
Cloud Architecture Evaluation

Master of Science (Tech) Thesis
University of Turku
Department of Computing
Software Engineering
2023
Arttu Salmijärvi

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Arttu Salmijärvi: Cloud Architecture Evaluation

Master of Science (Tech) Thesis, 56 p.
Software Engineering
April 2023

Cloud computing has introduced numerous ways to build software systems in the
cloud environment. The complexity of today’s system architectures require architec-
ture evaluation in the designing phase of the system, in the implementation phase,
and in the maintenance phase. There are many different architecture evaluation
models. This thesis discusses three different evaluation models: architecture tradeoff
analysis method, cost-benefit analysis method, and AWS Well-Architected frame-
work. The AWS Well-Architected framework is deeply evaluated by performing
an architectural evaluation for the case study software: Lixani 5. This thesis intro-
duces and compares the opportunities for cloud architecture evaluation by literature
review, case study, and interviews with experts.
The thesis begins with introduction to cloud computing, cloud architecture models
and architecture evaluation methods. An architecture evaluation for a case study
software is then carried out. This thesis also contains interviews with experts, pro-
ducing knowledge on how the system architecture is being evaluated in the field. The
research methods used in the thesis are literature review, case study, and expert in-
terviews. This thesis attempts to describe and assess the architecture evaluation
models by using the research methods. In addition, this thesis introduces and dis-
cusses the case study software – Lixani 5 – and its architectural decisions.
Based on research in the thesis it was noted that all three studied software archi-
tecture evaluation models are suitable options for reviewing software architecture.
All models included positive and negative aspects and none of them was seen as
superior compared to the others. Based on the interviews with experts it was noted
that there are also multiple other efficient ways to evaluate the system architecture
than the models discussed in the thesis. These ways included a technology audit
template and a proof-of-concept culture.

Keywords: software architecture, software architecture evaluation, cloud computing

Contents

1 Introduction 1

2 Cloud Computing 4

2.1 Definition and Characteristics of Cloud Computing 4

2.2 Cloud Computing Service Types . 7

2.2.1 Infrastructure as a Service (IaaS) 7

2.2.2 Platform as a Service (PaaS) 8

2.2.3 Software as a Service (SaaS) 8

2.3 Cloud Computing Deployment Models 9

3 Cloud Architecture Models 11

3.1 N-Tier Architecture . 11

3.1.1 Architecture Example . 13

3.1.2 Advantages and Disadvantages 13

3.2 Serverless Architecture . 14

3.2.1 Architecture Example . 15

3.2.2 Advantages and Disadvantages 17

3.3 Microservices Architecture . 18

3.3.1 Architecture Example . 21

3.3.2 Advantages and Challenges 21

3.4 Monolithic Architecture . 22

i

3.4.1 Architecture Example . 23

3.4.2 Advantages and Challenges 25

4 Architecture Evaluation 27

4.1 Architecture Tradeoff Analysis Method (ATAM) 28

4.2 Cost-Benefit Analysis Method (CBAM) 31

4.3 AWS Well-Architected . 33

5 Case Study 38

5.1 Lixani Oy . 38

5.1.1 Lixani 5 Application . 38

5.1.2 Lixani 5 System Architecture 39

5.2 AWS Well-Architected Review . 43

5.3 Interviews With Experts . 46

5.3.1 How system architecture is being evaluated in your company? 47

5.3.2 In which part of the architecture development process do you

aim to evaluate the architecture? 48

5.3.3 What are the advantages in architecture evaluation? 48

5.3.4 If you have used both the traditional methods (ATAM, CBAM)

and cloud specific methods which do you prefer and why? . . . 49

6 Case Study Results 50

6.1 Architecture Review with AWS Well-Architected 50

6.2 Interviews with Experts . 52

7 Conclusions 53

7.1 Answering the Research Questions . 53

7.2 Further Studies . 55

References 57

ii

Figures

2.1 Cloud computing categories . 5

3.1 N-tier architecture example . 12

3.2 Simple serverless architecture . 16

3.3 Microservices architecture example 20

3.4 Monolithic architecture example . 24

4.1 ATAM process . 29

4.2 CBAM process . 32

4.3 AWS Well-Architected Framework process 36

5.1 Lixani 5 architecture . 40

iii

1 Introduction

Software architecture is the structure of the system, the model that is targeted when

a software is implemented. The architecture is overall an important part of the

software development process, but it comes even more important when the software

grows. The bigger the software is the more complex the architecture becomes.

Architecture evaluation is a way of inspecting the architectural decisions in the

start of the development, it is a chance to be constantly aware of the architectural

state, and it can proactively prevent major turnarounds in the development.

Cloud computing has introduced a large number of different use cases for building

software systems in the cloud. There are many options to choose from when the

system architecture model is selected. Currently, more and more software systems

are migrating to the cloud environment. This thesis tries to analyze the architecture

evaluation methods that can be used to evaluate the architecture in the cloud and

provides an example usage on one of the methods.

Academic motivation of the thesis is to research architecture evaluation methods

in the cloud environment. The motivation of the thesis for the related company

- Lixani - is to conduct an architecture review for the application that the com-

pany is developing, Lixani 5. In addition, a general documentation of the software

architecture will be provided in the thesis.

Research questions of the thesis will be following:

• RQ1: How the cloud software architecture can be evaluated?

CHAPTER 1. INTRODUCTION 2

• RQ2: How efficient are the software architecture evaluation tools provided by

cloud companies? Are they more beneficial than the traditional evaluation

models?

The research methods used in the thesis are literature review, case study, and

interview. Literature review is conducted to gain information about cloud comput-

ing in general, software architecture models, and software architecture evaluation

methods. A case study is implemented to provide a real-life example of architec-

ture evaluation for an example system. Interview is the third research method of

the thesis. Three IT-professionals are interviewed with different questions related

to the architecture evaluation. The interview sessions were discussions that loosely

followed the pre-determined structure.

The thesis is structured in a following way. Chapter two focuses on cloud com-

puting in general. It uses the existing literature about the subject to provide proper

knowledge. The definition, characteristics and main elements of cloud computing

are introduced.

Chapter three introduces four different software architecture models: N-tier,

Serverless, Micoservices, and Monolithic. The architectures are considered using a

literature review of the subject. For every model, an example architecture will be

proposed including the suggestions on which cloud services can be used implementing

them.

Chapter four considers three different architecture evaluation methods: Architec-

ture Tradeoff Analysis Method (ATAM), Cost-Benefit Analysis Method (CBAM),

and AWS Well-Architected framework. The literature review will be conducted to

gain information about the methods. All the evaluation methods are introduced

and analyzed in a general way.

Chapter five focuses on the case study. The company - Lixani - is first introduced

and information about the case study application is produced. Chapter will include a

CHAPTER 1. INTRODUCTION 3

brief overview of the software architecture and its main elements. After introducing

the software, the actual architecture review will be conducted, and its results are

examined. The interview section of the thesis follows the architecture review. During

the section, the general information about the interviewees is introduced and the

interview questions and the answers by the interviewees are presented. The interview

section consists of four questions related to the architectural evaluation.

Chapter six introduces the results of the case study. It is done by evaluating the

results of the literature review and the case study. The chapter analyzes the conclu-

sions of the architectural review done in the chapter five and provides conclusions

regarding the interview part of the thesis.

Chapter seven is the general conclusion part of the thesis. The chapter analyzes

generally what has been done during the thesis, the research questions, and the

answers to the research questions are introduced. Also, the chapter will provide

future study suggestions about the subject.

2 Cloud Computing

This chapter is a general introduction to cloud computing. First, the definition

and characteristics of cloud computing are discussed. Then, different levels of cloud

computing are introduced and, finally, the cloud computing deployment models are

discussed.

2.1 Definition and Characteristics of Cloud Com-

puting

Traditionally, companies have had their own IT infrastructure as physical servers

that have been acting as a platform for their applications and data storage. Simply,

cloud computing means that the IT infrastructure, platform or application is rented

from a cloud provider such as Google Cloud, Amazon Web Services or Microsoft

Azure. Cloud computing offers a way to quickly launch new services or instantly

scale the resources that are already in use. [1]

Cloud computing refers to providing, managing, and provisioning IT infrastruc-

ture, platform, and applications as services over the internet. In cloud computing,

the users have an instant access via internet to a shared pool of IT resources. Cloud

computing is a constantly evolving subject that have different definitions. National

institute of standards and technology (NIST) definition of cloud computing is "A

model for enabling ubiquitous, convenient, on-demand network access to a shared

2.1 DEFINITION AND CHARACTERISTICS OF CLOUD COMPUTING 5

Figure 2.1: Cloud computing categories

pool of configurable computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction." [2]. Another definition for cloud

computing is "By using virtualized computing and storage resources and modern

web technologies, cloud computing provides scalable, network-centric, abstracted

IT infrastructures, platforms and applications as on-demand services. These ser-

vices are billed on a usage basis." [3]. As Figure 2.1 displays, the cloud computing

can be divided into three main sections: infrastructure as a service, platform as

a service, and software as a service. All these sections are discussed later in this

chapter.

Cloud computing has several central principles that should come true to define a

service as cloud computing. NIST defines a list of five essential cloud characteristics

[2].

• On-demand self-service: Refers to the instant access to the resources as a

self service. Deploying, managing, and monitoring resources are available for

customers without any human interaction with the provider.

• Broad network access: The resources are available over the network from

2.1 DEFINITION AND CHARACTERISTICS OF CLOUD COMPUTING 6

anywhere, at any time. Access is provided using standard mechanisms and

client platforms.

• Resource pooling: Cloud computing uses a multi-tenant model, where the

resources are pooled to enable simultaneous service provision for multiple users.

While using the multi-tenancy, the actual resources are still scaled to the

demand of individual users. The client has information about the area where

the resources are stored (country, city) but no control or knowledge about the

specific location. [3]

• Rapid elasticity: Cloud computing resources are elastic and therefore rapidly

scalable up or down depending on the needs of the consumer. Launching of

resources can be done rapidly in any quantities and for the consumer, the

cloud computing resources appear to be unlimited. [2]

• Measured service: Resources are monitored and measured accurately in

different ways such as storage usage, processing capacity, and bandwidth. For

the consumer, this means a chance to optimize the resource usage. Provider

uses measuring to provide billing since the cloud resources are often billed on

a usage basis. Also, the active measurement provides transparency for both

parties.

