
O
lli Siltanen

A
I 692

A
N

N
A

LES U
N

IV
ERSITATIS TU

RK
U

EN
SIS

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. AI OSA – TOM. 692 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2023

DECOHERENCE AND 
RESERVOIR ENGINEERING IN 

LINEAR OPTICAL SYSTEMS
Olli Siltanen





DECOHERENCE AND
RESERVOIR ENGINEERING IN
LINEAR OPTICAL SYSTEMS

Olli Siltanen

 
TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS 

SARJA – SER. AI OSA – TOM. 692 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2023 



University of Turku

Faculty of Science
Department of Physics and Astronomy
Theoretical physics
Doctoral Programme in Exact Sciences (EXACTUS)

Supervised by

Docent Tom Kuusela
Department of Physics and Astronomy 
University of Turku
Finland

Professor Jyrki Piilo
Department of Physics and Astronomy 
University of Turku
Finland

Reviewed by

Professor Gunnar Björk
Department of Applied Physics 
KTH Royal Institute of Technology 
Sweden

Associate Professor Bassano Vacchini
Dipartimento di Fisica Aldo Pontremoli 
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ABSTRACT

Realistic quantum systems interact with their environment and, as a consequence,
may lose their quantum properties. This phenomenon is known as decoherence, and
it keeps the many oddities of quantum mechanics at the level of elementary particles.
But while doing so, decoherence constitutes one of the biggest hindrances to efficient
technologies fueled by quantum mechanics. Hence, it is essential to understand the
different mechanisms of decoherence and how to control them.

Recently, reservoir engineering, i.e., manipulating the environmental degrees of
freedom and their initial correlations, has attracted a lot of attention as a means to
control decoherence. Reservoir engineering allows, e.g., to restore information previ-
ously leaked into environment back to open quantum systems—a phenomenon often
associated with memory and non-Markovianity.

In this Thesis, we study decoherence and reservoir engineering in the context of
linear optical systems, where the polarization degree of freedom of single photons is
the open quantum system. We begin with a short introduction to the very basics of
quantum theory, from which we gradually proceed to the dynamics of open quantum
systems.

The rest of the Thesis is dedicated to the main results of Publications I–VII.
We derive the decoherence functions of a biphoton system and show how to control
them independently of each other. Using the same methods, we can even reverse the
direction of decoherence. This allows us to realize quantum teleportation without the
resource qubits being entangled, which we demonstrate also experimentally.

We also consider decoherence occurring in interferometric setups, revealing the
interesting effects of which-path-information in Mach-Zehnder interference and pho-
ton bunching in Hong-Ou-Mandel interference. Monitoring the open-system dynam-
ics in these setups allows us to estimate different parameters outside the interferom-
eters’ more common working region. As for the interferometric region, we present
numerical results implying the possibility of breaking the so-called quantum Cramér-
Rao bound, a fundamental lower bound for the sensitivity of parameter estimation.

Finally, we consider parameter estimation from the opposite point of view, i.e.,
when the decoherence model is not known and we cannot monitor it. We implement
our alternative protocol in two experiments and apply the results in snapshot verifi-
cation of non-Markovianity—a task typically requiring monitoring the open-system
dynamics.
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TIIVISTELMÄ

Realistiset kvanttisysteemit vuorovaikuttavat ympäristönsä kanssa, minkä seu-
rauksena ne voivat menettää kvanttiominaisuutensa. Tämä ilmiö tunnetaan deko-
herenssina, ja se rajaa kvanttimekaniikan kummallisuudet alkeishiukkasten tasolle.
Samaan aikaan dekoherenssi kuitenkin muodostaa yhden suurimmista haitoista hyö-
dyllisille kvanttiteknologioille. Tästä syystä on erittäin tärkeää ymmärtää erilaisia
dekoherenssimalleja ja kuinka hallita niitä.

Viime aikoina huomiota herättänyt reservimuuntelu on yksi tapa hallita deko-
herenssia. Reservimuuntelulla tarkoitetaan ympäristön vapausasteiden ja niiden kor-
relaatioiden manipuloimista. Kyseisen tekniikan avulla voidaan muun muassa palaut-
taa ympäristöön vuotanutta informaatiota takaisin avoimiin kvanttisysteemeihin. Tä-
mä ilmiö yhdistetään usein avointen kvanttisysteemien muistiin ja niiden dynamiikan
epämarkovisuuteen.

Tässä väitöskirjassa tutkitaan dekoherenssia ja reservimuuntelua lineaarisen op-
tiikan viitekehyksessä. Tässä yhteydessä yksittäisten fotonien polarisaatiovapausaste
muodostaa avoimen kvanttisysteemin. Aloitamme lyhyellä johdatuksella kvanttime-
kaniikan perusteisiin ja siirrymme vähitellen avointen kvanttisysteemien dynami-
ikkaan.

Loput väitöskirjasta perustuu tieteellisiin alkuperäisjulkaisuihin I–VII. Johdam-
me kahden fotonin dekoherenssifunktiot ja osoitamme kuinka hallita näitä toisis-
taan riippumatta. Samoja menetelmiä soveltamalla kykenemme jopa kääntämään
dekoherenssin suunnan. Tämä sallii kvanttiteleportaation ilman kietoutunutta kubit-
tiparia, minkä osoitamme myös kokeellisesti.

Tutkimme myös interferometreissä tapahtuvaa dekoherenssia kiinnittäen erity-
ishuomiota fotonin reittitietoon Mach-Zehnder-interferometrissä ja fotonien ryhmit-
tymiseen Hong-Ou-Mandel-interferometrissä. Monitoroimalla polarisaation käyttäy-
tymistä voimme estimoida erilaisia parametreja näiden interferometrien tavanomai-
sen toiminta-alueen ulkopuolella. Interferenssialueella esitämme puolestaan numee-
risia tuloksia, jotka viittaavat mahdollisuuteen rikkoa niin sanottu kvantti-Cramér-
Rao-raja, vastaavanlaisiin arviointitehtäviin liittyvä herkkyysalaraja.

Lopuksi tutkimme tällaisia dekoherenssiin perustuvia parametrien arviointitehtä-
viä vastakkaisesta näkökulmasta, eli kun dekoherenssimalli ei ole tunnettu, eikä sitä
voi monitoroida. Implementoimme vaihtoehtoisen arviointiprotokollamme kahdessa
kokeessa ja sovellamme tuloksiamme epämarkovisuuden todentamisessa yhtenä ajan-
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hetkenä. Tyypillisesti tämä tehtävä vaatisi nimenomaan dynamiikan monitorointia.
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1 Introduction

Quantum mechanics describes Nature at its most fundamental level—at the level
of elementary particles such as atoms, electrons, and photons, where the classical
laws of physics describing macroscopic phenomena become insufficient. Quantum
mechanics is inherently probabilistic, which shows, e.g., as quantum systems being
able to occupy multiple states at the same time. This is known as the superposition
principle. Another oddity of quantum mechanics is the concept of quantum entan-
glement: Measurement results in the Andromeda Galaxy can instantaneously affect
measurement results in Buenos Aires. Einstein famously described entanglement as
“spooky action at a distance”.

Despite its random nature, the quirks of quantum theory lay the foundation for
numerous applications including lasers, transistors, and magnetic resonance imaging
(MRI) [1]. Furthermore, encoding information to superposition states of “0” and “1”,
i.e., qubits, promises exponential speed-up over classical computation, accelerating
crucial tasks such as drug development in the future [2]. But it is not just the man-
made applications that get to enjoy the fruits of quantum mechanics. For example, it
has been proposed that photosynthesis is based on superposition [3].

Now, two questions should arise: How come quantum mechanics only holds at
the microscopic level? Why do we not see the bizarre quantum phenomena in larger
scales, e.g., cars simultaneously turning left and right? Cars are, after all, made of
the very atoms governed by the rules of quantum theory. Secondly, although quan-
tum supremacy has been experimentally demonstrated [4], where are the commer-
cial quantum computers solving actually meaningful problems? The theory of open
quantum systems and decoherence provide one explanation to both questions.

As quantum systems are exposed to their surroundings, they tend to lose their
quantum properties, i.e., experience decoherence [5]. Such systems are called open
quantum systems [6; 7; 8]. Understanding open quantum systems and decoherence is
important for both fundamental and technological reasons; While decoherence keeps
the quantum mechanical phenomena at the microscopic level, controlling it—and in
the best-case scenario, preventing or canceling it—is essential, e.g., for useful, large-
scale quantum computers to work [9].

The problem with decoherence can be approached from two complementary
viewpoints. On one hand, there is resisting it. Some popular methods to fight de-
coherence include dynamical decoupling [10; 11; 12], decoherence-free subspaces
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(DFSs) [13; 14; 15], delayed quantum feedback [16; 17; 18], quantum error-correcting
codes [19; 20; 21], indefinite causal orders [22; 23], and reservoir engineering [24;
25; 26; 27]. Reservoir engineering essentially means modifying the state of the en-
vironment prior to the system-environment interaction [28]. Such modifications can
lead to partial revivals of the open system’s quantum properties, which is often as-
sociated with memory effects—or “non-Markovianity” [29; 30; 31; 32; 33]. While
all of these methods are highly developed, even more efficient ones are still needed.
Could we, for example, reverse decoherence?

On the other hand, we could embrace decoherence and study the benefits of it. It
seems that this viewpoint is rarely explored. Taking such a point of view, it becomes
useful being able to controllably produce, or emulate, decoherence. Linear optics
provides the perfect platform for just that.

In linear optics, the polarization of photons is often interpreted as the open sys-
tem, while the same photons’ frequency serves as the environment [34; 35; 36; 37;
38; 39; 40; 41; 42; 43; 44]. The two can be coupled in a birefringent medium, where
different polarization components propagate at different velocities. Consequently,
the polarization degree of freedom experiences special kind of decoherence, i.e.,
dephasing. Dephasing is responsible for the pure quantum-to-classical transition
naturally appearing in multiple physical systems, e.g., qubits disturbed by thermal
fluctuations [45]. Previous works related to linear optical open-system simulators in-
clude the realization of DFSs [13], controlled transition between Markovian and non-
Markovian dynamics [46], full control of single-photon dephasing [47], quantum
teleportation with nonlocal memory effects [48; 49], and superdense coding [50; 51].
With linear optics, one can also simulate open-system dynamics by incoherently mix-
ing different unitary dynamics caused by wave plates [52; 53; 54; 55; 56], and when
combined with beam splitters, form versatile collision models [57; 58; 59]. However,
these methods are not in the focal point of this Thesis.

This Thesis is a comprehensive study on the aforedescribed polarization-frequen-
cy model. We go beyond prior works by considering more photons, interferometric
effects, and quantum probing. In Chapters 2 and 3, we go through the theoretical
background of quantum mechanics and open quantum systems necessary to under-
stand the rest of the Thesis. We pay special attention to states and entanglement;
The quantum-to-classical transition of open quantum systems follows directly from
system-environment entanglement. We will also cover some experimental aspects
concerning this Thesis, describe the single-photon dephasing model in full detail,
and present two widely used definitions of quantum non-Markovianity.

The main results of this Thesis, originally reported in Publications I–VII, are pre-
sented in Chapters 4–6. We begin Chapter 4 by deriving the dephasing model of two
polarization qubits. Then, we show how to control biphoton dephasing with initial
system-environment correlations, extending the results of Ref. [47]. Our technique
allows to select the open-system subspaces experiencing non-Markovian memory
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effects and completely reverse the direction of dephasing; Memory partitions and re-
verse decoherence were originally introduced in Publications I and II, respectively.
We end Chapter 4 by describing noisy quantum teleportation with reverse decoher-
ence, which was also experimentally demonstrated in Publication II.

Chapter 5 is based on Publications III–V. Here, we expand the environment of
polarization by considering the photons’ path degree of freedom as well, introduc-
ing the concept of open system interference. We concentrate on the interferometric
effects often overlooked in similar setups (see, e.g., Refs. [52; 56]). As two paradig-
matic examples, we consider the Mach-Zehnder (MZ [60; 61; 62]) and Hong-Ou-
Mandel (HOM [63; 64]) interferometers. We solve the open-system dynamics in
both cases, conditioned on which-path-information with the MZ interferometer and
photon bunching with the HOM interferometer. In the first case, we briefly discuss
non-Markovian memory effects with completely positive and trace-nonincreasing
(CPTNI) maps. In the latter, we also solve the single-qubit dynamics, which allows
us to outline some interesting, local applications, i.e., applications free of compar-
ing photon counts. The open system MZ interferometer was originally introduced in
Publication III and the open system HOM interferometer in Publication V.

In Chapter 5, we shift our focus from controlling the open-system dynamics to
using it, especially in parameter estimation. We show how decoherence can give
estimates for parameters outside the interferometers’ more common working regions.
With the open system MZ interferometer, we also discuss the possibility of breaking
the quantum Cramér-Rao bound (QCRB [65; 66]). The simulation results supporting
this were originally reported in Publication IV.

While the two open system interferometers introduced in Chapter 5 give rise to
novel parameter estimation methods, they are based on the interaction model being
known and highly controllable—both being quite drastic assumptions outside the
linear optical framework. In practice, this shows as sequential state tomographies
performed at different lengths of the birefringent medium. In Chapter 6, we take
the opposite point of view and ponder the question: With an unknown interaction
model at an unknown time, can we deduce something about a parameter of interest?
Or in layman’s terms, can we trust the readout of a measurement apparatus without
knowing how the readout was obtained? The answer is, perhaps counterintuitively,
yes. Chapter 6 is based on the generalized data processing inequalities originally
introduced in Refs. [67; 68] and later applied in Publications VI and VII.

We conclude this Thesis in Chapter 7 by summarizing the main results and dis-
cussing possible directions of future research.

3



2 Rudiments of quantum theory

Let us begin by introducing some key concepts of quantum theory. We go through
quantum states, entanglement, and measurements, paying special attention to two-
level systems and their physical manifestations. Furthermore, we briefly discuss
some aspects related to single-photon experiments and end by characterizing closed
quantum systems and their dynamics. With all the basic definitions, we refer to [69].

2.1 States and qubits
In quantum mechanics, the measurement statistics of physical systems are described
by states, usually denoted by 𝜌. Mathematically, the state of a 𝑑-dimensional system
can be written as a 𝑑 × 𝑑-dimensional density matrix, 𝜌 =

∑︀𝑑−1
𝑗,𝑘=0 𝜌𝑗𝑘|𝑗⟩⟨𝑘|, where

the vectors |𝑗⟩ form an orthonormal basis for the Hilbert space ℋ𝑑. Hilbert spaces are
complex-vector spaces equipped with the inner product ⟨·|·⟩ and norm ‖·‖ :=

√︀
⟨·|·⟩,

and orthonormal vectors satisfy ⟨𝑗|𝑘⟩ = 𝛿𝑗,𝑘. Typically, one associates the “ket-
vector” |0⟩ with the column vector (1, 0, 0, ...)𝑇 , |1⟩ with (0, 1, 0, ...)𝑇 , and so on,
whereas the “bra-vectors” ⟨𝑗| are the Hermitian conjugates of |𝑗⟩.

The diagonal elements of the density matrix, ⟨𝑗|𝜌|𝑗⟩, are the probabilities for
an experimentalist working in the same basis to obtain outcome 𝑗, when the system
of interest is in the state 𝜌. They (and the eigenvalues of the density matrix) are
therefore nonnegative real numbers satisfying the normalization condition tr[𝜌] =∑︀𝑑−1

𝑗=0⟨𝑗|𝜌|𝑗⟩ =
∑︀𝑑−1

𝑗=0 𝜌𝑗𝑗 = 1. The sum of a matrix’s diagonal elements is called
its trace.

There is nothing particulary “quantum” here. We could, for example, write the
density matrix for a fair coin toss as

𝜌coin =

(︂
1/2 0

0 1/2

)︂
(2.1)

with the diagonal elements giving the probabilities of heads and tails. However, the
off-diagonal elements ⟨𝑗|𝜌|𝑘⟩, 𝑗 ̸= 𝑘, need not be zero in general. We call these
elements the coherences of a system, and they describe how “quantum” our system
of interest is, e.g., if the system can be simultaneously in multiple states. Unlike
the probabilities, the coherences can be negative and even complex-valued, but their
absolute values are bounded from above so that |𝜌𝑗𝑘|2 ≤ 𝜌𝑗𝑗𝜌𝑘𝑘. Furthermore, we
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require that 𝜌 = 𝜌†, meaning that 𝜌𝑗𝑘 = 𝜌*𝑘𝑗 . In short, a valid density matrix is
Hermitian, positive, and of trace one.

One could naı̈vely argue that, until observing heads or tails, the coin is in both
states at the same time, and all the entries of 𝜌coin should be 1/2 of magnitude. How-
ever, if we knew all the initial conditions of the coin toss, we could in principle
determine if the result was heads or tails with certainty. Then, taking the momen-
tary liberty to describe classical states with Hilbert-space vectors, we could actually
describe a single coin toss with either 𝜌heads = |0⟩⟨0| or 𝜌tails = |1⟩⟨1|. Hence, as a
balanced mixture of 𝜌heads and 𝜌tails, Eq. (2.1) actually describes multiple tosses of
an identical, fair coin, i.e., measurement statistics. Describing a single coin toss with
Eq. (2.1) would just reflect our ignorance of the initial conditions1.

So, the coherences determine if the system behaves in a genuinely probabilistic
manner; They differ from zero if we have no chance, even in principle, to perfectly
predict the measurement outcome. With maximum coherences, the state of a system
can be written in the vector form |𝜓⟩ =∑︀𝑑−1

𝑗=0 𝐶𝑗 |𝑗⟩, and we talk about a pure state.
If the state cannot be written as a vector, it is mixed. Moreover, if more than one
probability amplitude 𝐶𝑗 differ from zero, we say that the system is in superposition
(in the {|𝑗⟩}-basis). The corresponding density matrix simply reads

𝜌 = |𝜓⟩⟨𝜓| =

⎛
⎜⎜⎜⎝

|𝐶0|2 𝐶0𝐶
*
1 ... 𝐶0𝐶

*
𝑑−1

𝐶*0𝐶1 |𝐶1|2 ... 𝐶1𝐶
*
𝑑−1

...
...

. . .
...

𝐶*0𝐶𝑑−1 𝐶*1𝐶𝑑−1 ... |𝐶𝑑−1|2

⎞
⎟⎟⎟⎠ . (2.2)

A photon in a beam splitter serves as a paradigmatic example of the genuine
probabilistic nature of quantum theory, the superposition principle, and interference.
Let us describe the initial path of a single photon with the state |𝜓⟩ = (1, 0)𝑇 and

a balanced, lossless beam splitter with the Hadamard operator 𝐻 = 1√
2

(︂
1 1

1 −1

)︂
.

The action of the beam splitter on the photon reads 𝐻|𝜓⟩ = 1√
2
(1, 1)𝑇 ; An experi-

mentalist can expect to find the photon on the transmitted or reflected path with equal
probability. Nothing peculiar here, but now we go as far as to claim that, until de-
tected, the photon both passes through and reflects from the beam splitter. The claim
contradicts common sense, but the following argument supports it.

Say, the two paths enter another beam splitter from different sides. The final state
of the photon is then 𝐻𝐻|𝜓⟩ = |𝜓⟩, i.e, the photon has returned to its initial path.
If the photon had either passed through or reflected from both of the beam split-
ters, it would have ended up on either path with equal probability. But experimental
evidence says otherwise. On the final path, the photon experiences constructive in-

1Actually, one should use probability vectors (𝑝0, 𝑝1, ..., 𝑝𝑑−1) to describe classical states, but the
density matrix 𝜌coin still provides the true statistics of a fair coin.

5



Olli Siltanen

Figure 2.1. The Bloch ball. Pure states live on the ball’s surface, the Bloch sphere. In particular,
balanced superpositions lie on the ball’s equator, i.e., the unit circle of the complex plane defined
by the 𝑥- and 𝑦-axises. States on the 𝑧-axis have classical counterparts, since they have zero
coherences. Thus, when given just a probability distribution in a fixed basis, one cannot distinguish
between quantum and classical. The origin of the Bloch ball represents the maximally mixed state.
An arbitrary qubit state is fully determined by �⃗�Bloch.

terference with itself, and on the other, destructive interference. This would not be
possible, had the photon not traveled both paths.

The Hadamard operator 𝐻 used above belongs to a special class of quantum
operators called the unitary operators, and we will come back to such operators
shortly. Furthermore, the setup consisting of two beam splitters is known as the
Mach-Zehnder (MZ) interferometer [60; 61], and it will play a central role in Chap-
ter 5.

The systems we have considered so far are two-level systems—a coin with the
options heads/tails and a photon with the options transmit/reflect. The coin is an ex-
ample of a classical bit, and the photon is an example of a quantum bit—or qubit. For
qubits, there exists a particularly nice geometric representation, namely, the Bloch
representation. Without loss of generality, we can write any qubit state as

𝜌 =
1

2

(︂
1 + 𝑧 𝑥− 𝑖𝑦

𝑥+ 𝑖𝑦 1− 𝑧

)︂
. (2.3)

Since the eigenvalues of 𝜌 need to be in the interval [0, 1], we arrive at ‖�⃗�Bloch‖2 ≤ 1,
where �⃗�Bloch = (𝑥, 𝑦, 𝑧) is the Bloch vector and ‖ · ‖ is the Euclidean norm. With
its norm being bounded, the Bloch vector determines a ball of unit radius, i.e., the
Bloch ball (see Fig. 2.1). The pure qubit states lay on the surface of the Bloch ball,
i.e., ‖�⃗�Bloch‖ = 1, and the smaller the norm, the more mixed (or classical) the state
is.
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The purity 𝒫 provides a convenient way to quantify the degree of mixedness
of 𝑑-dimensional systems—not only qubits—and it is given by 𝒫(𝜌) = tr[𝜌2] with 1
meaning a pure state and 1/d the fully mixed state, 1

𝑑1. In the case of a qubit, we have
𝒫(𝜌) = (1+ ‖�⃗�Bloch‖2)/2. However, it is important to notice that the purity does not
necessarily tell anything about the coherences. For example, the closer a pure qubit
state is to the poles of the Bloch ball, |0⟩ or |1⟩, the smaller its coherences are in
the {|0⟩, |1⟩}-basis, i.e., the computational basis, which we will focus on in the rest
of the Thesis. But why is the computational basis of special interest? After all, the
states |0⟩ and |1⟩ have maximum coherences in all the bases spanned by orthogonal
vectors in the Bloch ball’s 𝑥𝑦-plane.

In quantum information, the computational basis turns out to be very natural
choice. Here, for example, the superposition principle allows one to simultaneously
encode all the 2𝑁 permutations of 𝑁 bits (i.e., 0s and 1s) into the same number of
qubits. This enables parallel computing with exponential speed-up over classical
algorithms [70]. Furthermore, in many quantum algorithms the state preparation and
final measurement occur in the same basis, which means that other bases can often
be disregarded.

In addition to fast quantum algorithms, coherences fuel many other quantum in-
formation protocols, e.g., the famous BB84 quantum key distribution protocol [71].
Nonlocal coherences, on the other hand, give rise to quantum entanglement, the basis
of high-sensitive parameter estimation [72], superdense coding [50; 51], and quan-
tum teleportation [73], just to name a few examples. Quantum teleportation is han-
dled in Chapter 4. Before that, we need to take a closer look at bipartite systems and
entanglement.

2.2 Bipartite systems and entanglement
If we have two quantum systems—often shared by two parties called Alice and
Bob—we may describe them with a joint state 𝜌𝐴𝐵 . The corresponding Hilbert space
is ℋ𝐴⊗ℋ𝐵 . If the systems are uncorrelated, the state factorizes and it can be written
in the tensor product form 𝜌𝐴𝐵 = 𝜌𝐴⊗𝜌𝐵; The measurement result of Alice does not
affect the measurement result of Bob and vice versa. A state 𝜌𝐴𝐵 that cannot be writ-
ten as a convex combination of product states 𝜌𝐴⊗𝜌𝐵 is entangled. Hence, an entan-
gled pure state cannot be written in the form |𝜓𝐴𝐵⟩ =

∑︀
𝑗𝐴
𝐶𝑗𝐴 |𝑗𝐴⟩⊗

∑︀
𝑗𝐵
𝐶𝑗𝐵 |𝑗𝐵⟩.

Entangled quantum states exhibit strong nonlocal correlations, meaning that what-
ever happens on Alice’s side immediately affects what happens on Bob’s side, re-
gardless of their distance. Let us illustrate this more clearly with pure polarization
qubits |𝜓⟩ = 𝐶𝐻 |𝐻⟩ + 𝐶𝑉 |𝑉 ⟩, where 𝐶𝐻 and 𝐶𝑉 are the probability amplitudes
for a single photon to be horizontally and vertically polarized, respectively2. Any

2𝐻 is used for both the Hadamard operator and horizontal polarization, but its meaning should be
clear from the context.
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pure, bipartite polarization state can be written in the form |𝜓𝐴𝐵⟩ = 𝐶𝐻𝐴𝐻𝐵
|𝐻𝐴⟩ ⊗

|𝐻𝐵⟩ + 𝐶𝐻𝐴𝑉𝐵
|𝐻𝐴⟩ ⊗ |𝑉𝐵⟩ + 𝐶𝑉𝐴𝐻𝐵

|𝑉𝐴⟩ ⊗ |𝐻𝐵⟩ + 𝐶𝑉𝐴𝑉𝐵
|𝑉𝐴⟩ ⊗ |𝑉𝐵⟩, where

𝐶𝜆𝐴𝜆𝐵
is the probability amplitude for Alice and Bob’s photons to be 𝜆𝐴- and

𝜆𝐵-polarized, respectively (𝜆𝐴, 𝜆𝐵 = 𝐻,𝑉 ). If |𝜓𝐴𝐵⟩ was uncorrelated (i.e., a
product state), we would have 𝐶𝜆𝐴𝜆𝐵

= 𝐶𝜆𝐴
𝐶𝜆𝐵

, and we could write |𝜓𝐴𝐵⟩ =

(𝐶𝐻𝐴
|𝐻𝐴⟩+ 𝐶𝑉𝐴

|𝑉𝐴⟩)⊗ (𝐶𝐻𝐵
|𝐻𝐵⟩+ 𝐶𝑉𝐵

|𝑉𝐵⟩).
By denoting 𝐶𝐻𝐴𝑉𝐵

= 𝐶𝑉𝐴𝐻𝐵
= 1/

√
2 and 𝐶𝐻𝐴𝐻𝐵

= 𝐶𝑉𝐴𝑉𝐵
= 0, we get the

state |𝜓𝐴𝐵⟩ = (|𝐻𝐴⟩ ⊗ |𝑉𝐵⟩ + |𝑉𝐴⟩ ⊗ |𝐻𝐵⟩)/
√
2. If we try to write this state as a

product state, we need to solve the following system of equations
{︃
𝐶𝐻𝐴

𝐶𝑉𝐵
= 𝐶𝑉𝐴

𝐶𝐻𝐵
= 1√

2
,

𝐶𝐻𝐴
𝐶𝐻𝐵

= 𝐶𝑉𝐴
𝐶𝑉𝐵

= 0.
(2.4)

Clearly, the system of equations is unsolvable, and we conclude that the state |𝜓𝐴𝐵⟩ =
(|𝐻𝐴⟩⊗|𝑉𝐵⟩+ |𝑉𝐴⟩⊗|𝐻𝐵⟩)/

√
2 is entangled. If Alice measures the polarization of

her photon, she obtains the result𝐻 or 𝑉 with equal probability. However, whichever
outcome Alice gets, it immediately determines that of Bob; If Alice detects a hori-
zontally (vertically) polarized photon, she knows that Bob’s polarization will be ver-
tical (horizontal) in the same measurement basis. We will deal with measurements
soon in more detail.

We sometimes drop the lower indices and the tensor product symbols and simply
write |𝜓𝐴𝐵⟩ = (|𝐻𝑉 ⟩ + |𝑉 𝐻⟩)/

√
2. In fact, this state is maximally entangled,

and it is typically written as |Ψ+⟩ and called a Bell state. There are four Bell states
altogether, and they read [70]

{︃
|Φ±⟩ = 1√

2
(|𝐻𝐻⟩ ± |𝑉 𝑉 ⟩),

|Ψ±⟩ = 1√
2
(|𝐻𝑉 ⟩ ± |𝑉 𝐻⟩).

(2.5)

Of course, the degree of freedom can be whatever, not only polarization.
One might wonder what is so special in the example above. Say, a pair of gloves

is distributed to Alice and Bob. If Alice receives a left-handed glove, she imme-
diately knows that Bob’s glove is right-handed. However, one must remember that
the coherences mean genuine probability that manifests as the physical system be-
ing in both states simultaneously. In the case of our example and with the choices
|𝐻⟩ = (1, 0)𝑇 and |𝑉 ⟩ = (0, 1)𝑇 , the density matrix reads

𝜌𝐴𝐵 = |Ψ+⟩⟨Ψ+| = 1

2

⎛
⎜⎜⎝

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞
⎟⎟⎠ . (2.6)

The entanglement of a bipartite system can be quantified with concurrence, which
is inversely proportional to the purity of the local, reduced states. With pure states
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𝜌𝐴𝐵 = |𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|, the concurrence can be written as [74]

𝒞(𝜌𝐴𝐵) =
√︀

2[1− 𝒫(𝜌𝐴)] =
√︀

2[1− 𝒫(𝜌𝐵)]. (2.7)

Here, 𝜌𝐴(𝐵) is Alice’s (Bob’s) local state, defined as the partial trace over Bob’s
(Alice’s) Hilbert space: 𝜌𝐴(𝐵) = tr𝐵(𝐴)[𝜌𝐴𝐵] =

∑︀
𝑗𝐵(𝐴)

⟨𝑗𝐵(𝐴)|𝜌𝐴𝐵|𝑗𝐵(𝐴)⟩, where
the vectors |𝑗𝐵(𝐴)⟩ form an orthonormal basis for the Hilbert space ℋ𝐵(𝐴). Partial
trace is a frequently used tool in this Thesis. It essentially gives a lower dimensional
state, where correlations appearing in the higher-dimensional parent state have been
ignored by averaging. For example, taking partial trace of any of the Bell states yields
𝜌𝐴 = 𝜌𝐵 = 1

21; For Alice and Bob, the local states 𝜌𝐴 and 𝜌𝐵 appear maximally
mixed even though the underlying total state is pure and maximally entangled. Note
that the coherences in Eq. (2.6) do not appear in the partial traces. In general, the
antidiagonal elements of a density matrix are inaccessible by partial trace and called
nonlocal coherences.

Entanglement manifesting as mixed reduced states has overarching consequences
for the rest of this Thesis.

2.3 Measurements
Measurements lie at the heart of any natural science. In macroscopic theories, mea-
surable quantities are properties of some system of interest alone, existing even if
they were not measured—but once measured, the result can be trusted; A mea-
surement event itself did not affect the system, giving a corrupted reading. This
is not the case with quantum theory. In quantum mechanics, states are disturbed
and changed by measurements, and we can only receive partial information of the
system [75; 76; 77].

Quantum measurement is an extensively studied field of research (see, e.g., [78;
79]), but here we restrict our attention to projective measurements. Projective mea-
surements are described by complete sets of projections {Π𝑗}, where the subindex
𝑗 refers to the measurement outcome. Projections satisfy Π𝑗 = Π†𝑗 = Π2

𝑗 , and
with completeness we mean that the projections sum up to the identity operator,∑︀

𝑗 Π𝑗 = 1. One can form such projections, e.g., from all the vectors of an or-

thonormal basis {|𝑗⟩}𝑑−1𝑗=0 : Π𝑗 := |𝑗⟩⟨𝑗|(= Π†𝑗) ⇒ Π2
𝑗 = |𝑗⟩⟨𝑗|𝑗⟩⟨𝑗| = |𝑗⟩⟨𝑗| = Π𝑗

and
∑︀

𝑗 |𝑗⟩⟨𝑗| = 1. Unitary transformations 𝑈 |𝑗⟩ form endless other bases, and
whichever we choose to work with is called the measurement basis.

Let us clarify the physical meaning of projective measurements. Say, a quantum
system in the pure state |𝜓⟩ =∑︀𝑑−1

𝑗=0 𝐶𝑗 |𝑗⟩ enters a measurement apparatus, and an
experimentalist works in the same measurement basis. Then, the projection corre-
sponding to the measurement outcome 𝑘 is |𝑘⟩⟨𝑘|, and the action of a measurement
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leading up to this outcome reads

|𝑘⟩⟨𝑘|𝜓⟩ = |𝑘⟩
𝑑−1∑︁

𝑗=0

𝐶𝑗⟨𝑘|𝑗⟩ (2.8)

= |𝑘⟩
𝑑−1∑︁

𝑗=0

𝐶𝑗𝛿𝑘,𝑗 (2.9)

= 𝐶𝑘|𝑘⟩. (2.10)

We say that the initial state |𝜓⟩ has collapsed to |𝑘⟩ with the probability |𝐶𝑘|2. This
is the famous “Copenhagen interpretation” of quantum mechanics [80].

Note that 𝐶𝑘|𝑘⟩ is not, in fact, a proper state, since it is not a unit vector (unless
|𝐶𝑘| = 1). In general, the state 𝜌 after a projective measurement reads

𝜌 =
Π𝑗𝜌Π𝑗

tr[Π𝑗𝜌Π𝑗 ]
. (2.11)

These kinds of post-measurement states are used in different parameter estimation
methods introduced in Chapter 5. Although they have their advantages, note that
1− tr[Π𝑗𝜌Π𝑗 ] of the individual resource states go to waste.

Going back to our example, an individual post-measurement state |𝑘⟩ does not
tell much about the initial state |𝜓⟩. Furthermore, multiple measurements on identi-
cally prepared states in the same measurement basis only give the classical probabil-
ity vector (|𝐶0|2, |𝐶1|2, ..., |𝐶𝑑−1|2). In order to access the complex-valued proba-
bility amplitudes 𝐶𝑗 , one often needs to perform measurements in multiple different
bases. The state tomography of single-photon polarization illustrates this well [81].
Here, we use the Bloch representation and the notations |𝐷⟩ = (|𝐻⟩ + |𝑉 ⟩)/

√
2,

|𝐴⟩ = (|𝐻⟩ − |𝑉 ⟩)/
√
2, |𝑅⟩ = (|𝐻⟩+ 𝑖|𝑉 ⟩)/

√
2, and |𝐿⟩ = (|𝐻⟩ − 𝑖|𝑉 ⟩)/

√
2.

