

Privacy-by-Design Regulatory Compliance Automation
in Cloud Environment

Cyber Security

Master’s Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology

Master of Science in Technology Thesis

Author:

Massimo Morello

Supervisors:

Petri Sainio (University of Turku)

Antti Hakkala (University of Turku)

Mohammed B.M. Kamel (ELTE)

May 2023

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

Master of Science in Technology Thesis

Department of Computing, Faculty of Technology

University of Turku

Subject: Cyber Security

Programme: Master’s Degree Programme in Information and Communication Technology

Author: Massimo Morello

Title: Privacy-by-Design Regulatory Compliance Automation in Cloud Environment

Number of pages: 69 Pages

Date: May 2023

Abstract:

The proposed Master's thesis revolves around the development of a privacy-preserving Attribute Verifier

for regulatory compliance, first designed cryptographically, and then implemented in a Cloud Environment.

The Attribute Verifier makes use of the Attribute Verification Protocol and its underlying encryption

scheme, composed of Decentralized Attribute-Based Encryption (DABE) combined with a Zero-

Knowledge Proof (ZKP) approach. The contribution of this work was integrating a ticketing system,

concerning tickets of compliance, with the existing protocol, and automating the whole workflow,

simulating all the actors involved, in AWS Cloud Environment.

The major goal was to improve the security and privacy of sensitive data kept in the cloud as well as to

comply with Cloud Regulatory, Standards, and different Data Protection Regulations. In particular, the use

case covered in this Thesis refers to the General Protection Data Regulation (GDPR), specifically the

compliance with Article 32. The word "Automation" in the title refers to the achievement of having

automated in AWS Cloud Environment, through code, three main security objectives: Privacy, Identity and

Access Management, and Attribute-based Access Control. A goal that was pursued because, in the majority

of the cases, adherence to a Regulatory still requires heavy manual effort, especially when it's about pure

Data Protection Regulations, i.e. in a legal setting. And when the manual effort is not required,

confidentiality can be still heavily affected, and that's where the need for a privacy-by-design solution

comes from.

The Attribute Verifier was developed to verify the attributes of a Prover (e.g. a company, an institution, a

healthcare provider, etc.) without revealing the actual attributes or assets and to grant access to encrypted

data only if the verification is successful. The proposed example, among many applicable, it's the one a

National Bank attempting to demonstrate to a Verifier, i.e. the European Central Bank, compliance with

Article 32 of the GDPR.

Keywords: Attribute Verification, Privacy, Cloud Security, Cloud Compliance, GDPR.

Acknowledgements

Poserò la testa sulla tua spalla

E farò un sogno di mare

E domani un fuoco di legna

Perché l’aria azzurra

Diventi casa

Chi sarà a raccontare? Chi sarà?

Sarà chi rimane.

Io seguirò questo migrare

Seguirò

Questa corrente di ali

A mamma e papà, con gli occhi lucidi. All’amore incodizionato, inőnito e

trascendentale che mi ha accompagnato ad ogni passo e non mi ha mai lasciato solo,

contro le logiche della geograőa. Alla loro anima pura, privilegio che mi ha concesso

dei valori che, durante il mio percorso di vita, ho capito quanto siano non negozia-

bili. All’ambiente che hanno creato, che ha annullato ogni possibilità di futuri grigi,

ed ha protetto sempre la fantasia e la purezza. A mamma e papà, pensiero costante

ad vittoria e sconőtta. La vostra gioia è la mia, e lo sarà per sempre.

A Stefano e Fabrizio, essere fratelli maggiori è un lavoro, ed il vostro amore

fraterno, in tutte le sue forme possibili, non è mai mancato. All’infanzia in cui abbi-

amo disegnato con tutti i colori possibili, colori che abbiamo preservato con gelosia

e che non sono mai scomparsi, perchè sono lì ogni qualvolta ci sediamo insieme a

tavola. Al vostro dono dell’intelligenza, frutto della natura e di sacriőci, che vi ha

resi il mio vanto, e mi ha spinto sempre a non accontentarmi mai. Inőne, alla vostra

attitudine naturale ad essere fratelli maggiori. Grazie per avermi sempre protetto.

A Chiara, alla quale mi lega un bene istantaneo e grandissimo che soltanto i cuori

puri, pochi ed in via di estinzione, possono innescare. Al suo essere tanto persona

quanto őgura, di equilibrio e genuinità. Grazie perchè la sera del 23 agosto 2021 mi

hai regalato insieme a Fabrizio, sulle note di "A Thousand Years", un frammento di

ricordo lucidissimo, che è la mia nuova deőnizione della parole "amore".

Ancora una volta, a Zio Gaetano, da sempre esempio da seguire sotto ogni

punto di vista. Alla sua capacità di voler bene in modo assordante ed al suo credere

in me come in pochi hanno fatto. Al tuo credere in me quando la sera del 19 set-

tembre del 2019 ti dissi che mi sarei probabilmente fermato alla triennale ed alla

tua reazione paterna, che aveva già visto qualcosa che io non potevo vedere. Oggi

le lauree magistrali sono due. Grazie, Zio.

Alla Calabria, terra alla quale mi lega un amore viscerale, che mi fa sentire

parte di un qualcosa di trascendentale e che ho trovato dentro di me, e che mi ha

fatto trovare uno scopo nobile che perseguirò per tutta la mia vita: preservarne la

bellezza e la sua integrità. La Calabria mi ha regalato dei valori e dei punti di vista

che si sono rivelati essere senza prezzo, e spero, un giorno, di poter ripagarne anche

soltanto un granello di una spiaggia immensa.

Finally, this thesis work would not have been even remotely conceivable without

the tireless support of Professor Kamel. A professor whom I have admired since

the őrst day of class for his knowledge, his way of delivering it to students, and his

empathy. Thank you once again for conceding me this opportunity, it was an honor

working with you. Another important thanks goes to Professor Sainio, another

huge example of how teaching should be approached: listening, stimulating curiosity,

and opening up debates. Thank you for accepting this assignment, also in this case,

It’s an honor to have your name on this Master’s Thesis. And to conclude, thanks to

Ammar, worker and family man, who still, inexplicably, decided to dedicate some

time to me and motivate me. Thank you for your support and the empathy you

showed me.

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Research Objectives . 3

1.3 Research Questions . 3

1.4 Research Contributions . 4

1.5 Thesis Outlines . 5

2 Literature Review 7

2.1 Cloud Security, Compliance, and Regulations 7

2.2 Zero-Knowledge Proof (ZKP) Protocols 12

2.2.1 Schnorr Protocol . 15

2.2.2 Fiat-Shamir Heuristic . 15

2.2.3 zk-SNARK . 16

2.3 Attribute-Based Encryption (ABE) 17

2.3.1 Key-Policy Attribute-Based Encryption (KP-ABE) 19

2.3.2 Ciphertext-Policy Attribute-Based Encryption (CP-ABE) . . . 21

2.3.3 Decentralized Attribute-Based Encryption (DABE) 22

2.4 Attribute Veriőcation Protocol . 24

2.5 Privacy-Preserving Attribute Veriőcation 27

3 Regulatory Compliance Verification Protocol 30

3.1 Adaptation of the Attribute Veriőcation Protocol 30

3.2 Proposed Protocol in Banking System 35

4 Implementation and Analysis 41

4.1 Implementation of the Proposed Protocol 41

4.1.1 Implementation of the Issuer: 41

4.1.2 Implementation of the Prover: 49

4.1.3 Implementation of the Veriőer: 51

4.1.4 Implementation of the Orchestrator: 55

4.2 Evaluation of the Proposed System 58

4.2.1 Comparison with Existing Solutions 63

4.2.2 Implications of the Study . 64

5 Conclusion and Future Work 66

5.1 Summary and Conclusions . 66

5.2 Future Research Directions . 67

References 69

List of Figures

3.1 Sequence diagram of the proposed model 35

3.2 Sequence diagram of the proposed model in Banking Systems 36

4.1 Sequence diagram of the Issuer’s Lambda function 48

4.2 Sequence diagram of the Prover’s Lambda function 51

4.3 Sequence diagram of the Veriőer’s Lambda function 55

4.4 Sequence diagram of the Orchestrator Lambda function 58

4.5 Duration Time and Number of Invocations 61

4.6 Maximum, Average, and Minimum Duration 62

4.7 Success Rate of the Issuer’s Lambda function 63

List of Codes

4.1 DecentralizedABE class tailored for the Issuer 42

4.2 DecentralizedABE class tailored for the Prover 49

4.3 DecentralizedABE class tailored for the Veriőer 52

1 Introduction

This chapter delves into the motivations behind the work, the research questions ob-

jectives it addresses, with related contributions, and starts giving some background

information that makes the reader aware of the protocols that were adopted.

1.1 Background and motivation

As companies depend on the scalability and accessibility of cloud-based services to

store and manage their sensitive data, the cloud environment has grown more and

more common. Nevertheless, because of the broad usage, there is now a number of

security and privacy issues, many of them related to data security and regulatory

compliance (data must be protected and kept private, especially in accordance with

various regulations such as NIST, GDPR, SOC2, etc.). Using cutting-edge cryp-

tographic methods like Zero-Knowledge Proof (ZKP) and Decentralized Attribute-

Based Encryption (DABE) [1] is one way to overcome these issues.

ZKP is a cryptographic mechanism that enables a Prover to show a Veriőer that

they possess a certain piece of information or attribute without actually disclosing

the information itself. The deőnition of a Zero-Knowledge Proof is one that conveys

just the claim in issue is true and nothing more [2]. DABE, on the other hand, is

a form of encryption technique that restricts access to encrypted data to individu-

als who have particular credentials or attributes while keeping the details of those

credentials or attributes private. Ciphertexts are labeled with sets of attributes and

1.1 BACKGROUND AND MOTIVATION 2

private keys are linked to access structures that have the role to control which ci-

phertexts a user can decrypt [3], and the key issuance is managed in a decentralized

setting, allowing multiple issuers to become part of the scheme.

The solution proposed in this Master’s Thesis leverages the Attribute Veriőcation

Protocol [4], composed in particular by DABE, and a ZKP approach to enhance the

privacy and security of sensitive data stored in the cloud. Speciőcally, Attribute Ver-

iőcation Protocol will verify the attributes of a Prover without revealing the actual

attributes and grant access to encrypted data only if the veriőcation is successful

[5]. The Attribute Veriőer will be designed in a versatile way, applicable in many

use cases, to verify the attributes of certain assets of a company (e.g. an article of

a regulation, the passwords of the employees, the encryption algorithms they use,

etc.) and ensure that they meet the requirements set by the regulations.

The őndings of this Master’s thesis will give a contribution to the őeld of Cloud

Security, privacy-enhancing technologies, and mainly Regulatory Compliance (in

particular, GDPR). First, it will provide a detailed overview of ABE, with the

Decentralized version of it, and ZKP techniques and their application in cloud envi-

ronments. Second, it will implement and evaluate the proposed solution, providing

insights into the challenges and limitations of using DABE and ZKP in cloud envi-

ronments. Finally, it will contribute to the development of a more privacy-preserving

way of verifying compliance with regulations in the cloud.

The fundamental driver behind the study is the necessity for privacy-preserving

technologies that guarantee conődentiality for the company that is being audited

for regulatory compliance checks, while still allowing a smooth assessment of the

company assets.

1.3 RESEARCH QUESTIONS 3

1.2 Research Objectives

The security objectives that have been identiőed throughout the study of the chal-

lenges and the conceptual design of a feasible solution to overcome them, are the

followings:

1. Conducting a comprehensive literature review of cloud compliance and regula-

tions, and providing an overview of Zero-Knowledge Proof and Decentralized

Attribute-Based Encryption;

2. Investigating relevant studies on privacy-preserving Attribute Veriőcation, and

Attribute Veriőcation Protocol;

3. Designing and developing an Attribute Veriőer that incorporates DABE and

ZKP protocols for privacy-preserving Attribute Veriőcation;

4. Evaluating the proposed Attribute Veriőer, comparing it with similar existing

solutions, and discussing the results and implications of the study;

5. Demonstrating the effectiveness of the proposed system by conducting exper-

iments in AWS cloud environment, and evaluating the system’s security and

privacy.

The outcomes of this research will result in a secure and privacy-preserving

Attribute Veriőer. The study will contribute to the development of privacy-by-

design systems and will have implications for Regulatory Compliance Automation

and Cloud Security.

1.3 Research Questions

The overall objective of the Thesis is to enhance privacy, and so the security of

sensitive data stored in the cloud, which needs to be veriőed for cloud regulatory,

1.4 RESEARCH CONTRIBUTIONS 4

data protection, or standard purposes. In this section, the research questions that

this thesis aims to answer are outlined, together with the speciőc objectives of this

research. The Research Questions for this Master’s Thesis have been identiőed in

the followings:

• How can Decentralized Attribute-Based Encryption and Zero-Knowledge Proof

be used to implement an Attribute Veriőer for Regulatory Compliance and

Privacy purposes?

• What are the challenges in developing and integrating an Attribute Veriőer in

a Cloud Environment?

• How can the Attribute Veriőcation Protocol be utilized to automate compli-

ance veriőcation of speciőc parts from certain regulations?

• How to ensure the privacy of the attributes being veriőed, while still allowing

the Veriőer to determine if the attributes are indeed held by the Prover?