Virtualization

In cloud computing, abstracting underlying resources and simplifying their usage

is called virtualization or resource virtualization. Simply, it means that multiple

extracted virtual or artificial resources can be living in one physical resource such

as computer or server. It is a central part of cloud computing. Virtualization

creates a layer of abstraction between application and the underlying resources. [4]

In virtualization, the virtual resource and its state can be saved and migrated to

2.2 CLOUD COMPUTING SERVICE TYPES 7

another server. Virtualization simplifies the usage and replication of resources, and

keeps users isolated from each other. Thus, it provides elasticity to cloud computing

services. [1]

2.2 Cloud Computing Service Types

Cloud computing can be divided into three main service types: infrastructure as a

service, platform as a service, and software as a service. All of these types include a

variety of different typical services in the cloud environment that are introduced in

this section.

2.2.1 Infrastructure as a Service (IaaS)

Infrastructure as a service (IaaS) is the lowest level of cloud computing. In IaaS,

the user gets an abstracted view of hardware such as computers, networks, storage

systems, databases etc. For example, by using AWS Elastic Compute Cloud (EC2),

the user can deploy a server with a specific operating system, a given number of CPU

cores, and almost any amount of memory and storage. Access to these resources is

given over the internet using a command line or a web user interface. Resources can

be monitored and managed using these interfaces. Launching, starting, stopping,

and rebooting services can be quick operations when using the IaaS. Also, scaling

required capacities and defining network topologies can be done using the interfaces.

The base thought of IaaS is that the user has no access to control the actual infras-

tructure but manages the amount of resources, operating systems, memory, storage

and a limited amount of networking components [2]. Some examples of IaaS services

are AWS EC2 (servers), AWS S3 (mass storage), Dropbox (mass storage), Azure

Virtual Machines (servers), and Google Cloud SQL (databases). [3]

2.2 CLOUD COMPUTING SERVICE TYPES 8

2.2.2 Platform as a Service (PaaS)

Platform as a service (PaaS) is the mid-level of cloud computing. PaaS resources

are targeted to application developers by providing programming environments and

execution environments. Applications can be created using programming languages,

libraries, services, and tools on top of these environments. An example of a pro-

gramming environment is Django Framework that is a framework that extends the

Python programming language. Execution environment such as Google App Engine

is then used as a platform to run the created application. [3]

The advantage of PaaS is that the application developers can focus more on

the actual building of application and they do not have to concern the underlying

infrastructure since they have very little access to modify it. The consumer has

still some possibilities to affect the infrastructure such as modifying configuration

settings for the application hosting environment. In addition to Google App Engine,

some other PaaS resources include Heroku and AWS Beanstalk. What all of PaaS

services have in common is that they offer a very straightforward and short path from

developing the application to finally deploying it to internet. After the deployment

of the application, the cloud providers offer ways to monitor the application and

scale it based on the needs of the consumer.

2.2.3 Software as a Service (SaaS)

Software as a Service (SaaS) focuses on the end users of cloud applications. SaaS ser-

vices can be seen as web applications that are built and operated on top of the PaaS

and IaaS resources. [3] Applications can be accessed simultaneously from multiple

sessions and they can be running on the same or different hardware resources. [4]

The consumer has no control on any part of the cloud infrastructure or application

capabilities. SaaS applications are available from different client devices through a

web browser or a program interface. SaaS services are always running the recent

2.3 CLOUD COMPUTING DEPLOYMENT MODELS 9

version and thus, the client doesn’t have to buy new versions since SaaS products

are mostly charged using a subscription model. SaaS applications vary a lot from

simple applications to complex systems. Common SaaS applications are Microsoft

Office 365 (Word, Excel, Teams, Outlook) and Google web product family (Gmail,

Drive, Docs, Sheets). Other example is Customer Relationship Management (CRM)

system provided by Salesforce.

2.3 Cloud Computing Deployment Models

Cloud computing deployment models are categorized based on the type of their

environment. The types of cloud computing users can also be explained from these

different categories.

• Public cloud: The cloud resources can be used by anyone. The cloud is

usually accessible in a self-service manner using a web portal. In public cloud,

the actual cloud infrastructure is located in the cloud providers’ premises.

Examples of major cloud providers are Amazon Web Services, Microsoft Azure,

and Google Cloud.

• Private cloud: The cloud infrastructure is in the use of single organization.

It can be seen similar to a company’s intranet since the services are provided

internally. [4] Often a private cloud is implemented for security reasons when

a company wants to have a full control of their critical data and functions.

• Hybrid cloud: The cloud infrastructure is a combination of cloud infrastruc-

tures. The different cloud entities are tied together with proprietary meth-

ods. [2] An example of hybrid cloud can be the following: An organization

is handling its certain functionalities in the public cloud whereas the critical

operations are handled in the private cloud.

2.3 CLOUD COMPUTING DEPLOYMENT MODELS 10

• Community cloud: The cloud infrastructure is provided for exclusive use of a

community. The cloud resources are provided by one or multiple organizations

inside the community or by a third party. An example of a community cloud

is a large housing complex that provides cloud services for its residents. [4]

• Virtual private cloud (VPC): Virtual private cloud is a simulation of pri-

vate cloud inside public cloud infrastructure. An example of VPC is a health

organization providing private services to its users but hosting their system and

data in the public cloud provider. The VPC resources are usually physically

isolated to obtain privacy. [4]

3 Cloud Architecture Models

This chapter focuses on software architecture models especially in the cloud envi-

ronment. The concept of software architecture is defined and four different software

architecture models are discussed. The architecture models discussed are N-tier

architecture, serverless architecture, microservices architecture and monolithic ar-

chitecture. Also, one reference architecture illustration is given for each of the

architecture models.

Software architecture can be defined in many ways. ISO/IEC/IEEE 42010 stan-

dard definition for software architecture is: “Fundamental concepts or properties

of a system in its environment embodied in its elements, relationships, and in the

principles of its design and evolution.” [5]. Software architecture gives an overall de-

scription of the choices made in the architectural process. Architecture is an overlay

on the fundamental concepts and stakeholders of the software.

3.1 N-Tier Architecture

One commonly used architecture model in modern software applications is N-tier

architecture. N-tier architecture consists of multiple tiers that communicate with

each other. Tiers are organized hierarchically and every tier has two main tasks.

They offer services for the hierarchically upper level and requests services from the

lower level. [6] Common example of N-tier architecture model is 3-tier architecture.

The three tiers are presentation tier, business logic tier, and data access tier. Pre-

3.1 N-TIER ARCHITECTURE 12

Figure 3.1: N-tier architecture example

sentation tier provides the client for the user whereas business logic tier is acting

as application server and the data access tier is providing database access for the

application server. When systems have become more complex, also the architectures

have evolved. It is common to add multiple tiers between these three tiers to handle

different tasks. [7]

In 3-tier architecture model, the tiers are separate units running usually on their

own machines. The presentation tiers’ main activity is to provide the user interface

(UI) for the software user. It is the visible part of the system for the user. The

presentation tier communicates with the business logic tier over the internet using

HTTP requests. The business logic tier handles the coordination of the software

and handles all the logical tasks. When the business logic tier needs services from

the data access tier, the requests to the tier are done often by using HTTP requests.

The data access tier simply store and retrieve data from the database and provides

data to the upper tiers.

3.1 N-TIER ARCHITECTURE 13

3.1.1 Architecture Example

An example architecture for the N-tier model can be seen in Figure 3.1. The ex-

ample architecture is a high-level illustration of architecture that could be used, for

example, for a simple web application. The described architecture is using a 3-tier

implementation. The presentation tier is providing the user interface, the business

logic tier is providing logical features, and the data access tier is providing data

storing and retrieval.

The example architecture could be implemented, for example, in the AWS cloud

environment by choosing commonly used technologies for this kind of model. The

user interface could be deployed in AWS CloudFront1 that offers services for content

delivery. The business logic tier could be served in AWS EC22 server instance. The

implementation for data access tier could be implemented to the AWS Relational

Database Service (RDS) 3.

3.1.2 Advantages and Disadvantages

The N-tier architecture has its basis in separating the different architectural parts

from each other. This comes with advantages and disadvantages. The advantages

that the N-tier architecture model provides are related to the scalability, security,

manageability, and flexibility. The flexibility and manageability are results of the

tier model. All tiers can be changed and monitored independently. The possibility

to add more tiers is advantage related to the flexibility. Scalability is another result

from the independent tiers. One tier can be scaled to use much more hardware

resources if it becomes a bottleneck and this can be done easily especially in the

cloud environment. Security is enhanced when there are multiple tiers separating

1AWS CloudFront: https://aws.amazon.com/cloudfront/
2AWS EC2: https://aws.amazon.com/ec2/
3AWS RDS: https://aws.amazon.com/rds/

3.2 SERVERLESS ARCHITECTURE 14

the application critical components from each other. Also, since the data is multiple

tiers away from the presentation tier, the data is more protected. [7]

The N-tier architecture model comes also with its disadvantages considering, for

example, performance and complexity. The N-tier architecture divides the system

into multiple tiers. The communication between multiple tiers can provide higher

latency that can affect negatively to the performance of the system. The more tiers

are added the more it may affect on the latency and provide complexity. [6]

3.2 Serverless Architecture

Serverless is a cloud computing architecture model where the application logic is

implemented using several different functions. It is also known as Function as a

Service (FaaS). The functions are stateless, independent implementations that are

launched when they are needed. Functions are hosted by a third-party cloud oper-

ator that provides the needed hardware resources and autoscaling opportunities for

functions to be launched at any time. Thus, the serverless developers can focus on

the application developing, rather than using time to manage server software and

hardware. The serverless architecture is often implemented using a HTTP server

launching different functions that handle the application logic. Inside the applica-

tion workflow, the functions can invoke and communicate with each other. Serverless

implementations are often combinations of big number of small functions where each

of them has their own specific job. Also, given the functions’ single execution prin-

ciple, the functions are easy to be triggered, for example, as a cron job. Other

methods to trigger functions are when the file is added to storage service, a change

in cloud database, or an item entering the message system. [8] Regarding the name

“Serverless”, the architecture actually contains a HTTP server but unlike in regular

web-server architecture, in serverless, the HTTP server acts as a middleware for

launching different application logic functions as their own services. [9]

3.2 SERVERLESS ARCHITECTURE 15

Serverless cloud function principle offers the developers a way to add application

logic as new functions without the need to touch the functions that are already in

use. This feature leads to looser coupling and lower rigidity in code. Serverless

computing is using a pay-as-you-go pricing model. Consumers are charged based on

the cloud resource usage of individual functions. CPU time and allocated memory

are parameters that are usually the base of pricing. The cloud provider handles the

scaling of resources. The automatic scaling is based on the invocations of functions.