Measurements in the {|𝐻⟩, |𝑉 ⟩}-basis give us the nonnormalized states
√︁

1+𝑧
2 |𝐻⟩

and
√︁

1−𝑧
2 |𝑉 ⟩, measurements in the {|𝐷⟩, |𝐴⟩}-basis give us the nonnormalized

states
√︁

1+𝑥
2 |𝐷⟩ and

√︁
1−𝑥
2 |𝐴⟩, while measurements in the {|𝑅⟩, |𝐿⟩}-basis give us

the nonnormalized states
√︁

1+𝑦
2 |𝑅⟩ and

√︁
1−𝑦
2 |𝐿⟩. In practice, a measurement cor-

responding to the projection Π𝑗 can be realized by guiding single photons through a
combination of a quarter-wave plate (QWP), a half-wave plate (HWP), and a polar-
izer. This combination acts as a filter that lets 𝑃𝑗 of the incoming photons through.
We won’t go into the details of wave plates, but the angles of their fast axes with
respect to the horizontal axis—as well as the polarizer’s axis of transmission—are
given in Table 2.1.

Now, by comparing the photon counts obtained from the different wave-plate
configurations, we get the probabilities 𝑃𝑗 , and we can calculate the components of
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Table 2.1. Projections, wave-plate angles, and the final probabilities related to single-photon polar-
ization tomography.

Π𝑗 𝜃QWP(
∘) 𝜃HWP(

∘) 𝜃Polarizer(
∘) 𝑃𝑗

|𝐻⟩⟨𝐻| 0 0 0 (1 + 𝑧)/2
|𝑉 ⟩⟨𝑉 | 0 0 90 (1− 𝑧)/2
|𝐷⟩⟨𝐷| 0 22.5 0 (1 + 𝑥)/2
|𝐴⟩⟨𝐴| 0 22.5 90 (1− 𝑥)/2
|𝑅⟩⟨𝑅| 45 0 0 (1 + 𝑦)/2
|𝐿⟩⟨𝐿| 45 0 90 (1− 𝑦)/2

the Bloch vector: ⎧
⎪⎨
⎪⎩

𝑥 = 𝑃𝐷 − 𝑃𝐴,

𝑦 = 𝑃𝑅 − 𝑃𝐿,

𝑧 = 𝑃𝐻 − 𝑃𝑉 .

(2.12)

In the context of polarization, the Bloch-vector components are also called the Stokes
parameters 𝑆𝑗 , and we can write the qubit state alternatively as

𝜌 =
1

2

3∑︁

𝑗=0

𝑆𝑗𝜎𝑗 . (2.13)

Here, 𝑆0 = 1, 𝑆1 = 𝑥, 𝑆2 = 𝑦, 𝑆3 = 𝑧, 𝜎0 = 1, and 𝜎𝑗 (with 𝑗 = 1, 2, 3) are the
Pauli matrices

𝜎1 ≡ 𝜎𝑥 =

(︂
0 1

1 0

)︂
, 𝜎2 ≡ 𝜎𝑦 =

(︂
0 −𝑖
𝑖 0

)︂
, 𝜎3 ≡ 𝜎𝑧 =

(︂
1 0

0 −1

)︂
. (2.14)

An arbitrary 𝑁 -qubit state can be written in terms of the Stokes parameters and
Pauli matrices as [82]

𝜌 =
1

2𝑁

3∑︁

𝑗1,𝑗2,...,𝑗𝑁=0

𝑆𝑗1𝑗2...𝑗𝑁𝜎𝑗1 ⊗ 𝜎𝑗2 ⊗ ...⊗ 𝜎𝑗𝑁 . (2.15)

With 𝑁 polarization qubits, we have 4𝑁 Stokes parameters. By definition, 𝑆00...0 =

1. To determine the rest of the parameters, we need 6𝑁 different measurements in
the worst-case scenario. Hence, polarization tomography can become quite a tedious
task with an increasing number of qubits.

Polarization tomography is something that we will encounter many times in this
Thesis. Hence, let us very briefly discuss a few more experimental issues related
to it. Photon pairs can be produced with spontaneous parametric down-conversion
(SPDC [83]). In SPDC, a crystal with high second-order susceptibility 𝜒(2) [e.g.,
beta-barium borate (BBO)] is pumped with a strong laser beam. Most of the time, the
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pump photons just go through the crystal, but sometimes—due to 𝜒(2) and vacuum
fluctuations—the pump photon (𝑝) is converted into two photons with lower energy.
These photons are often called the signal (𝑠) and idler photon (𝑖).

The conservation of energy dictates that the frequencies of the signal and idler
photon need to satisfy 𝑓𝑠+𝑓𝑖 = 𝑓𝑝. Similarly, due to the conservation of momentum,
the photons need to satisfy the phase matching condition �⃗�𝑠+ �⃗�𝑖 = �⃗�𝑝. Furthermore,
polarization-entangled photon pairs can be created by collecting the signal and idler
photons from the intersections of two light cones exiting the nonlinear crystal.

Polarization tomography is sensitive to background photons. The background
photons’ influence is typically mitigated by coincidence counting. Whichever photon
of an 𝑁 -photon state arrives at a photodetector connected to a coincidence counter
first, triggers it to expect the other photons to arrive at their detectors; If all the other
𝑁 − 1 photons arrive within a fixed time window, we have a coincidence. Since
the background photons rarely cause accidental coincidences, we can trust that the
coincidences originate from some system of interest in the state 𝜌, which we are
measuring, and we can safely omit all the other detection events.

The photodetectors themselves can also cause measurement errors. Dark counts
and dead time are such examples [84]. Dark counts are accidental detection events
caused by thermal fluctuations, and dead time is the time required by a detector to
recover after each detection. Thus, photons arriving at a detector during its dead
time are not registered. In Chapter 5, we will describe how to utilize dead time in
parameter estimation.

2.4 Unitary dynamics and closed systems
Projections operate in a probabilistic manner. Π𝑗 either projects a (possibly mixed)
state 𝜌 into a corresponding pure state with the probability tr[Π𝑗𝜌Π𝑗 ] or destroys it
with the probability 1−tr[Π𝑗𝜌Π𝑗 ]. On the contrary, the Hadamard operator𝐻 , HWP,
and QWP are examples of unitary operators that preserve the system and its purity3.
Unitary operators 𝑈 satisfy 𝑈𝑈 † = 𝑈 †𝑈 = 1, so the previous statements are easily
proven. Denoting the input state by 𝜌 and the output state by 𝑈𝜌𝑈 †, we have

𝑃output = tr[𝑈𝜌𝑈 †] = tr[𝜌𝑈 †𝑈 ] = 1, (2.16)

𝒫output = tr[𝑈𝜌𝑈 †𝑈𝜌𝑈 †] = tr[𝜌2] = 𝒫input. (2.17)

Here, we used the cyclic property of trace, tr[𝑋𝑌 ] = tr[𝑌 𝑋].
Quantum mechanical states are rarely passive entities that only change when

experimentalists send them through beam splitters, wave plates, or polarizers. States

3In fact, a HWP with its fast axis 22.5∘ from the horizontal axis can be described with a Hadamard
operator.
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can also change continuously with time, whether an experimentalist means them
or not to. Given a time-evolution operator 𝑈(𝑡), the evolution of a pure state can
be written as |𝜓(𝑡)⟩ = 𝑈(𝑡)|𝜓(0)⟩. With uniform dynamics, the time-evolution
operators satisfy 𝑈(𝑠)𝑈(𝑡) = 𝑈(𝑡)𝑈(𝑠) = 𝑈(𝑡 + 𝑠), i.e., there is no difference in
a state evolving first for the time interval 𝑡, then 𝑠, in the other order, or the whole
interval 𝑡 + 𝑠 at once. Furthermore, evolution of zero time span is simply given by
the identity, 𝑈(0) = 1.

We are now in the position to derive the famous Schrödinger’s equation [85].
Let us begin by introducing a small change in time, 𝑡 + 𝜖, so that the corresponding
time-evolution operator is given by 𝑈(𝑡 + 𝜖) = 𝑈(𝜖)𝑈(𝑡). Expanding 𝑈(𝜖) as a
Taylor series in 0, we obtain

𝑈(𝜖) = 𝑈(0) + 𝜖
𝜕

𝜕𝑡
𝑈(𝑡)|𝑡=0 +

𝜖2

2

𝜕2

𝜕𝑡2
𝑈(𝑡)|𝑡=0 + ... (2.18)

With continuous dynamics and small enough changes, 𝑈(𝜖) is linear in 𝜖, meaning
that 𝜖𝑛 ≈ 0 when 𝑛 ≥ 2. Denoting 𝜕

𝜕𝑡𝑈(𝑡)|𝑡=0 = − 𝑖
ℏ𝐻 (with ℏ being the reduced

Planck’s constant), we get

𝑈(𝑡+ 𝜖)|𝜓(0)⟩ = 𝑈(𝜖)𝑈(𝑡)|𝜓(0)⟩ (2.19)

⇔ |𝜓(𝑡+ 𝜖)⟩ =
(︁
1− 𝑖𝜖

ℏ
𝐻
)︁
|𝜓(𝑡)⟩ (2.20)

= |𝜓(𝑡)⟩ − 𝑖𝜖

ℏ
𝐻|𝜓(𝑡)⟩ (2.21)

⇔ |𝜓(𝑡+ 𝜖)⟩ − |𝜓(𝑡)⟩
𝜖

= − 𝑖

ℏ
𝐻|𝜓(𝑡)⟩. (2.22)

Letting 𝜖 approach 0, we finally arrive at the Schrödinger’s equation

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩. (2.23)

The solution of Eq. (2.23) reads

|𝜓(𝑡)⟩ = 𝑒−
𝑖𝐻𝑡

ℏ |𝜓(0)⟩, (2.24)

where the exponential function can be identified as the time-evolution operator, 𝑈(𝑡)

= 𝑒−𝑖𝐻𝑡/ℏ. Sometimes, one uses units where ℏ = 1, and so do we in the rest of
this Thesis. Furthermore, the operator 𝐻 is known as the Hamiltonian4. Note that,
with uniform dynamics, the Hamiltonian is independent of time. With 𝑈(𝑡), one can
write the time evolution of a statistical mixture of pure states

∑︀
𝑗 𝑝𝑗 |𝜓𝑗⟩⟨𝜓𝑗 | as

𝜌(𝑡) =
∑︁

𝑗

𝑝𝑗𝑈(𝑡)|𝜓𝑗(0)⟩⟨𝜓𝑗(0)|𝑈(𝑡)†. (2.25)

4Now 𝐻 can mean the Hadamard operator, horizontal polarization, or the Hamiltonian. Its meaning
should still be clear from the context.
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If the time evolution of a quantum system can be written in this form, the system is
called a closed quantum system [6].
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3 Dynamics of open quantum systems

In this Chapter we notice that, under special circumstances, quantum dynamics can-
not be described by unitary operators. Instead, we need the theory of open quantum
systems and quantum dynamical maps. We go through (pure) decoherence, describe
its photonic model in full detail, and introduce a few definitions of (quantum) non-
Markovianity.

3.1 Open quantum systems and dynamical maps
Let us begin by exploring the time evolution of a bipartite system, initially in the
pure product state |𝜓𝐴𝐵(0)⟩ = |𝜓𝐴(0)⟩ ⊗ |𝜓𝐵(0)⟩. The time-evolution operator is
now given by 𝑈𝐴𝐵(𝑡) = 𝑒−𝑖𝐻𝐴𝐵𝑡, so the dynamics of our system of interest reads

|𝜓𝐴𝐵(𝑡)⟩ = 𝑈𝐴𝐵(𝑡)|𝜓𝐴(0)⟩ ⊗ |𝜓𝐵(0)⟩. (3.1)

If the Hamiltonian 𝐻𝐴𝐵 can be written in the form 𝐻𝐴𝐵 = 𝐻𝐴 ⊗ 1𝐵 + 1𝐴 ⊗𝐻𝐵 ,
the unitary operator factorizes, 𝑈𝐴𝐵(𝑡) = 𝑒−𝑖(𝐻𝐴⊗1𝐵)𝑡𝑒−𝑖(1𝐴⊗𝐻𝐵)𝑡 = 𝑒−𝑖𝐻𝐴𝑡 ⊗
𝑒−𝑖𝐻𝐵𝑡 = 𝑈𝐴(𝑡)⊗ 𝑈𝐵(𝑡), and the state |𝜓𝐴𝐵(𝑡)⟩ remains a product state,

|𝜓𝐴𝐵(𝑡)⟩ = 𝑈𝐴(𝑡)⊗ 𝑈𝐵(𝑡)|𝜓𝐴(0)⟩ ⊗ |𝜓𝐵(0)⟩ (3.2)

= 𝑈𝐴(𝑡)|𝜓𝐴(0)⟩ ⊗ 𝑈𝐵(𝑡)|𝜓𝐵(0)⟩ (3.3)

= |𝜓𝐴(𝑡)⟩ ⊗ |𝜓𝐵(𝑡)⟩. (3.4)

However, this is not generally the case. Namely, if the Hamiltonian 𝐻𝐴𝐵 con-
tains some additional term 𝐻𝐼 , so that 𝐻𝐴𝐵 = 𝐻𝐴 ⊗ 1𝐵 + 1𝐴 ⊗ 𝐻𝐵 + 𝐻𝐼 , we
might not be able to write the evolved state in the product form. From the previ-
ous Chapter we remember that this means that the state |𝜓𝐴𝐵⟩ is entangled, and
with nonzero concurrence the purity of the reduced state 𝜌𝐴(𝑡) = tr𝐵[𝜌𝐴𝐵(𝑡)] (or
𝜌𝐵(𝑡) = tr𝐴[𝜌𝐴𝐵(𝑡)]) becomes less than one, i.e., 𝒫

(︀
𝜌𝐴(𝑡)

)︀
< 1 [see Eq. (2.7)].

Now we come to an important question: If we are interested only in the dynamics
of the reduced state 𝜌𝐴(𝑡), how to describe it mathematically? Unitary operators
preserve the purity of a state, but we just reasoned that the purity 𝒫

(︀
𝜌𝐴(𝑡)

)︀
might

not be constant in time. Before answering this question, let us ask another one: Why
should we restrict our attention to a mere part of the whole system?

Quantum systems, as any other systems, are always surrounded by some envi-
ronment. As a consequence, a system (labeled by 𝑆) and its environmental degrees
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of freedom (𝐸) need to be described by some joint state 𝜌𝑆𝐸 . If the system and
environment are initially uncorrelated, we can write 𝜌𝑆𝐸(0) = 𝜌𝑆(0)⊗𝜌𝐸(0). How-
ever, if the Hamiltonian of the total system reads 𝐻𝑆𝐸 = 𝐻0 +𝐻𝐼 = 𝐻𝑆 ⊗ 1𝐸 +

1𝑆 ⊗ 𝐻𝐸 + 𝐻𝐼
1, the state evolves as described above, i.e., entangling 𝜌𝑆 and 𝜌𝐸

with each other. As opposed to closed systems, systems described by reduced states
with nonconstant purity due to system-environment interactions are known as open
quantum systems [6; 7; 8].

One is usually interested in the reduced open-system dynamics 𝜌𝑆(𝑡) for two
main reasons. First, on a more fundamental level, such dynamics provides one ex-
planation to why we seldom encounter macroscopic quantum systems, e.g., simul-
taneously dead and alive cats. The process of an open quantum system becoming
classical due to system-environment interactions (or “noise”) is known as decoher-
ence [5]. Secondly, quantum technologies typically operate in the Hilbert space of
𝜌𝑆(𝑡). Taking the vast and often inaccessible environment into account would simply
be far too difficult.

When there is no risk of confusion, we drop the lower indices and denote the
states of open quantum systems and their environments by 𝜌 and 𝜉, respectively. If
the states are initially uncorrelated, we can describe the dynamics of 𝜌 by a dynamical
map Φ𝑡, defined by [6]

𝜌(𝑡) = Φ𝑡
(︀
𝜌(0)

)︀
(3.5)

:= tr𝐸 [𝑈(𝑡)𝜌(0)⊗ 𝜉(0)𝑈(𝑡)†]. (3.6)

Depending on the system-environment coupling, there are different kinds of dy-
namical maps, but they should all be convex linear, completely positive (CP) and
trace-preserving (TP) [6]. Convex linearity means that Φ𝑡

(︀∑︀
𝑗 𝑝𝑗𝜌𝑗

)︀
=
∑︀

𝑗 𝑝𝑗Φ
𝑡(𝜌𝑗).

Complete positivity arises from the possibility of quantum entanglement, and it
means that an entangled initial state 𝜌𝐴𝐵 remains physical under the action of a
local map Φ𝑡

𝐴, i.e.,
(︀
Φ𝑡
𝐴 ⊗ 1𝐵

)︀
(𝜌𝐴𝐵) ≥ 𝒪. In fact, Choi’s theorem states that Φ𝑡

is CP if and only if the above condition is satisfied by the maximally entangled state
𝜌𝐴𝐵 = 𝑃+

𝑑 = |𝜓+
𝑑 ⟩⟨𝜓+

𝑑 |, where |𝜓+
𝑑 ⟩ = 1√

𝑑

∑︀𝑑−1
𝑗=0 |𝑗⟩ ⊗ |𝑗⟩ and 𝑑 is the dimen-

sion of the map’s Hilbert space [86]. Finally, trace-preservity simply means that
tr
[︀
Φ𝑡(𝜌)

]︀
= tr[𝜌]. Convex linear CPTP dynamical maps are also called (quantum)

channels. Some typical single-qubit channels and examples of their underlying phys-
ical scenarios are listed in Table 3.1.

Kraus operators provide a nice way to describe quantum channels [89]. A dy-
namical map Φ𝑡 is convex linear and CPTP (and thus, a channel) if and only if it can
be written as

Φ𝑡(𝜌) =
∑︁

𝑗

𝐾𝑗(𝑡)𝜌𝐾𝑗(𝑡)
†, (3.7)

1𝐻0 and 𝐻𝐼 are called the free and interaction Hamiltonians, respectively.
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Dynamics of open quantum systems

Table 3.1. Typical channels, their actions on a qubit, and example physical scenarios.

Channel Qubit evolution Example scenario

Amplitude damping
(︂
𝜌00 + 𝛾(𝑡)𝜌11 𝜌01

√︀
1− 𝛾(𝑡)

𝜌10
√︀
1− 𝛾(𝑡)

(︀
1− 𝛾(𝑡)

)︀
𝜌11

)︂
Spontaneous
emission [87]

Depolarizing 𝑝(𝑡)
2 1+

(︀
1− 𝑝(𝑡)

)︀
𝜌

Spin systems in
fluctuating magnetic
fields [88]

Dephasing
(︂

𝜌00 𝜌01𝑒
−𝜆(𝑡)

𝜌10𝑒
−𝜆(𝑡) 𝜌11

)︂
A qubit coupled to a
bosonic bath [45]

where 𝐾𝑗(𝑡) are the Kraus operators that also need to satisfy
∑︀

𝑗 𝐾𝑗(𝑡)
†𝐾𝑗(𝑡) = 1.

If
∑︀

𝑗 𝐾𝑗(𝑡)
†𝐾𝑗(𝑡) ≤ 1, the dynamical map does not necessarily preserve the trace,

and so we talk about completely positive and trace-nonincreasing (CPTNI) quantum
operations instead of channels.

3.2 Pure decoherence
In the rest of this Thesis, we focus mainly on pure decoherence or dephasing, i.e.,
the process under which the coherences of an open system’s density matrix vanish
(see Table 3.1). Because the diagonal elements of a state remain intact, one can talk
about “pure” quantum-to-classical transition; An open system’s quantum properties
disappear—making any application based on them futile—while its measurement
statistics remain invariant. In addition to a qubit coupled to a bosonic bath, dephas-
ing naturally appears in many other physical systems, e.g., nitrogen-vacancy centers
in dark spin baths [10], a central spin coupled to an Ising chain [90], excitons in
quantum dots [91], superconducting qubits under the influence of fluctuating mag-
netic dipoles [92], particles in spatial superpositions [93], and impurities coupled to
Morse oscillators [94] or a Bose-Hubbard model [95].

3.2.1 General dephasing

Before concentrating on a single specific physical system, let us take a step back and
see how dephasing generally arises from the interaction Hamiltonian [6]. We take
the interaction Hamiltonian to be of the form 𝐻𝐼 =

∑︀
𝑗 |𝑗⟩⟨𝑗| ⊗𝐸𝑗 . The projections

|𝑗⟩⟨𝑗| effectively single out the orthonormal basis vectors |𝑗⟩ of an open-system state,
while the operators 𝐸𝑗 = 𝐸†𝑗 are arbitrary operators of the environment. We make
only one other assumption, namely, that [𝐻𝑆 , |𝑗⟩⟨𝑗|] = 0 2. This assumption has two
immediate consequences. First, the open system’s energy is a conserved quantity.

2[𝑋,𝑌 ] = 𝑋𝑌 − 𝑌 𝑋 is called the commutator of 𝑋 and 𝑌 .
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In quantum mechanics, observables (such as position, momentum, and energy) are
described by Hermitian operators 𝑋 = 𝑋† with the state-dependent mean values
⟨𝑋⟩𝑡 := ⟨𝜓(𝑡)|𝑋|𝜓(𝑡)⟩. Then, by “conserved quantities”, we mean observables
with time-invariant expectation values, 𝜕

𝜕𝑡⟨𝑋⟩𝑡 = 0. The open system’s energy is
described by 𝐻𝑆 ⊗ 1𝐸 , so we get

𝜕

𝜕𝑡
⟨𝜓(𝑡)|(𝐻𝑆 ⊗ 1𝐸)|𝜓(𝑡)⟩ = ⟨�̇�(𝑡)|(𝐻𝑆 ⊗ 1𝐸)|𝜓(𝑡)⟩

+ ⟨𝜓(𝑡)|(𝐻𝑆 ⊗ 1𝐸)|�̇�(𝑡)⟩ (3.8)

= 𝑖⟨[𝐻𝑆𝐸 , 𝐻𝑆 ⊗ 1𝐸 ]⟩𝑡 (3.9)

= 𝑖⟨[𝐻𝑆 ⊗ 1𝐸 + 1𝑆 ⊗𝐻𝐸

+
∑︁

𝑗

|𝑗⟩⟨𝑗| ⊗ 𝐸𝑗 , 𝐻𝑆 ⊗ 1𝐸 ]⟩𝑡 (3.10)

= 0 by the assumption. (3.11)

Secondly, as [𝐻𝑆 , |𝑗⟩⟨𝑗|] = 0 directly results in [𝐻𝑆𝐸 , |𝑗⟩⟨𝑗|⊗1𝐸 ] = 0, also |𝑗⟩⟨𝑗|⊗
1𝐸 conserves in time.

Let us proceed by moving to the so-called interaction picture. That is, we
consider the time-dependent interaction Hamiltonian 𝐻𝐼(𝑡) = 𝑒𝑖𝐻0𝑡𝐻𝐼𝑒

−𝑖𝐻0𝑡 =∑︀
𝑗 |𝑗⟩⟨𝑗| ⊗ 𝑒𝑖𝐻0𝑡𝐸𝑗𝑒

−𝑖𝐻0𝑡 =
∑︀

𝑗 |𝑗⟩⟨𝑗| ⊗ 𝐸𝑗(𝑡) and replace the time-evolution op-
erator 𝑈(𝑡) = exp(−𝑖𝐻𝑡) with

𝑈(𝑡) = 𝑒−𝑖
∫︀ 𝑡

0
𝑑𝑠𝐻𝐼(𝑠). (3.12)

Denoting a pure and uncorrelated initial state by |𝜓(0)⟩ =∑︀𝑗 𝐶𝑗 |𝑗⟩ ⊗ |𝜉⟩, we get

|𝜓(𝑡)⟩ = 𝑒−𝑖
∫︀ 𝑡

0
𝑑𝑠

∑︀
𝑗 |𝑗⟩⟨𝑗|⊗𝐸𝑗(𝑠)

∑︁

𝑘

𝐶𝑘|𝑘⟩ ⊗ |𝜉⟩ (3.13)

=
∑︁

𝑗

𝐶𝑗 |𝑗⟩ ⊗ 𝑒−𝑖
∫︀ 𝑡

0
𝑑𝑠𝐸𝑗(𝑠)|𝜉⟩ (3.14)

=
∑︁

𝑗

𝐶𝑗 |𝑗⟩ ⊗ |𝜉𝑗(𝑡)⟩. (3.15)

Then, partial tracing over the environment (using some basis {|𝜉𝑗⟩}𝑗) yields

𝜌(𝑡) =
∑︁

𝑗

⟨𝜉𝑗 |
∑︁

𝑘

𝐶𝑘|𝑘⟩ ⊗ |𝜉𝑘(𝑡)⟩
∑︁

𝑙

𝐶*𝑙 ⟨𝑙| ⊗ ⟨𝜉𝑙(𝑡)|𝜉𝑗⟩ (3.16)

=
∑︁

𝑗,𝑘,𝑙

𝐶𝑘𝐶
*
𝑙 |𝑘⟩⟨𝑙|⟨𝜉𝑗 |𝜉𝑘(𝑡)⟩⟨𝜉𝑙(𝑡)|𝜉𝑗⟩ (3.17)

=
∑︁

𝑗,𝑘,𝑙

𝐶𝑘𝐶
*
𝑙 |𝑘⟩⟨𝑙|⟨𝜉𝑙(𝑡)|𝜉𝑗⟩⟨𝜉𝑗 |𝜉𝑘(𝑡)⟩ (3.18)

=
∑︁

𝑘,𝑙

𝐶𝑘𝐶
*
𝑙 |𝑘⟩⟨𝑙|⟨𝜉𝑙(𝑡)|𝜉𝑘(𝑡)⟩. (3.19)
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Due to unitarity, ⟨𝜉𝑗(𝑡)|𝜉𝑗(𝑡)⟩ = 1. Hence, one can see from Eq. (3.19) that
the diagonal elements ⟨𝑗|𝜌(𝑡)|𝑗⟩ = |𝐶𝑗 |2 do not change with time. However, this is
not generally the case for the off-diagonal elements ⟨𝑗|𝜌(𝑡)|𝑘⟩ = 𝐶𝑗𝐶

*
𝑘⟨𝜉𝑘(𝑡)|𝜉𝑗(𝑡)⟩,

𝑗 ̸= 𝑘. We call the inner products ⟨𝜉𝑘(𝑡)|𝜉𝑗(𝑡)⟩ decoherence functions, and their
exact forms depend on the operators 𝐸𝑗(𝑡) = 𝑒𝑖𝐻0𝑡𝐸𝑗𝑒

−𝑖𝐻0𝑡. Typically, with long
enough interaction times, ⟨𝜉𝑘(𝑡)|𝜉𝑗(𝑡)⟩ → 𝛿𝑘,𝑗 and therefore 𝜌(𝑡) →∑︀

𝑗 |𝐶𝑗 |2|𝑗⟩⟨𝑗|,
i.e., the initial system state

∑︀
𝑗 𝐶𝑗 |𝑗⟩ becomes its classical counterpart.

3.2.2 Photonic dephasing

We now introduce the linear optical dephasing model of whose engineering and uti-
lization we are interested in in this Thesis. For simplicity, we restrict our attention
first to initially uncorrelated single-photon states. Two photons and initial system-
environment correlations are considered in later Chapters.

Here, the polarization degree of freedom of a single photon is the open quantum
system, the same photon’s frequency represents the environment, and the system-
environment (polarization-frequency) interaction is realized in a birefringent medium
(e.g., quartz), where the polarization components propagate at different velocities.
The initial state of the total system is given by

|𝜓(0)⟩ = (𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)
∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩, (3.20)

where 𝐶𝐻 and 𝐶𝑉 are, as before, probability amplitudes for the photon to be hor-
izontally and vertically polarized, respectively. Similarly, 𝑔(𝑓) is the probability
amplitude of the frequency 𝑓 , but in the continuous sense: The probability of the
photon’s frequency to be in the interval [𝑓𝑎, 𝑓𝑏] is 𝑃 (𝑓𝑎 ≤ 𝑓 ≤ 𝑓𝑏) =

∫︀ 𝑓𝑏
𝑓𝑎
𝑑𝑓 |𝑔(𝑓)|2.

Thus, we have the normalization condition
∫︀
𝑑𝑓 |𝑔(𝑓)|2 = 1.

The interaction Hamiltonian governing the system’s evolution in a birefringent
medium is 𝐻𝐼 = −(𝑛𝐻 |𝐻⟩⟨𝐻| + 𝑛𝑉 |𝑉 ⟩⟨𝑉 |)

∫︀
𝑑𝑓2𝜋𝑓 |𝑓⟩⟨𝑓 |, where 𝑛𝐻 (𝑛𝑉 ) is

the medium’s refractive index corresponding to horizontal (vertical) polarization3.
Since we have no free evolution inside the medium, it suffices to show how this
Hamiltonian alone acts on the joint state vector |𝜆⟩|𝑓⟩, 𝜆 = 𝐻,𝑉 :

𝑈(𝑡)|𝜆⟩|𝑓⟩ = 𝑒−𝑖𝐻𝐼𝑡|𝜆⟩|𝑓⟩ (3.21)

=

∞∑︁

𝑗=0

[𝑖(𝑛𝐻 |𝐻⟩⟨𝐻|+ 𝑛𝑉 |𝑉 ⟩⟨𝑉 |)
∫︀
𝑑𝑓 ′2𝜋𝑓 ′|𝑓 ′⟩⟨𝑓 ′|𝑡]𝑗

𝑗!
|𝜆⟩|𝑓⟩ (3.22)

3To be precise, one should take dispersion of the refractive indices into account by using the Sell-
meier equations 𝑛𝐻(𝑓) and 𝑛𝑉 (𝑓) [96; 97]. However, the refractive indices can be treated as constants
on small enough frequency intervals, as we do in the theoretical parts of this Thesis.
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=

∞∑︁

𝑗=0

[𝑖𝑗(𝑛𝑗𝐻 |𝐻⟩⟨𝐻|+ 𝑛𝑗𝑉 |𝑉 ⟩⟨𝑉 |)
∫︀
𝑑𝑓 ′(2𝜋𝑓 ′)𝑗 |𝑓 ′⟩⟨𝑓 ′|𝑡𝑗 ]

𝑗!
|𝜆⟩|𝑓⟩ (3.23)

=

∞∑︁

𝑗=0

(𝑖2𝜋𝑓𝑛𝜆𝑡)
𝑗

𝑗!
|𝜆⟩|𝑓⟩ (3.24)

= 𝑒𝑖2𝜋𝑓𝑛𝜆𝑡|𝜆⟩|𝑓⟩. (3.25)

Hence, the evolution of the total system-environment state reads

|𝜓(𝑡)⟩ = 𝑈(𝑡)|𝜓(0)⟩ (3.26)

= 𝐶𝐻 |𝐻⟩
∫︁
𝑑𝑓𝑔(𝑓)𝑒𝑖2𝜋𝑓𝑛𝐻𝑡|𝑓⟩+ 𝐶𝑉 |𝑉 ⟩

∫︁
𝑑𝑓𝑔(𝑓)𝑒𝑖2𝜋𝑓𝑛𝑉 𝑡|𝑓⟩. (3.27)

Finally, the open-system dynamics is obtained by partial tracing over the envi-
ronment:

𝜌(𝑡) = tr𝐸 [𝑈(𝑡)|𝜓(0)⟩⟨𝜓(0)|𝑈(𝑡)†] (3.28)

=

∫︁
𝑑𝑓⟨𝑓 |

(︁
|𝐶𝐻 |2|𝐻⟩⟨𝐻|

∫︁
𝑑𝑓 ′𝑑𝑓 ′′𝑔(𝑓 ′)𝑔(𝑓 ′′)*𝑒𝑖2𝜋(𝑓

′𝑛𝐻−𝑓 ′′𝑛𝐻)𝑡|𝑓 ′⟩⟨𝑓 ′′|

+ 𝐶𝐻𝐶
*
𝑉 |𝐻⟩⟨𝑉 |

∫︁
𝑑𝑓 ′𝑑𝑓 ′′𝑔(𝑓 ′)𝑔(𝑓 ′′)*𝑒𝑖2𝜋(𝑓

′𝑛𝐻−𝑓 ′′𝑛𝑉 )𝑡|𝑓 ′⟩⟨𝑓 ′′|

+ 𝐶*𝐻𝐶𝑉 |𝑉 ⟩⟨𝐻|
∫︁
𝑑𝑓 ′𝑑𝑓 ′′𝑔(𝑓 ′)𝑔(𝑓 ′′)*𝑒𝑖2𝜋(𝑓

′𝑛𝑉−𝑓 ′′𝑛𝐻)𝑡|𝑓 ′⟩⟨𝑓 ′′|

+ |𝐶𝑉 |2|𝑉 ⟩⟨𝑉 |
∫︁
𝑑𝑓 ′𝑑𝑓 ′′𝑔(𝑓 ′)𝑔(𝑓 ′′)*𝑒𝑖2𝜋(𝑓

′𝑛𝑉−𝑓 ′′𝑛𝑉 )𝑡|𝑓 ′⟩⟨𝑓 ′′|
)︁
|𝑓⟩

(3.29)

=

∫︁
𝑑𝑓
(︁
|𝐶𝐻 |2|𝐻⟩⟨𝐻||𝑔(𝑓)|2 + 𝐶𝐻𝐶

*
𝑉 |𝐻⟩⟨𝑉 ||𝑔(𝑓)|2𝑒𝑖2𝜋𝑓(𝑛𝐻−𝑛𝑉 )𝑡

+ 𝐶*𝐻𝐶𝑉 |𝑉 ⟩⟨𝐻||𝑔(𝑓)|2𝑒𝑖2𝜋𝑓(𝑛𝑉−𝑛𝐻)𝑡 + |𝐶𝑉 |2|𝑉 ⟩⟨𝑉 ||𝑔(𝑓)|2
)︁

(3.30)

=

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 𝜅(𝑡)

𝐶*𝐻𝐶𝑉 𝜅(𝑡)
* |𝐶𝑉 |2

)︂
. (3.31)

Here, 𝜅(𝑡) =
∫︀
𝑑𝑓 |𝑔(𝑓)|2𝑒𝑖2𝜋𝑓Δ𝑛𝑡 is the decoherence function and Δ𝑛 = 𝑛𝐻−𝑛𝑉 is

the medium’s birefringence. Interestingly, the decoherence function is the frequency
distribution’s Fourier transform and independent of the environment’s coherences.
Furthermore, the concurrence of the open system and its environment in this case
becomes

𝒞(𝜌𝑆𝐸) = 2|𝐶𝐻 ||𝐶𝑉 |
√︀

1− |𝜅(𝑡)|2. (3.32)

The smaller the decoherence function, the more entangled the open system is with
its environment.
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If we choose the Gaussian distribution |𝑔(𝑓)|2 = exp
[︁
− 1

2

(︀𝑓−𝜇
𝜎

)︀2]︁
/
√
2𝜋𝜎2,

with 𝜇 and 𝜎 being its mean frequency and standard deviation, we obtain

𝜅(𝑡) = 𝑒𝑖2𝜋𝜇Δ𝑛𝑡− 1

2
(2𝜋𝜎Δ𝑛𝑡)2 . (3.33)

Unless otherwise stated, we take the frequency integral(s) from −∞ to ∞. In the case
of a Gaussian spectrum, large enough ratio 𝜇/𝜎 makes this a good approximation.
For example, with 𝜇 = 3.84 × 1014 Hz and 𝜎 = 5.68 × 1011 Hz, the nonphysical
part becomes negligibly small,

∫︀ 0
−∞ 𝑑𝑓 |𝑔(𝑓)|2 ∼ 10−99251.

