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This thesis investigates the forecasting of the equity premium, a critical metric in financial 

economics, representing the difference between the expected return on a stock market portfolio 

and the risk-free rate. Accurate equity premium forecasts are paramount for asset allocation, risk 

management, and financial market regulation. While financial theory posits that stock prices 

should align with future discounted cash flows, empirical forecasting remains challenging. 

In this study, a variety of forecasting methods and variables are assessed for their ability to predict 

the equity premium. The review of recent literature highlights the crucial role of model selection 

and parameterization in predicting the equity premium. The study acknowledges the contribution 

of alternative model specifications, which address model uncertainty and parameter instability. 

These models have demonstrated their potential to yield statistically and economically significant 

forecasts, outperforming the historical average forecast. The thesis corroborates the literature, 

suggesting that forecasting during recessions yields superior results compared to the historical 

average, while forecasting during expansion periods poses a greater challenge. 

This research conducts a meticulous examination of macroeconomic predictors and technical 

indicators, utilized within diverse model specifications, to forecast the equity premium using 

updated data. Established macroeconomic predictors and technical indicators often fail to produce 

statistically or economically significant forecasts during expansion periods. Nevertheless, when 

macroeconomic predictors are employed within multiple-predictor models, investors can realize 

benefits surpassing those of the historical average forecast. During recessions, forecasting is 

comparatively less challenging, with technical indicators delivering the best forecasts both 

statistically and economically. Owing to the inherent stability of technical indicators, their 

incorporation into multiple-predictor models doesn't yield any additional value.  

This study puts forth a strategic recommendation to enhance the economic advantage of equity 

premium forecasts. It suggests that an optimal approach could involve the deployment of 

multiple-predictor models that use macroeconomic predictors during periods of economic 

expansion, and individual technical indicators during recessions. This contribution to the 

discourse on equity premium forecasting advocates for a state-dependent forecasting 

methodology.  

Future research could explore this state-dependent forecasting methodology further. This could 

involve the development and rigorous testing of state-dependent forecasting models, as well as 

the identification of the most suitable predictors for each economic state. While forecasting during 

recessions appears to be easier, it could be beneficial to examine different benchmark models 

depending on the current state of the economy. The widely used benchmark in current literature, 

the historical average model, consistently predicts positive equity premiums, even though these 

are generally negative in reality during recessions. Therefore, it might be prudent to develop a 

benchmark model that also depends on the state of the economy and compare the generated state-

dependent forecasts to this model. This approach could provide a more accurate comparative 

measure for evaluating forecasting strategies during different economic conditions. 

Key words: equity premium forecasting, technical indicators, macroeconomic predictors, 

business cycle  
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Tässä tutkielmassa tarkastellaan osakemarkkinoiden tuotto-odotuksen ja riskittömän korkotuoton 

välistä eroa eli osakepreemion ennustamista. Tarkat osakepreemio -ennusteet ovat keskeisiä 

varainhoidossa, riskienhallinnassa ja rahoitusmarkkinoiden sääntelyssä. Vaikka rahoitusteorian, 

mukaan osakekurssien tulisi vastata tulevaisuuden diskontattuja kassavirtoja, osakepreemion 

empiirinen ennustaminen on haastavaa. 

Tässä tutkimuksessa arvioidaan erilaisten ennustusmenetelmien ja muuttujien kykyä ennustaa 

osakepreemiota. Kirjallisuuskatsaus korostaa mallin valinnan ja parametrisoinnin olevan 

keskeisessä roolissa osakepreemiota ennustettaessa. Tutkimus tunnustaa vaihtoehtoisten 

mallisääntöjen merkityksen, jotka käsittelevät mallin epävarmuutta ja parametrien epävakautta. 

Näiden mallien on osoitettu pystyvän tuottamaan historiallista keskiarvoa tarkempia ennusteita 

niin tilastollisesti kuin taloudellisesti merkitsevästi. Tutkielma tukee kirjallisuutta, jonka mukaan 

taantumissa ennustaminen on suhteessa helpompaa verrattuna historialliseen keskiarvoon, kun 

taas laajentumiskausina ennustaminen on haastavampaa. 

Tutkimuksessa tarkastellaan makrotaloudellisia ennustajia ja teknisiä indikaattoreita, joita 

käytetään sekä yksittäisinä ennustajina että laajemmissa ennustemalleissa, joita käytetään 

osakepreemion ennustamiseen päivitetyllä aineistolla. Vakiintuneet makrotaloudelliset ennustajat 

ja tekniset indikaattorit eivät usein pysty tuottamaan tilastollisesti tai taloudellisesti merkitseviä 

ennusteita talouden nousukausina. Kuitenkin, kun makrotaloudellisia ennustajia käytetään 

laajemmissa ennustemalleissa, sijoittajat voivat saavuttaa taloudellisia etuja verrattaessa 

ennusteiden muodostamiseen historiallisen keskiarvon mukaisesti. Taantumissa ennustaminen on 

helpompaa, ja tekniset indikaattorit tuottavat tarkimmat ennusteet sekä tilastollisesti että 

taloudellisesti. Teknisten indikaattorien luontaisen vakauden vuoksi niiden käyttö laajemmissa 

ennustemalleissa ei tuota lisäarvoa. Erityisesti taantumissa on perusteltua käyttää teknisiä 

indikaattoreita itsenäisinä osakepreemion ennustajina. 

Tutkielman mukaan optimaalinen lähestymistapa osakepreemion ennustamiseen on teknisten 

indikaattorien käyttö taantumissa ja makrotaloudellisten ennustajien käyttö laajemmissa 

ennustemalleissa talouden nousukausina. Tämä kannustaa tarkastelemaan osakepreemion 

ennustamista tilariippuvaisilla ennustemenetelmillä.  

Katsoen eteenpäin, tulevat tutkimukset voisivat tutkia tätä tilasta riippuvaa ennustusmenetelmää 

tarkemmin. Tämä voisi sisältää tilasta riippuvien ennustusmallien kehittämisen ja perusteellisen 

testaamisen, sekä sopivimpien ennustajien tunnistamisen kullekin taloudelliselle tilalle. 

Nykyisessä kirjallisuudessa laajalti käytetty vertailumalli, historiallinen keskiarvo, ennustaa 

jatkuvasti positiivisia osakepreemioita, vaikka todellisuudessa taantumissa osaketuotot, ja 

osakepreemiot ovat negatiivisia. Siksi saattaisi olla mielekästä tarkastella ennusteita eri 

vertailumallilla, joka myös riippuu talouden tilasta. Tämä lähestymistapa voisi tarjota tarkemman 

vertailumittarin ennustestrategioiden arvioimiseksi eri taloudellisissa olosuhteissa. 

Avainsanat: osakepreemion ennustaminen, tekniset indikaattorit, makrotaloudelliset ennustajat, 

suhdannevaihtelu 
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1 Introduction 

The equity premium, the difference between the expected return on a stock market 

portfolio and the risk-free rate, is an essential measure for both investors and financial 

economists. Accurate forecasts of the equity premium have significant implications for 

asset allocation, risk management, and financial market regulation. According to 

theoretical asset pricing and financial economics, stock prices should match their future 

discounted cash flows. However, forecasting equity premium is not so black and white, 

as forecasting discounted future cash flows (dividends) is not so simple. Goyal and Welch 

(2008) found that forecasting equity premium with dividend yields, as well as with many 

other macroeconomic or financial variables, works very poorly. The present values of 

discounted cash flows depend on both future dividends and discount rates. Indeed, the 

empirical literature has also tried to answer the question which, dividends or discount 

rates, has a greater impact on the variation of the equity premium? (see, e.g. Doan & Lan 

2022). 

In their famous article "A Comprehensive Look at the Empirical Performance of Equity 

Premium Prediction" Goyal and Welch (2008) argue that equity premium has not been 

predictable and that for a large number of variables, no agent could have obtained a 

prediction advantage over the historical average. However, Pesaran and Timmermann 

(1995) and Lamoureux and Zhou (2015) argue that the predictability of the equity 

premium is not necessarily a matter of choosing the right variables, but a problem of 

choosing the right model and its parametrization. Indeed, recent studies have shown that 

alternative model specifications, that address model uncertainty and parameter instability, 

can yield statistically and economically significant forecasts that are more accurate than 

the naive forecast (historical average) (see, e.g., Rapach & Zhou, 2013). These different 

model specifications (strategies) include, for example, economically motivated 

restrictions implemented on either predictors or resulting equity premium forecasts 

(Campbell & Thompson, 2008; Pettenuzzo et al., 2014; Pan et al., 2020), forecast 

combinations (Rapach et al., 2010), diffusion indices (Ludvigson & Ng, 2007; Kelly & 

Pruitt, 2013), technical indicators (Neely et al., 2014) and regime shifts (Guidolin & 

Timmermann, 2007; Henkel et al., 2011; Dangl & Halling, 2012) and machine learning 

(Gu et al. 2020).  
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As the number of suggested models and predictors grows, the need for a comprehensive 

comparison increases. In finance literature, it is often found that forecasting during a 

recession appears to be much easier than during an expansion (see, for example, Pan et 

al., 2020). Neely et al. (2014) introduce technical indicators as predictors alongside 

macroeconomic predictors. In this study, I examine how macroeconomic predictors and 

technical indicators with different model specifications can forecast the equity premium. 

In summary, I find that different sets of predictors have varying predictive abilities in 

different economic states. Macroeconomic predictors used in models that consider model 

uncertainty and parameter instability can generate added value for investors during 

expansions. Conversely, technical indicators can create economic benefits during 

recessions. 

In Section 2, I examine linear regression, principal components analysis and model 

selection, that are essential for understanding statistical forecasting methods used in 

equity premium forecasts. In Section 3, I explore conventional models and theory on 

portfolio management, which are crucial in equity premium forecasting literature. In 

Section 4, I delve into technical analysis and provide economic justification for its use. 

In Section 5, I introduce the conventional data and technical indicators used in equity 

premium forecasting and review post-Goyal and Welch (2008) literature on equity 

premium forecasting. In Section 6, I present methods for forecasting evaluation and the 

forecasting models used in my analysis. In Section 7, I delve into the out-of-sample 

forecast results for equity premium. Utilizing updated data, I assess a variety of 

forecasting methods and variables. These results are then evaluated in terms of their 

forecasting ability. Both economic and statistical significance serve as key criteria in this 

comparative analysis. In Section 8, I present conclusions and motivation for further 

research. 
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2 On Forecasting Models and Model Selection 

In this section, I introduce the basics of linear regression, principal component analysis, 

and model selection for the future purposes of this thesis. Section 2.1 is based on 

Friedman et al. (2009, 66, 79–80, 534–536) and Greene (2012, 52–56), while section 2.2 

is based on Efron et al. (2004) and Konishi and Kitagawa (2008, 211–239). 

2.1 Linear Regression and Principal Components 

In financial econometrics, equity premium forecasts are typically made using linear 

regressions and principal component regressions (Goyal & Welch, 2008; Campbell & 

Thompson, 2008; Neely et al., 2014; Pan et al., 2020). Therefore, I will provide a more 

detailed explanation of the linear regression model and principal component regression.  

Linear Regression 

Linear regression is a statistical method that models the relationship between a dependent 

variable and one or more independent variables. The objective of a linear regression is to 

identify the line of best fit that accurately represents the observed data, enabling 

predictions to be made about the dependent variable based on the independent variables. 

Formally, let 𝑌 be the dependent variable and 𝑋1, 𝑋2, … , 𝑋𝑝 be the independent predictive 

variables, such as technical indicators and macroeconomic predictors. The linear 

regression model is expressed as: 

 𝑌 = β0 + β1𝑋1 + β2𝑋2 + ⋯ + β𝑝𝑋𝑝 + 𝜀, (1) 

where β0 represents the estimated value of the dependent variable when all independent 

variables are equal to zero. Coefficients β𝑖, 𝑖 = 1, . . , 𝑝, represent the estimated change in 

the dependent variable for a unit change in 𝑋𝑖, holding all other independent variables 

constant. 

The coefficients are estimated by minimizing the sum of squared deviations between the 

observed data and the line of best fit. Once the coefficients have been estimated, the linear 

regression model can be employed to make predictions about Y based on the values of 

the independent variables.  
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Principal Components 

PCA is a linear dimensionality reduction technique that converts the original data into a 

new set of uncorrelated variables, known as principal components (PCs), which retain as 

much of the original information as feasible. The first PC captures the maximum variance 

in the data, followed by the second PC, and so forth. The PCs enable data visualization 

in a lower-dimensional space, which is beneficial for exploratory data analysis, 

visualization, and pattern recognition. Mathematically, PCA is founded on the singular 

value decomposition (SVD) of the data's covariance matrix. The SVD of a data matrix X 

is expressed as X=UΣV', where U and V are orthogonal matrices, and Σ is a diagonal 

matrix of singular values. The columns of U, the left singular vectors, signify the new 

principal component axes in the transformed space, while the singular values in Σ 

represent the variance explained by each principal component. 

As an unsupervised learning technique in machine learning, PCA does not utilize prior 

information about the relationships between the variables in the data. Instead, it leverages 

the covariance matrix structure to identify the most significant directions in the data. PCA 

can also be employed to reduce data noise by discarding PCs with smaller singular values. 

PCR, a variant of linear regression, employs principal components as predictors rather 

than the original variables. The underlying concept of PCR is to use the first few PCs, 

which capture the majority of the data variability, as predictors in a linear regression 

model. This reduces the number of predictors and the risk of overfitting1. In PCR, the 

original data matrix X is initially transformed into a new matrix Z by projecting it onto 

the principal component axes. The transformed data Z is subsequently used as input for a 

linear regression model to predict a response variable Y. The regression coefficients can 

be estimated by minimizing the residual sum of squares. PCR can be viewed as a fusion 

of PCA and linear regression, with PCA reducing the data dimensionality and linear 

regression enabling predictions. 

PCA and PCR are powerful tools for data analysis and modelling. By reducing the 

dimensionality of the data and preserving the most important information, PCA and PCR 

 

1 An overfitted model exhibits high accuracy on the training dataset but performs poorly on new, unseen 

data due to its inability to generalize from the training data to the broader population. This is because it 

captures not only the underlying patterns but also the noise or random fluctuations in the training data. 
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can make it easier to visualize and analyze complex datasets, as well as to build predictive 

models.  

2.2 Model Selection  

In a forecasting situation, the predictor space is often high dimensional, and choosing too 

many predictors can lead to overfitting, which may result in inaccurate forecasts. 

Therefore, econometricians need to employ various model selection methods to assess 

the suitability of different variables in the forecasting context. Here, model selection 

refers to the selection of variables instead of choosing the functional form of the model. 

In the case of a linear model, typical model selection algorithms include forward and 

backward stepwise, best subset selection, and machine learning-based model selection 

like LASSO (Least Absolute Shrinkage Selection Operator). In the case of all these model 

selection methods, except for LASSO, the suitability of predictors should be examined 

using various criteria, such as the coefficient of determination (R-squared) and adjusted 

R-squared, as well as information criteria such as the Bayesian Information Criterion 

(BIC) and Akaike Information Criterion (AIC). These criteria are suitable for evaluating 

nested2 models, such as the selection of predictors in linear or time series models.  

Following, for example, Cremers (2002), the Bayesian Information Criterion (BIC) is 

used for predictor selection in predictive linear regression in this thesis. Thus, we take a 

closer look at the BIC. 

Bayesian information criterion 

Bayesian Information Criterion (BIC), also known as Schwarz information criterion 

(SIC), is a widely used statistical criterion for model selection, particularly in the context 

of model comparison and choosing the best model among a set of candidate models. BIC 

is derived from the Bayesian perspective and provides a trade-off between model fit and 

model complexity. It is especially useful in situations where the sample size is large, as it 

 

2 Nested models refer to a set of models where one model is a simpler or restricted version of another. In 

other words, the simpler model can be derived from the more complex one by imposing constraints on its 

parameters. Nested models share the same basic structure and a common set of predictors, but some 

predictors are omitted or their effects are constrained in the simpler model. On the other hand, non-nested 

models are those that do not share a common structure or set of predictors and cannot be derived from one 

another by imposing constraints on their parameters. 
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tends to penalize more complex models more heavily compared to other criteria, such as 

the Akaike Information Criterion (AIC). 

The BIC is defined as follows: 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔(𝐿) + 𝑝 𝑙𝑜𝑔(𝑛),           (2) 

where L represents the maximized likelihood of the model, p denotes the number of 

estimated parameters in the model, and n is the sample size. The first term, −2 log(L), 

measures the model fit, while the second term, p log(𝑛), is a penalty for model 

complexity. 

The intuition behind the BIC is to find a balance between the goodness of fit and the 

simplicity of the model. A model with more parameters may fit the data better, but it 

might also be more complex and harder to interpret. Moreover, complex models may 

overfit the data, capturing noise instead of the underlying structure, which could lead to 

poor generalization and prediction performance on new data. 

When comparing multiple-predictor models, the model with the lowest BIC value is 

considered the best model. This is because a lower BIC value indicates a better balance 

between model fit and complexity. It is important to note that BIC is an asymptotic 

approximation and may not perform well in small sample sizes.  
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3 Conventional Models and Theory on Portfolio Management 

In this section, I introduce the theory related to equity premium forecasts, including 

market, returns, and portfolio management perspectives. Section 3.1 is based on Franke 

et al. (2015, 54-55) and Welch (2017, 247-249, 277-312), Section 3.2 is based on 

Cochrane (2005, 143-173) and Welch (2017, 213-238), Section 3.3 is based on Welch 

(2017, 37-53), Section 3.4 is based on Markowitz (1952) and Cochrane (2005, 77-119), 

and Section 3.5 is based on Welch (2017, 281-287). 