If there is a lot of invocation traffic for functions, the number of instances of these

functions on demand is increased and vice versa. [9]

There are different types of applications that benefit from the serverless architec-

ture model. Due to the pay-as-you-go pricing model serverless is often implemented

in smaller applications. In these occasions the user only pays for the time there

are application users using the software. Due to the pricing model and automatic

scaling, applications that have often small usage but occasional usage bursts benefit

from the model. The serverless model is not a best solution for applications that

handle large files or websockets since the functions have a maximum amount of time

that they can run after a single invoke.

3.2.1 Architecture Example

The example of a simple serverless architecture model can be seen in Figure 3.2. The

example proposes an overall architecture overlay for simple note writing application.

The user interface accesses the application logic using the HTTP server. Application

logic contains functions for creation, reading, updating, and deleting (CRUD) a

note. Functions then interact with the database. The example is lacking the usual

serverless methods where the functions invoke and interact with each other.

The architecture example could be implemented to any cloud providers envi-

ronment. Using AWS as an example, the following services could be in use: API

3.2 SERVERLESS ARCHITECTURE 16

Figure 3.2: Simple serverless architecture

3.2 SERVERLESS ARCHITECTURE 17

Gateway 4 as a HTTP server which invokes Lambdas 5 that are the logic functions.

The Lambdas would then interact with database such as relational database ser-

vice (RDS) 6 or key-value database service (DynamoDB) 7. For logging purposes,

CloudWatch 8 would be the solution. [10]

3.2.2 Advantages and Disadvantages

Serverless architectures can be developed to be cost-effective with their pay-as-you-

go billing model. AWS Lambda service pricing consists of the number of requests

and the resource usage in CPU time and used memory. The functions are single

implementations with a responsibility for a one specific action. The application

structure regarding the permissions to interact with the application database and

storage is taken care of efficiently. Every function has a set of permissions that are

specifically defined. The security can be handled efficiently using this feature.

Serverless developers can fully focus on developing the application logic since

the cloud infrastructure is taken care of by the cloud provider. The cloud provider

offers an execution environment where the functions can be run. Typically, the

environment supports a limited number of programming languages, but still con-

taining the mainstream ones such as Node.js, Python, Java, and C#. [11]–[13] Also,

the autoscaling of the resources helps developers to focus on developing instead of

maintenance or launching the infrastructure.

The nature of serverless functions is that they are running only when they are

invoked. When there is little traffic, cloud providers close down the instances that

are not in use as part of the autoscaling. One well-known bottleneck in serverless

4AWS API Gateway: https://aws.amazon.com/api-gateway/
5AWS Lambda: https://aws.amazon.com/lambda/
6AWS RDS: https://aws.amazon.com/rds/
7AWS DynamoDB: https://aws.amazon.com/dynamodb/
8AWS CloudWatch: https://aws.amazon.com/cloudwatch/

3.3 MICROSERVICES ARCHITECTURE 18

functions is cold start delay. It can be defined as high start-up latency during the

first invocation after a period of inactivity. [9] The first invocation after a period of

time is time consuming since the runtime have to be prepared for the needs of the

function. For example, the external libraries must be installed. Naturally, when the

function is invoked frequently, the start-up latency is low. Application developers

need to consider the cold start delays as part of the serverless development. This

is developers’ responsibility since the cold starts are part of the cloud providers

resource autoscaling. Also, the delay result of cold starts is even bigger when the

cold started function invokes another function that is in idle mode and has to be

cold started.

Another feature of the serverless functions is that the functions are stateless

meaning that they do not hold the state or share the state between other functions.

[9] The lack of universal state across the functions makes the communication between

different functions less efficient. The lack of shared state between functions forces

the invoked function to fetch or produce all the needed data if it is not being passed

forward from the invoker function.

3.3 Microservices Architecture

A microservice is a small autonomous service that has a single responsibility and

can be deployed, scaled, managed, and tested independently. [14] The microservices

architecture model consists of multiple independent microservices that are tied to-

gether. The microservices architecture offers application developers a method to

build a bigger system in separate teams that are responsible for different microser-

vices.

Typically, a microservice has one responsibility from the business logic point

of view. Microservices are independent services that communicate with each other

using lightweight techniques such as application program interfaces (API). Microser-

3.3 MICROSERVICES ARCHITECTURE 19

vices can be developed, deployed, scaled, managed, and tested autonomously. Scal-

ability provides an opportunity for applications to grow rapidly. Since microservices

are independent systems, the developers can use different programming languages

and technologies inside of one bigger system. That provides flexibility for the devel-

opment. [15]

Infrastructure automation is a key part of microservices architecture. A com-

pany using microservices need an automated continuous integration and continuous

deployment (CI and CD) pipeline to produce microservices effectively. Pipelines can

produce microservices from templates and deploy them automatically. Automated

testing is also key part of microservices. The developers have to make sure that each

individual microservices are working properly after they have been changed. [15]

In microservices, the cloud resource management is handled by the cloud provider.

Developers can target their resources to the developing part – as in serverless ar-

chitecture. The examples of cloud platforms for the microservices are AWS Elastic

Container Service (ECS) and Microsoft Azure Kubernetes Service (AKS). [16], [17]

Resource scaling is provided by the cloud provider.

Microservices architecture is used in bigger applications that are capable of split-

ting into small services that handle different parts of business logic. One certain use

case for microservices is the migration from monolithic architecture to a fully scal-

able cloud architecture. Application logic can be rebuilt piece by piece without

compromising the parts that are already in use. Microservices can be a natural

direction to move for systems that have become too big to manage as a monolithic

architecture. When the system is complex enough, it is hard to be changed without

compromising all available features. [14]

3.3 MICROSERVICES ARCHITECTURE 20

Figure 3.3: Microservices architecture example

3.3 MICROSERVICES ARCHITECTURE 21

3.3.1 Architecture Example

The example of a microservices architecture model can be seen in Figure 3.3. The

example is an architectural suggestion for e-commerce application. It consists of

two user interfaces and three different microservices that handle the business logic.

User interfaces are mobile application and browser web application. Microservices

consist of an account service, inventory service, and shipping service. All three

microservices interact with their own databases. All of the independent services

have a single responsibility which is one of the central principles in the microservices

architecture model. This principle is based on the Unix philosophy on doing one

thing and doing it well. [18]

Following cloud services could be used if the microservices architecture was con-

ducted in the Microsoft Azure cloud environment. First, the Azure Kubernetes

Services 9 can be used as containers for the microservices. The Azure API Manage-

ment 10 could be used as API service for building the communication between the

mobile application and the microservices. Finally, Data storage can be implemented

with the use of Azure SQL Database 11.

3.3.2 Advantages and Challenges

The agility of the microservices is an advantage. They are independent implementa-

tions that can be deployed without redeploying the entire application. Microservices

can be developed as their own units with and it can help to reduce the time to market

length of different features. [19]

Microservices are easy to be scaled. Since each business logic responsibility is

their own service, the more needed services can be scaled to use more resources than

9Azure KBS: https://azure.microsoft.com/en-us/products/kubernetes-service
10Azure API Management: https://azure.microsoft.com/en-us/products/api-management
11Azure SQL Database: https://azure.microsoft.com/en-us/products/azure-sql/database/

3.4 MONOLITHIC ARCHITECTURE 22

the others. Traditionally, the whole application should have been scaled whereas in

microservices, only the specific services can be scaled. The technological flexibility

and small code base are also advantages. Individual microservices can be developed

using the technologies and development languages that fits best for services pur-

poses. The relatively small code base of each service in contrast to the monolithic

architecture can make the development of new features to be easier. [20]

The complexity of the microservices architecture is a challenge. Each microser-

vice is independent and relatively small unit but the system containing multiple mi-

croservices is complex as a whole. Complexity has an effect on the data management

and consistency of the microservices architecture. This comes from its distributed

nature. Often, each service has their own database implementation and the data

management is decentralized. Thus, the management of distributed transactions is

difficult. [15] Handling the security is vital part of any software architecture. Every

microservice inside the architecture exposes an individual entry point for external

or internal communication. [15]

Usually, the microservices are small implementations and require communication

with other microservices. The network latency and congestion can become a prob-

lem in the microservices architecture. Microservices are their own instances and the

communication between them is done over the internet. The requirement of com-

munication can cause high latencies and has to be considered during the application

development. Latency can be even higher if the services are chaining the requests,

for example, if microservice X calls microservice Y that calls microservice Z. [20]

3.4 Monolithic Architecture

Monolithic architecture is the traditional model for building applications. Mono-

lithic architecture is a single unit that contains the whole system. The architecture

consists of three different layers: the user interface, server-side business logic, and

3.4 MONOLITHIC ARCHITECTURE 23

database. The user interface is the browser or mobile app that the user interacts

with. Server-side business logic handles all the logical functions that the applica-

tion contains. Business logic layer interacts with the database. A single database

contains all the application data. [21] The monolithic architecture is single logical

executable and every deployment refreshes the whole application to a new version.

[22]

Monolithic architecture consists of a single codebase. Any code change done by

the application developer can affect the whole system since all the changes are done

on the same codebase. [19] This emphasizes the importance of accurate testing.

Monolithic architecture can be deployed to cloud environment with virtual ma-

chines. Examples of cloud virtual machine providers are Amazon Elastic Compute

Cloud (Amazon EC2) and Google Cloud Compute Engine. [23], [24] In monolithic

architecture, the service developers have more ability to affect the underlying cloud

resources. The cloud provider offers the infrastructure to the system based on the

resources the client needs. For example, the AWS EC2 service provides a big num-

ber of different virtual machine instance types that vary in terms of CPU, memory,

storage, and networking capacity.

3.4.1 Architecture Example

Simple monolithic architecture illustration can be seen in Figure 3.4. The example

uses typical three-layer implementation of monolithic architecture. The user inter-

face and business logic are located inside the same entity. Then, the business logic

layer communicates with database to implement the data operations.