1.4 Research Contributions

The main contributions of this research start with, őrst of all, working on the At-

tribute Veriőcation Protocol, tailoring it to speciőc needs (Regulatory checks, Cloud

Environment settings), integrating a ticketing system in its scheme, and testing its

n-out-of-n type for compliance purposes (access is granted if, out of n compliant

attributes, the Prover is in possession of at least one of them) [4] and applied to a

set of attributes belonging to certain speciőc security controls taken from the regu-

lations (e.g. GDPR).

The Attribute Veriőer was developed in order to verify the attributes of a Prover

without making this Prover reveal them, and to grant access to encrypted data

only if the veriőcation is successful. Another important contribution comes from

1.5 THESIS OUTLINES 5

the practical implementation of it: the proposed Attribute Veriőer was practically

implemented and evaluated in AWS cloud environment, to demonstrate its feasibil-

ity and effectiveness in supporting customized cryptographic solutions for enhancing

the privacy of sensitive data. In particular, the three actors involved (Issuer, Prover,

Veriőer) were implemented as separate Lambda functions, and integrated in order to

communicate with each other. The evaluation of the solution, in Chapter 3, will also

highlight the implications of the study for cloud security and regulatory compliance.

1.5 Thesis Outlines

The outlines of this Master’s thesis are organized as follows: the Thesis begins

with an introduction, where the research topic, context, and motivation behind the

development of a privacy-preserving Attribute Veriőer for regulatory compliance in

Cloud Environment are presented. This section also states the research objectives

and questions, provides an overview of the main contributions of the research, and

outlines the structure of the thesis.

Next, a literature review is presented, offering an overview of cloud computing

security, compliance, and regulations. Zero-Knowledge Proof (ZKP) protocols and

Attribute-Based Encryption (ABE) schemes are reviewed in deep, delving into the

Decentralized version of ABE (DABE). It follows a review of relevant studies on

privacy-preserving Attribute Veriőcation.

In the following section, an adaptation of the Attribute Veriőcation Protocol for

regulatory compliance veriőcation is explained. And by "adaptation" is intended a

tailored and enhanced version of the skeleton of the protocol, with the addition of a

ticketing system and an emphasis on the Decentralized version of ABE, for multiple

Issuer. The enhancement concerned also the ability to deploy the Proposed Protocol

and all its components (i.e. all the actors involved) in a cloud environment, testing

the whole workŕow behind it. The proposed modiőed protocol, which still preserves

1.5 THESIS OUTLINES 6

its underlying encryption scheme, is applied in the context of the banking systems,

delving into a use case scenario involving any national Bank as Provers, and the

European Central Bank as Veriőer. This use case, though, doesn’t limit at all the

possibility to adopt the proposed solution to other scenarios and other őelds, like

healthcare, industry, and any setting where privacy-by-design solutions and conő-

dentiality are a necessary requirement. The implementation of the Issuer, Prover,

Veriőer, and Orchestrator is then detailed, providing insights into the development

of the system.

The Thesis then proceeds to the evaluation and analysis, where the proposed sys-

tem and its effectiveness in privacy-preserving Attribute Veriőcation are evaluated,

and then, the proposed system is compared with existing solutions. The results

and implications of the study in relation to cloud security, privacy, and regulatory

compliance, are discussed.

Finally, the Thesis concludes with a summary of the main őndings and contri-

butions of the research. Potential future research directions in privacy-preserving

Attribute Veriőcation and cloud security are also discussed. This outline serves as a

roadmap to guide readers through the main sections and subsections of the thesis.

2 Literature Review

This chapter contains a summary of the cloud-related objectives, like security, data

protection, and compliance with regulations. Subsequently, it introduces a deep

analysis of all the cryptographic primitives and algorithms necessary for implement-

ing, and then integrating, the Attribute Veriőcation Protocol.

2.1 Cloud Security, Compliance, and Regulations

Cloud computing is an abstraction of computing, storage, and network infrastruc-

ture put together as a platform that allows for speedy application deployment and

dynamic scaling. A Key feature of cloud computing is its way of being self-service:

the end user just őlls in a form and it will already be up and running. Some clear

advantages of this technology are: scalability, cost-savings, accessibility, ŕexibility,

disaster recovery, environmental sustainability. The largest part of cloud users uses

cloud computing services, which are housed in sizable, distant data centers that are

kept up by the providers, through the internet [6]. This is the case of the public

cloud model, and there are indeed three models: Public (the cloud service is provided

by a third-party cloud service provider, i.e. CSP), Private, where internal users re-

ceive services from a company’s data center (the user creates and manages its own

underpinning cloud infrastructure), and Hybrid, that combines on-premises private

clouds with public cloud services (businesses can use the public cloud to accommo-

date workload peaks or demand rises while running mission-critical workloads or

2.1 CLOUD SECURITY, COMPLIANCE, AND REGULATIONS 8

sensitive applications on the private cloud)

The most important distinction in technical terms is about the services the cloud

provider offers [6]:

1. IaaS (Infrastructure as a Service): Providers of IaaS, like Amazon Web Ser-

vices (AWS), offer virtual server instances, storage, and application program-

ming interfaces (APIs) that let customers move workloads to virtual machines

(VM). Users are given a certain amount of storage space and for different work-

load requirements, IaaS providers provide small, medium, big, extra-large, and

memory- or compute-optimized instances in addition to providing instance

customization. For commercial customers, the IaaS cloud model is the most

similar to a remote data center;

2. PaaS (Platform as a Service). The PaaS concept places development tools

on the infrastructure of cloud providers. Using APIs, web portals, or gate-

way software, users may access these tools online. PaaS is utilized for the

creation of all types of software, and several PaaS service providers host the

őnished product. Salesforce’s Lightning Platform, Amazon Elastic Beanstalk,

and Google App Engine are examples of popular PaaS platforms;

3. SaaS (Software as a service): SaaS is a way of distributing software via the

internet, and that’s why it’s many times referred to as "web service". Users

can use a PC or mobile device with internet connectivity to have access to

SaaS apps and services from any place, and get access to databases and appli-

cations. Microsoft 365, with its productivity and email capabilities, is a clear

example of SaaS application features.

2.1 CLOUD SECURITY, COMPLIANCE, AND REGULATIONS 9

Cloud Security

To safeguard cloud-based systems, applications, data, and infrastructure against

unauthorized access, theft, damage, or data loss, a collection of rules, technologies,

and controls is used in the cloud security framework. Making sure cloud security is

a priority for every IT strategy has grown more and more important as more busi-

nesses move their data and workloads to the cloud. A variety of security domains are

included in cloud security, including identity and access management, data protec-

tion, threat detection and response, network security, and compliance management.

Making sure that sensitive data is protected from unwanted access is one of the main

goals of cloud security. A common method for protecting data both at rest and while

it is transiting, is encryption, and to guarantee that encryption keys are adequately

secured, secure key management procedures must also be adopted: access controls,

őrewalls, intrusion detection and prevention systems, automated security monitor-

ing and alerting are a few of the security features that cloud providers include.

Identity and access management (IAM) policies must be implemented correctly in

order to ensure cloud security, as these policies leverage authentication and au-

thorization protocols, multi-factor authentication, and role-based access control to

regulate user access based on speciőed rules and policies [7]. Access controls, őre-

walls, intrusion detection and prevention systems, automatic security monitoring,

and alerts are just a few of the security features that cloud providers grant to end

users.

Many technological obstacles must be overcome in order to secure cloud systems.

Because cloud computing is shared, conventional perimeter-based security proce-

dures are not sufficient, and so a defense-in-depth strategy that combines controls

at many infrastructure tiers is required. Data availability, conődentiality, integrity,

and compliance with rules and standards must all be guaranteed. In addition, effec-

tive countermeasures are required for new threats, including supply chain attacks,

2.1 CLOUD SECURITY, COMPLIANCE, AND REGULATIONS 10

insider threats, and zero-day vulnerabilities.

Cloud Regulations/Regulatory

As cloud computing continues to gain traction as a delivery model for IT services,

regulatory frameworks have emerged, in order to ensure the safety and privacy of

data stored and processed in the cloud. These regulations draw guidelines and re-

quirements for cloud service providers and their customers to adhere to ethical, legal,

and operational standards, like the General Data Protection Regulation (GDPR),

the Health Insurance Portability and Accountability Act (HIPAA), the Payment

Card Industry Data Security Standard (PCI-DSS), and the Federal Risk and Au-

thorization Management Program (FedRAMP).

For the use case of this Thesis, the attention was dedicated to GDPR [8]: launched

on May 25, 2018 by the European Union (EU), GDPR is a comprehensive data

protection and privacy policy. With the GDPR, companies that collect, handle,

and keep personal data are subject to stringent regulations for data controllers and

processors, such as the need for explicit consent, data minimization, data portabil-

ity, and the right to be forgotten, aiming to protect the privacy of EU citizens and

residents [8]. Organizations both inside and outside of the EU that provide products

or services to, or keep an eye on, EU data subjects’ conduct must comply with the

regulation. Failure to comply with GDPR regulations can result in substantial őnes

of up to 4% of global annual revenue or €20 million, whichever is greater.

Overall, regulatory frameworks such as these are critical in ensuring the safety and

privacy of data stored and processed in the cloud. By deőning clear guidelines and

requirements for cloud service providers and their customers, these regulations foster

trust in the cloud and protect sensitive data from unauthorized access, disclosure,

and misuse.

2.1 CLOUD SECURITY, COMPLIANCE, AND REGULATIONS 11

Cloud Compliance

Ensuring cloud compliance is a crucial aspect of cloud computing, and it may require

cloud service providers (CSPs) to meet various industry standards and regulatory

frameworks, such as NIST, GDPR, SOC2, HIPAA, and PCI DSS, depending on the

type of data they process, store, or transmit via the cloud.

One of the most extensively used compliance frameworks is the NIST Cybersecurity

Framework, which provides guidance for improving the security and resilience of

critical infrastructure [9]. This framework includes instructions for locating, pro-

tecting, spotting, reacting to, and recovering from cybersecurity events, and it also

incorporates particular controls and speciőcations for cloud computing, like data

encryption, access control, and monitoring.

In terms of GDPR, "cloud compliance" refers to ensuring that businesses employ-

ing cloud-based infrastructure and services adhere to the regulations set forth in the

GDPR while handling and keeping personal data. Data protection and privacy must

be upheld in the cloud on behalf of both cloud service providers and their clients [8].

Aside from these compliance frameworks, CSPs must comply with other regulations

depending on the industry they serve. For example, healthcare organizations must

comply with HIPAA, while payment card processors must adhere to the PCI DSS.

CSPs must conduct ongoing monitoring, assessment, and audit of their security

controls and processes to ensure compliance with these regulations. Adherence to

several legal frameworks and industry standards it’s required for cloud compliance,

which is a complicated and ongoing process. To comply with these requirements,

CSPs must install strong security measures and submit to routine audits, which can

assist to increase customers’ and stakeholders’ trust.

2.2 ZERO-KNOWLEDGE PROOF (ZKP) PROTOCOLS 12

2.2 Zero-Knowledge Proof (ZKP) Protocols

ZKP is a cryptographic protocol that allows one party (i.e. the Prover) to demon-

strate to another party (i.e. the Veriőer) that they know a secret, without actually

disclosing that secret. This is achieved by employing probabilistic calculations and

complex mathematical operations like those inherent to public key cryptography.

ZKP is a notion that was initially proposed in 1985 by Goldwasser, Micali, and

Rackoff [10] with the following deőnition: A zero-knowledge proof system for a lan-

guage L is a probabilistic interactive proof system with the property that there exists

an efficient algorithm which, given any input x ∈ L, produces a transcript which

convinces the veriőer of the truth of the statement x, revealing no additional infor-

mation about x.

Since then, it has been extensively researched and used in the őelds of cryptogra-

phy, privacy, and authentication. The Prover receives a challenge that is generated

randomly as part of the protocol, it proceeds to compute an answer and send it back

to the Veriőer using their understanding of the secret. The Veriőer, in turn, will

compare the response to the challenge, sent by the Prover, in order to verify the

Prover’s truthfulness without actually knowing the secret. Depending on whether

the proof is established in a single message exchange or needs a back-and-forth ex-

change of messages, ZKP protocols can be interactive or non-interactive.

Regardless of the interactivity or non-interactivity, A zero-knowledge protocol must

meet the following requirements [11]:

• Completeness: The zero-knowledge protocol always returns "true" if the input

is valid. Therefore, if the underlying claim is true, and both the parties (Prover

and Veriőer) act honestly, the proof can be accepted;

• Soundness: It is theoretically infeasible to trick the zero-knowledge protocol

into returning "true" if the input is invalid. Therefore, a dishonest Prover

2.2 ZERO-KNOWLEDGE PROOF (ZKP) PROTOCOLS 13

cannot deceive a truthful Veriőer into accepting a false claim as true (except

with a tiny margin of probability);

• Zero-knowledge: The Veriőer gains no further information about a claim other

than whether it is true or false (they have "zero knowledge of the claim").

Thanks to this condition, the Veriőer cannot derive the original input (the

contents of the statement) from the proof.

Now, from the mathematical point of view [12], let’s consider a prover, P , who

wants to convince a Veriőer, V , that they know a secret value x, without revealing

anything about x to V :

P generates a random value r.

P computes a "commitment" value c = gx ∗ hr, where g and h are őxed publicly

known values.

P sends the commitment value c to V .

V generates a random challenge value e, and sends e to P .