3.1 Efficient Market Hypothesis 

According to Eugene Fama (1970), the ideal market would be one in which prices 

accurately signal all possible information available. Such a market is called an efficient 

market. The conditions of an efficient market can be divided into three conditions: 

1. A weak condition where stock prices reflect all historical information such as 

historical prices and historical trading volumes. According to Fama (1970), a 

stock market does not have a memory and thus stock market returns are 

independently distributed. Given this case, no investor could benefit from 

technical analysis.  

2. Semi-strong condition, where the information set reflecting current prices is 

extended with other publicly available data, such as macro data on stocks, stock 

splits, etc. In this case, fundamental analysis is unable to achieve excess returns. 

3. Strong condition, which looks at whether some individual groups or institutions 

have potential price influences. Monopolistic information that is not publicly 

available to others. In this case, even insider information cannot achieve excess 

returns, and this information is also reflected in stock prices. 

Consistent market conditions for market efficiency are (i) there are no transaction costs, 

(ii) all information is freely available to all market participants, (ii) all market participants 

agree on the effect of the information for each item. In practice, however, there is no 

market in which all these are perfectly realized. Fortunately, according to Fama, these 

conditions are not necessary.  
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In the early literature Fama (1970) conducts empirical tests for weak, semi-strong and 

strong conditions, which are supported by the empirical findings of several other 

researchers. Fama (1965) finds consistently positive autocorrelation between day-to-day 

stock prices, but still very close to zero. Indeed, Fama finds that day-to-day stock prices 

can be assumed to be independently distributed. In other words, in real life stock returns 

can in fact be assumed to follow a random-walk pattern. Cootner (1964) also finds a very 

weak, in this case negative, correlation in weekly stock returns. However, these 

correlations are also so weak that, rather than correlated stock returns, their analysis also 

supports the view that stock returns are not correlated with these lags.  

The fact that stock returns are not autocorrelated indeed supports the assumption that 

stock prices follow a random walk process. Clearly, stock prices consist of their historical 

returns. Consider stock returns, 𝑅, as identically, and as the lack of autocorrelation 

advocates, independently distributed random variables. In this case, the stock price at time 

t can be represented as the sum of historical returns. This can be written as 

 𝑃𝑡 = ∑ 𝑅𝑗
𝑡
𝑗=0 , (3) 

where 𝑃𝑡 is price at time 𝑡 and 𝑅𝑗 is the stock return at time 𝑗, 𝑗 = (0, … , 𝑡). Alternatively, 

stock price can be formulated as 

 𝑃𝑡 = 𝑃𝑡−1 + 𝑅𝑡, (4) 

where stock price at time 𝑡 is just the previous price plus the return on from period 𝑡 − 1 

to 𝑡. Indeed, this is the exact form of Random Walk (see Appendix 1. Basic Concepts).  

The Efficient Market Hypothesis is a crucial theory when examining equity premium 

forecasts. If the conditions of the EMH are met, neither macroeconomic predictors nor 

technical indicators would be capable of predicting the equity premium at all. In Section 

4, I explore the critiques of the efficient market hypothesis and provide arguments in favor 

of technical analysis.  

3.2 The Capital Asset Pricing Model 

The Capital Asset Pricing Model (CAPM) is a widely used financial theory that helps 

investors understand the relationship between risk and expected return. The CAPM model 

does not have a single clear inventor, but the scientific discoveries of Sharpe (1964), John 



 
 

17 

V. Lintner (1965), and Mossin (1966) are often mentioned as the greatest contributors. 

Markowitz's (1952) earlier scientific breakthrough in the field of portfolio theory also 

contributed to the development of the CAPM theory. The theory has become a 

cornerstone of modern financial economics, providing a framework for pricing and 

managing financial assets. 

At its core, the CAPM states that the expected return on an asset is a function of its beta, 

or the degree to which it is correlated with the overall market, and the market equity 

premium, or the excess return required by investors for bearing market risk. Specifically, 

the expected return on an asset is equal to the risk-free rate plus the product of its beta 

and the market risk premium. 

According to the CAPM, the expected return on an asset can be calculated by adding the 

risk-free rate to the product of the asset's beta and the expected market risk premium. The 

risk-free rate is the return an investor expects to receive on an investment that is 

considered risk-free, such as a U.S. Treasury bond. Beta measures the volatility of the 

asset relative to the overall market, with a beta of 1 indicating that the asset moves in 

tandem with the market, while a beta greater than 1 suggests that the asset is more volatile 

than the market. Finally, the market risk premium is the additional return investors expect 

to receive for holding a risky asset compared to a risk-free asset. 

The formula for calculating the expected return on an asset using the CAPM is as follows: 

𝑟𝑎 = 𝑟𝑓 + β𝑎(𝑟𝑚 − 𝑟𝑓),        (5) 

where 𝑟𝑓 is the risk-free rate, β𝑎  is the beta of asset 𝑎,   𝑟𝑚 is the expected market return 

and  𝑟𝑚 − 𝑟𝑓 is the equity premium. 

The CAPM is widely used in finance to estimate the expected return on an asset or 

portfolio. For instance, an investor could use the CAPM to estimate the expected return 

on a stock by calculating its beta and the market risk premium. This information could 

then be used to make investment decisions and to build diversified portfolios. 

While the CAPM has its limitations, it remains an important tool for investors and 

financial economists. For instance, critics have noted that the CAPM relies on several 

assumptions that may not hold in the real world, such as perfect information and rational 
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investor behaviour. Additionally, the CAPM assumes that all investors have the same 

expectations and that markets are efficient, which may not be true in practice. 

Overall, the CAPM provides a useful framework for understanding the relationship 

between risk and expected return of an asset and can help investors make informed 

investment decisions.  

3.3 Dividend Discount Model 

The Dividend Discount Model (DDM) is a theoretical model used to value stocks based 

on the future stream of dividends that they are expected to pay. The DDM assumes that 

the value of a stock is equal to the present value of its future dividends. For that reason, 

dividends are often suggested as a viable equity premium predictor. 

Under the DDM, the value of a stock can be calculated as 

 P= (𝐷1/(1 + 𝑟)) + (𝐷2/(1 + 𝑟)2) + ⋯ + (𝐷𝑛/(1 + 𝑟)𝑛),   (6) 

where P is the value of the stock, 𝐷1, 𝐷2, … , 𝐷𝑛 are the dividends expected to be paid in 

each of the next 𝑛 periods and 𝑟 is the discount rate, which represents the opportunity 

cost of investing in the stock. 

The DDM is based on the idea that investors value stocks based on the future stream of 

dividends that they expect to receive. The model assumes that the dividends will grow at 

a constant rate over time and that the discount rate used to value the dividends will remain 

constant. 

One of the main benefits of the DDM is that it provides a straightforward way to value 

stocks based on the expected future stream of dividends. This can be useful for investors 

who are focused on income from dividends, as well as for investors who are considering 

the sustainability of a company's dividend payments over the long term.  

3.4 Modern Portfolio Theory 

Modern Portfolio Theory is a framework for constructing portfolios that seeks to 

maximize expected return for a given level of risk. It was developed by Harry Markowitz 

in 1952 and is considered a cornerstone of modern finance. 
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The theory states that investors should not simply invest in individual assets, but instead 

should create a well-diversified portfolio of assets. By combining different assets with 

different risk and return characteristics, an investor can reduce the overall risk of their 

portfolio while still achieving a higher expected return. 

Markowitz proposed a mean-variance optimization model to determine the optimal 

portfolio, where the expected return is the mean of the portfolio's return distribution, and 

the risk is measured by the standard deviation (i.e., the volatility) of the portfolio's returns. 

The optimization process involves finding the weights for each asset in the portfolio that 

minimize the risk for a given level of expected return or maximize the expected return for 

a given level of risk.  

The mean-variance optimization problem can be formalized as follows: 

Maximize 𝐸(𝑅𝑝) = μ𝑝
’ 𝑤          (7) 

subject to     {

𝑤′𝛴𝑤 ≤ 𝜎𝑝
2

∑ 𝑤𝑖 = 1
𝑤𝑖 ≥ 0

,          (8) 

where 𝑤 𝑖𝑠 𝑎 column vector of portfolio weights, μ𝑝 𝑖𝑠 𝑎 column vector of expected 

returns for each asset in the portfolio Σ 𝑖𝑠 covariance matrix of returns and σ𝑝
2  total 

portfolio variance. We can use the Lagrange method to solve this problem by introducing 

a Lagrange multiplier λ and forming the Lagrangian: 

 𝐿(𝑤, λ) = μ𝑝
’ 𝑤 − 𝜆(𝑤 ’Σw − σ𝑝

2). (9) 

The solution is found by setting the gradient of the Lagrangian with respect to w and λ to 

zero: 

         {
𝛻𝐿(𝑤, 𝜆) = 𝜇𝑝 − 2𝜆𝛴𝑤 = 0,

𝑤′Σ𝑤 − σ𝑝
2 = 0.

       (10) 

Solving for 𝑤 and 𝜆, we get: 

 𝑤 = (1/2λ)Σ-1μ𝑝.           (11) 

Substituting this back into the second equation, we can solve for λ: 

 𝜆 = (μ𝑝’Σ−1μ𝑝)/(2σ𝑝
2).          (12) 
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The optimal portfolio weights are then given by: 

 𝑤 = (1/2λ)Σ-1μ𝑝 = (1/2σ𝑝
2)(Σ-1μ𝑝)/(μ𝑝’Σ−1μ𝑝). (13) 

Modern portfolio theory is implemented to equity premium forecasts when examining 

mean-variance investor who allocates their wealth according to optimal portfolio weights, 

constructed by implementing modern portfolio theory. Portfolio weights are conducted 

using the equity premium forecast. 

3.5 Certainty Equivalent Return 

Certainty equivalent return (CER) is a concept used in finance to represent the minimum 

return an investor would require from an investment to be indifferent between accepting 

the uncertain returns of the investment and the guaranteed return of an alternative 

investment. In other words, the CER represents the minimum return an investor would 

require to be compensated for the uncertainty associated with the investment.  

The CER is based on the idea that investors are risk-averse and prefer certainty over 

uncertainty. For instance, an investor may prefer a guaranteed return of 5% to the 

uncertain returns of a stock with an expected return of 10% and a standard deviation of 

20%. In this case, the CER of the stock is 5%. The CER can be thought of as the investor's 

reservation price for the investment below which the investment is not considered 

attractive. By determining the CER for each investment, an investor can make informed 

decisions about the trade-off between expected returns and risk. For instance, if the CER 

of a stock is higher than its expected return, the stock may not be considered attractive 

due to the high level of uncertainty associated with its returns. 

Certainty equivalent return provides a useful tool for analyzing the trade-off between 

expected returns and risk in investments. The certainty equivalent return (CER) can be 

mathematically expressed as follows: 

 𝐶𝐸𝑅 = 𝐸(𝑅) −
1

2
𝛾σ2(𝑅), (14) 

where 𝐸(𝑅) is the expected return of investment on portfolio, 𝜎2(𝑅), is the variance of 

the returns, and 𝛾 is the risk aversion coefficient of the investor. The risk aversion 

coefficient is a measure of the investor's preference for certainty over uncertainty and 

represents the rate at which the investor is willing to trade-off expected return for reduced 
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risk. If the investor is more risk-averse, the risk premium will be larger, resulting in a 

lower CER.  

In the financial econometrics literature, CERs are used to determine the economic benefits 

(economic significance) produced by forecasting models. I present literature that 

examines both the economic and statistical predictability. Assuming an investor can 

invest in two different assets, risk-free interest rate or stock market, the investor uses their 

forecast to determine mean-variance sense optimal portfolio weights, from which the 

CER is calculated when the next period's returns are realized. These CERs are typically 

compared to a CER calculated using only the historical average as the forecasting model. 

(See e.g. Campbell & Thompson, 2008; Ferreira & Santa-Clara, 2011; Neely et al., 2014; 

Pan et al., 2020.) 

by adding the risk-free rate to t  
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4 Technical Analysis 

In this section I introduce criticism on the EMH and arguments in favour of technical 

analysis to motivate the use of technical indicator. Section 4.1 is based on Malkiel (2003), 

and Welch (2017, 353-354). 

4.1 Criticism on Efficient Market Hypothesis 

If the efficient market hypothesis is accepted, it is impossible to consistently achieve 

returns that are higher than the market average by using information that is publicly 

available. In such a situation, future stock returns would be impossible to predict. 

However, despite its widespread acceptance, the EMH has been subject to criticism and 

there is a growing body of evidence that suggests that financial markets may not be as 

efficient as the theory suggests.  

One of the main criticisms of the EMH is that it assumes that all market participants have 

access to the same information and that they all react to it in the same way. In reality, 

information is not equally distributed and there are often significant barriers to entry that 

prevent some market participants from accessing certain types of information. 

Furthermore, even when market participants have access to the same information, they 

may interpret it differently and react to it differently. This means that prices may not 

always reflect all available information, and that there may be opportunities for some 

market participants to consistently achieve returns that are higher than the market average. 

Another criticism of the EMH is that it assumes that financial markets are rational. 

However, market participants are often influenced by a variety of psychological and 

emotional factors that can lead to irrational behaviour. For example, market participants 

may overreact to news events or be overly influenced by short-term events and ignore 

long-term trends. This can lead to price bubbles and market crashes, which would not 

occur in an efficient market. 

The EMH assumes that financial markets are rational and therefore consists of only 

rational investors. In reality, market participants are not all rational but are often 

influenced by a variety of psychological and emotional factors that can lead to irrational 

behaviour. For example, market participants can overreact news or can put more weight 

on short-term events and ignore long-term trends.  
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EMH states that all market participants have access to the same information. In reality, 

some market participants have access to non-public information and can use it to their 

advantage. In this case, although expected with efficient markets, prices do not fully 

reflect all available information. In addition, this can result in some market participants 

consistently achieving higher returns than the average market returns, which would not 

be possible, if the markets were efficient.  

4.2 Arguments in Favour of Technical Analysis 

There are essentially four different types of theoretical models that support technical 

analysis, which I will outline below. 

First type of theoretical model takes into account differences in the time it takes for 

investors to receive information. Treynor and Ferguson (1985) argue that technical 

analysis can be useful in determining whether information has been fully incorporated 

into equity prices under this friction, while Brown and Jennings (1989) demonstrate that 

past prices can help investors make better inferences about price signals. Additionally, 

Grundy and McNichols (1989) and Blume et al. (1994) show that trading volume can 

provide information beyond prices. 

The next type of model proposes different responses to information by heterogeneous 

investors. Cespa and Vives (2012) show that asset prices can deviate from their 

fundamental values if there is uncertainty in asset residual payoff and/or persistence in 

liquidity trading. In such a setting, rational long-term investors follow trends. In the real 

world, different responses to information are more likely during recessions, when 

households experiencing job losses engage in consumption-smoothing asset sales and 

some investors liquidate margined assets. These factors help explain why technical 

indicators display enhanced predictive ability during recessions. 

The third type of model considers underreaction and overreaction to information. Hong 

and Stein (1999) explain that at the start of a trend, investors underreact to news due to 

behavioural biases; as the market rises, they subsequently overreact, leading to even 

higher prices. Similarly, positive feedback traders - who buy (sell) after asset prices rise 

(fall) - can create price trends that technical indicators detect. Soros (2015) argues that 

positive feedback can alter firm fundamentals, justifying to some extent the price trends. 
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Edmans et al. (2015) shows that such feedback trading can occur in a rational model of 

investors with private information. 

Finally, models of investor sentiment shed light on the efficacy of technical analysis. 

Researchers have analyzed how investor sentiment can drive asset prices away from their 

fundamental values since Keynes (1936). De Long et al. (1990) show that in the presence 

of limits to arbitrage, noise traders with irrational sentiment can cause prices to deviate 

from their fundamentals, even when informed traders recognize the mispricing. Baker 

and Wurgler (2006, 2007) find that measures of investor sentiment help to explain the 

cross-section of U.S. equity returns. Monthly sentiment-changes index from Baker and 

Wurgler (2007) is significantly and positively contemporaneously correlated with the 

realized equity risk premium, and that technical indicators significantly predict the 

sentiment-changes index, while macroeconomic predictors do not. Therefore, the 

differential information that technical indicators provide for predicting the equity risk 

premium appears to be related to their ability to anticipate changes in investor sentiment. 

In summary, theoretical models based on information frictions help to explain the 

predictive value of technical indicators. Empirically, Moskowitz et al. (2012) recently 

found that pervasive price trends exist across commonly traded equity index, currency, 

commodity, and bond futures. Since the stock market is not a pure random walk and 

exhibits periodic trends, technical indicators should prove informative because they are 

primarily designed to detect trends. 
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5 Data and Literature Review 

This paper examines the predictive power of macroeconomic predictors and technical 

indicators on the equity premium. Goyal and Welch (2008) argued that macroeconomic 

predictors cannot be used to produce forecasts that are accurate enough for anyone to 

benefit from them. These variables were widely accepted macroeconomic predictors as 

predictors of the equity premium already before the publication of Goyal and Welch 

(2008), after which the debate on the predictive ability of these variables has remained a 

topic of interest for financial econometricians. In this section, I delve into an extensive 

review of the existing literature and data pertinent to this topic, focusing on how these 

variables have been integrated into diverse econometric models. This examination 

encompasses the introduction of macroeconomic predictors delineated by Goyal and 

Welch (2008), and the technical indicators advocated by Neely et al. (2014), 

demonstrating their significant contributions to the field. 

5.1 Data 

Goyal and Welch (2008) use the following variables as predictors, the data frame of which 

Amit Goyal is still updating to make it more accessible and available to the public (Goyal, 

n.d.). I also use their data in my empirical phase. 

The dependent variable, equity premium, is the stock return minus the risk-free rate. The 

equity premium can be seen as compensation for the risk an investor takes on over a risk-

free investment, such as a government bond or another risk-free interest rate. 

