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Tutkielmassa tutkitaan mahdollisuutta selittää eräitä spin-polaroidussa
atomisessa vetykaasussa havaitun elektroni-spin-resonanssispektrin
piirteitä magnetostaattisten värähtelymoodien avulla. Spektri on mi-
tattu Turun atomisen vedyn ryhmässä; tutkielman kirjoittaja ei osal-
listunut mittaustyöhön. Magnetostaattiset värähtelymoodit ovat os-
killoivan magneettisen aineen aaltomaisia häiriöratkaisuja, joita ku-
vataan Walkerin yhtälöllä [37]. Tässä tutkielmassa Walkerin yhtälö
ratkaistaan analyyttisesti kokeen äärellisessä sylinterissä lisäämällä
reunaehtoja äärettömän sylinterin ratkaisuihin [21]. Valitettavasti malli
ei kykene selittämään spektrin havaittuja erikoispiirteitä, ja sen mah-
dolliset vaikutukset siihen lienevät terävyytensä takia koejärjestelmän
ulottumattomissa.
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Part I

I N T R O D U C T I O N





1
T H E O R I G I N S O F S P I N WAV E S

1.1 magnetism

In a discussion of spin waves one can hardly avoid mentioning mag-
netism, for magnetization is the macroscopic manifestation of the
large-scale alignment of spins (or magnetic moments), the environ-
ment wherein spin waves propagate. Indeed, it is perhaps more
intuitive to speak of long-wavelength spin waves (such as magneto-
statics waves) as the macroscopic variation of magnetization rather
than that of propagation of spin perturbations.

Magnetic materials have been known to man for thousands of years:
possibly the first lodestone compass (most likely used for geomancy)
belonged to the Olmecs already around 1000BCE[8]; the first mention
from the Chinese dates back to the 3rd century BCE[8]. In Europe,
The Greek philosopher Thales (c. 600BC) knew of lodestone’s power
to attract iron[8].

Nowadays quantum mechanics is regarded as a central component
of magnetism. This became especially clear in the early 20th cen-
tury, when the Bohr–van Leeuwen theorem questioned the origins of
magnetism: it showed that classical statistical mechanics and electro-
dynamics were incompatible with magnetism, as they implied that
the thermal average of magnetization should always be zero, so no
magnets could exist. Quantization of the electron motion and their
magnetic moments was needed to overcome the theorem. [31]

Magnetization of a system characterizes its response to an external
applied field. It is defined as the magnetic dipole moment density
of the system[34], where magnetic dipoles are taken to be the fun-
damental ‘atoms’ of magnetization, the elementary bar magnets. In
old quantum physics, these dipoles were thought to arise (semiclas-
sically) from electrons orbiting the atom in quantized Bohrian orbits,
the movement of electrons being an electric current that, through
Faraday’s law, produces a magnetic field. Today it is acknowledged
that the movement of the electron does contribute to the magnetic
moment of an atom as shown by the Einstein-de Haas effect[14, 15,
30], but it is usually neither its only nor its primary source.

In new quantum mechanics, an atom has a dipole moment due
to electron motion and the spins of its constituent particles. Math-
ematically, the spin observable arises from a quantum mechanical
treatment of Galilei- or Lorentz-invariant systems, but not from a
classical treatment; hence it is said to be a purely quantum mechanical
observable. While both spin and angular momentum are properties of

3



4 the origins of spin waves

a rotationally invariant systems such as Galilei- or Lorentz-invariant
systems, the spin has no classical analogue, though it has a classical
manifestation as the magnetic moment of a particle. This is because
the spin interacts with the magnetic field1 in a way that confers a
particle an intrinsic magnetic moment of magnitude ~µS = γ~S, where
the constant of proportionality γ is variously called the gyromag-
netic ratio, magnetomechanical ratio, or magnetogyric ratio. In an
atom, both the electrons and the nucleus have a spin, though owing
to the mass of the nucleus its magnetic moment is typically around
1000 times smaller than that of the electron, so its contribution to the
total magnetization of the material is usually negligible. Dynamically
the nuclear spin may still play an important role as it does in NMR
spectroscopy.

Magnetic materials can be loosely grouped by the order exhibited
by their magnetic moments[34, p. 1-3].

• Materials without permanent magnetic moments are diamag-
nets: when placed in an external field, they magnetize so as to
minimize the applied field.

• Paramagnets have magnetic moments without any order without
applied field: when a field is applied, the material organizes to
produce a magnetic moment in the direction of the field.

• In ferromagnets, permanent magnetic moments are aligned within
larger domains, and the domains align upon application of
magnetic field. The spontaneous alignment of spins within the
domain is caused by the exchange interaction arising from the
overlap of neighbouring wave functions.

• Ferrimagnets contain two or more sublattices having unequal
magnetic moments, and the total magnetic moment is determ-
ined by their sum. Typically, the field produced by such sub-
stances in applied field is weaker than that of ferromagnets.

• In antiferromagnets, the magnetic moments of the sublattices can-
cel exactly. Theoretically, if the applied field is aligned with
the magnetic moments, such substances produce no magnetic
field, although in practice there is a small contribution owing to
thermal fluctuations. However, if the field is applied perpendic-
ular to the moments, all the lattices tend to align with the field,
thus producing magnetization.

The subject of this work is spin-polarized atomic hydrogen, which is
a gas and as such has no magnetic order, so it is a paramagnet. Its
magnetic moment is essentially due to the electron spin, hence the
spin waves could be called electron spin waves. The nuclear spin plays

1 Or more accurately, the spin interacts with the underlying scalar and vector potentials
as shown by the Aharonov-Bohm effect[2]
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an important role in the scattering and recombination dynamics of the
gas, but for the purposes of this work it is negligible.

1.2 spin waves

The idea of spin waves seems to trace back to F. Bloch’s[5] work in
the early 1930s in the context of characterization of ferromagnetism.
In 1907, to explain the hysteresis and saturation magnetization of fer-
romagnets, Weiss[38] had proposed that ferromagnets are composed
of domains within which the elementary magnets are aligned by the
molecular magnetic field produced by the other magnets in the do-
main. An elementary magnet in the domain would not experience
just the external field ~H, but also the molecular field q ~M, where q is a
constant of proportionality. The molecular field can account for the
temperature dependence of magnetization as well as the persistence
of magnetization with ~H = 0 in face of thermal fluctuations, while the
unaligned domains could account for magnetizations less than that of
the saturation magnetization [1].

The origin of the molecular field remained a mystery. How could
the elementary magnets align to produce the field observed? The only
candidate was the classical dipolar interaction, which turned out to be
too weak: it predicted a value of q ≤ 4π, while experiments required
values in excess of 105. In addition, the theory predicts that q depends
on how the sample is cut and the orientation of the field relative to
the crystallographic axes, while experiments seemed to be relatively
insensitive to these [36]. The solution was found in the spin–spin in-
teractions embodied in the Heisenberg Hamiltonian H = ∑i,j JijSi · Sj.
The exchange interaction, from which the Hamiltonian derives, is
sufficiently strong to align the spins within the domains. However the
Heisenberg system is not solvable exactly, so the thermodynamic beha-
viour of various quantities, such as saturation magnetization, cannot
be predicted accurately. It was in examining the Heisenberg system
that Bloch, motivated by Slater’s observations, came to consider spin
configurations with one flipped spin. He found solutions propagating
in the lattice, and using their dispersion relation Bloch was able to
derive his eponymous T

3
2 law for magnetization at low temperatures.

As an example, consider a simple chain of N equidistant spin− 1
2

particles whose dynamics are governed by the Heisenberg Hamilto-
nian([34, p. 46]):

H =− J
h̄2

N

∑
n=1

Sn · Sn+1.

With the usual definition of the ladder operators
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S+ =Sx + iSy = h̄ |↑〉〈↓|
S− =Sx − iSy = h̄ |↓〉〈↑|

Sz =
h̄
2
|↑〉〈↑| − h̄

2
|↓〉〈↓|

and the relation

S+
i S−j + S−i S+

j

=Sx
i Sx

j + Sy
i Sy

j +���������
i
(

Sx
j Sy

i − Sx
i Sy

j

)

+Sx
i Sx

j + Sy
i Sy

j −���������
i
(

Sx
j Sy

i − Sx
i Sy

j

)

=2
(

Sx
i Sx

j + Sy
i Sy

j

)
,

the Hamiltonian can be rewritten as a sum of Sz
n and the spin flip

operators S+
n S−n+1:

H =− J
h̄2

N

∑
n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1 + Sz

nSz
n+1
)

=− J
h̄2

N

∑
n=1

(
Sx

nSx
n+1 + Sy

nSy
n+1 + Sz

nSz
n+1
)

=− J
2h̄2

N

∑
n=1

(
S+

n S−n+1 + S−n S+
n+1 + 2Sz

nSz
n+1
)

.

The system is in the ground state when all spins are pointing down
(J > 0), so the ground state energy is given by

H |↓ . . . ↓〉 =− J
2h̄2

N

∑
n=1

(
0 + 0 + 2

h̄2

4

)
|↓ . . . ↓〉

=− NJ
4
|↓ . . . ↓〉 .

For clarity, it is useful to shift the ground state energy of the Hamilto-
nian to 0:

H′ =H +
NJ
4

I

=
NJ
4

I− J
2h̄2

N

∑
n=1

(
S+

n S−n+1 + S−n S+
n+1

)
− J

h̄2

N

∑
n=1

Sz
nSz

n+1

H′ |E0〉 =H′ |↓ . . . ↓〉 = 0.

For spin waves, consider states with one flipped spin, that is
S+

i |↓ . . . ↓〉. As it turns out, these are not eigenstates of H′. To
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find the energy eigenstates with one flipped spin, one can use the
coordinate Bethe Ansatz:

|E1〉 = |p〉 =
1

h̄
√

N

N

∑
k=1

eipxk S+
k |↓ . . . ↓〉 = 1√

N

N

∑
k=1

eipka |↓ . . . ↑k . . . ↓〉 .