P computes a "response" value s = r + ex, and sends s to V .

V checks that c = gx ∗ hr and c′ = gs ∗ he. If both equations hold, V accepts the

proof.

To see why this protocol works, it needs to be considered that the commitment

value c can be thought of as a "locked box" containing the value x and r. P can

generate any c value they want, but once they have done so, they cannot change x

or r without breaking the equation c = gx ∗ hr.

When V sends the challenge value e, P is forced to compute the response value

s that correctly satisőes the equation c′ = gs ∗ he. Let’s note that that s can be

computed as s = r + ex, since e is known to both P and V .

If P knows the value x, then they can compute r and s that satisfy the equa-

tions, and V can verify the proof by checking that both equations hold. On the

other hand, if P doesn’t know x, then they will not be able to compute s correctly,

2.2 ZERO-KNOWLEDGE PROOF (ZKP) PROTOCOLS 14

and V will reject the proof.

ZKP can be differentiated in Interactive and Non-Interactive [13]:

• In interactive ZKP, the Prover and the Veriőer engage in a series of interactive

rounds, where the Prover sends some information to the Veriőer, and the Ver-

iőer sends back a challenge based on the information received. This continues

for a number of rounds until the Veriőer is convinced that the Prover knows

the secret information.

• In contrast, non-interactive ZKP (NIZK) is a proof system that requires only

one round of communication between the Prover and the Veriőer. In NIZK,

the Prover creates a proof without any interaction with the Veriőer, and sends

the proof to the Veriőer. The Veriőer checks the proof and accepts or rejects

it based on the validity of the proof. The advantage of NIZK is that it re-

quires less communication between the Prover and Veriőer, making it more

efficient for certain applications. However, constructing NIZK is generally

more difficult than constructing interactive ZKP, and there are fewer known

constructions of NIZK compared to interactive ZKP. In addition, NIZK may

suffer from a problem known as the "random oracle model" (ROM) assump-

tion, which assumes the existence of a random oracle, i.e. a function that

outputs random values for each unique input. The use of random oracles in

NIZK may weaken the security of the protocol, and there is ongoing research

on constructing NIZK without relying on the ROM assumption [14].

Password-based authentication, electronic payment systems, digital signatures,

secure calculations, and anonymous transactions are just a few of the many uses

for ZKP. It is especially helpful with blockchain technology since it may provide

transaction privacy and anonymity while upholding the safety and integrity of the

blockchain.

2.2 ZERO-KNOWLEDGE PROOF (ZKP) PROTOCOLS 15

2.2.1 Schnorr Protocol

The Schnorr protocol [12] allows a Prover to prove to a Veriőer that they know the

discrete logarithm of a given element in a group, without revealing any information

about the logarithm. The protocol proceeds as follows:

1. The prover chooses a random value r ∈ Zq, where q is a large prime number.

They compute t = gr, where g is a generator of the group;

2. The prover sends t to the veriőer;

3. The veriőer chooses a random challenge value c ∈ Zq and sends it to the prover;

4. The prover computes s = r+ cx mod q, where x is the discrete logarithm they

are trying to prove knowledge of;

5. The prover sends s to the veriőer;

6. The veriőer checks whether gs = txc. If the equation holds, the veriőer accepts

the proof;

This protocol is secure under the discrete logarithm assumption in the group,

meaning that an attacker who does not know the discrete logarithm cannot forge a

proof. However, the protocol is interactive, meaning that it requires multiple rounds

of communication between the prover and veriőer.

2.2.2 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic [13] is a method for converting interactive ZKP protocols

into non-interactive ones. The basic idea is to replace the random challenge value

chosen by the veriőer with a hash function of the prover’s previous messages and a

random seed value. The resulting protocol has only one round of communication,

and the prover’s messages are generated solely based on their secret knowledge.

2.2 ZERO-KNOWLEDGE PROOF (ZKP) PROTOCOLS 16

For example, to apply the Fiat-Shamir heuristic to the Schnorr protocol, we would

modify steps 3-5 as follows:

1. The prover chooses a random seed value s ∈ Zq and computes h = H(g, t),

where H is a hash function. They send h to the veriőer

2. The veriőer computes c = H(h, x) and sends c to the prover

3. The prover computes s = r + cx mod q, and sends s to the veriőer

4. The veriőer checks whether gs = thc. If the equation holds, the veriőer accepts

the proof

The security of the resulting non-interactive protocol depends on the collision

resistance and random oracle properties of the hash function used. If the hash

function is secure, then the resulting protocol is also secure, and is often more

practical and efficient than the original interactive protocol.

2.2.3 zk-SNARK

zk-SNARK stands for Zero-Knowledge Succinct Non-Interactive Argument of Knowl-

edge, and it’s a type of non-interactive zero-knowledge proof system that allows for

the veriőcation of a statement without revealing any information beyond the validity

of the statement itself [15]. The main idea behind it is to represent the statement to

be proven as a Boolean circuit. The circuit is then transformed into a polynomial

representation, using a process called łarithmetizationž. The polynomial is then used

to create a proof that can be veriőed in constant time and space, regardless of the

size of the circuit. The security of zk-SNARKs depends on the difficulty of speciőc

mathematical challenges, such as the discrete logarithm problem and the elliptic

curve discrete logarithm problem. The polynomial representation can be made safe

against attackers with sufficient computational power by selecting the proper param-

eters. The use of zk-SNARKs in bitcoin transactions is one of its main applications.

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 17

Without disclosing the sender’s and recipient’s addresses or the transaction’s value,

zk-SNARKs can be used to demonstrate a transaction’s legitimacy. This protects

the transaction’s integrity while offering a high level of secrecy.

A zk-SNARK consists of three algorithms [16]:

• A Key Generation algorithm G that takes as input a security parameter k and

generates a public and private key pair (pk, sk)

• A Proving Algorithm P that takes as input a statement x and a witness w,

and generates a proof π that can be veriőed

• A Veriőcation Algorithm V that takes as input a statement x, a proof π, and

a public key pk, and outputs either "accept" or "reject

Let’s denote a statement by x, a witness by w, and a proof by π. We can

represent the Proving Algorithm P as P (x, w) = π and the veriőcation algorithm V

as V (x, π, pk) = 0, 1.

2.3 Attribute-Based Encryption (ABE)

Attribute-Based Encryption (ABE) is a type of public-key cryptography that enables

users to encrypt and decrypt data based on attributes or characteristics rather than

using speciőc identities or keys. In ABE, a user’s secret key is associated with a set

of attributes, like age, gender, job title, or any other characteristic that may be used

to deőne a group of users. While ciphertexts are encrypted with access policies that

deőne which attributes are required to decrypt the data. A user can decrypt the

ciphertext if their attributes satisfy the access policy [17]. ABE can be divided into

two primary types:

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 18

• Key-Policy Attribute-Based Encryption (KP-ABE): In KP-ABE, the access

policy is embedded in the user’s private key, and the ciphertext is associated

with a set of attributes. A user can decrypt the ciphertext if their private key’s

access policy is satisőed by the attributes associated with the ciphertext.

• Ciphertext-Policy Attribute-Based Encryption (CP-ABE): In CP-ABE, the

access policy is embedded in the ciphertext, and the user’s private key is

associated with a set of attributes. A user can decrypt the ciphertext if the

attributes in their private key satisfy the access policy associated with the

ciphertext.

The ABE protocol, overall, works as follows:

1. Setup: A trusted authority initializes the system by generating public param-

eters and a master secret key. Public parameters include information about

the bilinear group, generators, and a bilinear map. The master secret key is

kept secret by the trusted authority.

2. Key Generation: The trusted authority generates a private key for each user

based on their attributes. In KP-ABE, the private key embeds an access policy,

while in CP-ABE, the private key is associated with a set of attributes.

3. Encryption: The data owner encrypts the data using the public parameters

and an access policy (in CP-ABE) or a set of attributes (in KP-ABE). The

encrypted data is called ciphertext.

4. Decryption: A user can decrypt the ciphertext using their private key if their

attributes (in CP-ABE) or access policy (in KP-ABE) satisfy the requirements

speciőed during the encryption process. If the requirements are not met, the

user cannot decrypt the ciphertext.

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 19

Let M be the message to be encrypted and let S be the set of attributes required

to decrypt the message. The key generation algorithm takes as input a set of at-

tributes A and an access policy Γ, and generates a secret key SK that can be used

to decrypt any ciphertext that satisőes the access policy. The encryption algorithm

takes as input the message M and the set of attributes S, and produces a ciphertext

C that can be decrypted by a user with a secret key SK that has attributes that

satisfy the access policy S.

ABE can be used in many different applications, such as Access Control systems,

secure communication systems, and cloud storage.

The main advantage of ABE is that it allows for őne-grained access control to data,

allowing users to encrypt and decrypt only the data they are authorized to access,

based on their attributes. This makes ABE an ideal encryption scheme for appli-

cations where data must be securely shared among a large number of users with

varying levels of authorization. Additionally, ABE can be used to enforce privacy

policies, where sensitive data can be encrypted and shared only with users who have

speciőc attributes, such as those who work in a particular department or have a

certain security clearance.

2.3.1 Key-Policy Attribute-Based Encryption (KP-ABE)

KP-ABE is a type of Attribute-Based Encryption where a user’s private key is

associated with an access structure, typically deőned by a monotonic access tree, and

ciphertexts are associated with sets of attributes. A user can decrypt a ciphertext

if the attributes associated with the ciphertext satisfy the access structure of their

private key.

The KP-ABE scheme consists of the following algorithms:

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 20

Setup: This algorithm takes a security parameter as input and outputs the public

parameters and a master secret key. The public parameters include a bilinear group,

a bilinear map, random generators, and a hash function.

Key Generation: This algorithm takes the master secret key, the public param-

eters, and an access structure as input. It generates a private key for a user, which

is associated with the given access structure. The access structure is usually deőned

by a monotonic access tree, where the internal nodes represent threshold gates and

the leaf nodes represent attributes.

Encryption: This algorithm takes the public parameters, a message, and a set

of attributes as input. It encrypts the message and outputs a ciphertext associated

with the given set of attributes.

Decryption: This algorithm takes the public parameters, a user’s private key

(with its associated access structure), and a ciphertext as input. If the user’s access

structure is satisőed by the set of attributes associated with the ciphertext, the

algorithm decrypts the ciphertext and retrieves the original message.

The main idea behind KP-ABE is to allow őne-grained access control over en-

crypted data by associating access policies with private keys and attributes with

ciphertexts. This enables data owners to enforce access policies without having to

know the exact set of users that can access their data, and users only need to pos-

sess the appropriate attributes to decrypt the data. The security of KP-ABE relies

on the hardness of certain mathematical problems, such as the Decisional Bilinear

Diffie-Hellman (DBDH) assumption [18]. Speciőcally, the security of KP-ABE is

based on the assumption that it is computationally infeasible to derive any infor-

mation about the secret key or the plaintext given the ciphertext and the access

policy.

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 21

2.3.2 Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

CP-ABE is a type of Attribute-Based Encryption where a user’s private key is

associated with a set of attributes, and ciphertexts are associated with an access

structure, typically deőned by a monotonic access tree. A user can decrypt a ci-

phertext if their private key’s attribute set satisőes the access structure associated

with the ciphertext.

The CP-ABE scheme consists of the following algorithms:

Setup: This algorithm takes a security parameter as input and outputs the public

parameters and a master secret key. The public parameters include a bilinear group,

a bilinear map, random generators, and a hash function.

Key Generation: This algorithm takes the master secret key, the public param-

eters, and a set of attributes as input. It generates a private key for a user, which

is associated with the given set of attributes.

Encryption: This algorithm takes the public parameters, a message, and an ac-

cess structure as input. It encrypts the message and outputs a ciphertext associated

with the given access structure. The access structure is usually deőned by a mono-

tonic access tree, where the internal nodes represent threshold gates and the leaf

nodes represent attributes.

Decryption: This algorithm takes the public parameters, a user’s private key

(with its associated set of attributes), and a ciphertext as input. If the user’s at-

tribute set satisőes the access structure associated with the ciphertext, the algorithm

decrypts the ciphertext and retrieves the original message.

The main idea behind CP-ABE is to allow őne-grained access control over en-

crypted data by associating access policies with ciphertexts and attributes with

private keys. This enables data owners to enforce access policies directly on the en-

crypted data, ensuring that only users with the appropriate attributes can decrypt

the data.

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 22

2.3.3 Decentralized Attribute-Based Encryption (DABE)

Decentralized Attribute-Based Encryption (DABE), i.e. the protocol that is part

of the underlying encryption scheme of the Attribute Veriőcation Protocol adopted

throughout this Thesis, is an extension of ABE schemes that allows for the decen-

tralized management of attributes and access policies. In fact, in DABE, multiple

authorities can issue attributes independently and no central authority is required.

This enhances privacy and scalability in comparison to centralized ABE schemes.

DABE consists of four main algorithms [19]: Setup, Key Generation, Encryption,

and Decryption.

1. Setup: Each authority generates its public parameters and a master secret

key. The public parameters are shared among all the authorities and users in

the system.

2. Key Generation: Users obtain secret keys from multiple authorities based on

their attributes. Each authority issues a partial secret key corresponding to

the user’s attributes under its jurisdiction. The user then combines the partial

secret keys to obtain a complete secret key.

3. Encryption: The data owner encrypts the data using a policy that deőnes the

attributes required to decrypt the data. The policy can be expressed as an

access structure, such as a threshold gate or a monotonic boolean formula.