Stock Return: Goyal and Welch (2008) use continuously compounded S&P 500 month-

end returns from the Center for Research in Security Press (CRSP) as their stock returns. 

This return series begins in 1927 and in their original article, Goyal and Welch (2008) 

end it in 2005. Their updated dataset extends all the way to the end of 2021. In their 

article, they also use wider frequencies such as quarterly and yearly, in addition to 

monthly. However, in my study, I focus mainly on monthly forecasts as they are the most 

meaningful from an investor's perspective. Therefore, the data at the center of my 

attention should also be monthly. 
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Risk-free rate: As the risk-free rate, Goyal and Welch (2008) use the Treasury-bill rate. 

Treasury-bill rates are highly liquid investments and are backed by the U.S. government, 

making them practically considered risk-free. 

Figure 1 shows the monthly equity premiums of the S&P 500 stock market from 

January 1951 to December 2021. 

 

Figure 1. The monthly equity premium for the S&P 500 stock market index from January 1951 to 
December 2021. 

 

In Figure 1, it can be observed that the equity premium has a very noisy nature during the 

observation period. The equity premium appears to fluctuate randomly around its 

historical mean, which is slightly above zero. In Figure 2, the risk-free interest rates (US 

Treasury Bill rates) are presented from January 1951 to December 2021. 
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Figure 2. Risk-free interest rate from January 1951 to December 2021. The grey shades present 
the NBER's recession periods. 

 

In Figure 2, grey shades represent the NBER's recession periods. Figure 2 shows that the 

risk-free interest rate has had an increasing trend up to the 1980s, after which the trend 

has been largely decreasing. It is also observed that during recession periods, interest rates 

have mostly dropped sharply, which is entirely reasonable as the demand for money 

decreases in recessionary conditions. In Figure 3, the cumulative S&P 500 equity 

premiums are presented from January 1951 to December 2021 
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Figure 3. Cumulative S&P 500 equity premium displayed from January 1951 to December 2021. 
The grey shades present NBER's recession periods. 

The grey shades in Figure 3 presents the NBER's recession periods. Now, the graph 

clearly shows the historically rising trend of the equity premium, although the 1970 

energy crisis appears as a period of lower equity premiums. The decade of high stock 

returns after the financial crisis is also clearly visible. From the picture, it can be seen that 

equity premiums have been mainly negative during recession periods. 

5.1.1 Technical indicators 

The technical indicators used in this study correspond to the popular trend-following 

technical indicators employed by Neely et al. (2014). A total of 14 technical indicators 

are constructed, which are then combined and used with various forecasting models to 

predict the equity premium. 

The first technical indicator is the Moving-Average (MA) indicator, which implies a buy 

(𝑆𝑖,𝑡 = 1) or sell (𝑆𝑖,𝑡 = 0) signal when comparing the longer and shorter-term moving 

averages. Thus, 
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 𝑆𝑖,𝑡 = {
1, if𝑀𝐴𝑠,𝑡 𝑀3 𝐴𝑙,𝑡,

0,   if  𝑀𝐴𝑠,𝑡  <  𝑀𝐴𝑙,𝑡,
       (15) 

where 

𝑀𝐴𝑗,𝑡 =
1

𝑗
∑ 𝑃𝑡−𝑖

𝑗−1
𝑖=0 ,          (16) 

where 𝑗 = 𝑠, 𝑙, and 𝑃𝑡 is the level of the S&P 500 index, and 𝑙 is the length of long moving-

average window and 𝑠 is the length of short moving-average window. Hence, if the short 

moving average is higher than the long moving-average, the 𝑴𝑨(𝒔, 𝒍) indicator takes on 

a value of 1. Correspondingly, if the short moving-average is lower than the long moving 

average, the indicator takes on a value of 0. In this study, I examine three short periods 

(s=1, s=2, s=3) and two long periods (l=12, l=9). These choices correspond to the 

selections made by Neely et al. (2014). Thus, six binary variables predicting the equity 

premium are generated from the moving-average indicators. 

Momentum is a well-studied phenomenon in asset pricing, and Neely et al. (2014) specify 

it such that if the stock market index (S&P 500) is higher at time t than at time t-m, the 

momentum indicator takes a value of 1, indicating relatively high expected return and a 

buy signal. Otherwise, it takes a value of 0, which, like the moving-average case, indicates 

a sell signal. Mathematically expressed  

𝑆𝑖,𝑡 = {
1,   if  𝑃𝑡 ≥  𝑃𝑡−𝑚,
0,   if  𝑃𝑡  <  𝑃𝑡−𝑚.

      (17) 

Momentum indicator is denoted by MOM(m), where m is the length of the “look-back”. 

Following Neely et al. (2014) I consider three and four quarter look-backs, i.e. MOM(9) 

and MOM(12). 

The final indicator takes into account trading volume along with previous prices. 

Following Neely et al. (2014) again, I define 

𝑂𝐵𝑉𝑡 = ∑ 𝑉𝑂𝐿𝑖𝐷𝑖
𝑡
𝑖=1 ,       (18) 

where 𝑉𝑂𝐿𝑖 is the trading volume3 on period 𝑖 and 𝐷𝑖 is defined as follows: 

 

3 Trading volume data up until December 2011 has been downloaded from the website of David E. Rapach 

(Rapach, 2014). For the period from January 2012 onwards, the data has been gathered from Yahoo Finance 

(Yahoo Finance, n.d.). 



 30 
 

 

𝐷𝑖 = {
1,      if   𝑃𝑖 − 𝑃𝑖−1  ≥   0,
−1, if  𝑃𝑖 − 𝑃𝑖−1  <  0.

     (19) 

To form the trading signal, following Neely et al (2014), I compute the moving-average 

of 𝑂𝐵𝑉𝑡 as follows 

𝑀𝐴𝑗,𝑡
𝑂𝐵𝑉 =

1

𝑗
∑ 𝑂𝐵𝑉𝑡−𝑖

𝑗−1
𝑖=0 .       (20) 

Now the trading signals for volume-based indicator, denoted by VOL(s,l) is constructed 

as 

𝑆𝑖,𝑡
𝑂𝐵𝑉 = {

1, if𝑀𝐴𝑠,𝑡
𝑂𝐵𝑉 𝑀𝐴𝑙,𝑡

𝑂𝐵𝑉3 ,

0,   if  𝑀𝐴𝑠,𝑡
𝑂𝐵𝑉  <  𝑀𝐴𝑙,𝑡

𝑂𝐵𝑉.
  (21) 

Consistent with the moving-average indicator, I examine the indicator with the choices 

s=1, s=2, s=3 and l=12, l=9. 

5.1.2 Macroeconomic predictors 

I introduce all the macroeconomic predictors employed by Goyal and Welch (2008), 

which encompass both stock market-based and macroeconomic-based metrics. 

In their study, as well as in other literature examined in this thesis, dividends are 

composed of the 12-month trailing sum of S&P 500 index dividends. Data prior to 1987 

is sourced from Robert Shiller's website, while data from 1988 to 2005 is sourced from 

S&P Corporation. Two commonly used dividend derivatives are employed in the studies: 

The Dividend Price Ratio (DP), which is the difference between the natural logarithm of 

dividends and the natural logarithm of prices, and the Dividend Yield (DY), which is the 

difference between the logarithm of dividends and the logarithm of lagged prices. (See, 

e.g., Ball, 1978; Campbell & Shiller, 1988b; Campbell & Viceira, 2002; Campbell & 

Yogo, 2006; Fama & French, 1988, Cochrane, 1997; Hodrick, 1992; Lewellen, 2004; 

Menzly, Santos & Veronesi, 2004; Rozeff, 1984; Shiller, 1984.) 

Earnings are the twelve-month trailing sum of S&P 500 index earnings. Similarly, data 

prior to 1987 is sourced from Robert Shiller's website, while earnings from 1988 onwards 

are Goyal and Welch's own estimates based on quarterly earnings interpolation. The used 

variables are the Earnings Price Ratio (EP), which is the difference between the logarithm 

of earnings and the logarithm of prices, and the Dividend Payout Ratio, which is the 
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difference between the logarithm of dividends and the logarithm of earnings (DE). (See, 

e.g., Campbell & Shiller, 1988a, 1988b; Lamont, 1998.) 

The Stock Variance (SVAR) is the sum of squared daily returns of the S&P 500 (Guo, 

2006). Goyal and Welch sourced the data from CRSP.  

In the studies, the relative valuation of stocks with high and low CAPM-implied betas, 

known as the cross-sectional beta premium (CSP), is also used as an explanatory variable. 

This is proposed by Polk et al.  (2006). Goyal and Welch obtained this data from Samuel 

Thompson, and it consists of observations starting from March 1937. 

As book value, Goyal and Welch (2008) use book market values from Value Line’s 

website (Long-Term Perspective Chart of the Dow Jones Industrial Average). As a 

predictor variable they use widely known Book-to-Market Ratio (BM), which is the ratio 

of book value to market value for the Dow Jones Industrial Average. For the months of 

March through December, the book value at the end of the previous year is divided by 

the price at the end of the current month. For the months of January and February, the 

book value at the end of two years ago is divided by the price at the end of the current 

month. (See, e.g, Kothari & Shanken, 1997; Pontiff & Schall, 1998.)  

Goyal and Welch (2008) use two measures of corporate issuing activity. The first, Net 

Equity Expansion (NTIS) is the ratio of 12-month sums of net issues by NYSE listed 

stocks divided by the total end-of-year market capitalization of NYSE stock. Net equity 

issuing activity, consisting of IPOs, SEOs, stock repurchases, less dividends, is calculated 

as   

𝑁𝑒𝑡 𝑖𝑠𝑠𝑢e𝑡 = 𝑀𝑐𝑎𝑝𝑡 − 𝑀𝑐𝑎𝑝𝑡−1(1 + 𝑣𝑤𝑟𝑒𝑡𝑥𝑡),     (22) 

where 𝑀𝑐𝑎𝑝 is the total market capitalization, and 𝑣𝑤𝑟𝑒𝑡𝑥 is the value weighted return 

excluding dividends on the NYSE index. The second measure, Percent Equity Issuing 

(EQIS) proposed by Baker and Wurgler (2000), is calculated as equity issuing activity 

divided by total issuing activity. Authors provided this data to Goyal and Welch, expect 

for 2005, which they added themselves.   

Goyal and Welch use Treasury-bill rates as predictive variables. Rates from 1920 to 1933, 

the Treasury-bill (TBL) rates are sourced from the NBER Macrohistory database, 

specifically the U.S. Yields On Short-Term United States Securities, Three-Six Month 
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Treasury Notes and Certificates, Three Month Treasury series. From 1934 to 2005, the 

rates are obtained from the Federal Reserve Bank at St. Louis' economic research data 

base and specifically the 3-Month Treasury Bill: Secondary Market Rate.  (See, e.g., 

Campbell, 1987; Hodrick, 1992.) 

Goyal and Welch (2008) use three Long Term Yield based variable as predictors. They 

use U.S. Yield on Long-Term United States Bonds series in the NBER’s Macrohistory 

database as their long-term government bond (LTY). They got the data from Ibbotson’s 

Stocks, Bonds, Bills and Inflation Yearbook. The same source provided them with the 

Long-Term Rate of Returns (LTR).  Their third Long Term Yield based variable is the 

Term Spread (TMS) which is the difference between long term yield on government 

bonds and the Treasury-bill. (See, e.g., Campbell, 1987; Fama & French, 1989.)  

Goyal and Welch (2008) obtain long-term corporate bond returns from the same source, 

Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook. As a predictive variable, they use 

the Default Return Spread (DFR) which is the difference between long-term corporate 

bond and long-term government bond returns. They get Corporate Bond Yields on AAA 

and BAA-rated bonds from FRED and use their difference (the return on BAA bonds 

minus the return on AAA bonds), the Default Yield Spread (DFY), as a predictive 

variable. (See, e.g., Keim & Stambaugh, 1986; Fama & French, 1989.) 

As inflation (INFL), they use the Consumer Price Index for All Urban Consumers, which 

is retrieved from the Bureau of Labor Statistics. Because monthly inflation is released 

only in the following month, Goyal and Welch use it as a lagged predictor. (See, e.g., 

Lintner, 1975; Fama & Schwert, 1977; Fama, 1981; Campbell & Vuolteenaho, 2004.)  

Second to last, they use Investment to Capital ratio (IK) suggested by Cochrane (1991), 

who also provided them with the data, as a predictor variable. The investment capital is 

aggregate (private non-residential fixed) investment divided by aggregate capital for the 

whole economy.   

In addition to the variables presented above, Goyal and Welch (2008) use variable that 

measures the ratio of consumption, wealth, and income (cay). The variable is suggested 

by Lettau and Ludvigson (2001). Goyal and Welch (2008) modify the variable in a way 

that it does not use look-ahead data. They estimate aggregate consumption as follows: 

𝑐𝑡 = 𝛼 + β𝑎𝑎𝑡 + β𝑦𝑦𝑡 + ∑ 𝑏𝑎,𝑖
𝑘
𝑖=−𝑘 Δ𝑎𝑡−𝑖 + ∑ 𝑏𝑦,𝑖

𝑘
𝑖=−𝑘 Δ𝑦𝑡−𝑖 + ε𝑡 ,     (23) 
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where 𝑦 is the aggregate income, 𝑎 is the aggregate wealth and 𝑡 = 𝑘 + 1, … , 𝑠 − 𝑘.  

Furthermore, 𝒄𝒂𝒚 is estimated using equation 

𝑐𝑎𝑦𝑝𝑡̂ = 𝑐𝑡 − β𝑎̂𝑎𝑡 − β𝑦̂𝑦𝑡,      (24) 

where 𝑡 = 𝑘 + 1, … , 𝑇 − 𝑘.  

5.1.3 Descriptive statistics 

In my analysis forecasting models are examined only in an out-of-sample sense (see 

Section 6.1.1), where forecasting is carried out using the expanding window approach. At 

each step, only the next period (t+1) is predicted. The entire dataset consists of a total of 

852 monthly observations, starting in January 1951 and ending in December 2021. In the 

expanding window approach (see Section 6.1.2), the first in-sample (estimation) sample 

consists of observations from the beginning of the dataset to January 1965, thus 

comprising 169 observations. The following 9 years, or 108 observations, serve as the so-

called holdout4 out-of-sample, during which expanding window forecasting is carried out, 

but which is not used for forecast evaluation. The remaining part of the dataset, from 

January 1975 to December 2021, is the forecast evaluation period, which consists of 575 

monthly observations.

 

4 Following Sock & Watson (2004), and Rapach & Zhou (2013) the holdout out-of-sample is necessary 

for calculating DMSFE, which is required for computing the optimally weighted forecast combination. 
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Before proceeding with the empirical forecasting phase, it is prudent to take a closer look 

at the variables employed in this study. Table 1 presents the number of buy and sell signals 

for different technical indicators. 

Table 1. The amount of buy and sell signals for each technical indicator 

 

From Table 1, it can be observed that the number of buy and sell signals during the 

forecast evaluation period for different technical indicators are quite similar. The 

MOM(12) indicator generates the most buy signals, with a total of 439 buy signals. 

Conversely, the most sell signals are implied by the VOL(2, 9) and VOL(1, 9) indicators.  

Table 2 further examines the characterization of technical indicators by presenting their 

(sample) correlation matrix.

Indicator Buy signals Sell signals 

MA(1 9) 413 162 

MA(1,12) 431 144 

MA(2 9) 419 156 

MA(2,12) 429 146 

MA(3 9) 422 153 

MA(3 12) 430 145 

MOM(9) 430 145 

MOM(12) 439 136 

VOL(1,9) 408 167 

VOL(1,12) 419 156 

VOL(2,9) 408 167 

VOL(2,12) 420 155 

VOL(3,9) 412 163 

VOL(3,12) 416 159 
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Table 2. Correlation matrix of technical indicators 

 
MA(1,9) MA(1,12) MA(2,9) MA(2,12) MA(3,9) MA(3,12) MOM(9) MOM(12) VOL(1,9) VOL(1,12) VOL(2,9) VOL(2,12) VOL(3,9) VOL(3,12) 

MA(1 9) 1 
             

MA(1,12) 0.86 1 
            

MA(2 9) 0.82 0.84 1 
           

MA(2,12) 0.78 0.89 0.88 1 
          

MA(3 9) 0.74 0.80 0.88 0.87 1 
         

MA(3 12) 0.69 0.79 0.81 0.89 0.87 1 
        

MOM(9) 0.74 0.85 0.76 0.83 0.75 0.83 1 
       

MOM(12) 0.61 0.74 0.66 0.76 0.67 0.76 0.78 1 
      

VOL(1,9) 0.64 0.62 0.60 0.58 0.54 0.51 0.56 0.47 1 
     

VOL(1,12) 0.63 0.64 0.62 0.64 0.58 0.60 0.61 0.54 0.87 1 
    

VOL(2,9) 0.62 0.62 0.65 0.65 0.61 0.60 0.59 0.50 0.78 0.84 1 
   

VOL(2,12) 0.61 0.63 0.62 0.65 0.61 0.64 0.63 0.56 0.75 0.85 0.86 1 
  

VOL(3,9) 0.58 0.60 0.62 0.63 0.63 0.65 0.59 0.51 0.69 0.76 0.83 0.85 1 
 

VOL(3,12) 0.58 0.63 0.63 0.67 0.64 0.68 0.65 0.58 0.68 0.78 0.80 0.91 0.87 1 
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From Table 2, it can be observed that there is generally a high positive correlation 

between the technical indicators. Moving Average (MA) indicators with different 

combinations of short and long windows show a strong positive correlation with each 

other, ranging from 0.69 to 0.89. Momentum (MOM) indicators with 9 and 12-month 

windows also show strong positive correlation with each other (0.78). Volatility (VOL) 

indicators with different combinations of short and long windows show strong positive 

correlation with each other, ranging from 0.68 to 0.91. The correlation between 

differently constructed indicators is also strong. None of the correlations are below 0.50, 

and all are positive. Based on the correlation matrix of the technical indicators, one could 

assume that the equity premium forecasts formed using these indicators are quite similar. 