Essentially, one supposes that the eigenstates are given by a Fourier
sum of the states with one flipped spin with xk = ka the position of
the spin, and p a number which one might guess to be a momentum.
A short calculation shows that these are indeed eigenstates of the
Heisenberg spin chain Hamiltonian:

H′ |p〉 =NJ
4
|p〉 − J

2h̄2

N

∑
n=1

(
S+

n S−n+1 + S−n S+
n+1

) 1√
N

N

∑
k=1

eipka |↓ . . . ↑k . . . ↓〉

− J
h̄2

(
N

∑
n=1

Sz
nSz

n+1

)
1√
N

N

∑
k=1

eipka |↓ . . . ↑k . . . ↓〉

=
NJ
4
|p〉 − J

2h̄2
1√
N

N

∑
n=1

(
δn+1

k S+
n S−n+1 + δn

k S−n S+
n+1

)
eipka |↓ . . . ↑k . . . ↓〉

− J
h̄2

(
∑

n 6=k,n+1 6=k

h̄2

4

)
1√
N

N

∑
k=1

eipka |↓ . . . ↑k . . . ↓〉

− J
h̄2

(
− h̄2

4

)
1√
N

N

∑
n=1

(
eipna |↓ . . . ↑n . . . ↓〉+ eip(n+1)a |↓ . . . ↑n+1 . . . ↓〉

)

=
NJ
4
|p〉 − J

2
1√
N

N

∑
n=1

(
eip(n+1)a |↓ . . . ↑n . . . ↓〉+ eipna |↓ . . . ↑n+1 . . . ↓〉

)

− (N − 2) J
4

|p〉+ J
4

1√
N

N

∑
n=1

(
eipna |↓ . . . ↑n . . . ↓〉+ eip(n+1)a |↓ . . . ↑n+1 . . . ↓〉

)

=
J
2
|p〉 − J

2

(
eipa + e−ipa

)
|p〉+ J

2
|p〉

=J [1− cos (pa)] |p〉
=2J sin2 pa

2
|p〉

E1 (p) =2J sin2 pa
2
≈ J

p2a2

2
. (1.1)

It is instructive to have a look at the solution of the time-dependent
Schrödinger equation for these states, which are easily solved given
the time-independent solutions:
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Ψ (t, p) =ψ (t) |p〉

ih̄
dΨ (t, p)

dt
=H′Ψ (t, p)

=E1 (p)ψ (t) |p〉
ψ (t) =e−

iE1(p)t
h̄

Ψ (t, p) =
1√
N

N

∑
k=1

ei
(

pxk− E1(p)t
h̄

)
|↓ . . . ↑k . . . ↓〉

=
1√
N

N

∑
k=1

ei(pxk−ωt) |↓ . . . ↑k . . . ↓〉

with

ω =
E1 (p)

h̄
. (1.2)

The time-dependent eigenstate is thus a superposition of wave-like
states traveling to the right with wavenumber p and frequency ω.
So although the Schrödinger equation is not a wave equation but a
(probability) diffusion equation, one gets very wave-like solutions out
of it, explaining the terminology for spin waves. Equations describing
spin waves are often in fact diffusion equations.

With the dispersion relation (1.1) one can derive Bloch’s T
3
2 -law us-

ing classical thermodynamics, though the approach is not so simple as
one might think at first glance. Some effort has been spent on showing
that superpositions of spin waves really are a valid approximation at
low temperature and that bound states do not qualitatively change
the situation[23, p. 18]. In short:

• E(n-flipped spins)≈ ∑n E (1-flipped spin), i.e. spin wave states
with multiple flipped spins can be reasonably approximated as
a sum spin waves with a single flipped spin

• the contribution of bound states is not relevant at low temperat-
ures.

Spin waves thus follow Bose-Einstein statistics, and the particle coun-
terpart (by wave-particle duality) is called magnon. The T

3
2 -law is ob-

tained by summing over all momentum states using the Bose-Einstein
distribution[23, p. 21]:

n (T) =
∫ ∞

0

d3 p

e
E1(p)
kBT − 1

≈
∫ ∞

0

d3 p

e
Jp2

x a2
2kBT +

Jp2
ya2

2kBT +
Jp2

z a2
2kBT − 1

ki =

√
Ja2

2kBT
pi

dpi =

√
2kBT
Ja2 dki
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∫ ∞

0

d3 p

e
Jp2

x a2
2kBT +

Jp2
ya2

2kBT +
Jp2

z a2
2kBT − 1

=

(
2kBT
Ja2

) 3
2 ∫ ∞

0

d3k

ek2
x+k2

y+k2
z − 1

.

The rest of the integral is just a number that turns out to be
2πΓ

( 3
2

)
ζ
( 3

2

)
. At low temperatures above absolute zero, every ex-

cited spin wave reduces the saturation magnetization, so the total
magnetization is given by

Ms (T) =M0

[
1− 2π

N0
Γ
(

3
2

)
ζ

(
3
2

)(
2kBT
Ja2

) 3
2
]

.

Hence, the magnetization of the sample is decreased by spin waves
by a factor proportional to T

3
2 in this approach.

1.3 spin precession

As mentioned previously, the spin of a system interacts with the
external magnetic field. In particular in atoms the magnetic field
creates energy level differences between different spin states: this is
known as the Zeeman effect. In quantum mechanics, the Zeeman
effect is described through adding a Zeeman term of form −~µM · ~B
to the Hamiltonian. For a Galilei-invariant spin- 1

2 system in classical
space R3 ×R in a magnetic field (a model for an electron, say), the
spin interaction part of the Schrödinger equation can be formulated
approximately in the following form:

ih̄
∂Ψ
∂t

=
eh̄

2mc
BzσzΨ

with

e charge of the system

m mass of the system

c speed of light

h̄ reduced Planck constant

Bz magnetic field (chosen to be in the direction of the positive z-axis)

σz the third Pauli matrix.

Using for example the eigendecomposition, the solution of the Schrödinger
equation is found straightforwardly:
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Ψ (t) =e−i e
2mc Bzt

(
c1

0

)
+ ei e

2mc Bzt

(
0

c2

)

=

(
c1e−i e

2mc Bzt

c2ei e
2mc Bzt

)

E (σx) =

(
c1e−i e

2mc Bzt

c2ei e
2mc Bzt

)∗
· σx ·

(
c1e−i e

2mc Bzt

c2ei e
2mc Bzt

)

=

(
c∗1ei e

2mc Bzt

c∗2e−i e
2mc Bzt

)
·
(

c2ei e
2mc Bzt

c1e−i e
2mc Bzt

)

=c∗1c2ei e
mc Bzt +

(
c∗1c2ei e

mc Bzt
)∗

=2 Re{c∗1c2} cos
(

eBz

mc
t
)
+ 2 Im{c∗1c2} sin

(
eBz

mc
t
)

So, in particular, if c1, c2 ∈ R,

E (σx) =2c1c2 cos
(

eBz

mc
t
)

.

If the spin is not pointing up or down the z-axis (c1 6= 0 6= c2),
the expectation value of the x-component of the spin oscillates; a
similar equation applies to the y-component, and their combination
describes precession of the spin around the z-axis. The frequency
of the precession is proportional to the magnetic field Bz and the
gyromagnetic ratio γ = e

mc . The exact relation is known as Larmor
formula and the frequency is called the Larmor frequency:

ω = γBz.

In spin waves, the intuition is (semiclassically) that the spins precess
this way but with a constant phase shift between neighboring spins
(Figure 1.1 on page 11). In context of the spin chain, the tilt of the
spins is due to the one flipped spin which is shared by all the spins
in the chain; in fact, 〈Si〉 = h̄

2

(
1− 1

N

)
(see [23, p. 16–17] for a more

detailed discussion).
In magnetized media, one must somehow make the transition from

a single spin to a continuum approach. The usual approach for a
classical precessing magnetization is what are often called Landau-
Lifshitz equations:Landau-Lifshitz

equations also
include a damping
term, which is left

out.
d ~M
dt

= −γ ~M× ~Heff. (1.3)

The quantities in this equation are the gyromagnetic ratio, the
magnetization, and the effective field ~Heff. A simple solution of this
equation can be found by assuming that ~Heff = (0, 0, H0), so
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S⊥

S

B,S μe

a a a aa

Figure 1.1: Semiclassical Picture of a Spin Wave

(
dMx

dt
,

dMy

dt
,

dMz

dt

)
=γH0

(
−My, Mx, 0

)

d2Mx

dt2 =− γH0
dMy

dt
= −γ2H2

0
dMx

dt
,

for which one oscillating solution is

Mx =M⊥ cos (|γH0| t)
My =M⊥sign (γH0) sin (|γH0| t)
Mz =Mz.

This is the background for ferromagnetic resonance and magneto-
static waves.

1.4 a brief history of ferromagnetic resonance and

magnetostatic waves

The discovery of ferromagnetic resonance is attributed to Griffiths[16].
Like many of the specialists of his time, Griffiths had been involved
in radar development during the second world war[35], and after
the war used the expertise to perform experiments on ferromagnetic
metals (Fe, Ni, Co) in microwave resonators. He used a metal sheet
whereupon he applied a magnetic field in the plane of the sheet and
an orthogonal microwave field (in the plane of the sheet), observing
resonances at frequencies 2 to 6 times in excess of the calculated
electron Larmor frequency. He suggested the Lorentz field may be the The Lorentz field, as

far as I can tell, is
just the
demagnetizing field,
i.e. the solution of
∇ · Hdemag =
−∇ ·M. See
section 2.2.

origin of the phenomenon, but Kittel soon dismissed this explanation
and offered his own, based on an oscillating demagnetizing field[24].
This is known as the uniform mode or the Kittel mode. Kittel later
extended his analysis to spheres and infinite cylinders and gave an
account of the effect of crystalline anisotropy[25].

Some years later observations of ferromagnetic resonance spectra
with multiple peaks started appearing. White and Solt[39] offered
early observations and an explanation in terms of higher-order non-
uniform modes. Mercereau and Feynman[27] calculated some of those
modes using physical intuition and guesswork under the assumption
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of spatially-varying (non-uniform) magnetization. In 1957, Walker[37]
changed and in retrospect defined the field by deriving his eponymous
Walker equation for magnetostatic modes and solving it for a general
ellipsoid. Afterwards solutions were found for the geometries where
the demagnetizing field was simple, such as infinite sheets magnetized
along the plane[11], infinite cylinder[21], and infinite disc[33] and
rectangular films[32].