4. Decryption: A user can decrypt the encrypted data if their secret key satisőes

the access policy associated with the data. The user combines the components

of their secret key that correspond to the attributes in the access policy to

recover the decryption key and decrypt the data.

2.3 ATTRIBUTE-BASED ENCRYPTION (ABE) 23

In mathematical terms [1], the logic is the following:

Let G and GT be two cyclic groups of prime order p, and let g be a generator of G.

Let e : G × G → GT be a bilinear map. We use a set of attributes A and a set of

authorities N .

1. Setup: Each authority i ∈ N generates its public parameters and master secret

key as follows:

• Choose random yi, ti ∈ Zp.

• Compute Yi = gyi and Ti = gti .

The public parameters are (g, Yi, Ti), and the master secret key is (yi, ti).

2. Key Generation: For a user with attributes Au ⊆ A, the user obtains a secret

key as follows:

• For each authority i ∈ N and each attribute a ∈ Au, the authority

computes a partial secret key: Ki
u,a = T

ru,a
i · Y

ru,a·H(a)
i , where ru,a ∈ Zp is

a random value and H : A → Zp is a hash function.

• The user combines the partial secret keys to obtain the complete secret

key: Ku,a =
∏︁

i∈N Ki
u,a

3. Encryption: The data owner encrypts a message m ∈ GT using an access

policy P as follows:

• Choose a random s ∈ Zp.

• Compute the ciphertext components: C0 = m · e(g, g)s and for each

attribute a ∈ A in the access policy, Ca = gs·H(a).

The ciphertext is (C0, {Ca}a∈A).

4. Decryption: A user with a secret key Ku can decrypt the ciphertext if their

attributes satisfy the access policy P :

2.4 ATTRIBUTE VERIFICATION PROTOCOL 24

• The user computes the decryption key D =
∏︁

a∈Au
e(Ku,a, Ca), where Au

is the set of attributes that satisfy the access policy.

• The user recovers the message as m = C0

D
.

2.4 Attribute Verification Protocol

The Attribute Veriőcation Protocol is a cryptographic protocol used to verify the

possession of certain attributes by a user without disclosing the actual attribute val-

ues. This protocol is particularly useful for privacy-preserving applications where

revealing the user’s attributes might lead to privacy breaches. The protocol gener-

ally involves an attribute holder (user) and an Attribute Veriőer (service provider).

The Attribute Veriőcation Protocol aims to achieve the following security proper-

ties: Completeness (a legitimate Prover who possesses the required attributes can

always convince the Veriőer), Soundness (a malicious Prover who does not possess

the required attributes cannot convince the Veriőer), Zero-Knowledge (the Veriőer

learns nothing about the user’s attributes except that they satisfy the veriőcation

requirements), and Privacy (the Veriőer cannot link the user’s veriőcation requests

to their actual identity, ensuring unlinkability and anonymity) [5].

Several cryptographic primitives can be used to build Attribute Veriőcation Pro-

tocols, such as ZKPs, group signatures, and anonymous credentials. The choice of

the underlying primitive depends on the speciőc requirements and security assump-

tions of the application.

An Attribute Veriőcation protocol can be built using a combination of Decentralized

Attribute-Based Encryption (DABE) and Zero-Knowledge Proofs (ZKP): DABE

provides őne-grained access control based on attributes, while ZKP allows users to

prove possession of attributes without revealing the actual values. Here’s an outline

of how an Attribute Veriőcation Protocol can be composed of ABE and ZKP:

2.4 ATTRIBUTE VERIFICATION PROTOCOL 25

• DABE for attribute management and encryption: DABE is used to manage

attributes and control access to encrypted data. Prover’s private decryption

keys, managed in a decentralized way (among multiple Issuers), are associated

with their attributes, and data is encrypted based on access policies. A Prover

can decrypt the ciphertext if its attributes satisfy the access policy.

• ZKP for attribute veriőcation: Zero-Knowledge Proofs are used to prove the

possession of attributes required by the access policy without revealing the

actual attribute values. The user engages in an interactive protocol with the

Veriőer, and the Veriőer can be convinced that the user possesses the required

attributes without learning any additional information.

The combination of DABE and ZKP in an Attribute Veriőcation Protocol pro-

vides several advantages:

1. Fine-grained access control: DABE enables the data owner to deőne complex

access control policies based on the attributes of the users.

2. Privacy-preserving attribute veriőcation: ZKP allows Provers to prove they

possess the required attributes without revealing the actual attribute values,

thus preserving privacy.

3. Collision resistance: The combination of DABE and ZKP ensures that users

cannot combine their decryption keys to decrypt data that they are individu-

ally unauthorized to access.

4. Scalability: The combination of DABE and ZKP can handle a large number

of attributes and complex access policies, making it suitable for applications

with diverse and dynamic user bases.

In this protocol, we assume a setup that involves an Issuer, a Prover, and an

2.4 ATTRIBUTE VERIFICATION PROTOCOL 26

Attribute Veriőer. Here’s a description of an Attribute Veriőcation protocol using

DABE and ZKP:

1. Setup: A trusted authority initializes the system by generating public parame-

ters and master secret keys for the DABE scheme. The authority also provides

the required cryptographic primitives and parameters for the ZKP protocol.

2. Attribute Issuance: Provers obtain their attributes from the attribute Issuer,

and because of DABE, the Issuers can be multiple. These attributes are asso-

ciated with users’ private decryption keys for the DABE scheme. The trusted

authority can generate these keys based on the user’s attributes and the master

secret key.

3. DABE Encryption: A Prover requests access to encrypted data, and the Ver-

iőer, who is responsible for controlling access to the encrypted data, encrypts

the data using an access policy (deőned over attributes) and the public pa-

rameters of the DABE scheme. In particular, the Veriőer is responsible for the

following sub-steps:

• Challenge: The attribute Veriőer sends a random challenge to the Prover.

This challenge ensures that the user cannot predict the Veriőer’s queries

beforehand, preventing cheating.

• Veriőcation: The attribute Veriőer veriőes the user’s Zero-Knowledge

Proof using the public parameters. If the veriőcation is successful, the

Veriőer concludes that the Prover indeed possesses the required attributes.

4. Data Decryption: If the attribute veriőcation is successful, the Prover receives

the encrypted data. They can use their private decryption key associated with

the attributes to decrypt the data, as their attributes satisfy the access policy

deőned by the Veriőer. In particular, the Prover is responsible for the following

sub-steps:

2.5 PRIVACY-PRESERVING ATTRIBUTE VERIFICATION 27

• Commitment: The Prover commits to their attributes using a secure

commitment scheme, generating a commitment value that binds them to

the attributes without revealing the actual values.

• Proof Construction: The Prover constructs a Zero-Knowledge Proof us-

ing their committed attributes, the challenge from the Veriőer, and the

public parameters. This proof demonstrates that the Prover possesses

the required attributes without revealing the actual attribute values.

5. Access Decision: Based on the Attribute Veriőcation result, i.e. on the even-

tual successful decryption performed from the Prover, the attribute Veriőer

concludes whether the Prover fulőlls the access policy that was previously set,

or not.

In summary, an Attribute Veriőcation Protocol composed of DABE and ZKP

can achieve őne-grained access control and privacy-preserving attribute veriőcation.

The combination of these cryptographic techniques allows for secure and efficient

access control in privacy-sensitive applications.

2.5 Privacy-Preserving Attribute Verification

The paper "Decentralizing Attribute-Based Encryption" Lewko and Waters [1] took

care of introducing in detail the concept of a Decentralized ABE scheme, which

built the foundations for the Decentralized Attribute-Based Encryption (DABE).

The authors proposed a new ABE scheme that eliminates the need for a central

authority to manage attributes and keys, so any party or node could become an

Issuer (or Attribute Authority) and issue secret keys for their attributes, making the

system more ŕexible and scalable compared to previous centralized ABE schemes.

One of the emphasized key features of this DABE scheme was its collusion-resistant

design, meaning that users cannot combine their secret keys to gain unauthorized

2.5 PRIVACY-PRESERVING ATTRIBUTE VERIFICATION 28

access to encrypted data. Another important aspect of the proposed scheme was its

support for expressive access policies. This means that the DABE scheme can handle

a wide range of conditions for granting access to encrypted data. Speciőcally, it can

support any access policy that can be represented by a monotonic access structure,

which allows for complex and ŕexible policy deőnitions.

Another very important paper for this work, written by Kamel [4] introduced a

Decentralized Attribute Veriőcation (relying on DABE) system for IoT applications

that employs a challenge-response technique. By addressing privacy and scalability

issues often associated with centralized models, the system provides two veriőcation

modes: 1-out-of-n and n-out-of-n, enabling participants to demonstrate possession

of one or all speciőed target attributes. The model includes three types of par-

ticipants: Provers, Issuers, and Veriőers. Provers conőrm attribute ownership by

responding to challenges sent by Veriőers, Issuers supply attribute proofs (secret

keys associated to the attributes) to Provers, and Veriőers validate Prover attribute

ownership via challenges. A node may join the system as Prover, while organiza-

tions can become independent Issuers for certain attributes, providing secret keys

for conőrmed attributes to users.

In the 1-out-of-n mode, Provers must demonstrate ownership of at least one of the

provided attributes, while in the n-out-of-n mode, they must possess all given at-

tributes. The model’s Provers are independent nodes with a Prover Attribute Vector

(PAV), a private collection of attributes issued by different issuers [4]. The sys-

tem seeks soundness, which prevents the successful veriőcation of malicious provers,

while also satisfying unlinkability and untraceability properties. Soundness guar-

antees that a Prover can only provide a veriőable PAV for forged attributes with

negligible probability. Unlinkability prevents a Veriőer from determining whether a

pair of attribute Veriőer tokens belong to the same Prover, while untraceability en-

sures an issuer cannot trace an issued attribute to a Prover. Issuers participate solely

2.5 PRIVACY-PRESERVING ATTRIBUTE VERIFICATION 29

in providing attribute secret keys to Provers and not in the Attribute Veriőcation

process, preventing them from learning about the future use of issued attributes.

To conclude, while centralized Attribute Veriőcation models provide enhanced

computational capacity and lower complexity, the centralized entity may become

vulnerable to single points of failure or similar attacks. The paper introduced a

decentralized Attribute Veriőer offering two veriőcation modes, capable of verifying

attributes in a decentralized and Zero-Knowledge way.

3 Regulatory Compliance

Verification Protocol

This chapter will delve into the conceptual mathematical design of the Attribute

Veriőcation Protocol with the addition of a ticket generation feature. Additionally,

a practical use case scenario concerning banking systems will be provided.

3.1 Adaptation of the Attribute Verification Proto-

col

In order to address in-deep the challenge of developing a privacy-preserving Attribute

Veriőer for assessing cloud regulatory compliance, a mathematical analysis of the

Attribute Veriőcation Protocol [4] needed to be performed őrst, in order to tailor

this broad and versatile protocol to őt speciőc needs. In comparison to the already

existing solutions, i.e. previously proposed model seen in Section 2.5, the adaptation

of it for this Thesis integrates a ticketing system, that managed to őt perfectly in a

decentralized logic. In particular, any trusted node can join the system and be an

Issuer, issuing tickets for the attributes that are held by the Prover. Moreover, as it

will be seen in section 3.3, the enhancement concerned also the ability to deploy the

Proposed Protocol and all its components (i.e. all the actors involved) in a cloud

environment, testing the whole workŕow that compposes it. Here is the outcome

3.1 ADAPTATION OF THE ATTRIBUTE VERIFICATION PROTOCOL 31

of the study, i.e. the Attribute Veriőcation Protocol with the previously mentioned

modiőcations (See Figure 3.1), that can be adapted versatilely to many use cases.

1. Global Setup (performed once during the system setup): The Attribute

Authority will perform this step just once, by getting the security parameter λ as

input, and performing the global setup algorithm with which it will generate the

global parameters, which include:

• Two cyclic groups G,GT

• A generator g in G

• A bilinear mapping e : G×G → GT

• A hash function H : {0, 1}∗ → {0, 1}d

2. Attribute Setup (performed by the Issuer(s)): An Issuer joins the system,

and takes the global parameters as input, in order to produce its private key pair

αi, βi ∈ Zp, which will be kept private. Then it will compute its public key pair as

follows:

e(g, g)αi , gβi

3. Tickets Generation (performed by the Issuer(s)): A Prover with identity Iu

and a set of attributes, requesting a ticket of compliance sk for each attribute i in its

set, contacts the relevant Issuers. The relevant Issuers, in turn, generate the user’s

corresponding tickets, i.e. the secret keys related to those attributes, leveraging the

equation below. For each attribute i:

sk(i, u) = gαiH(Iu)
βi

3.1 ADAPTATION OF THE ATTRIBUTE VERIFICATION PROTOCOL 32

A ticket related to a certain attribute will be nothing else than a proof of posses-

sion of that attribute. The integrated ticketing system inside the Attribute Veriő-

cation Protocol that was implemented in this Thesis, shapes the role of a secret key

issued for a certain attribute, to take the value of proof of compliance of a certain

aspect of a regulatory.

The decentralized nature of the protocol will make an Issuer node be responsible

for the issuance of a certain number of tickets, while other Issuers are responsible

for others, distributing the power or authority across multiple nodes and decreasing

signiőcantly the issues revolving around the centralized scenarios.