The above decoherence function makes the initial open-system state rotate around
the Bloch ball’s 𝑧-axis with the frequency 2𝜋𝜇Δ𝑛, while the state’s coherences un-
dergo Gaussian decay of the time scale (2𝜋𝜎Δ𝑛)−1. That is, the wider the spectrum,
the faster dephasing we have. This is quite intuitive. Say, we had a discrete fre-
quency mode instead of the continuous spectrum. Then, the “decoherence function”
corresponding to the mode |𝑓⟩ would simply be the phase factor 𝑒𝑖2𝜋𝑓Δ𝑛𝑡. However,
when we have multiple modes that come from a continuous distribution |𝑔(𝑓)|2 and
cannot be distinguished, they need to be averaged over. With small 𝜎, there is not
much to be averaged, and the phase factors remain quite close to 𝑒𝑖2𝜋𝜇Δ𝑛𝑡. With large
𝜎, it is the opposite. The phase factors 𝑒𝑖2𝜋𝑓Δ𝑛𝑡 corresponding to deviating values
of 𝑓 quickly spread around the unit circle in the complex plane with their average
approaching its origin. This is illustrated in Fig. 3.1.

Slowing down dephasing by downsizing the environment—which in the linear
optical case means narrowing the frequency spectrum—is an example of reservoir
engineering. With reservoir engineering, one usually refers to manipulating the ini-
tial environment state 𝜉(0) [28]. In this Thesis, we use the term in a broader sense,
covering the initial system-environment correlations as well.

The dephasing rate also depends on the number of photons under noise. Say,
we had the 𝑁 -photon state (|𝐻⟩⊗𝑁 + |𝑉 ⟩⊗𝑁 )/

√
2, also known as the Greenberger-

Horne-Zeilinger (GHZ) state [98], interacting with 𝑁 uncorrelated frequency dis-
tributions in equally thick and parallel birefringent crystals. The decoherence func-
tion would then simply be the product of all the single-photon functions, 𝜅GHZ(𝑡) =∏︀𝑁

𝑗=1 𝜅𝑗(𝑡). With 𝑁 equally wide Gaussian spectra, we would have dephasing of
the time scale (2𝜋𝜎Δ𝑛

√
𝑁)−1. This goes to demonstrate that the bigger the open

system, the faster it can (and typically will) decohere.

Returning to the single-photon case, it is illustrative to study dephasing in the
time domain, too. Multiplying the right-hand side of Eq. (3.27) from left by

∫︀
𝑑𝑠|𝑠⟩⟨𝑠|

= 1, where 𝑠 is the time of the photon arriving at a photodetector, using ⟨𝑠|𝑓⟩ =
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Figure 3.1. Visualization of dephasing. On the left, we have three Gaussian frequency distributions
|𝑔(𝑓)|2 of different widths 𝜎. On the right, we have considered three different interaction times,
increasing from left to right. In each case, we have drawn 100 frequencies from the distribution
shown to their left. The corresponding phase factors lie on the unit circles (blue dots), while their
averages are inside of the circles (red crosses).

𝑒−𝑖2𝜋𝑓𝑠 [99], and assuming Gaussianity and that 𝑔(𝑓) = |𝑔(𝑓)| 4, we obtain

|𝜓(𝑡)⟩ = (8𝜋𝜎2)
1

4

(︁
𝐶𝐻 |𝐻⟩

∫︁
𝑑𝑠𝑒𝑖2𝜋𝜇(𝑛𝐻𝑡−𝑠)−[2𝜋𝜎(𝑛𝐻𝑡−𝑠)]2 |𝑠⟩

+𝐶𝑉 |𝑉 ⟩
∫︁
𝑑𝑠𝑒𝑖2𝜋𝜇(𝑛𝑉 𝑡−𝑠)−[2𝜋𝜎(𝑛𝑉 𝑡−𝑠)]2 |𝑠⟩

)︁
. (3.34)

Now, we can solve the arrival-time distribution |𝑔(𝑠)|2 by partial tracing |𝜓(𝑡)⟩⟨𝜓(𝑡)|
over polarization and sandwiching the result between ⟨𝑠| and |𝑠⟩. Doing so, we arrive
at

|𝑔(𝑠)|2 =
√
8𝜋𝜎2

(︁
|𝐶𝐻 |2𝑒−2[2𝜋𝜎(𝑠−𝑛𝐻𝑡)]2 + |𝐶𝑉 |2𝑒−2[2𝜋𝜎(𝑠−𝑛𝑉 𝑡)]2

)︁
. (3.35)

The right-hand side of Eq. (3.35) is just a convex combination of two translated
Gaussians, with the translations 𝑛𝐻𝑡 and 𝑛𝑉 𝑡 weighted by |𝐶𝐻 |2 and |𝐶𝑉 |2, respec-
tively. With no interaction, the Gaussians overlap and it is more probable to detect

4This is a reasonable assumption, since the phases of the frequency amplitudes in SPDC are not
random [43].
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Figure 3.2. Arrival-time distribution |𝑔(𝑠)|2 as a function of the arrival time and interaction time.
Here, |𝐶𝐻 |2 = |𝐶𝑉 |2 = 0.5 and 𝑛𝐻 > 𝑛𝑉 , i.e., horizontal polarization moves slower. Thus, its
expected arrival time is later. The distributions at the bottom of the picture correspond to the inter-
sections given by the dashed lines.

the photon earlier, around 𝑠 = 0 (see Fig. 3.2). In a birefringent medium, the hori-
zontal and vertical polarization components propagate at different velocities and the
two Gaussians diverge. Because the photon has moved slower, it is more probable
to detect it later. Interestingly, between the faster and slower component, we have a
region where 𝑃 (𝑠𝑎 ≤ 𝑠 ≤ 𝑠𝑏) ≈ 0.

The dephasing channel we have described is clearly convex linear and trace-
preserving. For the channel to be CP, we must have (Φ𝑡

𝐴 ⊗ 1𝐵)(|Φ+⟩⟨Φ+|) ≥ 𝒪:

det
[︀
(Φ𝑡

𝐴 ⊗ 1𝐵)(|Φ+⟩⟨Φ+|)− 𝜆1𝐴𝐵

]︀
=

⃒⃒
⃒⃒
⃒⃒
⃒⃒

1/2− 𝜆 0 0 𝜅(𝑡)/2

0 −𝜆 0 0

0 0 −𝜆 0

𝜅(𝑡)*/2 0 0 1/2− 𝜆

⃒⃒
⃒⃒
⃒⃒
⃒⃒

(3.36)

=
(︁1
2
− 𝜆
)︁2
𝜆2 − |𝜅(𝑡)|2

4
𝜆2 = 0 (3.37)

⇔ 𝜆1 = 𝜆2 = 0, 𝜆3 =
1 + |𝜅(𝑡)|

2
, 𝜆4 =

1− |𝜅(𝑡)|
2

(3.38)

𝜆4 ≥ 0 ⇔ |𝜅(𝑡)| ≤ 1. (3.39)

The above calculation shows that the dephasing channel is CP as long as the deco-
herence function’s absolute value is at most one. Larger absolute values would map
the qubit outside of the Bloch ball, resulting in probabilities outside of the interval
[0, 1]. Because Φ0 = 1, the inequalities in Eq. (3.39) are saturated with 𝑡 = 0. How-
ever, by controlling the initial system-environment correlations, we can go beyond
the conventional channel-description of the dynamics and have |𝜅(0)| < 1. Although
a dynamical map does not exist in correlated cases, the open-system dynamics can
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still be physical. A canonical description for such dynamics is still missing, although
some have been proposed, e.g., “bath-positive decompositions” [100].

Let us end this Section by addressing the elephant in the room: How can the
frequency degree of freedom be considered an “environment”? Furthermore, doesn’t
the fact that, e.g., Δ𝑛air ≈ 0 absolve us from the problematics of decoherence?
Couldn’t we use photons in free air as fully decoherence-free information carriers?

Although the frequency is not an inaccessible “bath” or “reservoir”, the open-
system dynamics—i.e., dephasing of polarization—can be described in exactly the
same fashion. Hence, from the point of view of polarization, the frequency effectively
acts as an environment. As for the second question: Photons are, in fact, used in
linear optical quantum computing (LOQC) due to their long coherence times [101].
However, quantum information processing with photons has problems of its own,
e.g., poor scalability. But for emulating open-system dynamics, photons are perfect,
allowing us to develop new, proof-of-principle quantum information protocols under
noise and test existing ones. Conversely, the concepts of open quantum systems can
be used in linear optics, interferometry, and parameter estimation, as we will see in
Chapter 5.

3.3 Non-Markovianity
Markovianity and non-Markovianity are important concepts related to the dynam-
ics of open quantum systems. Before going to quantum (non-)Markovianity, let us
briefly discuss stochastic processes and classical (non-)Markovianity [102].

3.3.1 Classical case and CP-divisibility

A stochastic process {𝑋(𝑡) ∈ 𝒳 , 𝑡 ∈ 𝒯 } is a family of 𝑡-dependent random variables
𝑋(𝑡) that take values from some fixed set 𝒳 , while 𝑡, usually taken to be time, takes
values from the interval 𝒯 . Then,𝑋(𝑡𝑛) = 𝑥𝑛 with some probability 𝑃 (𝑥𝑛, 𝑡𝑛). The
process is said to be memoryless or Markovian, if this probability, conditioned on all
the previous values 𝑥𝑛−1, 𝑥𝑛−2, ..., 𝑥0 at the respective time instants 𝑡𝑛−1 ≥ 𝑡𝑛−2 ≥
... ≥ 𝑡0, only depends on the process’s last preceding state,

𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑛−1, 𝑡𝑛−1;𝑥𝑛−2, 𝑡𝑛−2; ...;𝑥0, 𝑡0) = 𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑛−1, 𝑡𝑛−1). (3.40)

Otherwise, the process is non-Markovian.
The probability 𝑃 (𝑥𝑛, 𝑡𝑛) can be written in terms of all the possible probabilities

at some earlier point of time, 𝑡𝑚 ≤ 𝑡𝑛, as

𝑃 (𝑥𝑛, 𝑡𝑛) =
∑︁

𝑥𝑚∈𝒳
𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚)𝑃 (𝑥𝑚, 𝑡𝑚), (3.41)

where 𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚) is a transition matrix also known as the propagator. Be-
cause 𝑃 (𝑥𝑛, 𝑡𝑛) ≥ 0 and

∑︀
𝑥𝑛∈𝒳 𝑃 (𝑥𝑛, 𝑡𝑛) = 1, the propagator needs to satisfy
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𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚) ≥ 0 ∀𝑥𝑛, 𝑥𝑚 ∈ 𝒳 and
∑︀

𝑥𝑛∈𝒳 𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚) = 1 ∀𝑥𝑚 ∈ 𝒳 .
A matrix satisfying these two properties is a stochastic matrix. Furthermore, if
the process is Markovian, the propagator 𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚) can be identified as the
conditional probability 𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚) by looking at the two-point probability
𝑃 (𝑥𝑛, 𝑡𝑛;𝑥𝑚, 𝑡𝑚):

𝑃 (𝑥𝑛, 𝑡𝑛;𝑥𝑚, 𝑡𝑚) = 𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚)𝑃 (𝑥𝑚, 𝑡𝑚) (3.42)

⇒
∑︁

𝑥𝑚∈𝒳
𝑃 (𝑥𝑛, 𝑡𝑛;𝑥𝑚, 𝑡𝑚) =

∑︁

𝑥𝑚∈𝒳
𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚)𝑃 (𝑥𝑚, 𝑡𝑚) (3.43)

⇔ 𝑃 (𝑥𝑛, 𝑡𝑛) =
∑︁

𝑥𝑚∈𝒳
𝑃 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚)𝑃 (𝑥𝑚, 𝑡𝑚). (3.44)

We can now show that a Markovian process {𝑋(𝑡) ∈ 𝒳 , 𝑡 ∈ 𝒯 } is divisible. We
start by decomposing the probability of three consecutive events:

𝑃 (𝑥2, 𝑡2;𝑥1, 𝑡1;𝑥0, 𝑡0) = 𝑃 (𝑥2, 𝑡2|𝑥1, 𝑡1;𝑥0, 𝑡0)𝑃 (𝑥1, 𝑡1;𝑥0, 𝑡0) (3.45)

= 𝑃 (𝑥2, 𝑡2|𝑥1, 𝑡1;𝑥0, 𝑡0)𝑃 (𝑥1, 𝑡1|𝑥0, 𝑡0)𝑃 (𝑥0, 𝑡0)
(3.46)

= 𝑃 (𝑥2, 𝑡2|𝑥1, 𝑡1)𝑃 (𝑥1, 𝑡1|𝑥0, 𝑡0)𝑃 (𝑥0, 𝑡0)
(3.47)

⇒
∑︁

𝑥1∈𝒳

𝑃 (𝑥2, 𝑡2;𝑥1, 𝑡1;𝑥0, 𝑡0)

𝑃 (𝑥0, 𝑡0)
=
∑︁

𝑥1∈𝒳
𝑃 (𝑥2, 𝑡2|𝑥1, 𝑡1)𝑃 (𝑥1, 𝑡1|𝑥0, 𝑡0) (3.48)

⇔ 𝑃 (𝑥2, 𝑡2|𝑥0, 𝑡0) =
∑︁

𝑥1∈𝒳
𝑃 (𝑥2, 𝑡2|𝑥1, 𝑡1)𝑃 (𝑥1, 𝑡1|𝑥0, 𝑡0) (3.49)

⇔ 𝑇 (𝑥2, 𝑡2|𝑥0, 𝑡0) =
∑︁

𝑥1∈𝒳
𝑇 (𝑥2, 𝑡2|𝑥1, 𝑡1)𝑇 (𝑥1, 𝑡1|𝑥0, 𝑡0). (3.50)

It should now become clear what we mean by “divisibility”; The propagator describ-
ing the evolution of a Markovian stochastic process can be divided into intermediate
parts, first giving the evolution from 𝑡0 to 𝑡1 ≥ 𝑡0, then from 𝑡1 to 𝑡2 ≥ 𝑡1. Al-
though divisibility does not guarantee Markovianity in general, they can be shown to
coincide with one-point probabilities.

In the theory of open quantum systems, Markovianity can be defined in similar
terms [102]. Going from classical stochastic processes to open-system dynamics
is a subtle issue—and we refer to [28] for more detailed discussion—but for the
purposes of this Thesis, it suffices to look at the simple substitutions 𝑃 (𝑥, 𝑡) ↦→ 𝜌(𝑡)

and
∑︀

𝑥𝑚∈𝒳 𝑇 (𝑥𝑛, 𝑡𝑛|𝑥𝑚, 𝑡𝑚)𝑃 (𝑥𝑚, 𝑡𝑚) ↦→ Φ𝑡𝑛←𝑡𝑚
(︀
𝜌(𝑡𝑚)

)︀
. That is, we replace

the single-point probabilities and classical propagators with their quantum versions.
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Then, starting from the classical case and having 𝑡2 ≥ 𝑡1, we can write

𝑃 (𝑥2, 𝑡2) =
∑︁

𝑥1∈𝒳
𝑇 (𝑥2, 𝑡2|𝑥1, 𝑡1)𝑃 (𝑥1, 𝑡1) (3.51)

↦→ 𝜌(𝑡2) = Φ𝑡2←𝑡1
(︀
𝜌(𝑡1)

)︀
(3.52)

⇔ Φ𝑡2 = Φ𝑡2←𝑡1 ∘ Φ𝑡1 . (3.53)

We see that, like in the case of classical stochastic processes, the open-system
dynamics from 0 to 𝑡2 can be described first with a dynamical map Φ𝑡1 and then
with a quantum propagator Φ𝑡2←𝑡1 . However, this alone does not guarantee quantum
Markovianity. With classical stochastic processes, the propagator also needed to be
positive and sum up to unity. Now, due to the possibility of an entangled ancilla, the
quantum propagator needs to be completely positive and trace-preserving. Hence, we
conclude that the dynamics of an open quantum system in the time interval [𝑡1, 𝑡2]
is CP-divisible and therefore Markovian, if the intermediate propagator Φ𝑡2←𝑡1 is
CPTP. Conversely, if there exists a time interval with the corresponding propagator
not being CPTP, the (whole) dynamics is said to be non-Markovian.

One could naı̈vely write the propagator as Φ𝑡2←𝑡1 = Φ𝑡2−𝑡1 . Dynamical maps
with this propagator are called dynamical semigroups [6]. However, while some
maps admit the semigroup property, e.g., single-photon dephasing with Lorentzian
frequency distribution and the decoherence function 𝜅(𝑡) = 𝑒𝑖2𝜋𝑓0Δ𝑛𝑡−2𝜋𝛾Δ𝑛𝑡, it
does not hold in general (see, e.g., the Gaussian single-photon decoherence function).
The Kraus operators

𝐾±(𝑡1, 𝑡2) =

√︃
1± |𝜅(𝑡2)|

|𝜅(𝑡1)|

2

⎛
⎝±𝜅(𝑡2)

𝜅(𝑡1)
|𝜅(𝑡1)|
|𝜅(𝑡2)| 0

0 1

⎞
⎠

(3.54)

define general propagator for single-qubit dephasing, as we can write

Φ𝑡2←𝑡1
(︀
𝜌(𝑡1)

)︀
= 𝐾+(𝑡1, 𝑡2)𝜌(𝑡1)𝐾+(𝑡1, 𝑡2)

† +𝐾−(𝑡1, 𝑡2)𝜌(𝑡1)𝐾−(𝑡1, 𝑡2)
†

(3.55)

=

(︃
𝜌00 𝜌01𝜅(𝑡1)

𝜅(𝑡2)
𝜅(𝑡1)

𝜌10𝜅(𝑡1)
* 𝜅(𝑡2)*
𝜅(𝑡1)*

𝜌11

)︃
(3.56)

=

(︂
𝜌00 𝜌01𝜅(𝑡2)

𝜌10𝜅(𝑡2)
* 𝜌11

)︂
. (3.57)

We can now show what the CP-divisibility means for general single-qubit de-
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phasing. Requiring the propagator to be CP, we get

det
[︀
(Φ𝑡2←𝑡1

𝐴 ⊗ 1𝐵)(|Φ+⟩⟨Φ+|)− 𝜆1𝐴𝐵

]︀

=

⃒⃒
⃒⃒
⃒⃒
⃒⃒

1/2− 𝜆 0 0 𝜅(𝑡2)/[2𝜅(𝑡1)]

0 −𝜆 0 0

0 0 −𝜆 0

𝜅(𝑡2)
*/[2𝜅(𝑡1)

*] 0 0 1/2− 𝜆

⃒⃒
⃒⃒
⃒⃒
⃒⃒

(3.58)

=
(︁1
2
− 𝜆
)︁2
𝜆2 − |𝜅(𝑡2)/𝜅(𝑡1)|2

4
𝜆2 = 0 (3.59)

⇔ 𝜆1 = 𝜆2 = 0, 𝜆3 =
1 + |𝜅(𝑡2)/𝜅(𝑡1)|

2
, 𝜆4 =

1− |𝜅(𝑡2)/𝜅(𝑡1)|
2

(3.60)

𝜆4 ≥ 0 ⇔ |𝜅(𝑡2)| ≤ |𝜅(𝑡1)|. (3.61)

The above calculation shows that, for single-qubit dephasing to be CP-divisible and
Markovian, the coherences can never increase.

3.3.2 Trace distance and BLP-measure

Let us introduce an alternative definition of quantum non-Markovianity, based on
trace distance. Say, Alice sends a message, encoded into a string of quantum states,
to Bob5. Once the states have reached Bob, his success rate on recovering the in-
tended message depends on the states’ distinguishability; Two pure, orthogonal states
can be distinguished from each other with certainty, while Bob needs to make a guess
otherwise. The distinguishability of two states, 𝜌1 and 𝜌2, can be quantified by the
trace distance [70]

𝒟tr(𝜌1, 𝜌2) =
1

2
tr|𝜌1 − 𝜌2|, (3.62)

where |𝑋| =
√
𝑋†𝑋 with

√
𝑋 being the unique matrix satisfying

√
𝑋
√
𝑋 = 𝑋 .

Unfortunately for Alice and Bob, the systems carrying the message tend to be
open quantum systems. That is, the initial states may become mixed under some
environment-induced channel Φ𝑡, making 𝜌1 and 𝜌2 less distinguishable and forcing
Bob to guess. Namely, it can be shown that quantum channels are contractions of
trace distance [70],

𝒟tr
(︀
Φ𝑡(𝜌1),Φ

𝑡(𝜌2)
)︀
≤ 𝒟tr(𝜌1, 𝜌2). (3.63)

Since information, in the sense of the above discussion, may transform into system-
environment correlations, one sometimes talks about information flow [29].

5Maybe they are executing the BB84 protocol.
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However, as the total system-environment state is closed, the information is never
really gone, and the open system may sometimes regain some of the previously lost
information, i.e., experience information backflow or memory effects. In such situa-
tions, the trace distance can temporally increase, though never above its initial value.
Then, the total increase of trace distance maximized with respect to the initial state
pair,

𝒩 (Φ𝑡) = max
𝜌1,2(0)

∫︁

𝜎>0
𝑑𝑡𝜎
(︀
𝑡, 𝜌1,2(0)

)︀
, (3.64)

can be interpreted as the amount of re-attainable information during the open sys-
tem’s whole time evolution induced by Φ𝑡. Here, 𝜎(𝑡, 𝜌1,2(0)

)︀
= 𝜕

𝜕𝑡𝒟𝑡𝑟

(︀
𝜌1(𝑡), 𝜌2(𝑡)

)︀
.

Eq. (3.64) is known as the Breuer, Laine, and Piilo (BLP) measure of non-Markovi-
anity [103]. The channel is Markovian if 𝒩 (Φ𝑡) = 0 and non-Markovian otherwise.

We get a rather simple expression for the trace distance with two qubits ex-
periencing dephasing. Assuming pure initial states and denoting them by |𝜓1⟩ =

𝐶0|0⟩+ 𝐶1|1⟩ and |𝜓2⟩ = 𝐶 ′0|0⟩+ 𝐶 ′1|1⟩, we obtain

𝒟tr
(︀
𝜌1(𝑡), 𝜌2(𝑡)

)︀
=

1

2
tr

⃒⃒
⃒⃒
⃒

(︂
|𝐶0|2 − |𝐶 ′0|2 (𝐶0𝐶

*
1 − 𝐶 ′0𝐶

′*
1 )𝜅(𝑡)

(𝐶*0𝐶1 − 𝐶 ′*0 𝐶
′
1)𝜅(𝑡)

* |𝐶1|2 − |𝐶 ′1|2
)︂ ⃒⃒
⃒⃒
⃒
(3.65)

=
1

2
tr
√︁[︀

(|𝐶0|2 − |𝐶 ′0|2)2 + |𝐶*0𝐶1 − 𝐶 ′*0 𝐶
′
1|2|𝜅(𝑡)|2

]︀
1 (3.66)

=

√︀
(|𝐶0|2 − |𝐶 ′0|2)2 + |𝐶*0𝐶1 − 𝐶 ′*0 𝐶

′
1|2|𝜅(𝑡)|2

2
tr[1] (3.67)

=
√︁

(|𝐶0|2 − |𝐶 ′0|2)2 + |𝐶*0𝐶1 − 𝐶 ′*0 𝐶
′
1|2|𝜅(𝑡)|2. (3.68)

Because (|𝐶0|2 − |𝐶 ′0|2)2 and |𝐶*0𝐶1 − 𝐶 ′*0 𝐶
′
1|2 are inversely proportional, maxi-

mizing the possible revivals of trace distance translates into minimizing the constant
(|𝐶0|2 − |𝐶 ′0|2)2 and maximizing the scaling factor in front of the dynamical part,
|𝐶*0𝐶1 − 𝐶 ′*0 𝐶

′
1|2. The first task is accomplished by setting |𝐶0| = |𝐶 ′0|. It fol-

lows that also |𝐶1| = |𝐶 ′1|. Therefore, we can write 𝐶(′)*
0 𝐶

(′)
1 = |𝐶0||𝐶1|𝑒𝑖𝜃(′)

and
|𝐶*0𝐶1 − 𝐶 ′*0 𝐶

′
1|2 = 2|𝐶0|2|𝐶1|2[1 − cos(𝜃 − 𝜃′)], which is maximized by setting

|𝐶0|2 = |𝐶1|2 = 1/2 and 𝜃 − 𝜃′ = 𝜋. This means that the possible revivals of trace
distance are maximized with any pair of initial states lying on antipodal points of the
Bloch ball’s equator. Using any such pair, e.g., |±⟩ = (|0⟩ ± |1⟩)/

√
2, yields

𝒟tr
(︀
𝜌1(𝑡), 𝜌2(𝑡)

)︀
= |𝜅(𝑡)|. (3.69)

From Eq. (3.69) we see that, with single-qubit dephasing, information flow is
fully characterized by the absolute value of the decoherence function, the sign of its
time derivative giving the direction of the flow; For information backflow and non-
Markovian dynamics, we need to have 𝜕

𝜕𝑡 |𝜅(𝑡)| > 0. This coincides with the break-
ing of CP-divisibility [see Eq. (3.61)]. However, the two definitions do not generally
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Figure 3.3. The trace-distance dynamics of the initial state pair |±⟩, induced by a double-peaked
Gaussian spectrum. The amounts of the trace distance increasing are shown on top of each “reco-
herence peak”. In this case, we would have 𝒩 (Φ𝑡) ≈ 1.54. Trace distance as the distinguishability
of states is further illustrated by the blurred state vectors at the bottom of the picture.

overlap (see, e.g., Ref. [104]). In fact, there is no sole, universally agreed definition
of quantum (non-)Markovianity [31; 105], and the main reason for this lies within the
measurement problem of quantum mechanics. As we saw in the previous Chapter,
measurements change the state of interest—and therefore its dynamics, too. Some re-
cently proposed definitions related to stochastic quantum processes have taken such
state preparations and control operations into account [106; 107; 108; 109; 110; 111].
However, the continuous-time dephasing dynamics we are interested in does not fall
into this category. Furthermore, as the trace-distance criterion has a simple ana-
lytic form and physical interpretation—and it coincides with many other indicators
of non-Markovianity in the case of single-qubit dephasing, not just the breaking of
CP-divisibility (e.g., negative decay rates of the master equation [112])—we shall
use it as the criterion for quantum non-Markovianity in the rest of this Thesis.

Non-Markovianity is an interesting and important concept not just from the fun-
damental point of view related to information flow; Quantum information protocols
(e.g., the Deutsch–Jozsa algorithm [10], quantum teleportation [49], and quantum
key distribution [113]) have been shown to perform better under non-Markovian
noise than Markovian. In addition, non-Markovianity can be used in parameter esti-
mation, e.g., when evaluating initial correlations between two environments [41].

Now the question arises, how to go from Markovian to non-Markovian dephas-
ing in the linear optical setting? The decoherence functions we have encountered so
far—the Gaussian exp[𝑖2𝜋𝜇Δ𝑛𝑡−(2𝜋𝜎Δ𝑛𝑡)2/2] and the Lorentzian exp(𝑖2𝜋𝑓0Δ𝑛𝑡

−2𝜋𝛾Δ𝑛𝑡)—clearly describe Markovian dynamics (in terms of BLP-non-Markovi-
anity), since their absolute values decrease monotonically. To achieve nonmono-
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tonic dephasing, we could use a double-peaked Gaussian frequency distribution,
𝐴|𝑔1(𝑓)|2+(1−𝐴)|𝑔2(𝑓)|2, with the peaks centered at 𝜇1 and 𝜇2 [46]. One example
of the resulting dynamics is plotted in Fig. 3.3, with the initial state pair |+⟩ ≡ |𝐷⟩,
|−⟩ ≡ |𝐴⟩ 6. Introducing non-Markovian memory effects in this way is another ex-
ample of reservoir engineering, and we will come back to the double-peaked Gaus-
sian in Chapter 6. We will, e.g., fully characterize the spectrum’s non-Markovian
parameter space. Other ways to create, simulate, and harness non-Markovian mem-
ory effects in the linear optical framework are presented in Chapters 4 and 5.

6We shall use these notations for diagonally and antidiagonally polarized light in the rest of the
Thesis.
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4 Biphoton dephasing

This Chapter is dedicated to the dephasing of two photons, which allows us to ex-
plore the effects of initial system-system and environment-environment correlations.
Due to these correlations, the two photons—not behaving as two separate entities—
can also be called a biphoton. After introducing the basic model, we consider ini-
tial system-environment correlations, too, and describe how to create and control
memory partitions and reverse decoherence with them. Finally, we apply reverse
decoherence in noisy quantum teleportation.

4.1 The model
4.1.1 Local and nonlocal decoherence functions

The interaction Hamiltonian of biphoton dephasing is

𝐻𝐼(𝑡) = 𝐻𝐼,𝐴𝜒𝐴(𝑡)⊗ 1𝐵 + 1𝐴 ⊗𝐻𝐼,𝐵𝜒𝐵(𝑡), (4.1)

where the photons are labeled by 𝐴 (for Alice) and 𝐵 (for Bob). The Hamiltoni-
ans 𝐻𝐼,𝑗 (𝑗 = 𝐴,𝐵) act as before, coupling the polarization with frequency. The
local form of Eq. (4.1) means that Alice’s polarization does not interact with Bob’s
frequency and vice versa. Here, we have also considered different interaction times
through the characteristic functions

𝜒𝑗(𝑡) =

{︃
1 when 𝑡𝑖,𝑗 ≤ 𝑡 ≤ 𝑡𝑓,𝑗 ,

0 otherwise.
(4.2)

That is, photon 𝑗 enters a birefringent crystal at 𝑡 = 𝑡𝑖,𝑗 and exits it at 𝑡 = 𝑡𝑓,𝑗 . The
local unitaries 𝑈𝑗(𝑡) now act according to 𝑈𝑗(𝑡)|𝜆𝑗⟩|𝑓𝑗⟩ = 𝑒𝑖2𝜋𝑓𝑗𝑛𝜆𝑗

𝑡𝑗(𝑡)|𝜆𝑗⟩|𝑓𝑗⟩,
where the interaction times 𝑡𝑗(𝑡) depend on the photons’ position with respect to the
crystals,

𝑡𝑗(𝑡) =

∫︁ 𝑡

0
𝑑𝑠𝜒𝑗(𝑠) =

⎧
⎪⎨
⎪⎩

0 if not yet entered,

𝑡− 𝑡𝑖,𝑗 if inside,

𝑡𝑓,𝑗 − 𝑡𝑖,𝑗 if exited.

(4.3)

We denote Alice’s (Bob’s) total interaction time by 𝑡𝐴(𝐵) = 𝑡𝑓,𝐴(𝐵) − 𝑡𝑖,𝐴(𝐵). Here,
we have omitted the global phase factors that the photons would acquire upon free
evolution; They do not affect the open system’s dynamics in this Chapter.
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Now, with the initial state

|𝜓(0)⟩ =
∑︁

𝜆𝐴,𝜆𝐵=𝐻,𝑉

𝐶𝜆𝐴𝜆𝐵
|𝜆𝐴𝜆𝐵⟩

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵𝑔(𝑓𝐴, 𝑓𝐵)|𝑓𝐴𝑓𝐵⟩, (4.4)

we get [cf. Eqs. (3.28)–(3.31)]

𝜌𝐴𝐵(𝑡) = Φ𝑡
𝐴𝐵

(︀
𝜌𝐴𝐵(0)

)︀
(4.5)

= tr𝐸 [𝑈𝐴(𝑡)⊗ 𝑈𝐵(𝑡)|𝜓(0)⟩⟨𝜓(0)|𝑈𝐴(𝑡)
† ⊗ 𝑈𝐵(𝑡)

†] (4.6)

=

⎛
⎜⎜⎝

|𝐶𝐻𝐻 |2 𝐶𝐻𝐻𝐶
*
𝐻𝑉 𝜅𝐵(𝑡) 𝐶𝐻𝐻𝐶

*
𝑉 𝐻𝜅𝐴(𝑡) 𝐶𝐻𝐻𝐶

*
𝑉 𝑉 𝜅𝐴𝐵(𝑡)

𝐶*𝐻𝐻𝐶𝐻𝑉 𝜅𝐵(𝑡)
* |𝐶𝐻𝑉 |2 𝐶𝐻𝑉 𝐶

*
𝑉 𝐻Λ𝐴𝐵(𝑡) 𝐶𝐻𝑉 𝐶

*
𝑉 𝑉 𝜅𝐴(𝑡)

𝐶*𝐻𝐻𝐶𝑉 𝐻𝜅𝐴(𝑡)
* 𝐶*𝐻𝑉 𝐶𝑉 𝐻Λ𝐴𝐵(𝑡)

* |𝐶𝑉 𝐻 |2 𝐶𝑉 𝐻𝐶
*
𝑉 𝑉 𝜅𝐵(𝑡)

𝐶*𝐻𝐻𝐶𝑉 𝑉 𝜅𝐴𝐵(𝑡)
* 𝐶*𝐻𝑉 𝐶𝑉 𝑉 𝜅𝐴(𝑡)

* 𝐶*𝑉 𝐻𝐶𝑉 𝑉 𝜅𝐵(𝑡)
* |𝐶𝑉 𝑉 |2

⎞
⎟⎟⎠, (4.7)

where the decoherence functions read

𝜅𝑗(𝑡) =

∫︁
𝑑𝑓𝑗 |𝑔𝑗(𝑓𝑗)|2𝑒𝑖2𝜋𝑓𝑗Δ𝑛𝑗𝑡𝑗(𝑡), (4.8)

𝜅𝐴𝐵(𝑡) =

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵|𝑔(𝑓𝐴, 𝑓𝐵)|2𝑒𝑖[2𝜋𝑓𝐴Δ𝑛𝐴𝑡𝐴(𝑡)+2𝜋𝑓𝐵Δ𝑛𝐵𝑡𝐵(𝑡)], (4.9)

Λ𝐴𝐵(𝑡) =

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵|𝑔(𝑓𝐴, 𝑓𝐵)|2𝑒𝑖[2𝜋𝑓𝐴Δ𝑛𝐴𝑡𝐴(𝑡)−2𝜋𝑓𝐵Δ𝑛𝐵𝑡𝐵(𝑡)]. (4.10)

|𝑔𝑗(𝑓𝑗)|2 in the local decoherence functions 𝜅𝑗(𝑡) is the marginal frequency dis-
tribution obtained by averaging over the other party’s frequency, i.e., |𝑔𝐴(𝐵)(𝑓𝐴(𝐵))|2
=
∫︀
𝑑𝑓𝐵(𝐴)|𝑔(𝑓𝐴, 𝑓𝐵)|2. Consequently, initial frequency correlations are locally un-

detectable in Eq. (4.7)1. On the contrary, the nonlocal decoherence functions 𝜅𝐴𝐵(𝑡)

and Λ𝐴𝐵(𝑡) do depend on initial frequency correlations. However, as none of the
decoherence functions depend on the environment’s coherences, the open-system
dynamics is identical with classical and quantum frequency correlations.