In this work we are interested in the cylindrical geometry, specific-
ally a finite cylinder (where the demagnetizing field is not simple), so a
review of the work on magnetostatics in cylinders is pertinent. Perhaps
the first publication on the subject is by Kales[22], who determined
that there are no TM, TE, or TEM resonator modes in a cylinder. He
assumed an axial eγz of the cylinder modes, and noted that there are
modes when γ = 0. Damon[13] dealt with the demagnetizing field
by using a constant demagnetizing factor in the axial direction and
matching asymptotic solutions using the proper Maxwell boundary
conditions. Bornmann[6] solved the cylinder modes assuming pinning
boundary conditions. In addition, to deal with the demagnetizing
field, a scheme to weight the demagnetizing factor using the spatial
mode patterns was introduced. Bornmann also found that the azi-
muthal l and −l modes were degenerate2. Corrucini[10] found plane
wave solutions for a special case in a non-constant demagnetizing
field.

On the experimental side, yttrium-iron-garnet (YIG) seems to have
been the favorite substance to work with. Some interesting experi-
ments were done by Damon[12], who measured spin wave echo delay
as a function of magnetic field strength; the results agree well with
the magnetostatic model. Corrucini[10] observed magnetostatic spin
waves in cylindrical 3He crystals. Rezende[29], again working with
YIG, used magnetic microwave resonance in combination with Bril-
louin scattering to optically detect and image magnetostatic modes.

2 This is most likely due to the radial pinning boundary conditions.
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2
T H E D E M A G N E T I Z I N G F I E L D

2.1 magnetostatic approximation

In the experiments, atomic hydrogen is compressed in a cylindrical
container with radius r = 0.25 mm. The length of the gas pillar
varies depending on the phase of the compression cycle as the atomic
hydrogen slowly recombines to hydrogen molecules, so the gas pillar
may be considered to be a cylinder of variable length but fixed radius
with its axis along the z-axis of the system.

A strong constant magnetic field B0êz ∼ 4.6 T is applied to the gas.
In practice, due to some features of the setup the field is not entirely
constant, however in some experiments these inhomogeneities were
compensated for by applying magnetic field gradients. In addition
to the applied field B0, a weak, inhomogeneous, time-dependent rf
field ~hex (~r, t) is applied to tilt the spins for electron spin resonance.
The electromagnetic quantities of interest are thus the applied field
~B0,~hex (~r, t), and of course the magnetization of the hydrogen gas ~M,
which is essentially equal to the saturation magnetization M0êz due
to the weakness of the exciting rf field.

To model the system, we seek solutions of Maxwell’s equations in a
cylinder (in Gaussian units):

∇ · ~D =4πρ

∇ · ~B =0

∇× ~E =− 1
c

∂~B
∂t

∇× ~H =
1
c

(
4π~J f +

∂~D
∂t

)
.

The only external time-depence in the problem enters from the
exciting rf-field (included in ~B). Precessing mode solutions themselves
are of course time-dependent as well, but these are treated as small
quantities. The system does not have currents, so ~J f = 0. Owing to
these reasons, the magnetostatic approximation is a valid model for
the system. The magnetostatic approximation essentially consists of
the following two assumptions:

∇ · ~B = 0 (2.1)

∇× ~H = 0 (2.2)

15
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The ~E and ~D fields are not of interest so they are left out. In
Gaussian units, ~B and are ~H related by

~B = ~H + 4π ~M (2.3)

where

~B is given in Gauss = 1× 10−4 T

~H is given in Oersted = 103

4π A m−1~B in Gauss and ~H in
Oersted have equal

magnitudes in
Gaussian units, but

not in SI units.

~M is given in emu
cm−3 = 1× 103 A m−1.

2.2 the static problem and the demagnetizing field

Consider the situation in context of Equation 2.1 and Equation 2.2.
Aside from the small quantity ∇×~hex, Ampère’s law is fulfilled be-
cause ~H0 is constant. Almost the same thing happens with Gauss’s law,
the only difference being due to the discontinuity of the magnetization:

0 = ∇ · ~B =∇ · (H0 + 4πM0) êz +∇ ·~hex

≈4π
∂M0

∂z
= 0.

As ∂M0
∂z is not always zero (i.e. at the ends of the cylinder due to

discontinuity of M0 (z)), another field is required to compensate for
its contribution:

~B =~H0 + 4π ~M0 + ~Hdemag

where the new field, the demagnetizing field, or the stray field, fulfills
the equation

∇ · ~Hdemag =− 4π∇ · ~M

=− 4π
∂M0

∂z
.

Further, by Ampère’s law

0 = ∇×
(

H0êz + ~Hdemag

)
= ∇× ~Hdemag,

so ~Hdemag = ∇Ψ for some function Ψ (~r). So we arrive at the
Poisson equation

∇2Ψ = −4π∇ · ~M
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whose solution is the following Green’s function:

Ψ (~r) = −4π
∫ ∇ · ~M
−4π |~r−~r′| d3r′ . (2.4)

As the situation mirrors that for the electric field generated by elec-
tric charges, ∇ · ~M is sometimes referred to as the surface charge
distribution in the case of uniformly magnetized systems, where the
only contributions to ∇ · ~M come from the discontinuites at the sur-
faces. Taking the analogy a step further, one can say that just as the
electric field is the field generated by electric charges, the demagneti-
zing field is the magnetic field generated by the magnetization or the
magnetic moments of the magnetized medium.

2.2.1 Demagnetizating Factors

In the simple case of a uniformly magnetized sphere of radius a, the
Poisson equation reduces to Laplace equation with the usual Maxwell
boundary conditions. The solutions can be given as series of Legendre
polynomials Pl[17]:

Ψ =





∑∞
l=0 clrl Pl(cos θ) r < a

∑∞
l=0 dlr−l−1Pl(cos θ) r > a

From the continuity of Ψ across the surface it follows that dl =

cla2l+1, and from the continuity of the radial component of B it follows
that l = 1 and c1 = −4πM

3 . The final solution is then

Ψ =




−4πM

3 r cos θ r < a
−4πa3 M

3
cos θ

r2 r > a.

In Cartesian coordinates the solution inside the sphere is simply
Ψ = −4πM

3 z, and hence the field ~Hdemag = − 4πM
3 ~ez. The reason why it

is called the demagnetizing field is now obvious: the field is directed
against the magnetization and so acts to reduce it. The total field inside
the sample is H = H0 − 4πM

3 in the z-direction. Owing to the simple
relationship between the magnetization and the demagnetizing field
one is tempted to define a demagnetizing factor, which for the case
of the sphere is 1

3 . A similar result holds for ellipses: Hk = (H0)k −
4πNk Mk [28]. Generally, however, the demagnetizing field is non-
uniform, so in practice one needs to consider a position-dependent
demagnetization tensor (sometimes also called the depolarization tensor).
In practice even this is as difficult as problems in magnetostatics tend
to be. This is also the case for the cylinder, and so the non-uniformity
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of the demagnetizing field both exacerbates the problem of finding the
magnetostatic modes and raises the question of whether the modes
even exist in a non-uniform background field.

One approach to this conundrum is to simply ignore it. One may
hope that the effect of the non-uniform demagnetizing field compared
to the external field is not significant, that the magnetostatic modes do
not ‘see’ it. A slightly better approximation grants that there is a slight
modulation of the external field owing to the demagnetizing field,
but that the modulation can be seen as a constant shift proportional
to the magnetization and some average of the demagnetizing field.
Literature distinguishes between two such average demagnetizing
factors for cylinders: the magnetometric Nm and the fluxmetric or
ballistic N f . Nm is defined as the ratio of average demagnetizing field
to average magnetization in the volume V of the sample, while N f is
the same ratio but calculated only in the mid-plane S perpendicular
to the cylinder’s axis. The former is appropriate for small samples,
while the latter is better suited for small search coils [9].

∫

V
~Hd = −Nm

∫

V
M

∫

S
~Hd = −N f

∫

S
M

In the case of a small cylinder we are only interested in the axial
magnetometric demagnetization factor Nz (also N̄zz in literature, the
average of the zz-component of the demagnetization tensor), as the
magnetization is assumed to be uniform and the displacement owing
to the magnetostatic modes negligible. The calculation of Nz can
be done in at least three different ways: one can derive it from the
self-inductance of a finite single-layer solenoid [7], use the theory of
Joseph and Schlömann[19, 20], or one can use Fourier techniques [4].
As a result of some rather complicated calculations, for a cylinder of
length L and radius rc one obtains

Nz =1− 8
3π

rc

L

[
−1 +

1
ε

(
2ε2 − 1

ε2 E(ε) +
1− ε2

ε2 K(ε)
)]

(2.5)

ε2 =
1

1 +
(

L
2rc

)2 (2.6)

Here K(ε) and E(ε) are the complete elliptical integrals of the first
and second kind, respectively.

2.2.2 Simple Magnetized Cylinder

The equation for the demagnetizing field in the cylinder is given by
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∇2Ψ =− 4πM0∇ (θ (z)− θ (z− L))

with θ the Heaviside function. The function in the parentheses is 1
within the cylinder, and 0 elsewhere. Evaluating the derivative gives

∇2Ψ =− 4πM0 (δ (z)− δ (z− L))

On the z-axis of the cylinder r = 0 the solution can be found using
the Green function in Equation 2.4:

Ψ =4πM
∫

δ (z)− δ (z− L)

4π

√
r2 + (z− u)2

r dr dz dθ

=4πM
∫

 1

2
√

r2 + u2
− 1

2
√

r2 + (u− L)2


 r dr

=− 4πM
2

(
u−

√
r2

c + u2 −
√

L2 − 2Lu + u2 +
√

L2 − 2Lu + r2
c + u2

)

=− 4πM
2

(
u−

√
r2

c + u2 − |L− u|+
√

L2 − 2Lu + r2
c + u2

)

=− 4πM
2

(
2u− L−

√
r2

c + u2 +
√

L2 − 2Lu + r2
c + u2

)

The field is given by ∇Ψ:

hz (0, θ, u) =
dΨ
du

=− 4πM
2

(
2− u√

r2
c + u2

+
−L + u√

L2 − 2Lu + r2
c + u2

)

→− 4πM +
4πM

2
L√

r2
c + L2

at the ends of the cylinder.

(2.7)

So the total field at the ends of the cylinder would be

Bz =H0 + 4πM + hz

=H0 +
4πM

2
L√

r2
c + L2

≈H0 + 2πM
(

1− 1
2

[ rc

L

]2
)

.