4. Encryption (performed by the Veriőer):

Before performing the encryption step, the Veriőer needs to perform some setup

steps: őrst of all, it deőnes the set of target attributes Tv = {t0, t1, . . . , tn} for

veriőcation. Subsequently, it also randomly generates a challenge key R ∈ GT , and

prepares a challenge ciphertext for the Prover, by őrst hashing the challenge key

R that will be used as the key to the symmetrically encrypted challenge, and right

after that, encrypting the challenge by using the key k = H(R), which includes a

nonce r ∈ Zp, the timestamp ts, and the public key of the Veriőer PKv to be used

later to secure the returned response, where ∥ deőnes the concatenation:

challenge = EncH(R)(r∥ts∥PKv)

The veriőer then generates a random number s ∈ Zp, and converts the access

policy Γ to the equivalent linear secret sharing scheme (LSSS) matrix M(Γ) for

encryption. The access policy can be set to either require from the Prover the pos-

session of just one of the attributes in Tv, which represents an n-out-of-n policy

(boolean operator OR), or require the possession of all the attributes in Tv (boolean

operator AND), which corresponds to an n-out-of-n policy [4]. The proposed model

3.1 ADAPTATION OF THE ATTRIBUTE VERIFICATION PROTOCOL 33

by this Thesis enforces an n-out-on-n policy for the covered use case, where the

Prover, in order to be considered GDPR Article 32 [20] compliant by the Veriőer,

would need to prove the possession of four out of four required attributes.

The Veriőer then gets from the Issuers the public keys, pair of e(g, g)αi and

gβi . These public keys will be based on the target attributes in Tv. Up to this

point, based on the number of columns in the LSSS matrix, two vectors γ and

ω are generated, where their őrst elements are set to s and 0, respectively, and

the remaining elements are randomly chosen from Zp. The randomly generated

challenge key R will be encrypted using DABE [1].

In order to perform the DABE encryption algorithm, the Veriőer generates three

parameters ri, γi, and ωi, based on the number of rows in the LSSS matrix M(Γ),

and for each of the attributes in Tv. ri, taken as a parameter from the algorithm,

is a random value that is chosen from Zp, and γi and ωi are computed using the

equation below, where M(Γ)i indicates the ith row in M(Γ).

γi = M(Γ)iγ, ωi = M(Γ)iω

The challenge key R will be then encrypted using the following formula:

C0 = Re(g, g)s

In the DABE encryption algorithm, three components Ci1, Ci2 and Ci3 are com-

puted, and this is performed for each attribute i in Tv, using the equations below:

Ci1 = e(g, g)γie(g, g)αiri , Ci2 = gri , Ci3 = gβirigωi

The resulting ciphertext contains the single parameter C0, which includes the

actual encrypted message, and a number of parameters (Ci1, Ci2, Ci3) for each used

attribute i in the deőned access policy Γ. These components will be used by the

Prover to attempt to get the component C0, which represents nothing else than the

3.1 ADAPTATION OF THE ATTRIBUTE VERIFICATION PROTOCOL 34

encrypted challenge key R.

5. Decryption (performed by the Prover):

The Prover can prove the claimed attributes if the deőned Γ returns true In the

n-out-of-n mode, which is the one applied to the use case developed in this Thesis,

the Prover needs all the secret keys, for each attribute in Tv, in order to get R.

While in the 1-out-of-n mode, having any deőned attributes in Tv already satisőes

the Boolean formula [4]. In order to decrypt C0, the Prover computes an intermediate

value for attribute i using its secret key sk(i, u) and parameter Ci = (Ci1, Ci2, Ci3).

Intermediate values are computed as follows:

Ci1 · e(H(Iu), Ci3)

e(sk(i, u), Ci2)
= e(g, g)γie(H(Iu), g)

ωi

In the n-out-of-n mode, all computed intermediate values will be used to compute

e(g, g)s, while in the 1-out-of-n mode, just one single computed intermediate value.

The őnal Decryption is performed as follows:

e(g, g)s =

⎧

⎪

⎨

⎪

⎩

e(g, g)γi 1-out-of-n mode
∏︁|Γ|

i=1 e(g, g)
γie(H(Iu), g)

ωi n-out-of-n mode

The challenge key R is recovered from C0 as R = C0

e(g,g)s
. By recovering R, the

prover can decrypt the challenge and send back the response encrypted with the

veriőer’s public key PKv.

It’s important to emphasize the potential of the proposed Attribute Veriőcation

Protocol that, by deőnition, takes advantage of the underlying DABE protocol in

order to naturally support multiple nodes joining the system as Issuers. Section 3.3

of this work covers the implementation of the proposed protocol, and subsequent

deployment in a pure Cloud scenario, giving the Cloud provider the role of an Issuer

node devoted to issuing tickets of compliance.

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 35

Figure 3.1: Sequence diagram of the proposed model

3.2 Proposed Protocol in Banking System

The use case explored for the proposed protocol, as already mentioned brieŕy in the

previous sections, is the following: a National Bank requesting a certain resource or

service from a higher European Institution like the European Central Bank (which

will act as the Veriőer or Auditor), and in order to access that resource/service, the

prerequisite or necessary condition to be met, is being compliant with Article 32

of the GDPR (See Figure 3.2). For the proposed use case, the considered Prover

was a National bank, in order to give consistency to the whole scenario, but it

could have been any other institution that needs to pass a Veriőcation check on

GDPR requirements, performed by the Veriőer. Out of the scope of this use case,

is establishing whether the Prover belongs to the European Union, so a scenario

where GDPR compliance needs to be just conőrmed, because it’s supposed to be

already in place, but often there are rare cases of full compliance, or outside of the

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 36

EU, which would mean assessing from scratch. The proposed model could adapt to

both cases, as it performs an in-deep check of all the necessary attributes related to

Article 32.

Figure 3.2: Sequence diagram of the proposed model in Banking Systems

Getting back to the Regulatory, Article 32 of the GDPR concerns the security

of processing personal data, and it has probably the highest relevance among all the

others, in terms of pure cyber security, as it mandates organizations that process

personal data to implement appropriate technical and organizational measures to

ensure a level of security appropriate to the risk [20]. Scope of the thesis was to

analyze the article, spot the speciőc security requirements that it enforces, to be

transposed then into attributes (to be used for the Attribute Veriőcation Protocol),

and implement the related security controls, that were developed in AWS Cloud En-

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 37

vironment, through the use of Lambda functions written in Python. The addressed

requirements of Article 32, transposed then into attributes, are four:

• Pseudonymization and encryption of personal data (Attribute 1);

• Ensuring the ongoing conődentiality, integrity, availability, and resilience of

processing systems and services (Attribute 2);

• The ability to restore the availability and access to personal data in a timely

manner in the event of a physical or technical incident (Attribute 3);

• A process for regularly testing, assessing, and evaluating the effectiveness of

technical and organizational measures for ensuring the security of the process-

ing (Attribute 4);

Starting from these four requirements enforced by Article 32, a logic to assess

compliance with them, seen as attributes, needed to be established, in order to assess

whether a Prover (in the use case, a National Bank) fulőlls each of them. Moreover,

in order to be compliant with the whole article 32, the Prover would need to pass

the check of all four of them (n-out-of-n access policy), so the necessary condition

would be receiving four tickets (secret keys associated with each attribute). The

developed logic to assess compliance of each of the four attributes, is the following:

1. Pseudonymization and encryption of personal data (Attribute 1):

• Pseudonymization technique

• Encryption algorithm

• Key length

To be compliant with Attribute 1:

• The pseudonymization technique must be either łtokenizationž or łmask-

ing.ž (Non-compliant example: łreversible_hashingž);

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 38

• The encryption algorithm must be one of the approved algorithms, e.g.,

łAESž, łRSAž, łChaCha20.ž (Non-compliant example: łDESž);

• The encryption key length must be equal to or greater than a certain

value, e.g., 128 bits for symmetric encryption or 2048 bits for asymmetric

encryption. (Non-compliant example: 56 bits for DES).

2. Ensuring the ongoing conődentiality, integrity, availability, and resilience of

processing systems and services (Attribute 2):

• Security measures

• Assessment frequency

• Vulnerabilities count

• Vulnerabilities severity

To be compliant with Attribute 2:

• The security measures must include certain mandatory items (e.g., a őre-

wall). (Non-compliant example: using only an intrusion detection system

without a őrewall);

• The frequency of security assessments should be at least quarterly. (Non-

compliant example: łyearlyž);

• The number of vulnerabilities found in the most recent assessment must

be below a certain threshold (e.g., 5). (Non-compliant example: 7 vul-

nerabilities);

• The severity of vulnerabilities found should not exceed a certain level

(e.g., łlowž or łmediumž). (Non-compliant example: łhighž).

3. The ability to restore the availability and access to personal data in a timely

manner in the event of a physical or technical incident (Attribute 3):

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 39

• Backup type

• Backup frequency

• Recovery Time Objective (RTO) in hours

• Recovery Point Objective (RPO) in hours

To be compliant with Attribute 3:

• The backup type must be either łincrementalž or łfull.ž (Non-compliant

example: łdifferentialž);

• The backup frequency must be either łdailyž or łweekly.ž (Non-compliant

example: łmonthlyž);

• The RTO should be less than or equal to a maximum value, e.g., 8 hours.

(Non-compliant example: 24 hours);

• The RPO should be less than or equal to a maximum value, e.g., 4 hours.

(Non-compliant example: 12 hours).

4. A process for regularly testing, assessing, and evaluating the effectiveness of

technical and organizational measures for ensuring the security of the process-

ing (Attribute 4):

• Assessment frequency

• Assessment type

• Assessment status

• Last assessment date

To be compliant with Attribute 4:

• The assessment frequency should be one of the valid options, e.g., łmonthlyž,

łquarterlyž, łyearly.ž (Non-compliant example: łevery two yearsž);

3.2 PROPOSED PROTOCOL IN BANKING SYSTEM 40

• The assessment type must be one of the valid types, e.g., łvulnerability

scanningž, łpenetration testingž, łsecurity audit.ž (Non-compliant exam-

ple: łinformal reviewž)

• The assessment status must be łpassed.ž (Non-compliant example: łfailedž);

• The time elapsed since the last assessment date must be less than or

equal to a maximum value, e.g., 18 months. (Non-compliant example: 24

months since the last assessment).

In order to test both compliance and not compliance of a user, in regards to

Attribute 32 of the GDPR, two different records, with different user_id (used as

the partition key), were created in the DynamoDB database. So the table from

which the data is being retrieved contains a complaint user and a not compliant

one. The not-compliant user has the "vulnerability count" column equal to 6, when

the threshold is 5. This would already make it not suitable to receive the ticket

to Attribute 2 ("Ensuring the ongoing conődentiality, integrity, availability, and re-

silience of processing systems and service"), and consequently already not compliant

overall with Article 32, as the Veriőer requires an n-out-of-n policy over 4 attributes.

4 Implementation and Analysis

This chapter states the implementation and full deployment of the proposed protocol

[21] in a cloud setting, i.e. AWS Cloud Environment of the practical use case scenario

concerning banking systems. Additionally, the evaluation of the outcomes produced

by the implemented solution will be addressed, and a comparison with existing

solutions will be provided. Towards the end, the implication of the study will be

highlighted.

4.1 Implementation of the Proposed Protocol

4.1.1 Implementation of the Issuer:

1. Definition of the DecentralizedABE class (see Code 4.1):

A DecentralizedABE class was deőned, and tailored for the actor (in this case,

the Issuer), with just the relevant methods for covering the logic of it, and the same

was done for the other two actors involved (Prover and Veriőer). An instance of this

class was created in order to be able to invoke the following functions:

• __init__(self, groupObj): Constructor of the DecentralizedABE class. Takes

a pairing group object as a parameter and initializes the base class (ABEnc-

MultiAuth). It also sets the global variables util and group:

– util: SecretUtil object for working with secret sharing

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 42

– group: pairing group object for cryptographic operations

• setup(self): For the scope of this use case, the power of being an Attribute

Authority generating the global parameters (GP) for the DABE scheme, was

given to the cloud environment itself, i.e. the Issuer. This setup would take

place just once, as soon as the system needs to be set up, and the Attribute

Authority creates a random group element g in G1, and a hash function H that

maps inputs to G1. The GP is a dictionary containing ’g’ and ’H’.

• issuersetup(self, GP, attributes): Sets up the issuer’s secret key (SK)

and public key (PK) for each attribute. Takes the global parameters GP and

a list of attributes as input. It initializes empty dictionaries for SK and PK.

For each attribute, it generates random alpha_i and beta_i values, computes

e(g,g)^alpha_i and g^beta_i, and stores them in the respective SK and PK

dictionaries. Returns a tuple containing SK and PK.

• keygen(self, GP, SK, i, gid): Generates a key for a speciőc user (GID)

and attribute (i). Takes the global parameters GP, secret key SK, attribute i,

and user GID as input. It computes the hash of the GID using the H func-

tion, and then generates the key k using the formula: k = (g^alpha_i) *

(h^beta_i), where h is the hashed GID. Returns a dictionary containing the

key k and the GID.