Monolithic architecture could be implemented with following cloud technologies

in the AWS environment. An Elastic Compute Cloud (EC2) 12 instance could be

deployed as Ubuntu server. The instance could include both application user inter-

12AWS EC2: https://aws.amazon.com/ec2/

3.4 MONOLITHIC ARCHITECTURE 24

Figure 3.4: Monolithic architecture example

3.4 MONOLITHIC ARCHITECTURE 25

face and business logic as a Django framework system 13. The used database service

could be AWS Relational Database Service (RDS) 14.

3.4.2 Advantages and Challenges

Simplicity is one advantage of monolithic architecture. It is a viable solution for a

small application or MVP. Monolithic applications tend to be easier to test, deploy,

debug, and monitor than more complex architectures such as microservices. Also,

the data is centralized in the single database and it does not have to be synchronized

with other services. [22] When building a lightweight application with a small num-

ber of users monolithic architecture is a faster solution than a similar microservice

one. [25]

Another advantage is the amount of configurations required in the monolithic

environment. The amount of configurations can be smaller since there is only one en-

vironment that has to be configured. Also, the configurations can be more straight-

forward. [26] For example, microservices require configurations for their service

deployment templates and possibly for each services individually.

When the application grows to be more complex the monolithic architecture

encounters challenges. Scalability is not very efficient in the monolithic architecture.

Using the microservices or serverless architecture, the specific services that needs to

be scaled, for example, because of usage traffic can be scaled as their own services.

When the monolithic application needs to be scaled to use more or less resources,

the whole system has to be scaled. This might result in a waste of resources and

can produce unnecessary costs. [19]

The complexity is also a problem in a code base. When the code base is large,

the time needed to build and deploy the system becomes longer and eventually this

13Django Framework: https://www.djangoproject.com/
14AWS RDS: https://aws.amazon.com/rds/

3.4 MONOLITHIC ARCHITECTURE 26

can make the development processes slow. The application development becomes

harder when the code base grows. Since its undistributed nature, the changes in one

module can produce unexpected behaviours in many other modules. Applying new

technologies becomes a challenge in a monolithic architecture. The whole system has

to be upgraded to use the technology instead of just one service. [21] The difficulties

in adopting new technologies can result in technical debt in the long run.

4 Architecture Evaluation

This chapter gives an overlay to software architecture evaluation in general. After

the general overview, three different architecture evaluation models are introduced.

The introduction is given to two traditional and one cloud-specific architecture eval-

uation models. The models are architecture trade-off analysis method, cost-benefit

analysis method and AWS Well-Architected framework.

Software architecture has numerous different definitions as introduced earlier in

the Chapter 3. It can be also defined as a sum of different architectural decisions.

Architecture evaluation often evaluates these specific decisions. Software architec-

ture evaluation is performed to identify the quality of architectural decisions made

designing the overall structure of the software and to determine risks. Architecture

evaluation can be done in any phases of the software developing including the start

of the architecture design, development phase, or the maintenance phase. In the

start of the architecture design, evaluation can be done by comparing the chosen

architecture style to other ones and to discuss trade-offs that the current style could

possibly be producing. In the development phase the evaluation can be done, for

example, by evaluating how well the designed properties are eventually built. Soft-

ware architectures are being constantly more complex and active evaluation can be

a solution to preserve quality and clarity of the systems. [27]

There are numerous ways to perform software architecture evaluation. Tradi-

tional methods are often human-centric discussions between different stakeholders

4.1 ARCHITECTURE TRADEOFF ANALYSIS METHOD (ATAM) 28

such as architects, developers, and managers. Often the customers are also part of

the stakeholders participating the discussions. The discussions are made to evaluate

how well, for example, architectural decisions, patterns, and technologies preserve

the quality of software attributes. They also try to identify risks and consider trade-

offs between different approaches. Being human-centric, traditional methods rely

on judgement of different professionals. [28] Examples of traditional approaches

are architecture trade-off analysis method (ATAM), cost-benefit analysis method

(CBAM), and scenario-based architecture analysis method (SAAM).

While the complex applications are continuously shifting towards public cloud,

cloud providers have come up with novel cloud-specific techniques to evaluate soft-

ware architectures. These new methods include from both Amazon Web Services

and Microsoft Azure a service called Well-Architected.

4.1 Architecture Tradeoff Analysis Method (ATAM)

The Architecture Tradeoff Analysis Method (ATAM) is a scenario-based traditional

system architecture analysis method. ATAM tries to produce understanding for

the consequences of different architectural decisions while simultaneously paying

attention to the quality requirements of the software. ATAM is usually done in the

early phases of the architecture design process but can also be done in later phases.

[29]

The process for executing ATAM is divided into four phases: presentation, in-

vestigation and analysis, testing, and reporting. The process is illustrated in the

Figure 4.1. During the presentation phase, ATAM is introduced to the stakeholders

together with the business goals of the system and the system architecture. The

presentation phase produces understanding of what is going to be analyzed, how it

is done, and what is the motive for doing the analysis. In the investigation and anal-

ysis phase, the architect presents the architectural approaches, stakeholders produce

4.1 ARCHITECTURE TRADEOFF ANALYSIS METHOD (ATAM) 29

Figure 4.1: ATAM process

4.1 ARCHITECTURE TRADEOFF ANALYSIS METHOD (ATAM) 30

quality attribute tree, and the architectural approach is being analyzed. The quality

attribute tree consists of different quality factors in the system, broken down into

the level of scenarios. These scenarios are then prioritized. During the architecture

analysis, the architectural approaches are being evaluated regarding the factors in

the quality attribute tree. The testing phase consists of brainstorming more sce-

narios and analyzing the architecture based on the scenarios. Finally, the reporting

phase presents the gathered information from earlier phases. The results consist of

architectural approaches, tradeoffs, scenarios, quality attribute tree, risks, etc. The

results can be documented to be used in the future. [30]

Analyzing system architecture using ATAM includes numerous benefits. The

problems of the architecture can be noticed in the early phase. Architectural deci-

sions are explicitly brought up and analyzed how well they align with the require-

ments. ATAM is human-centric and require active communication and contribution

from experts of different areas. Thus, ATAM increases the communication between

the stakeholders and provide clarity. Different ATAM phases and the results are

documented and therefore the general knowledge about the system can be increased

inside the organization. Also, well-documented process can help teams to perform

ATAM in the future.

The issues in ATAM are related to its human-centricity. The process requires a

lot of input from different stakeholders. If the stakeholders are not serious about the

process, the results can have minor meaning compared to results of the process that

is done thoroughly. The process requires active participation and preparation by

the key stakeholders. [30] ATAM requires substantial amount of time from the key

stakeholders to be implemented properly. Thus, ATAM can produce major costs.

4.2 COST-BENEFIT ANALYSIS METHOD (CBAM) 31

4.2 Cost-Benefit Analysis Method (CBAM)

Cost-benefit analysis method (CBAM) is another traditional scenario-based archi-

tecture evaluation method. CBAM provides a cost-benefit analysis to help making

architecture design decisions. CBAM offers economical perspective for designing

process. It is a method that considers the best architecture design based on what

potential costs and benefits the corresponding architecture provides. Costs and ben-

efits provided by the architecture include, for example, effort, schedule, efficiency,

and risks. As well as ATAM, CBAM is human-centric and requires quality input

from different stakeholders. [31] The goal of CBAM is to produce a maximized dif-

ference between the received benefits from the system design and the costs that are

required to implement the chosen design. [32]

Implementing the CBAM can be divided into two main phases: architectural

strategy development and cost-benefit analysis. [31] The individual steps of the two

phases can be seen in Figure 4.2. CBAM can be seen as economically extended

version of ATAM and the similarities can be seen in the first phase. The archi-

tectural strategy development phase consists of creating and refining the scenarios

and prioritizing them. After prioritizing, the quality attributes are described for

the scenarios. Finally, the architectural strategies are being chosen or developed to

serve the scenarios. Phase two, cost benefit analysis, consists of evaluating and com-

paring the chosen architectural strategies. Evaluation is being done by describing

the utility value that the strategy produces, calculating the total costs and benefits

of the strategy, and determining the return of investment (ROI) of the strategy.

Eventually, the final architectural strategy is being chosen based on the evaluations.

More accurate solutions can be achieved by performing another iteration of the two

phases. In second iteration, the process can be extended by adding information

about risk calculations, uncertainties and allocated technical resources. [32]

The use of CBAM as an architecture evaluation method includes numerous bene-

4.2 COST-BENEFIT ANALYSIS METHOD (CBAM) 32

Figure 4.2: CBAM process

4.3 AWS WELL-ARCHITECTED 33

fits and uncertainties. The costs and benefits of architectural decisions are precisely

determined which leaves less room for intuition or preconception. In CBAM, the

ROI is calculated for the architectural decisions and, thus, the selected methods are

not only chosen by relying on costs or benefits. [32] Also, CBAM produces clarity

since it requires active communication between different stakeholders. Similar to

ATAM, the CBAM demands serious effort from stakeholders to gain effective re-

sults since it is a human-centric method. Thus, the human-centricity can be seen as

uncertainty. Another issue for CBAM is its incapability of effectively defining the

added value of architectural strategies. This makes CBAM less efficient method for

uncertain environments such as internet of things (IoT). [28]

4.3 AWS Well-Architected

The AWS Well-Architected framework is a cloud-specific evaluation tool to review

and improve the system cloud architecture. The framework improves the knowledge

of business impacts of the architectural decisions. It provides a way to measure the

system architecture against best practices. The framework includes general design

principles, best practices, and guidance. Well-Architected consists of six operational

pillars - operational excellence, security, reliability, performance efficiency, cost opti-

mization, and sustainability. AWS provides Well-Architected Tool which is a cloud

service that follows the user through the architecture evaluation. The framework

consists of questions about all the five pillars. Well-Architected Tool extends the

evaluation to consider specific architectural style models such as serverless and mi-

croservices. These extensions are called lenses. The evaluation can be done by using

only the general Well-Architected framework or by extending it with the architec-

tural specific extensions. [33]

4.3 AWS WELL-ARCHITECTED 34

Pillar 1: Operational excellence

Well-Architecture documentation defines the operational excellence pillar as "The

ability to support development and run workloads effectively, gain insight into their

operations, and to continuously improve supporting processes and procedures to

deliver business value." [34]. Workload means software components that produce

business value as a group. In addition to evaluating the processes and procedures of

the development, operational excellence also refers to the business goals of the system

and how the organizational aspects support them. Operational excellence can be

seen as a general overview of what the business goals are, understanding the software,

operating the system to achieve business and customer outcomes, and constantly

improving the procedures to evolve as a whole. [35] Operational excellence is a

quality specification that might not have a counterpart, for example, in ATAM.

