠)
(︀
𝑉 𝑖
0 (𝑋𝑈 𝑖)1{𝑈 𝑖<𝑈𝑠} + 𝑉 𝑠

0 (𝑋𝑈𝑠)1{𝑈𝑠<𝑈 𝑖}
)︀]︁

in a closed-form and verify, relying on martingale techniques, that its solution is the
value of the game. Further, we show that in the limit 𝜆 → ∞ the solution coincedes
with the classical Dynkin game with similar assumptions as ours (see [8]). We also
demonstrate that the effects of changing the arrival rates of the Poisson processes on
the strategies for the players.

4.3 Article III: A note on asymptotics between singular
and constrained control problems of one-dimensional
diffusions.

In the third paper, we show that the solutions to discounted and ergodic Poisson
constrained control problems converge to the solutions of the corresponding classical
singular control problems. Further, we also show that the two constrained problems,
discounted and ergodic, are connected via a vanishing discounting factor limit 𝑟 → 0.
These questions were left partly open in [30] and [43].

More precisely, we prove that the thresholds characterizing the optimal one-sided
downward control policies (𝑦*𝑠 and 𝑏*𝑠) satisfy the following asymptotic results in
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terms of the intensity of the Poisson process

𝑦*(𝜆) 𝜆→∞−−−→ 𝑦*𝑠 , 𝑏*(𝜆) 𝜆→∞−−−→ 𝑏*𝑠,

where (𝑦*(𝜆) and 𝑏*(𝜆)) are, respectively, the states characterizing the optimal pol-
icy in discounted and ergodic Poisson constrained problems. If the underlying diffu-
sion is also sufficiently ergodic, we also show the vanishing discounting factor limits

𝑦*𝑠(𝑟)
𝑟→0−−−→ 𝑏*𝑠, 𝑦*(𝑟) 𝑟→0−−−→ 𝑏*.

Further, we show that similar results also hold for the corresponding value functions
in terms of the intensity of the Poisson process

𝑉𝑟,𝜆(𝑥)
𝜆→∞−−−→ 𝑉 𝑠

𝑟 (𝑥), 𝛽𝜆
𝜆→∞−−−→ 𝛽𝑠,

where 𝑉𝑟,𝜆(𝑥) is the value of the discounted Poisson coinstrained problem, 𝑉 𝑠
𝑟 (𝑥)

the value of discounted singular problem and 𝛽𝜆, 𝛽𝑠 are the minimum average costs
in Poisson constrained and classical ergodic problems, respectively. Analogously,
we prove that the following Abelian limits hold for vanishing discounting factor

𝑟𝑉𝑟,𝜆(𝑥)
𝑟→0−−−→ 𝛽𝜆, 𝑟𝑉 𝑠

𝑟 (𝑥)
𝑟→0−−−→ 𝛽𝑠.

These results are illustrated when the underlying diffusion is Brownian motion
with drift and Ornstein-Uhlenbeck process.

4.4 Article IV: Two-sided Poisson control of linear diffu-
sions

In the fourth paper, we consider a generalization of the Poisson constrained con-
trol problem defined in section 3.3, where controlling is allowed downwards and
upwards. Consequently, we consider controlled dynamics given by the Itô equation

𝑋𝜁
𝑡 = 𝑥+

∫︁ 𝑡

0
𝜇(𝑋𝑠)𝑑𝑠+

∫︁ 𝑡

0
𝜎(𝑋𝑠)𝑑𝑊𝑠 − 𝜁𝑑𝑡 + 𝜁𝑢𝑡 ,

where

𝜁𝑑𝑡 =

∫︁ 𝑡−

0
𝜂𝑑𝑠𝑑𝑁𝑠, 𝜁𝑢𝑡 =

∫︁ 𝑡−

0
𝜂𝑢𝑠 𝑑𝑁𝑠.

The problem is to find the value function

𝑉 (𝑥) = sup
(𝜁𝑑,𝜁𝑢)

E𝑥
[︂ ∫︁ ∞

0
𝑒−𝑟𝑠

(︀
𝜋(𝑋𝜁

𝑠 )𝑑𝑠+ 𝛾𝑑𝑑𝜁𝑑 − 𝛾𝑢𝑑𝜁𝑢
)︀]︂
,

where the supremum is taken over all admissible controls and 𝛾𝑑 and −𝛾𝑢 are con-
stants, called the unit price and unit cost, respectively. The aim is also to characterize
the optimal control policy (𝜁*𝑑 , 𝜁

*
𝑢) that realizes this supremum.
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We expect that the value function 𝑉 solves the free-boundary problem

𝑉 ∈ 𝒞2

(𝒜− 𝑟)𝐹 (𝑥) = −𝜋(𝑥), 𝑎 < 𝑥 < 𝑏

(𝒜− (𝑟 + 𝜆))𝐹 (𝑥) = −𝜋(𝑥)− 𝜆(𝛾𝑑(𝑥− 𝑏) + 𝐹 (𝑏)), 𝑥 ≥ 𝑏

(𝒜− (𝑟 + 𝜆))𝐹 (𝑥) = −𝜋(𝑥)− 𝜆(𝛾𝑢(𝑥− 𝑎) + 𝐹 (𝑎)), 𝑥 ≤ 𝑎

𝐹 ′(𝑏) = 𝛾𝑑,

𝐹 ′(𝑎) = 𝛾𝑢.

We solve the free-boundary problem in a closed-form and show that its unique solu-
tion is indeed the optimal solution. Our assumptions are only slightly altered com-
pared to a singular version of the problem in a similar setting (see [19]). Further, the
problem is connected to the one in [19] in the limit 𝜆→ ∞, and results are illustrated
when the underlying process is a geometric Brownian motion.
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[54] J.L. Pérez and Yamazaki K. Mixed periodic-classical barrier strategies for
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[92] H. Albrecher, N. Bäuerle, and S. Thonhauser. Optimal dividend-payout in
random discrete time. Statistics and Risk Modelling, 28:251–276, 2011.

[93] W. Yu, P. Guo, Q. Wang, G. Guan, Y. Huang, and Yu X. Randomized ob-
servation periods for compound Poisson risk model with capital injection and
barrier dividend. Advances in Difference Equations, 2021:220, 2021.

[94] B. Avanzi, E. Cheung, B. Wong, and J.-K. Woo. On a periodic dividend barrier
strategy in the dual model with continuous monitoring of solvency. Insurance:
Mathematics and Economics, 52:98–113, 2013.

[95] M.C. Choi and E.C. Cheung. On the expected discounted dividends in the
cramér-lundberg risk model with more frequent ruin monitoring than dividend
decisions. Insurance: Mathematics and Economics, 59:121–132, 2014.

[96] K. Noba and K. Yamazaki. On stochastic control under Poisson observations:
optimality of a barrier strategy in a general Lévy model. arXiv:2210.00501,
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