Listing 4.1: DecentralizedABE class tailored for the Issuer

class DecentralizedABE(ABEncMultiAuth):
def __init__(self , groupObj):

ABEncMultiAuth.__init__(self)
global util , group
util = SecretUtil(groupObj , verbose=False)
group = groupObj

def setup(self):
Generate the global parameters (GP)

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 43

g = group.random(G1)
H = lambda x: group.hash(x, G1)
GP = {'g': g, 'H': H}
return GP

def issuersetup(self , GP, attributes):
SK = {} # dictionary of {attribute i: {alpha_i , beta_i }}
PK = {} # dictionary of {attribute i: {e(g,g)^alpha_i , g^

beta_i }}
for i in attributes: # done for each attribute that this AA

handles
alpha_i , beta_i = group.random (), group.random ()
first part of the PK
e_gg_alpha_i = pair(GP['g'], GP['g']) ** alpha_i
g_beta_i = GP['g'] ** beta_i # second part of the PK

The random group elements are the SK
SK[i.upper ()] = {'alpha_i ': alpha_i , 'beta_i ': beta_i}
PK[i.upper ()] = {'e(gg)^alpha_i ': e_gg_alpha_i , 'g^

beta_i ': g_beta_i}

return (SK, PK)

def keygen(self , GP , SK, i, gid):
#Generate a key for a specific user (GID) and attribute (i)
h = GP['H'](gid)
g = GP['g']
k = (g ** SK[i.upper()]['alpha_i ']) * (h ** SK[i.upper ()]['

beta_i '])
return {'k': k, 'gid': gid}

2. Evaluating fulfillment of attributes related to GDPR Article 32:

Four functions were developed, so one for each attribute, in order to evaluate the

fulőllment of the Prover to it, i.e. the possession of that particular attribute:

• "Pseudonymization and encryption of personal data (Attribute 1);"

• "Ensuring the ongoing conődentiality, integrity, availability, and resilience of

processing systems and services (Attribute 2);"

• "The ability to restore the availability and access to personal data in a timely

manner in the event of a physical or technical incident (Attribute 3);"

• "A process for regularly testing, assessing, and evaluating the effectiveness of

technical and organizational measures for ensuring the security of the process-

ing (Attribute 4)."

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 44

These functions return a boolean value indicating whether the National Bank,

or any other Prover in any other őeld, meets that attribute or not.

1. evaluate_attribute_1(attributes):

This function evaluates the compliance of the organization based on łThe pseudonymiza-

tion and encryption of personal dataž criteria. It performs the following checks:

• Pseudonymization Technique Check: It checks if the provided pseudonymiza-

tion technique is among the valid techniques, i.e., ’tokenization’ or ’masking’.

Hence, if the Prover is using reversible hashing, then it would already be not

compliant (as it is not in the valid techniques that were set), because it doesn’t

even fulőll Attribute 1.

• Encryption Algorithm Check: It checks if the provided encryption algorithm

is among the valid algorithms, i.e., ’AES’, ’RSA’, or ’ChaCha20’ (so, using

DES would already make the user not compliant).

• Key Length Check: It checks if the provided key length is equal to or greater

than the minimum required key length for the speciőed encryption algorithm:

128 bits for AES, 256 bits for ChaCha20, 2048 bits for RSA.

If all these checks are passed, the function returns True, indicating that the

Prover fulőlls Attribute 1, i.e. it is compliant with this attribute of Article 32. Oth-

erwise, it concludes already that the user is not compliant.

2. evaluate_attribute_2(attributes):

This function evaluates the compliance of the Prover based on łEnsuring the

ongoing conődentiality, integrity, availability, and resilience of processing systems

and servicesž criteria. It performs the following checks:

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 45

• Security Measures Check: It checks if the organization has implemented all

the mandatory security measures, such as a őrewall. A not-compliant example

would be having an IDS without a őrewall,

• Assessment Frequency Check: It checks if the organization conducts assess-

ments at valid frequencies, i.e., ’monthly’ or ’quarterly’.

• Vulnerabilities Count Check: It checks if the number of vulnerabilities in the

organization’s system is less than or equal to the maximum allowed vulnera-

bility count (5 in this use case).

• Vulnerabilities Severity Check: It checks if the severity of the vulnerabilities

is within the acceptable range, i.e., ’low’ or ’medium’.

If all these checks are passed, the function returns True, indicating that the

Prover fulőlls Attribute 2, i.e. it is compliant with this aspect of Article 32.

3. evaluate_attribute_3(attributes):

This function evaluates the compliance of the organization based on łThe ability

to restore the availability and access to personal data in a timely manner in the

event of a physical or technical incidentž criteria. It performs the following checks:

• Backup Type Check: It checks if the provided backup type is among the valid

backup types, i.e., ’incremental’ or ’full’ (not compliant example: differential).

• Backup Frequency Check: It checks if the provided backup frequency is among

the valid backup frequencies, i.e., ’daily’ or ’weekly’.

• Recovery Time Objective (RTO) Check: It checks if the organization’s RTO,

in hours, is less than or equal to the maximum allowed RTO (8 in this case).

• Recovery Point Objective (RPO) Check: It checks if the organization’s RPO,

in hours, is less than or equal to the maximum allowed RPO (4 in this case).

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 46

If all these checks are passed, the function returns True, indicating that the

Prover fulőlls attribute 3, i.e. it is compliant with this aspect of Article 32.

4. evaluate_attribute_4(attributes):

This function evaluates the compliance of the organization based on łA process

for regularly testing, assessing, and evaluating the effectiveness of technical and

organizational measures for ensuring the security of the processingž criteria. It

performs the following checks:

• Assessment Frequency Check: It checks if the organization’s assessment fre-

quency is among the valid frequencies, i.e., ’monthly’, ’quarterly’, or ’yearly’.

• Assessment Type Check: It checks if the organization’s assessment type is

among the valid assessment types, i.e., ’vulnerability scanning’, ’penetration

testing’, or ’security audit’ (not compliant example: informal review).

• Assessment Status Check: It checks if the organization’s assessment status is

’passed’.

• Assessment Age Check: It checks if the time since the organization’s last

assessment is less than or equal to the maximum allowed assessment age (18

months in this case).

If all these checks are passed, the function returns True, indicating that the

Prover fulőlls attribute 4, i.e. it is compliant with this aspect of Article 32. Other-

wise, it returns False.

These four functions mentioned above are part of the policy evaluation and com-

pliance veriőcation process.

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 47

3. lambda_handler function for the Issuer (portion 1):

The lambda_handler(event, context) for the Issuer extracts őrst the user_id

from the event, and retrieves the corresponding user attributes from DynamoDB.

If the user is found, a pairing group object groupObj is initialized, with the chosen

security setting ’SS512’. This object is used to work with bilinear pairings. Next,

a DecentralizedABE object, dabe, is instantiated using the groupObj. The func-

tion then calls the dabe.setup() method to generate the global parameters (GP)

required for the Decentralized Attribute-Based Encryption scheme.

4. lambda_handler function for the Issuer (portion 2):

At this point, an attribute_mapping dictionary gets deőned, to map numerical

keys to descriptive attribute names (four attributes, as previously mentioned) that

represent speciőc requirements of GDPR Article 32. Then,the Issuer’s secret key

(SK) and public key (PK) are generated for each attribute, using the dabe.issuersetup()

method and the generated global parameters.

For each attribute, the function checks whether the user’s attributes fulőll the

corresponding GDPR requirement. If the Prover fulőlls it, then a ticket is gener-

ated for that attribute using the dabe.keygen() method, which takes the global

parameters, Issuer’s secret key, attribute name, and user identity as input. The re-

sulting ticket’s ’k’ element is then serialized and added to the generated_tickets

dictionary.

Finally, the Issuer’s public key is serialized into a dictionary, serialized_public_key,

by iterating through each attribute and it’s then returned as part of the response.

5. Json response from the Issuer:

The Issuer Lambda function’s őnal part constructs a JSON response, which

is then sent to both the Prover and the Veriőer. The response body contains the

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 48

generated tickets, public_key, and global_parameters. The tickets dictionary

includes serialized secret keys for each compliant attribute, serving as evidence of the

Prover’s GDPR Article 32 compliance. The public_key őeld holds the serialized

public keys for each attribute. Lastly, the global_parameters contain the serialized

generator g of the pairing group, which is required, for both the Prover and the

Veriőer, to perform DecentralizedABE operations.

Together, these components enable the Prover to perform the necessary cryp-

tographic operations and provide the Veriőer with the required information to de-

termine the Prover’s compliance (see Figure 4.1). Based on this information, the

Veriőer can then decide whether to grant or deny access to the protected resource

or service.

Figure 4.1: Sequence diagram of the Issuer’s Lambda function

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 49

4.1.2 Implementation of the Prover:

1. Definition of the DecentralizedABE class (see Code 4.2):

The DecentralizedABE class is an extension of the ABEncMultiAuth class that

has been tailored to the speciőc requirements of the Prover’s Lambda function. It

provides the necessary methods for handling decryption in a decentralized attribute-

based encryption (DABE) scheme, allowing the Prover to demonstrate possession

of required attributes without revealing their actual values.

original_decrypt(self, GP, sk, ct): This method is a key component of

the DecentralizedABE class, responsible for decrypting a challenge ciphertext (ct)

using the user’s secret keys (sk) for speciőc attributes. It takes the global parameters

(GP), the user’s secret keys (sk), and ciphertext (ct) as input. The method őrst

creates a policy based on the ciphertext’s policy and then prunes it based on the

user’s attributes. If the user does not possess the required attributes, the decryption

process is terminated.

Next, the method computes coefficients for the pruned policy and calculates an

intermediate value (egg_s) using a loop over the pruned policy’s attributes. Within

the loop, it computes the numerator (num) and denominator (dem) of the decryption

formula and raises the result to the power of the corresponding policy coefficient.

The intermediate value (egg_s) is updated by multiplying it by the current result.

Finally, the method returns the decrypted challenge by dividing the ciphertext’s

C0 component by the intermediate value (egg_s). The decrypted challenge is then

used by the Prover to demonstrate the possession of the required attributes, enabling

the secure execution of the Prover Lambda function.

Listing 4.2: DecentralizedABE class tailored for the Prover

class DecentralizedABE(ABEncMultiAuth):
def __init__(self , groupObj):

ABEnc.__init__(self)

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 50

global util , group
util = SecretUtil(groupObj , verbose=False)
group = groupObj

Original encrypt function
def original_encrypt(self , GP, M, policy_str):

policy = util.createPolicy(policy_str)
p_list = util.getAttributeList(policy)
s = group.random ()
print("M:", M, "type:", type(M))
print("GP['g ']:", GP['g'], "type:", type(GP['g']))
print("s:", s, "type:", type(s))

#C0 = M * (GP['g'] ** s)
C0 = pair(M, GP['g'] ** s)

C1 , C2 , C3 = {}, {}, {}
for i in p_list:

r = group.random ()
C1[i] = (GP['g'] ** r)
C2[i] = (GP[i] ** r)
C3[i] = (GP[i] ** s) * (GP['g'] ** -r)

return { 'C0':C0 , 'C1':C1 , 'C2':C2 , 'C3':C3 , 'policy ':
policy_str }

2. lambda_handler function for the Prover (first portion)

The lambda_handler(event, context) for the Prover starts by invoking the Issuer

with the user_id extracted from the event. It receives a response that includes the

"user attribute secret keys" (i.e. the tickets) and the public key associated with

them. The function proceeds to deserialize the pairing group object, the tickets, the

public key (using the PairingGroup object), and the global parameters (GP).

3. lambda_handler function for the Prover (second portion):

In the second portion of the lambda_handler function for the Prover, the ci-

phertext (i.e., the encrypted challenge) is deserialized from the event. The function

iterates through the ciphertext, and for each nested key, it deserializes the corre-

sponding values using the PairingGroup object. After deserializing the ciphertext,

the DecentralizedABE object is instantiated, and the challenge is decrypted using

the original_decrypt method. This method takes the global parameters (GP), user

attribute secret keys (tickets), and the deserialized ciphertext as input arguments.

The result is the decrypted challenge (challenge key R), which is also deserialized

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 51

using the PairingGroup object.

4. Json response from the Prover:

The őnal part of the Prover Lambda function prepares and returns the JSON

response for the Veriőer. The body of the response contains the tickets and the

decrypted_challenge. The tickets are a dictionary of attribute names and their

corresponding serialized secret keys, serving as evidence that the Prover is compliant

with GDPR Article 32. The decrypted_challenge, obtained after decrypting the

ciphertext, proves that the Prover possesses the necessary secret keys to meet the

Veriőer’s access policy. Both elements together enable the Veriőer to determine the

Prover’s compliance and decide whether to grant or deny access to the protected

resource based on the provided information (see Figure 4.2).

Figure 4.2: Sequence diagram of the Prover’s Lambda function

4.1.3 Implementation of the Verifier:

1. Definition of the DecentralizedABE class (see Code 4.3):

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 52

The DecentralizedABE class is an extension of the ABEncMultiAuth class tai-

lored for the Veriőer Lambda function. It provides the necessary methods for han-

dling encryption in a decentralized attribute-based encryption (DABE) scheme, al-

lowing the Veriőer to encrypt a challenge message based on the required access

policy.

original_encrypt(self, GP, M, policy_str): this method is a central com-

ponent of the DecentralizedABE class, responsible for encrypting a challenge mes-

sage (M) based on the given access policy string (policy_str). The method őrst

creates a policy based on the access policy string and obtains the attribute list

from the policy. It then generates a random value (s) and initializes the ciphertext

components (C0, C1, C2, and C3).