If Δ𝑛𝐴𝑡𝐴(𝑡) = Δ𝑛𝐵𝑡𝐵(𝑡) and the frequencies are perfectly correlated, i.e.,
𝑓𝐴 = 𝑓𝐵 , we get Λ𝐴𝐵(𝑡) = 1. Hence, the Bell states |Ψ±⟩ do not experience dephas-
ing, and we have the decoherence-free subspace (DFS) SΨ = span

(︀
{|𝐻𝑉 ⟩, |𝑉 𝐻⟩}

)︀
.

If Δ𝑛𝐴𝑡𝐴(𝑡) = Δ𝑛𝐵𝑡𝐵(𝑡) = Δ𝑛𝑡 and the frequencies are perfectly anticorrelated,
i.e., 𝑓𝐴 + 𝑓𝐵 = 𝑓0, we get 𝜅𝐴𝐵(𝑡) = 𝑒𝑖2𝜋𝑓0Δ𝑛𝑡. Although this decoherence function
is not a constant, it preserves the trace distance of the Bell states |Φ±⟩. In this sense,
we have the DFS SΦ = span

(︀
{|𝐻𝐻⟩, |𝑉 𝑉 ⟩}

)︀
. With no frequency correlations at

all, i.e., when |𝑔(𝑓𝐴, 𝑓𝐵)|2 = |𝑔𝐴(𝑓𝐴)|2|𝑔𝐵(𝑓𝐵)|2, we get 𝜅𝐴𝐵(𝑡) = 𝜅𝐴(𝑡)𝜅𝐵(𝑡),
Λ𝐴𝐵(𝑡) = 𝜅𝐴(𝑡)𝜅𝐵(𝑡)

*, and Φ𝑡
𝐴𝐵 = Φ𝑡

𝐴 ⊗ Φ𝑡
𝐵 .

4.1.2 The bivariate Gaussian

Above, we only dealt with the extreme cases of initial frequency correlations. Be-
cause perfectly (anti)correlated frequencies are hard to produce experimentally, it

1We will show how to get around this limitation in Chapter 5.
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is meaningful to see how different cases in-between affect the biphoton dephasing.
The bivariate Gaussian spectrum provides one analytically simple and experimen-
tally realizable way to do so [40; 41; 48; 49; 114; 115; 116]. Using the vectors
𝑓 = (𝑓𝐴, 𝑓𝐵)

𝑇 , ⟨𝑓⟩ = (⟨𝑓𝐴⟩, ⟨𝑓𝐵⟩)𝑇 , and the covariance matrix 𝐶𝑗𝑘 = ⟨𝑓𝑗𝑓𝑘⟩ −
⟨𝑓𝑗⟩⟨𝑓𝑘⟩, 𝑗, 𝑘 = 𝐴,𝐵, the bivariate Gaussian can be written as

|𝑔(𝑓𝐴, 𝑓𝐵)|2 =
1

2𝜋
√
det𝐶

𝑒−
1

2
(𝑓−⟨𝑓⟩)𝑇𝐶−1(𝑓−⟨𝑓⟩). (4.11)

For simplicity, we assume the same mean frequency 𝜇 and variance 𝜎2 for both of
the photons, i.e., ⟨𝑓𝐴⟩ = ⟨𝑓𝐵⟩ = 𝜇 and 𝐶𝐴𝐴 = 𝐶𝐵𝐵 = 𝜎2. The correlation coef-
ficient 𝐾 = 𝐶𝐴𝐵/𝐶𝐴𝐴 ∈ [−1, 1] quantifies the initial frequency correlations, with
𝐾 = −1 meaning perfect anticorrelation and 𝐾 = 1 perfect correlation. Further-
more, assuming 𝑔(𝑓𝐴, 𝑓𝐵) = |𝑔(𝑓𝐴, 𝑓𝐵)|,𝐾 is related to the concurrence of the pure
frequency state |𝜉⟩ =

∫︀
𝑑𝑓𝐴𝑑𝑓𝐵𝑔(𝑓𝐴, 𝑓𝐵)|𝑓𝐴𝑓𝐵⟩ via

𝒞(𝜉) =
√︁

2
(︀
1−

√︀
1−𝐾2

)︀
. (4.12)

Note that this only holds for pure states [satisfying 𝑔(𝑓𝐴, 𝑓𝐵) = |𝑔(𝑓𝐴, 𝑓𝐵)|]. By
mixing pure frequency states having the same frequency distribution but different
phases, we can keep 𝐾 fixed while reducing the total state’s concurrence. This ex-
plains the polarization dynamics not distinguishing between classical and quantum
correlations.

Under the above assumptions, Eq. (4.11) can be alternatively written as

|𝑔(𝑓𝐴, 𝑓𝐵)|2 =
1

2𝜋𝜎2
√
1−𝐾2

𝑒
− (𝑓𝐴−𝜇)2−2𝐾(𝑓𝐴−𝜇)(𝑓𝐵−𝜇)+(𝑓𝐵−𝜇)2

2𝜎2(1−𝐾2) . (4.13)

This form may look ill-behaving at 𝐾 → ±1, but we can write the spectrum also as

|𝑔(𝑓𝐴, 𝑓𝐵)|2 =
1√︀

2𝜋𝜎2(1 +𝐾)
𝑒
− (𝑓𝐴+𝑓𝐵−2𝜇)2

4𝜎2(1+𝐾)
1√︀

2𝜋𝜎2(1−𝐾)
𝑒
− (𝑓𝐴−𝑓𝐵)2

4𝜎2(1−𝐾) . (4.14)

If we now take the limits, we get

lim
𝐾→−1

|𝑔(𝑓𝐴, 𝑓𝐵)|2 = 𝛿(𝑓𝐴 + 𝑓𝐵 − 2𝜇)
1√
2𝜋𝜎2

𝑒−
(𝑓𝐴−𝑓𝐵)2

8𝜎2 , (4.15)

lim
𝐾→1

|𝑔(𝑓𝐴, 𝑓𝐵)|2 =
1√
2𝜋𝜎2

𝑒−
(𝑓𝐴+𝑓𝐵−2𝜇)2

8𝜎2 𝛿(𝑓𝐴 − 𝑓𝐵). (4.16)

Eq. (4.15) is nonzero only at 𝑓𝐴 + 𝑓𝐵 − 2𝜇 = 0. Substituting either 𝑓𝐴 = 2𝜇 −
𝑓𝐵 or 𝑓𝐵 = 2𝜇 − 𝑓𝐴 in it, we get the Gaussian margin |𝑔𝑗(𝑓𝑗)|2 = exp

[︁
−

1
2

(︀𝑓𝑗−𝜇
𝜎

)︀2]︁
/
√
2𝜋𝜎2, 𝑗 = 𝐴,𝐵. This means that, individually, the two frequencies
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Figure 4.1. The bivariate Gaussian frequency disribution. (a) 𝐾 = −0.99, (b) 𝐾 = −0.50, (c)
𝐾 = 0.00, (d) 𝐾 = 0.50, (e) 𝐾 = 0.99

seem random, as they are determined by the marginal distributions. But when com-
pared with each other, one observes that 𝑓𝐴+ 𝑓𝐵 = 2𝜇. Similar reasoning goes with
Eq. (4.16), the correlated case.

Anticorrelated frequencies naturally arise from SPDC. However, it can be quite
challenging to fully satisfy the phase matching condition in an actual experiment.
The joint frequency spectrum of the signal and idler photons can be approximated by
the bivariate Gaussian with𝐾 close to, but not exactly −1. Here, the frequency of the
pump laser is 2𝜇. 𝐾 can then be tuned, e.g., with interference filters (IFs [117]) or
by controlling the pump laser’s phase matching function [118]. The phase matching
function depends on the nonlinear crystal’s length, and positive correlations—even
𝐾 ≈ 1—can be achieved with very long crystals. The bivariate Gaussian has been
plotted in Fig. 4.1 with different values of 𝐾.

It is interesting to notice that the sign of correlations is the opposite in time do-
main. Furthermore, perfectly (anti)correlated photons are delocalized in time. How-
ever, detecting one photon immediately localizes the other, as we will next show for
the special case of 𝑔(𝑓𝐴, 𝑓𝐵) = |𝑔(𝑓𝐴, 𝑓𝐵)|. This result will have a small part to play
in Chapter 5.

The probability amplitude for the pair of arrival times (𝑠𝐴, 𝑠𝐵) is obtained as the
Fourier transform of 𝑔(𝑓𝐴, 𝑓𝐵),

𝑔(𝑠𝐴, 𝑠𝐵) =

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵𝑔(𝑓𝐴, 𝑓𝐵)𝑒

−𝑖(2𝜋𝑓𝐴𝑠𝐴+2𝜋𝑓𝐵𝑠𝐵) (4.17)

=

√︁
8𝜋𝜎2

√︀
1−𝐾2𝑒−(2𝜋𝜎)

2(𝑠2𝐴+2𝐾𝑠𝐴𝑠𝐵+𝑠2𝐵)−𝑖2𝜋𝜇(𝑠𝐴+𝑠𝐵). (4.18)

The corresponding probability distribution is then

|𝑔(𝑠𝐴, 𝑠𝐵)|2 = 8𝜋𝜎2
√︀

1−𝐾2𝑒−2(2𝜋𝜎)
2(𝑠2𝐴+2𝐾𝑠𝐴𝑠𝐵+𝑠2𝐵). (4.19)

Here we see the opposite sign of 𝐾 for the arrival times. The margins of Eq. (4.19)
are given by

|𝑔(𝑠𝑗)|2 =
√︀

8𝜋𝜎2(1−𝐾2)𝑒−2(2𝜋𝜎)
2(1−𝐾2)𝑠2𝑗 . (4.20)

The marginal distribution becomes infinitely wide as 𝐾 → ±1, which means that, if
neither of the photons has been detected, it is equally probable to detect one at any
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point of time. That is, the photons are temporally delocalized. Finally, the probability
distribution for the arrival time of photon 𝐴, conditioned on photon 𝐵 having been
detected at 𝑠𝐵 = 𝑆𝐵 , is

|𝑔(𝑠𝐴|𝑠𝐵 = 𝑆𝐵)|2 =
|𝑔(𝑠𝐴, 𝑆𝐵)|2
|𝑔(𝑆𝐵)|2

(4.21)

=
√
8𝜋𝜎2𝑒−2(2𝜋𝜎)

2(𝑠𝐴+𝐾𝑆𝐵)2 , (4.22)

which is clearly localized in time. Note that the arrival times are interchangeable.

4.1.3 Hybrid entanglement

With single-photon dephasing, we obtained a very simple expression for the concur-
rence dynamics describing the open system becoming entangled with its environment
[see Eq. (3.32)]. With biphoton dephasing, describing entanglement becomes more
complex because we, in fact, have four parties altogether—two polarization degrees
of freedom and two frequency degrees of freedom—and there is no entanglement
measure for 𝑁 -partite systems with 𝑁 > 2. One should therefore divide the total
system in half from somewhere. With biphoton dephasing, an obvious choice would
be to have the polarization qubits on one side (the open system) and the frequency
states on the other (the environment). The concurrence of this bipartition is inversely
proportional to the purity of Eq. (4.7),

𝒫
(︀
𝜌𝐴𝐵(𝑡)

)︀
= 1− 2

(︀
|𝐶𝐻𝐻 |2|𝐶𝑉 𝐻 |2 + |𝐶𝐻𝑉 |2|𝐶𝑉 𝑉 |2

)︀[︀
1− |𝜅𝐴(𝑡)|2

]︀

− 2
(︀
|𝐶𝐻𝐻 |2|𝐶𝐻𝑉 |2 + |𝐶𝑉 𝐻 |2|𝐶𝑉 𝑉 |2

)︀[︀
1− |𝜅𝐵(𝑡)|2

]︀

− 2|𝐶𝐻𝐻 |2|𝐶𝑉 𝑉 |2
[︀
1− |𝜅𝐴𝐵(𝑡)|2

]︀

− 2|𝐶𝐻𝑉 |2|𝐶𝑉 𝐻 |2
[︀
1− |Λ𝐴𝐵(𝑡)|2

]︀
. (4.23)

From Eq. (4.23) we see that, in this case too, the open system does become entangled
with its environment—unless the initial open-system state is given in a DFS.

An alternative bipartition would be that between Alice and Bob, i.e., having Al-
ice’s polarization and frequency on one side and Bob’s on the other. Because the
unitaries are local, the concurrence with this bipartition is constant in time and fully
determined by the initial probability amplitudes. We now make an interesting obser-
vation. Say, the initial polarization state is one of the Bell states and the frequencies
are uncorrelated. After full dephasing, we have either the classical polarization state
diag(1/2, 0, 0, 1/2) or diag(0, 1/2, 1/2, 0), and the bipartite frequency state can still
be written as a convex combination of product states. Thus, if we restrict to polar-
ization or frequency alone, the entanglement cannot be detected. Yet, Alice’s photon
is entangled with Bob’s photon due to the initial amplitudes. We call such entangle-
ment, “shared” by different degrees of freedom (in our case, biphoton polarization
and frequency), hybrid entanglement [119].
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In general, many features of open-system dynamics become much more nuanced
with two (or more) qubits. In the next Section, for example, we return to non-
Markovianity and information backflow and ponder the question, where does the
information flow back into with two qubits?

4.2 Controlling the dynamics with initial system-environ-
ment correlations

The system and environment in the initial biphoton state (4.4) were uncorrelated.
Initial system-environment correlations can be introduced, e.g., by making the simple
substitution |𝜆𝑗⟩|𝑓𝑗⟩ ↦→ 𝑒𝑖𝜃𝜆𝑗

(𝑓𝑗)|𝜆𝑗⟩|𝑓𝑗⟩. Doing so, we obtain the new decoherence
functions

𝜅𝑗(𝑡) =

∫︁
𝑑𝑓𝑗 |𝑔𝑗(𝑓𝑗)|2𝑒𝑖[𝜃𝑗(𝑓𝑗)+2𝜋𝑓𝑗Δ𝑛𝑗𝑡𝑗(𝑡)], (4.24)

𝜅𝐴𝐵(𝑡) =

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵|𝑔(𝑓𝐴, 𝑓𝐵)|2𝑒𝑖[𝜃𝐴(𝑓𝐴)+2𝜋𝑓𝐴Δ𝑛𝐴𝑡𝐴(𝑡)+𝜃𝐵(𝑓𝐵)+2𝜋𝑓𝐵Δ𝑛𝐵𝑡𝐵(𝑡)],

(4.25)

Λ𝐴𝐵(𝑡) =

∫︁
𝑑𝑓𝐴𝑑𝑓𝐵|𝑔(𝑓𝐴, 𝑓𝐵)|2𝑒𝑖[𝜃𝐴(𝑓𝐴)+2𝜋𝑓𝐴Δ𝑛𝐴𝑡𝐴(𝑡)−𝜃𝐵(𝑓𝐵)−2𝜋𝑓𝐵Δ𝑛𝐵𝑡𝐵(𝑡)],

(4.26)

where we have defined 𝜃𝑗(𝑓𝑗) := 𝜃𝐻𝑗
(𝑓𝑗) − 𝜃𝑉𝑗

(𝑓𝑗). These kinds of frequency-
dependent phase functions can be imprinted on photons with spatial light modulators
(SLMs [47]). In this Section, we focus on biphoton dephasing influenced by three
different phase functions.

4.2.1 Memory partitions

With single-qubit dephasing, the connection between non-Markovianity and infor-
mation backflow was quite clear; With a non-Markovian channel, information back-
flow showed as any pair of initial states with different coherences becoming momen-
tarily more distinguishable. With two-qubit dephasing, we have two local and two
nonlocal decoherence functions, which makes the issue with information backflow
more subtle—though distinguishing between Markovian and non-Markovian chan-
nels is still simple; If the absolute value of even one of the decoherence functions
behaves nonmonotonically, we can find an initial state pair with nonmonotonic trace
distance. Such dynamics is then declared non-Markovian by the BLP definition, re-
gardless of the initial state pair maximizing the revivals of trace distance. However,
it is now reasonable to ask, where does the information flow back into? To answer
this question, we introduce the concept of “memory partitions”.

With the two-qubit Hilbert space ℋ𝐴𝐵 , we have the subspaces S𝐴 = span
(︀
{|𝐻𝐴⟩,
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Figure 4.2. A schematic picture of the two-qubit subspaces and the example memory partition
⟨1, 0, 1, 0⟩. The arrows indicate the direction of possible information flow. (a) As the open system
𝑆 starts interacting with its environment 𝐸, information may flow from the system into the environ-
ment (with any DFS, we have no information flow). (b) At some later time intervals, we may have
information backflow into the subspaces S𝐴 and SΦ (possibly at different time intervals).

|𝑉𝐴⟩}
)︀
, S𝐵 = span

(︀
{|𝐻𝐵⟩, |𝑉𝐵⟩}

)︀
, SΨ, and SΦ, all of whose dynamics is gov-

erned by single, different decoherence function. If the absolute value of some of
the decoherence functions behaves nonmonotonically, state pairs in the associated
subspace, with different initial coherences, may become temporarily more distin-
guishable. Thus, we interpret information flowing back to that specific subspace.
With the local subspaces S𝐴 = ℋ𝐴 and S𝐵 = ℋ𝐵 , we are actually considering the
(non-)Markovianity of the local channels

Φ𝑡
𝐴(𝐵)

(︀
𝜌(0)

)︀
= tr𝐵(𝐴)

[︀
Φ𝑡
𝐴𝐵

(︀
𝜌(0)

)︀]︀
, (4.27)

where we have included Bob’s (Alice’s) polarization to Alice’s (Bob’s) environ-
ment2.

We call the quadruplets ⟨S𝐴,S𝐵,SΦ,SΨ⟩ memory partitions, as they indicate
where the channel Φ𝑡

𝐴𝐵 displays memory effects; We write 0 in the place of “Marko-
vian subspaces” and 1 in the place of “non-Markovian subspaces”. For example, the
partition ⟨1, 0, 1, 0⟩ means that Alice’s local channel is non-Markovian, Bob’s local
channel is Markovian, the total channel restricted to SΦ is non-Markovian, whereas
the total channel restricted to SΨ is again Markovian (see Fig. 4.2).

With four subspaces, we have 24 = 16 memory partitions, and our linear opti-
cal model allows us to create all of them. Here, 𝜅𝐴(𝑡) governs the dephasing dy-
namics in S𝐴, 𝜅𝐵(𝑡) in S𝐵 , 𝜅𝐴𝐵(𝑡) in SΦ, and Λ𝐴𝐵(𝑡) in SΨ, and we can control
their monotonicity by engineering the initial frequency correlations given by 𝐾 and
system-environment correlations given by 𝜃𝑗(𝑓𝑗). The two phase functions we need

2Where the bound between the system and environment is drawn is called the “Heisenberg
cut” [120].
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are the zigzag function

𝑧(𝑓, 𝛼) = arcsin
[︁
sin
(︁
𝛼
𝑓 − 𝜇

𝜎

)︁]︁
(4.28)

and the quadratic

𝑞(𝑓, 𝛽) = 𝛽
(︁𝑓 − 𝜇

𝜎

)︁2
. (4.29)

Whenever these phases are implemented, we have initial system-environment cor-
relations, and the respective decoherence functions satisfy |𝜅(0)| < 1. However, if
we also have |𝜅(𝑡)| < |𝜅(0)| ∀𝑡, we obtain proper quantum channels by normalizing
them, �̃�(𝑡) = 𝜅(𝑡)/𝜅(0).

We now assume equal and overlapping interaction times, so we can simply write
𝑡𝐴(𝑡) = 𝑡𝐵(𝑡) = 𝑡 in Eqs. (4.24)–(4.26). We also assume that Δ𝑛𝐴 = Δ𝑛𝐵 =

Δ𝑛 and use the shorthand notations 𝜂 = 𝜇/𝜎 and 𝜏 = 2𝜋𝜎Δ𝑛𝑡. By substituting
the bivariate Gaussian distribution and the phase functions 𝜃𝑗(𝑓𝑗) = 𝑧(𝑓𝑗 , 𝛼𝑗) in
Eqs. (4.24)–(4.26), we get the local decoherence functions

𝜅𝑗(𝜏) = 𝑒𝑖𝜂𝜏

{︃
2

𝜋
𝑒−

1

2
𝜏2

+
2

𝜋

∞∑︁

𝑘=1

(−1)𝑘

1− 4𝑘2

[︁
𝑒−

1

2
(𝜏−2𝑘𝛼𝑗)2 + 𝑒−

1

2
(𝜏+2𝑘𝛼𝑗)2

]︁

− 1

2

[︁
𝑒−

1

2
(𝜏−𝛼𝑗)2 − 𝑒−

1

2
(𝜏+𝛼𝑗)2

]︁}︃
(4.30)

and nonlocal decoherence functions with long, not particularly illuminating forms
(see Publication I). From Eq. (4.30) we see that the local decoherence functions’
magnitudes consist of Gaussian “recoherence peaks” centered at 𝜏 = ±𝛼𝑗 and 𝜏 =

±2𝑘𝛼𝑗 , 𝑘 = 1, 2, 3, .... Hence, we can control the non-Markovian time intervals by
tuning 𝛼𝑗 . The zigzag phase is used, whenever we want to target the corresponding
local subspace S𝑗 with memory effects.

With the quadratic phase functions 𝜃𝑗(𝑓𝑗) = 𝑞(𝑓𝑗 , 𝛽𝑗), we obtain the decoher-
ence functions

𝜅𝑗(𝜏) =

√︃
𝑖

2𝛽𝑗 + 𝑖
𝑒
𝑖
(︀
𝜂𝜏− 1

2(2𝛽𝑗+𝑖)
𝜏2
)︀
, (4.31)

𝜅𝐴𝐵(𝜏) =

√︃
1

1− 4𝛽𝐴𝛽𝐵(1−𝐾2) + 𝑖2(𝛽𝐴 + 𝛽𝐵)
𝑒
𝑖2𝜂𝜏− 1+𝐾+𝑖(𝛽𝐴+𝛽𝐵)(1−𝐾2)

1−4𝛽𝐴𝛽𝐵(1−𝐾2)+𝑖2(𝛽𝐴+𝛽𝐵)
𝜏2

,

(4.32)

Λ𝐴𝐵(𝜏) =

√︃
1

1 + 4𝛽𝐴𝛽𝐵(1−𝐾2) + 𝑖2(𝛽𝐴 − 𝛽𝐵)
𝑒
− 1−𝐾+𝑖(𝛽𝐴−𝛽𝐵)(1−𝐾2)

1+4𝛽𝐴𝛽𝐵(1−𝐾2)+𝑖2(𝛽𝐴−𝛽𝐵)
𝜏2

.

(4.33)
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Table 4.1. Memory partitions, frequency distributions, and phase functions.

Fig. 4.3 panel ⟨SA,SB,SΦ,SΨ⟩ |g(fA, fB)|2 𝜃A(fA) 𝜃B(fB)

(a) ⟨0, 0, 0, 0⟩ 𝐺(0) constant constant
(b) ⟨1, 0, 0, 0⟩ 𝐺(0) 𝑧(𝑓𝐴, 5) constant
(c) ⟨0, 1, 0, 0⟩ 𝐺(0) constant 𝑧(𝑓𝐵, 5)
(d) ⟨0, 0, 1, 0⟩ [𝐺(−1) +𝐺(1)]/2 𝑞(𝑓𝐴, 3) 𝑞(𝑓𝐵, 3)
(e) ⟨0, 0, 0, 1⟩ [𝐺(−1) +𝐺(1)]/2 𝑞(𝑓𝐴, 3) 𝑞(𝑓𝐵,−3)
(f) ⟨1, 1, 0, 0⟩ [𝐺(−1) +𝐺(1)]/2 𝑧(𝑓𝐴, 5) 𝑧(𝑓𝐵,−5)
(g) ⟨1, 0, 1, 0⟩ 𝐺(1) 𝑧(𝑓𝐴, 5) constant
(h) ⟨1, 0, 0, 1⟩ 𝐺(−1) 𝑧(𝑓𝐴, 5) constant
(i) ⟨0, 1, 1, 0⟩ 𝐺(1) constant 𝑧(𝑓𝐵, 5)
(j) ⟨0, 1, 0, 1⟩ 𝐺(−1) constant 𝑧(𝑓𝐵, 5)
(k) ⟨0, 0, 1, 1⟩ [𝐺(−1) +𝐺(1)]/2 𝑞(𝑓𝐴, 3) constant
(l) ⟨1, 1, 1, 0⟩ 𝐺(1) 𝑧(𝑓𝐴, 5) 𝑧(𝑓𝐵,−15)
(m) ⟨1, 1, 0, 1⟩ 𝐺(−1) 𝑧(𝑓𝐴, 5) 𝑧(𝑓𝐵,−15)
(n) ⟨1, 0, 1, 1⟩ 𝐺(0) 𝑧(𝑓𝐴, 5) 𝑞(𝑓𝐵, 3)
(o) ⟨0, 1, 1, 1⟩ 𝐺(0) 𝑞(𝑓𝐴, 3) 𝑧(𝑓𝐵, 5)
(p) ⟨1, 1, 1, 1⟩ 𝐺(0) 𝑧(𝑓𝐴, 5) 𝑧(𝑓𝐵, 5)

We use the quadratic phase functions in two occasions: First, when we want to in-
troduce only nonlocal memory effects and keep the local dynamics Markovian, and
secondly, when the only Markovian subspace is one of the local subspaces. In the
first case, we also use a balanced mixture of frequency-correlated and frequency-
anticorrelated spectrum.

When we remember that 𝐾 = 0 factorizes the nonlocal decoherence functions
and that 𝐾 = ±1 gives Markovian DFSs—the trace-distance dynamics in DFSs is
constant, i.e., monotonic—we have all the tools to construct the 16 linear optical
memory partitions. The memory partitions are listed in Table 4.1 together with the
corresponding frequency distributions and phase functions. A bivariate Gaussian
frequency distribution with the correlation coefficient 𝐾 is written as 𝐺(𝐾). The 𝛼𝑗

and 𝛽𝑗 parameters given in the table are just examples. However, they need to be
selected carefully, as some values might result in non-CP dynamics. The matching
decoherence functions have been plotted in Fig. 4.3.

Few comments regarding some of the partitions are now in order. With ⟨1, 0, 0, 0⟩
and ⟨0, 1, 0, 0⟩, the nonlocal decoherence functions are actually nonmonotonic. How-
ever, as |𝜅𝐵(𝐴)(𝜏)| ≈ 0 when |𝜅𝐴(𝐵)(𝜏)| increases, the revivals of |𝜅𝐴𝐵(𝜏)| and
|Λ𝐴𝐵(𝜏)| are negligibly small—both being products of |𝜅𝐴(𝜏)| and |𝜅𝐵(𝜏)|—and
they can be forced even smaller by increasing 𝛼𝐴(𝐵).

The mixed distribution [𝐺(−1) + 𝐺(1)]/2 provides a nice way to partially pro-
tect all nonlocal coherences and hence the so-called “X-states” [121]. This is the
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Figure 4.3. Absolute values of the decoherence functions given in Table 4.1 as functions of the
scaled (and unitless) interaction time 𝜏 .

case with the memory partitions ⟨0, 0, 1, 0⟩, ⟨0, 0, 0, 1⟩, and ⟨0, 0, 1, 1⟩, but interest-
ingly not with ⟨1, 1, 0, 0⟩. Here, the nonlocal coherences die very quickly due to the
opposite-sign 𝛼𝑗 parameters in the zigzag phases. It is also worth mentioning that
the partitions ⟨0, 0, 1, 0⟩, ⟨0, 0, 0, 1⟩, and ⟨0, 0, 1, 1⟩ are in contrast to conventional
wisdom; Usually, enlarging the system of interest drives the dynamics more towards
the Markovian regime [24; 122; 123].

Finally, ⟨1, 0, 1, 1⟩ and ⟨0, 1, 1, 1⟩ could, in fact, be achieved with constant phases
instead of the quadratic phases. However, as the quadratic phases prolong the local
coherence times, the nonlocal recoherence peaks become more distinct.

The number of different decoherence functions and memory partitions grows
rapidly with the number of qubits. If there are no uncorrelated frequency pairs,
the dephasing dynamics of an 𝑁 -qubit system is described by 𝑀 = (3𝑁 − 1)/2

independent decoherence functions, which means 2𝑀 different memory partitions.
The factor of 3𝑁 − 1 comes from the fact that the terms 𝜃𝑗(𝑓𝑗) + 2𝜋𝑓𝑗Δ𝑛𝑗𝑡𝑗(𝑡)

in the decoherence functions can be multiplied by -1, 0, or 1, but not all by 0 [cf.
Eqs. (4.24)–(4.26)]. We divide 3𝑁 − 1 by two to account for complex conjugates;
𝜅(𝑡) and 𝜅(𝑡)* are essentially the same decoherence function.

Memory partitions have both fundamental and information technological impli-
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cations. With the memory partition ⟨𝑗1, 𝑗2, ..., 𝑗𝑀 ⟩, the fraction
∑︀𝑀

𝑘=1 𝑗𝑘/𝑀 quanti-
fies how common information backflow is in a multipartite open quantum system. In
addition, the number of decoherence functions exceeding the dimension of the open
system’s Hilbert space at 𝑑𝑆 > 4 makes the memory partitions a tempting alterna-
tive to convey information with. With an 𝑁 -qubit system, one could encode 𝑀 bits
of information to the system’s dephasing dynamics by selecting the monotonic (0)
and nonmonotonic (1) decoherence functions. Note that this would not violate the
Holevo’s theorem of 𝑁 qubits transmitting at most 𝑁 bits of information [70], since
we would be dealing with global 𝑁 -qubit dynamics instead of the system’s state at
some single point of (interaction) time. Accordingly, the decoding protocol would
require at least two measurement points, were it not possible to decode a snapshot of
the system’s evolution3. However, even with a single measurement point, the decod-
ing protocol would quickly become quite laborious; From Chapter 2, we remember
that it takes 6𝑁 measurements to determine the state of an 𝑁 -qubit system. Fur-
thermore, it remains to be shown whether a generic strategy of creating—or even
simulating—any 𝑁 -qubit memory partition exists.

4.2.2 Reverse decoherence and hidden nonlocality

Decoherence degrades quantum to classical by destroying the coherences of an open
quantum system, but is it possible to go to the other direction and have “reverse
decoherence”, i.e., start from a fully classical state and reach maximum coherences
at some later point of time? With proper phase functions, yes.

Maximum coherences mean a pure state, and maximum coherences can be ob-
tained with unit decoherence functions. The decoherence functions (4.24)–(4.26)
become 1 at some point of time 𝑡 = 𝑇 , when

𝜃𝑗(𝑓𝑗) = −2𝜋𝑓𝑗Δ𝑛𝑗𝑡𝑗(𝑇 ). (4.34)

At 𝑡 = 𝑇 , all the phases overlap and there is nothing to be averaged over. Different
phase functions and the corresponding biphoton decoherence functions are plotted in
Fig. 4.4, when Δ𝑛𝐴𝑡𝐴(𝑡) = Δ𝑛𝐵𝑡𝐵(𝑡) and we have uncorrelated, yet equal Gaus-
sian frequency distributions.

It is important to note a few things. First, reverse decoherence cannot be de-
scribed by a CPTP map. Alternatively, the domain of initial states should be re-
stricted. Secondly, phase functions given by Eq. (4.34) reverse (pure) decoherence
with any number of photons—purifying any 𝑁 -qubit state and hence going beyond
DFSs. However, if the system-environment interaction proceeds after 𝑡 = 𝑇 , we
have “normal” decoherence and the coherences eventually disappear (see Fig. 4.4).
And finally, reversing decoherence like this highly depends on the type of noise and

3We will deal with a special case of such snapshot measurements in Chapter 6.
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Figure 4.4. Reverse decoherence. The steeper the phase functions, the further in time we can
move the instant of maximum coherences. For simplicity, we have only considered two qubits,
overlapping interaction times, and the bivariate Gaussian with 𝐾 = 0.

its duration being known and the initial system-environment correlations being fully
accessible. These are extremely heavy assumptions, which means that, for now, our
linear optical system serves as a proof-of-principle model—nevertheless providing
an intriguing and effective way to fight decoherence with decoherence itself.

In certain cases, reverse decoherence can also be understood in terms of hid-
den nonlocality. Hidden nonlocality means initially undetectable entanglement that
can be activated by local filtering [124; 125; 126; 127]. This is exactly what hap-
pens, when a hybrid-entangled initial state is subjected to local dephasing. That
is, when we have, e.g., 𝐶𝐻𝑉 = 𝐶𝑉 𝐻 = 1/

√
2 and 𝑡𝑗 ≫ 0, and the frequency

spectra are not perfectly correlated; The open system, initially in the classical state
diag(0, 1/2, 1/2, 0), becomes the Bell state |Ψ+⟩ after local dephasing of the dura-
tions 𝑡𝑗 . Note that our “filters”, i.e., the local unitaries 𝑈𝑗(𝑡), do not actually filter
anything out.

We tested reverse decoherence by purifying all the Bell states with dephasing.
These experiments will be described shortly, as they can be applied in noisy quantum
teleportation.

4.3 Noisy quantum teleportation

We now come to one of the most fascinating applications of quantum theory, and
in particular, quantum entanglement: quantum teleportation. The basic teleportation
protocol goes as follows [73]. Alice has a qubit in some unknown state |𝜑⟩ = 𝛼|0⟩+
𝛽|1⟩, which she wishes to teleport to Bob. In view of this task, Alice and Bob have
shared a bipartite auxiliary state, which is one of the maximally entangled Bell states.
Alice performs a Bell-state measurement (BSM) on the state being teleported and her
part of the auxiliary state. As a result, the measured pair becomes entangled, erasing
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the initial entanglement between Alice and Bob. Alice reports which Bell state she
obtained to Bob, who operates with a matching unitary on his qubit. Finally, the state
of Bob’s qubit becomes |𝜑⟩.