In Figure 4, the time series of the MA(2, 12) indicator is presented for the forecast 

evaluation period. 

 

Figure 4. MA(2, 12) technical indicator. Forecast evaluation period. Grey shades presents the 
NBER recession periods. 

 

In Figure 4, the behaviour of the technical indicator is illustrated using the MA(2, 12) 

indicator. The indicator implies a buy signal for the majority of the time when its value is 

1. When it implies a sell signal, its value is 0. It can be observed that the indicator often 

implies a sell signal at the beginning of recession periods. 
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Table 3 presents the descriptive statistics of the macroeconomic predictors used in the 

empirical analysis, including sample mean (Mean), standard deviation (SD), minimum 

(Min), maximum (Max), skewness (Skew.), kurtosis (Kurt.), autocorrelation (lagged by 

one period) (Auto. cor.), and the sample size (N). 

Table 3. Descriptive statistics. Macroeconomic predictors. December 1951 to December 2021 

The table presents the descriptive statistics for 14 macroeconomic predictors and the dependent 
variable (equity premium). The equity premium in the table is represented as its logarithmic 
transformation in percentage terms. Additionally, SVAR, TBL, LTY, LTR, TMS, DFY, DFR, and 
CPI are also expressed in percentages. 

 
Mean SD Min Max Skew. Kurt. Auto. cor. 

y 0.58 4.20 -24.76 14.73 -0.66 2.31 0.04 

DP -3.56 0.42 -4.52 -2.60 -0.12 -0.77 0.99 

DY -3.55 0.42 -4.53 -2.61 -0.12 -0.75 0.99 

EP -2.82 0.42 -4.84 -1.90 -0.62 2.44 0.99 

DE -0.73 0.29 -1.24 1.38 2.60 16.02 0.99 

SVAR 0.20 0.47 0.01 7.32 10.92 146.00 0.40 

BM 0.50 0.25 0.12 1.21 0.65 -0.33 0.99 

NTIS 0.01 0.02 -0.06 0.05 -0.77 0.23 0.98 

TBL 4.10 3.10 0.01 16.30 0.91 1.10 0.99 

LTY 5.76 2.85 0.62 14.82 0.76 0.16 0.99 

LTR 0.53 2.77 -11.24 15.23 0.50 2.96 0.05 

TMS 1.66 1.38 -3.65 4.55 -0.06 -0.12 0.96 

DFY 0.96 0.43 0.32 3.38 1.85 4.93 0.97 

DFR 0.03 1.44 -9.76 7.37 -0.66 7.85 -0.06 

INFL 0.29 0.36 -1.92 1.81 0.13 2.62 0.55 

 

As illustrated in Table 3, equity premium (y) has an average value of 0.58 and a standard 

deviation of 4.20. The distribution of the equity premium exhibits a negative skewness of 

-0.66 and a kurtosis of 2.31. The autocorrelation of 0.04 reveals weak serial dependence 

in the data. 

The Dividend-Price Ratio (DP) and Dividend Yield (DY) have similar characteristics, 

with means of -3.56 and -3.55, and standard deviations of 0.42 for both variables. The 

distributions of DP and DY are nearly symmetric, as evidenced by their skewness values 

of -0.12. The high autocorrelation of 0.99 for both variables denote a strong persistence 

in the series over time. The Earnings-Price Ratio (EP) demonstrates a mean of -2.82, a 

standard deviation of 0.42, and a negatively skewed distribution with a skewness of -0.62. 
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Similar to DP and DY, EP also exhibits a high autocorrelation of 0.99. The Dividend-

Earnings Ratio (DE) has a mean of -0.73, a standard deviation of 0.29, and a range from 

-1.24 to 1.38. The distribution of DE is positively skewed with a skewness of 2.60 and a 

high kurtosis of 16.02. The autocorrelation of 0.99 indicates strong persistence in the 

series. 

The Stock Variance (SVAR) has a mean of 0.20 and standard deviation of 0.47. and a 

range from 0.01 to 7.32.  It has a highly positive skewness of 10.92 and a high kurtosis 

of 146.00. Note that variance is always non-negative by definition. The autocorrelation 

for SVAR is 0.40, which is relatively lower than other variables in the dataset. 

The Book-to-Market Ratio (BM) has a mean value of 0.50 and a standard deviation of 

0.25, indicating a moderately dispersed distribution. The range of values for BM spans 

from 0.12 to 1.21, with a skewness of 0.65 and a kurtosis of -0.33. The autocorrelation of 

BM is notably high at 0.99, indicating strong persistence in the series. 

Net Equity Expansion (NTIS) presents a mean value of 0.01 and a standard deviation of 

0.02. The distribution ranges between -0.06 and 0.05 and is characterized by a negative 

skewness of -0.77 and a kurtosis of 0.23. The autocorrelation for NTIS is high, with a 

value of 0.98. 

The Long-Term Yield (LTY) has a mean of 5.76 and a standard deviation of 2.85. Its 

values range from 0.62 to 14.82. LTY exhibits a high autocorrelation of 0.99. The Long-

Term Return (LTR) features a mean of 0.53 and a standard deviation of 2.77. The 

distribution ranges from -11.24 to 15.23. The autocorrelation for LTR is relatively low at 

0.05, implying weak serial dependence in the data. The Term Spread (TMS) has a mean 

of 1.66, a standard deviation of 1.38, and values ranging from -3.65 to 4.55. The 

autocorrelation for TMS is high at 0.96, indicating a strong persistence in the series. 

The Default Yield Spread (DFY) has a mean of 0.96 and a standard deviation of 0.43, 

with values ranging from 0.32 to 3.38. The autocorrelation for DFY is 0.97, suggesting 

strong persistence in the series. The Default Return Spread (DFR) has a mean of 0.03 and 

a standard deviation of 1.44. The autocorrelation for DFR is -0.06, revealing weak 

negative serial dependence in the data. 

Finally, the Inflation Rate (INFL) has a mean value of 0.29 and a standard deviation of 

0.36. The autocorrelation for INFL is 0.55, denoting moderate persistence in the series. 
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Table 4 presents the descriptive statistics of the same macroeconomic predictors and 

equity premium (log) as previously discussed, focusing on the mean and standard 

deviation across three different samples: 1951–2021, 1951–2011, and 2012–2021. The 

sample from 1951 to 2011 is the sample Neely et al. (2014) used in their study. 

Table 4. Mean and standard deviation of macroeconomic predictors and the (log) equity premium 
across three different samples 

 
Mean Std. Dev. 

 
1951-2021 1951-2011 2012-2021 1951-2021 1951-2011 2012-2021 

y 0.58 0.47 1.24 4.20 4.26 3.77 

DP -3.56 -3.49 -3.96 0.42 0.42 0.13 

DY -3.55 -3.49 -3.95 0.42 0.42 0.12 

EP -2.82 -2.78 -3.09 0.42 0.44 0.20 

DE -0.73 -0.71 -0.87 0.29 0.30 0.17 

SVAR 0.20 0.20 0.22 0.47 0.42 0.68 

BM 0.50 0.54 0.29 0.25 0.25 0.05 

NTIS 0.01 0.02 -0.01 0.02 0.02 0.01 

TBL 4.10 4.68 0.59 3.10 2.95 0.79 

LTY 5.76 6.32 2.36 2.85 2.67 0.75 

LTR 0.53 0.55 0.37 2.77 2.76 2.85 

TMS 1.66 1.64 1.77 1.38 1.43 1.01 

DFY 0.96 0.96 0.94 0.43 0.45 0.24 

DFR 0.03 0.01 0.17 1.44 1.39 1.76 

INFL 0.29 0.30 0.17 0.36 0.36 0.32 

 

From the Table 4, it can be observed that the Equity Premium (log) exhibits an increase 

in the mean value from 0.47 during 1951-2011 to 1.24 in the more recent period of 2012-

2021. The overall mean value for the entire sample (1951-2021) is 0.58. The standard 

deviation also shows a decrease from 4.26 in the first period to 3.77 in the second period, 

while the overall standard deviation is 4.20.  

For the DP variable, the mean value decreases from -3.49 during 1951-2011 to -3.96 in 

2012-2021, while the standard deviation decreases from 0.42 to 0.13 in the same periods. 

Similarly, the DY variable exhibits a decrease in the mean value from -3.49 in 1951-2011 

to -3.95 in 2012-2021, with a corresponding decrease in standard deviation from 0.42 to 

0.12. The mean value of EP decreases slightly from -2.78 in 1951-2011 to -3.09 in 2012-

2021, and the standard deviation increases marginally from 0.44 to 0.20 over the same 



40 

periods. This may indicate minor changes in the earnings-price ratios during the recent 

period. The mean of DE decreases from -0.71 in 1951-2011 to -0.87 in 2012-2021, and 

the standard deviation decreases from 0.30 to 0.17. These modest changes could reflect 

variations in the debt-equity ratios among firms in different periods. 

The mean of BM value declines from 0.54 in 1951-2011 to 0.29 in 2012-2021, and the 

standard deviation remains stable at 0.25. This indicates a decrease in the average book-

to-market ratio in the recent period. 

The mean of TBL decreases notably from 4.68 in 1951-2011 to 0.59 in 2012-2021, and 

the standard deviation decreases from 2.95 to 0.79. This indicates a substantial decline in 

Treasury Bill rates during the recent period, possibly reflecting changes in monetary 

policy. The mean of LTY decreases from 6.32 in 1951-2011 to 2.36 in 2012-2021, and 

the standard deviation decreases from 2.67 to 0.75. This suggests a significant decline in 

long-term government bond yields during the recent period, potentially due to changes in 

monetary policy or economic conditions. Similarly, the mean of LTR decreases slightly 

from 0.55 in 1951-2011 to 0.37 in 2012-2021, and the standard deviation remains stable 

at 2.77. This implies a minor change in long-term government bond returns during the 

recent period. The mean of TMS increases marginally from 1.64 in 1951-2011 to 1.77 in 

2012-2021, and the standard deviation decreases from 1.43 to 1.01. This indicates a slight 

increase in the term spread during the recent period. The mean of DFY remains stable at 

0.96 in 1951-2011 and 0.94 in 2012-2021, while the standard deviation decreases from 

0.45 to 0.24. This suggests a modest change in default yield spread during the recent 

period. Furthermore, the mean of DFR increases from 0.01 in 1951-2011 to 0.17 in 2012-

2021, and the standard deviation increases from 1.39 to 1.76.  

The mean of INFL decreases slightly from 0.30 in 1951-2011 to 0.17 in 2012-2021, while 

the standard deviation decreases marginally from 0.36 to 0.32. This suggests a modest 

decline in consumer price inflation during the recent period, potentially due to changes in 

monetary policy or other macroeconomic factors. Table 5 presents the correlations 

between different macroeconomic predictors and the equity premium. 
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Table 5. Correlation coefficients between the equity premium and the macroeconomic predictors. 

 y DP DY EP DE SVAR BM NTIS TBL LTY LTR TMS DFY DFR INFL 

y 1               

DP -0.06 1              

DY 0.04 0.99  1             

EP -0.06 0.77 0.76 1            

DE 0.01 0.33 0.33 -0.35 1           

SVAR -0.32 -0.07 -0.10 -0.16 0.14 1          

BM -0.07 0.89 0.89 0.82 0.10 -0.09 1         

NTIS -0.03 0.29 0.28 0.24 0.07 -0.20 0.31 1        

TBL -0.11 0.45 0.45 0.53 -0.12 -0.06 0.58 0.11 1       

LTY -0.08 0.40 0.39 0.43 -0.05 -0.02 0.51 0.07 0.90 1      

LTR 0.05 0.00 0.01 0.02 -0.03 0.16 0.00 -0.07 0.04 0.04 1     

TMS 0.07 -0.20 -0.19 -0.30 0.16 0.10 -0.25 -0.09 -0.40 0.05 -0.01 1    

DFY 0.00 0.19 0.19 0.03 0.23 0.29 0.29 -0.35 0.32 0.47 0.14 0.25 1   

DFR 0.27 -0.01 0.02 -0.08 0.11 -0.23 -0.01 0.01 -0.05 -0.01 -0.46 0.08 0.07 1  

INFL -0.08 0.23 0.23 0.34 -0.17 -0.07 0.37 0.10 0.44 0.37 -0.05 -0.21 0.08 -0.05 1 
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From Table 5, it can be observed that DP, DY, and EP display a high positive correlation 

with each other, indicating that these variables tend to move in the same direction. The 

correlation between DP and DY is almost 1, which can be explained by the fact that these 

variables are theoretically very similar. This high correlation indicates that they share 

common information and trends, which makes them nearly interchangeable in the context 

of predicting the equity premium. Their correlations with the equity premium are weak 

and mostly negative, suggesting that they might not be strong predictors of the equity 

premium. DE, on the other hand, has a weak positive correlation with the equity premium 

and a moderate positive correlation with DP and DY, while having a negative correlation 

with EP. 

SVAR demonstrates a moderate negative correlation with the equity premium, indicating 

that it might have some predictive power. It also has weak negative correlations with DP 

and DY, and a weak positive correlation with DE. The relationship between SVAR and 

other variables appears to be less straightforward. 

BM exhibits strong positive correlations with DP and DY, and a moderately positive 

correlation with EP, implying that it shares common trends with these variables. Its 

correlation with the equity premium is weakly negative, suggesting limited predictive 

capacity. 

NTIS shows weak positive correlations with DP, DY, and EP, and a weak negative 

correlation with the equity premium. Its relationship with other variables appears to be 

relatively weak and may not be particularly informative for predicting the equity 

premium. 

TBL and LTY display moderate positive correlations with DP, DY, and EP, and weak 

negative correlations with the equity premium. They also have a strong positive 

correlation with each other. These patterns suggest that these variables might share similar 

trends, but their predictive power for the equity premium appears to be limited. LTR's 

correlations with the majority of the other variables are weak or close to zero, implying 

that its relationship with these variables is relatively independent. Its weak positive 

correlation with the equity premium suggests that it may not have a strong predictive 

capacity. TMS has weak to moderate negative correlations with DP, DY, and EP, and a 

weak positive correlation with the equity premium. Its correlations with other variables 

are mostly weak, but its negative correlations with some of the variables may indicate a 
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potential for predicting the equity premium. DFY displays weak to moderate positive 

correlations with several variables, but its relationship with the equity premium is very 

weak. Its correlations suggest a potential connection with the other variables, but its 

predictive power for the equity premium seems limited. DFR has a moderate positive 

correlation with the equity premium, indicating that it might have some predictive power. 

It also has weak correlations with most of the other variables, suggesting that its 

relationship with these variables is relatively independent. 

Lastly, INFL has weak negative correlations with the equity premium, DP, and DY, and 

a moderate positive correlation with EP. Its correlations with the other variables are 

generally weak, which might indicate that its predictive capacity for the equity premium 

is limited. 

While some variables display moderate to strong correlations with each other, their 

correlations with the equity premium are mostly weak, suggesting that their predictive 

power for the equity premium may be limited. 

5.2 Literature on Equity Premium Forecasting 

In their famous article, Goyal and Welch (2008) carry out a rigorous examination of the 

empirical performance of equity premium prediction models. Their research aims to 

assess the out-of-sample predictive power of numerous variables that have been proposed 

in the literature.  

Goyal and Welch (2008) utilize multiple regression models to estimate the equity 

premium based on the lagged values of the predictive variables. They evaluate the 

forecasting performance of these models using various statistical metrics, including mean 

squared forecast error (MSFE, see Section 6.1.3 for more on MSFE) and out-of-sample 

R-squared (R2). From this point forward denoted as R2. Their out-of-sample R2 is 

defined as  

𝑅2 = 1 −
MSFE𝑁

MSFE𝐻𝐴
,          (25) 

where MSFE𝐻𝐴 denotes the mean squared forecast error obtained using the naïve model, 

i.e. the historical average forecast and MSFE𝑁 denotes the mean squared forecast error 

obtained using one of their own predictive models. This specification is used throughout 

this study and is predominantly employed in the other research articles I present as well. 
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In their study, Goyal and Welch utilize single-variable linear prediction models. They use 

each of the variables introduced in Section 5.1 individually as predictors, and in addition, 

they employ a multivariate regression model that includes all the variables from Section 

5.1 as predictive variables. They refer to this model as the 'Kitchen Sink' model (as will I 

in this thesis). 

The main findings of their study are quite sobering. Most of the proposed models exhibit 

limited success in predicting equity premiums, with many of them unable to outperform 

the historical average. Furthermore, the authors find no robust evidence to support the use 

of any specific predictive variable. They also show that the predictive power of these 

models declines significantly when accounting for data snooping and small-sample 

biases. 

These results have important implications for both academics and practitioners, 

suggesting that the existing literature on equity premium prediction may have overstated 

the true forecasting capabilities of these models. Goyal and Welch's research not only 

challenges the effectiveness of widely used equity premium prediction models but also 

underscores the need for further investigation into developing more robust forecasting 

techniques in finance. Their work serves as a cautionary note for those who rely on these 

models for predicting equity premiums and making investment decisions, emphasizing 

the importance of considering potential biases and overfitting when evaluating model 

performance. 