Next, the method calculates the C0 component of the ciphertext by pairing the

challenge message with the global parameter g raised to the power of the random

value s. It then iterates through the policy’s attribute list and generates random

values (r) for each attribute. The C1, C2, and C3 components of the ciphertext are

updated with corresponding calculations for each attribute using the random values

r and the global parameters.

Finally, the method returns a dictionary containing the ciphertext components

and the access policy. The encrypted challenge is then used by the Veriőer to se-

curely execute the Veriőer Lambda function, allowing only users with the required

attributes to decrypt the challenge and obtain access.

Listing 4.3: DecentralizedABE class tailored for the Veriőer

class DecentralizedABE(ABEncMultiAuth):
def __init__(self , groupObj):

ABEnc.__init__(self)
global util , group
util = SecretUtil(groupObj , verbose=False)
group = groupObj

Original encrypt function

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 53

def original_encrypt(self , GP, M, policy_str):
policy = util.createPolicy(policy_str)
p_list = util.getAttributeList(policy)
s = group.random ()
print("M:", M, "type:", type(M))
print("GP['g ']:", GP['g'], "type:", type(GP['g']))
print("s:", s, "type:", type(s))

#C0 = M * (GP['g'] ** s)
C0 = pair(M, GP['g'] ** s)

C1 , C2 , C3 = {}, {}, {}
for i in p_list:

r = group.random ()
C1[i] = (GP['g'] ** r)
C2[i] = (GP[i] ** r)
C3[i] = (GP[i] ** s) * (GP['g'] ** -r)

return { 'C0':C0 , 'C1':C1 , 'C2':C2 , 'C3':C3 , 'policy ':
policy_str }

2. lambda_handler function for the Verifier (first portion):

In the őrst portion of the Veriőer’s lambda_handler(event, context), the

function initializes the pairing group object and sets up a connection to the AWS

Lambda service. It then invokes the Issuer’s Lambda function by passing the neces-

sary user_id and receiving the JSON response from the Issuer’s Lambda function.

The function proceeds to extract the response’s body, which includes the serialized

global parameters and public keys for the attributes. Next, the global parameters

and public keys are deserialized, converting them back into their original formats.

To deőne the access policy, the Veriőer uses a dictionary named attribute_mapping,

which maps integers to attribute names. The access policy is created as a string

representing the logical AND of all the attributes, so a n-out-of-n policy, indicating

that all of them must be satisőed for the access to be granted. This policy will be

used later in the process to encrypt the challenge key R.

3. lambda_handler function for the Verifier (second portion):

In the second portion of the lambda_handler function, the Veriőer prepares the

challenge key R by őrst creating an instance of the DecentralizedABE class and then

generating a random element from the target group GT. The challenge key is then

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 54

converted to a string, subsequently encoded into bytes, and a symmetric cipher is

initialized using the SHA256 hash of the challenge key bytes.

The challenge key R is symmetrically encrypted as a challenge and subsequently

encrypted again using the Attribute Veriőcation Protocol from the Decentralized-

ABE class. This double encryption generates a ciphertext containing the encrypted

challenge key R, and this ciphertext is then serialized, and each of its elements is

encoded using base64.

The Prover is invoked by passing the user_id, public keys, and the encrypted

challenge (ciphertext). The Veriőer, then, receives the JSON response from the

Prover and extracts the decrypted challenge. And őnally, it will be able to compare

the decrypted challenge with the original challenge key R, to determine whether the

Prover has the necessary attributes to satisfy the access policy or not. The result

of this comparison is either "Access granted" or "Access denied" (see Figure 4.3),

which will be included in the JSON response returned by the Veriőer’s Lambda

function.

4. Json response from the Verifier:

In the Veriőer’s Lambda function, the JSON response’s body contains three key-

value pairs: statusCode, ciphertext, and result. The statusCode indicates the

HTTP status code. The ciphertext is the serialized encrypted challenge key (R)

generated by the Veriőer, which is sent to the Prover for decryption. Lastly, the

result őeld holds the outcome of the veriőcation process, either "Access granted"

or "Access denied," based on whether the Prover’s decrypted challenge matches the

original challenge key. The JSON response in the Veriőer Lambda function, similar

to those in the Issuer and Prover Lambda functions, facilitates communication be-

tween the involved parties by providing the necessary information to complete the

protocol.

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 55

Figure 4.3: Sequence diagram of the Veriőer’s Lambda function

4.1.4 Implementation of the Orchestrator:

The purpose of this Lambda function is to coordinate all the other three, i.e. the

three actors involved that we have seen so far, and calling them in a chronological

way according to the workŕow of the Attribute Veriőcation Protocol.

1. lambda_handler (first portion) - Prover’s request for ticket:

In the őrst part of the lambda_handler function, the Prover requests a ticket

from the Issuer by invoking the issuer_thesis3 Lambda function. The lambda_handler

sends the user’s ID as input to the Issuer function using the Payload parameter in a

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 56

JSON format. After receiving the Issuer’s response, it extracts the JSON response

body from the Issuer’s function using the Payload key and stores the result in the

issuer_response_body variable. The Orchestrator then prints the response and

further extracts the Issuer’s data from the issuer_response_body by accessing the

body key and loading it as a JSON object. This data includes the user’s attribute

secret keys and other relevant information necessary for the subsequent steps in the

protocol.

2. lambda_handler (second portion) - Challenge key generation:

In this portion of the lambda_handler function, the Veriőer checks if the user

is compliant with GDPR Article 32 and a ticket has been issued. If the ticket is

present, the Veriőer proceeds to generate a challenge key. To do this, it invokes

the verifier_thesis Lambda function with the prepare_challenge action and

the user’s ID as input. The Veriőer’s response is extracted as a JSON object and

stored in the verifier_response_body variable. The ciphertext of the encrypted

challenge key, which will be sent to the Prover later, is extracted from the response

and stored in the ciphertext variable.

3. lambda_handler (third portion) - Prover sending the ticket for

verification:

In this part of the lambda_handler function, the Prover sends the ticket, the

public key, and the encrypted challenge key (ciphertext) to the Veriőer for veriőca-

tion. To do this, the prover_thesis Lambda function is invoked with the user’s ID,

ticket, public key, and ciphertext as input in a JSON format. The Prover’s response

is extracted as a JSON object and stored in the prover_response_body variable.

The Orchestrator then prints the Prover’s response.

4.1 IMPLEMENTATION OF THE PROPOSED PROTOCOL 57

4. lambda_handler (fourth portion) - Attribute Verification step:

In the őnal portion of the lambda_handler function, the Veriőer checks the de-

crypted challenge to grant or deny access to the Prover (See Figure 4.4). The

verifier_thesis Lambda function is invoked again, but with the verify_challenge

action, the user’s ID, the decrypted challenge from the Prover’s response, and the

ticket as input. The Veriőer’s response is extracted as a JSON object and stored in

the verifier_response_body variable. The Orchestrator then prints the Veriőer’s

response, which contains the result of the veriőcation process.

4.2 EVALUATION OF THE PROPOSED SYSTEM 58

Figure 4.4: Sequence diagram of the Orchestrator Lambda function

4.2 Evaluation of the Proposed System

Evaluating the proposed system involved successfully integrating the modiőcations

to the existing Attribute Veriőcation protocol, transposing the protocol into code,

assessing the successful implementation of all the actors in the Cloud Environment,

4.2 EVALUATION OF THE PROPOSED SYSTEM 59

their automation, the automation of regulatory compliance veriőcation, and the

system’s overall performance in achieving privacy-preserving regulatory compliance.

The most important thing to highlight, before start analyzing the results, is

that for the implementation of this use case, the resource-related constraints in

having just one Cloud provider, and one account for it, made natural testing the

solution with just one supported Issuer, and they made this Issuer coincide also

with the Attribute Authority responsible for the global parameter generation (Global

Setup phase). However, the way in which the solution was successfully implemented,

already guarantees smoothness in the support of multiple Issuers, as it is intended,

in case of possession of the necessary resources to simulate them.

The ticketing system for regulatory compliance check was successfully integrated

into the skeleton of the Attribute Veriőcation Protocol, and so the transposition

of it into code, by having a Lambda function written in Python for all the three

actors, plus another one orchestrating chronologically their interactions and the

whole workŕow.

The Issuer has been successfully implemented, generating and distributing attribute-

related tickets of proof in the correct format, and ensuring that each ticket is unique

to the user. This demonstrates the feasibility of using the Attribute Veriőcation

Protocol for secure ticket issuance. The use case related to the attributes belong-

ing to Article 32 of the GDPR was successfully tested, showing the fulőllment of

two goals: translation of the attributes (populating the database) into code, and

automation of the compliance check.

The Orchestrator, i.e. the Lambda function that has the duty of integrating

and coordinating all three actors and simulating their workŕow in the chronological,

intended way, has also been successfully implemented,

However, some limitations were encountered along the way: the Prover and the

Veriőer’s Lambda functions faced some package/module issues (that will need to be

4.2 EVALUATION OF THE PROPOSED SYSTEM 60

further investigated as future work), preventing them to reach the end of their life-

cycle, i.e. the őnal output. However, their semantic design is correct, and the debug

process for both of them shows that there’s no issue with the way the encryption

and decryption processes were implemented, and not even with the related, inte-

grated, ticketing system (that already allows the Issuer to successfully issue tickets

of compliance related to the Prover’s attributes). Moreover, the correct design and

implementation of the orchestrator function are promising for the overall system’s

functionality.

In terms of performance, the Lambda function of the Issuer was taken as a sample

for assessing the overall efficiency of the artifact, being the most complex one and

so the most computationally expensive.

In order to assess the performance of the considered Lambda function, there

was őrst the need to understand the complexity of the code and the operations it

performs. The complexity of the code was, in fact, estimated considering that the

Issuer’s Lambda function:

• Interacts with the database DynamoDB to retrieve user attributes

• Instantiates a pairing group object for bilinear pairings

• Instantiates a DecentralizedABE object using the pairing group object

• Sets up the global parameters for the DecentralizedABE object

• Generates the issuer’s secret key and public key for each attribute

• Creates a user identity based on the user_id

• Evaluates compliance for each attribute using the deőned rules

• Generates tickets for each compliant attribute

4.2 EVALUATION OF THE PROPOSED SYSTEM 61

• Serializes the public key and the generated tickets, so performing the DABE

Encryption step for each of the fulőlled attributes: n fulőlled attributes, n

encryption steps performed.

• Returns the generated tickets, public key, and global parameters as a JSON

object, the be captured in the event by Prover, Veriőer, and Orchestrator

To perform the assessment, two metrics have been retrieved from CloudWatch:

Duration Time, providing information about the execution time of the Lambda

function during different invocations, and Success Rate, providing insights about

the successful operation of the Lambda function within a given period of time.

These metrics help understand the performance and efficiency of the Issuer’s Lambda

function, and they can be useful for identifying any potential bottlenecks or areas

that require optimization. Analyzing the Duration time, the following results were

shown (See Figure 4.5), showing the Maximum, Average, and Minimum Duration

on an overall number of 7 invocations:

Figure 4.5: Duration Time and Number of Invocations

In order to interpret the result, the following deőnitions need to be taken into

account:

4.2 EVALUATION OF THE PROPOSED SYSTEM 62

• Duration maximum: This is the longest time (in milliseconds) that the Lambda

function took to execute among all its invocations within the given period.

• Duration average: This is the average time (in milliseconds) that the Lambda

function took to execute across all its invocations within the given period.

• Duration minimum: This is the shortest time (in milliseconds) that the Lambda

function took to execute among all its invocations within the given period.

Considering the operations performed by the Lambda function, which involves

also cryptographic operations that can be computationally expensive, the execution

times (See Figure 4.6) seemed to be even better than the most optimistic expecta-

tions:

Figure 4.6: Maximum, Average, and Minimum Duration

While Regulatory Compliance check contexts don’t really require high-speed and

optimal veriőcation time in comparison to other scenarios like electronic payments,

high-frequency trading (HFT), real-time gaming, and video streaming, the achieve-

ment in terms of performances that were reached, established the foundations for

creating awareness about this possibility.

4.2 EVALUATION OF THE PROPOSED SYSTEM 63

Finally, the second and last criterion that was taken into consideration for eval-

uating the efficiency, but mostly effectiveness of the implemented solution, is the

Success Rate. In particular, the chart drawn by CloudWatch based on the logs,

conőrmed what has already been tested: the Issuer, no matter if the output was a

compliant or not compliant record, always succeeded to reach the end of its lifecycle,

resulting in a Success Rate of 100% (See Figure 4.7).

Figure 4.7: Success Rate of the Issuer’s Lambda function

4.2.1 Comparison with Existing Solutions

A signiőcant portion of the research objectives behind this work, was taken and

extended from a previous Master’s Thesis [22]. In particular, the just mentioned

Thesis, highlighted the issue caused by the need for manual effort in checking regu-

latory compliance, and developed an artifact to automate some security objectives

taken from several regulations, into code. One of the goals of my Master’s Thesis

was taking the same concept of dealing with regulations through code, but adding

a privacy layer to the proof of compliance check, thus following a privacy-by-design

approach. The added value that my work achieved, is indeed having integrated an

4.2 EVALUATION OF THE PROPOSED SYSTEM 64

Attribute Veriőer into the compliance check, ensuring conődentiality by enhancing

privacy during the compliance veriőcation process.