The basic protocol assumes ideal conditions, i.e., no noise. In this Section, we
consider a more realistic scenario: quantum teleportation with the auxiliary state
experiencing dephasing noise. An obvious strategy for Alice and Bob would be to
first prepare the auxiliary state appropriately (i.e., hide its nonlocality with proper
phase functions), then fully purify it with reverse decoherence, and finally proceed
with the basic protocol when they are in possession of a pure Bell state. However,
the auxiliary state’s nonlocality need not be fully activated for quantum teleportation
to work. That is, there can still be noise on Bob’s side after Alice’s BSM. Next, we
will go through the steps of this reordered protocol.

4.3.1 Theoretical description

The state to be teleported is |𝜑⟩ = 𝛼|𝐻⟩ + 𝛽|𝑉 ⟩ and the auxiliary state shared
by Alice and Bob is given by Eq. (4.7) with the polarization amplitudes 𝐶𝐻𝑉 =

𝐶𝑉 𝐻 = 1/
√
2, decoherence functions (4.24)–(4.26), and phase functions 𝜃𝑗(𝑓𝑗) =

−2𝜋𝑓𝑗Δ𝑛𝑗𝑡𝑗 . We remind that 𝑡𝐴(𝐵) is the total interaction time on Alice’s (Bob’s)
side. The initial bipartite polarization state reads

𝜌𝐴𝐵(0) =
1

2

⎛
⎜⎜⎝

0 0 0 0

0 1 Λ𝐴𝐵(0) 0

0 Λ𝐴𝐵(0)
* 1 0

0 0 0 0

⎞
⎟⎟⎠ , (4.35)

where Λ𝐴𝐵(𝑡) =
∫︀
𝑑𝑓𝐴𝑑𝑓𝐵|𝑔(𝑓𝐴, 𝑓𝐵)|2 exp{𝑖[2𝜋𝑓𝐴Δ𝑛𝐴(𝑡𝐴(𝑡)− 𝑡𝐴)− 2𝜋𝑓𝐵Δ𝑛𝐵

(𝑡𝐵(𝑡) − 𝑡𝐵)]}. With 𝑡𝑗 ≫ 0 and the reasonable assumption that the frequencies
are not perfectly correlated4, we obtain the approximate, (seemingly) local form
𝜌𝐴𝐵(0) ≈ (|𝐻𝑉 ⟩⟨𝐻𝑉 |+ |𝑉 𝐻⟩⟨𝑉 𝐻|)/2 [see Fig. 4.5(a)].

Alice subjects her auxiliary photon to polarization dephasing by sending it through
a birefringent crystal with the birefringence Δ𝑛𝐴 and length 𝑐𝑡𝐴 5 [Fig. 4.5(b)]. Be-
cause we still have 𝑡𝐵 ≫ 0, nonlocality in the auxiliary state 𝜌𝐴𝐵(𝑡𝐴) ≈ (|𝐻𝑉 ⟩⟨𝐻𝑉 |
+|𝑉 𝐻⟩⟨𝑉 𝐻|)/2 is still hidden. Now, the total polarization-frequency state of the
three photons is, omitting the frequency of the photon whose polarization state is
being teleported,

|Ψ3(𝑡𝐴)⟩ =
1√
2
|𝜑⟩
(︀
|𝐻𝑉 ⟩|𝜉𝐻𝑉 (𝑡𝐴)⟩+ |𝑉 𝐻⟩|𝜉𝑉 𝐻(𝑡𝐴)⟩

)︀
, (4.36)

4Here, we make no other assumptions regarding the frequency distribution.
5𝑐 is the speed of light in vacuum.
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Figure 4.5. The stages of noisy quantum teleportation. 𝒮 = the open system consisting of Alice
and Bob’s polarization qubits, 𝑆𝐴 and 𝑆𝐵 . 𝑆𝑇 = the system carrying the state being teleported,
|𝜑⟩. ℰ = the environment consisting of Alice and Bob’s frequencies, 𝐸𝐴 and 𝐸𝐵 . 𝒜 (ℬ) = Alice’s
(Bob’s) photon. The green ovals represent (hybrid) entanglement. (a) Alice and Bob have prepared
a hybrid-entangled total state. Their open system is in the classical state 𝜌𝐴𝐵(0). (b) Alice sub-
jects her photon to dephasing noise, making the bipartite polarization state 𝜌𝐴𝐵(𝑡𝐴), which is still
classical. (c) Alice performs BSM on her photons—converting the hybrid entanglement into entan-
glement between 𝑆𝑇 and 𝑆𝐴, and 𝑆𝐵 and 𝐸𝐵—and Bob operates with a matching unitary 𝑈Bell on
his local polarization state, 𝜌𝐵(𝑡𝐴). (d) Bob converts the 𝑆𝐵–𝐸𝐵 entanglement into coherences by
subjecting his photon to dephasing noise and obtains the state |𝜑⟩.

where |𝜉𝜆𝐴𝜆𝐵
(𝑡𝐴)⟩ =

∫︀
𝑑𝑓𝐴𝑑𝑓𝐵𝑔(𝑓𝐴, 𝑓𝐵) exp{𝑖[𝜃𝜆𝐴

(𝑓𝐴)+2𝜋𝑓𝐴𝑛𝜆𝐴
𝑡𝐴+𝜃𝜆𝐵

(𝑓𝐵)]}
|𝑓𝐴𝑓𝐵⟩. Note that, in Eq. (4.36), we have written the state being teleported first, then
Alice’s auxiliary qubit, and finally Bob’s auxiliary qubit. Keeping the same order but
having all the Bell states on Alice’s side, |Ψ3(𝑡𝐴)⟩ can be written as

|Ψ3(𝑡𝐴)⟩ =
1

2
|Φ+⟩

[︁
𝛽|𝐻⟩|𝜉𝑉 𝐻(𝑡𝐴)⟩+ 𝛼|𝑉 ⟩|𝜉𝐻𝑉 (𝑡𝐴)⟩

]︁

+
1

2
|Φ−⟩

[︁
− 𝛽|𝐻⟩|𝜉𝑉 𝐻(𝑡𝐴)⟩+ 𝛼|𝑉 ⟩|𝜉𝐻𝑉 (𝑡𝐴)⟩

]︁

+
1

2
|Ψ+⟩

[︁
𝛼|𝐻⟩|𝜉𝑉 𝐻(𝑡𝐴)⟩+ 𝛽|𝑉 ⟩|𝜉𝐻𝑉 (𝑡𝐴)⟩

]︁

+
1

2
|Ψ−⟩

[︁
𝛼|𝐻⟩|𝜉𝑉 𝐻(𝑡𝐴)⟩ − 𝛽|𝑉 ⟩|𝜉𝐻𝑉 (𝑡𝐴)⟩

]︁
.

(4.37)

Alice performs BSM on her pair of qubits and classically communicates her
result |Bell⟩ to Bob, who applies a matching unitary operation 𝑈Bell on his qubit
𝜌𝐵(𝑡𝐴) = tr𝐴[𝜌𝐴𝐵(𝑡𝐴)]. The unitaries are

𝑈Bell =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜎𝑥 for |Bell⟩ = |Φ+⟩,
𝑖𝜎𝑦 for |Bell⟩ = |Φ−⟩,
1 for |Bell⟩ = |Ψ+⟩,
𝜎𝑧 for |Bell⟩ = |Ψ−⟩.

(4.38)

Now, Bob’s polarization state is [Fig. 4.5(c)]

𝑈Bell𝜌𝐵(𝑡𝐴)𝑈
†
Bell =

(︂
|𝛼|2 𝛼𝛽*Λ𝐴𝐵(𝑡𝐴)

𝛼*𝛽Λ𝐴𝐵(𝑡𝐴)
* |𝛽|2

)︂
. (4.39)
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Bob purifies the state (4.39) by guiding his photon through a birefringent crystal with
the birefringence Δ𝑛𝐵 and length 𝑐𝑡𝐵 . As Λ𝐴𝐵(𝑡𝐴 + 𝑡𝐵) = 1, Bob’s polarization
state finally becomes |𝜑⟩ [Fig. 4.5(d)].

Here, we made the harmless assumptions that 0 = 𝑡𝑖,𝐴 < 𝑡𝑓,𝐴 = 𝑡𝑖,𝐵 , i.e., the
protocol starts simultaneously with Alice’s interaction, and Bob’s interaction starts
immediately as Alice’s ends. Surely, time passes in-between, but free evolution does
not affect the polarization dynamics. Hence, in favor of simpler notation, we disre-
garded the time intervals of free evolution.

Interestingly, the biphoton polarization shared by Alice and Bob is never entan-
gled, which is commonly required for quantum teleportation to work. This might
suggest that quantum teleportation is possible with fully local resources. However,
this is not the case, as the nonlocality of the biphoton polarization is actually just
hidden—manifesting as hybrid polarization-frequency entanglement.

4.3.2 Experimental setups

In the experiments, we considered Bob’s dephasing appearing both before and after
Alice’s BSM, separately. In the first case, we only purified the auxiliary Bell state(s).
This was achieved by slightly modifying the experimental setup of the latter case,
which is shown in Fig. 4.6 and goes as follows.

A combination of sandwich-like BBO+HWP+BBO (C-BBO) and BBO crystals
is pumped by a femtosecond ultraviolet laser (390 nm, 76 MHz). The auxiliary
photons are produced in C-BBO and sent to Alice and Bob. Most of the photons just
impinge the C-BBO combination and continue to the BBO crystal, where a second
SPDC takes place. Again, most of the photons just go through the crystal, but out
of the produced photon pairs one carries the polarization state to be teleported—
prepared by HWP2 and QWP2—and the other is used in coincidence counting.

The auxiliary photons’ frequency modulations are composed of gratings (1200
l/mm), plano-convex cylindrical lenses (PCC lenses), beam displacers (BDs), HWPs
at 45∘, and SLMs. Because the SLMs work in spatial domain, the gratings and PCC
lenses are used to convert frequency to spatial degrees of freedom. Furthermore, be-
cause the SLMs are effective for horizontal polarization only [i.e., 𝜃𝐻,𝑗(𝑓𝑗) = 𝜃𝑗(𝑓𝑗),
𝜃𝑉,𝑗(𝑓𝑗) = 0], the BDs and HWPs are used to convert polarization to path (with hor-
izontal polarization). The phase functions are then imprinted on the photons with
SLMs that consist of 150 pixels, covering the photons’ full width at half maximum
(FWHM, approximately 3.5 nm). The mean wavelengths (𝜆0 = 780 nm) are aligned
to the middle of the SLM holograms.

In Fig. 4.6, example holograms are shown next to Alice and Bob’s SLMs—
Alice’s hologram matching with approximately 1.5 mm of yttrium orthovanadate
(YVO4) and Bob’s with 2 m of polarization maintaining single-mode fiber (PM
fiber). The pixels in the middle of the holograms are used to imprint the phase func-
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Figure 4.6. The experimental setups of noisy quantum teleportation and reverse decoherence. The
setup of teleportation is composed of four parts: the photon sources, Alice and Bob’s frequency
modulations, and BSM. The sources include both a polarization entanglement source and a single-
photon source. The auxiliary photons are distributed to Alice and Bob, whose SLMs are accompa-
nied by example holograms in the picture. After the frequency modulations, Alice’s auxiliary photon
and one from the single-photon source combine in BSM. Bell-state purification with reverse deco-
herence is achieved by blocking the pump laser between C-BBO (sandwich-like BBO+HWP+BBO
combination) and BBO (beta-barium borate) and inserting QWP1 (quarter-wave plate) in the setup.
In this version of the experiment, we also use a PM fiber (polarization maintaining single-mode
fiber) on Bob’s side, emulating a more realistic scenario. HWP = half-wave plate, PCC lens = plano-
convex cylindrical lens, BD = beam displacer, BC = birefringent crystal, MRP = motor rotating plate,
PBS = polarizing beam splitter, UO = unitary operation, SM fiber = single-mode fiber, FC = fiber
collimator.

tions. The other pixels resemble blazed grating and diffract excess photons to other
angles. After the SLMs, the paths are recombined in the second HWPs and BDs,
while the spatial degrees of freedom are converted back to frequency in the second
PCC lenses and gratings.

The bipartite frequency modulation is followed by dephasing on Alice’s side,
BSM, and dephasing on Bob’ side. Quartz or PM fiber is used on Bob’s side, while
YVO4 is used on Alice’s side; YVO4 has a larger birefringence than quartz, making
the thickness of YVO4 thinner than that of quartz with the same interaction time,
therefore easing BSM. The interaction time is controlled by adjusting the thickness
of the crystals.

The BSM is carried out with HWP1, HWP3, HWP4, and three polarizing beam
splitters (PBSs). When we measure the Bell states |Φ±⟩, HWP1 is set to 0∘, and
HWP3 and HWP4 to ±22.5∘. With |Ψ±⟩, HWP1 is set to 45∘, and HWP3 and
HWP4 to ±22.5∘. To make the photonic identity better, we use IFs of FWHM = 2
nm in BSM. The unitary operation is composed of two HWPs that change according
to Alice’s Bell state. Bob uses motor rotating plates and a PBS to perform state
tomography on his photons and receive the teleported state.
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Figure 4.7. The experimental results of reverse decoherence. (a)–(e) Fidelities of the states under
reverse decoherence as functions of the effective path difference in units of 𝜆0, with the target Bell
states shown in upper left corners. The birefringent medium is quartz in (a)–(d) and a PM fiber in
(e). The solid curves are the theoretical predictions, and the dots correspond to measurement data.
The error bars, calculated by a Monte Carlo method, are of the same size as the dots. (f), (g) Real
values of (f) the initial and (g) purified density matrix elements, corresponding to the circled data
points in (e).

The auxiliary Bell state can be fully purified with noise appearing on Bob’s side
before the BSM. We modify the teleportation setup by blocking the pump laser before
the BBO, inserting QWP1 on Alice’s path, and setting HWP3 and HWP4 to 0∘.

4.3.3 Experimental results

Reverse decoherence

First, we considered the more trivial version of the protocol, i.e., having Bob’s de-
phasing before the BSM. Here, we purified all the Bell states with dephasing—thus
verifying reverse decoherence—but did not proceed with the rest of the teleportation
protocol. These results are shown in Fig. 4.7, where we have plotted the fidelities
ℱ(𝑡) = ⟨𝜓|𝜌𝐴𝐵(𝑡)|𝜓⟩ with |𝜓⟩ denoting the target Bell state. While trace distance
quantifies the difference of states, fidelity quantifies their similarity, and it is given
by [128]

ℱ(𝜌1, 𝜌2) =
(︁

tr
√︁√

𝜌1𝜌2
√
𝜌1

)︁2
(4.40)

for two arbitrary states. With one them being pure, fidelity reduces to ℱ(|𝜓⟩⟨𝜓|, 𝜌) =
⟨𝜓|𝜌|𝜓⟩.

In Figs. 4.7(a)–(d), we used the phase function 𝜃𝐵(𝑓𝐵) = −2𝜋𝑓𝐵/𝑐 · 429𝜆0 to
reverse decoherence produced by quartz on Bob’s side only. In all cases, maximum
purity was achieved at approximately 400𝜆0. The mismatch with the factor of 429 in
𝜃𝐵(𝑓𝐵) is due to dispersion in quartz that accelerates dephasing. Moreover, the ini-
tial disagreements between theory and experiment may be due to a couple of factors.
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First, a wider IF on Bob’s side (3 nm) may have let decohered photons without the
SLM-correction through. Secondly, the quartz plates may not have been perfectly
aligned. Still, the experimental results match quite well with the theory. The theo-
retical predictions were evaluated numerically by using the SLM-pixel values, fitted
frequency spectra, and Sellmeier equation of quartz instead of constant birefringence.

The theory and experimental data overlap quite nicely in Fig. 4.7(e), too. Here,
we purified the Bell state |Ψ+⟩ in a 2 m PM fiber, gradually changing the slope of
the phase function. Because there were no quartz plates to be aligned, the theory
and experiment match even better than in Figs. 4.7(a)–(d). Maximum purity was
achieved with 𝜃𝐵(𝑓𝐵) = −2𝜋𝑓𝐵/𝑐 ·1063𝜆0. The amount of dephasing, 1080𝜆0, was
used as a fit parameter. Because the Sellmeier equation of the fiber was not known,
dispersion was not taken into account. This explains the small difference between
the maxima of theory and experiment. Note that, while the phase function’s slope is
greater than the amount of dephasing in Figs. 4.7(a)–(d) (429 > 400), here it is the
opposite (1063 < 1080), suggesting the opposite effect of dispersion. However, this
is not the case. Actually, this is explained by the opposite quantities being fixed in
Figs. 4.7(a)–(d) and Fig. 4.7(e), i.e., the phase functions and amount of dephasing,
respectively. Dispersion still accelerates dephasing in Fig. 4.7(e).

To further visualize reverse decoherence, we have plotted the real values of the
initial and time-evolved density matrix elements in Figs. 4.7(f) and (g), respectively.
The imaginary components were practically zero.

Teleportation

With Bob’s dephasing appearing after the BSM, we teleported the states |+⟩, |−⟩,
|𝑅⟩, and |𝐿⟩ with different noise configurations: dephasing on Alice’s side only
(400𝜆0 of YVO4), dephasing on Bob’s side only (411𝜆0 of quartz), combination of
these two, and either using or not using corresponding phase functions. Whenever
SLMs were used, the phase functions were set to 𝜃𝐴(𝑓𝐴) = −2𝜋𝑓𝐴/𝑐 · 446𝜆0 and
𝜃𝐵(𝑓𝐵) = −2𝜋𝑓𝐵/𝑐 · 429𝜆0.

The fidelities of the final states 𝜌𝑓 with respect to the input states 𝜌𝑖, given by
Eq. (4.40), are presented in Fig. 4.8. The red and blue bars correspond to Alice
and Bob’s noise configurations, respectively, while the purple bars indicate that both
configurations have been used in the same setup. The green bars represent the ver-
sions of each preceding bar on their left, where SLMs and phase functions were used
to reverse decoherence. Clearly, we achieve high fidelities, in all cases well above
the classical average fidelity limit, 2/3 [129] (black, dotted line), and approximately
equal to the reference fidelities given by the orange lines. The reference fidelities
were obtained with the basic, noiseless protocol.

These results, though of proof-of-concept nature, dispel two common require-
ments for quantum teleportation to work: (1) noise being absent, and (2) the re-
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Figure 4.8. Fidelities of the teleported states. Red, vertical lines: dephasing on Alice’s side only.
Blue, horizontal lines: dephasing on Bob’s side only. Purple grid: dephasing on both sides. Green:
the same noise configuration as with the preceding bar on the left but with the SLMs and phase
functions reversing decoherence. Different panels correspond to different states being teleported—
given at the bottom of the picture—and the orange lines on top of each panel give the reference
fidelities with no SLMs nor dephasing. The black dotted line is the classical average fidelity limit,
2/3. The error bars, calculated by a Monte Carlo method, are mainly due to the counting statistics.

source qubits being entangled. Strictly speaking, Alice and Bob do share a fully
entangled polarization state in our setup. This is right before the polarization en-
tanglement is converted to hybrid entanglement with SLMs. However, the initial
polarization entanglement in our case is just a result of SPDC and not generally re-
quired for our protocol to work. For example, in Chapter 5, we will see that the same
auxiliary state could also be prepared by guiding orthogonally polarized photons
from independent sources into a beam splitter with distinct delay—corresponding
to 𝜃𝑗(𝑓𝑗)—and post-selecting the coincident photons. Here, the (coincident) polar-
ization qubits shared by Alice and Bob would never be entangled. However, this
method is more uncontrollable due to the increased randomness with two single-
photon sources, which is why we chose to use SPDC and SLMs. Furthermore, one
can control both 𝜃𝐴(𝑓𝐴) and 𝜃𝐵(𝑓𝐵) more precisely with SLMs, and they leave only
dephasing time-parameterized, which corresponds better to the open-system picture.
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5 Open system interference

The environment of the polarization degree of freedom can be expanded by taking
other degrees of freedom into consideration besides frequency. In this Chapter, we
take the photons’ path and the discrete-time dynamics occurring at beam splitters
into account—introducing the concept of open system interference. Open system in-
terferometers serve three purposes: First, they highlight the fact that, in order for in-
terference to occur at beam splitters, it is not enough for the photons’ several degrees
of freedom to be indistinguishable; Their correlations need to be identical as well.
Secondly, open system interferometers provide a new way of reservoir engineering,
resulting in rich features of open-system dynamics. And finally, open system inter-
ferometers give rise to alternative applications based on dephasing, not hindered by
it.

5.1 Open system Mach-Zehnder interference
In Chapter 2, we saw that 𝐻𝐻|𝜓⟩ = |𝜓⟩, i.e., a photon entering a MZ interferometer
consisting of two beam splitters ends up on its initial path with certainty. In other
words, we have perfect interference. However, it was implicitly assumed that the
two paths between the beam splitters are identical. In this Section, we consider a
more general case, where the paths can be of different lengths and the polarization
(arbitrary, but initially pure) can interact with frequency for different durations.

5.1.1 The model

The state of a single photon entering the first beam splitter of a MZ interferometer is

|𝜓⟩ = (𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)
∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩|0⟩, (5.1)

where |0⟩ denotes the photon’s path (see Fig. 5.1). We write the corresponding path
state after the first beam splitter as |0′⟩, after the second beam splitter as |0′′⟩, and
similarly for the other path. Going through the first beam splitter, we get |0⟩ ↦→
(|0′⟩ + |1′⟩)/

√
2. Then, having free evolution and polarization dephasing for the

respective durations 𝑡𝑗′𝑓 and 𝑡𝑗′ on paths 𝑗′ = 0′, 1′, the state’s evolution is described
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Figure 5.1. A schematic picture of the open system MZ interferometer.

by the unitary
𝑈0′ ⊗ |0′⟩⟨0′|+ 𝑈1′ ⊗ |1′⟩⟨1′|, (5.2)

where 𝑈𝑗′ |𝜆⟩|𝑓⟩ = 𝑒𝑖[2𝜋𝑓(𝑡𝑗′𝑓+𝑛𝜆𝑡𝑗′ )]|𝜆⟩|𝑓⟩, 𝜆 = 𝐻,𝑉 . For now, for the sake of
simpler notation, we only consider the total durations of free evolution and dephasing
and not the freely running laboratory time. At this stage, the total state of the photon
is

|𝜓′⟩ = 1√
2

[︁
𝑈0′(𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)

∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩|0′⟩

𝑈1′(𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)
∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩|1′⟩

]︁
.

(5.3)

Again, partial tracing over environment (frequency and path) gives us the state
of the open system (polarization),

𝜌′ =

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 (𝜅0′ + 𝜅1′)/2

𝐶*𝐻𝐶𝑉 (𝜅
*
0′ + 𝜅*1′)/2 |𝐶𝑉 |2

)︂
. (5.4)

This is just a balanced mixture of the two pathwise states

𝜌𝑗′ =

(︂ |𝐶𝐻 |2 𝐶𝐻𝐶
*
𝑉 𝜅𝑗′

𝐶*𝐻𝐶𝑉 𝜅
*
𝑗′ |𝐶𝑉 |2

)︂
, (5.5)

where 𝜅𝑗′ =
∫︀
𝑑𝑓 |𝑔(𝑓)|2𝑒𝑖2𝜋𝑓Δ𝑛𝑡𝑗′ . That is, if we measure the photon’s path after

the first beam splitter and get the result 𝑗′, the polarization is in the state 𝜌𝑗′ , but if
we ignore the path, the state is 𝜌′ = (𝜌0′ + 𝜌1′)/2. Here, the projection operator
corresponding to measuring path 𝑗′ is 1 ⊗ 1 ⊗ |𝑗′⟩⟨𝑗′|, and the probability of both
paths is 1/2. In an actual experiment, measuring the photon’s path and the pathwise
polarization state could simply mean performing state tomography on the desired
path and omitting photons on the other path.

Depending on the frequency distribution, the pathwise states can undergo Marko-
vian dephasing while the total state experiences non-Markovian memory effects. If
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Figure 5.2. Magnitudes of the decoherence functions inside the interferometer as functions of po-
sition. 𝜇 = 𝑐/(780 nm), 𝜎 = 5.68 × 1011 Hz, 𝑛𝐻 = 1.553, 𝑛𝑉 = 1.544, 𝑥0′ = 𝑐𝑡0′ = 4 mm, and
𝑥1′ = 𝑐𝑡1′ = 6 mm.

the spectrum is Gaussian and there are time intervals with nonoverlapping interaction
(e.g., the photon travels across free air on path 0′ but through quartz on path 1′), 𝜌′

undergoes oscillating dephasing dynamics (and therefore oscillating trace-distance
dynamics of, e.g., the initial state pair |±⟩) with the spectrum’s mean frequency 𝜇;
On one of the paths, the polarization state is constant. On the other, the state keeps
spiraling towards the Bloch ball’s 𝑧-axis, periodically moving away and approaching
its constant counterpart. Hence, the average dynamics oscillates. In Fig. 5.2, we
have plotted such example dynamics. Note that the dynamics greatly resembles that
caused by a double-peaked Gaussian (see Fig. 3.3). With the double-peaked Gaus-
sian, the peaks’ difference 𝜇1−𝜇2 gives the oscillation frequency, which means that
it is easier to obtain much greater frequencies with the current setup.

Letting the photon take both paths between the beam splitters and having similar
unitary dynamics as inside the interferometer, we get the total state

|𝜓′′⟩ = 1

2

[︁
𝑈0′′(𝑈0′ + 𝑈1′)(𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)

∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩|0′′⟩

𝑈1′′(𝑈0′ − 𝑈1′)(𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)
∫︁
𝑑𝑓𝑔(𝑓)|𝑓⟩|1′′⟩

]︁
.

(5.6)

One could continue chaining beam splitters like this—creating an exotic collision
model that mixes continuous-time and discrete-time dynamics—but this is where we
stop. We are now in the position to answer the two main questions of this Section:
How does dephasing affect interference, i.e., the final path probabilities? How does
interference, in turn, affect the following dephasing?

The probability 𝑃𝑗′′ to detect photon on path 𝑗′′ is obtained as the trace of
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|𝜓′′⟩⟨𝜓′′| projected on path |𝑗′′⟩,

𝑃𝑗′′ = tr
[︀
1⊗ 1⊗ |𝑗′′⟩⟨𝑗′′|𝜓′′⟩⟨𝜓′′|1⊗ 1⊗ |𝑗′′⟩⟨𝑗′′|

]︀
(5.7)

= ⟨𝜓′′|1⊗ 1⊗ |𝑗′′⟩⟨𝑗′′|𝜓′′⟩ (5.8)

=
2 + (−1)𝑗

′′ |𝐶𝐻 |2𝜅𝐻 + (−1)𝑗
′′ |𝐶𝑉 |2𝜅𝑉

4
. (5.9)

Here, assuming Gaussianity,

𝜅𝜆 = 2𝑒−
1

2
(2𝜋𝜎)2(Δ𝑡′𝑓+𝑛𝜆Δ𝑡′)2 cos[2𝜋𝜇(Δ𝑡′𝑓 + 𝑛𝜆Δ𝑡

′)], (5.10)

where 𝜆 = 𝐻,𝑉 and Δ𝑡′(𝑓) := 𝑡0′(𝑓) − 𝑡1′(𝑓). Since unitaries preserve trace, the
ongoing dynamics on paths 𝑗′′ has no effect here.

From Eqs. (5.9) and (5.10) we see that the path probability depends on the tem-
poral overlap of all the polarization components at the second beam splitter, the dif-
ference in interaction times having almost the same role as the delay Δ𝑡′𝑓 . With equal
interaction times 𝑡0′ = 𝑡1′ , the path probability would reduce to

𝑃𝑗′′(Δ𝑡
′
𝑓 ) =

1

2

[︁
1 + (−1)𝑗

′′
𝑒−

1

2
(2𝜋𝜎Δ𝑡′𝑓 )

2

cos(2𝜋𝜇Δ𝑡′𝑓 )
]︁
. (5.11)

However, as horizontal and vertical polarization components act differently under
dephasing, we can control 𝑃𝑗′′ in a much more versatile manner by adjusting Δ𝑡′,
too. As before, the interaction times can be controlled by changing the thickness of
birefringent crystals between the beam splitters, whereas the duration of free evolu-
tion can be controlled with mirrors.

Let us proceed with the open-system dynamics following the MZ interferome-
ter. The total dynamics obtained by not measuring the photon’s final path is sim-
ilar to what we already described and therefore not particularly interesting—if the
interaction times do not overlap, we may observe oscillating coherences. On the
contrary, the pathwise dynamics turn out to be quite fascinating. Because the inter-
actions on paths 0′′ and 1′′ do not affect each other, we can simplify the analysis
by writing 𝑈0′′ = 𝑈1′′ = 𝑈 ′′(𝑡), where we have the familiar action 𝑈 ′′(𝑡)|𝜆⟩|𝑓⟩ =

𝑒𝑖2𝜋𝑓𝑛𝜆𝑡|𝜆⟩|𝑓⟩. Here, we have omitted free evolution. It would not affect the open-
system dynamics anymore. 𝑡 = 0 is the point of time that the photon exits the second
beam splitter and enters another birefringent crystal. The earlier time intervals may
be interpreted as a way of introducing initial correlations, 𝑡𝑗′𝑓 being responsible
for interenvironmental (frequency-path) correlations and 𝑡𝑗′ for system-environment
correlations.

Operating with 1⊗1⊗|𝑗′′⟩⟨𝑗′′| on Eq. (5.6), taking partial trace, and normalizing,
we get the open-system state on path 𝑗′′ = 0′′, 1′′,

𝜌𝑗′′(𝑡) =
1

4𝑃𝑗′′

(︂
|𝐶𝐻 |2

[︀
2 + (−1)𝑗

′′
𝜅𝐻
]︀

𝐶𝐻𝐶
*
𝑉 𝜅𝑗′′(𝑡)

𝐶*𝐻𝐶𝑉 𝜅𝑗′′(𝑡)
* |𝐶𝑉 |2

[︀
2 + (−1)𝑗

′′
𝜅𝑉
]︀
)︂
. (5.12)
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Figure 5.3. Magnitudes of the decoherence functions outside the interferometer as functions of
position. Here, dephasing is implemented on the entire 𝑥-axis. 𝜇 = 𝑐/(780 nm), 𝜎 = 5.68× 1011 Hz,
𝑛𝐻 = 1.553, 𝑛𝑉 = 1.544, 𝑥0′ = 4 mm, 𝑥1′ = 6 mm, and Δ𝑡′𝑓 = 0.

Here,

𝜅𝑗′′(𝑡) =𝜅
(︀
Δ𝑛(𝑡+ 𝑡0′)

)︀
+ 𝜅
(︀
Δ𝑛(𝑡+ 𝑡1′)

)︀

+ (−1)𝑗
′′
𝜅(Δ𝑛𝑡+ 𝑛𝐻𝑡0′ − 𝑛𝑉 𝑡1′ +Δ𝑡′𝑓 )

+ (−1)𝑗
′′
𝜅(Δ𝑛𝑡− 𝑛𝑉 𝑡0′ + 𝑛𝐻𝑡1′ −Δ𝑡′𝑓 ),

(5.13)

where 𝜅(𝜏) is the familiar single-photon decoherence function, 𝜅(𝜏) = exp[𝑖2𝜋𝜇𝜏−
1
2(2𝜋𝜎𝜏)

2]. The new decoherence function 𝜅𝑗′′(𝑡)/(4𝑃𝑗′′) is a combination of the
basic decoherence functions with different shifts, describing how the different polar-
ization pairs 𝐻 + 𝑉 combine in the second beam splitter and evolve afterwards. In
the first (second) term, we have 𝐻 and 𝑉 from path 0′ (1′). In the third (fourth) term,
we have 𝐻 (𝑉 ) from path 0′ and 𝑉 (𝐻) from path 1′. From Eq. (5.13) we also see
that, depending on the parameters, there should be some kind of a recoherence peak
around either Δ𝑛𝑡 = −𝑛𝐻𝑡0′ +𝑛𝑉 𝑡1′ −Δ𝑡′𝑓 or Δ𝑛𝑡 = 𝑛𝑉 𝑡0′ −𝑛𝐻𝑡1′ +Δ𝑡′𝑓 , or not
at all. The possible recoherence peak is due to the slower component of the shorter
path 𝑗′ momentarily recombining with the faster component of the longer path 𝑗′⊕1′.
However, we might not have recoherence at all due to destructive interference.

In Fig. 5.3, we have plotted example dynamics outside of the open system MZ
interferometer using the same parameters as in Fig. 5.2. For simplicity, we have set
Δ𝑡′𝑓 = 0. We will deal with the nonzero case soon. Comparing the two figures with
each other, it is interesting to note a few things. First, it only takes the difference of
2 mm of quartz to push the pathwise recoherence peaks as far away as ∼ 340 mm,
and the peaks are very wide when compared to the preceding oscillations in Fig. 5.2.
The increased time scale is due to the birefringence being close to zero; It takes long
for the orthogonal polarization components to meet again. The peaks reach the value
of 1/2 because the other two polarization components only move further away from
each other, never intersecting. However, by locating this maximum value, we can
estimate either −𝑛𝐻𝑡0′ + 𝑛𝑉 𝑡1′ −Δ𝑡′𝑓 or 𝑛𝑉 𝑡0′ − 𝑛𝐻𝑡1′ +Δ𝑡′𝑓 even when the path
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probabilities no longer carry information about them; In Fig. 5.3, we have 𝑃0′′ ≈
𝑃1′′ ≈ 1/2, and small changes in the parameters do not change these probabilities.

By normalizing the decoherence function, �̃�𝑗′′(𝑡) = 𝜅𝑗′′(𝑡)/𝜅𝑗′′(0), we can asso-
ciate the recoherence peak in Fig. 5.3 with non-Markovianity. Thus, with the chosen
parameters, the open system MZ interferometer displays completely opposite non-
Markovian features inside and outside of itself; Inside, we have fast oscillations of
trace distance, which are killed by the which-path-information. Outside, it is the
which-path-information that gives rise to non-Markovianity, but this time giving only
one, wide recoherence peak.

5.1.2 Interferometric region and CPTNI description

The interaction time difference in Fig. 5.3 is so large that we have no interference, at
least in the traditional sense: The path probabilities are equal. Moreover, the polar-
ization probabilities are just the initial values, 𝑃𝜆0′′ ≈ 𝑃𝜆1′′ ≈ |𝐶𝜆|2. But when we
start bringing the interaction times closer to each other and enter the “interferometric
region”, a couple of interesting things take place. First, as the path probabilities start
oscillating, so do the polarization probabilities, allowing us to mimic dissipativelike
dynamics. Note that this is solely due to Δ𝑡′. With Δ𝑡′ = 0, the polarization proba-
bilities would stay constant, regardless of the value of Δ𝑡′𝑓 . Secondly, the pathwise
recoherence peaks not only move to left, towards 𝑡 = 0. They become very sensitive
to the translation terms in Eq. (5.13), starting to vanish and reappear in an abrupt
fashion. We will return to the question of sensitivity shortly.