3
T H E WA L K E R E Q UAT I O N A N D I T S S O L U T I O N S

3.1 the walker equation

The Walker equation is simply the Landau-Lifshitz equation (1.3) in
the magnetostatic approximation, supplemented by the following
ansatz:

~H = Hêz +

~h︷ ︸︸ ︷
(hx, hy, hz) eiωt (3.1)

~M = M0êz + (mx, my, 0)︸ ︷︷ ︸
~m

eiωt (3.2)

H here is the sum of the applied field and the demagnetizing field
H = H0 + Hdemag. The demagnetizing field does have components
also in other directions besides z, but in this work the demagnetizing
field will either be ignored or incorporated via a demagnetizing factor
as H = H0 − 4πM0Nz.

Substituting ~H = H0êz +~h(~r) into Equation 2.2, it follows that the
equation also applies to~h: ∇×~h = 0. So there is a magnetic potential
function such that~h = ∇Ψ and we can rewrite Equation 2.2 as

∇2Ψ(~r) = 0. (3.3)

~h and ~m motivate the definition of~b ≡~h + 4π~m , which also oscilla-
tes. Faraday’s law would then give an approximation for the electric
field:

∇×~e = −iω~b. (3.4)

To arrive at the Walker equation, the ansatz in Equation 3.1 and
Equation 3.2 is substituted into the Landau-Lifshitz equation (1.3).
Including only terms of at least first order in either hi or mi (but not
both) allows solving mi in terms of hi:

iω(mx, my, 0)eiωt

=γ(myH0 − hy M0, hx M0 −mx H0, 0)eiωt (3.5)

⇒

4πmx =
4πγ2H0M0

γ2H2
0 −ω2

︸ ︷︷ ︸
κ

hx − i
4πγM0ω

γ2H2
0 −ω2

︸ ︷︷ ︸
ν

hy (3.6)

4πmy =iνhx + κhy. (3.7)

21
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Substituting these into the Gauss law (2.1) gives, after cancelling
some complex terms, the Walker equation inside the cylinder:

0 =∇2Ψ + 4π∇ · ~m

=


(1 + κ)︸ ︷︷ ︸

µ

(
∂2

∂x2 +
∂2

∂y2

)
+

∂2

∂z2


Ψ(~r)

=µ

[
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

]
Ψ(~r) +

∂2Ψ(~r)
∂z2

(3.8)

Outside the cylinder, κ = 0 and we only need to solve the Laplace
equation Equation 3.3.

3.2 boundary conditions

In general, continuous solutions of Ψ (~r) are preferred. Further, the
resulting fields ~h and ~b should vanish eventually, i.e. as |~r| → ∞.
For a separable solution Ψ (r, θ, z) = R (r)Θ (θ) Z (z), the fields are
proportional to either R (r) dZ(z)

dz or Z (z) dR(r)
dr , so R (r) →r→∞ 0 and

Z (z)→z→∞ 0, and in particular Ψ (~r) must also vanish at large enough
distances.

Besides the vanishing and continuity conditions for Ψ, there are
also Maxwell continuity conditions for~h and~b: at the surface of the
cylinder, the parallel component of~h and the normal component of
~b must be continuous. As bz = hz (as mz = 0 by assumption), this
implies that at the ends of the cylinder one must check both the
parallel and the normal component of~h. In cylinder coordinates, the
components of~h are

~h = ∇Ψ =

(
∂Ψ
∂r

,
1
r

∂Ψ
∂θ

,
∂Ψ
∂z

)
.

From Equation 3.6 and Equation 3.7 we have that

4πmx = κ
∂Ψ
∂x
− iν

∂Ψ
∂y

4πmy = iν
∂Ψ
∂x

+ κ
∂Ψ
∂y

.

Writing these in cylinder coordinates we obtain

4πmr = κ
∂Ψ
∂r
− iν

r
∂Ψ
∂θ

(3.9)

4πmθ = iν
∂Ψ
∂r

+
κ

r
∂Ψ
∂θ

. (3.10)

The components of~b are then
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~b = ∇Ψ + 4π~m =





(
µ ∂Ψ

∂x − iν ∂Ψ
∂y , iν ∂Ψ

∂x + µ ∂Ψ
∂y , ∂Ψ

∂z

)
inside

(
∂Ψ
∂x , ∂Ψ

∂y , ∂Ψ
∂z

)
outside

=





(
µ ∂Ψ

∂r − iν
r

∂Ψ
∂θ , iν ∂Ψ

∂r + µ
r

∂Ψ
∂θ , ∂Ψ

∂z

)
inside

(
∂Ψ
∂r , 1

r
∂Ψ
∂θ , ∂Ψ

∂z

)
. outside

At the ends of the cylinder the continuity of the parallel component
of~h needs to be checked, that is

~h · (aêr + bêθ) =

(
a

∂Ψ
∂r

, b
1
r

∂Ψ
∂θ

, 0
)

, a2 + b2 = 1.

The normal component of~b is in this case hz =
∂Ψ
∂z , so its continuity

is also a requirement. This boundary condition ’quantizes’ the axial
mode functions.

However, it turns out that the condition for the parallel component
of~h is redundant: at the ends, the continuity of Ψ and its separability
together result in ΨA(r, θ, zend) = ΨC(r, θ, zend) in the disc where areas
A and C intersect (see Figure 3.1 for the labels). Hence, all derivatives
with respect to r and θ are equal.

On the sides of the cylinder, the continuity of the parallel component
of~h is

~h · (a~eθ + b~ez) =

(
0, a

1
r

∂Ψ
∂θ

, b
∂Ψ
∂z

)
, a2 + b2 = 1.

As with the ends, this condition is also redundant for the same
reason. The normal component of ~b, however, is not trivial, and
determines the radial mode functions:

~br = µ
∂ΨA

∂r
− iν

r
∂ΨA

∂θ
=

∂ΨB

∂r

= µ
∂ΨA

∂r
+

lν
r

ΨA =
∂ΨB

∂r
. (3.11)

In the literature of spin waves and magnetostatics the so-called
pinning boundary conditions are used for various reasons. One im-
portant reason is simply that they are easier, as the outside of the
container need not be considered. Generally, pinning boundary condi-
tions imply either that the derivative or the function itself (or some
combination thereof) is zero at the boundary, e.g.

αζ + β
∂ζ

∂w
= 0

so that α and β are not both zero. For spin pinning, the function
ζ (w) is usually the magnetization, which either vanishes or reaches
an extremum at the boundary. In our case it applies only to mr, as
mz = 0 by assumption.
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z = 0

z = L

AB

C

C

D

D

rc

Figure 3.1: Areas of the Cylinder

3.3 separable solutions

The separable solutions outside the cylinder are solutions to the Lap-
lace equation (3.3) in cylindrical coordinates (r, θ, z) obtained by the
usual method of separation of variables, Ψ(r, θ, z) = R(r)Θ(θ)Z(z).
From these we must choose those solutions which vanish at infinity, ful-
fill the condition that Ψ(r, θ + 2π, z) = Ψ(r, θ, z) and are well-behaved
when r = 0. In cylinder coordinates, the cylinder divides space into
four different areas with distinct solutions. Given a cylinder of length
L with ends at 0 and L, the first area (A) is the inside of the cylinder.
The second area (B) is the outside of the cylinder between z = 0 and
z = L. The areas outside z ∈ [0, L] are likewise divided by r = rc into
C (r < rc) and D (r > rc). This divide arises from the different r and z
dependencies of the solutions.

Solutions outside the cylinder are cylindrical solutions to the Laplace
equation with the following possibilities:

Ψout(r, θ, z) =





Jl(mr) eilθ (A cosh(mz) + B sinh(mz))

Yl(mr) eilθ (A cosh(mz) + B sinh(mz))

Il(mr) eilθ (A cos(mz) + B sin(mz))

Kl(mr) eilθ (A cos(mz) + B sin(mz))

(3.12)

Here Jl , Yl are Bessel functions of the first and second kind, respecti-
vely, and Il , Kl the modified Bessel functions of the first and second
kind, respectively. Symmetry dictates that l ∈ Z, and in the case of
l = 0 the solution Θ(θ) = C ∈ C. For m = 0 the solution is

Ψ(r, θ, z) =
(

Arl + Br−l
)
(Cz + D) eilθ . (3.13)
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For m = 0 = l the solution is

Ψ(r, θ, z) = (A ln(r) + B) (Cz + D) . (3.14)

Inside the cylinder when µ 6= 0, the general solutions to Equation 3.8
are of the form

Ψin(~r) =





Jl (kr) eilθ (A+ cosh
(
k
√

µz
)
+ B+ sinh

(
k
√

µz
))

Il (kr) eilθ (A+ cos
(
k
√

µz
)
+ B+ sin

(
k
√

µz
)) µ > 0

(3.15)

Ψin(~r) =





Jl (kr) eilθ (A− cos(k
√−µz) + B− sin(k

√−µz))

Il (kr) eilθ (A− cosh(k
√−µz) + B− sinh(k

√−µz)) .
µ < 0

(3.16)

Other Bessel functions are also solutions but have a discontinuity
at r = 0 and hence are not included. Alternatively, the

√±µ may be

moved from scaling z to scaling r (e.g. Jl

(
kr√±µ

)
). In the cases k = 0

and k = 0 = l, the solutions are the same as outside the cylinder, or

one may rescale the solutions with (±µ)−
1
2 as in the previous case

without affecting the results.
If µ = 0, equation Equation 3.8 reduces to ∂2Ψ(~r)

∂z2 = 0, for which the
solutions are

Ψ(r, θ, z) = A(r, θ)z + B(r, θ), (3.17)

and the associated frequency

ω = |γ|H0

√
1 +

4πM
H0

.

3.4 solution for µ < 0

For an infinite cylinder, the solutions have been considered in [18]; the
solutions for a finite cylinder are similar with a few notable differences
(as we shall demonstrate): (1) one has to account for the demagnetizing
field, (2) the solutions are not entirely separable, (3) the separation
constant in z-direction becomes discrete, and (4) the so-called surface
solutions (for µ > 0) vanish.

The problem with separability arises because the solutions cannot
be exactly matched over all four areas A, B, C and D. This can be seen
as follows:

In area C outside the cylinders, the solutions can be of only one
form:

ΨC =





A< Jn<(m<r)ein<θem<z z < 0

A> Jn>(m>r)ein>θe−m>z z > L
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This is due to the requirement that Ψ be continuous at r = 0 (⇒ Jn)
and that Ψ vanish far away from the cylinder, including as z → ∞,
which forces the exponential z-dependence; ΨC = 0 is ruled out by
boundary conditions, as they would otherwise force Ψ to be zero
everywhere.