An additional existing solution, which represented the biggest inspiration behind

my work, was the already mentioned paper that addressed the development of an At-

tribute Veriőer for the Internet of Things [4]. The paper delved into the Attribute

Veriőcation Protocol and the related underlying encryption scheme, with an em-

phasis on the decentralized nature allowed by DABE. My thesis took the proposed

Attribute Veriőcation Protocol as a layout and integrated in it a ticketing system

for proving regulatory compliance. Another addition that was achieved, was the im-

plementation of the proposed protocol, through code, in a full Cloud Environment

setting, demonstrating its feasibility and effectiveness in enhancing privacy.

4.2.2 Implications of the Study

The proposed Attribute Veriőcation Protocol provides a novel solution for privacy-

preserving regulatory compliance in Cloud Environment. The design and implemen-

tation of the suggested protocol aim to enhance the privacy of sensitive data stored

in the cloud, while ensuring adherence to regulatory compliance. Even though the

covered use case was developed around GDPR and its Article 32, the work has shown

the versatility of the proposed solution, which will be able to be adopted for other

regulations and multiple security objectives. In addition to that, the decentralized

nature of the protocol, capable of supporting multiple Issuers, will reduce the power

held by a single Issuer and will contribute to eliminating single points of failure

issues, and related risks linked to centralized settings.

The outcome of this study will have implications in the őeld of privacy, in par-

ticular, privacy-preserving technologies, as the whole solution was motivated by a

strong and targeted privacy-by-design overall goal. The implications will be sub-

stantial also for the őeld of Cloud Regulatory, and Data Protection Regulations, as

4.2 EVALUATION OF THE PROPOSED SYSTEM 65

it was demonstrated a possible way to automate compliance checks, without mining

the conődentiality of the assets belonging to the entity involved in the audit process.

Finally, some implications will concern also the pure Cloud Computing őeld. That’s

because the deployment of a heavy cryptographic solution and the implementation

of the whole solution, i.e. all the actors involved, was implemented fully in the AWS

Cloud Environment, without needing local machine solutions or other applications

different from the cloud.

5 Conclusion and Future Work

In this chapter the conclusions related to the achievements reached during the pur-

sued work, and related limitations, will be discussed. Towards the end of it, future

improvements and research directions will be pointed out.

5.1 Summary and Conclusions

This Master’s Thesis aimed to develop a privacy-preserving Attribute Veriőer for

regulatory compliance in a Cloud Environment, that would enhance automation for

compliance checks, and privacy for the veriőcation of the requirements veriőcation.

The proposed system successfully integrated the Attribute Veriőcation Protocol with

a ticketing system for regulatory compliance checks. The use case of GDPR Article

32 was implemented and tested, showcasing the feasibility of automating compliance

checks while preserving privacy. Moreover, the study demonstrated the protocol’s

potential to be extended to other regulations and security objectives.

The evaluation of the proposed system revealed a successful implementation

through code of the Issuer and Orchestrator, while highlighting some limitations with

the Prover and Veriőer’s Lambda functions. Despite these issues, the overall design

and functionality of the system show promise in achieving the intended privacy-

preserving regulatory compliance.

A comparison with existing solutions indicated that the proposed Attribute Ver-

iőcation Protocol expands on the previous work [22], adding a privacy layer to the

5.2 FUTURE RESEARCH DIRECTIONS 67

compliance check. It also built upon the IoT-oriented Attribute Veriőer presented

in [4], which was translated into code, and fully deployed in Cloud Environment.

The study has implications for privacy, Cloud Regulatory, and Data Protec-

tion Regulations, as well as the őeld of Cloud Computing. By offering a privacy-

preserving solution for regulatory compliance, it contributes to the advancement of

privacy-enhancing technologies, automation of compliance checks, and cloud-based

deployment of cryptographic solutions.

In conclusion, this Master’s thesis demonstrated the feasibility and effectiveness

of a privacy-preserving Attribute Veriőer for regulatory compliance in a Cloud Envi-

ronment, achieved by integrating a ticketing system for attribute compliance checks.

Finally, the proposed model provides a novel solution that enhances both privacy

and automation in regulatory compliance veriőcation.

5.2 Future Research Directions

The őndings and lessons learned along with the development of the artifact (the

overall privacy-preserving Attribute Veriőer) will not stop to the state of the art of

this Master’s Thesis, but broader and more granular contexts will be considered.

Here are some future improvements, and improvements that are already in place,

but were not leveraged, for non-compatibility with the considered use case:

• In terms of Regulatory: the Master’s Thesis considered just the GDPR, but

the same artifact can be tailored to NIST, SOC2, ISO27001, HIPAA, or in

terms of data protection, like in the case of GDPR, also regulations like CCPA

(California Consumer Privacy Act);

• In terms of attribute veriőcation, the Issuer can be tailored to a speciőc security

control or article, like in the considered use case, with Article 32, or issuing

tickets for multiple articles (like in the case of Data Protection Regulations) or

5.2 FUTURE RESEARCH DIRECTIONS 68

security objectives (like in the case of standards, e.g. NIST). With the latter,

the Prover will be able to request proof of compliance (to send to the Attribute

Veriőer) for multiple articles/security objectives, with just a single interaction

with the Issuer;

• In terms of the underlying encryption scheme and its applicability, the At-

tribute Veriőcation Protocol relies on DABE, for supporting multiple Issuers

in cloud environment (in this case: multiple cloud providers). This will make

the DABE protocol increase even more the security of this privacy-preserving

solution, as it will allow the Veriőcation of attributes even in case of partic-

ipation of multiple Issuers (decentralized scenarios), and this will overcome

potential single point of failure issues, and targeted attack scenarios.

References

[1] A. Lewko and B. Waters, žDecentralizing Attribute-Based Encryptionž, in

Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, Tallinn, Estonia, 2011, pp. 568ś588.

[2] S. Goldwasser, S. Micali, and C. Rackoff, žThe knowledge Complexity of Inter-

active Proof-Systemsž, Journal of the ACM (JACM), vol. 35, no. 1, pp. 67ś88,

1988.

[3] A. Sahai and B. Waters, žAttribute-Based Encryption for Fine-Grained Access

Control of Encrypted Dataž, in Proceedings of the 2005 ACM Conference on

Computer and Communications Security, ACM, Alexandria, Virginia, USA,

2005, pp. 89ś98.

[4] M. B. M. Kamel, Y. Yan, P. Ligeti, and C. Reich, žAttribute Veriőer for

Internet of Thingsž, in 2022 32nd International Telecommunication Networks

and Applications Conference (ITNAC), Wellington, New Zealand, 2022, pp. 1ś

3. doi: 10.1109/ITNAC55475.2022.9998348.

[5] A. Sahai, B. Waters, and H. Wee, žAttribute-Based Encryption with Veriőable

Outsourced Decryptionž, in Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, ACM, Scottsdale, Arizona, USA,

2014, pp. 129ś140. doi: 10.1145/2660267.2660296.

https://doi.org/10.1109/ITNAC55475.2022.9998348
https://doi.org/10.1145/2660267.2660296

REFERENCES 70

[6] P. Mell and T. Grance, The NIST Deőnition of Cloud Computing (NIST

Special Publication). National Institute of Standards and Technology, 2011,

vol. 800-145. doi: 10.6028/NIST.SP.800-145.

[7] Palo Alto Networks, Cloud IAM Security: How to Make Sure Your Cloud Data

Stays Safe, https://www.paloaltonetworks.com/blog/2020/02/cloud-

iam-security/, Accessed: 2023-03-11, 2020.

[8] Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the Protection of Natural Persons with Regard to the Process-

ing of Personal Data and on the Free Movement of Such Data, and Repealing

Directive 95/46/EC (General Data Protection Regulation), Accessed: 2023-02-

26, Luxembourg: European Parliament and Council, 2016. [Online]. Available:

https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[9] Joint Task Force Transformation Initiative, žSecurity and Privacy Controls for

Federal Information Systems and Organizationsž, National Institute of Stan-

dards and Technology, Tech. Rep. NIST Special Publication 800-53, Revision

5, 2020, Accessed: 2023-03-15.

[10] S. Goldwasser, S. Micali, and C. Rackoff, žThe knowledge complexity of inter-

active proof-systemsž, Proceedings of the seventeenth annual ACM symposium

on Theory of computing, pp. 291ś304, 1985.

[11] Ethereum. žZero-Knowledge Proofsž. (2021), [Online]. Available: https://

ethereum.org/en/zero-knowledge-proofs/ (visited on 03/17/2022).

[12] C.-P. Schnorr, žEfficient Identiőcation and Signatures for Smart Cardsž, in

Advances in CryptologyÐCRYPTO’91, Springer, 1991, pp. 239ś252.

[13] A. Fiat and A. Shamir, žHow to Prove Yourself: Practical Solutions to Iden-

tiőcation and Signature Problemsž, in Advances in Cryptology Ð CRYPTO

’86, Santa Barbara, California, USA, 1987, pp. 186ś194.

https://doi.org/10.6028/NIST.SP.800-145
https://www.paloaltonetworks.com/blog/2020/02/cloud-iam-security/
https://www.paloaltonetworks.com/blog/2020/02/cloud-iam-security/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://ethereum.org/en/zero-knowledge-proofs/
https://ethereum.org/en/zero-knowledge-proofs/

REFERENCES 71

[14] J. Groth and M. Kohlweiss, žNon-Interactive Zero-Knowledge from (Indented)

Simulation Extractable Subversion-Resistant NIZK Proofsž, in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artiőcial Intelli-

gence and Lecture Notes in Bioinformatics), vol. 9453, Springer Verlag, 2015,

pp. 41ś60. doi: 10.1007/978-3-662-48797-6_3.

[15] E. Ben-Sasson, A. Chiesa, C. Garman, et al., žZero-Knowledge Proofs for

Circuit Evaluationž, in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, 2014, pp. 826ś837.

[16] ConsenSys, Introduction to zk-SNARKs, Accessed: 2023-03-19, 2019. [Online].

Available: https://consensys.net/blog/developers/introduction-to-

zk-snarks/.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters, žAttribute-Based Encryption

for Fine-Grained Access Control of Encrypted Dataž, in Proceedings of the 13th

ACM Conference on Computer and Communications Security, Alexandria,

Virginia, USA, 2006, pp. 89ś98.

[18] D. Boneh, B. Lynn, and H. Shacham, žShort Signatures from the Weil Pairingž,

in Advances in Cryptology Ð ASIACRYPT 2001, Springer, Berlin, Heidelberg,

2001, pp. 514ś532. doi: 10.1007/3-540-45682-1_30.

[19] J. Hur and D.-K. Noh, žAttribute-Based Access Control with Efficient Re-

vocation in Data Outsourcing Systemsž, IEEE Transactions on Parallel and

Distributed Systems, vol. 22, no. 7, pp. 1214ś1221, 2011. doi: 10.1109/TPDS.

2010.183.

[20] Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the Protection of Natural Persons with Regard to the Process-

ing of Personal Data and on the Free Movement of Such Data, and Repealing

Directive 95/46/EC (General Data Protection Regulation), Accessed: 2023-

https://doi.org/10.1007/978-3-662-48797-6_3
https://consensys.net/blog/developers/introduction-to-zk-snarks/
https://consensys.net/blog/developers/introduction-to-zk-snarks/
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1109/TPDS.2010.183
https://doi.org/10.1109/TPDS.2010.183

REFERENCES 72

02-26, Luxembourg: European Parliament and Council, 2016. [Online]. Avail-

able: https://eur-lex.europa.eu/eli/reg/2016/679/oj?uri=celex:

32016R0679#d1e1685-1-1.

[21] M. Morello, Attribute Compliance Verifier, Accessed: 2023-05-15, 2023. [On-

line]. Available: https://github.com/Massimore/attribute-compliance-

verifier.

[22] A. Shareiyat and M. K. Hasan, ”Machine-readable Regulatory and Compliance

in Cloud Computing”, Degree project 30 HE credits, Computer and Systems

Sciences, Spring term, Degree project at the master level, Stockholm Univer-

sity, Department of Computer and Systems Sciences, 2022.

https://eur-lex.europa.eu/eli/reg/2016/679/oj?uri=celex%3A32016R0679&d1e1685-1-1
https://eur-lex.europa.eu/eli/reg/2016/679/oj?uri=celex%3A32016R0679&d1e1685-1-1
https://github.com/Massimore/attribute-compliance-verifier
https://github.com/Massimore/attribute-compliance-verifier

	Introduction
	Background and motivation
	Research Objectives
	Research Questions
	Research Contributions
	Thesis Outlines

	Literature Review
	Cloud Security, Compliance, and Regulations
	Zero-Knowledge Proof (ZKP) Protocols
	Schnorr Protocol
	Fiat-Shamir Heuristic
	zk-SNARK

	Attribute-Based Encryption (ABE)
	Key-Policy Attribute-Based Encryption (KP-ABE)
	Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
	Decentralized Attribute-Based Encryption (DABE)

	Attribute Verification Protocol
	Privacy-Preserving Attribute Verification

	Regulatory Compliance Verification Protocol
	Adaptation of the Attribute Verification Protocol
	Proposed Protocol in Banking System

	Implementation and Analysis
	Implementation of the Proposed Protocol
	Implementation of the Issuer:
	Implementation of the Prover:
	Implementation of the Verifier:
	Implementation of the Orchestrator:

	Evaluation of the Proposed System
	Comparison with Existing Solutions
	Implications of the Study

	Conclusion and Future Work
	 Summary and Conclusions
	Future Research Directions

	References

