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Satellite images have become an important tool for event detection and monitoring. 

The key advantage for the satellite based monitoring is their ability to cover large 

areas frequently which in turn makes them very cost-efficient solution for monitoring 

geographically large areas. Due to advances in the satellite technology and the image 

processing techniques, satellites are capable of providing high resolution data within 

real-time from the Earth’s surface. 

In this thesis we provide a brief introduction to the satellite based remote sensing 

and how these methods can be used to model different agricultural events. We 

inspect theoretical satellite signal responses to a common agricultural events and 

try to detect these patterns from our own dataset. 

We develop a method to process satellite images into signals and apply preprocessing 

methods to increase signal to noise ratio. We then train a gradient boosting classifier 

to the smoothened signals and process the individual predictions so that we can 

detect the start and end times for various agricultural events from the agricultural 

parcels. 

Keywords: Remote sensing, machine learning, time series, classification.
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1 Introduction 

Common Agriculture Policy (CAP) is a program in the European Union aiming 

to improve European agricultural productivity, competitiveness and sustainability 

by range of measures including direct payment, market measures and rural develop- 

ment. Majority of the 59 billion euro budget is managed and controlled by Integrated 

Administration and Constol System (IACS) whose function is to support farmers to 

submit their declarations and safeguard CAP financials. 

The legal framework of CAP was changed in 2020 in order to simplify and mod- 

ernize CAP. One of the main points of the reform is to increase the role of satellite 

Earth Observation (EO) for making the IACS more cost efficient. Sentinels for 

Common Agriculture Policy (SEN4CAP) project started in 2017 and, its main ob- 

jectives are delivering EO products, services and algorithms to increase efficiency 

and traceability of IACS. [1] 

Sentinel programme is a series of next-generation Earth observation satellites 

developed by European Space Agency (ESA). The goal of the Sentinel missions is to 

provide different kinds of observations from Earth. Each one of the sentinel-missions 

focus on different aspect of Earth observation such as Athmospheric, Oceanic and 

Land Monitoring. In this study we are mainly interested in Sentinel-1 (S1) and 

Sentinel-2 (S2). 

Sentinel-1 is the first Copernicus Programme satellite launched by ESA. Origi- 

nally the mission was composed of two satellites, Sentinel-1A and Sentinel-1B, but 

Sentinel-1B has been retired and currently Sentinel-1A is the only satellite in this 

mission. Sentinel-1C and Sentinel-1D are in development with plans of launching 

Sentinel-1C as soon as possible. S1 satellites carry synthethic-aperture radar instru- 

ment which is capable of collecting data regardless of the weather and time of day. 

Spatial resolution of these satellites are down to 5 meters and can cover up to 400 

kilometers in width. The orbit has 12-day cycle and completes 175 orbits per cycle. 

Data collected by S1 satellites has many purposes such as forest, agriculture and 

water monitoring, emergency response support in event of environmental disasters 

and climate change monitoring.[2] 

Sentinel-2 is a constellation of two identical satellites in the same orbit that 

collect high resolution, multi-spectral images from the land and coastal areas. The 

main applications include agriculture, ecosystem monitoring, forest managements 

and disaster mapping. Using the twin satellites the revisit frequency is 5 days in the 

majority of land locations with same viewing conditions, but real revisit frequency 

might be higher due to multiple tracks. [3] 

The data collected by Sentinel missions is made easily accessible by policies 

made by ESA and European Commission and it be can used for scientific, public or 

commercial purposes for free.[2] 

The purpose of this thesis is to analyze data generated by the Sentinel-1 and 

Sentinel-2 missions and ground data collected from agricultural parcels. At first we 

do a literature review of proposed solutions to classify various agricultural events 

from the signals and the compare different methods in classifying the ground status. 

This thesis is done in collaboration with Finnish Food Safety Authority in order 

to assist Finland to comply with the European Common Aggricultural Policy. The 
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methods and analyses presented in this thesis will be tested during the summer of 

2023 in Finland. 

2 Data collection 

2.1 Signal terminology - Sentinel 1 

Sentinel-1 missions collect radar data using synthetic-aperture radar (SAR) instru- 

ment. SAR instrument can be compared to how bats use echolocation to navigate. 

Bats create noise that bounces away from walls and reflection can be observed. 

The same principle applies to SAR but instead of sending noise the satellite sends 

microwave pulses that bounce back to the satellite. Frequency of the microwave 

pulse is 5.405GHz meaning that the wavelength of the pulse is around 5.6cm which 

bypasses clouds effortlessly. The sensor in SAR creates an image from the signals 

which get reflected back to device. [4] 

Different types of materials and surfaces reflect the microwave pulse differently. 

This is called backscatter signal (BS). For example smooth surfaces such as roads or 

roofs scatter the signal primarily to other directions and the satellite receives little to 

no signal back. More rough areas scatter the signal so the satellite receives some echo 

back. Third type of reflection is double-bounce scattering which occurs when the 

signal bounces between one or more flat surfaces back to satellite. Double-bounce 

scattering can be mostly seen in urban areas [5]. 