As ΨA(r, θ, L) = ΨC(r, θ, L), it follows that the r-dependence must
be the same in both areas. Using similar arguments the r-dependence
must also be the same in B and D, and the z-dependence must be same
in A and B as well as C and D. However, for µ < 0 all these conditions
cannot hold simultaneously: by Equation 3.16, the AC boundary forces
the z-dependence to be sinusoidal in A, which at the AB boundary
forces the r-dependence in C to be Kn(mr) (see Equation 3.12), whence
it follows from applying BD boundary conditions that z-dependence in
D be sinusoidal (by Equation 3.12), while the CD boundary demands
that it be exponentially decaying.

From this analysis it is clear that these solutions are not truly se-
parable. However, judging from the cases of the infinite disc and
the infinite cylinder, it may be that the problematic area is the area
D alone, and it may be that ignoring it altogether will not affect the
frequency spectrum of the solutions obtained simply by matching the
boundaries AB and AC. Thus the solutions have the following the
form:

Ψ(r, θ, z) =





Jl (kr) eilθ (A− cos(k
√−µz) + B− sin(k

√−µz)) in A



A< Jn<(m<r)ein<θem<z z < 0

A> Jn>(m>r)ein>θe−m>z z > L
in C

Kn(mr)einθ (Aout cos(mz) + Bout sin(mz)) . in B

Continuity conditions for Ψ give





Jl (kr) eilθ A− = A< Jn<(m<r)ein<θ z = 0



Jl (kr) eilθ (A− cos(k
√−µL) + B− sin(k

√−µL))

= A> Jn>(m>r)ein>θe−m>L
z = L





Jl (krc) eilθ (A− cos(k
√−µz) + B− sin(k

√−µz))

= Kn(mrc)einθ (Aout cos(mz) + Bout sin(mz)) .
r = rc

(3.18)

It follows that
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l = n = n> = n<

k = m< = m>

m = k
√
−µ

A− = A<

cA− = Aout

cB− = Bout,

where c = Jl(krc)
Kl(k
√−µrc)

. The continuity condition for the normal

component of~h gives





B−
√−µ = A< z = 0

√−µ (B− cos(k
√−µL)− A− sin(k

√−µL)) = −A>e−kL z = L.

(3.19)

Combining this with previous results from Equation 3.18 results in
the solutions:

Ψ(r, θ, z) =





B− Jl (kr) eilθ (
√−µ cos(k

√−µz) + sin(k
√−µz)) in A




B−
√−µJl (kr)eilθekz z < 0

( 1
2 B−(1− µ) sin(k

√−µL)ekL) Jl(kr)eilθe−kz z > L
in C

(
B− Jl(krc)

Kl(k
√−µrc)

)
Kl(k
√−µr)eilθ (

√−µ cos(k
√−µz) + sin(k

√−µz)) in B.

In particular, the factor of 1
2 in the z > L in area C is obtained by

subtracting the z = L of Equation 3.19 from that of Equation 3.18.

∂Ψ(~r)
∂r

=





B− Jl−1(kr)−Jl+1(kr)
2 keilθ (

√−µ cos(k
√−µz) + sin(k

√−µz)) in A



B−
√−µ

Jl−1(kr)−Jl+1(kr)
2 keilθekz z < 0

( 1
2 B−(1− µ) sin(k

√−µL)ekL) Jl−1(kr)−Jl+1(kr)
2 keilθe−kz z > L

in C





(
B− Jl(krc)

Kl(k
√−µrc)

)
Kl+1(k

√−µr)+Kl−1(k
√−µr)

−2

×k
√−µeilθ (

√−µ cos(k
√−µz) + sin(k

√−µz))
in B

1
r

∂Ψ(~r)
∂θ

=





B− Jl (kr) ileilθ

r (
√−µ cos(k

√−µz) + sin(k
√−µz)) in A




B−
√−µJl (kr) ileilθ

r ekz z < 0
( 1

2 B−(1− µ) sin(k
√−µL)ekL) Jl(kr) ileilθ

r e−kz z > L
in C





(
B− Jl(krc)

Kl(k
√−µrc)

)
Kl(k
√−µr)(−l) ileilθ

r

× (
√−µ cos(k

√−µz) + sin(k
√−µz))

in B
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∂Ψ(~r)
∂z

=





B− Jl (kr) eilθ (cos(k
√−µz)−√−µ sin(k

√−µz)) k
√−µ in A




B−
√−µJl (kr)eilθkekz z < 0

( 1
2 B−(1− µ) sin(k

√−µL)ekL) Jl(kr)eilθ(−k)e−kz z > L
in C





(
B− Jl(krc)

Kl(k
√−µrc)

)
Kl(k
√−µr)eilθ

× (cos(k
√−µz)−√−µ sin(k

√−µz)) k
√−µ

in B.

The equations also impose a condition (dispersion relation) for k:

tan
(
k
√
−µL

)
=
−2
√−µ

1 + µ

⇔

k =
1√−µL

[
arctan

(−2
√−µ

1 + µ

)
+ nπ

]
, n ∈ N.

(3.20)

For k to remain positive (i.e., decaying solutions), n may only take
non-negative values.

The continuity for ~br, from Equation 3.11, gives the characteristic
equation

µkJ′l (krc) +
lν
rc

Jl(krc)

=
Jl(krc)

Kl(k
√−µrc)

K′l(k
√
−µrc)k

√
−µ

⇔ 0 =µkJ′l (krc) + Jl(krc)

×
(

lν
rc
− K′l(k

√−µrc)

Kl(k
√−µrc)

k
√
−µ

)

⇔ µkJ′l (krc)

Jl(krc)
+

lν
rc

=
K′l(k
√−µrc)k

√−µ

Kl(k
√−µrc)

⇔
1
2 µk (Jl−1(krc)− Jl+1(krc))

Jl(krc)
+

lν
rc

=
− 1

2 k
√−µ (Kl−1(k

√−µrc) + Kl+1(k
√−µrc))

Kl(k
√−µrc)

∴ Jl(krc)K′l(k
√
−µrc)k

√
−µ−Kl(k

√
−µrc)

[
µkJ′l (krc) +

lν
rc

Jl(krc)

]
= 0.

(3.21)

The form of the characteristic equation is equivalent to that derived
in [18]; the minute differences are accounted for by the choice of
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the place of µ in the solutions Equation 3.16 (whether it scales the
z-solution or the r-solution). However, in evaluating the solutions to
Equation 3.21, one must also account for Equation 3.20.

3.5 the characteristic equation

The characteristic equation has solutions for µ < 0. Introducing the
scaled frequency ω̃ ≡ ω

γH0
and defining ΩH ≡ 4πM

H0
, Ω0 =

√
1 + ΩH

we may express µ and ν as

µ =
Ω2

0 − ω̃2

1− ω̃2 (3.22)

ν =
1

ΩH
ω̃

1− ω̃2 .

Solutions exist when the scaled frequency is in the range [1, Ω0],
so µ ∈ [−∞, 0] and ν ∈ [−∞, Ω0]. For numerical evaluation, Equa-
tion 3.20 may be substituted into Equation 3.21; the derivatives of
Bessel functions may also be replaced using the identities for Bessel
functions:

1
2

µk (Jl−1(krc)− Jl+1(krc)) + Jl(krc)

×
(

lν
rc

+
Kl−1(k

√−µrc) + Kl+1(k
√−µrc)

2Kl(k
√−µrc)

k
√
−µ

)
= 0.

The dispersion relation Equation 3.20 has a discontinuity at µ = −1

or ω̃ =

√
Ω2

0+1
2 , which results in a change of branch of the arctan

function. Hence, for a given n, k should be given as

k =





1√−µL

[
tan−1

(−2
√−µ

1+µ

)
+ nπ

]
ω̃ <

√
Ω2

0+1
2

1√−µL

[
tan−1

(−2
√−µ

1+µ

)
+ (n + 1)π

]
ω̃ >

√
Ω2

0+1
2 .

3.5.1 Approximations of Mode Frequencies

To study the solutions, it is convenient to parametrize −µ = cot2 s, s ∈
[0, π

2 ]. Thus the right-hand side of Equation 3.20 becomes tan 2s and
the expression for k reduces to

k =
nπ + 2s
L cot s

. (3.23)

This expression has no discontinuity. It is also clear that we must
have n ≥ 0 for k > 0 when s ∈ [0, π

2 ]. Solving ν as a function of µ and
substituting −µ = cot2 s gives

ν = −
√
(Ω2

0 − µ)(1− µ) = −
(
ΩH + csc2 s

) 1
2 csc s.
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Figure 3.2: k as a Function of ω

The characteristic equation becomes

− nπ + 2s
L

cot s J′l

(
nπ + 2s
L cot s

rc

)
+ Jl

(
nπ + 2s
L cot s

rc

)

×
(
− l

rc

(
ΩH + csc2 s

) 1
2 csc s +

K′l(
nπ+2s

L rc)

Kl(
nπ+2s

L rc)

nπ + 2s
L

)
= 0.

The equation contains two terms, one multplied by the Bessel functi-
ons Jl and one by its derivative J′l . Approximate solutions for the
equation may be found when one dominates. When the first term
dominates, the approximate solutions are given by

nπ + 2s
L cot s

rc = j′lm. (3.24)

Here j′lm denotes the roots of the first derivatives of Jl enumerated
by m = 0, 1, 2... When the second term dominates, the solutions are
obtained by replacing j′lm by jlm, the zeros of the Bessel function of
order l. Equation 3.24 is transcendental and hence has to be solved
numerically. Approximations can be found for s ≈ 0 and s ≈ π

2 :

nπ + 2s
Ljlm

rc =





cot s ≈ 1
s s ≈ 0

cot
(

π
2 −

(
π
2 − s

))
= tan

(
π
2 − s

)
≈
(

π
2 − s

)
s ≈ π

2

s =





nπ
4

(√
1 + 8Ljlr

n2π2d − 1
)
≈ Ljml

nπrc
s ≈ 0

π
2

Ljlm−n(2rc)
Ljlm+2rc

s ≈ π
2 .

(3.25)
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Figure 3.3: The Characteristic Equation
Comparison of the characteristic equation with the Jl and J′l terms.
Simulation parameters are L = 0.10cm, ρ = 2 · 1017cm−3, H = 4.6 ·
104Oe = 4.6T.