Campbell and Thompson (2008) delve into the out-of-sample performance of various 

models for predicting excess stock returns, aiming to determine if any model can 

outperform the simple historical average forecast. The authors focus on models 

incorporating predictor variables which are similar to the variables considered in the 

Goyal and Welch (2008) study. Campbell and Thompson (2008) impose economically 

sensible restrictions on the coefficients and the prediction. The constraint on the 

regression coefficients means that they allow the coefficients to take values that matches 

their theoretically expected sign (historical) and the constraint on the prediction is 

implemented so that the forecast cannot be negative. From this point forward, this 

constraint is referred to as the CT restriction. This approach differs from that of Goyal 

and Welch, who do not impose any restrictions on regression coefficients or the 

prediction. The main finding of Campbell and Thompson (2008) study is that when these 
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economically sensible restrictions are imposed, some models can indeed outperform the 

historical average in predicting excess stock returns out of sample. Notably, the dividend-

price ratio and the term spread are identified as relevant predictors. These results suggest 

that, under certain conditions, carefully specified forecasting models with economically 

sensible restrictions can provide superior out-of-sample performance compared to the 

historical average.  

Pettenuzzo et al. (2014) also examine the impact of economic constraints on the 

forecasting of stock returns. The authors propose a new methodology that takes into 

account these constraints, arguing that the traditional approach to stock return forecasting 

may result in biased forecasts due to the presence of economic constraints. The authors 

employ a Bayesian framework and incorporate economic constraints through a shrinkage-

like estimator. They consider non-negative equity premium and conditional Sharpe ratio5 

restrictions. They test their methodology using the same variables as Goyal and Welch 

(2008). Their findings suggest that the proposed methodology yields significant 

improvements in out-of-sample forecasting performance when compared to the 

traditional unconstrained approach. 

Pan et al. (2020) propose a predictor-constrained approach to forecasting stock returns. 

The authors address the issue of estimation uncertainty in models that use a large number 

of predictors, which can lead to poor out-of-sample performance. By applying constraints 

on the predictors, they aim to reduce estimation uncertainty and improve forecast 

accuracy. They evaluate the out-of-sample performance of their predictor-constrained 

approach using U.S. stock return data and compare it to other commonly used forecasting 

methods. They use the same predictors as Goyal and Welch (2008) once again, but 

implement a nonlinear change to the predictors, which can be represented as follows. Let 

𝑥𝑡𝑖 be the value of predictor 𝑖 at time 𝑡.  They modify the predictive variable as follows 

            𝑥𝑡𝑖 =   {
𝑥𝑡𝑖  , if    𝑥𝑡𝑖 > max(𝑥(𝑡−1),𝑖  , 𝑥(𝑡−2),𝑖 , … , 𝑥(𝑡−𝑏),𝑖)  𝑜𝑟  𝑥𝑡𝑖 < min(𝑥(𝑡−1),𝑖  , 𝑥(𝑡−2),𝑖 , … , 𝑥(𝑡−𝑏),𝑖)

0           otherwise,                                                                                                                                          
     (26) 

 

5 The Sharpe ratio is a widely used financial metric that measures the risk-adjusted performance of an 

investment. It is calculated by dividing the equity premium by the market returns standard deviation. A 

higher Sharpe ratio indicates a better risk-adjusted performance, as it means that the investment is 

generating more return per unit of risk. Conversely, a lower Sharpe ratio suggests that the investment is not 

as efficient in terms of risk-adjusted performance. (Cochrane, 2005, 20-21.) 
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where b is the “look-back” period. They use these truncated variables in univariate 

regression models, where they predict the equity premium. They also consider forecast 

combinations, suggested by Rapach et al. (2010) and they use the same variables as Goyal 

and Welch (2008). Their findings reveal that the predictor-constrained approach 

significantly enhances out-of-sample forecast accuracy compared to traditional 

unconstrained models. Moreover, they find this approach to be at least as accurate as 

those proposed by Campbell and Thompson (2008) and Pettenuzzo et al. (2014), but often 

demonstrates even greater accuracy. They find that their methodology is significantly 

more accurate than Goyal and Welch (2008) unrestricted forecasts. 

Ferreira and Santa-Clara (2011) explore a novel approach to forecasting stock market 

returns by focusing on the components of aggregate market returns rather than the 

aggregate market return itself. The authors argue that forecasting individual components 

separately and then aggregating the forecasts can lead to more accurate predictions of 

overall stock market returns. The study decomposes aggregate equity premium into two 

components: dividend yield and capital gains. The authors then develop forecasting 

models for each component based on relevant predictor variables from macroeconomic 

and financial market data. After obtaining individual component forecasts, they combine 

these forecasts to generate a prediction for the aggregate stock market return. Ferreira and 

Santa-Clara (2011) find that their component-based approach outperforms univariate 

models suggested by Goyal and Welch (2008). The out-of-sample performance of their 

component-based method is shown to be significantly better than that of models based on 

historical averages as well as the univariate models suggested by Goyal and Welch 

(2008). Their findings suggest that considering the underlying factors driving market 

returns and forecasting them separately can lead to more accurate predictions of overall 

market performance. They provide a new perspective on forecasting stock market returns 

and highlights the potential benefits of adopting a component-based approach.  

Rapach et al. (2010) investigate the out-of-sample predictability of the equity premium 

by combining forecasts. The authors propose a combination forecasting approach that 

incorporates multiple predictors and assesses their individual and combined predictive 

ability. Forecast combinations are constructed by first using univariate forecasting models 

and then combining them. Their findings reveal that combination forecasts can 

significantly improve out-of-sample equity premium forecasts compared to the 

benchmark models. The results also suggest that the predictive power of the combined 
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models is closely related to the real economy, as the models perform better during periods 

of economic expansion than during recessions. Rapach et al. (2010) consider both equal-

weighted combinations, where each individual predictor contributes equally to the 

combined forecast, and optimally weighted combinations, where the weights are 

determined based on the individual predictor's past forecasting performance. In their 

analysis, the authors find that both equal-weighted and optimally weighted combination 

methods yield significant improvements in out-of-sample forecasting performance 

compared to the benchmark models.  

Ludvigson and Ng (2007) examine the empirical risk-return relationship by employing a 

factor analysis approach. The authors propose a novel method for equity premium 

prediction based on a diffusion indices that captures the common fluctuations in a large 

set of macroeconomic and financial variables. The authors argue that conventional asset 

pricing models often fail to account for the complex interdependencies between the 

numerous potential return predictors. To address this issue, they develop a latent factor 

model that accommodates the co-movements among the predictors, allowing them to 

extract a small number of relevant factors using principal component analysis. These 

estimated factors are then utilized as regressors in the predictive regression model. The 

findings reveal that using diffusion indices significantly outperforms traditional models 

in terms of in-sample predictive power and out-of-sample forecasting performance. The 

estimated factors are found to have a strong explanatory power for the equity premium, 

both statistically and economically. Moreover, the results are robust to different sample 

periods and variable selections, suggesting the effectiveness of the factor analysis 

approach in capturing the empirical risk-return relation. Diffusion indices approach is 

further studied by, for example, Kelly and Pruitt (2013). 

Guidolin and Timmermann (2007) investigate asset allocation strategies under a 

multivariate regime-switching framework. The authors propose a model that accounts for 

changes in the joint distribution of asset returns, allowing for a more flexible and realistic 

representation of the dynamics in financial markets. The multivariate regime-switching 

model is characterized by different states, each representing a specific set of economic 

conditions, such as periods of high or low growth and volatility. The model allows for the 

possibility that asset returns and their covariances change across different regimes, which 

can have a significant impact on optimal asset allocation. The authors employ a Bayesian 

approach to estimate the model parameters and compute optimal portfolio weights under 
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various investment horizons and risk preferences. The findings reveal that the 

multivariate regime-switching model leads to substantial improvements in out-of-sample 

portfolio performance compared to traditional models that assume constant parameters. 

The results indicate that investors should adjust their portfolio allocations in response to 

changes in the underlying economic regimes, as ignoring such changes can lead to 

suboptimal investment decisions. Additionally, the study shows that the benefits of 

incorporating regime-switching dynamics are more pronounced for longer investment 

horizons and investors with higher risk aversion. Henkel et al. (2011) and Dangl and 

Halling (2012) also consider equity premium forecasting under regime-switching 

framework. 

Neely et al. (2014) examine the role of technical indicators in equity premium forecasts. 

They use the technical indicators defined in Section 5.1.1 for univariate equity premium 

forecasts using both linear regression models and principal component regression. They 

compare the results obtained from these models to the univariate linear regression results 

of macroeconomic predictors (see Section 5.1.2), as well as the principal component 

regressions (see Section 2.1) formed from these variables. Their findings suggest that the 

combination of technical indicators and macroeconomic predictors yields superior out-

of-sample forecasts compared to models using only macroeconomic predictors. 

Moreover, the results indicate that technical indicators play a significant role in improving 

forecast accuracy, providing support for the use of technical analysis in predicting the 

equity risk premium.  
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6 Forecasting Equity Premium: Methods and Models 

6.1 Forecasting Evaluation 

In this section I introduce the forecast evaluation methods used in my thesis. Sections 

6.1.1, 6.1.2, and 6.1.3 are largely based on the research by Diebold and Mariano (1995), 

Stock and Watson (2008), and Hastie et al. (2009, 23-27). Section 6.1.4 is based on the 

research by Clark and West (2006), and Section 6.1.5 is based on Gallant (1987, 137-

139). 

6.1.1 Out-of-sample forecasting 

Out-of-sample forecasting pertains to scenarios where attempts are made to emulate 

real-life forecasting situations in which future observations remain unknown. In such a 

real-world context, an agent possesses observations only up to time t and aims to predict 

time t+h, where h represents the forecast horizon. In this thesis, my primary focus will be 

on forecasts with ℎ = 1. It is important to note that the time frequency may range, say, 

from daily to annual observations. Typically, macroeconomic data is most frequently 

available on a monthly basis, while stock prices are available, for example, at daily level. 

Out-of-sample forecasting can be executed through various approaches, such as dividing 

the data into training and testing sets. In this case, the prediction model is "trained" using 

the training data, and its predictive capacity in the out-of-sample context is assessed on 

the test data. Dynamic out-of-sample forecasting methods can also be employed, which 

are commonly utilized in macro and financial econometrics. The most prevalent dynamic 

out-of-sample forecast models include rolling and expanding window methods. These 

methods differ from the simple split of training and testing data as the estimation window 

is not constant.  

6.1.2 The expanding window 

The expanding window approach is an out-of-sample forecasting method that aims to 

simulate a real-life forecasting situation. Imagine that the data consists of 𝑇 observations. 

In an expanding window approach, a subsample is typically selected and used for 

estimation before evaluating the forecasting accuracy. Let us say that we first estimate 

the parameters of the models using first 𝑃 observations (1 ≤ 𝑃 < 𝑇). These estimates are 
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then used for forecasting, before expanding the estimation window. Next, the estimation 

data is extended to consist of 𝑃 + 1 observations and again estimation is performed on 

the now extended data. The procedure is continued until 𝑃 + 𝑘 = 𝑇, where k is the 

number of out-of-sample observations. The results of the estimations at all time points 

are collected and can be used, for example, to determine the predictive accuracy of a 

method. Figure 5 visualizes the expanding window out-of-sample forecasting method.  

 

Figure 5. Expanding window out-of-sample forecasting methodology  

 

In Figure 5, it is shown how the expanding window method divides the data into in-

sample and out-of-sample portions, with each estimation step expanding the window. 

Typically, P is chosen to be a small fraction of the total observation set, in which case the 

out-sample fraction k can be very large. Expanding window method can be 

computationally very heavy, due to multiple estimation runs, especially if the models used 

for prediction are complex or computationally intensive. For example, when forecasting 

monthly stock returns, the in-sample sample length could be 15 years and the out-sample 

50 years. The in-sample would then consist of 180 observations and the out-sample of 

600 observations. Implementing this with an expanding window approach is not yet very 

difficult, but if the data used consisted of daily returns, the implementation is clearly more 

cumbersome.  

The expanding window is a plausible idea for a real-life forecasting method in the sense 

that data is not constant but grows over time. It provides a realistic evaluation of the 

model's ability to generalize to new data, which is important for assessing the 

performance of a model in a real-world setting. It also takes account the uncertainty 

associated with the model and estimation, as well as the possible instability of the model.  



51 
 

The rolling window is an alternative to the expanding window. It differs from the 

expanding window in that the size of the estimation window is fixed. In other words, 

while the expanding window increases the window size with each estimation step, the 

rolling window method removes the oldest observation from the beginning of the time 

series after each estimation and adds the newest observation to the end of the time series. 

Among these two methods, the expanding window better represents a real-life forecasting 

situation, where the length of the time series grows with new observations. For this 

reason, and following, for example Neely et al. (2014) and Pan et al. (2020), I implement 

the expanding window method for generating and evaluating my own forecasts instead 

of the rolling window.  

6.1.3 Mean Squared Forecast Error 

Mean Squared Forecast Error (MSFE) is a commonly used measure of the accuracy 

of a forecasting model. It is a measure of the average squared difference between the 

forecasted values and the actual observed values. The MSFE provides a way to quantify 

the deviation between the predicted values and the actual values and is widely used to 

evaluate the performance of different models. 

The MSFE is calculated as the average of the squared differences between the forecasted 

values and the actual values, over a specific forecasting window. The MSFE is expressed 

as 

 𝑀𝑆𝐹𝐸 =
1

𝑘
∑ (𝑓𝑡 − 𝑦𝑡)2𝑃+𝑘

𝑡=𝑘+1 ,   (27) 

where k is the size of the forecast window, 𝑓𝑡 is the forecast at time t, and 𝑦𝑡 is the actual 

observed value at time 𝑡. 

A lower MSFE indicates a better predictive accuracy of the model. The MSFE can be 

used to compare the performance of different forecasting models and to select the best-

performing model for a given problem. It is important to note that the MSFE is sensitive 

to outliers, so it is sometimes necessary to use other measures of accuracy, such as Mean 

Absolute Error (MAE) or Mean Absolute Percentage Error (MAPE), to get a more robust 

assessment of model performance. Overall, the MSFE is a valuable tool for evaluating 

the accuracy of forecasting models and for comparing the performance of different 

models.  
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6.1.4 Clark and West test 

The Clark and West test is a statistical test used to compare the accuracy of two or more 

forecasting models. It was developed by Stephen Clark and James West in 2004 as an 

alternative to the Diebold and Mariano (1995) test, which was the most commonly used 

test for comparing the accuracy of forecasting models at the time. 

The main motivation behind the development of the Clark and West test was to address 

some of the limitations of the Diebold-Mariano test, particularly when comparing nested 

models. The Clark and West test is based on the idea of comparing the mean squared 

forecast error (MSFE) between two models. The test statistic is based on the differences 

in MSFE between the models, and it is calculated as the ratio of the difference in MSFE 

between the models to a correction term that accounts for the uncertainty in the MSFE 

estimates. 

The correction term in the Clark and West test statistic is designed to account for the serial 

correlation in the forecast errors, which can lead to incorrect inference about the 

differences in accuracy between the models if it is not taken into account. The Clark and 

West test statistic also adjusts for differences in the persistence of the forecast errors 

between the models, which can affect the accuracy of the MSFE estimates if not 

considered. 

The Clark and West test is implemented by first calculating the MSFE for each model 

over a given sample period, and then using the MSFE estimates to calculate the Clark and 

West test statistic. The test statistic is then compared to critical values from a standard 

normal distribution to determine whether there is evidence to reject the null hypothesis 

that the models have the same accuracy. The Clark and West (2006) test can be 

implemented mathematically as follows: 

1. Construct the forecast errors for each model for each time period. 

2. Compute the mean squared forecast error (MSFE) for each model. 

3. Calculate the difference in MSFE between each pair of models. 

4. Test the null hypothesis that the difference in MSFE between each pair of models 

is equal to zero. 
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5. If the null hypothesis is rejected, then the models are deemed to have significantly 

different accuracy. 

To perform the test, a t-statistic is calculated for each difference in MSFE, using the 

following formula: 

 𝑡 =
𝑑𝑖

√𝑉𝑎𝑟(𝑑𝑖)
, (28) 

where 𝑑𝑖 is the difference in MSFE between two models and 𝑉𝑎𝑟(𝑑𝑖) is the variance of 

the difference in MSFE. 

The t-statistic is then compared to a critical value from the t-distribution with degrees of 

freedom equal to the number of time periods minus two. If the calculated t-statistic is 

greater than the critical value, then the null hypothesis is rejected and the difference in 

MSFE between the two models is considered statistically significant. 

The Clark and West test is a robust method for comparing the accuracy of nested 

forecasting models that takes into account the serial correlation in the forecast errors and 

adjusts for differences in the persistence of the forecast errors between the models. It 

provides more accurate inferences about the differences in accuracy between nested 

models than the Diebold-Mariano test, and it has become a widely used alternative to the 

Diebold-Mariano test in the forecasting literature. 

It's important to note that the Clark and West test assumes that the forecast errors are 

normally distributed and have constant variance over time. If these assumptions are not 

met, the results of the test may be biased and should be interpreted with caution. 

6.1.5 Newey-West adjusted heteroscedastic t-statistics 

To account for potential autocorrelation and heteroscedasticity of the error terms when 

estimating parameters for linear regression models, I use Newey-West adjusted 

heteroscedastic t-statistics, to evaluate the statistical significance of different predictive 

variables.  