In Fig. 5.4, we have plotted example dynamics in the interferometric region,
using the initial values |𝐶𝐻 |2 = |𝐶𝑉 |2 = 1/2. With any set of parameters, even
though the polarization probabilities may change from their initial values, the initial
states maximizing the revivals of trace distance still lie on the antipodal points of the
Bloch ball’s equator. Hence, the pathwise trace distance of such a state pair is still
given by the absolute value of the corresponding decoherence function. For example,
with the usual normalization �̃�𝑗′′(𝑡) = 𝜅𝑗′′(𝑡)/𝜅𝑗′′(0), the dephasing dynamics in
Fig. 5.4(a) is Markovian on path 0′′ and non-Markovian on path 1′′. In Figs. 5.4(b),
(d), (e), and (f), all the dynamics is Markovian. In Fig. 5.4(f), we have perfect
interference, which is why we have nothing on path 1′′.

In Fig. 5.4(c), we cannot associate a CPTP map with the dynamics on path
0′′. However, such dynamics can still be described by a CPTNI quantum oper-
ation ℰ 𝑡

𝑗′′ having the Kraus-type representation ℰ 𝑡
𝑗′′(𝜌) = 𝐾+,𝑗′′(𝑡)𝜌𝐾+,𝑗′′(𝑡)

† +
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Figure 5.4. Magnitudes of the decoherence functions outside the interferometer as functions of
position. Again, we have dephasing on the entire 𝑥-axis. Path and polarization probabilities are
shown in the insets. Initially, before the second beam splitter, |𝐶𝐻 |2 = |𝐶𝑉 |2 = 1/2. (a) 𝑥0′ =

5.90 mm, (b) 𝑥0′ = 5.92 mm, (c) 𝑥0′ = 5.94 mm, (d) 𝑥0′ = 5.96 mm, (e) 𝑥0′ = 5.98 mm, and (f)
𝑥0′ = 6.00 mm. All the other parameters are the same as in Figs. 5.2 and 5.3.

𝐾−,𝑗′′(𝑡)𝜌𝐾−,𝑗′′(𝑡)
†, where

𝐾±,𝑗′′(𝑡) =

√︃√︀
[2 + (−1)𝑗′′𝜅𝐻 ][2 + (−1)𝑗′′𝜅𝑉 ]± |𝜅𝑗′′(𝑡)|
2
√︀

[2 + (−1)𝑗′′𝜅𝐻 ][2 + (−1)𝑗′′𝜅𝑉 ]

×
(︃
±
√︀

2 + (−1)𝑗′′𝜅𝐻
𝜅𝑗′′ (𝑡)
|𝜅𝑗′′ (𝑡)| 0

0
√︀

2 + (−1)𝑗′′𝜅𝑉

)︃ (5.14)

and 𝜌 = (𝐶𝐻 |𝐻⟩+ 𝐶𝑉 |𝑉 ⟩)(𝐶*𝐻⟨𝐻|+ 𝐶*𝑉 ⟨𝑉 |). Note that, in general, ℰ 𝑡
𝑗′′(𝜌) is not

normalized, i.e., we have 𝐾+,𝑗′′(𝑡)
†𝐾+,𝑗′′(𝑡) +𝐾−,𝑗′′(𝑡)

†𝐾−,𝑗′′(𝑡) ≤ 1. However,
this inequality is saturated by perfect interference (𝜅𝐻 = 𝜅𝑉 = 2), making ℰ 𝑡

𝑗′′ a
valid CPTP map with 𝑗′′ = 0′′. With 𝑗′′ = 1′′, we have nothing. Here, it is important
to distinguish between the input state 𝜌 and the initial state ℰ0

𝑗′′(𝜌). Given a pure
input state, the lossy CPTNI quantum operation ℰ0

𝑗′′ either gives the initial state as
an output or nothing at all. In the first case, before the continuous time evolution
begins, ℰ0

𝑗′′ immediately creates initial system-environment correlations and alters
the open-system populations.

The two definitions of quantum non-Markovianity introduced in Chapter 3 were
both based on the existence of a CPTP map. So, what can be said about non-
Markovianity in the case of CPTNI operations? CPTNI operations do not (necessar-
ily) preserve the trace, and here we not only have initial correlations, but 𝒟tr

(︀
𝜌1(𝑡),
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𝜌2(𝑡)
)︀
> 𝒟tr

(︀
𝜌1(0), 𝜌2(0)

)︀
at some time interval. A linear mapping with this prop-

erty could map states outside the Bloch ball. However, it turns out that the “TNI”
in “CPTNI” saves us from such nonphysical scenarios; The decoherence function’s
absolute value remains below one because, with CPTNI dynamics, we do not nor-
malize the evolving state. Furthermore, with our system of interest, the intermediate
propagator ℰ 𝑡2←𝑡1

𝑗′′ can be written in terms of the Kraus operators

𝐾±,𝑗′′(𝑡1, 𝑡2) =

√︃
1± |𝜅𝑗′′ (𝑡2)|

|𝜅𝑗′′ (𝑡1)|

2

⎛
⎝±𝜅𝑗′′ (𝑡2)

𝜅𝑗′′ (𝑡1)
|𝜅𝑗′′ (𝑡1)|
|𝜅𝑗′′ (𝑡2)| 0

0 1

⎞
⎠
, (5.15)

which are essentially the same operators as in Eq. (3.54). The trace-decreasing part
of the dynamics occurs strictly at the beam splitter. Hence, it is not considered in
the propagator; Crudely speaking, we omit the time interval “0input → 0initial”. Con-
cluding, if we are willing to accept losses, we can use the earlier definitions and
call the dephasing dynamics in Fig. 5.4(c) path 0′′ non-Markovian—at least in the
generalized CPTNI sense.

5.1.3 Sensitivity of memory effects

Here, we study the sensitivity of pathwise recoherence in more detail. We set 𝑡0′ =

𝑡1′ = 0, so |𝜅𝑗′′ (𝑡)|
4𝑃𝑗′′

≤ |𝜅𝑗′′ (0)|
4𝑃𝑗′′

= 1, and we have the proper dephasing channel

Φ𝑡
𝑗′′
(︀
𝜌(0)

)︀
=

(︃
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉

𝜅𝑗′′ (𝑡)
4𝑃𝑗′′

𝐶*𝐻𝐶𝑉
𝜅𝑗′′ (𝑡)

*

4𝑃𝑗′′
|𝐶𝑉 |2

)︃
(5.16)

on both exit paths of the open system MZ interferometer. Therefore, we are actually
studying the sensitivity of non-Markovian memory effects.

We have plotted 𝑃0′′ and the BLP-measures 𝒩 (Φ𝑡
𝑗′′) in Fig. 5.5, which gives

some idea of how sensitive the memory effects are with respect to the path differ-
ence Δ𝑥′𝑓 = 𝑐Δ𝑡′𝑓 , and how the memory effects and path probabilities are related:
The smaller the path difference, the narrower the “BLP peaks”, and as the path dif-
ference grows, the peaks eventually approach the constant value of 1/2. Depending
on the delay, both channels can be Markovian, non-Markovian, or one Markovian,
the other non-Markovian. Interestingly, the non-Markovianities 𝒩 (Φ𝑡

𝑗′′) peak at the
local minima of 𝑃𝑗′′ .

Before estimating the sensitivity of memory effects in more detail, let us define
“sensitivity” in a more rigorous fashion. Say, we have an observable 𝑂(𝜆) that de-
pends on some parameter 𝜆, and that we want to detect if 𝜆 changes by measuring
𝑂(𝜆). In an ideal situation, if ⟨𝑂(𝜆)⟩ changed, we would immediately know that
there was a change in 𝜆. With small deviations |𝛿𝜆| ≪ 1, the two changes have the
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Figure 5.5. Path probabilities 𝑃0′′ (black, solid) and the pathwise BLP-non-Markovianities 𝒩 (Φ𝑡
0′′ )

(blue, dashed) and 𝒩 (Φ𝑡
1′′ ) (red, dotted) as functions of the path difference Δ𝑥′

𝑓 . The panels (e)–
(h) are magnifications of the shaded regions in (a)–(d). 𝜇 = 𝑐/(780 nm), 𝜎 = 5.68 × 1011 Hz, and
Δ𝑛 = 0.009.

approximate connection

⟨𝑂(𝜆+ 𝛿𝜆)⟩ ≈ ⟨𝑂(𝜆)⟩+ 𝜕⟨𝑂(𝜆)⟩
𝜕𝜆

𝛿𝜆 (5.17)

⇔ |⟨𝑂(𝜆+ 𝛿𝜆)⟩ − ⟨𝑂(𝜆)⟩| ≈
⃒⃒
⃒𝜕⟨𝑂(𝜆)⟩

𝜕𝜆
𝛿𝜆
⃒⃒
⃒. (5.18)

However, since observables have intrinsic spread defined by the standard deviation
Δ𝑂 :=

√︀
⟨𝑂2⟩ − ⟨𝑂⟩2, we cannot say if a small change in ⟨𝑂(𝜆)⟩ was actually due

to 𝛿𝜆 or not. Therefore, in order for 𝛿𝜆 to be experimentally detectable, the change
|⟨𝑂(𝜆+ 𝛿𝜆)⟩ − ⟨𝑂(𝜆)⟩| needs to “stand out” from Δ𝑂,

|⟨𝑂(𝜆+ 𝛿𝜆)⟩ − ⟨𝑂(𝜆)⟩| ≥ Δ𝑂 (5.19)

⇔ |𝛿𝜆| ≥ Δ𝑂
⃒⃒
⃒𝜕⟨𝑂(𝜆)⟩

𝜕𝜆

⃒⃒
⃒
−1
. (5.20)

Finally, the value 𝛿𝜆′ that saturates the above inequality is called the observable’s
sensitivity [62].

With parameter-independent measurements—i.e., measurements with the pa-
rameter of interest not affecting the measurement procedure itself or its outcome
space—the smallest achievable sensitivity is given by the quantum Cramér-Rao bound
(QCRB [65]),

|𝛿𝜆′| ≥ 1√︀
𝑀𝐹𝑄(𝜆)

. (5.21)

Here, 𝑀 is the number of independent measurements and 𝐹𝑄(𝜆) is the quantum
Fisher information. For pure states |𝜓⟩, the quantum Fisher information can be writ-
ten as [66]

𝐹𝑄(𝜆) = 4(⟨𝜕𝜆𝜓|𝜕𝜆𝜓⟩ − |⟨𝜕𝜆𝜓|𝜓⟩|2), (5.22)
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Figure 5.6. Illustration of the algorithm at Δ𝑥′
𝑓 = 104888 nm and FW = 0.4. While the theoretical,

noiseless value is 𝒩 (Φ𝑡
0′′ ) = 0.301498, this run of the algorithm yields �̃�𝑛(Φ𝑡

0′′ ) = 0.251261. 𝜇 =

𝑐/(780 nm), 𝜎 = 5.68× 1011 Hz, and Δ𝑛 = 0.009.

where |𝜕𝜆𝜓⟩ = 𝜕|𝜓(𝜆)⟩/𝜕𝜆.
We now use Eq. (5.20) to estimate the sensitivity of memory effects. Because

the derivation of Eq. (5.20) did not depend on the measurable quantity being specif-
ically an observable, we just replace 𝑂 by 𝒩 (Φ𝑡

𝑗′′) and 𝜆 by Δ𝑥′𝑓 . The derivative
𝜕𝒩 (Φ𝑡

𝑗′′)/𝜕Δ𝑥
′
𝑓 can be evaluated numerically, but because 𝒩 (Φ𝑡

𝑗′′) is not an ob-
servable, we cannot write “Δ𝒩 =

√︀
⟨𝒩 2⟩ − ⟨𝒩⟩2”. Instead, we define Δ𝒩 (Φ𝑡

𝑗′′)

as the standard deviation (SD) of 𝑁 ≫ 1 perturbed non-Markovianities �̃�𝑛(Φ
𝑡
𝑗′′),

Δ𝒩 (Φ𝑡
𝑗′′) := SD

(︀
{�̃�𝑛(Φ

𝑡
𝑗′′)}𝑁𝑛=1

)︀
. The perturbed non-Markovianities are obtained

from the following algorithm that illustrates how also non-Markovianity can vary
between measurements. Here, however, the spread is not intrinsic, but results from
outside factors such as dark counts and background photons.

At each value of Δ𝑥′𝑓 , we simulate additional noise so that

𝜌𝑗′′(𝑡) = Φ𝑡
𝑗′′
(︀
𝜌(0)

)︀
+

(︂
𝜖1(𝑡) 𝜖2(𝑡)𝑒

𝑖𝜖3(𝑡)

𝜖2(𝑡)𝑒
−𝑖𝜖3(𝑡) −𝜖1(𝑡)

)︂
. (5.23)

We draw 𝜖1(𝑡) and 𝜖2(𝑡) from a normal distribution with the mean 0 and stan-
dard deviation �̃�, while the random phase 𝜖3(𝑡) comes from a uniform distribution
from 0 to 2𝜋. At each time step from 2𝜋𝜎Δ𝑛𝑡min = 0 to 2𝜋𝜎Δ𝑛𝑡max = 5, we
draw separate noise terms for the initial state pair |±⟩, redrawing them if the re-
sulting states are nonphysical. The width of one time step is 2𝜋𝜎Δ𝑛Δ𝑡 = 0.01.
Once the “randomized” trace-distance dynamics is fixed, we fit |𝜅𝑗′′(𝑡)|/(4𝑃𝑗′′) on
it with a random seed value of Δ𝑥′𝑓—depicting our ignorance of its actual value—
and evaluate �̃�𝑛(Φ

𝑡
𝑗′′). A single run of this algorithm is illustrated in Fig. 5.6 with

Δ𝑥′𝑓 = 104888 nm and full width of the additional noise FW = 6�̃� = 0.4.
Now, it is interesting to compare the sensitivity of memory effects with the

QCRB. Note that, to use Eqs. (5.21) and (5.22), the state being measured should
be pure and fixed. However, when measuring non-Markovianity, we need the state’s
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Figure 5.7. Sensitivities of 𝑃0′′ (black, solid) and 𝒩 (Φ𝑡
0′′ ) (blue dots), and the QCRBs (red,

dashed). Different shades of blue correspond to different widths of additional noise, whereas
different shades of red correspond to different numbers of measurements. 𝜇 = 𝑐/(780 nm),
𝜎 = 5.68× 1011 Hz, and Δ𝑛 = 0.009.

entire time evolution, not just a single state. Hence, we are actually comparing our
dynamical model against its more traditional, fixed-state counterpart. In the latter
case, the QCRB can be calculated using the post-selected pure state

|𝜓𝑗′′(𝑡)⟩ =
1

2
√︀
𝑃𝑗′′

[︃
𝐶𝐻 |𝐻⟩

∫︁
𝑑𝑓𝑔(𝑓)𝑒𝑖2𝜋𝑓𝑛𝐻𝑡

(︁
𝑒𝑖2𝜋𝑓𝑡0′𝑓 + (−1)𝑗

′′
𝑒𝑖2𝜋𝑓𝑡1′𝑓

)︁
|𝑓⟩|𝑗′′⟩

+𝐶𝑉 |𝑉 ⟩
∫︁
𝑑𝑓𝑔(𝑓)𝑒𝑖2𝜋𝑓𝑛𝑉 𝑡

(︁
𝑒𝑖2𝜋𝑓𝑡0′𝑓 + (−1)𝑗

′′
𝑒𝑖2𝜋𝑓𝑡1′𝑓

)︁
|𝑓⟩|𝑗′′⟩

]︃
.

(5.24)

In Fig. 5.7, we have plotted the sensitivities of memory effects with four different
FWs of additional noise (blue dots), the QCRBs with five different numbers of mea-
surements (red, dashed curves), and, for comparison, the sensitivity of 𝑃0′′ (black,
solid curve). At each value of Δ𝑥′𝑓 , the algorithm was repeated 𝑁 = 100 times to
obtain Δ𝒩 (Φ𝑡

0′′). With 𝑃0′′ , the observable used in Eq. (5.20) was 1⊗1⊗|0′′⟩⟨0′′|.
From Fig. 5.7, we can clearly see that the sensitivities are directly proportional to FW,
while the QCRBs are inversely proportional to𝑀 . Therefore, with small enough val-
ues of FW and 𝑀 , the memory effects can beat the QCRB.

But what counts as a single measurement in our case? If each and every coinci-
dence event in polarization tomography adds up to 𝑀 , our protocol requires a huge
number of them, meaning low QCRB. However, while we need lots of measurements
in this sense, our protocol is also very robust against additional noise1, meaning low
sensitivity. Our protocol therefore has genuine potential to break the QCRB in an ac-
tual experiment. And even with more noise, when Eq. (5.21) is satisfied, the memory
effects still beat the path probabilities.

1FW = 0.4 in Fig. 5.6 is greatly exaggerated.
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Figure 5.8. A schematic picture of the open system HOM interferometer.

We can go beyond the quantum Cramér-Rao theorem for two reasons. First,
our protocol depends on the parameter of interest in the sense that, to fully capture
the memory effects (or their absence), the process tomography should extend until
𝑡 ≈ |Δ𝑡′𝑓/Δ𝑛|, and the quantum Cramér-Rao theorem does not concern parameter-
dependent measurements [130]. Secondly, instead of our system of interest being
in a single fixed state, we monitor its entire evolution, and—to the best of our
knowledge—the quantum Cramér-Rao theorem does not concern such situations ei-
ther.

5.2 Open system Hong-Ou-Mandel interference

In this Section, we double the number of photons and half the number of beam split-
ters. That is, we study the interplay of Hong-Ou-Mandel (HOM) interference [63]
and the dephasing of polarization.

5.2.1 The model

Our system of interest consists of two photons initially on their own paths, labeled
by 0 and 1. The photons are guided into a beam splitter, from which they go to
Alice (path A) or Bob (path B), i.e., they bunch, or both parties receive one photon
(coincidence). Here, dephasing is considered both before and after the beam splitter,
while free evolution is only considered on paths 0 and 1. Again, free evolution
after the beam splitter would not affect the open-system dynamics. The model is
illustrated in Fig. 5.8.

Because we now have the possibility of bunching, i.e., having two photons on
the same path (A or B), we use the creation and annihilation operators. �̂�†𝜆(𝑓)

creates a photon with the polarization 𝜆 = 𝐻,𝑉 and frequency 𝑓 on the mode 𝑎,
while �̂�𝜆(𝑓) destroys such photon. The operators satisfy the commutation relation
[�̂�𝜆(𝑓), �̂�

†
𝜆(𝑓)] = 1.
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The initial biphoton state can be written in terms of the creation operators as

|𝜓in⟩ =
[︁
𝐶𝐻𝐻

∫︁
𝑑𝑓0𝑑𝑓1𝑔(𝑓0, 𝑓1)�̂�

†
𝐻(𝑓0)�̂�

†
𝐻(𝑓1) + 𝐶𝐻𝑉

∫︁
𝑑𝑓0𝑑𝑓1𝑔(𝑓0, 𝑓1)�̂�

†
𝐻(𝑓0)�̂�

†
𝑉 (𝑓1)

+ 𝐶𝑉 𝐻

∫︁
𝑑𝑓0𝑑𝑓1𝑔(𝑓0, 𝑓1)�̂�

†
𝑉 (𝑓0)�̂�

†
𝐻(𝑓1) + 𝐶𝑉 𝑉

∫︁
𝑑𝑓0𝑑𝑓1𝑔(𝑓0, 𝑓1)�̂�

†
𝑉 (𝑓0)�̂�

†
𝑉 (𝑓1)

]︁

|0𝑎𝑏⟩.
(5.25)

Here, �̂�†𝜆(𝑓0) operates on path 0 and �̂�†𝜆(𝑓1) on path 1, and |0𝑎𝑏⟩ is the vacuum state.
The operators transform in free evolution and polarization-frequency interaction ac-
cording to {︃

𝑈0�̂�
†
𝜆0
(𝑓0) = 𝑒𝑖2𝜋𝑓0(𝑡0𝑓+𝑛𝜆0 𝑡0)�̂�†𝜆0

(𝑓0),

𝑈1�̂�
†
𝜆1
(𝑓1) = 𝑒𝑖2𝜋𝑓1(𝑡1𝑓+𝑛𝜆1

𝑡1)�̂�†𝜆1
(𝑓1).

(5.26)

The action of the beam splitter reads
{︃
𝐻�̂�†𝜆0

(𝑓0) =
1√
2

[︀
�̂�†𝜆0

(𝑓0) + �̂�†𝜆0
(𝑓0)

]︀
,

𝐻�̂�†𝜆1
(𝑓1) =

1√
2

[︀
�̂�†𝜆1

(𝑓1)− �̂�†𝜆1
(𝑓1)

]︀
.

(5.27)

From now on, �̂�†𝜆𝑗
(𝑓𝑗) operates on path A and �̂�†𝜆𝑗

(𝑓𝑗) on path B. The final transfor-
mations following the beam splitter read

{︃
𝑈𝐴�̂�

†
𝜆𝑗
(𝑓𝑗) = 𝑒𝑖2𝜋𝑓𝑗𝑛𝜆𝑗

𝑡𝐴 �̂�†𝜆𝑗
(𝑓𝑗),

𝑈𝐵 �̂�
†
𝜆𝑗
(𝑓𝑗) = 𝑒𝑖2𝜋𝑓𝑗𝑛𝜆𝑗

𝑡𝐵 �̂�†𝜆𝑗
(𝑓𝑗).

(5.28)

Substituting Eqs. (5.26)–(5.28) in Eq. (5.25), we get the output state

|𝜓out⟩ =
∑︁

𝜆0,𝜆1=𝐻,𝑉

𝐶𝜆0𝜆1

2

∫︁
𝑑𝑓0𝑑𝑓1𝑔(𝑓0, 𝑓1)𝑒

𝑖[2𝜋𝑓0(𝑡0𝑓+𝑛𝜆0 𝑡0)+2𝜋𝑓1(𝑡1𝑓+𝑛𝜆1 𝑡1)]

×
[︁
𝑒𝑖(2𝜋𝑓0𝑛𝜆0

𝑡𝐴+2𝜋𝑓1𝑛𝜆1
𝑡𝐴)�̂�†𝜆0

(𝑓0)�̂�
†
𝜆1
(𝑓1)− 𝑒𝑖(2𝜋𝑓0𝑛𝜆0

𝑡𝐴+2𝜋𝑓1𝑛𝜆1
𝑡𝐵)�̂�†𝜆0

(𝑓0)�̂�
†
𝜆1
(𝑓1)

+ 𝑒𝑖(2𝜋𝑓0𝑛𝜆0
𝑡𝐵+2𝜋𝑓1𝑛𝜆1

𝑡𝐴)�̂�†𝜆0
(𝑓0)�̂�

†
𝜆1
(𝑓1)− 𝑒𝑖(2𝜋𝑓0𝑛𝜆0

𝑡𝐵+2𝜋𝑓1𝑛𝜆1
𝑡𝐵)�̂�†𝜆0

(𝑓0)�̂�
†
𝜆1
(𝑓1)

]︁

|0𝑎𝑏⟩.
(5.29)

Note that we still have not considered whether the photons bunch or not, i.e., they
are in the superposition of both options. The projection operator corresponding to
Alice receiving only one photon is

𝑃𝐴 =

∫︁
𝑑𝑓�̂�†𝐻(𝑓)|0𝑎⟩⟨0𝑎|�̂�𝐻(𝑓) +

∫︁
𝑑𝑓�̂�†𝑉 (𝑓)|0𝑎⟩⟨0𝑎|�̂�𝑉 (𝑓), (5.30)
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while the projection of Alice receiving both photons is

𝑃𝐴𝐴 =
1

2

∑︁

𝜆0,𝜆1=𝐻,𝑉

∫︁
𝑑𝑓0𝑑𝑓1�̂�

†
𝜆0
(𝑓0)�̂�

†
𝜆1
(𝑓1)|0𝑎⟩⟨0𝑎|�̂�𝜆0

(𝑓0)�̂�𝜆1
(𝑓1)⊗ |0𝑏⟩⟨0𝑏|,

(5.31)
and similarly for Bob.

We now have all the tools to calculate the coincidence probability 𝑃𝑐 and see how
dephasing before the beam splitter affects it. Using the bivariate Gaussian frequency
distribution (4.13), we get

𝑃𝑐 = tr
[︀
𝑃𝐴 ⊗ 𝑃𝐵|𝜓out⟩⟨𝜓out|𝑃𝐴 ⊗ 𝑃𝐵

]︀
(5.32)

= ⟨𝜓out|𝑃𝐴 ⊗ 𝑃𝐵|𝜓out⟩ (5.33)

=
1

2

{︁
1− |𝐶𝐻𝐻 |2𝑒−(1−𝐾)(2𝜋𝜎)2(Δ𝑡𝑓+𝑛𝐻Δ𝑡)2 − |𝐶𝑉 𝑉 |2𝑒−(1−𝐾)(2𝜋𝜎)2(Δ𝑡𝑓+𝑛𝑉 Δ𝑡)2

− 2|𝐶𝐻𝑉 ||𝐶𝑉 𝐻 |𝑒− 1

2
(2𝜋𝜎)2

[︀
(Δ𝑡𝑓+𝑛𝐻Δ𝑡)2−2𝐾(Δ𝑡𝑓+𝑛𝐻Δ𝑡)(Δ𝑡𝑓+𝑛𝑉 Δ𝑡)+(Δ𝑡𝑓+𝑛𝑉 Δ𝑡)2

]︀

× cos(2𝜋𝜇Δ𝑛Δ𝑡+ 𝜃𝐻𝑉 − 𝜃𝑉 𝐻)
}︁
. (5.34)

Here, Δ𝑡𝑓 := 𝑡0𝑓 − 𝑡1𝑓 , Δ𝑡 := 𝑡0 − 𝑡1, and 𝜃𝐻𝑉 (𝜃𝑉 𝐻 ) is the phase of 𝐶𝐻𝑉 (𝐶𝑉 𝐻 ).
The receiver-specific bunching probability is simply 𝑃𝐴(𝐵)

𝑏 = (1− 𝑃𝑐)/2.
The exponential functions weighted by the probabilities |𝐶𝜆𝜆|2 just describe the

temporal difference of the input paths’ 𝜆 components. The cross-terms, on the other
hand, oscillate with the frequency 𝜇. Unlike with the open system MZ interferometer,
the 𝜇-dependency in Eq. (5.34) comes solely from dephasing. The Bell state |Ψ+⟩
is symmetric with respect to pairwise change of variables and therefore contributes
to the bosonic behavior of photons, i.e., they tend to bunch (𝑃𝑐 = 0). Conversely,
the Bell state |Ψ−⟩ is antisymmetric, which tends to drive the photons away from
each other (𝑃𝑐 = 1). Now, the 𝜇-dependency of 𝑃𝑐 is explained by the rotation in
dephasing, which causes the symmetry and antisymmetry to alternate.

Note that when the two photons entering the beam splitter differ only by free
evolution, we get the classical “HOM dip” [63]

𝑃𝑐(Δ𝑡𝑓 ) =
1

2

[︁
1− 𝑒−(1−𝐾)(2𝜋𝜎Δ𝑡𝑓 )2

]︁
. (5.35)

The narrowest dip is given by 𝐾 = −1, i.e., frequency-anticorrelated photons, while
the dip “fattens” as 𝐾 → 1. This is because HOM interference is differential-
frequency-type interference [131]. That is, if the spectrum is decomposed as in
Eq. (4.14), only the term with the argument 𝑓0 − 𝑓1 contributes to 𝑃𝑐. While this
term is well-defined at 𝐾 = −1, it approaches delta function when 𝐾 → 1, and
the photons become temporally delocalized (see the earlier discussion in Chapter 4).
Hence, the delay Δ𝑡𝑓 does not matter, and the photons always bunch.
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Figure 5.9. A schematic picture of the 𝑐- and 𝑏-photons and the different polarization states they
carry. For illustrative purposes, the photons are depicted as point-like particles and as if they were
not in the superposition state of coincidence and bunching.

We now turn our focus to the open-system dynamics following the beam splitter.
With two photons either bunching or not, Alice and Bob can reconstruct different
states with polarization tomography. They can post-select the coincident photons
(c-photons) or bunched photons (b-photons), and choose whether to perform single-
photon or biphoton polarization tomography. We denote the bipartite states of the
𝑐-photons by 𝜌𝑐 and the corresponding single-qubit states by 𝜌𝐴(𝐵)

𝑐 . Similarly, we
denote the two-qubit states carried by the 𝑏-photons by 𝜌𝐴(𝐵)

𝑏 and the corresponding
single-qubit states by 𝜌𝐴(𝐵)

𝑏 . These states are visualized in Fig. 5.9 with the simpli-
fying assumption that the photons already bunch (or not) at the beam splitter.

In the case of coincidence, Alice and Bob share the polarization-frequency state

Π𝑐 =
1

𝑃𝑐
𝑃𝐴 ⊗ 𝑃𝐵|𝜓out⟩⟨𝜓out|𝑃𝐴 ⊗ 𝑃𝐵. (5.36)

The density matrix elements ⟨𝜉0𝜉1|𝜌𝑐|𝜆0𝜆1⟩ of the bipartite polarization state 𝜌𝑐 are
given by

⟨𝜉0𝜉1|𝜌𝑐|𝜆0𝜆1⟩ =
∫︁
𝑑𝑓0𝑑𝑓1⟨0𝑎𝑏|�̂�𝜉0(𝑓0)�̂�𝜉1(𝑓1)Π𝑐�̂�

†
𝜆0
(𝑓0)�̂�

†
𝜆1
(𝑓1)|0𝑎𝑏⟩, (5.37)

where 𝜉0, 𝜉1, 𝜆0, 𝜆1 = 𝐻,𝑉 . Alice’s (Bob’s) single-photon polarization state corre-
sponding to coincidence is then obtained by the partial trace 𝜌𝐴(𝐵)

𝑐 = tr𝐵(𝐴)[𝜌𝑐].
In the case of bunching on Alice’s side, the polarization-frequency state is

Π𝐴
𝑏 =

1

2𝑃𝐴
𝑏

𝑃𝐴𝐴|𝜓out⟩⟨𝜓out|𝑃𝐴𝐴, (5.38)

where the factor of 1/2 is a normalization constant coming from the commutation
relation of the creation and annihilation operators. The density matrix elements
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⟨𝜉0𝜉1|𝜌𝐴𝑏 |𝜆0𝜆1⟩ of the polarization state 𝜌𝐴𝑏 are given by

⟨𝜉0𝜉1|𝜌𝐴𝑏 |𝜆0𝜆1⟩ =
∫︁
𝑑𝑓0𝑑𝑓1⟨0𝑎𝑏|�̂�𝜉0(𝑓0)�̂�𝜉1(𝑓1)Π𝐴

𝑏 �̂�
†
𝜆0
(𝑓0)�̂�

†
𝜆1
(𝑓1)|0𝑎𝑏⟩. (5.39)

Note that Eq. (5.39) describes a biphoton polarization state completely on Alice’s
side, and reconstructing it with state tomography would require separating the 𝑏-
photons. Not separating the 𝑏-photons—and performing single-photon polarization
tomography instead—we get the identical states 𝜌𝐴𝑏 = tr0[𝜌𝐴𝑏 ] = tr1[𝜌𝐴𝑏 ]. Bob’s
states are obtained in a similar fashion.

Interpreting the open-system dynamics to start from the beam splitter, 𝑡0 and 𝑡1
once again produce initial system-environment correlations. This time, however, the
correlation coefficient 𝐾 describes interenvironmental correlations, and the beam
splitter mixes the preceding dynamics in a way that allows us to go beyond the con-
ventional decoherence-function-description of open-system dynamics. For example,
while the standard description gives us the nonlocal density matrix element

⟨𝐻𝑉 |𝜌(𝑡)|𝑉 𝐻⟩ = 𝐶𝐻𝑉 𝐶
*
𝑉 𝐻Λ𝐴𝐵(𝑡), (5.40)

where Λ𝐴𝐵(𝑡) is some decoherence function, here we have

⟨𝐻𝑉 |𝜌𝑐|𝑉 𝐻⟩ =
1

4𝑃𝑐

{︁
𝐶𝐻𝑉 𝐶

*
𝑉 𝐻𝑒

𝑖𝜂(𝜏0−𝜏1+𝜏𝐴−𝜏𝐵)− 1

2

[︀
(𝜏0+𝜏𝐴)2−2𝐾(𝜏0+𝜏𝐴)(𝜏1+𝜏𝐵)+(𝜏1+𝜏𝐵)2

]︀

+𝐶*𝐻𝑉 𝐶𝑉 𝐻𝑒
𝑖𝜂(−𝜏0+𝜏1+𝜏𝐴−𝜏𝐵)− 1

2

[︀
(𝜏0+𝜏𝐵)2−2𝐾(𝜏0+𝜏𝐵)(𝜏1+𝜏𝐴)+(𝜏1+𝜏𝐴)2

]︀

−|𝐶𝐻𝑉 |2𝑒𝑖𝜂(𝜏𝐴−𝜏𝐵)− 1

2

[︀
(Δ𝜏𝐻𝑉 +𝜏𝐴)2−2𝐾(Δ𝜏𝐻𝑉 +𝜏𝐴)(Δ𝜏𝐻𝑉 +𝜏𝐵)+(Δ𝜏𝐻𝑉 +𝜏𝐵)2

]︀

−|𝐶𝑉 𝐻 |2𝑒𝑖𝜂(𝜏𝐴−𝜏𝐵)− 1

2

[︀
(Δ𝜏𝑉 𝐻−𝜏𝐴)2−2𝐾(Δ𝜏𝑉 𝐻−𝜏𝐴)(Δ𝜏𝑉 𝐻−𝜏𝐵)+(Δ𝜏𝑉 𝐻−𝜏𝐵)2

]︀}︁

(5.41)

and

⟨𝐻𝑉 |𝜌𝐴𝑏 |𝑉 𝐻⟩ = 1

8𝑃𝐴
𝑏

{︁
|𝐶𝐻𝑉 |2𝑒−(1−𝐾)(Δ𝜏𝐻𝑉 +𝜏𝐴)2 + |𝐶𝑉 𝐻 |2𝑒−(1−𝐾)(Δ𝜏𝑉 𝐻−𝜏𝐴)2

+2|𝐶𝐻𝑉 ||𝐶𝑉 𝐻 |𝑒− 1

2

[︀
(𝜏0+𝜏𝐴)2−2𝐾(𝜏0+𝜏𝐴)(𝜏1+𝜏𝐴)+(𝜏1+𝜏𝐴)2

]︀

× cos
[︀
𝜂(𝜏0 − 𝜏1) + 𝜃𝐻𝑉 − 𝜃𝑉 𝐻

]︀}︁
. (5.42)

That is, we do not have a single decoherence function multiplying the coherence
term 𝐶𝐻𝑉 𝐶

*
𝑉 𝐻 anymore. In Eqs. (5.41) and (5.42), we used the shorthand notations

𝜂 = 𝜇/𝜎, 𝜏𝑗 = 2𝜋𝜎Δ𝑛𝑡𝑗 , and Δ𝜏𝜆0𝜆1
= 2𝜋𝜎(Δ𝑡𝑓 + 𝑛𝜆0

𝑡0 − 𝑛𝜆1
𝑡1).