Evidently the s ≈ 0 works best for large n. s ≈ π
2 , on the other hand,

requires either a large r or a small n to remain positive. Whether jlm
or j′lm should be used in the above expressions is more complicated.
For sufficiently large s, the Jl term will always dominate since cot s
in the J′l (prime) term takes the whole term to zero. As l increases,
the roots of the characteristic equation shift towards s ≈ π

2 , as can be
seen in Figure 3.3; it also illustrates the coincidence of roots of the Jl
term and the characteristic equation for large s. The oscillation of the
function increases with s to squeeze the numerable set of roots of the
Bessel function into a finite interval, and so the modes get denser as s
approaches the uniform precession frequency at s = π

2 , which is an
accumulation point of the modes.

A larger n increases the magnitude of the arguments of the Bessel
functions. Consequently, the zeros of Jl and J′l occur at smaller values
of s. This increases the scaling effect of cot s factor of the primed term;
it should dominate for small s. Figure 3.3 illustrates the increasing
discrepancy between the Jl term and the characteristic equation for
small s and the increasing coherence with J′l . However, with large s
the characteristic equation once again approaches the oscillating Jl
term to a high degree.

As −µ = cot2 s, it is convenient to solve ω̃ as a function of s. From
Equation 3.22,

ω̃2 =
Ω2

0 + cot2 s
1 + cot2 s

= ΩH sin2 s + 1.

When M0 � H0, or for small s,

ω̃ =

√
1 + ΩH sin2 s ≈ 1 +

ΩH

2
sin2 s.
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Distribution of Scaled Mode Frequencies

Figure 3.4: Frequency Distribution for Some Modes
L = 0.10cm, ρ = 2 · 1017cm−3, H = 4.6 · 104Oe = 4.6T. Mo-
des (0, 3, 0),(−1, 0, 0),(−2, 0, 0),(−3, 0, 0),(−3, 0, 1),(−4, 0, 0),(−5, 0, 0),
and(−5, 0, 1) near ω̃ = 1 are indistinguishable from the upper picture.

For atomic hydrogen,

ω ≈ |γ|H0

(
1 +

2πµBρ

H0
sin2 s

)
,

where s is given by one of the equations in Equation 3.25.

3.6 mode distribution

As can be seen from e.g. Equation 3.25, three numbers are needed
to specify the solution: the azimuthal (θ) number l ∈ Z, the axial (z)
number n ∈ N ∪ {0}, and the radial number m ∈ N ∪ {0} (grouped
as the triple (l, n, m)). Contrary to [6], who used pinning boundary
conditions, the azimuthal l and −l modes are not degenerate owing to
the characteristic equation Equation 3.21, which arises from the radial
boundary condition.

As is already clear from Figure 3.3 and Figure 3.3, the mode frequen-
cies accumulate up (to the right) to the uniform precession frequency
ω̃ ≈ Ω0 =

√
1 + ΩH. However, the modes for which axial n is large

compared to l and m, the mode frequencies approach ω̃ = 1 (that
is, γH0), as is evident from Figure 3.4. For higher m the frequencies
again move up towards Ω0.

In conclusion, the modes appear to be very dense in the frequency
domain [1, Ω0], even for a given l, owing to the fact that higher n
modes acculumate down and higher m modes up.
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D I S C U S S I O N

Similarly to [21], an infinite number of modes were found in the in-
terval ω ∈

(
|γe| µ0H0, |γe| µ0

√
H0B0

)
for which µ < 0. In contrast,

however, the modes were also quantized in the axial direction owing
to an additional axial boundary condition (as one might expect). Both
limits of the interval appear to be accumulation points of mode fre-
quencies: the upper limits for radial and azimuthal (|l| → ∞) modes,
the lower limit for axial modes.

Somewhat surprisingly no modes were found below this interval,
contrary to the infinite cylinder[21]. These modes correspond to the
µ > 0 solutions (section A.3). As our treatment essentially amounts
to putting boundary conditions in the axial direction, it is easy to
lay blame on them for the missing modes. Mathematically, the con-
tinuity boundary condition in the z-direction makes the characteristic
equation unsolvable: the inside of the cylinder requires some sort of
exponential solution ekz, which cannot be connected to a (separable)

vanishing solution Z (z)
|z|→∞−→ 0 through the boundary. For a pinning

boundary condition (section 3.2) it is likely such modes will exist,
though there is no obvious physical justification for using them.

Although mathematically it is easy to blame the boundary condi-
tions, it must be also taken into account that the physical nature of
the problem changes qualitatively as the cylinder becomes finite: the
demagnetizing field becomes non-uniform. Indeed, the shape of the
demagnetizing field may lend some support to using some kind of
pinning boundary conditions to model the problem as the next step;
however, a distintictly better approach would be to simply account
for the non-uniform demagnetizing field, for example using the ge-
neralized Walker equation[3]. Unfortunately this is far from trivial
analytically, though perhaps more tractable computationally.1

Given all this careful theoretical work, the question of whether
these modes are observed in the actual experiment begs for an answer.
The generalized magnetostatic equation is expected to have wavelike
solutions in the frequency range [3]

γH(~r) < ω < γ
√

H(~r)B(~r),

which evaluates to ∆ω ∼ 6− 60 mG, placing the modes on top of our
main peak. So it is possible that the modes are excited and modify
the main peak; however, the resolution of the setup is not expected to

1 Some simulations were attempted with the FlexPDE software, but unfortunately they
were not very informative.
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be sufficient to detect them. For a more thorough comparison with
experiment, see [26] for details.
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A
A P P E N D I X

a.1 a note on linearity of the walker equation

As an eigenvalue equation, Walker’s equation is not linear. In general,
a solution is determined by the pair (Ψi, µi) (possibly degenerate), but
c1Ψ1 + c2Ψ2 is not a solution:

∂2
z (c1Ψ1 + c2Ψ2) =c1∂2

zΨ1 + c2∂2
zΨ2

=c1
(
−µ1∇2

⊥Ψ1
)
+ c2

(
−µ2∇2

⊥Ψ2
)

=− µ1∇2
⊥c1Ψ1 − µ2∇2

⊥c2Ψ2.
∇2
⊥ = ∂2

x + ∂2
y

A linear combination is only a solution if the solutions are degene-
rate, i.e. µ1 = µ2. A similar thing happens with the time-independent
Schrödinger equation, which is not linear either. However, the time-
dependent Schrödinger equation is linear, as the time derivative ab-
sorbs the eigenvalue. The same does not occur in the case of the Walker
equation, but it does occur for the linearized Landau-Lifshitz equation
with proper definitions of quantities: namely, the solution produces the
magnetization

(
mx, my, 0

)
– not

(
mx, my, M0

)
– and the related mag-

netic field h. Then a solution c1Ψ1 + c2Ψ2 produces c1~m1 + c2~m2 and
c1~h1 + c2~h2 which are solutions of the Landau-Lifshitz equation. This
can be seen by substituting the linear combination into the Landau-
Lifshitz equation. The result is the following pair of equations:

ic1mxω1eiω1t + ic2m2
xω2eiω2t =− H0c1γm1

yeiω1t − H0c2γm2
yeiω2t

+M0c1γh1
yeiω1t + M0c2γh2

yeiω2t

ic1myω1eiω1t + ic2m2
yω2eiω2t =+ H0c1γm1

xeiω1t + H0c2γm2
xeiω2t

−M0c1γh1
xeiω1t −M0c2γh2

xeiω2t.

With some rearrangement, the equations become

0 =c1

(
H0γm1

yeiω1t −M0γh1
yeiω1t + im1

xω1eiω1t
)

+c2

(
H0γm2

yeiω2t −M0γh2
yeiω2t + im2

xω2eiω2t
)

0 =c1

(
−H0γm1

xeiω1t + M0γh1
xeiω1t + im1

yω1eiω1t
)

+c2

(
−H0γm2

xeiω2t + M0γh2
xeiω2t + im2

yω2eiω2t
)

.

If the linear combination is to be a solution as well, then the above
equalities must hold. The case looks promising as the expressions

39



40 appendix

multiplying c1 contain only quantities with index 1 and similarly for
c2, so there is hope that the expressions vanish — and that is indeed
what happens. Solving m1

x and m1
y from the pair of equations multi-

plying c1 results in Equation 3.6 and Equation 3.7 which, with some
manipulation, gives the Walker equation which is satisfied because ~m1

(= Ψ1) is its solution. Hence a linear combination of solutions Ψ1 and
Ψ2 solves the Landau-Lifshitz equation, so building series solutions to
the equation is a legitimate effort.

a.2 solutions for µ = 0

In area C, the solution must be both well-behaved at r = 0 and vanish
when z→ ∞. The only solution in (3.12) fulfilling both conditions is
the one with Jn. Thus, in area C, the solutions are

ΨC =





A< Jn<(m<r)eın<θem<z z < 0

A> Jn>(m>r)eın>θe−m>z z > L

The first boundary conditions comes from the AC boundary when
z = 0 and z = L from the continuity of Ψ and its z-derivative. From
(3.17) ΨA(r, θ, z) = A(r, θ)z + B(r, θ), and we see that the solutions
must satisfy

B(r, θ) = A< Jn<(m<r)eın<θ (A.1)

A(r, θ)L + B(r, θ) = A> Jn>(m>r)eın>θe−m>L (A.2)

A(r, θ) = A<m< Jn<(m<r)eın<θ (A.3)

A(r, θ) = A>(−m>)Jn>(m>r)eın>θe−m>L. (A.4)

If A(r, θ) 6= 0, dividing (A.3) by (A.4) gives

(A.3)
(A.4)

= 1 =
A<m< Jn<(m<r)eın<θ

A>(−m>)Jn>(m>r)eın>θe−m>L

Hence, for the solution to fulfill both derivative conditions implies
that m< = m> ≡ m, n< = n> ≡ n.1

⇒ 1 =
A<

−A>e−mL

A< = −A>e−mL ≡ −Ae−mL

The total solution can now be read from (A.3) and (A.1):

1 Because Jn (−x) = (−1)n Jn (x), in principle also m< = −m> is a possibility; however,
this would make the exponent function outside the cylinder diverge at one side.
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(A.4) = A (r, θ) =A(−m)Jn(mr)einθe−mL

(A.1) = B (r, θ) =A< Jn(mr)einθ

=− AJn(mr)einθe−mL

=
A (r, θ)

m
⇒ A (r, θ) =mB (r, θ)

ΨA =A (r, θ) z + B (r, θ)

=B (r, θ) (mz + 1)

=− A (mz + 1) Jn(mr)eınθe−mL

The final boundary condition gives a value for m:

ΨA (z = L) =− A (mL + 1) Jn(mr)einθe−mL

(A.2)
=

A> Jn>(m>r)ein>θe−m>L

=AJn(mr)einθe−mL

⇒ mL + 1 =− 1

m =− 2
L

.