Consider a predictive linear regression model 

𝑌𝑡+1 = 𝑋𝑡
′𝛽 + 𝜀𝑡+1,        (29) 
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where 𝑌𝑡+1 is the dependent variable, 𝑋𝑡 is a p-dimensional vector of predictive variables 

(generally including a constant term), β is a p-dimensional vector of parameters, and 𝜀𝑡+1 

is the error term. The Newey-West estimator of the long-run covariance matrix is given 

by: 

𝛺𝑁𝑊 = ∑ 𝜔𝑗
𝑞
𝑗=−𝑞 𝐸[𝜀𝑡𝜀𝑡−𝑗],        (30) 

where q is the maximum lag length, and 𝜔𝑗 are the weights assigned to the covariances 

of the residuals at different lags. A popular weighting scheme is the Bartlett kernel, which 

is defined as: 

   𝜔𝑗 = 1 − |𝑗|/(𝑞 + 1),        (31) 

for j = 0, ..., q. After estimating the long-run covariance matrix 𝛺𝑁𝑊, the Newey-West 

standard errors for the estimated parameters can be computed. The Newey-West 

covariance matrix of the estimated parameters, 𝑉𝑁𝑊(𝛽), is given by: 

𝑉𝑁𝑊(𝛽) = (𝑋′𝑋)−1(𝑋′𝛺𝑁𝑊𝑋)(𝑋′𝑋)−1,      (32) 

where X is the T × p matrix of predictive variables. Finally, the Newey-West adjusted 

heteroscedastic t-statistics for each parameter are calculated as follows: 

  𝑡𝑁𝑊(𝑖) = 𝛽̂𝑖/√(𝑉𝑁𝑊(𝛽̂)
𝑖𝑖

),       (33) 

where 𝛽̂𝑖 is the i-th estimated parameter, and 𝑉𝑁𝑊(𝛽̂)
𝑖𝑖

 is the i-th diagonal element of the 

Newey-West covariance matrix. Employing the Newey-West adjusted heteroscedastic t-

statistics ensures more accurate inferences about the parameters of our linear regression 

models, accounting for potential autocorrelation and heteroskedasticity in the error terms. 

6.2 Forecasting Models 

Before generating forecasts, the forecasting models used in this study are presented. 

These models are based on those proposed in the articles reviewed in the literature review 

section, with some modifications. Macroeconomic predictor-based models are directly 

adapted from the previously suggested models in the literature, while the use of technical 

indicators has been expanded to various models. Forecasts are generated by implementing 
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the Campbell and Thompson (2008) and Pan et al. (2020) (From this point forward, Pan 

restriction) models both with and without constraints. 

6.2.1 Bivariate regression models 

Univariate forecasts are formed using single-predictor linear regression models. These 

are constructed using all macroeconomic predictors as well as all individual technical 

indicators individually.  

 𝑦̂𝑡+1 = 𝛼̂𝑖,𝑡 + 𝛽̂𝑖,𝑡𝑥𝑖,𝑡 (34) 

where 𝛼̂𝑖,𝑡 and 𝛽̂𝑖,𝑡 are ordinary least squares estimates of bivariate predictive regression 

model for predictor 𝑥𝑖 at time 𝑡 and 𝑦̂𝑡+1 is the equity premium forecast. Both, Pan and 

CT restrictions are implemented forecasts constructed using macroeconomic predictors. 

Forecasts that use individual technical indicators are referred to as TECH forecasts. Pan 

constraints are not implemented for TECH variables, as the use of Pan constraints would 

not be meaningful for binary variables. Similarly, CT constraints are not utilized in 

forecasts produced by technical indicators, as the CT constraints do not alter the forecasts 

at all (given that the parameter estimates have correct signs). Technical indicators cannot 

take negative values, and it is highly unlikely that forecasts using technical indicators 

would imply negative equity premium forecasts. 

6.2.2 Multiple-predictor regression models 

Following the literature, I use two multiple regression models to forecast equity premium 

using both predictor sets, technical indicators and macroeconomic predictors. Again, CT 

and Pan restrictions are implemented to forecasts produced by macroeconomic predictors.  

Multiple regression models include the Kitchen Sink forecast model used by Goyal and 

Welch (2008), which has been slightly modified. In their specification, it includes 14 

macroeconomic predictors, but my specification does not include the variables DE and 

TMS, as these variables can be formed as linear combinations of other predictors, making 

the use of a linear model problematic. Thus, the model is the form 

    𝑦̂𝑡+1 = α̂𝑡 + 𝒙’𝑡𝛃̂𝑡,        (35) 

where α̂𝑡 𝑎𝑛𝑑 𝛃̂𝑡 are ordinary least squares estimates of predictive multiple regression 

model for predictor set 𝒙𝑡 at time t. 
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Second multiple regression model is one in which, at each estimation step, a maximum 

of three predictive variables are selected from the same 12 variables as in the previous 

multiple regression model, using the Bayesian information criterion. Thus, following 

Cremers (2002) the model takes the form 

 𝑦̂𝑡+1 = α̂𝑚,𝑡 + 𝒙’𝑚,𝑡𝛃̂𝑚,𝑡, (36) 

where m refers to the predictor set with the lowest BIC at time t. For example, m can be 

1, when the BIC choose only the first variable as predictor, or m can be (1,6,12), when 

according to the BIC the best model to predict equity premium consist of the first, the 

sixth and the twelfth predictor of the corresponding predictor space 𝒙𝒕. Coefficients  

α̂𝑚,𝑡 𝑎𝑛𝑑 𝛃̂𝑚,𝑡 are ordinary least squares estimates of predictive multiple regression 

model for the predictor vector 𝒙𝑚,𝑡 at time t.  

6.2.3 Forecast combinations 

Following Rapach et al (2010), I examine the forecast combination of different bivariate 

forecasts. Forecast combinations are implemented separately for forecasts produced with 

technical indicators and for forecasts produced with macroeconomic predictors. I 

consider two types of forecast combinations. The equally weighted forecast combination, 

which is referred to as POOL-AVERAGE, and the optimally weighted forecast 

combination, which is referred to as POOL-DMSFE (discount MSFE). For forecasts 

produced by bivariate models, pooled forecasts take the form 

 𝑦̂𝑡+1
𝑝𝑜𝑜𝑙  = ∑ ω𝑖,𝑡𝑦̂𝑖,𝑡+1 𝑀

𝑖=1 ,  (37) 

where 𝑦̂𝑖,𝑡+1 is the forecast produced with bivariate regression model i, M is the total 

number of bivariate forecasts produced using either macroeconomic predictors or 

technical indicators, and ω𝑖,𝑡 the weight of the forecast i. Following, Stock and Watson 

(2004) and Rapach et al. (2010)  

 ω𝑖,𝑡 =

1

ϕ𝑖,𝑡

∑
1

ϕ𝑚,𝑡

𝑀
𝑚=1

,  (38) 

where 

 ϕ𝑖,𝑡 = ∑ 𝜃𝑡−1−𝑠(𝑦𝑠+1 − 𝑦̂𝑖,𝑠+1)
2𝑡−1

𝑠=𝑃0
,  (39) 
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where 𝜃 is a discount factor and 𝑃0 + 1 is the start of the holdout out-of-sample period. 

Following Rapach et al. (2010) I use 𝜃 = 0.75 and 𝜃 = 1 as discount factors. Setting the 

discount factor to 𝜃 = 1 is a special case of POOL-DMSFE resulting equally weighted 

forecast combination, i.e., POOL-AVERAGE model, which can be written as 

 𝑦̂𝑡+1
𝑝𝑜𝑜𝑙 =

1

𝑀
∑ 𝑦̂𝑖,𝑡+1

𝑀
𝑖=1 .  (40) 

6.2.4 Diffusion indices 

In diffusion indices forecasts, which are based on the principal components of predictor 

spaces, the predictors must first be standardized by subtracting their variable-specific 

means and dividing by their variable-specific standard deviations (Ludvigson & Ng, 

2007). After this, principal components are formed from the set of predictors, and the first 

principal component (Rapach et al., 2013) is used in the predictive principal component 

regression. Again, this is carried out separately for technical indicators and 

macroeconomic predictors.  

6.2.5 Sum-of-the-parts 

Following Ferreira and Santa-Clara (2011), I generate forecasts using their sum-of-the-

parts method. The sum-of-the-parts method does not use technical indicators, but only 

focuses on DP (dividend-price ratio) and earnings. Sum-of-the-parts model is form 

 𝑦̂𝑡+1
𝑆𝑂𝑃 = 𝑒̅𝑡,20 + 𝑙𝑜𝑔(DP + 1) − 𝑟𝑡+1

f ,  (41) 

where 𝑦̂𝑡+1
𝑆𝑂𝑃 is the equity premium forecast produced using the sum-of-the-parts model, 

𝑒̅𝑡,20 is the 20-year moving-average of log earnings growth at time t and 𝑟𝑡
f is the risk-free 

rate.   

6.2.6 Technical indicator combinations 

Lastly, I present a new, but fairly simple, way to combine technical indicators. In this 

method, technical indicators are used in a multiple-predictor models in such a way that 

the equity premium is predicted together by MA(s, l), VOL(s, l), and MOM(l). Thus, the 

combinations are formed by combining all three different indicators and using the same 

s and l lengths in all of them. A total of six sets of these indicator groups are generated, 
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and I refer to them as COMB(s, l).  Table 6 shows the forecast sets formed by different 

technical indicators are presented. 

Table 6. Technical indicator combination sets 

COMB(1, 9) {MA(1, 9),  MOM(9), VOL(1, 9)} 

COMB(1, 12) {MA(1, 12),  MOM(12), VOL(1, 12)} 

COMB(2, 9) {MA(2, 9),  MOM(9), VOL(2, 9)} 

COMB(2, 12) {MA(2, 12),  MOM(12), VOL(2, 12)} 

COMB(3, 9) {MA(3, 9),  MOM(9), VOL(3, 9)} 

COMB(3, 12) {MA(3, 12),  MOM(12), VOL(3, 12)} 
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7 Results 

In this section, I present the forecast results in both statistical (MSFE) and economic (CER 

gains) terms. Of the 17 variables used by Goyal and Welch (2008), I employ 14 variables6  

in my own analysis. Technical indicators are also presented. Thus, I will use the total of 

28 individual predictors which are presented in Table 7. 

Table 7. All individual predictor variables 

Variable Definition 

DP Dividend Price Ratio 

DY Dividend Yield 

EP Earnings Price Ratio 

DE Dividend Payout Ratio 

SVAR Stock Variance 

BM Book-to-Market Ratio 

NTIS Net Equity Expansion 

TBL Treasury-bill Rate 

LTY Long-term Government Bond 

LTR Long-term Rate of Returns 

TMS Term-spread 

DFY Default Yield Spread 

DFR Default Return Spread 

INFL Consumer Price Inlation 

MA(1, 9) Moving-Average indicator with s=1 and l=9 

MA(1, 12) Moving-Average indicator with s=1 and l=12 

MA(2, 9) Moving-Average indicator with s=2 and l=9 

MA(2, 12) Moving-Average indicator with s=2 and l=12 

MA(3, 9) Moving-Average indicator with s=3 and l=9 

MA(3, 12) Moving-Average indicator with s=3 and l=12 

MOM(9) Momentum Indicator with l=9 

MOM(12) Momentum Indicator with l=12 

VOL(1, 9) Volume based indicator with s=1 and l=9 

VOL(1, 12) Volume based indicator with s=1 and l=12 

VOL(2, 9) Volume based indicator with s=2 and l=9 

VOL(2, 12) Volume based indicator with s=2 and l=12 

VOL(3, 9) Volume based indicator with s=3 and l=9 

VOL(3, 12) Volume based indicator with s=3 and l=12 

 

6 Amit Goyal's updated dataset on his website does not include the variables EQIS, cayp, or IK; therefore, 

I will not use them in the empirical part of my thesis. 
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In addition to the variables presented in Table 7, I also examine the predictive power of 

six combined technical indicators shown in Table 6. The variables are commonly used in 

all presented forecasting models, except for the Sum-of-the-parts model, which is only 

applied in the cases of the unrestricted and CT-constrained models and solely with 

macroeconomic predictors. The predictive power of the variables and different models 

are examined through both statistical and economic significance. 

7.1 Statistical significance 

In this section, the predictive ability of forecasting models and variables is examined in a 

statistical sense. Following Goyal and Welch (2008), as well as many others, predictive 

ability is examined through the so-called R2 metric, which is of the form of  (25). I present 

the R2 values separately for all bivariate forecasting model variables in the entire sample, 

as well as in different macroeconomic states of the world, which are determined according 

to NBER's recession and expansion periods. Forecasts made with other models are 

presented in a comprehensive manner, but like the bivariate forecasting models, 

predicting in different business cycle regimes (macroeconomic states) is examined 

separately.   
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Table 8. R2 statistics for all different bivariate models. Full forecast evaluation period. 

R2 statistics for all different bivariate forecast models during the entire forecast evaluation period. 
Note that the R2 is the out-of-sample R2 presented in equation (25), not the traditional R-squared. 
In the table, * indicates statistical significance at least at the 10% risk level, ** correspondingly at 
least at the 5% risk level, and *** at least at the 1% risk level. 

R2 Overall 

Predictor Unconstrained CT PAN TECH  

DP -0.98 -0.76 -0.07 MA(1, 9) 0.13 

DY -1.02 -0.79 -0.01 MA(1, 12) 0.37 

EP -0.93 -0.45 -0.15 MA(2, 9) 0.12 

DE -1.40 -0.52 -0.22 MA(2, 12) 0.53* 

SVAR -1.84 -1.84 -2.82 MA(3, 9) -0.20 

BM -1.31 -1.11 -0.24 MA(3, 12) -0.14 

NTIS -1.01 -0.95 -0.13 MOM(9) -0.06 

TBL -1.10 -0.03 -0.30 MOM(12) -0.03 

LTY -0.96 0.31* -1.25 VOL(1, 9) 0.21 

LTR -0.34* -0.31 -0.38 VOL(1, 12) 0.41* 

TMS -1.29 -1.47 -0.16 VOL(2, 9) 0.26 

DFY -0.55 -0.47 -0.46 VOL(2, 12) 0.30 

DFR -0.66 -0.11 -1.13 VOL(3, 9) -0.06 

INFL -0.68 -0.34 -0.22 VOL(3, 12) 0.51* 

 

Table 8 presents R2 values for different forecasting models during the entire forecast 

evaluation period. In Table 8, it is evident that none of the unconstrained models have 

positive R2 value and only one of them is statistically significant, suggesting a poor fit or 

insignificant results. As for the models with CT restrictions, none of the models show 

statistical significance, with most models exhibiting negative R2 values. Similarly, 

models with PAN restrictions also have negative R2 values, implying that they are not 

outperforming the historical average forecast. 

When considering the moving-average indicators, it is noteworthy that the MA(2, 12) 

indicator has a positive R2 value of 0.53 and is statistically significant. Moreover, the 

VOL(1, 12) and VOL(3, 12) models also have statistically significant positive R2 values 

of 0.41 and 0.51, respectively. However, the other forecasts produced using technical 

indicators do not demonstrate statistical significance, indicating that they may not provide 

reliable predictions for the equity premium. It can be observed that only among the 
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technical indicators are the only forecasts that are statistically significantly more accurate 

than the historical average throughout the entire forecast evaluation period.  

Table 9 presents the R2 statistics for all different bivariate forecast models during the 

NBER’s expansion periods in forecast evaluation period. 

Table 9. R2 statistics for all different bivariate models. Business cycle expansion periods. 

R2 statistics for all different bivariate forecast models during the NBER’s expansion periods in 
forecast evaluation period. Note that the R2 is the out-of-sample R2 presented in equation (25), 
not the traditional R-squared. In the table, * indicates statistical significance at least at the 10% 
risk level, ** correspondingly at least at the 5% risk level, and *** at least at the 1% risk level. 

R2 Expansion 

Predictor Unconstrained CT PAN TECH  

DP -1.97 -1.64 -0.28 MA(1, 9) -0.76 

DY -2.33 -1.97 0.19 MA(1, 12) -0.70 

EP -0.88 -0.68 -0.41 MA(2, 9) -0.65 

DE -2.05 -1.27 0.38 MA(2, 12) -0.27 

SVAR 0.04 0.04 1.01 MA(3, 9) -0.95 

BM -0.95 -0.87 -0.02 MA(3, 12) -0.47 

NTIS -0.01* 0.03* -0.02 MOM(9) -0.45 

TBL -1.42 0.22* 0.03 MOM(12) -0.45 

LTY -1.22 0.41* -3.57 VOL(1, 9) -0.58 

LTR -2.12 -1.26 -0.83 VOL(1, 12) -0.29 

TMS -3.04 -3.07 -0.26* VOL(2, 9) -0.15 

DFY -0.53 -0.53 -0.53 VOL(2, 12) 0.16 

DFR 0.07 0.13 0.16 VOL(3, 9) -0.32 

INFL -0.38 -0.05 -0.30 VOL(3, 12) 0.08 

 

From Table 9 it can be observed that the macroeconomic predictors with or without any 

restrictions generally exhibit negative R2 values, indicating a weaker predictive power 

than the historical average model. Notably, NTIS and TBL show a slightly positive R2 

value when CT restrictions are implemented, and TMS exhibits a marginally positive R2 

value with PAN restrictions.  

All Moving-Average based technical indicators display negative R2 values, which 

implies weaker forecasting performance than the historical average model during 

economic expansions. Similarly, the momentum models MOM(9) and MOM(12) exhibit 

negative R2 values, signifying a lack of predictive power in expansionary phases. Volume 
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based models present mixed results. While VOL(1, 9), VOL(1, 12), VOL(2, 9), and 

VOL(3, 9) show negative R2 values, VOL(2, 12) and VOL(3, 12) report positive R2 

values. 

In summary, most forecasting models exhibit weak performance during economic 

expansions, with only a few models presenting limited predictive power. This highlights 

the difficulty in accurately forecasting stock returns during periods of normal economic 

growth.  

Table 10 presents R2 statistics for all different bivariate forecast models during the 

NBER’s recession periods in forecast evaluation period. 

Table 10. R2 statistics for all bivariate forecasts. Business cycle recession periods. 

R2 statistics for all different bivariate forecast models during the NBER’s recession periods in 
forecast evaluation period. Note that the R2 is the out-of-sample R2 presented in equation (25), 
not the traditional R-squared. In the table, * indicates statistical significance at least at the 10% 
risk level, ** correspondingly at least at the 5% risk level, and *** at least at the 1% risk level. 