All the other density matrix elements can be found from Publication V. In the
following Subsections, we concentrate on a few special cases that have interesting
applications. For simplicity, we drop the dephasing before the beam splitter, i.e.,
𝑡0 = 𝑡1 = 0.
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5.2.2 Remote entanglement generation

In addition to SPDC, polarization-entangled photons can be produced with HOM
interference [132]. Guiding horizontally and vertically polarized photons simulta-
neously into a beam splitter, Alice and Bob receive the Bell state |Ψ−⟩ with the
probability 𝑃𝑐 = 1/2. With the probability 𝑃𝐴(𝐵)

𝑏 = 1/4, Alice (Bob) has the “lo-
cal” Bell state |Ψ+⟩ all to themselves. However, it can be quite demanding to reach
exactly Δ𝑡𝑓 = 0. Hence, we let |Δ𝑡𝑓 | > 0 and show how to compensate this delay
with dephasing following the beam splitter.

With the initial polarization state |𝐻𝑉 ⟩ experiencing coincidence (with the prob-
ability 𝑃𝑐 = 1/2), we get the state

𝜌𝑐(𝑡𝐴, 𝑡𝐵) =
1

2

⎛
⎜⎜⎝

0 0 0 0

0 1 −Λ𝑐(𝑡𝐴, 𝑡𝐵) 0

0 −Λ𝑐(𝑡𝐴, 𝑡𝐵)
* 1 0

0 0 0 0

⎞
⎟⎟⎠ , (5.43)

where Λ𝑐(𝑡𝐴, 𝑡𝐵) = exp
{︀
𝑖2𝜋𝜇Δ𝑛(𝑡𝐴−𝑡𝐵)−1

2(2𝜋𝜎)
2
[︀
(Δ𝑛𝑡𝐴+Δ𝑡𝑓 )

2−2𝐾(Δ𝑛𝑡𝐴+

Δ𝑡𝑓 )(Δ𝑛𝑡𝐵 + Δ𝑡𝑓 ) + (Δ𝑛𝑡𝐴 + Δ𝑡𝑓 )
2
]︀}︀

. If we have bunching on Alice’s side
(𝑃𝐴

𝑏 = 1/4), we get

𝜌𝐴𝑏 (𝑡𝐴) =
1

2

⎛
⎜⎜⎝

0 0 0 0

0 1 Λ𝐴
𝑏 (𝑡𝐴) 0

0 Λ𝐴
𝑏 (𝑡𝐴)

* 1 0

0 0 0 0

⎞
⎟⎟⎠ , (5.44)

and similarly for Bob. Here, Λ𝐴
𝑏 (𝑡𝐴) = Λ𝑐(𝑡𝐴, 𝑡𝐴) = 𝑒−(1−𝐾)(2𝜋𝜎)2(Δ𝑛𝑡𝐴+Δ𝑡𝑓 )2 .

If Δ𝑡𝑓 = 0, there is clearly no need for delay-compensating dephasing. The
same holds if 𝐾 = 1. In other cases, Alice and Bob achieve maximum entanglement
by implementing dephasing for the durations 𝑡𝐴 = 𝑡𝐵 = −Δ𝑡𝑓/Δ𝑛. At these
points of time, the slower polarization component of the first photon overlaps with
the faster component of the second photon. If 𝐾 = −1, it suffices for only one of
the parties to apply dephasing, e.g., 𝑡𝐴 = −2Δ𝑡𝑓/Δ𝑛. Due to the birefringence Δ𝑛

being (typically) close to zero, the temporal overlap of the photons is much easier
to achieve here than in free air. For example, to compensate the path difference of
Δ𝑥𝑓 = 𝑐Δ𝑡𝑓 = 10 µm, Alice and Bob need to use approximately 1 mm of quartz,
and small deviations do not significantly hurt the concurrence of the final state.

Once the parties share the Bell state |Ψ−⟩, it can be changed to others with local
Pauli operators. To prepare the same Bell state independently of coincidence and
bunching (up to a global phase factor), either Alice or Bob needs to operate with 𝜎𝑧
after dephasing. In the case of coincidence, 𝜎𝑧 operates only once and transforms
|Ψ−⟩ into ±|Ψ+⟩ (+ with Alice, − with Bob). Bunching, on the other hand, means
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operating with 𝜎𝑧 to either both of the photons (yielding −|Ψ+⟩) or neither (yielding
|Ψ+⟩).

Note that the protocol would work similarly with dephasing before the beam
splitter. However, our method dispels the common belief that the two photons should
overlap at the beam splitter. Furthermore, applying dephasing after the beam splitter
might be more convenient for distant parties. Note also that the delay plays exactly
the same role as the phase functions 𝜃𝑗(𝑓𝑗) in reverse decoherence [see Eq. (4.34)].
Here, however, the two functions 𝜃𝐴(𝑓𝐴) and 𝜃𝐵(𝑓𝐵) cannot be controlled indepen-
dently of each other, since 𝜃𝑗(𝑓𝑗) = −2𝜋𝑓𝑗Δ𝑡𝑓 with both 𝑗 = 𝐴,𝐵.

Besides remote entanglement generation, our procol can be applied in parame-
ter estimation when there is no more information about the parameter(s) of interest
in the coincidence rate. Alice and Bob can, e.g., estimate Δ𝑡𝑓 and 𝐾 by monitor-
ing the nonlocal dephasing dynamics. While Δ𝑡𝑓 = −Δ𝑛𝑡𝑗 (where 𝑡𝑗 is the point
of interaction time of maximum coherences), 𝐾 can be estimated by analyzing the
width of the recoherence peak. In the following Subsection, we will propose an alter-
native method for this task that, counterintuitively, does not require communication
between Alice and Bob. That is, they need not compare their photon counts with
each other.

5.2.3 Local parameter estimation by dead-time filtering

The single-photon polarization state that Alice can reconstruct alone is a mixture of
𝑃𝑐 𝑐-photon states and 2𝑃𝐴

𝑏 𝑏-photon states,

𝜌𝐴(𝑡𝐴) = 𝑃𝑐𝜌
𝐴
𝑐 (𝑡𝐴) + 2𝑃𝐴

𝑏 𝜌
𝐴
𝑏 (𝑡𝐴). (5.45)

The factor of two comes from the fact that for each bunching event there are two pho-
tons. Assuming initial polarization state of the form (𝐶𝐻 |𝐻⟩+𝐶𝑉 |𝑉 ⟩)⊗(𝐶𝐻 |𝐻⟩+
𝐶𝑉 |𝑉 ⟩) and taking partial traces over the other polarization degree of freedom, we
obtain

𝜌𝐴𝑐 (𝑡𝐴) =

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 𝜅−(𝑡𝐴)

𝐶*𝐻𝐶𝑉 𝜅−(𝑡𝐴)
* |𝐶𝑉 |2

)︂
(5.46)

and

𝜌𝐴𝑏 (𝑡𝐴) =

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 𝜅+(𝑡𝐴)

𝐶*𝐻𝐶𝑉 𝜅+(𝑡𝐴)
* |𝐶𝑉 |2

)︂
, (5.47)

where

𝜅±(𝑡𝐴) =
1± 𝑒−(1−𝐾)(2𝜋𝜎Δ𝑡𝑓 )2 cosh[(1−𝐾)(2𝜋𝜎)2Δ𝑡𝑓Δ𝑛𝑡𝐴]

1± 𝑒−(1−𝐾)(2𝜋𝜎Δ𝑡𝑓 )2

× 𝑒𝑖2𝜋𝜇Δ𝑛𝑡𝐴− 1

2
(2𝜋𝜎Δ𝑛𝑡𝐴)2 .

(5.48)

From Eq. (5.48), we see that the 𝐻 and 𝑉 polarization components originating from
different paths acquire different phase depending on whether the photons bunch or
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not: An even multiple of 𝜋 for 𝑏-photons and odd for 𝑐-photons. Conversely, 𝐻 and
𝑉 from the same path are in the same phase for 𝑐- and 𝑏-photons [cf. Eq. (5.13) and
its description]. Both single-photon states 𝜌𝐴𝑐 (𝑡𝐴) and 𝜌𝐴𝑏 (𝑡𝐴) depend on 𝐾 due to
the nonlocal transformations in Eq. (5.27).

Substituting Eqs. (5.46) and (5.47) in Eq. (5.45), we get

𝜌𝐴(𝑡𝐴) =

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 𝜅(𝑡𝐴)

𝐶*𝐻𝐶𝑉 𝜅(𝑡𝐴)
* |𝐶𝑉 |2

)︂
. (5.49)

Here, quite interestingly, 𝜅(𝑡𝐴) is just the familiar single-photon decoherence func-
tion, 𝜅(𝑡𝐴) = 𝑒𝑖2𝜋𝜇Δ𝑛𝑡𝐴−(2𝜋𝜎Δ𝑛𝑡𝐴)2/2, which is independent of Δ𝑡𝑓 and 𝐾 2. This
makes sense. After all, it should not be possible to detect nonlocal correlations lo-
cally. However, if we can retroactively manipulate the probabilities in Eq. (5.45), we
can go beyond this restriction.

Say, the dead time of Alice’s photodetector is long enough to filter out every
second 𝑏-photon. That is, the first 𝑏-photon of each bunched pair gets detected, but
the second arrives at the photodetector during the time span that it is off and therefore
goes undetected. Taking such losses [or dead-time filtering (DTF)] into account, we
get the new state

𝜌𝐴DTF(𝑡𝐴) =
𝑃𝑐𝜌

𝐴
𝑐 (𝑡𝐴) + 𝑃𝐴

𝑏 𝜌
𝐴
𝑏 (𝑡𝐴)

tr
[︀
𝑃𝑐𝜌𝐴𝑐 (𝑡𝐴) + 𝑃𝐴

𝑏 𝜌
𝐴
𝑏 (𝑡𝐴)

]︀ (5.50)

=

(︂
|𝐶𝐻 |2 𝐶𝐻𝐶

*
𝑉 𝜅DTF(𝑡𝐴)

𝐶*𝐻𝐶𝑉 𝜅DTF(𝑡𝐴)
* |𝐶𝑉 |2

)︂
(5.51)

with the new decoherence function

𝜅DTF(𝑡𝐴) =
3− 𝑒−(1−𝐾)(2𝜋𝜎Δ𝑡𝑓 )2 cosh[(1−𝐾)(2𝜋𝜎)2Δ𝑡𝑓Δ𝑛𝑡𝐴]

3− 𝑒−(1−𝐾)(2𝜋𝜎Δ𝑡𝑓 )2

× 𝑒𝑖2𝜋𝜇Δ𝑛𝑡𝐴− 1

2
(2𝜋𝜎Δ𝑛𝑡𝐴)2 .

(5.52)

In Fig. 5.10, we have plotted the dead-time filtered trace-distance dynamics of
the initial state pair | ±±⟩ = 1

2(|𝐻𝐻⟩± |𝐻𝑉 ⟩± |𝑉 𝐻⟩+ |𝑉 𝑉 ⟩) with different path
differences Δ𝑥𝑓 = 𝑐Δ𝑡𝑓 and correlation coefficients 𝐾, which Alice can estimate
by fitting |𝜅DTF(𝑡𝐴)| to her measurement data. Together, the height and location
of the recoherence peak give rough estimates for 𝐾 and |Δ𝑡𝑓 |, respectively. This
goes drastically against the conventional use of HOM interference in parameter es-
timation. Typically, one can estimate either Δ𝑡𝑓 or 𝐾 by looking at both exit paths.
Here, we access both by looking at one of the exit paths only. Still, Fig. 5.10 tells that
our protocol quickly becomes futile with increasing 𝐾. This is due to the increasing
share of 𝑏-photons.

2In fact, the same decoherence function could be obtained without the simplifying assumption about
the initial polarization state.
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Figure 5.10. Dead-time filtered trace-distance dynamics as functions of 𝑥𝐴 = 𝑐𝑡𝐴, with different
values of Δ𝑥𝑓 = 𝑐Δ𝑡𝑓 and 𝐾. (a) 𝐾 = −1.0, (b) 𝐾 = −0.9, (c) 𝐾 = −0.8. In all panels, 𝜇 =

𝑐/(780 nm), 𝜎 = 5.68× 1011 Hz, Δ𝑛 = 0.009.

Let us take a closer look at how long the dead time should be for our protocol
to work. With the maximum thickness 𝑑 of the birefringent medium, the earliest
possible arrival time of the 𝑏-photons is, on average, 𝑡earliest = min{𝑛𝐻 , 𝑛𝑉 }𝑑/𝑐,
while the latest possible arrival time is, on average, 𝑡latest = max{𝑛𝐻 , 𝑛𝑉 }𝑑/𝑐 +
|Δ𝑡𝑓 |. Hence, for the second 𝑏-photon to arrive at the photodetector during its dead
time 𝑡𝐷, we need to have

𝑡𝐷 ≥ 𝑡latest − 𝑡earliest =
|Δ𝑛|𝑑
𝑐

+ |Δ𝑡𝑓 |. (5.53)

Note that the photons were treated as localized particles. This is permitted, since
detecting one localizes the other (see the earlier discussion in Chapter 4). Note also,
that here we considered ideal dead-time filtering. That is, 𝑐- and 𝑏-photons are de-
tected in the ratio of 𝑃𝑐 : 𝑃

𝐴
𝑏 . In a more rigorous theory, one should take into account

the photon pair production rate of, e.g., SPDC. Namely, it might happen that (future)
𝑐-photons are produced right after (future) 𝑏-photons so that some of the 𝑐-photons
remain undetected as well. While this formalization is left for future research, the
current study is important for bringing to light the dead time affecting the (observ-
able) open-system dynamics.

5.2.4 Dynamical delayed-choice quantum eraser

In the previous Subsection, we observed that the c- and b-photons behave differently
under dephasing. This brings up the possibility of Alice distinguishing between co-
incidence and bunching events without communicating with Bob. In this Subsection,
we derive the maximum probability for Alice to do so. To avoid bias, we assume
that we are well outside the HOM dip, i.e., (1 −𝐾)(2𝜋𝜎Δ𝑡𝑓 )

2 ≫ 0, meaning that
𝑃𝑐 ≈ 𝑃𝑏 ≈ 1/2. Because we are interested in retroactively changing these proba-
bilities, we are actually introducing a new kind of delayed-choice quantum eraser.
Delayed-choice quantum erasers erase the distinguishing information of the input
paths after the beam splitter and therefore revive the interference pattern. Com-
monly, in the case of HOM interference, orthogonal polarizations mark the input
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paths, whereas the signature dip (or peak) is revived with polarizers [133]. Here,
we mark the input paths with distinct delay and revive the interference pattern with
delay-compensating dephasing. Hence, we call our model dynamical delayed-choice
quantum eraser.

The trace distance of the c- and b-photons’ polarization states, which we wish to
maximize, is

𝒟tr
(︀
𝜌𝐴𝑐 (𝑡𝐴), 𝜌

𝐴
𝑏 (𝑡𝐴)

)︀
=

1

2
tr|𝜌𝐴𝑐 (𝑡𝐴)− 𝜌𝐴𝑏 (𝑡𝐴)| (5.54)

≈
⃒⃒
𝐶𝐻𝐻

[︀
𝐶*𝐻𝑉 𝑒

− 1

2
𝛾+(𝑡𝐴) + 𝐶*𝑉 𝐻𝑒

− 1

2
𝛾−(𝑡𝐴)

]︀

+ 𝐶*𝑉 𝑉

[︀
𝐶𝐻𝑉 𝑒

− 1

2
𝛾+(𝑡𝐴) + 𝐶𝑉 𝐻𝑒

− 1

2
𝛾−(𝑡𝐴)

]︀⃒⃒
, (5.55)

where 𝛾±(𝑡𝐴) = (2𝜋𝜎)2
[︀
Δ𝑡2𝑓 −2𝐾Δ𝑡𝑓 (Δ𝑡𝑓 ±Δ𝑛𝑡𝐴)+(Δ𝑡𝑓 ±Δ𝑛𝑡𝐴)

2
]︀
. Noticing

that when 𝑒−
1

2
𝛾+(𝑡𝐴) = 1, 𝑒−

1

2
𝛾−(𝑡𝐴) ≈ 0 (and vice versa), we can focus on the terms

with 𝛾+(𝑡𝐴) and set 𝐶𝑉 𝐻 = 0. Vertical polarization from path 0 and horizontal
polarization from path 1 would never intersect anyway. Simplifying the problem by
letting 𝐶𝜆0𝜆1

∈ R+, we obtain the trace distance 1/
√
2 with 𝐶𝐻𝐻 = 𝐶𝑉 𝑉 = 1/2,

𝐶𝐻𝑉 = 1/
√
2, 𝐾 = −1, and 𝑡𝐴 = −2Δ𝑡𝑓/Δ𝑛. With these values, but keeping the

interaction time 𝑡𝐴 free, the polarization states corresponding to c- and b-photons
read

𝜌𝐴𝑐 (𝑡𝐴) =
1

2

(︂
1 𝜅−(𝑡𝐴)

𝜅−(𝑡𝐴)
* 1

)︂
(5.56)

and

𝜌𝐴𝑏 (𝑡𝐴) =
1

2

(︂
1 𝜅+(𝑡𝐴)

𝜅+(𝑡𝐴)
* 1

)︂
, (5.57)

where

𝜅±(𝑡𝐴) =
1√
2
𝑒𝑖2𝜋𝜇Δ𝑛𝑡𝐴

[︁
𝑒−

1

2
(2𝜋𝜎Δ𝑛𝑡𝐴)2 ± 𝑒−

1

2
(2𝜋𝜎)2(Δ𝑛𝑡𝐴+2Δ𝑡𝑓 )2

]︁
. (5.58)

In Fig. 5.11, we have plotted 𝜅±(𝑡𝐴), 𝒟tr
(︀
𝜌𝐴𝑐 (𝑡𝐴), 𝜌

𝐴
𝑏 (𝑡𝐴)

)︀
, and the trajectories

of the c- and b-photons’ polarization states inside the Bloch ball, when the initial
polarization state is (|Φ+⟩+ |𝐻𝑉 ⟩)/

√
2. From Fig. 5.11, we see that the trajectories

of the two polarization states overlap until they first become fully mixed. Then, at the
Bloch ball’s origin, they split up to opposite directions and experience recoherence.

With equally probable states 𝜌1 and 𝜌2, the probability to correctly guess the
received state is [134]

𝑃guess =
1

2

[︀
1 +𝒟tr(𝜌1, 𝜌2)

]︀
. (5.59)

Using this property, Alice can revive HOM peaks such as the one shown in Fig. 5.12.
An experimental realization would go as follows. After applying dephasing noise for
the duration of 𝑡𝐴, Alice could rotate her states 𝜋/2 around the axis �̂� = (sin𝜙, cos𝜙,
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Figure 5.11. Dephasing dynamics of the initial state (|Φ+⟩+|𝐻𝑉 ⟩)/
√
2. (a) The 𝑐-photon dynamics.

(b) The 𝑏-photon dynamics. (c) The trace distance of 𝑐- and 𝑏-photon polarization states. (d) The
dephasing dynamics on the 𝑥𝑦-plane of the Bloch ball. 𝜎 = 5.68 × 1011 Hz, Δ𝑛 = 0.009, Δ𝑥𝑓 =

𝑐Δ𝑡𝑓 = −300 µm, and 𝐾 = −1. For illustrative purposes, 𝜇 = 𝜎.

0), where 𝜙 = 2𝜋𝜇Δ𝑛𝑡𝐴, and use a polarizing beam splitter. First, the rotation op-
erator

𝑅�̂�

(︁𝜋
2

)︁
=

1√
2

(︂
1 −𝑒𝑖𝜙

𝑒−𝑖𝜙 1

)︂
(5.60)

would transform the states 𝜌𝐴𝑐 (𝑡𝐴) and 𝜌𝐴𝑏 (𝑡𝐴) into

𝑅�̂�

(︁𝜋
2

)︁
𝜌𝐴𝑐 (𝑡𝐴)𝑅�̂�

(︁𝜋
2

)︁†
≈

1

2

(︃
1 + 1√

2
𝑒−

1

2
(2𝜋𝜎)2(Δ𝑛𝑡𝐴+2Δ𝑡𝑓 )2 0

0 1− 1√
2
𝑒−

1

2
(2𝜋𝜎)2(Δ𝑛𝑡𝐴+2Δ𝑡𝑓 )2

)︃ (5.61)

and

𝑅�̂�

(︁𝜋
2

)︁
𝜌𝐴𝑏 (𝑡𝐴)𝑅�̂�

(︁𝜋
2

)︁†
≈

1

2

(︃
1− 1√

2
𝑒−

1

2
(2𝜋𝜎)2(Δ𝑛𝑡𝐴+2Δ𝑡𝑓 )2 0

0 1 + 1√
2
𝑒−

1

2
(2𝜋𝜎)2(Δ𝑛𝑡𝐴+2Δ𝑡𝑓 )2

)︃
.

(5.62)

Then, after separating the 𝐻 and 𝑉 components with a polarizing beam splitter,
𝑃guess of all photons in the 𝐻 (𝑉 ) branch would be 𝑐-photons (𝑏-photons).

The maximum probability achieved at 𝑡𝐴 = −2Δ𝑡𝑓/Δ𝑛 is 𝑃guess = (1 +√
2)/(2

√
2) ≈ 0.854. Should 𝑃guess = 1 be possible, the dynamical delayed-choice

quantum eraser could be applied in mutual quantum key generation. For example,
every time Alice and Bob3 detect a 𝑐-photon in their 𝐻 branches, they write down

3Bob’s protocol goes identically.
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Figure 5.12. HOM peak resulting from the dynamical delayed-choice quantum eraser and the same
parameters as in Fig. 5.11. In the 𝐻 (𝑉 ) branch of the experimental proposition, 𝑃guess is the
“revived” 𝑃𝑐 (𝑃𝑏).

“0”. And every time they either detect 𝑏-photons in their 𝑉 branches or not, when
they ought to, they write down “1”. Such a protocol would require at least two an-
cillas, one for each party, to both increase 𝑃guess and let the parties know when to
expect a photon(s). Alternatively, one could use nonabsorbing parity detectors to
check, whether 0, 1, or 2 photons were present [135]. Such detectors could also be
used, at least in theory, to enhance the signal-to-noise ratio in the preceding Subsec-
tion, as signal photons would not need to be filtered out.
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6 Quantum probing with data processing
inequalities

The parameter estimation methods introduced in the previous Chapter were based
on sequential measurements under known system-environment coupling. But is it
possible to obtain relevant information about some parameter of interest using only
one point of (interaction) time and an unknown system-environment coupling? In this
Chapter, we will find out that the answer is yes. We begin with a brief introduction
to quantum probing and data processing inequalities, after which we focus on the
familiar polarization-frequency interaction model. Finally, we apply our quantum
probing protocol in snapshot verification of non-Markovianity.

6.1 Quantum probing and data processing inequalities
In quantum probing, one typically wishes to learn something about a system 𝑆 with-
out making direct measurements on it [136; 137; 138]; With projective measure-
ments, the state of the system would collapse (see the earlier discussion in Chap-
ter 2). Instead, one can couple the system 𝑆 with a so-called probe 𝑃 and measure
the latter one. Ideally, the system 𝑆 gets disturbed only little, and once probed, it still
exists. This is in stark contrast to traditional state tomography, where the state of a
system can only be reconstructed.

Denoting the initial state of a system 𝑆 by 𝜉(0) and the initial state of a probe
𝑃 by 𝜌(0), their time-dependent coupling is given by some unitary, 𝑈(𝑡)𝜌(0) ⊗
𝜉(0)𝑈(𝑡)†. The state of the probe at some later point of time is then obtained as the
usual partial trace, 𝜌(𝑡) = Φ𝑡

(︀
𝜌(0)

)︀
= tr𝑆 [𝑈(𝑡)𝜌(0) ⊗ 𝜉(0)𝑈(𝑡)†]. With a known

coupling, we may be able to say something about 𝜉(𝑡) after measurements on 𝜌(𝑡).
For example, say we are interested in the standard deviation 𝜎 of the frequency dis-
tribution of a single photon, which we know to be (sufficiently close to) Gaussian.
Then, using the photon’s polarization as the probe, and coupling the two in birefrin-
gent medium, standard state tomography gives us

𝜎 =
1

2𝜋|Δ𝑛|𝑡

√︃
ln

1− 𝑆3(𝑡)2

𝑆1(𝑡)2 + 𝑆2(𝑡)2
, (6.1)

where 𝑆𝑗(𝑡) are time-dependent Stokes parameters. In this example, unfortunately,
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the system and probe are carried by the same physical entity, which gets destroyed
in each run of standard state tomography.

But what if neither the coupling nor the interaction time are known? Data pro-
cessing inequalities provide a powerful tool to handle such situations. Consider two
system states, 𝜉1 and 𝜉2, and two probe states, 𝜌1 and 𝜌2. With 𝜌1 interacting with 𝜉1
and 𝜌2 with 𝜉2, it can be shown that [67]

ℱ𝛼(𝜌1, 𝜌2)ℱ𝛼(𝜉1, 𝜉2) ≤ ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
∀𝛼 ∈ [1/2, 1), (6.2)

where ℱ𝛼 is the so-called 𝛼-fidelity

ℱ𝛼(𝜌1, 𝜌2) = tr
[︁(︀
𝜌

1−𝛼

2𝛼

2 𝜌1𝜌
1−𝛼

2𝛼

2

)︀𝛼]︁
, 𝛼 ∈ (0, 1), (6.3)

and Φ𝑗 is a CPTP map induced by 𝜉𝑗 . With 𝛼 = 1/2, we have ℱ1/2(𝜌1, 𝜌2) =√︀
ℱ(𝜌1, 𝜌2) [see Eq. (4.40)]. We can write similar inequality in terms of the trace

distance [68]. Namely,

𝒟tr
(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
≤ 𝒟tr(𝜌1, 𝜌2) +𝒟tr(𝜉1, 𝜉2), (6.4)

which reduces to Eq. (3.63) with 𝜉1 = 𝜉2.
Now, the trick is to run a measurement scheme (at least) twice and compare the

results using Eq. (6.2) or (6.4). In the first run, we have 𝜉1 = 𝜉(𝑥, 𝑦1). In the
second, 𝜉2 = 𝜉(𝑥, 𝑦2). That is, we change some accessible (though not necessarily
known) control parameter 𝑦𝑗 between the runs. Here, 𝑥 denotes the parameter of
interest. Knowing the analytic forms of 𝜉𝑗 , we may obtain bounds for 𝑥 by solving
ℱ𝛼(𝜉1, 𝜉2) and 𝒟tr(𝜉1, 𝜉2). With 𝛼-fidelity, the 𝛼-parameter can be optimized to find
the tightest bound(s) as long as it is in the interval [1/2, 1). Using the same probe
state in both runs (𝜌1 = 𝜌2 =: 𝜌), Eqs. (6.2) and (6.4) simplify, as ℱ𝛼(𝜌, 𝜌) = 1 and
𝒟tr(𝜌, 𝜌) = 0. It is crucial to notice that, although the forms of the system states 𝜉𝑗
inducing the channels Φ𝑗 are assumed as known, the channels Φ𝑗 themselves need
not be known. Not knowing them, we pay the price of obtaining only bounds for 𝑥
instead of exact values.

6.2 Probing of the frequency spectrum
Let us illustrate our probing protocol with two photonic examples. Here, the fre-
quency degree of freedom of a single photon is the system, and the photon’s polar-
ization is the probe. In both examples, we use classical frequency states with zero
coherences,

𝜉 =

∫︁
𝑑𝑓 |𝑔(𝑓)|2|𝑓⟩⟨𝑓 |. (6.5)
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However, assuming that 𝜉 induces the same channel Φ as the state1

𝜉′ =
∑︁

𝑗

𝑝𝑗

∫︁
𝑑𝑓𝑑𝑓 ′𝑔𝑗(𝑓)𝑔𝑗(𝑓

′)*|𝑓⟩⟨𝑓 ′|, (6.6)

where
∑︀

𝑗 𝑝𝑗 = 1 and
∑︀

𝑗 𝑝𝑗 |𝑔𝑗(𝑓)|2 = |𝑔(𝑓)|2, our results also hold for 𝜉′ that
can be pure. That is, if a probed value of 𝑥 satisfies the data processing inequali-
ties with frequency states of the form (6.5), it also satisfies them with states of the
form (6.6). Furthermore, it can be much easier to solve ℱ𝛼(𝜉1, 𝜉2) and 𝒟tr(𝜉1, 𝜉2)

with the classical states.
Before proceeding with the actual examples, let us prove the (perhaps counter-

intuitive) claim about classical states producing tighter bounds than quantum states.
Defining the channel Ω with the (uncountable set of) Kraus operators |𝑓⟩⟨𝑓 |, we get

Ω(𝜉′) =

∫︁
𝑑𝑓 |𝑓⟩⟨𝑓 |

∑︁

𝑗

𝑝𝑗

∫︁
𝑑𝑓 ′𝑑𝑓 ′′𝑔𝑗(𝑓

′)𝑔𝑗(𝑓
′′)*|𝑓 ′⟩⟨𝑓 ′′|𝑓⟩⟨𝑓 | (6.7)

=
∑︁

𝑗

𝑝𝑗

∫︁
𝑑𝑓𝑔𝑗(𝑓)𝑔𝑗(𝑓)

*|𝑓⟩⟨𝑓 | (6.8)

=

∫︁
𝑑𝑓 |𝑔(𝑓)|2|𝑓⟩⟨𝑓 |. (6.9)

That is, 𝜉 can be obtained from 𝜉′ with a CPTP map. Now, using Eq. (6.2) and equal
probe states, we can write

ℱ𝛼(𝜉
′
1, 𝜉
′
2) ≤ ℱ𝛼

(︀
Ω(𝜉′1),Ω(𝜉

′
2)
)︀

(6.10)

= ℱ𝛼(𝜉1, 𝜉2) (6.11)

⇔ ℱ𝛼(𝜌1, 𝜌2)ℱ𝛼(𝜉
′
1, 𝜉
′
2) ≤ ℱ𝛼(𝜌1, 𝜌2)ℱ𝛼(𝜉1, 𝜉2) (6.12)

≤ ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
. (6.13)

In the first row, we used the symmetry of Eq. (6.2); It does not matter whether we
have the CPTP map acting on the system or the probe. Similar calculation holds with
the trace distance.

6.2.1 Width and distance

Deriving the bounds

Here, we show how to probe the width 𝜎 and distance Δ𝜇 := |𝜇1 − 𝜇2| of two

Gaussian frequency distributions |𝑔𝑗(𝑓)|2 = exp
[︁
− 1

2

(︁
𝑓−𝜇𝑗

𝜎

)︁2]︁
/
√
2𝜋𝜎2, 𝑗 = 1, 2.

1This is a reasonable assumption, since partial trace typically ignores coherences.
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Associating |𝑔𝑗(𝑓)|2 with 𝜉𝑗 , we get

ℱ𝛼(𝜉1, 𝜉2) = tr

[︃(︁[︁ ∫︁
𝑑𝑓 |𝑔2(𝑓)|2|𝑓⟩⟨𝑓 |

]︁ 1−𝛼

2𝛼

∫︁
𝑑𝑓 ′|𝑔1(𝑓 ′)|2|𝑓 ′⟩⟨𝑓 ′|

×
[︁ ∫︁

𝑑𝑓 ′′|𝑔2(𝑓 ′′)|2|𝑓 ′′⟩⟨𝑓 ′′|
]︁ 1−𝛼

2𝛼
)︁𝛼
]︃

(6.14)

=

∫︁
𝑑𝑓 |𝑔2(𝑓)|2(1−𝛼)|𝑔1(𝑓)|2𝛼 (6.15)

= 𝑒−(1−𝛼)𝛼
Δ𝜇2

2𝜎2 . (6.16)

Then, substituting Eq. (6.16) in Eq. (6.2) yields

Δ𝜇

𝜎
≥

⎯⎸⎸⎷ 2

𝛼(𝛼− 1)
ln

[︃
ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀

ℱ𝛼(𝜌1, 𝜌2)

]︃
. (6.17)

For this inequality to be useful at all, the argument of the logarithm needs to be at
most one.

If either the width or distance is known, we can move it to the right-hand side of
Eq. (6.17) and estimate the remaining one. In the following experiment, for example,
we are only interested in 𝜎, for which we get the inequality

𝜎 ≤
√︃

𝛼(𝛼− 1)Δ𝜇2

2 ln
[︀
ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
/ℱ𝛼(𝜌1, 𝜌2)

]︀ . (6.18)

Actually, because the 𝛼-fidelity is not symmetric with respect to its inputs, Eq. (6.18)
might not give the tightest bound. Defining

𝐵1 :=

√︃
𝛼(𝛼− 1)Δ𝜇2

2 ln
[︀
ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
/ℱ𝛼(𝜌1, 𝜌2)

]︀ , (6.19)

𝐵2 :=

√︃
𝛼(𝛼− 1)Δ𝜇2

2 ln
[︀
ℱ𝛼

(︀
Φ2(𝜌2),Φ1(𝜌1)

)︀
/ℱ𝛼(𝜌2, 𝜌1)

]︀ , (6.20)

and 𝐵inf := inf{𝐵1, 𝐵2}, we get 𝜎 ≤ 𝐵inf.

Experimental setup

The experimental setup is presented in Fig. 6.1. The photon source (PS) is a type-I
BBO crystal, which we pump with a continuous-wave laser of the wavelength 405
nm. The crystal randomly produces photon pairs of the wavelength 810 nm through
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Figure 6.1. Experimental setup of probing 𝜎. Photon pairs are produced in PS. The idler photons
go to detector 𝐷0, triggering CC to expect the signal photons. The frequency states 𝜉𝑗 of the
signal photons are produced with an IF modifying 𝜇𝑗 but keeping 𝜎 intact. The probe states 𝜌𝑗
are coupled with 𝜉𝑗 in QPs, whose total thickness and rotation angles we can control, allowing us
to choose between known and unknown coupling. Finally, HWP, QWP, and PBS are used in state
tomography.

the SPDC process. The idler photons in the upper branch are registered by the single-
photon detector 𝐷0, triggering the coincidence counting electronics (CC) to monitor
the single-photon detector 𝐷1 for data collection of the signal photons. The signal
photons’ polarization is prepared to the initial probe state 𝜌1 = 𝜌2 = |+⟩⟨+| by
guiding the photons through a polarizer in PS. Then, the signal photons proceed to an
IF. Tilting the IF changes its transmission bandwidth and, consequently, the central
frequencies 𝜇𝑗 of the frequency spectra, while keeping their standard deviation 𝜎
constant. This allows us to control Δ𝜇 and prepare the initial frequency states 𝜉1
and 𝜉2. Note that Δ𝜇 needs to be nonzero for our protocol to work. We fixed it as
Δ𝜇 = 7.95× 1011 Hz.