Another type of signal product received from Sentinel-1 mission is coherence 

data. Interferometric coherence measures similarity of two signals taken at different 

time [6]. For example now S1 produces 12-day coherence signals (COH12) as the 

Sentinel-1A revisits the same location every 12 days. The 6-day coherence product 

was available until the Sentinel-1B’s SAR instrument broke and the Sentinel-1B was 

retired [7]. 

The microwave pulse can be transmitted and received in different polarizations. 

Polarization refers to the orientation of the electric field of a radar wave as it travels 

through space. Different polarization combinations respond differently to various 

materials and can be used to gain more information from the object of interest. 

For example vertical transmit, horizontal receive (VH) polarization indicate how 

large proportion of the signal transmitted in vertical polarization got received in 

horizontal polarization [5]. 

Different polarization types: 

• HH – for horizontal transmit and horizontal receive 

• VV – for vertical transmit and vertical receive 

• HV – for horizontal transmit and vertical receive 

• VH – for vertical transmit and horizontal receive 

Sentinel-1 measures VV and VH polarizations over the Europe. Other observa- 

tion modes are used over the North and the South poles [8]. VV backscattering is 

most common with rough surface scattering such as bare ground or water and VH 
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Figure 1: SAR polarization visualised (NASA [5]). 

backscattering is more common with more complex materials such as trees or high 

penetration soil types [5]. 

These signals are collected over various relative orbit numbers. Relative orbit 

is a path that S1 satellite passes over an area. When two images are taken from 

the same relative orbit they have the same incidence angle and look direction which 

means the images can be compared using multi-temporal analysis. Relative orbit 

number is calculated from absolute orbit number and this number tells how many 

times the satellite has passed over this track since its launch. Observations from 

different relative orbits differ to some degree as the orbits are in different angles. 

Also the satellite passes each one of the relative orbits from ascending or descending 

direction which may have an effect on the signal [9]. For example, in Figure 2 the 

roof of a barn can be seen inside the parcel boundaries as the satellite comes in from 

a certain angle but is not necessarily seen from all of the orbits. 

2.2 Signal terminology - Sentinel 2 

Introduction to Sentinel-2 data presented in this Section is based on technical guide 

to Sentinel-2 by ESA [3]. Sentinel-2 missions collect data using MultiSpectral Instru- 

ment (MSI). The MSI instrument measures Earth’s reflected radiance in 13 different 

spectral bands. Spatial resolution of the image ranges from 60 meters down to 10 

meters and is higher for some bands and smaller for others. These different bands 

and resolutions for Sentinel-2A are documented in Table 2. Spatial resolutions are 

the same for the Sentinel-2B but there is marginal differences in measured central 

wavelenghts. 

In principle the MSI-instrument works similar to a camera but measures more 

wavelenghts than just standard red, green and blue. You can assemble a RGB image 

from the S2 images using bands four, three and two which correspond to red, green 

and blue channels of electromagnetic spectrum. 

From these bands we can create different indices that should measure different 

things in ground. For example Normalized Difference Vegetation Index (NDVI) 

ranges from [ − 1 , 1] and measures the amount green vegetation in the area. The 

indices are not the main subject of this study, but those indices that are used in this 

study and what they measure are included in Table 1. 
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Index

 

Measures

 

BSI

 

Bare soil index 

BSI RGB

 

Bare soil from index RGB 

CIRE

 

Chlorophyll and vegetation 

CRC

 

Crop residue cover 

NDTI

 

Cultivated land 

NDVI

 

Normalized difference vegetation index 

NDVI-RE3

 

Vegetation, uses different bands compared to NDVI 

NSSI

 

Non-photosynthesizing vegetation 

Table 1: Indices created from the S2 bands. The indices and associated references 

are documented in [10].

 

Band number

 

Central wavelength (nm) Spatial resolution (m)

 

1

 

442 . 7 60 

2

 

492 . 7 10 

3

 

559 . 8 10 

4

 

664 . 6 10 

5

 

704 . 1 20 

6

 

740 . 5 20 

7

 

782 . 8 20 

8

 

832 . 8 10 

8a

 

864 . 7 20 

9

 

945 . 1 60 

10

 

1373 . 5 60 

11

 

1613 . 7 20 

12

 

2202 . 4 20 

Table 2: Sentinel-2A bands, central wavelengths and spatial resolutions. 
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For example the NDVI should decrease and BSI should rise after the mowing 

event as there is less vegetation and more bare soil. Similarly the CIRE should be 

lower in the autumn when compared to summer as there is less green vegetation in 

the fields. 