Pillar 2: Security

The security aspect of the framework considers how well the system protects its data,

software components, and assets. It analyzes how efficiently the system takes ad-

vantage of the cloud specific security technologies. The security part covers methods

such as identity management, traceability and security incidents. Identity manage-

ment can be centralized to make it easier. Traceability is an efficient method to

detect actions and changes in the system in real-time. The framework encourages

users to have specific process in case of security incidents. As well as in operational

excellence, automation is a key part of the security. Cost-efficiency and scalability

improve when security mechanisms are automated. [36]

Pillar 3: Reliability

The reliability part of the framework evaluates the system’s ability to perform effi-

ciently and consistently the operations it is supposed to. Reliability includes failure

4.3 AWS WELL-ARCHITECTED 35

management as well as the ability to scale rapidly. A key point of reliability is

the automatic recovery from failure states. This can be achieved through active

monitoring and event triggers. By efficient scaling, the system keeps reachable to

the users when the demand increases quickly. The scaling needs to be implemented

also downwards to adapt to lower demand. Another key part of reliability is to de-

velop system to consist of small individual resources to lower the impact of a single

resource failure. [37]

Pillar 4: Performance efficiency

The performance efficiency pillar evaluates how efficiently the system utilizes the

cloud computing resources. This pillar encourages the users to search and select

suitable technologies for different use cases. Cloud technologies makes applying new

technologies easier since many of them are easily deployable. The pillar suggests

to constantly review the technologies that are in use in terms of performance and

thus, benefit from the continuous innovation of cloud technologies. This part of the

framework also considers how the cloud resource usage is monitored. [38]

Pillar 5: Cost optimization

The Well-Architecture documentation defines the cost optimization pillar as "The

ability to run systems to deliver business value at the lowest price point". [34] Cost

optimization consists of active measurement of the business value output and the

costs associated with it. Cost optimization is key part of cloud computing since they

are often charged with pay-as-you-go model and, thus, can be optimized based on

the needs. [39]

4.3 AWS WELL-ARCHITECTED 36

Figure 4.3: AWS Well-Architected Framework process

Pillar 6: Sustainability

The sustainability part reflects on the environmental impacts of different architecture

decisions. It encourages the architecture designers to consider energy consumption

and efficiency as part of the system development process. To achieve sustainabil-

ity, it is important to understand the impact of users cloud resources, establish

sustainability goals and maximize the utilization. [40]

Review process

The Well-Architected framework suggests the users to constantly re-examine the

system architecture. A Well-Architected review can be done in any phase of the

software development process. Simple illustration of the review process can be

seen in figure 4.3 The review process should include the whole development team

to increase the knowledge of the architecture and its attributes. The review is

implemented using the questions about different pillars and it is suggested to be

4.3 AWS WELL-ARCHITECTED 37

more of a conversation between team members rather than an audit. The output of

the review process can be seen as actions that improve the system as a whole. [41]

5 Case Study

5.1 Lixani Oy

Lixani Oy is part of the Lemonsoft Oyj concern. Lemonsoft Oyj is a Finnish publicly

listed company that offers ERP-solutions for small and medium sized companies.

Lemonsoft operates in different industries including manufacturing, logistics, ac-

counting, and construction. The concern consists of a parent company and multiple

subsidiaries including Lixani Oy. Lixani joined Lemonsoft in 2020.

Lixani Oy is a company that offers multiple products in construction industry.

Its main product is an ERP-system called Lixani. The system is targeted for small

and medium sized companies specialized in renovation construction and new con-

struction. The system has been around for over eight years and during the years it

has evolved from a text-message based system to a modern web application. This

case study focuses on Lixani 5, a new version of the system released in 2022.

5.1.1 Lixani 5 Application

Lixani 5 is an ERP-system built for mobile and desktop use while focusing primarily

on the mobile environment. Construction workers add their work records and report

with mobile devices. Similarly, the construction supervisors monitor the sites using

mobile devices. The system provides a wide selection of methods for monitoring

the construction site accurately. Cost control allows users to monitor costs on a

5.1 LIXANI OY 39

denomination level. The workflow feature provides a way to wrap up records of

all project stakeholders. The project bank is a centralized document store for all

project related information. The information reporting feature allows companies to

report project related employee listings and costs to Finnish Tax Administration,

which is mandatory in the construction industry.

Lixani’s vision is to improve transparency within construction industry. Often,

construction sites consist of long subcontracting chains that provides an opportunity

for cheating in different parts of the chain. Lixani aims to improve transparency by

providing precise monitoring of the project’s current state. A centralized store for

all project data from day-to-day work of all stakeholders improves communication

inside the project and provides cost savings. With real-time data, the accuracy of

decision making becomes easier. Lixani also encourages the construction business to

be more self-organized by allocating more responsibilities for construction workers.

Anticipation and budgeting are also things that improve by active monitoring of

projects’ states.

5.1.2 Lixani 5 System Architecture

A simplified description of Lixani 5 system architecture can be seen in Figure 5.1.

The architecture is a versatile entity that consists of many different AWS cloud

services. The architecture follows the serverless architecture model. The architecture

relies heavily on the Serverless Framework. It is a framework that aims to ease

the development process of serverless architecture with AWS Lambdas and other

AWS resources that are in relation with the Lambdas. [42] The main parts of the

architecture will be introduced in the following sections.

5.1 LIXANI OY 40

Figure 5.1: Lixani 5 architecture

5.1 LIXANI OY 41

CloudFormation Stacks

AWS resources that are used in the architecture are divided into different CloudFor-

mation stacks. CloudFormation is a service that provides a way to create, provision,

and manage multiple AWS resources as a single unit. CloudFormation handles the

infrastructure deployments of the resources. A CloudFormation Stack is a collection

of AWS resources. CloudFormation stacks are defined in template documents that

improve repeatability and predictability. [43] Most of the CloudFormation stacks

in use are divided into logical entities that have single responsibility in terms of

business logic. Entities are, for example, Lixani-core, Lixani-files, Lixani-reports,

and Lixani-SMS.

User Interface

Lixani 5 is a React application that is hosted on AWS S3 file system and delivered

through AWS CloudFront service. CloudFront is a service that distribute content

with low latency through worldwide edge locations. Domains and certificates are

managed in AWS Route 53 service and AWS Certificate Manager service.

API Layer

Architectures API layer consists of AWS AppSync service and numerous API Gate-

way services. The application web interface communicates with AppSync through

GraphQL requests and with API Gateway through HTTP requests. GraphQL is a

query language for APIs. AppSync is a centralized GraphQL API layer provided by

AWS. It parses the GraphQL requests and navigate them to corresponding resources

– AWS Lambda functions. Lixani includes numerous API Gateways, such as HTTP

API and REST API services. As well as AppSync, also the API Gateway services

act as a middleware between Lambda functions and the web application interface.

5.1 LIXANI OY 42

Function as a Service

AWS Lambda functions are the core of the architecture. Lixani 5 consists of over

200 different Lambda functions. They handle all the logical tasks in the application.

Lambdas are mostly invoked by the API:s - API Gateway and AppSync. Other ways

to invoke lambdas are different events such as file addition to S3 storage system, and

message triggers from Simple Queue Service (SQS) or Simple Notification Service

(SNS). Some lambdas are also scheduled to trigger at a specific time.

Lambda functions interact with other AWS services to implement the business

logic. The user authentication and user management are handled by Lambdas that

interact with Cognito service. File handling is implemented through functions that

interact with S3 Storage. Data operations are implemented with Lambdas that

communicate with DynamoDB database and ElasticSearch indexes. Communication

between users and the system through email and SMS messages are implemented

with Lambdas that interact with three AWS services: Simple Email Service (SES),

Pinpoint, and Simple Notification Service (SNS).

Security and Monitoring

Security between cloud resources is implemented with the AWS Identity and Access

Management (IAM) service. IAM provides a method to manage access to different

AWS resources. For example, every Lambda function has a role that includes a

definition of every permission that they have. Permissions are provided with least-

privilege method: provide only permissions that are required for the resource to

work.

Monitoring is implemented in the whole system through AWS CloudWatch. It

is a monitoring service that provides logging, allows creating and tracking different

metrics, and allows setting alarms. Mostly, CloudWatch is used for its logging

services. For example, every Lambda function has its own log file in the CloudWatch

5.2 AWS WELL-ARCHITECTED REVIEW 43

service.

5.2 AWS Well-Architected Review

The Well-Architected review for the Lixani 5 software was conducted as a meeting

between the Lixani development team and CEO. In the meeting, all the 58 questions

in the review framework were considered in a conversational manner. In the following

sections, the results are analyzed for each of the Well-Architected pillars.

Pillar 1: Operational excellence The first pillar emphasizes the operations in-

side the organization and the team. The pillar was an effective way to go through

the general practices of the organization. Regarding the development team, positive

things that rose up were active and transparent communication, and clearly defined

responsibility areas. What comes to revising the current practices, the team thought

that code review should be applied to the development process in the near future.

Also, the documentation practices were considered to be enhanced. Organizational

matters that came up were the need for improvement in feature definition and to

conduct more research before the start of developing new components to the soft-

ware. In addition, the governance requirements should gone through to ensure our

system takes into account the Finnish legislation.

Pillar 2: Security The second pillar included ten questions regarding the se-

curity. This part stood out with positive and negative aspects concerning Lixani.

General practices regarding AWS infrastructure usage such as multi-factor authen-

tication, using separate accounts for different environment etc. were in good shape.

Regarding the security in the system, there were some aspects that stood out. The

external programming libraries that are on use, for example, React and Apollo

should be upgraded to newer versions to prevent security threats regarding outdated

5.2 AWS WELL-ARCHITECTED REVIEW 44

versions. The team noted that a specific process should be created for applying per-

missions to AWS resources in order to maintain the AWS least-privilege policy.