Finally,

ΨA =− A
(

1− 2z
L

)
Jn

(
−2r

L

)
eınθe2

= (−1)n A
(

2z
L
− 1
)

Jn

(
2r
L

)
eınθe2

ΨC =




−A (−1)n Jn

( 2r
L

)
eınθe−

2(z−L)
L z < 0

A (−1)n Jn
( 2r

L

)
eınθe

2z
L z > L.

This cannot be a solution, however, as ΨC does not vanish as |z| →
∞: for z > L the solution contains a factor of e

2z
L , which is not bounded.

The same thing happens for z < 0. So solutions of this kind cannot
exist for finite L; in the limit L→ ∞ there is no problem.

It could be that A(r, θ) = 0. From (A.3) and (A.4) it follows that
either A< = 0 or m< = 0 and A> = 0 or m> = 0. If either m< or
m>is zero, then the solution doesn’t vanish as |z| → ∞ unless the
corresponding A is also zero. However, if one of the As is zero, it
follows from (A.1) and (A.2) that the solution must be zero. Hence
zero is the only possible solution for µ = 0.
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a.3 solutions for µ > 0

The Walker equation ostensibly admits a fully separable solution in
the case of positive µ.

Ψ(r, θ, z) =





Jl (kr) eılθ (A+ cosh
(
k
√

µz
)
+ B+ sinh

(
k
√

µz
))

in A



AC
< Jn<(mC

<r)eınC
<θemC

<z z < 0

AC
> Jn>(mC

>r)eınC
>θe−mC

>z z > L
in C

Jn(mr)eınθ
(

AB cosh(mz) + BB sinh(mz)
)

in B



AD
< Jn<(mD

<r)eınD
<θemD

<z z < 0

AD
> Jn>(mD

>r)eınD
>θe−mD

>z z > L
in D

Continuity conditions give m = k
√

µ, k = mC
> = mC

< = mD
< = mD

>,
l = n = nD

> = nD
< = nC

> = nC
<, A+ = AC

<, AB = AD
< and

AC
>e−kL =

(
A+ cosh(k

√
µL) + B+ sinh(k

√
µL)

)

AD
>e−kL =

(
AB cosh(k

√
µL) + BB sinh(k

√
µL)

)

Jl (krc)

Jn(k
√

µr)
= c =

(
AB cosh

(
k
√

µz
)
+ BB sinh

(
k
√

µz
))

(
A+ cosh

(
k
√

µz
)
+ B+ sinh

(
k
√

µz
))

⇔ cA+ = AB, cB+ = BB

B+√µ = AC
< = A+

BB√µ = AD
< = AB

−AC
>e−kL =

√
µ
(

A+ sinh(k
√

µL) + B+ cosh(k
√

µL)
)

−AD
>e−kL =

√
µ
(

AB sinh(k
√

µL) + BB cosh(k
√

µL)
)

⇔
tanh (k

√
µL) =

−2
√

µ

1 + µ
(A.5)

AC
> =

1
2

B+(1− µ) sinh
(
k
√
−µL

)
ekL

AD
> =

1
2

BB(1− µ) sinh
(
k
√
−µL

)
ekL

Ψ(r, θ, z) =





B+ Jl (kr) eılθ (√µ cosh(kz) + sinh
(
k
√

µz
))

in A



B+√µJl(kr)eılθekz z < 0
( 1

2 B+(1− µ) sinh
(
k
√

µL
)
ekL) Jl(kr)eılθe−kz z > L

in C

(
B+ Jl(krc)

Jl(k
√

µrc)

)
Jl(mr)eılθ (√µ cosh

(
k
√

µz
)
+ sinh

(
k
√

µz
))

in B



B+√µJl (kr)eılθekz z < 0
( 1

2 B+(1− µ) sinh
(
k
√

µL
)
ekL) Jl(kr)eılθe−kz z > L

in D
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µkJ′l (krc) +
lν
rc

Jl(krc) =
Jl(krc)

Jl(k
√

µrc)
J′l (k
√

µrc)k
√

µ

Although a solution appears to exists, it is evident that (A.5) admits
no solutions for positive k.

a.4 norms of the modes

Given that the solution in the experiment is likely to be a superposition
of multiple modes, it is convenient to normalize the solutions so
that

∫
V ΨΨ∗dV = 1 within the cylinder. Restricting the integral to

the cylinder is of course mathematically problematic: it is not clear
that the integral within the cylinder is sufficient to establish mode
orthogonality – nor is it clear that the modes are orthogonal in the
first place, except with respect to the azimuthal number l. However,
one may hope that the integral outside the cylinder contributes little
to the final result and may thus be neglected. One would expect this
to be the case for solutions concentrated in the body of the cylinder
instead of its boundary, such as the l = 0, where the Bessel function
achieves its maximum at the center of the cylinder.

For the azimuthal solutions, one needs merely to introduce a factor
of 1√

2π
. The radial integral does not give a simple result, so only the

axial part of the solution can be calculated and simplified.

Z(z)Z(z) =
(√
−µ cos

(
k
√
−µz

)
+ sin

(
k
√
−µz

)) (√
−µ cos

(
k
√
−µz

)
+ sin

(
k
√
−µz

))

=− µ cos2(k
√
−µz)︸ ︷︷ ︸

I1

+ sin2(k
√
−µz)︸ ︷︷ ︸

I2

+
√
−µ 2 cos

(
k
√
−µz

)
sin
(
k
√
−µz

)
︸ ︷︷ ︸

I3

I1 =
∫ L

0
cos2(k

√
−µz)dz

=
L
2
+

sin (2k
√−µL)

4k
√−µ

=
L
2
+
−4
√−µ (1+µ)

(1−µ)2

4k
√−µ

=
L
2
− 1 + µ

k (1− µ)2
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I2 =
∫ L

0
sin2(k

√
−µz)dz

=
L
2
− sin (2k

√−µL)
4k
√−µ

=
L
2
−
−4
√−µ (1+µ)

(1−µ)2

4k
√−µ

=
L
2
+

1 + µ

k (1− µ)2

In the above derivations it is convenient to use trigonometric identi-
ties and (3.20). Hence we can solve the sine:

sin
(
2k
√
−µh

)
=

2 tan (k
√−µh)

1 + tan2 (k
√−µh)

=
2−2

√−µ
1+µ

1 +
(−2

√−µ
1+µ

)2

=− 4
√
−µ

(1 + µ)

(1− µ)2

I3 =
∫ L

0
2 cos

(
k
√
−µz

)
sin
(
k
√
−µz

)
dz

=
∫ L

0
sin
(
2k
√
−µz

)
dz

=
1− cos(2k

√−µL)
2k
√−µ

=
1−

(
2 cos2(k

√−µL)− 1
)

2k
√−µ

=
1− (1+µ)2

(1−µ)2

k
√−µ

=
(1− µ)2 − (1 + µ)2

k
√−µ (1− µ)2 =

−4µ

k
√−µ (1− µ)2

Similarly to the previous case, the cosine term is solved using the
tangent and (3.20):

cos2 (k
√
−µL

)
=

1
tan2 (k

√−µL) + 1
=

1
(−2

√−µ
1+µ

)2
+ 1

=
(1 + µ)2

(1− µ)2

Finally, this gives the normalization factor.
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∫ L

0
(Z(z))2 dz =− µ

(
L
2
− 1 + µ

k (1− µ)2

)
+

L
2
+

1 + µ

k (1− µ)2 +
√
−µ

−4µ

k
√−µ (1− µ)2

=
L
2
(1− µ) +

µ + µ2 + 1 + µ− 4µ

k (1− µ)2

=
L
2
(1− µ) +

(1− µ)2

k (1− µ)2 =
L
2
(1− µ) +

1
k

=
kL (1− µ) + 2

2k

Contribution from outside the cylinder is given by

∫ 0

−∞
ekz dz +

∫ ∞

L
e−kz dz =

1
k
+

e−kL

k

=
1 + e−kL

k

So in total

kL (1− µ) + 4 + 2e−kL

2k

The normalized Ψ-functions are thus

Ψl,n,m =

(∫ rc

0
uJ2

l (ku)du
)− 1

2

√
2k

kL (1− µ) + 2 + 4 + 2e−kL

× Jl (kr)
eılθ
√

2π

(√
−µ cos

(
k
√
−µz

)
+ sin

(
k
√
−µz

))
(A.6)
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E X C I TAT I O N O F M A G N E T O S TAT I C M O D E S

b.1 energetics of maxwell’s equations

The rate at which energy enters or leaves volume V bounded by
surface S can be expressed as a surface integral of the energy current
~P. In order to satisfy the conservation of energy, the energy entering
the volume must equal to the energy stored in the volume (w) and the
power dissipated in the volume Pd:

−
∫

S
~P · d~S = −

∫

V
∇ · ~PdV =

∫

V
ẇdV +

∫

V
PddV.

As this expression should be valid for any volume, we can take
the limit of infinitesimal volume and obtain the following differential
equation:

∇ · ~P + ẇ + Pd = 0.

In electrodynamics, this is expressed with the Poynting theorem:

∇ ·
(
~E× ~H

)
+ ~H · ~̇B + ~E · ~̇D + ~E ·~J = 0. (B.1)

The quantity ~E × ~H is known as the Poynting vector, and it cor-
responds to the electromagnetic energy current ~P. For sinusoidally
varying complex fields (E(t) = Eeiωt) , the Poynting theorem takes the
following form [34, p. 117]:

∇ ·
(
~E× ~H∗

)
+ iω

(
~H∗ · ~̇B− ~E · ~̇D∗

)
+ ~E ·~J∗ = 0 (B.2)

Time average over the period T = 2π
ω is then easily obtained by

taking the real part [34, p. 116]. Hence, the average of the divergence
of power is

〈
∇ · ~P

〉
=
〈
∇ ·

(
~E× ~H∗

)〉
=

1
2

Re
{
∇ ·

(
~E× ~H∗

)}
.