The system (frequency) and probe (polarization) are coupled, when the signal
photons travel through birefringent quartz plates (QPs). This creates the channels Φ1

and Φ2 that change the probe states 𝜌1 and 𝜌2, respectively. After the quartz plates,
we perform standard polarization tomography on the states Φ1(𝜌1) and Φ2(𝜌2) by
passing the signal photons through a combination of HWP, QWP, and PBS. With
each measurement basis, we used the data accumulation time of 60 s. We used multi-
ple different thicknesses and orientations of quartz plates, corresponding to different
system-probe couplings 𝑈 .

In what follows, we shall refer to parallel quartz plates as “known coupling”.
However, we emphasize that the coupling need not be known; We do not use the
known forms of Φ𝑗 as in Eq. (6.1). Hence, they might as well be unknown. A truly
unknown coupling can be implemented with randomly oriented quartz plates.

77



Olli Siltanen

Figure 6.2. Upper bounds of 𝜎 as functions of the thickness of quartz, in units of the actual value of
𝜎. Blue crosses correspond to known coupling (with the blue curve being the theoretical prediction),
while red slanted crosses correspond to unknown coupling. The error bars were calculated using a
similar Monte Carlo method to that given by Eq. (5.23).

Experimental results

The experimental results are shown in Fig. 6.2. The blue crosses are the upper bounds
𝐵inf with known coupling, i.e., quartz plates in the same orientation, while the red
slanted crosses correspond to (truly) unknown coupling, i.e., randomly rotated quartz
plates. The upper bounds are given in units of the actual value of 𝜎, which was
determined to be 5.68× 1011 Hz. At each measurement point, tightest bounds were
given by 𝛼 ≈ 0.999. We repeated the measurements with the integration time of
10 s, resulting in bounds differing only by 4.19 % from the bounds in Fig. 6.2, on
average. This goes to illustrate the robustness of our probing protocol.

Because of the (nearly) identical probe states, ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
is only slightly

smaller than ℱ𝛼(𝜌1, 𝜌2) with short interaction times, and similarly with the other or-
der of the inputs. Hence, the logarithms in Eqs. (6.19) and (6.20) start from close to
zero, and the bounds are quite large. With long interaction times, both probe states
become fully mixed and ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
≈ ℱ𝛼(𝜌1, 𝜌2) ≈ 1. Hence, the loga-

rithms in Eqs. (6.19) and (6.20) are again close to zero, meaning large bounds. At 20
mm of quartz, we obtained ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
> ℱ𝛼(𝜌1, 𝜌2), so the protocol did

not give real-valued bounds.

It is in between that ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
differentiates the most from ℱ𝛼(𝜌1, 𝜌2).

With known coupling, the tightest bound is achieved at 7 mm of quartz. Strikingly, at
15 mm, the unknown coupling gives much tighter bounds than the known coupling,
1.5𝜎 < 2.9𝜎. It would be an interesting task, e.g., for machine learning to find the
coupling giving the smallest upper bound.
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6.2.2 Convex coefficients

Deriving the bounds

Here, we show how to probe the convex coefficient 𝐴 of the convex combination
𝜉1 = 𝐴𝜉2 + (1−𝐴)𝜉3, where the frequency distributions of 𝜉2 and 𝜉3 are Gaussians
of the same width but different central frequency, 𝜇2 ̸= 𝜇3. This time, by using three
probe states and 𝐴 itself as the control parameter, we obtain both upper and lower
bounds for 𝐴.

Using the states 𝜉1 (unknown 𝐴) and 𝜉2 (𝐴 = 1), we get

ℱ𝛼(𝜉1, 𝜉2) = tr

[︃(︁[︁ ∫︁
𝑑𝑓 |𝑔2(𝑓)|2|𝑓⟩⟨𝑓 |

]︁ 1−𝛼

2𝛼
[︁
𝐴

∫︁
𝑑𝑓 ′|𝑔2(𝑓 ′)|2|𝑓 ′⟩⟨𝑓 ′|

+ (1−𝐴)

∫︁
𝑑𝑓 ′|𝑔3(𝑓 ′)|2|𝑓 ′⟩⟨𝑓 ′|

]︁[︁ ∫︁
𝑑𝑓 ′′|𝑔2(𝑓 ′′)|2|𝑓 ′′⟩⟨𝑓 ′′|

]︁ 1−𝛼

2𝛼
)︁𝛼
]︃

(6.21)

= tr

[︃(︁
𝐴

∫︁
𝑑𝑓 |𝑔2(𝑓)|

2

𝛼 |𝑓⟩⟨𝑓 |

+ (1−𝐴)

∫︁
𝑑𝑓 |𝑔2(𝑓)|

2(1−𝛼)

𝛼 |𝑔3(𝑓)|2|𝑓⟩⟨𝑓 |
)︁𝛼
]︃

(6.22)

≥ tr
[︁
𝐴𝛼

∫︁
𝑑𝑓 |𝑔2(𝑓)|2|𝑓⟩⟨𝑓 |

]︁
(6.23)

= 𝐴𝛼 (6.24)

⇔ 𝐴 ≤
[︁
ℱ𝛼(𝜉1, 𝜉2)

]︁ 1

𝛼 (6.25)

≤
[︃
ℱ𝛼

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀

ℱ𝛼(𝜌1, 𝜌2)

]︃ 1

𝛼

. (6.26)

Similar calculation with the states 𝜉1 (unknown 𝐴) and 𝜉3 (𝐴 = 0) yields

𝐴 ≥ 1−
[︃
ℱ𝛼

(︀
Φ1(𝜌1),Φ3(𝜌3)

)︀

ℱ𝛼(𝜌1, 𝜌3)

]︃ 1

𝛼

. (6.27)

Using the trace distance instead, the state pair 𝜉1 and 𝜉2 gives

𝒟tr(𝜉1, 𝜉2) =
1

2
tr
⃒⃒
⃒
∫︁
𝑑𝑓
[︁
(𝐴− 1)|𝑔2(𝑓)|2 + (1−𝐴)|𝑔3(𝑓)|2

]︁
|𝑓⟩⟨𝑓 |

⃒⃒
⃒ (6.28)

≤ 1−𝐴

2
tr
[︁ ∫︁

𝑑𝑓
(︁
|𝑔2(𝑓)|2 + |𝑔3(𝑓)|2

)︁
|𝑓⟩⟨𝑓 |

]︁
(6.29)

= 1−𝐴 (6.30)

⇔ 𝐴 ≤ 1−𝒟tr(𝜉1, 𝜉2) (6.31)
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Figure 6.3. Experimental setup of probing 𝐴. Photon pairs are produced in PS. The idler photons
trigger CC to expect the signal photons. The frequency states of the signal photons are produced
with a MZ interferometer, inside of which we can control the distance of the Gaussian peaks with
IFs and their heights with the polarizers P1, P2, and P3. The probe states are coupled with the
system states in QPs. Finally, HWP, QWP, and P4 are used in state tomography.

≤ 1−𝒟tr
(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
+𝒟tr

(︀
𝜌1, 𝜌2) (6.32)

and the states 𝜉1 and 𝜉3

𝐴 ≥ 𝒟tr
(︀
Φ1(𝜌1),Φ3(𝜌3)

)︀
−𝒟tr

(︀
𝜌1, 𝜌3). (6.33)

Combining all the above results, we obtain the following bounds for 𝐴:

1−
[︃
ℱ𝛼3

(︀
Φ1(𝜌1),Φ3(𝜌3)

)︀

ℱ𝛼3
(𝜌1, 𝜌3)

]︃ 1

𝛼3

≤𝐴 ≤
[︃
ℱ𝛼2

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀

ℱ𝛼2
(𝜌1, 𝜌2)

]︃ 1

𝛼2

, (6.34)

𝒟tr
(︀
Φ1(𝜌1),Φ3(𝜌3)

)︀
−𝒟tr

(︀
𝜌1, 𝜌3) ≤𝐴 ≤ 1−𝒟tr

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
+𝒟tr

(︀
𝜌1, 𝜌2).

(6.35)

Note that we need not have 𝛼2 = 𝛼3. Therefore, the 𝛼-parameters in Eq. (6.34) can
be optimized independently of each other to find the tightest bounds. Note also, that
here we need not know 𝜇2, 𝜇3, or 𝜎.

Our protocol can be applied with any number of convex coefficients. With 𝑁
coefficients, we would have

𝜉1 =

𝑁+1∑︁

𝑗=2

𝐴𝑗𝜉𝑗 , (6.36)

and so we would need 𝑁 + 2 probe states, one for each frequency state appearing in
Eq. (6.36).

Experimental setup

The experimental setup is presented in Fig. 6.3. The signal and idler photons are pro-
duced as before. Again, all the probe states are approximately |+⟩⟨+|. We choose
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Figure 6.4. Experimental results of probing 𝐴. Blue crosses = experimental bounds obtained with
𝛼-fidelity [Eq. (6.34)]. Blue curves = theoretical predictions of the 𝛼-fidelity bounds. Red, slanted
crosses = experimental bounds obtained with trace distance [Eq. (6.35)]. Red, dashed durves =
theoretical predictions of the trace-distance bounds. The error bars were calculated with the same
Monte Carlo method as previously. (a) 𝜇2 = 𝑐/(810 nm), 𝜇3 = 𝑐/(830 nm), and 𝐴 = 0.5122. (b)
𝜇2 = 𝑐/(810 nm), 𝜇3 = 𝑐/(830 nm), and 𝐴 = 0.6377. (c) 𝜇2 = 𝑐/(810 nm), 𝜇3 = 𝑐/(820 nm), and
𝐴 = 0.6377.

to use |+⟩⟨+| due to the known interaction being dephasing. The system state 𝜉1
is prepared by guiding the signal photons through a MZ interferometer, inside of
which we have two IFs and two polarizers (P). The IFs are used to control the cen-
tral frequencies, while the polarizers—together with the polarizer P3 following the
interferometer—are used to control the convex coefficient. 𝜉2 is prepared by blocking
the lower path, and 𝜉3 is prepared by blocking the upper path.

After state preparation, we couple the system (frequency) and probe (polariza-
tion) in quartz plates, with identical alignment corresponding to known coupling and
random to unknown. Finally, we perform standard polarization tomography and ob-
tain the evolved probe states Φ1(𝜌1), Φ2(𝜌2), and Φ3(𝜌3).

Experimental results

The experimental results are shown in Fig. 6.4. Here, we considered different cen-
tral frequencies 𝜇2 and 𝜇3, convex coefficients 𝐴, and both the 𝛼-fidelities (blue
crosses and solid curves) and trace distances (red, slanted crosses and dashed curves).
Clearly, in each case, trace distance gives tighter bounds than𝛼-fidelity. In Figs. 6.4(a)
and (b), at 1.5 mm of quartz, the theoretical predictions (curves) leave particularly
little room for the convex coefficient. With 𝛼-fidelity, the tightest bounds were ob-
tained with 𝛼2 = 𝛼3 = 1/2.

In Fig. 6.4, Δ𝜇 := |𝜇2 − 𝜇3| gives the oscillation frequency of the bounds.
As we favor 𝜇2 over 𝜇3 by increasing 𝐴 in Fig. 6.4(b), Φ1(𝜌1) approaches Φ2(𝜌2),
meaning larger ℱ𝛼2

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
and smaller 𝒟tr

(︀
Φ1(𝜌1),Φ2(𝜌2)

)︀
. Hence, the

upper bounds become looser. At the same time, Φ1(𝜌1) distances from Φ3(𝜌3), and
the lower bounds become tighter. Moreover, as we bring the two peaks closer to each
other in Fig. 6.4(c), the oscillation frequency Δ𝜇 decreases.
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We also ran the experiments with randomly rotated quartz plates, but this time
the bounds became looser.

6.3 Snapshot verification of non-Markovianity
In Chapter 3, we had the example of a double-peaked Gaussian giving rise to non-
monotonic trace-distance dynamics, i.e., non-Markovianity. Here, at last, we define
the non-Markovian parameter space of this model. Using the familiar single-photon
dephasing model, we have 𝜅𝑗(𝑡) = 𝑒𝑖2𝜋𝜇𝑗Δ𝑛𝑡−(2𝜋𝜎Δ𝑛𝑡)2/2 for the Gaussian spectrum
centered around 𝜇𝑗 . So, having a double-peaked Gaussian with the weights 𝐴 and
1−𝐴, we obtain

𝜅1(𝑡) = 𝐴𝜅2(𝑡) + (1−𝐴)𝜅3(𝑡) (6.37)

⇒ |𝜅1(𝑡)| =
[︁
𝐴2𝑒−(2𝜋𝜎Δ𝑛𝑡)2 + (1−𝐴)2𝑒−(2𝜋𝜎Δ𝑛𝑡)2

+ 2𝐴(1−𝐴) cos(2𝜋Δ𝜇Δ𝑛𝑡)𝑒−(2𝜋𝜎Δ𝑛𝑡)2
]︁ 1

2 (6.38)

=
√︀

1− 2ℎ(𝐴) + 2ℎ(𝐴) cos(2𝜋Δ𝜇Δ𝑛𝑡)𝑒−
1

2
(2𝜋𝜎Δ𝑛𝑡)2 , (6.39)

where ℎ(𝐴) := 𝐴(1−𝐴) and Δ𝜇 := |𝜇2 − 𝜇3|.
Let us proceed by deriving the values of 𝐴 with which |𝜅1(𝑡)| increases. In the

following, we will also use 𝜃(Δ𝜇, 𝜎,Δ𝑛𝑡) := 4𝜋𝜎2Δ𝑛𝑡−4𝜋𝜎2Δ𝑛𝑡 cos(2𝜋Δ𝜇Δ𝑛𝑡)−
Δ𝜇 sin(2𝜋Δ𝜇Δ𝑛𝑡).

𝜕

𝜕𝑡
|𝜅1(𝑡)| = − ℎ(𝐴)2𝜋Δ𝜇Δ𝑛 sin(2𝜋Δ𝜇Δ𝑛𝑡)√︀

1− 2ℎ(𝐴) + 2ℎ(𝐴) cos(2𝜋Δ𝜇Δ𝑛𝑡)
𝑒−

1

2
(2𝜋𝜎Δ𝑛𝑡)2

−
√︀

1− 2ℎ(𝐴) + 2ℎ(𝐴) cos(2𝜋Δ𝜇Δ𝑛𝑡)(2𝜋𝜎Δ𝑛)2𝑡𝑒−
1

2
(2𝜋𝜎Δ𝑛𝑡)2 > 0

(6.40)

⇔ 0 < −ℎ(𝐴)Δ𝜇 sin(2𝜋Δ𝜇|Δ𝑛|𝑡)
− [1− 2ℎ(𝐴) + 2ℎ(𝐴) cos(2𝜋Δ𝜇Δ𝑛𝑡)]2𝜋𝜎2|Δ𝑛|𝑡 (6.41)

= ℎ(𝐴)𝜃(Δ𝜇, 𝜎, |Δ𝑛|𝑡)− 2𝜋𝜎2|Δ𝑛|𝑡 (6.42)

⇔
{︃
ℎ(𝐴) > 2𝜋𝜎2|Δ𝑛|𝑡

𝜃(Δ𝜇,𝜎,|Δ𝑛|𝑡) if 𝜃(Δ𝜇, 𝜎, |Δ𝑛|𝑡) > 0,

ℎ(𝐴) < 2𝜋𝜎2|Δ𝑛|𝑡
𝜃(Δ𝜇,𝜎|Δ𝑛|𝑡) if 𝜃(Δ𝜇, 𝜎, |Δ𝑛|𝑡) < 0.

(6.43)

The bottom row can be omitted, because with 2𝜋𝜎2|Δ𝑛|𝑡 > 0, 𝜃(Δ𝜇, 𝜎, |Δ𝑛|𝑡) < 0

would imply that ℎ(𝐴) < 0, which is clearly false with 0 ≤ 𝐴 ≤ 1.
Fitting on the minimum values of 𝐴 that satisfy (the upper row of) Eq. (6.43)

with different values of Δ𝜂 := Δ𝜇/𝜎, we obtain the following pseudo-Voigt form
for the critical convex coefficient,

𝐴crit(Δ𝜂) ≈ 0.0885553𝑒−0.0870419Δ𝜂2

+
0.411445

1 + 0.0845395Δ𝜂2
. (6.44)
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Figure 6.5. Markovian and non-Markovian regions of the double-peaked Gaussian dephasing.

Because of the symmetry of ℎ(𝐴), the maximum values of𝐴 satisfying Eq. (6.43) are
given by 1−𝐴crit(Δ𝜂). Hence, if 𝐴crit(Δ𝜂) ≤ 𝐴 ≤ 1−𝐴crit(Δ𝜂) with a given value
of Δ𝜂, we know that the dephasing dynamics is non-Markovian. The Markovian and
non-Markovian (Δ𝜂,𝐴)-regions are illustrated in Fig. 6.5.

Commonly, it would require at least two measurement points to witness increas-
ing magnitude of the decoherence function and verify non-Markovianity. However,
in the previous Section we saw how to probe both Δ𝜂 and 𝐴 using only one point of
interaction time. If the parameters can be enclosed to one of the regions in Fig. 6.5,
we can conclusively say if the probe (polarization) dynamics Φ1(𝜌1) is Markovian
or non-Markovian.

Plugging the probe states 𝜌2, 𝜌3, Φ2(𝜌2), and Φ3(𝜌3) of Subsection 6.2.1 in
Eq. (6.17), we get lower bounds for Δ𝜂. And plugging these lower bounds in
Eq. (6.44), we get tighter critical convex coefficients than their real values. If the
probed bounds of 𝐴 are between these tighter values, they are also between the real
values, and the probe dynamics is non-Markovian.

Using the same experimental setup as in Subsection 6.2.1, we get the results
presented in Fig. 6.6. This figure is essentially the same as Fig. 6.4, but here we
also have the probed values of 𝐴crit and 1 − 𝐴crit. It is interesting to notice that,
when probing 𝐴crit and 1 − 𝐴crit, tightest bounds are given by 𝛼 ≈ 0.999, while
𝛼2 = 𝛼3 = 1/2 is used with 𝐴.

In almost all cases, the probed bounds of 𝐴 are between the tight estimates of
𝐴crit and 1 − 𝐴crit, and we can verify non-Markovianity. In some cases, bounds
obtained with 𝛼-fidelity fail in this task, but it is only in Fig. 6.6(c), at 7 mm of
quartz, that our protocol completely fails. We also ran the experiments with an un-
known coupling, ending up on the non-Markovian region using known Δ𝜂. With an
unknown Δ𝜂, we could not say anything conclusive about (non-)Markovianity. It
is important to notice that, although the parameters can be probed with an unknown
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Figure 6.6. Verification of non-Markovianity. The black dash-dotted lines are the probed values of
𝐴crit. If the probed bounds of 𝐴 are inside the probed region [𝐴crit, 1 − 𝐴crit], the dynamics of the
probe state 𝜌1 is guaranteed to be non-Markovian. If the upper bound of 𝐴 is below the known 𝐴crit

or the lower bound of 𝐴 is above the known 1 − 𝐴crit, the dynamics is Markovian. Otherwise, the
result is inconclusive. (a) 𝜇2 = 𝑐/(810 nm), 𝜇3 = 𝑐/(830 nm), and 𝐴 = 0.5122. (b) 𝜇2 = 𝑐/(810 nm),
𝜇3 = 𝑐/(830 nm), and 𝐴 = 0.6377. (c) 𝜇2 = 𝑐/(810 nm), 𝜇3 = 𝑐/(820 nm), and 𝐴 = 0.6377.

coupling, here we are always interested in the known coupling’s (non-)Markovianity;
We are not claiming anything about the unknown coupling’s (non-)Markovianity.

In none of the cases of Fig. 6.6 can we place 𝐴 below the probed 𝐴crit or above
the probed 1 − 𝐴crit. And even if we could, we could not verify Markovianity; Say,
both of the probed bounds of𝐴 lied below the probed value of𝐴crit. Now, it would be
tempting to call the probe dynamics Markovian. However, the actual value of 𝐴crit

can still lie between the probed bounds—not above them—and hence we cannot
really make such a conclusion.

Even if Δ𝜂 and 𝐴crit were known, it would be challenging to confirm global
Markovianity. In fact, with known coupling and equal probe states 𝜌1 = 𝜌2 = 𝜌3 =:

𝜌 = |+⟩⟨+|, our protocol can be shown to fail at this task. To verify Markovian-
ity with 𝛼-fidelities, we would need to have either ℱ𝛼2

(︀
Φ1(𝜌),Φ2(𝜌)

)︀ 1

𝛼2 < 𝐴crit

or 1 − ℱ𝛼3

(︀
Φ1(𝜌),Φ3(𝜌)

)︀ 1

𝛼3 > 1 − 𝐴crit. From Fig. 6.7, we see that neither
can be achieved. The blue dots in Fig. 6.7 are the smallest possible upper bounds
ℱ𝛼2

(︀
Φ1(𝜌),Φ2(𝜌)

)︀ 1

𝛼2 —obtained by 𝛼2 = 1/2, 𝐴 = 0, and minimizing over time—
while the diamonds are the (actual, not probed) critical convex coefficients 𝐴crit. The
cyan curve is 1

2 min𝑡
{︀
ℱ1/2

(︀
Φ1(𝜌),Φ2(𝜌)

)︀2⃒⃒
𝐴=0

}︀
, which happens to agree excel-

lently with 𝐴crit. Thus, we have

ℱ𝛼2

(︀
Φ1(𝜌),Φ2(𝜌)

)︀ 1

𝛼2 ≥ min
𝑡

{︀
ℱ1/2

(︀
Φ1(𝜌),Φ2(𝜌)

)︀2⃒⃒
𝐴=0

}︀
(6.45)

≈ 2𝐴crit > 𝐴crit. (6.46)

Similarly, the red dots in Fig. 6.7 are the largest possible lower bounds 1 −
ℱ𝛼3

(︀
Φ1(𝜌),Φ3(𝜌)

)︀ 1

𝛼3 —obtained by 𝛼3 = 1/2, 𝐴 = 1, and maximizing over time—
while the squares are the (actual, not probed) critical convex coefficients 1 − 𝐴crit.
The pink curve is 1

2

[︁
max𝑡

{︀
1−ℱ1/2

(︀
Φ1(𝜌),Φ3(𝜌)

)︀2⃒⃒
𝐴=1

}︀
+1
]︁
, which happens to
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Figure 6.7. The tightest possible bounds of 𝐴 (blue and red dots), twice as tight “bounds” (cyan
and pink curves), and the critical convex coefficients 𝐴crit and 1 − 𝐴crit (diamonds and squares) as
functions of Δ𝜂. The bounds were optimized with respect to time, 𝛼, and 𝐴 independently.

agree excellently with 1−𝐴crit. Thus, we have

1−ℱ𝛼3

(︀
Φ1(𝜌),Φ3(𝜌)

)︀ 1

𝛼3 ≤ max
𝑡

{︀
1−ℱ1/2

(︀
Φ1(𝜌),Φ3(𝜌)

)︀2⃒⃒
𝐴=1

}︀
(6.47)

≈ 1− 2𝐴crit < 1−𝐴crit. (6.48)

Even the trace distance can be shown to fail at verifying global Markovianity (see
Publication VII). However, one might succeed in this task by carefully optimizing
the initial probe states and the rotation angles of the quartz plates.

Even though it appears to be somewhat difficult to verify global Markovianity
with our protocol, with known Δ𝜂 it can give Markovian and non-Markovian inter-
vals. Clearly, the time intervals during which no𝐴 satisfies Eq. (6.43) are Markovian,
and we need not probe anything. The non-Markovian time intervals, on the other
hand, can be verified by comparing the probed bounds of 𝐴 with the time-dependent
coefficients 𝐴crit(𝑡). 𝐴crit(𝑡) can be solved from Eq. (6.43) numerically. For clarity,
the minimum values 𝐴crit given by Eq. (6.44) tell whether |𝜅1(𝑡)| can increase at all
with given 𝐴, while 𝐴crit(𝑡) tells if |𝜅1(𝑡)| is increasing at 𝑡 with given 𝐴. That is,

𝐴 ∈ [𝐴crit, 1−𝐴crit] ⇒ global non-Markovianity,

𝐴 ∈ [𝐴crit(𝑡), 1−𝐴crit(𝑡)] ⇒ local non-Markovianity at 𝑡.

The time intervals during which 𝐴 can be placed inside [𝐴crit(𝑡), 1 − 𝐴crit(𝑡)] with
certainty are non-Markovian. In any other situation, we cannot classify the time
interval.

We have plotted 𝐴crit(𝑡) in Fig. 6.8(a) with different values of Δ𝜂. As one might
expect, the bigger the Δ𝜂, the more oscillations of |𝜅1(𝑡)| we can have during the
same time span. The black line marks the value of Δ𝜂 used in Fig. 6.8(b), where
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Figure 6.8. Probing Markovian and non-Markovian time intervals. (a) 𝐴crit as a function of Δ𝜂

and the scaled interaction time 2𝜋𝜎Δ𝑛𝑡. On the white regions, the probe dynamics is Markovian
regardless of the convex coefficient. On the colored regions, the probe dynamics is non-Markovian
if 𝐴 ∈ [𝐴crit(𝑡), 1−𝐴crit(𝑡)]. The horizontal line indicates the value of Δ𝜂 used in panel (b). (b) Probing
results. When the probed bounds of 𝐴 are in [𝐴crit(𝑡), 1 − 𝐴crit(𝑡)], we know that the dynamics is
non-Markovian. These time intervals are indicated with red dashed lines. When 𝐴crit(𝑡) cannot
be determined, we know that the dynamics is Markovian. These time intervals are indicated with
green dotted lines. Otherwise, we cannot say if the dynamics is Markovian or non-Markovian (black,
vertical lines). 𝜇2 = 𝑐/(810 nm), 𝜇2 = 𝑐/(818 nm), and 𝐴 = 0.7.

we have plotted the corresponding 𝐴crit(𝑡), 1 − 𝐴crit(𝑡), and the probed bounds of
𝐴. The probed bounds were obtained with 5 mm of parallel quartz plates and trace
distance, i.e., Eq. (6.35). As in Fig. 6.8(a), there are time intervals with undefined
𝐴crit(𝑡), guaranteeing local Markovianity.

The blue and red solid curves in Fig. 6.8(b) give the non-Markovian regions
[𝐴crit(𝑡), 1 − 𝐴crit(𝑡)], and the black dash-dotted line is the actual value of 𝐴 in the
experiment. The actual value of 𝐴 is between 𝐴crit(𝑡) and 1 − 𝐴crit(𝑡) on three time
intervals, during which the probe dynamics is really non-Markovian. Looking at
the probed bounds of 𝐴 instead, given by the black solid lines, we see that both of
them are (almost entirely) inside [𝐴crit(𝑡), 1−𝐴crit(𝑡)] for the first two non-Markovian
intervals. This means that these time intervals can be verified as non-Markovian with
our probing method. For the three potentially non-Markovian intervals at 2𝜋𝜎Δ𝑛𝑡 ∈
[2, 5], the probed upper bound is above 1 − 𝐴crit(𝑡), so the dynamics can be either
Markovian or non-Markovian.

Although our probing protocol does not require multiple points of interaction
time, it requires multiple measurements at the same interaction time. Future studies
show if our protocol can be developed further, using less measurements and assump-
tions. Could we, for example, relax assumptions on the system state’s analytic form?
Another interesting prospect would be that concerning entangled ancillas: Could we
achieve higher precision with entangled ancillas, as in [139]? Or could we probe the
degree of entanglement with our protocol?
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7 Conclusions

In this Thesis, we studied various effects of reservoir engineering on decoherence in
the linear optical open-system model of polarization (system) interacting with fre-
quency (environment). Although the open-system dynamics in our case is highly
controllable—demoting the linear optical model to a simulator—it is the very con-
trol in question that allows us to develop new, proof-of-concept methods to manage
decoherence, in which there is value too. But perhaps more interestingly, the model
lets us study the benefits of decoherence.

We began the Thesis in Chapters 2 and 3 with brief introductions to the basics of
quantum theory and open quantum systems, respectively. In the rest of the Thesis,
we presented the results of the Publications I–VII.

Chapter 4 was based on Publications I and II. Here, we focused on the initial
polarization-frequency correlations of a biphoton system. Controlling them with
SLMs allows us to tailor the dephasing dynamics of polarization to our liking. In
particular, we introduced three phase functions responsible for the said correlations.
The zigzag and quadratic phases, together with initial frequency correlations and
their mixtures, allow us to control the monotonicity of all the four decoherence func-
tions independently of each other. That is, we can select the open-system subspaces
experiencing information backflow, i.e., non-Markovian memory effects when using
the BLP definition. Hence, we actually go beyond the prior classification of mem-
ory effects being only local or nonlocal. As an application, we proposed encoding
information to the memory partitions. However, although the number of memory
partitions—and hence the information capacity—grows rapidly with the number of
qubits, the encoding protocol ought to be generalized and the decoding protocol
made more feasible. Perhaps similar snapshot methods to that presented in Chap-
ter 6 or different physical platforms might be of help.

As for the third phase function, we considered the linear, decoherence-reversing
function. This function allows us to distribute any number of polarization qubits
across dephasing environments with the transmission lengths bounded only by the
resolution of SLMs. With proper probability amplitudes, reverse decoherence can
also be understood in terms of hybrid entanglement and hidden nonlocality. Here,
the initial state of the total system is hybrid-entangled, while the hidden nonlocality
is activated later by local dephasing. When applied in noisy quantum teleportation,
we achieved high fidelities even without the resource qubits being entangled. How-
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ever, there still needs to be hybrid entanglement in the total auxiliary system. The
experimental results obtained with a PM fiber imply that reverse decoherence could
be used in practical optical fiber networks. It remains to be shown whether deco-
herence can be reversed with other channels and physical qubits. And what if the
channel is completely unknown? In fact, an efficient entanglement-distillation pro-
tocol under any local noise was recently proposed in Ref. [135], while rewinding
unknown unitary dynamics in the linear optical setting was demonstrated in [140].

In Chapter 5, we increased the environment of polarization by including the pho-
tons’ path to it. Here, from the point of view of the open-system dynamics following
what we call “open system interferometers” in Publications III–V, reservoir engi-
neering essentially means controlling the prior durations of dephasing and free evolu-
tion, as well as choosing whether to measure the photons’ path or not. We analyzed in
great detail the MZ and HOM interferometers. In all cases, it was found that the path
difference can be compensated with dephasing appearing after the interferometers—
either partially (single-qubit case) or completely (certain two-qubit cases). Conse-
quently, the path difference (and initial frequency correlations in the two-qubit case)
can be estimated by monitoring the open-system dynamics. Importantly, this works
outside the interferometric regions, and with the open system HOM interferometer
due to the photodetector’s dead time. Here, only the optimal case was considered,
while in reality the weights of the 𝑐- and 𝑏-photons might not be that. Future research
should formalize the theory of dead-time filtering more rigorously and test it exper-
imentally. Perhaps the real weights could be probed with the probing protocol of
Chapter 6. With the open system HOM interferometer, also a new kind of delayed-
choice quantum eraser was proposed. The dynamical delayed-choice quantum eraser
is based on the 𝑐- and 𝑏-photons undergoing dephasing differently, which raises the
question: What other differences are there between the two types of photons?

With the open system MZ interferometer, we also considered parameter estima-
tion in the interferometric region. Here, we analyzed the memory effects’ sensitivity
with respect to the path difference. The simulations show that, by monitoring path-
wise dephasing, one can detect orders of magnitude smaller changes in the path
difference than by comparing pathwise photon counts. With a small enough number
of independent measurements and little “real” noise, we should even be able to break
the QCRB. Finally, with the open system MZ interferometer, we also discussed non-
Markovianity in the less studied CPTNI case. Here, losses are taken into account.

As the two quite simple interferometers considered in this Thesis already pro-
duce rich features of open-system dynamics that can be used in various tasks, it
would be very interesting to extend the research to other interferometers (e.g., the
Sagnac interferometer [141]) and initial states (e.g., the GHZ state). Other directions
of future research include the generalization of the collision model with alternating
continuous-time and discrete-time dynamics. Here, we only considered the first one
or two collisions. In the generalized case, also more than one of the photons’ paths
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could be blocked. Furthermore, future studies show if open system interferometers
can help with the problems of LOQC, e.g., by granting more control over the pho-
tonic logic gates.

Finally, in Chapter 6, we considered quantum probing with an unknown system-
probe coupling. In the probing protocol, reservoir engineering shows as us changing
some accessible control parameter. Evaluating the initial and evolved probe states’
𝛼-fidelities or trace distances corresponding to the different values of the control
parameter, we can deduce something about a system of interest. In the two pho-
tonic examples originally demonstrated in Publications VI and VII, polarization and
frequency played the roles of probe and system, respectively. First, we probed the
width of a Gaussian spectrum with the control parameter being the spectrum’s cen-
tral frequency. Then, we probed the convex coefficient of a double-peaked Gaussian
spectrum with the control parameter being the convex coefficient itself. As an appli-
cation of the two examples, we showed how to verify the global non-Markovianity
and Markovian/non-Markovian time intervals of the probe dynamics at a single, un-
known point of interaction time.

Some questions regarding our probing protocol were left open. First, how could
the bounds be optimized? Could we, for example, use more than one control param-
eter? Could some other measure result in tighter bounds than 𝛼-fidelity and trace
distance? Could the bounds—whenever we get both a lower and an upper bound—
even be equal? Furthermore, as we only considered the single-qubit case, increasing
the number of qubits would be a natural next step. Could entanglement, for example,
provide tighter bounds? Or conversely, could we probe the degree of entanglement?
Finally, could we drop the assumption on the system’s probability distribution?

Throughout this Thesis, we only considered dephasing with respect to the 𝑧-axis,
i.e., the decay of coherences in the computational basis. While different dephasing
directions are handled similarly locally, it would be very interesting to see how they
combine nonlocally and what role initial correlations have in such cases. It would
then be quite straightforward to generalize these results, as opposed to some of the
very specific methods of decoherence control presented in this Thesis. The photonic
model could also be expanded by still taking other degrees of freedom into account,
e.g., orbital angular momentum (OAM). Finally, we hope this Thesis motivates the
study of quantum processes as information carriers. To clarify, we do not mean the
states going through the processes, but the overarching processes themselves. Future
research topics in this field include, e.g., dynamical counterparts of the Holevo’s the-
orem and QCRB. In the second task, a good starting point might be process positive
operator-valued measures (PPOVMs [142]).
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