Regarding the technical services that AWS offers, team noted that the analyzing of

application logic should be enhanced. Automated response for exception handling

and metrics to analyze AWS Lambda usage should be applied to reduce the time

to notice unwanted events. In addition, the team pointed out that documentation

should be enhanced related to the security aspects.

Pillar 3: Reliability The reliability pillar included questions related to the de-

sign of architecture to ensure it is working in a reliable manner. The architecture

model selection – Serverless architecture – is a practical solution that works effi-

ciently for the system’s purposes. Considering that the Lixani 5 is still mainly in

a development phase and used by only a small amount of customers, the elastic-

ity of the software should be tested before the customer base grows. This is to

ensure our logical functions are functional when the demand increases and to im-

plement possible changes in early phase. In addition, the documentation between

different logical functions inside the serverless architecture should be enhanced to

improve the knowledge of correlations between different functions. What comes to

monitoring the architecture and its state, previously mentioned automated response

for exception events and implementing metrics for monitoring the logical functions

are features that should be applied in the future. One question of the pillar was

dedicated to backing up data and storing it securely. The team decided that the

organization’s back up practices should be revised for all AWS resources in use to

ensure that back up operations are done according to best practices.

Pillar 4: Performance efficiency Pillar four consisted of eight questions related

to the practices implementing performance. Questions handled the applying of new

technologies, data storage solutions, database services, networking technologies, and

5.2 AWS WELL-ARCHITECTED REVIEW 45

performance of general architectural decisions. The team evaluated current process

for applying new technologies as an efficient one since the decisions are iterated mul-

tiple times between the team and managing persons before the solution is approved.

The team highlighted that transparent communication should be maintained inside

the organization.

The questions related to the database services stood out as an interesting con-

versation. The team pondered that the database solution of the system should be

standardized. Currently, the external part of the Lixani 5 – tax reporting – uses

both AWS (Relational Database Service) and AWS DynamoDB as database services

while all other components use the DynamoDB service. In the future, the RDS us-

age should be replaced with the DynamoDB. By doing the replacament all of the

data would be in a same location and thus, the handling of the data becomes better

manageable.

Regarding the general performance efficiency of the software, one aspect stood

out. Currently, the development team and the subcontractors are doing a transition

from the GraphQl and AppSync API solution towards the use of an HTTP REST

API model. Recently, it was noted that the GraphQl and AppSync solution became

a bit of a bottleneck for the software efficiency and the decision was made to slowly

refactor the software to use HTTP REST API solution. This transformation is

already showing positive effects in the performance of the software.

Pillar 5: Cost optimization Cloud providers usually charge the customers based

on the amount of usage per service. AWS offers different possibilities to monitor the

monthly costs. The fifth pillar of the review consisted of questions regarding the

customer’s processes to monitor costs. The questions raised awareness on how the

costs can be monitored and they extended the knowledge on what kind of possibilities

AWS provides for cost management. Based on the questions, the team decided

that all AWS resources that are on use should be periodically gone through and

5.3 INTERVIEWS WITH EXPERTS 46

inspected whether there are costs provided by resources that are unnecessary. AWS

offers budgeting tools that are suggested to be in use for monitoring purposes. The

budgeting tools could be in use to monitor whether there are some services providing

unexpected costs. While cloud providers usually charge users based on the usage,

AWS offers also other ways to handle billing. Reserved instances are AWS resources

that are charged with fixed monthly pricing. The review questions invoked a need

to evaluate different billing models for specific AWS resources that are offering the

fixed pricing model.

Pillar 6: Sustainability Using cloud services there are numerous ways to think

about the sustainability aspect. The pillar was a good addition to the framework

since the sustainability issues were not considered earlier by the team members.

Based on the questions in this pillar, the team considered that it should be noted

that unused cloud resources should not be created or maintained.

5.3 Interviews With Experts

Interviews were conducted as separate meetings between an interviewer and inter-

viewee. Sessions were productive meetings that included a broad conversation about

the subject in general. The interviewees were the following persons:

• Janne Tammi, CTO, Lemonsoft Oyj

• Janne Annila, Architect, Lemonsoft Oyj

• Jari Ikävalko, Cloud Architect, Skillwell Oy

5.3 INTERVIEWS WITH EXPERTS 47

5.3.1 How system architecture is being evaluated in your

company?

System architecture evaluation is an important part of software company’s routines.

When Lemonsoft is considering buying new companies to be part of the organi-

zation, the architecture evaluation becomes critical. Tammi has created his own

technology audit template that is conducted to the target companies. The audit

gathers different business and technology related stakeholders together to discuss

the system architecture from different perspectives. Tammi’s audit template is a

pack of questions and topics that have been formed as a result from long career on

the software development field.

Regarding the software development in Lemonsoft’s own products, the architec-

ture evaluation process differs. The evaluation is emphasized in the early phase of

new product and during the adoption of new technologies, as Tammi explains. The

evaluation of how new technologies fit in the current architectural environment is

important. Also, Tammi states that the iterative evaluation of architecture design

between the architect team and CTO before the start of development reduces the

possibility for major turnarounds in the development phase.

Lemonsoft’s main product includes business logic and implementations from over

15 years. Annila thinks that the architecture evaluation is important to make sure

new entities of the software align with the architectural decisions that are already

in use. Annila highlights the company’s POC (Proof Of Concept) culture. When

new major feature is going to be implemented to the software, the process starts by

creating a POC. The POC is designed, previewed, and iterated inside the architect

team to find possible architectural problems in the early phase.

Skillwell also does not rely on any specific evaluation model but has its own

process for it. Ikävalko explains that through the organizational culture, they try to

grow their consultants to approach the architecture in a similar way. The process

5.3 INTERVIEWS WITH EXPERTS 48

has been shaped from the broad expertise that the consultants have been acquired

during their career. Ikävalko considers that the AWS Well-Architected framework

have similar main points than their practices.

5.3.2 In which part of the architecture development process

do you aim to evaluate the architecture?

In Lemonsoft, the architecture evaluation is emphasized in the early phase of the

architecture development according to Tammi and Annila. The architecture model

and required technologies are analyzed between multiple stakeholders including the

architecture team and the CTO. Architecture evaluation becomes evident when new

technologies are going to be applied in the current architecture. The technologies

and architectural decisions are analyzed and iterated before start of their develop-

ment. Problems related to the architectural decisions are tried to be found before

the start of the implementation phase but it is not possible always. Thus, also

the implementation phase requires architectural evaluation on how well the added

feature align with the current architecture, ponders Annila.

According to Ikävalko, in Skillwell, the architecture is being evaluated in the very

early phases of the system development process and re-evaluated constantly during

the lifespan of the system. The re-evaluation is often done when there is need for

greater revisions in the system. Cloud environment offers a wide set of different tools

and constantly introduce new ones. The re-evaluation of architectural decisions is

also a good way to mirror the architecture to the existing best practices of the cloud

provider.

5.3.3 What are the advantages in architecture evaluation?

Acquiring subsidiaries requires a deep evaluation of target company’s system archi-

tecture. According to Tammi, it is important to know what kind of system archi-

5.3 INTERVIEWS WITH EXPERTS 49

tecture is going to be part of the concern in the future. During the development of

company’s own products, the deep evaluation before bringing in new technologies

and architectural decisions can save resources in a long run since it is in known

what kind of advantages and problems can lie ahead when specific methods have

taken in use, thinks both Tammi and Annila. Through deep evaluation, the de-

velopment phase usually contains less surprises. Annila encourages his team to do

even more research on architecture designing process to prevent future problems in

a development phase.

Thorough architecture evaluation in a pre-development phase and constant re-

evaluation of the software architecture during its lifespan maintain the architect’s

knowledge of the system’s architectural decisions. “Constant re-evaluation of system

architecture and good knowledge of it helps me to sleep well”, explains Ikävalko.

5.3.4 If you have used both the traditional methods (ATAM,

CBAM) and cloud specific methods which do you prefer

and why?

None of the interviewees were used the traditional architecture evaluation methods.

They all rely on the best practices that have been formed over their long careers

and have created their processes for evaluating the system architecture. Ikävalko,

who has conducted AWS Well-Architected reviews for their customers thinks that

the review framework has good main points, but it usually requires much more

context and deeper knowledge of the target architecture to form a comprehensive

picture about it. Also, the design smells can be harder to find when only the Well-

Architected review is used since it goes through the architectural decisions in a

rather general manner.

6 Case Study Results

This chapter focuses on the results of the case study part of the thesis. The archi-

tecture review process results are discussed and the interviews with experts part is

analyzed.

6.1 Architecture Review with AWS Well-Architected

Architecture review session with AWS Well-Architected framework was overall a

successful event. The knowledge about the architecture was increased inside the

team, numerous positive aspects were noted from the current development processes,

and several problems were highlighted and considered to be revised in the future.

Review session started with the introduction to the system architecture in a

general level, and then continued as a presentation of all individual components of

the architecture. Presenting the architecture at the start of the review invoked a lot

of conversation of different architectural decisions. The presentation session already

extended and clarified the team’s current knowledge of the system architecture.

Also, the presentation of the software architecture updated the documentation of

the system architecture.

After the discussion of the current architecture, the Well-Architected review

questions were gone through for every individual pillar. The review raised a large

number of matters that should be revised and improved on the organization level,

in the development team, and in the system. The matters were collected and based

6.1 ARCHITECTURE REVIEW WITH AWS WELL-ARCHITECTED 51

on the notes, tickets were created to the company’s project management system. In

addition to things that should be revised and improved, the team noted that a lot

of matters are handled properly. For these matters, the team got confirmation that

the current way of working is approved and the team should continue practicing it.

Regarding the overall technical architecture, the AWS Well-Architected review

did not go really deep. The architecture review questions consisted mainly from

general subjects regarding the architecture such as the development and organiza-

tional habits, organizational culture, and processes. The architecture review might

not give deep knowledge from the technical architecture and it relies more on the

way of developing the system and company as a whole. This was noted also by one

of the experts in the interview part. Thus, Well-Architected review might not be

optimal solution for finding the technical issues in the implementation. It concen-

trates more on preventing the happening of these issues by highlighting the best

practices of building the architecture with AWS resources. Regarding other archi-

tecture evaluation models, ATAM is a model that often goes a bit deeper discussing

the technical decisions of the architecture in the investigation and analysis part of

the ATAM process. This can be seen from the Figure 4.1.