For magnetostatic modes, the equation naturally applies to the
first-order quantities such ~e and ~h. Applying vector identities and
∇×~h = 0 allows the simplification of the expression:

47
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∇ ·
(
~e× ~h∗

)
=~h∗ · (∇×~e)−~e ·

(
∇× ~h∗

)

=~h∗ · (∇×~e) .

Using Faraday’s law (3.4) and introducing Ψ allows further simplifi-
cation:

~h∗ · (∇×~e) =− iω~h∗ ·~b
=− iω (∇Ψ∗) ·~b
=− iω

[
∇ ·

(
Ψ∗~b

)
−Ψ∗∇ ·~b

]

=− iω∇ ·
(

Ψ∗~b
)

=∇ · ~P.

The last equality implies that ~P = −iωΨ∗~b + ~u with ∇ · ~u = 0.
It fulfills the Poynting equation (B.2) and gives the correct results
for measurable quantities. The vector ~u is then more like a gauge
transformation which may be arbitrarily chosen [34, p. 170]. With this
the expression for the time-averaged power becomes

〈
~P
〉
=

1
2

Re
{
−iωΨ∗~b

}
. (B.3)

b.2 poynting vector for magnetostatic modes in a cy-
linder

The Poynting vector has r, θ, and z components. The calculations are
straightforward using the definition of~b and (3.9).

〈
~P
〉
· ~er =−

1
2

Re{iωΨ∗~b} · ~er

=− 1
2

Re{iωΨ∗br}

=− 1
2

Re{iωΨ∗ (hr + 4πmr)}

=− 1
2

Re{iωΨ∗
(

∂rΨ + κ∂rΨ− iν
r

∂θΨ
)
}

=− 1
2

Re{ω
(

iΨ∗∂rΨ + iκΨ∗∂rΨ +
ilν
r
|Ψ|2

)
}

=0.

For the azimuthal component the magnetization is given by (3.10):
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〈
~P
〉
· ~eθ =−

1
2

Re{iωΨ∗~b} · ~eθ

=
−1
2

Re{iωΨ∗bθ}

=− 1
2

Re{iωΨ∗ (hθ + 4πmθ)}

=− 1
2

Re{iωΨ∗
(

1
r

∂θΨ + iν∂rΨ +
κ

r
∂θΨ

)
}

=− 1
2

Re{iωΨ∗
(

ilΨ
r

+ iν∂rΨ +
ilκ
r

Ψ
)
}

=
1
2

Re{ω
(

l|Ψ|2
r

+ νΨ∗∂rΨ +
lκ
r
|Ψ|2

)
}

=
ω

2

(
l|Ψ|2

r
[1 + κ] + νΨ∗∂rΨ

)

=
ω

2

(
l|Ψ|2

r
µ + νΨ∗∂rΨ

)
.

Finally, to first order we neglect the magnetization in the axial
direction:

〈
~P
〉
·~ez =−

1
2

Re{iωΨ∗~b} · ~ez

=− 1
2

Re{iωΨ∗bz}

=− 1
2

Re{iωΨ∗hz}

=− 1
2

Re{i
real︷ ︸︸ ︷

ωΨ∗∂zΨ}
=0.

Hence, the final results for the pointing vector only contains the
azimuthal component:

〈
~P
〉
=

(
0,

ω

2

(
l|Ψ|2

r
µ + νΨ∗∂rΨ

)
, 0
)

. (B.4)

In the simplest radial case where l = 0, the expression further
simplifies to

〈Pθ〉 =
ω

2
νΨ∗∂rΨ. (B.5)

b.3 power absorption of the l = 0 mode

The modes are excited with an rf field leaking through a roughly
circular aperture. The exact form of the field is complex and not very
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well known, however the field is expected to decay exponentially along
the z-axis with penetration length of λ ≈ 0.008cm. The radial profile
of the field may be approximated in various ways. Simulations with
Gaussian, linear, and second degree decay along the radial direction
produce very similar results, so it seems the shape of the decaying
potential in the radial direction is not very crucial. The following
profile is chosen to model the exciting field:

g(r, θ, z) = f (r)
e−

z
λ√

2π
,

with f (r) the form of the radial field, assumed to be either Gaussian,
linearly decreasing to the edges, or a second-degree polynomial. Given
that the Poynting vector only has an azimuthal component, the energy
flow is perpendicular to a plane stretching from the center of the
cylinder to its edge. Hence the power flow through that surface per
unit area is given by

P =

∫
S 〈Pθ〉dS

S
=

∫ L
0

∫ rc
0 〈Pθ〉 rdrdz

Lrc
. (B.6)

The Ψ in (B.5) is unlikely to contain only one mode, so assuming
orthogonality of the modes (as discussed in A.4), Ψ can be decomposed
into a linear combination of the solutions Ψ0,n,m with coefficients given
by

c0,n,m =
1√∫

V g2(r, θ, z)rdrdθdz

∫

V
Ψ0,n,m(r, θ, z)g∗(r, θ, z)rdrdθdz.

(B.7)

(The prefactor is the normalization factor for g and V is the volume
of the cylinder.) Once again the radial integral must be calculated
numerically while the axial integral is more amenable to explicit
integration:

∫ L

0

(
e−

z
λ

) (√
−µ cos

(
k
√
−µz

)
+ sin

(
k
√
−µz

))
dz

=
√
−µ

∫ L

0
e−

z
λ cos

(
k
√
−µz

)
dz

︸ ︷︷ ︸
I1

+
∫ h

0
e−

z
λ sin

(
k
√
−µz

)
dz

︸ ︷︷ ︸
I2

=
√
−µI1 + I2.

The integral is most comfortably evaluateds using Euler’s formula
eiθ = cos θ + i sin θ and taking real and imaginary parts at the end of
the calculation:
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I1 + iI2 =
∫ L

0
e
(
− 1

λ
+ik
√−µ

)
zdz

=
∫ L

0
eczdz

=
1
c

(
ecL − 1

)

=
c∗
(

e−
L
λ cos(k

√−µL) + ie−
L
λ sin(k

√−µL)− 1
)

|c|2 .

The constant c, its complement, and the square of the modulus are
given by

c =
iλk
√−µ− 1

λ

c∗ =− iλk
√−µ + 1

λ

|c|2 =
1− k2λ2µ

λ2 .

Substituting these gives the result of the integral:

I1 + iI2 =− λ2

1− k2λ2µ

iλk
√−µ + 1

λ

(
e−

L
λ
[
cos
(
k
√
−µL

)
+ i sin

(
k
√
−µL

)]
− 1
)

=
λ

1− k2λ2µ

[(
1− e−

L
λ
[
cos
(
k
√
−µh

)
− λk

√
−µ sin

(
k
√
−µh

)])

+ i
(

λk
√
−µ− e−

L
λ
[
λk
√
−µ cos

(
k
√
−µh

)
+ sin

(
k
√
−µh

)])]

I1 =λ
1− e−

L
λ (cos(k

√−µL)− λk
√−µ sin(k

√−µL))
1− k2λ2µ

I2 =λ
λk
√−µ− e−

L
λ (λk

√−µ cos(k
√−µL) + sin(k

√−µL))
1− k2λ2µ

.

The expression for the axial integral is then

√
−µI1 + I2 =

λ

1− k2λ2µ

(√
−µ

[
1− e−

L
λ
(
cos
(
k
√
−µL

)
− λk

√
−µ sin

(
k
√
−µL

))]

+ λk
√
−µ− e−

L
λ
(
λk
√
−µ cos

(
k
√
−µL

)
+ sin

(
k
√
−µL

)))

=
λ

1− k2λ2µ

[√
−µ(1 + λk)

(
1− e−

L
λ cos

(
k
√
−µL

))
(B.8)

− (λkµ + 1)e−
L
λ sin

(
k
√
−µL

)]
. (B.9)

The integral over θ removes all the factors of 1√
2π

and leaves just
the integral over r. From (A.6), (B.7), and(B.8) the expression for c0,n,m

becomes
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c0,n,m =

√
2k

kL (1− µ) + 2
λ (µ− 1)
1− k2λ2µ

k
∫ rc

0 rJl (kr) f ∗(r)dr√∫ rc
k

0 uJ2
l (u)du

×
[√−µ(1− λk)

µ− 1

(
1− e−

L
λ cos

(
k
√
−µL

))
+ e−

L
λ sin

(
k
√
−µL

)]
.

With this, we may express Ψ = ∑n,m c0,n,mΨ0,n,m. From (B.5) and
(B.6), the power per unit area becomes

P =

∫ L
0

∫ rc
0

ω
2 νΨ∗∂rΨrdrdz

Lrc

=
ων

2Lrc
∑
n,m

∑
p,q

c∗0,n,mc0,p,q

∫ L

0

∫ rc

0
Ψ∗0,n,m∂rΨ0,p,qrdrdz

=
ων

2Lrc
∑
n,m

∑
p,q

c0,n,mc0,p,q

∫ L

0

∫ rc

0
Ψ0,n,m∂rΨ0,p,qrdrdz.

To a first approximation, we neglect the cross terms c0,n,mc0,p,q where
n 6= p, m 6= q, and the resulting expression is

P =
ων(ω)

2Lrc
∑
n,m

c0,n,mc0,n,m

∫ L

0

∫ rc

0
Ψ0,n,m∂rΨ0,n,mrdrdz

=
ων(ω)

2Lrc
∑
n,m

2k
kL (1− µn,m) + 2

∫ L

0
Z2(z)dz

×
[

λ (µn,m − 1)
1− k2λ2µn,m

]2 (kn,m
∫ rc

0 rJl (kr) f ∗(r)dr
)2

∫ kn,mrc
0 uJ2

l (u)du

×
[√−µn,m(1− λkn,m)

µn,m − 1

(
1− e−

L
λ cos

(
kn,m

√
−µL

))

+ e−
L
λ sin

(
kn,m

√
−µL

)]2
×
∫ kn,mrc

0 uJ0 (r) J′0 (r)du

2π
∫ kn,mrc

0 uJ2
l (ku)du

.
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c.1 magnetic potential
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Figure C.1:
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Figure C.2:
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Figure C.3:
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Figure C.4:
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Figure C.5:
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Figure C.6:
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Figure C.7:
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Figure C.8:
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Figure C.9:
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Figure C.10:
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Figure C.11:
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