R2 Recession 

Predictor Unconstrained CT PAN TECH  

DP 1.23 1.22 0.40 MA(1, 9) 2.16** 

DY 1.94** 1.88** -0.46 MA(1, 12) 2.77** 

EP -1.03 0.06 0.44 MA(2, 9) 1.86* 

DE 0.08 1.17 -1.57 MA(2, 12) 2.36* 

SVAR -6.08 -6.08 -11.47 MA(3, 9) 1.50 

BM -2.12 -1.64 -0.72 MA(3, 12) 0.59 

NTIS -3.27 -3.16 -0.38 MOM(9) 0.85 

TBL -0.38 -0.61 -1.06 MOM(12) 0.91 

LTY -0.37 0.09 3.98* VOL(1, 9) 2.00** 

LTR 3.65** 1.82* 0.63 VOL(1, 12) 2.00* 

TMS 2.66** 2.14** 0.06 VOL(2, 9) 1.18 

DFY -0.58 -0.32 -0.33 VOL(2, 12) 0.60 

DFR -2.28 -0.64 -4.04 VOL(3, 9) 0.54 

INFL -1.36 -0.98 -0.05 VOL(3, 12) 1.49 

 

From Table 10 it can be observed that during recession periods, the unconstrained models, 

and models with CT, and PAN restrictions display mixed results. Positive R2 values are 

observed for predictors DP, DY, DE, LTY, LTR, and TMS. In particular, the 

unconstrained and CT models have statistically significant positive R2 values for DY 
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(1.94** and 1.88** respectively) and TMS (2.66** and 2.14** respectively). The LTR 

predictor exhibits a statistically significant positive R2 value for the unconstrained model 

(3.65**), while the CT model has the highest significant R2 value for variable LTY 

(3.98*). 

The moving-average technical indicator models, such as MA(1, 9), MA(1, 12), MA(2, 9), 

and MA(2, 12), show generally positive R2 values during recession periods. Among them, 

MA(1, 9) and MA(1, 12) exhibit statistically significant R2 values of 2.16** and 2.77**, 

respectively. Similarly, MA(2, 9) and MA(2, 12) have significant R2 values of 1.86* and 

2.36*, respectively. Volume based models present mixed results, with VOL(1, 9) and 

VOL(1, 12) showing statistically significant R2 values of 2.00** and 2.00*, respectively. 

It is worth noting that, unlike with macroeconomic predictors, all technical indicators 

have a positive R2, which indicates their superiority compared to the historical average. 

This is observed in only a few macroeconomic predictors.  

Table 11 presents R2 statistics for multiple-predictor forecast models during full forecast 

evaluation period (containing both expansion and recession periods). 

Table 11. R2 for different forecasting models. Full forecast evaluation period. 

Panel A presents R2 values for full forecast evaluation period for multiple-predictor models with 
macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 
column). Note that the R2 is the out-of-sample R2 presented in equation (25), not the traditional 
R-squared.  Panel B presents R2 values for the same period but using TECH COMB forecasts. * 
indicates statistically significantly lower MSFE than historical average forecast according to 
Clarke and West (2006) test at least at the 10% risk level, ** correspondingly at least at the 5% 
risk level, and *** at least at the 1% risk level.  

R2 Overall 

Panel A Unconstrained CT PAN TECH Panel B TECH COMB 

Kitchen sink -6.54 -1.06** -6.97  -1.19 Comb(1,9) -0.17 

BIC -7.49 -3.37 -3.45 0.17 Comb(1,12) 0.24 

POOL-AVG 0.30 0.41* 0.13 0.30 Comb(2,9) -0.26 

POOL-DMSFE 0.36 0.36* 0.15 0.30 Comb(2,12) 0.19 

Diffusion indices 0.07 0.12 -0.08 0.31 Comb(3,9) -0.84 

Sum-of-the-parts 0.55** 0.63**   Comb(3,12) 0.27 

 

Table 11 shows mixed results for different forecasting models. The Kitchen Sink and BIC 

models perform significantly worse, and the Sum-of-the-parts model appears to work 

best. Pooled models also perform well, producing exclusively positive R2 values 

throughout the entire evaluation period. From the table, it can also be observed that 
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forecasts implemented with CT constraints produce statistically significantly smaller 

MSFEs than the historical average model. In particular, the Sum-of-the-parts model 

appears to produce the smallest MSFEs at the lowest risk level. 

Technical indicators demonstrates mixed results, with positive R2 values for BIC (0.17), 

POOL-AVG (0.30), POOL-DMSFE (0.30), and the diffusion indices (0.31). However, 

negative R2 values are observed for the kitchen sink (-1.19) model. 

Regarding the TECH comb models, Comb(1, 12), Comb(2, 12) and Comb(3, 12)  show 

positive R2 values of 0.24, 0.19, and 0.27 respectively, while Comb(1, 9) and Comb(2, 

9) present negative R2 values of -0.17 and -0.26, respectively. Additionally, Comb(3, 9) 

has a significantly negative R2 value of -0.84, and shows a positive R2 value of 0.27. 

Table 12 presents R2 statistics for different forecasting models on expanding periods. 

Table 12. R2 for different forecasting models. Business cycle expansion periods.  

Panel A presents R2 values for expansion periods for multiple-predictor models with 
macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 
column). Panel B presents R2 values for the same period but using TECH COMB forecasts. Note 
that the R2 is the out-of-sample R2 presented in equation (25), not the traditional R-squared. * 
indicates statistically significantly lower MSFE than historical average forecast according to Clark 
and West (2006) test at least at the 10% risk level, ** correspondingly at least at the 5% risk level, 
and *** at least at the 1% risk level. 

R2 Expansion 

Panel A Unconstrained CT PAN TECH Panel B TECH COMB 

Kitchen sink -1.91** 0.48*** -3.66 -3.31 Comb(1,9) -1.43 

BIC -6.33 -3.66 -3.21 -0.70 Comb(1,12) -0.87 

POOL-AVG 0.01 0.02 0.26 -0.26 Comb(2,9) -1.22 

POOL-DMSFE -0.11 -0.08 0.23 -0.27 Comb(2,12) -0.61 

Diffusion indices -0.51 -0.51 -0.25 -0.42 Comb(3,9) -1.74 

Sum-of-the-parts 0.17 0.19   Comb(3,12) -0.18 

 

Table 12 shows that all forecasts produced using technical indicators generate negative 

R2 statistics, implying that during expansion periods, multidimensional models formed 

with technical indicators are not effective in predicting equity premium. The weakness of 

technical indicators in predicting equity premium during expansions is further supported 

by the fact that in Table 7, only the VOL(3, 12) indicator had better predictive ability than 

the historical average model, albeit very slightly.  
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Multiple-predictor models implemented with macroeconomic predictors are also mostly 

weak, although among these, the Sum-of-the-parts model without and with constraints, 

as well as all POOL-AVG model implemented with macroeconomic indicators, produce 

positive R2 values.  

Table 13 presents R2 statistics for different forecasting models on recession periods. 

Table 13. R2 for different forecasting models. Business cycle recession periods.  

Panel A presents R2 values for recession periods for multiple-predictor models with 
macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 
column). Panel B presents R2 values for the same period but using TECH COMB forecasts. Note 
that the R2 is the out-of-sample R2 presented in equation (25), not the traditional R-squared. * 
indicates statistically significantly lower MSFE than historical average forecast according to Clark 
and West (2006) test at least at the 10% risk level, ** correspondingly at least at the 5% risk level, 
and *** at least at the 1% risk level. 

R2 Recession 

Panel A Unconstrained CT PAN TECH Panel B TECH COMB 

Kitchen sink -16.97 -4.52 -14.43 3.60** Comb(1,9) 2.68** 

BIC -10.12 -2.73 -3.99 2.12* Comb(1,12) 2.77** 

POOL-AVG 0.97 1.26* -0.14 1.55* Comb(2,9) 1.91* 

POOL-DMSFE 1.43 1.37* -0.05 1.58* Comb(2,12) 2.01* 

Diffusion indices 1.39** 1.54** 0.31 1.93* Comb(3,9) 1.20 

Sum-of-the-parts 1.40* 1.63**   Comb(3,12) 1.30 

 

Table 13 shows that during recession periods, the Kitchen sink and BIC models using 

macroeconomic predictors produce significantly less accurate forecasts in terms of MSFE 

than other comparison models. The TECH model consistently demonstrates positive R2 

values, and the TECH comb models show positive R2 values for all combinations, 

suggesting that these models may be more suitable for forecasting stock returns during 

recession periods. When examining the predictive power of technical indicators 

compared to macroeconomic predictors using the same models, it is observed that 

technical indicators outperform macroeconomic predictors in all models (except, of 

course, the sum-of-the-parts model, which is not suitable for technical indicators). It can 

also be seen that TECH comb models generally perform better than forecasts formed with 

macroeconomic predictors. 

From Table 13, it can also be observed that for all forecasts formed using technical 

indicators, with the exception of Comb(3, 9) and Comb(3, 12), the Clark and West (2006) 
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test indicates statistically significantly smaller MSFEs than the historical average model 

at least at the 10% significance level. It is also observed that in all cases except for 

forecasts produced by BIC and Kitchen sink models, the forecasts implemented with CT 

constraints have statistically significantly smaller MSFEs than the historical average 

model. 

7.2 Economic significance 

Examining economic significance, following for example Campbell and Thompson 

(2008), Ferreira and Santa-Clara (2011), Neely et al. (2014), and Pan et al. (2020), the 

Certainty Equivalent Returns (CERs, see Section 3.5) are considered for a mean-variance 

agent who optimally allocates their assets between equities and risk-free interest rates 

based on the equity premium forecasts produced using examined models. At the end of 

each period t, the agent invests a proportion 𝑤𝑡 of their assets in equities and a proportion 

1 − 𝑤𝑡 in risk-free rate. Optimal  𝑤𝑡 is given by 

 𝑤𝑡 =
1

𝛾

𝑦̂𝑡+1,𝑖

𝜎̂𝑡+1,𝑖 
,  (43) 

where 𝑦̂𝑡+1,𝑖 is the forecast produced with model i, 𝜎̂𝑡+1,𝑖 is a forecast of its variance and 

𝛾 is the coefficient of investors relative risk aversion. In accordance with Neely et al. 

(2014), 𝑤𝑡 is set between 0 and 1.5, allowing for 50% leverage. The investor is assumed 

to use a moving window of the past five years of monthly stock returns to determine the 

variance of the equity premium. The portfolio return for the following period (t+1) is  

 𝑅𝑝,𝑡+1 = 𝑤𝑡𝑦𝑡+1 + 𝑟𝑡+1
𝑓

,  (44) 

where 𝑦𝑡+1 is the realized equity premium and 𝑟𝑡+1
𝑓

is the realized risk-free rate on period 

t+1. Thus, the CER of the portfolio is 

 𝐶𝐸𝑅𝑝 = 𝜇̂𝑝,𝑡 −
1

2
𝛾𝜎̂𝑡+1,𝑖, (45)  

where 𝜇̂𝑝,𝑖 is the sample mean and 𝜎̂𝑡+1,𝑖 the sample variance of the investor’s portfolio 

during forecast evaluation period.  

As the measure of economic significance of different models and variables I calculate 

CER gains, the differences between CERs obtained using different forecasting models 

presented in Section 6.2 and CERs obtained using historical average model. CER gain for 
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model i is denoted as 𝛥𝑖. CER gains are multiplied by 1200 so that they can be intepreted 

as annual percentages. 

Table 14 presents the CER gains for different macroeconomic predictors and technical 

indicators over the entire forecast evaluation period. 

Table 14. CER gains for bivariate forecasts. Full forecast evaluation sample. 

Panel A presents CER gains for bivariate forecasts produced by macroeconomic predictors within 
the full forecast evaluation period (columns 2, 3, 5). Panel B presents CER gains for bivariate 
forecasts produced by technical indicators (column 6) for full forecast sample. 

Δ Overall 

Panel A Unrestricted CT PAN Panel B TECH 

DP -1.53 -1.53 0.17 MA(1,9) 1.24 

DY -1.22 -1.22 0.38 MA(1,12) 2.15 

EP 0.16 0.16 -0.11 MA(2,9) 1.38 

DE -0.80 -0.73 -0.08 MA(2,12) 2.33 

SVAR 0.79 -0.01 0.07 MA(3,9) 0.95 

BM -1.54 -1.37 0.12 MA(3,12) 0.80 

NTIS -0.80 -0.79 -0.15 MOM(9) 0.99 

TBL 0.36 0.36 -0.30 MOM(12) 0.93 

LTY 0.37 0.37 -0.36 VOL(1,9) 1.17 

LTR 0.20 0.20 -0.04 VOL(1,12) 1.77 

TMS 0.37 0.37 1.66 VOL(2,9) 1.02 

DFY -0.75 -0.67 -0.58 VOL(2,12) 1.06 

DFR 0.27 0.88 -0.14 VOL(3,9) 0.46 

INFL -0.12 -0.12 -0.17 VOL(3,12) 1.61 

  

From Table 14 it can be observed that technical indicators consistently produce positive 

CER gains, which implies their clear superiority over the historical average. Among them, 

the MA(1, 12) indicator yields the highest economic benefit relative to the historical mean 

model. Table 14 shows that the CT constraints do not alter the unrestricted Goyal and 

Welch (2008) setup in any way. Similarly, the PAN constraints do not guarantee high 

economic benefits when examining the entire forecast evaluation period in. Among the 

forecasts implemented with PAN constraints, only TMS exhibits relatively high CER 

gains. In the unrestricted models, and also with the CT constrains and PAN constrains, 

variable-specific negative economic benefits are observed in relation to the historical 

average model.  
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Table 15 presents the CER gains for different macroeconomic predictors and technical 

indicators for NBER expansion periods. 

Table 15. CER gains for bivariate forecasts. Business cycle expansion periods. 

Panel A presents CER gains for bivariate forecasts produced by macroeconomic predictors within 
expansion periods (columns 2, 3, 5). Panel B presents CER gains for bivariate forecasts produced 
by technical indicators (column 6) within expansion periods. 

Δ Expansion 

Panel A Unrestricted CT PAN Panel B TECH 

DP -1.53 -1.53 0.17 MA(1,9) -0.68 

DY -1.22 -1.22 0.38 MA(1,12) -0.56 

EP 0.16 0.16 -0.11 MA(2,9) -0.54 

DE -0.80 -0.73 -0.08 MA(2,12) 0.11 

SVAR 0.79 -0.01 0.07 MA(3,9) -0.90 

BM -1.54 -1.37 0.12 MA(3,12) -0.48 

NTIS -0.80 -0.79 -0.15 MOM(9) -0.34 

TBL 0.36 0.36 -0.30 MOM(12) -0.38 

LTY 0.37 0.37 -0.36 VOL(1,9) -0.60 

LTR 0.20 0.20 -0.04 VOL(1,12) -0.33 

TMS 0.37 0.37 1.66 VOL(2,9) -0.34 

DFY -0.75 -0.67 -0.58 VOL(2,12) -0.01 

DFR 0.27 0.88 -0.14 VOL(3,9) -0.41 

INFL -0.12 -0.12 -0.17 VOL(3,12) -0.10 

 

Table 15 reveals similar findings to those in Table 9. Variables that produce superior 

forecasts than the historical average during expansion periods are scarce. Technical 

indicators, with one exception, produce negative CER gains. Forecasts generated using 

macroeconomic predictors are also predominantly weak, although there are several low 

but positive CER gains among them. Constraints do not provide any noticeable benefit in 

comparison to unrestricted bivariate forecasts.  

Table 16 presents the CER gains for different macroeconomic predictors and technical 

indicators for NBER recession periods. 
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Table 16. CER gains for bivariate forecasts. Business cycle recession periods. 

Panel A presents CER gains for bivariate forecasts produced by macroeconomic predictors within 
recession periods (columns 2, 3, 5). Panel B presents CER gains for bivariate forecasts produced 
by technical indicators (column 6) within recession periods. 

Δ Recession 

Panel A Unrestricted CT PAN Panel B TECH 

DP 2.78 2.78 4.67 MA(1,9) 13.04 

DY 6.50 6.50 0.52 MA(1,12) 18.85 

EP 4.35 4.35 2.43 MA(2,9) 13.20 

DE 3.71 4.22 -2.81 MA(2,12) 15.95 

SVAR 8.75 0.00 2.23 MA(3,9) 12.35 

BM -4.41 -3.73 0.78 MA(3,12) 8.73 

NTIS -7.75 -7.73 -1.00 MOM(9) 9.27 

TBL -1.37 -1.37 -2.75 MOM(12) 9.10 

LTY 0.29 0.29 3.70 VOL(1,9) 12.04 

LTR 6.57 6.57 1.99 VOL(1,12) 14.69 

TMS 5.87 5.87 7.15 VOL(2,9) 9.48 

DFY -3.75 -3.18 0.24 VOL(2,12) 7.72 

DFR 0.44 3.68 -3.87 VOL(3,9) 5.91 

INFL -0.20 -0.20 0.60 VOL(3,12) 12.12 

 

From the Table 16, it is evident that the economic benefits generated by technical 

indicators are substantially higher than those of other individual explanatory variables 

during recession periods. In particular, MA(1, 12) and MA(2, 12) are very high. Positive 

and relatively high economic benefits are found in all model families, but negative values 

are also present among macroeconomic predictors. The observations support the 

argument that stock market forecasting heavily depends on the prevailing macroeconomic 

environment.  

Table 17 presents CER gains for multiple forecast models during full forecast evaluation 

period. 
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Table 17. CER gains for different forecasting models. Full forecast evaluation period. 

Panel A presents CER gains for full forecast evaluation period for multiple-predictor models with 
macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 
column). Panel B presents CER gains for the same period using TECH COMB forecasts (sixth 
column). 