While the Well-Architected review might not be optimal choice for spotting

technical issues related to the code itself, it could be beneficial in many ways. The

review process forces the stakeholders to think about the company and the software

from different perspectives. If the company does not yet practice constant reflecting

on their processes, the Well-Architected review could be viable solution for doing it

periodically. As noted previously, the review process also either extend or at least

strengthen the system’s architectural knowledge of all stakeholders.

6.2 INTERVIEWS WITH EXPERTS 52

6.2 Interviews with Experts

All the interviews were different types of sessions. The time doing the interview

was projected to be approximately half an hour per interviewee. One of the inter-

views extended to be over one hour and thus, invoked deep conversation. Two of

the interviews were conducted remotely and one was conducted on the company’s

premise.

Interestingly, none of the interviewees were heard about the classic architecture

evaluation models such as ATAM or CBAM, and only one of them had previous

experience with Well-Architected review. While they do not use any architectural

evaluation models, they all still actively evaluate the architecture in a rather system-

atic way. One of them has their own technology audit template, another approaches

the evaluation from the organizational culture, and one relies on a specific software

development practice (POC) as a way to evaluate architecure.

The practices used by the interviewees have similarities to all the architecture

evaluation methodologies introduced in Chapter 4. Technology audit template gath-

ers different stakeholders together to ponder the software itself, the architecture, and

the company’s processes. Similarly, the ATAM, CBAM, and Well-Architected re-

views are all targeted to different stakeholders, not only technical persons. Some of

the main points in all the evaluation methods that were handled in Chapter 4 are

active participating of different stakeholders and open communication. These rise

up also in the evaluation processes that are common among the interviewees.

Broad experience from the software development field has created practices that

all the interviewees use in their architecture evaluation process in their daily work.

The processes have iterated and formed during their careers. The methods also have

similarities to academic architecture evaluation models and have similar main points

than the Well-Architected pillars.

7 Conclusions

This chapter provides the conclusions of the thesis, answers to the research questions

and provides possibilities for future studies. The goal of the chapter is to compress

research outcomes into conclusions.

The thesis included a literature review for cloud computing, for cloud architecture

models and for cloud architecture evaluation models. It included a case study section

that introduced the case study company and the software. The case study also

discussed the case study software’s system architecture in a general overview. After

the discussion, the cloud architecture evaluation was performed to the software using

the AWS Well-Architected framework. Third research method was interviews with

experts. The interviews included a discussion based on multiple questions about the

architecture evaluation.

7.1 Answering the Research Questions

This section answers to the two research questions introduced at the beginning of

the thesis. The answers are introduced based on the literature review, case study

and expert interviews.

RQ1: How the cloud software architecture can be evaluated?

The cloud software architecture can be evaluated in many different ways. The ar-

chitecture evaluation models can be divided into two categories: traditional models

7.1 ANSWERING THE RESEARCH QUESTIONS 54

and cloud-specific models. This thesis introduced two traditional evaluation models

and one cloud-specific model. Traditional models were architecture trade-off analy-

sis method (ATAM) and cost-benefit analysis method (CBAM). Both methods are

viable solutions for executing architecture evaluation in the cloud environment. The

cloud-specific model that was discussed in the thesis was AWS Well-Architected

framework. As seen from the case study, this was also a proper solution to perform

an architecture evaluation. The models are viable solutions but come also with

negative sides. It was seen that the AWS Well-Architected framework does not go

deep in the technical architecture decisions. Regarding the traditional methods,

the human-centricity in the approaches and the required commitment can cause

problems related to the costs and the quality of results.

One of the research methods of the thesis was interviews with experts. Based

on the interviews, it was noticed that the architecture evaluation can also be done

without a specific traditional or cloud-specific model. One of the interviewees fol-

lowed his own technology audit template as a result of a long career in the industry.

Another interviewee relied on the organizational culture where they were growing

their consultants to approach the architecture in a similar way. Third interviewee

introduced the organization’s proof of concept (POC) culture as a way to analyze the

architecture. These results show that there are numerous different ways to approach

architecture evaluation.

RQ2: How efficient are the software architecture evaluation tools pro-

vided by cloud companies? Are they more beneficial than the traditional

evaluation models?

This thesis discussed two traditional architecture evaluation methods: architecture

trade-off analysis method (ATAM) and cost-benefit analysis method (CBAM). The

architecture evaluation tool provided by cloud company discussed in thesis was

7.2 FURTHER STUDIES 55

AWS Well-Architected framework. The case study was conducted using the AWS

Well-Architected framework. The case study results showed that the AWS Well-

Architected framework is a viable tool for reflecting the processes of the development

team, reviewing the system from different perspectives such as security, reliability,

and costs. It also provides further knowledge about different architectural decisions

since it is common to start the review by going through the state of the architecture.

Based on the results of the case study, the cloud-specific model is not seen as

more beneficial comparing to the traditional models. The AWS Well-Architected

framework is a good model for reviewing the development processes in general but

regarding the architectural problems, it is not very efficient. As noted previously,

for example, ATAM provides deeper discussion and understanding about different

architectural decisions.

7.2 Further Studies

The thesis includes a literature review of the cloud computing definition and concepts

in general, a literature review of the software architecture models, and a literature

review of the architecture evaluation models. The architecture evaluation models

chapter discussed three evaluation models that included two traditional models and

one cloud-specific model. The subject could be improved by adding more models

to the discussion. It could be specifically beneficial to introduce more cloud-specific

models.

The case study part of the thesis included an architecture evaluation for the case

application and interviews with experts. A further study suggestion would be to

perform an architecture evaluation to the case application using a traditional archi-

tecture evaluation model such as architecture trade-off analysis method (ATAM) or

cost-benefit analysis method (CBAM). This thesis performs an architecture evalua-

tion only using the cloud-specific model AWS Well-Architected.

7.2 FURTHER STUDIES 56

One interesting result from the interviews with experts was that the interviewees

were not using constantly any specific architecture evaluation models. They were

mostly leaning on other methods to analyze architectures that were molded during

their careers. A further study suggestion would be to research this observation more.

It could be possible to perform a broad survey research that could include a large

number of software companies in Finland. The subjects of the survey could be to

gather information on what kind of architecture evaluation models the companies

are really using in the industry.

References

[1] D. C. Marinescu, Cloud Computing: Theory and Practice. San Francisco, UNITED

STATES: Elsevier Science Technology, 2013, isbn: 978-0-12-404641-2. [On-

line]. Available: http://ebookcentral.proquest.com/lib/kutu/detail.

action?docID=1213925.

[2] P. Mell, T. Grance, et al., ”The NIST definition of cloud computing”, 2011.

[Online]. Available: https://csrc.nist.gov/publications/detail/sp/

800-145/final.

[3] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, isbn: 978-3-642-20916-1. doi: 10.1007/978-

3-642-20917-8. [Online]. Available: http://link.springer.com/10.1007/

978-3-642-20917-8.

[4] N. K. Sehgal and P. C. P. Bhatt, Cloud Computing: Concepts and Practices.

Cham: Springer International Publishing, 2018, isbn: 978-3-319-77838-9. doi:

10.1007/978-3-319-77839-6. [Online]. Available: https://link.springer.

com/10.1007/978-3-319-77839-6.

[5] ISO/IEC/IEEE 42010, Iso/iec/ieee 42010: Defining architecture. [Online]. Avail-

able: http://www.iso-architecture.org/ieee-1471/defining-architecture.

html (visited on 12/04/2022).

[6] Z. Qin, X. Zheng, and J. Xing, ”Architectural styles and patterns”, Software

Architecture, pp. 34–88, 2008.

http://ebookcentral.proquest.com/lib/kutu/detail.action?docID=1213925
http://ebookcentral.proquest.com/lib/kutu/detail.action?docID=1213925
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi.org/10.1007/978-3-642-20917-8
https://doi.org/10.1007/978-3-642-20917-8
http://link.springer.com/10.1007/978-3-642-20917-8
http://link.springer.com/10.1007/978-3-642-20917-8
https://doi.org/10.1007/978-3-319-77839-6
https://link.springer.com/10.1007/978-3-319-77839-6
https://link.springer.com/10.1007/978-3-319-77839-6
http://www.iso-architecture.org/ieee-1471/defining-architecture.html
http://www.iso-architecture.org/ieee-1471/defining-architecture.html

REFERENCES 58

[7] T. Suzuki and L. Suzuki, ”On the benefit of 3-tier SOA architecture promoting

information sharing among TMS systems and Brazilian e-Government Web

Services: A CT-e case study”, arXiv preprint arXiv:2005.13047, 2020.

[8] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, ”Serverless execution

of scientific workflows: Experiments with hyperflow, aws lambda and google

cloud functions”, Future Generation Computer Systems, vol. 110, pp. 502–514,

Sep. 2020, issn: 0167739X. doi: 10.1016/j.future.2017.10.029.

[9] D. Ustiugov, ”Data-centric serverless cloud architecture”, 2022. [Online]. Avail-

able: https://era.ed.ac.uk/handle/1842/39060.

[10] Amazon Web Services, Inc., Tutorial: Build a serverless web application with

aws lambda, amazon api gateway, aws amplify, amazon dynamodb, and amazon

cognito. [Online]. Available: https://aws.amazon.com/getting-started/

hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-

cognito/ (visited on 10/26/2022).

[11] Google, Google cloud documentation, write cloud functions. [Online]. Avail-

able: https://cloud.google.com/functions/docs/writing (visited on

10/28/2022).

[12] Microsoft, Microsoft azure documentation, supported languages in azure func-

tions. [Online]. Available: https://learn.microsoft.com/en-us/azure/

azure-functions/supported-languages (visited on 10/28/2022).

[13] Amazon Web Services, Inc., Aws lamda documentation, lambda runtimes. [On-

line]. Available: https : / / docs . aws . amazon . com / lambda / latest / dg /

lambda-runtimes.html (visited on 10/28/2022).

[14] J. Thönes, ”Microservices”, IEEE Software, vol. 32, no. 1, pp. 116–116, Jan.

2015, issn: 1937-4194. doi: 10.1109/MS.2015.11.

https://doi.org/10.1016/j.future.2017.10.029
https://era.ed.ac.uk/handle/1842/39060
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://cloud.google.com/functions/docs/writing
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://doi.org/10.1109/MS.2015.11

REFERENCES 59

[15] M. Söylemez, B. Tekinerdogan, and A. Kolukısa Tarhan, ”Challenges and so-

lution directions of microservice architectures: A systematic literature review”,

Applied Sciences, vol. 12, no. 1111, p. 5507, Jan. 2022, issn: 2076-3417. doi:

10.3390/app12115507.

[16] Amazon Web Services, Simple microservices architecture on aws. [Online].

Available: https://docs.aws.amazon.com/whitepapers/latest/microservices-

on-aws/simple-microservices-architecture-on-aws.html (visited on

11/03/2022).

[17] Microsoft, Compute options for microservices with azure. [Online]. Available:

https://learn.microsoft.com/en-us/azure/architecture/microservices/

design/compute-options (visited on 11/03/2022).

[18] M. Gancarz, ”8 - making unix do one thing well”, in Linux and the Unix

Philosophy, M. Gancarz, Ed. Woburn: Digital Press, 2003, pp. 127–136, isbn:

978-1-55558-273-9. doi: https://doi.org/10.1016/B978- 155558273-

9/50010-5. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/B9781555582739500105.

[19] M. Villamizar, O. Garcés, L. Ochoa, et al., ”Cost comparison of running web

applications in the cloud using monolithic, microservice, and aws lambda ar-

chitectures”, Service Oriented Computing and Applications, vol. 11, no. 2,

pp. 233–247, Jun. 2017, issn: 1863-2386, 1863-2394. doi: 10.1007/s11761-

017-0208-y.

[20] EdPrice-MSFT, Microservices architecture design - Azure Architecture Cen-

ter. [Online]. Available: https://learn.microsoft.com/en- us/azure/

architecture/microservices/ (visited on 10/14/2022).

[21] G. K. Aroraa, L. Kale, and K. Manish, Building Microservices with . NET

Core: Architect Your . NET Applications by Breaking Them into Really Small

https://doi.org/10.3390/app12115507
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/compute-options
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/compute-options
https://doi.org/https://doi.org/10.1016/B978-155558273-9/50010-5
https://doi.org/https://doi.org/10.1016/B978-155558273-9/50010-5
https://www.sciencedirect.com/science/article/pii/B9781555582739500105
https://www.sciencedirect.com/science/article/pii/B9781555582739500105
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y
https://learn.microsoft.com/en-us/azure/architecture/microservices/
https://learn.microsoft.com/en-us/azure/architecture/microservices/

REFERENCES 60

Pieces—microservices—using This Practical, Example-Based Guide. Birming-

ham, UNITED KINGDOM: Packt Publishing, Limited, 2017, isbn: 978-1-

78588-496-2. [Online]. Available: http://ebookcentral.proquest.com/lib/

kutu/detail.action?docID=4877937.

[22] G. Blinowski, A. Ojdowska, and A. Przybyłek, ”Monolithic vs. microservice

architecture: A performance and scalability evaluation”, IEEE Access, vol. 10,

pp. 20 357–20 374, 2022, issn: 2169-3536. doi: 10.1109/ACCESS.2022.3152803.

[23] Amazon Web Services, Amazon EC2. [Online]. Available: https : / / aws .

amazon.com/ec2/ (visited on 11/04/2022).

[24] Google, Google cloud compute engine. [Online]. Available: https://cloud.

google.com/compute (visited on 11/04/2022).

[25] O. Al-Debagy and P. Martinek, ”A comparative review of microservices and

monolithic architectures”, no. arXiv:1905.07997, May 2019, arXiv:1905.07997

[cs]. doi: 10.48550/arXiv.1905.07997. [Online]. Available: http://arxiv.

org/abs/1905.07997.

[26] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, ”The monolith strikes

back: Why istio migrated from microservices to a monolithic architecture”,

IEEE Software, vol. 38, no. 5, pp. 17–22, Sep. 2021, issn: 1937-4194. doi:

10.1109/MS.2021.3080335.

[27] A. Patidar and U. Suman, ”A survey on software architecture evaluation meth-

ods”, in 2015 2nd International Conference on Computing for Sustainable

Global Development (INDIACom), IEEE, 2015, pp. 967–972.

[28] D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman, ”Evaluation of software

architectures under uncertainty: A systematic literature review”, en, ACM

Transactions on Software Engineering and Methodology, vol. 30, no. 4, pp. 1–

50, Oct. 2021, issn: 1049-331X, 1557-7392. doi: 10.1145/3464305.

http://ebookcentral.proquest.com/lib/kutu/detail.action?docID=4877937
http://ebookcentral.proquest.com/lib/kutu/detail.action?docID=4877937
https://doi.org/10.1109/ACCESS.2022.3152803
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute
https://cloud.google.com/compute
https://doi.org/10.48550/arXiv.1905.07997
http://arxiv.org/abs/1905.07997
http://arxiv.org/abs/1905.07997
https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1145/3464305

REFERENCES 61

[29] F. Faniyi, R. Bahsoon, A. Evans, and R. Kazman, ”Evaluating security proper-

ties of architectures in unpredictable environments: A case for cloud”, in 2011

Ninth Working IEEE/IFIP Conference on Software Architecture, Jun. 2011,

pp. 127–136. doi: 10.1109/WICSA.2011.25.

[30] R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Eval-

uation: Fort Belvoir, VA, Aug. 2000. doi: 10.21236/ADA382629. [Online].

Available: http://www.dtic.mil/docs/citations/ADA382629.

[31] J. Lee, S. Kang, and C.-k. Kim, ”Software architecture evaluation methods

based on cost benefit analysis and quantitative decision making”, Empirical

Software Engineering, vol. 14, no. 4, pp. 453–475, Aug. 2009, issn: 13823256.

doi: 10.1007/s10664-008-9094-4.

[32] R. Kazman, J. Asundi, and M. Klien, Making Architecture Design Decisions:

An Economic Approach: Fort Belvoir, VA, Sep. 2002. doi: 10.21236/ADA408740.

[Online]. Available: http://www.dtic.mil/docs/citations/ADA408740.

[33] Amazon Web Services, AWS Well-Architected Framework, Introduction. [On-

line]. Available: https://docs.aws.amazon.com/wellarchitected/latest/

framework/welcome.html (visited on 12/14/2022).

[34] Amazon Web Services, AWS Well-Architected Framework, Definitions. [On-

line]. Available: https://docs.aws.amazon.com/wellarchitected/latest/

framework/definitions.html (visited on 12/14/2022).

[35] Amazon Web Services, AWS Well-Architected Framework, Operational Excel-

lence. [Online]. Available: https://docs.aws.amazon.com/wellarchitected/

latest/framework/oe-design-principles.html (visited on 12/14/2022).

[36] Amazon Web Services, AWS Well-Architected Framework, Security. [Online].

Available: https://docs.aws.amazon.com/wellarchitected/latest/

framework/security.html (visited on 12/14/2022).

https://doi.org/10.1109/WICSA.2011.25
https://doi.org/10.21236/ADA382629
http://www.dtic.mil/docs/citations/ADA382629
https://doi.org/10.1007/s10664-008-9094-4
https://doi.org/10.21236/ADA408740
http://www.dtic.mil/docs/citations/ADA408740
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/definitions.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/definitions.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/oe-design-principles.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/oe-design-principles.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/security.html

REFERENCES 62

[37] Amazon Web Services, AWS Well-Architected Framework, Reliability. [Online].

Available: https://docs.aws.amazon.com/wellarchitected/latest/

framework/reliability.html (visited on 12/14/2022).

[38] Amazon Web Services, AWS Well-Architected Framework, Performance Effi-

ciency. [Online]. Available: https://docs.aws.amazon.com/wellarchitected/

latest/framework/performance-efficiency.html (visited on 12/14/2022).

[39] Amazon Web Services, AWS Well-Architected Framework, Cost Optimization.

[Online]. Available: https://docs.aws.amazon.com/wellarchitected/

latest/framework/cost-optimization.html (visited on 12/14/2022).

[40] Amazon Web Services, AWS Well-Architected Framework, Sustainability. [On-

line]. Available: https://docs.aws.amazon.com/wellarchitected/latest/

framework/sustainability.html (visited on 12/14/2022).

[41] Amazon Web Services, AWS Well-Architected Framework, Review Process.

[Online]. Available: https://docs.aws.amazon.com/wellarchitected/

latest/framework/the-review-process.html (visited on 12/14/2022).

[42] Serverless, Inc, Serverless Framework Concepts. [Online]. Available: https:

//www.serverless.com/framework/docs/providers/aws/guide/intro

(visited on 12/22/2022).

[43] Amazon Web Services, AWS CloudFormation Documentation. [Online]. Avail-

able: https://docs.aws.amazon.com/cloudformation/index.html (visited

on 12/29/2022).

https://docs.aws.amazon.com/wellarchitected/latest/framework/reliability.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/reliability.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/performance-efficiency.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/performance-efficiency.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/cost-optimization.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/cost-optimization.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sustainability.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/sustainability.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/the-review-process.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/the-review-process.html
https://www.serverless.com/framework/docs/providers/aws/guide/intro
https://www.serverless.com/framework/docs/providers/aws/guide/intro
https://docs.aws.amazon.com/cloudformation/index.html

	Introduction
	Cloud Computing
	Definition and Characteristics of Cloud Computing
	Cloud Computing Service Types
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Cloud Computing Deployment Models

	Cloud Architecture Models
	N-Tier Architecture
	Architecture Example
	Advantages and Disadvantages

	Serverless Architecture
	Architecture Example
	Advantages and Disadvantages

	Microservices Architecture
	Architecture Example
	Advantages and Challenges

	Monolithic Architecture
	Architecture Example
	Advantages and Challenges

	Architecture Evaluation
	Architecture Tradeoff Analysis Method (ATAM)
	Cost-Benefit Analysis Method (CBAM)
	AWS Well-Architected

	Case Study
	Lixani Oy
	Lixani 5 Application
	Lixani 5 System Architecture

	AWS Well-Architected Review
	Interviews With Experts
	How system architecture is being evaluated in your company?
	In which part of the architecture development process do you aim to evaluate the architecture?
	What are the advantages in architecture evaluation?
	If you have used both the traditional methods (ATAM, CBAM) and cloud specific methods which do you prefer and why?

	Case Study Results
	Architecture Review with AWS Well-Architected
	Interviews with Experts

	Conclusions
	Answering the Research Questions
	Further Studies

	References