Δ  Overall 

Panel A Unrestricted CT PAN TECH Panel B COMB 

Kitchen sink 1.20 1.20 -1.49 1.34 Comb(1,9) 1.23 

BIC -1.95 -1.95 -1.13 1.94 Comb(1,12) 2.03 

POOL-AVG -0.03 -0.03 0.19 1.35 Comb(2,9) 1.03 

POOL-DMSFE -0.11 -0.11 0.18 1.36 Comb(2,12) 2.19 

Diffusion indices -0.65 -0.65 0.09 1.72 Comb(3,9) 0.42 

Sum-of-the-parts 0.59 0.59 
  Comb(3,12) 1.58 

 

Table 17, it is once again observed that forecasts formed using technical indicators, this 

time with any model specification, generate large positive economic benefits compared 

to the historical average. The same cannot be said for all other models. Surprisingly, the 

Kitchen Sink model performs quite well, even though it was statistically weak. The 

results, however, supports the need for using technical indicators in equity premium 

forecasts, not only as individual explanatory variables in bivariate forecasts, but  with 

larger models as well. It is also observed that the models generating the highest CER gains 

are combinations of technical indicators where s=1 and l=12, and s=2 and l=12.  

Table 18 presents the CER gains for multiple-predictor models for NBER expansion 

periods. 
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Table 18. CER gains for different forecasting models. Business cycle expansion periods. 

Panel A presents CER gains for expansion periods for multiple-predictor models with 

macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 

column). Panel B presents CER gains for the same period using TECH COMB forecasts (sixth 

column). 

Δ Expansion 

Panel A Unrestricted CT PAN TECH Panel B COMB 

Kitchen_sink 1.76 1.76 -1.11 -1.12 Comb(1,9) -1.11 

BIC -1.48 -1.48 0.16 -0.26 Comb(1,12) -0.50 

POOL-AVG 0.79 0.79 0.32 -0.32 Comb(2,9) -0.95 

POOL-DMSFE 0.87 0.87 0.32 -0.32 Comb(2,12) 0.25 

Diffusion indices 0.43 0.43 0.88 -0.31 Comb(3,9) -1.43 

Sum-of-the-parts 1.48 1.48 
  

Comb(3,12) -0.27 

 

From Table 18, it can be observed that the CER gains for forecasts implemented using 

macroeconomic predictors are now predominantly positive, unlike those for technical 

indicators or their combinations. It appears that by using macroeconomic predictors and 

some of the presented forecasting models, higher economic benefits than the historical 

average can be achieved. Among the technical indicators, only Comb(2, 12) generates 

positive CER gains, but these are significantly than those produced by macroeconomic 

predictors. Of these, only the BIC model produces lower CER gains than the best-

performing technical indicator.  

Table 19 presents the CER gains for multiple-predictor models during NBER recession 

periods. 
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Table 19. CER gains for different forecasting models. Business cycle recession periods. 

Panel A presents CER gains for recession periods for multiple-predictor models with 
macroeconomic predictors (second, third and fourth column) and technical indicators (fifth 
column). Panel B presents CER gains for the same period using TECH COMB forecasts (sixth 
column). 

Δ Recession 

Panel A Unrestricted CT PAN TECH Panel B COMB 

Kitchen_sink 4.97 4.97 1.22 16.45 Comb(1,9) 15.69 

BIC 1.19 1.19 8.00 15.48 Comb(1,12) 17.71 

POOL-AVG 5.80 5.80 1.20 11.65 Comb(2,9) 13.25 

POOL-DMSFE 6.88 6.88 1.25 11.76 Comb(2,12) 14.20 

Diffusion indices 7.04 7.04 5.66 14.23 Comb(3,9) 11.76 

Sum-of-the-parts 6.94 6.94 
  

Comb(3,12) 12.89 

 

In Table 19, the CER gains for various multiple-predictor models using macroeconomic 

predictors, technical indicators, and combinations of technical indicators are presented. 

From the table, it can be observed that technical indicators clearly produce the highest 

CER gains. Of these, the Comb(1, 12) model yields the highest. Models using 

macroeconomic predictors also generate exclusively positive economic benefits, albeit 

significantly weaker than technical indicators, further indicating that technical indicators 

perform better than macroeconomic indicators when predicting recession periods. 

7.3 Discussion 

In bivariate forecasts, the regression coefficients of technical indicators are generally 

more stable and have smaller absolute values than those of macroeconomic predictors, 

which may partly explain the superiority of technical indicators over macroeconomic 

predictors. Figure 6 displays the time series of recursive expanding window regression 

coefficients for the MA(2, 12) indicator and DP. 
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Figure 6. MA(2, 12) indicator (blue line) and DP (black line) regression coefficients. Forecast 
evaluation period. Grey shades present NBER recession periods.  

 

In Figure 6, it can be observed that the DP regression coefficient (black line) varies much 

more broadly than the one for the MA(2, 12) technical indicator (blue line). The DP 

coefficient is relatively large before the financial crisis, after which it drops significantly 

but then rises sharply again in the 2010s. In contrast, the MA(2, 12) indicator's regression 

coefficient fluctuates relatively stable on both sides of its average coefficient estimate. 

Similar conclusions can be drawn from the regression coefficients of other bivariate 

model variables (See Appendix 2. Bivariate Regression Coefficients). The regression 

coefficients of technical indicators are of a much lower magnitude, resulting in forecasts 

that do not deviate nearly as much from those produced by the historical average model 

as those made with macroeconomic predictors. 

In Figure 7, the time series of forecasts made using macroeconomic predictors with the 

POOL-DMSFE is presented. 
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Figure 7. POOL-DMSFE with macroeconomic predictors equity premium forecast (CT restriction 
implemented) time series. Forecast evaluation period. Grey shades represent NBER recession 
periods. 

In Figure 7, it can be observed that the POOL-DMSFE forecasts made with 

macroeconomic predictors have a very noisy nature. The variation in forecasts is strongest 

at the beginning of the forecast evaluation period. As we move into the 90s, the forecasts 

concentrate quite tightly around 0.005 on both sides. The impact of NBER recession 

periods on the forecasts is not apparent. 

In Figure 8, the time series of forecasts made using technical indicators with the POOL-

DMSFE is presented. 
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Figure 8. POOL-DMSFE with technical indicators equity premium forecast time series. Forecast 
evaluation period. Grey shades represent NBER recession periods. 

 

From Figure 8, it can be observed how the nature of technical indicators is reflected in 

the forecasts made using them. The minimum and maximum values of the forecasts do 

not differ much from the forecasts made with macroeconomic predictors, but their nature 

is clearly less noisy. Unlike with macroeconomic predictors, the forecasts are noticeably 

more persistent. High values are often followed by several high forecasts, whereas 

forecasts made with macroeconomic predictors tend to oscillate more frequently on both 

sides of the average forecast. It can be observed that during NBER recession periods, the 

forecasts often decrease significantly. 

Although technical indicators seem to produce better forecasts than macroeconomic 

predictors, it does not necessarily mean that they provide better information about future 

returns. The superiority of technical indicators may be due to their more stable nature 

compared to macroeconomic predictors. Low regression coefficients for technical 

indicators imply that the constant term plays a significant role in the forecasts produced 

by them, which cannot deviate much from the historical average forecast. Technical 

indicators, therefore, fine-tune the historical average forecasts with a small, stable 

information addition. The forecasts implied by technical indicators are quite similar to 
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each other, which is not surprising based on the Table 2 showing strong mutual 

correlations. This is also evident in the regression coefficients (see Appendix 2. Bivariate 

Regression Coefficients), which appear to follow a very similar pattern. 

Results show that combining technical indicators using various models does not seem to 

yield substantial added value. Conversely, employing macroeconomic predictors in 

conjunction with more comprehensive models often results in appreciable benefits. This 

can be attributed to the inherent stability of technical indicators, their coefficients, and 

consequently, the forecasts generated, which is in stark contrast to the situation with 

macroeconomic predictors. Rapach and Zhou (2013) propose that by adopting 

appropriate model specifications that factor in uncertainty and instability, it is possible to 

derive considerably more precise forecasts. This approach is indispensable for 

macroeconomic predictors, unlike the case with technical indicators. 

The conclusions of the economic significance analysis do not change when using other 

risk aversion parameters instead of 𝛾=5. The conclusions regarding statistical significance 

or economic significance remain the same when examining different expanding window 

sizes or different sample sizes.  
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8 Conclusions 

In this thesis, I have conducted a review of recent equity premium forecasting and 

introduced the background theory and concepts relevant to this forecasting. The 

forecasting methods and evaluation methods presented are widely applicable to other 

economic applications. In particular, the methods used provide an overview of out-of-

sample forecasting methodology in financial econometric literature. 

Equity premium forecasts support existing literature in many ways. It is observed that 

forecasting during economic expansions is particularly challenging. Well-established 

macroeconomic predictors in the literature are unable to produce statistically accurate 

forecasts or forecasts from which investors could benefit economically during expansion 

periods. Technical indicators also yield significantly weaker economic benefits in 

expansions compared to the historical average model. However, investors could benefit 

economically from macroeconomic predictors by using them together in broader 

forecasting models, even during economic expansions. On the other hand, forecasting 

during recessions is not as hard as forecasting during expansions. Technical indicators 

provide the best forecasts both statistically and economically during recession periods 

and during full forecast evaluation period. Combining technical indicators or including 

them in broader models does not seem to make a significant difference due to their stable 

nature. 

The results of the study suggests that an optimal approach could involve the deployment 

of multiple-predictor models that use macroeconomic predictors during periods of 

economic expansion, and individual technical indicators during recessions. This 

contribution to the discourse on equity premium forecasting advocates for a state-

dependent forecasting methodology. One could use different models or predictors 

depending on the current economic state, a recession or expansion. By doing so, it might 

be possible to enhance the forecasting accuracy and economic benefits derived from the 

predictions. This state-dependent forecasting methodology could potentially provide 

more reliable and robust results for investors and policymakers who need to make 

informed decisions based on the expected equity premium. Further research could focus 

on developing and testing state-dependent forecasting models and identifying the most 

suitable predictors for each economic state.  
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It should indeed be noted from the forecast results that the historical average of the equity 

premium is positive, while in a recession, equity premium is generally negative. 

Therefore, instead using historical average as benchmark model during both recession 

and expansion periods, it might be appropriate to compare the equity premium separately 

in recessions and expansions using their state-dependent historical averages as benchmark 

models. This approach could provide a more sensible benchmark for comparing different 

forecasting models. 
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Appendices 

Appendix 1. Basic Concepts 

Random Variable 

Let (Ω, F, P) be a probability space where Ω is the set of all possible elementary events, 

F is the sigma-algebra of all events, and P is the probability measure defined on 𝐹. A 

random variable Y is defined as a real-valued function on Ω, such that for every real 

number 𝑐, the set Ac = {ω ∈ Ω|Y(ω) ≤ c} is in 𝐹. The function 𝐹: 𝑅 → [0,1],   where 

𝐹(c) = 𝑃(Ac), is called the cumulative distribution function (CDF) of the random 

variable Y. (Lütkepohl 2006, 2-3) 

Expected Value of a Random Variable 

The expected value, also known as the mathematical expectation or the mean, is a 

fundamental concept in probability and statistics. It is defined as the sum of the product 

of each outcome of a random variable and its corresponding probability. In mathematical 

terms, for a discrete random variable 𝑋 with a probability mass function 𝑝(𝑥), the 

expected value can be calculated as:  

 𝐸[𝑋] = ∑ 𝑥 𝑝(𝑥). (1) 

For a continuous random variable with a probability density function 𝑓(𝑥), the expected 

value is calculated as: 

 𝐸[𝑋] = ∫ 𝑥 𝑓(𝑥)𝑑𝑥. (2) 

(Franke et al. 2015. 40-41) 

Variance and Covariance of a Random Variable 

Variance is a statistical measure that describes the dispersion or spread of a set of data 

points around the mean or average value. Mathematically, the variance of a random 

variable 𝑋 is defined as the expected value of the squared deviation of 𝑋 from its mean, 

and is represented as 𝑉𝑎𝑟(𝑋). Variance can be formulated as 

 𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − μ)2], (3) 

where 𝜇 represents the mean of 𝑋. (Franke et al. 2015, 40-41) 
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Covariance, on the other hand, is a measure of the joint variability of two random 

variables 𝑋 and 𝑌. It describes the extent to which the two variables change together. 

Positive covariance indicates that the variables tend to increase or decrease together, 

while negative covariance indicates that one variable tends to increase as the other 

decreases. Covariance can be presented as 

 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − μ𝑥)(𝑌 − μ𝑦)], (4) 

where μ𝑥 and μ𝑦 represent the means of 𝑋 and 𝑌, respectively. 

Both variance and covariance are important concepts in statistics, finance, and other fields 

where data analysis and risk management are important. They provide a way to quantify 

and analyze the relationships between different variables and to assess the risk of 

investment portfolios. (Franke et al. 2015. 42-43) 

Autocorrelation 

Autocorrelation, also referred as serial correlation, is a statistical concept that measures 

the linear dependence between the values of a time series and its lagged values. In other 

words, autocorrelation refers to the extent to which the value of a time series at time 𝑡 is 

correlated with its value at time t-k, where k is the lag. 

Mathematically, autocorrelation is defined as the correlation coefficient between two sets 

of values, one being the original time series and the other being a lagged version of the 

same series. The autocorrelation coefficient at lag 𝑘, denoted as ρ(k), can be constructed 

as: 

 𝜌(𝑘) = 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑘)/𝑉𝑎𝑟(𝑋𝑡). (5) 

𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑘) represents the covariance between the values at time t and t-k, and 𝑉𝑎𝑟(𝑋𝑡) 

represents the variance of the original time series. If a time series has positive 

autocorrelation, it means that its values are positively related to their lagged values, and 

if a time series has negative autocorrelation, it means that its values are negatively related 

to their lagged values. (Brockwell and Davis 2016, 13-14)   

Random Walk 

Random walk is a mathematical concept that models a process where an object moves 

from one position to another over time based on random chance. The concept is widely 



87 
 

used in finance, physics, and other fields to describe a variety of physical and abstract 

systems. 

Mathematically, a random walk can be modelled as a sequence of random variables, 

where the value of each variable depends on the value of the previous one. For example, 

let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑡 be a sequence of random variables representing the movement of an 

object at discrete points in time. The value of 𝑋𝑡 at time 𝑡 can be defined as the sum of 

the previous values: 

 𝑋𝑡 = 𝑋𝑡−1 + ε𝑡, (3) 

where ε𝑡 is a random error term representing the deviation of the movement from the 

previous step. The random error terms can be modelled as independent and identically 

distributed (i.i.d.) random variables, such as normal or uniform distributions. 

The cumulative sum of the random walk, also known as the random walk process, can be 

defined as: 

 𝑆𝑡 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑡 (4) 

Random walk models are often used to simulate the behaviour of financial systems, such 

as the movement of stock prices, and to analyze the distribution of the cumulative sum 

over time. (Franke et al. 2015, 54-55) 
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Appendix 2. Bivariate Regression Coefficients 

In this appendix, the time series of regression coefficients for different variables are 

presented for bivariate forecasts during the forecast evaluation period. 

 

Figure A.  1. Regression coefficient of BM 

 

Figure A.  2. Regression coefficient of DE 
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Figure A.  3. Regression coefficient of DFR 

 

Figure A.  4. Regression coefficient of DFY 

 

Figure A.  5. Regression coefficient of DP 
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Figure A.  6. Regression coefficient of DY 

 

Figure A.  7. Regression coefficient of EP 

 

Figure A.  8. Regression coefficient of INFL 



91 
 

 

 

Figure A.  9. Regression coefficient of LTR 

 

Figure A.  10. Regression coefficient of LTY 

 

Figure A.  11. Regression coefficient of NTIS 
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Figure A.  12. Regression coefficient of SVAR 

 

Figure A.  13. Regression coefficient of TBL 

 

Figure A.  14. Regression coefficient of TMS 
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Figure A.  15. Regression coefficient of VOL(1, 9) 

 

Figure A.  16. Regression coefficient of VOL(1, 12) 

 

Figure A.  17. Regression coefficient of VOL(2, 9) 
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Figure A.  18. Regression coefficient of VOL(2, 12) 

 

Figure A.  19 Regression coefficient of VOL(3, 9) 

 

Figure A.  20. Regression coefficient of VOL(3, 12) 
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Figure A.  21. Regression coefficient of MA(1, 9) 

 

Figure A.  22. Regression coefficient of MA(1, 12) 

 

Figure A.  23. Regression coefficient of MA(2, 9) 
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Figure A.  24. Regression coefficient of MA(2, 12) 

 

Figure A.  25. Regression coefficient of MA(3, 9) 

 

Figure A.  26. Regression coefficient of MA(3, 12) 
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Figure A.  27. Regression coefficient of MOM(9) 

 

Figure A.  28.  Regression coefficient of MOM(12) 
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Appendix 3. Equity Premium Forecasts with Multiple-Predictor Models 

In this appendix, the time series of equity premium forecasts for multiple-predictor 

models are presented for macroeconomic predictors with CT constraints and technical 

indicators during full forecast evaluation period. 

 

Figure A.  29. Kitchen sink forecast with macroeconomic predictors (CT restricted) 

 

Figure A.  30. BIC forecast with macroeconomic predictors (CT restricted) 
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Figure A.  31. Sum-of-the-parts forecast with macroeconomic predictors (CT restricted) 

 

 

Figure A.  32. POOL-AVG forecast with macroeconomic predictors (CT restricted) 

pool avg 

 

Figure A.  33. POOL-DMSFE forecast with macroeconomic predictors (CT restricted) 
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Figure A.  34. Kitchen sink forecast with technical indicators 

 

Figure A.  35. POOL-AVG forecast with technical indicators 

 

Figure A.  36. BIC forecast with technical indicators 
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Figure A.  37. POOL-DMSFE forecast with technical indicators 

 

 