2.3 Signal extraction 

The data is received in a set of 2-dimensional arrays where each value correspond 

to a square in a real world area (e.g. 10m by 10m). Each value in these arrays cor- 

responds to single measurement such as 12 day interferometric synthetic-aperture- 

radar coherence (COH12) or backscatter. These arrays are received periodically so 

we can form a time series from these signals which can be used to infer changes in 

the landscape [11]. 

In this format the data is too big to store and process efficiently so there is a need 

to compress this to a lower dimension. In our approach signals are aggregated inside 

the parcel and descriptive statistics such as minimum, maximum, standard devia- 

tion, median, quantiles and quartiles are collected. In Figure 2 there are five parcel 

outlines plotted on top of the VH backscatter image. For each parcel, we collect the 

pixel values that land inside the geometry and compute descriptive statistics. These 

statistics are referred to as zonal statistics. 

One key observation from Figure 2 is that aggregated values might be quite noisy. 

If we take a look at the lowest parcel in the image we see that the parcel outline 

intersects with object that has quite high backscatter. That object turns out to be 

a roof of a barn that barely intersects with the parcel from a certain satellite angle 

and reflects the pulse back at the satellite. In the analysis we try to combat these 

kinds of outliers by using median of the signals instead of mean. 

The S2 signals come from different images and products but the general idea for 

signal extraction is the same for all of the signals. Importantly S2 indices are first 

calculated per pixel basis and after that the indices are extracted from the images. 

2.4 Ground truth dataset 

The ground truth dataset is collected by the Centers for Economic Development, 

Transport and the Environment (ELY centers) during the summer of 2022. The 

purpose of the dataset is for development, improvement and validation of land area 

monitoring algorithms. Every week during the data collection period a human data- 

gatherer drove a premeditated path and took a record about the state of land cover 

in each parcel along the route. If the land cover looked the same from week to week 

the data-gatherer recorded the same event. For example if the parcel looked like it 

had been mowed for three weeks straight we have data that the parcel was moved 

for three weeks straight. 

General areas where ground truth data was collected is visualized in Figure 3. 

We can see that most of the data was collected in the southern parts of Finland. 

The primary reason for this is that the data collection routes begin from locations 

close to more populated areas and the paths are designed so we can collect as much 

as possible data under a specied time limit. This approach for the data collection 
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Figure 2: Parcel outlines on top of VH backscatter image. Parcel outlines are in 

yellow, high backscatter values in white and low values in black. 

may introduce certain biases to the dataset, as the areas which are not located 

near major highways or population centers are underpresented. In this thesis we 

assume that all agricultural events look the same in across Finland although it may 

be beneficial to conduct further research in order to investigate the homogeneity of 

events and improve the model by taking regional differences to account. 

The ground truth data collection was a success for the most of it. Due to a large 

data-gathering there are some discrepancies between the data collected. Some ELYs 

were more accurate than others and some did not have as regular data collection 

periods as others. There are also some differences inside the individual ELYs as the 

data-gathering was not done by a single individual. For example the question “The 

parcel has been recently mowed?” is quite subjective as there is no clear definition 

what is recently mowed and there is no accurate information on mowing time without 

questioning the landowner. 

From the weekly collection of the events to parcels we interpolate the events so 

that we have one event for each day. This might create some data points which have 

wrong label and we need to take this into account in our analysis. For example, let’s 

say there is a weekly visit record the events of the parcel every monday. If the grass 

looks like it is growing on Monday but it is cut next Thursday the status persists 
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Figure 3: Locations where the ground truth data were collected. 

until next Monday. 

The grass parcel events were collected from late June to late autumn. The data 

collection for cereals started from ripening (typically around end of July or beginning 

of August) and were observed weekly until the end of October. In total there are 

around 6900 indidivual agricultural events logged from 2400 agricultural parcels. 

Mean number of visits for a parcel during the data collection period is 14 times 

and this typically means we have around 100 days worth of data from the status 

of parcel. Most of the data was collected during mid to late summer which means 

we have no ground truth data on events from early summer. The ground truth 

dataset is not available to the public and it is property of the Finnish Food Safety 

Authority. 

3 Literature review 

3.1 Signal behaviour around the events 

According to Voormansik et al. [12] the coherence-signal should drop before the 

ploughing event and rise sharply after it. The authors mention that the coherence 
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dropping before the ploughing event may be attributed to other management prac- 

tices taking place near the ploughing event, such as seeding or cultivation. It is also 

noted in the study that the VH-polarization should respond to a ploughing event 

more strongly compared to a VV-polarization. This differs from the signal response 

with respect to a mowing event where both polarizations respond similarly. 

In the case of a mowing event Voormansik et al. found out that coherence is 

stable until the mowing event and after that rises, but not as sharply as with the 

ploughing event. Both polarizations respond similarly to the mowing event and 

the study found no difference between the different polarizations in any point in 

the signal. Do note that Voormansik et al. used 6 day coherence data but due to 

retirement of Sentinel-1B in this study we have access only to a 12 day coherence. 

Coherence measurements taken from different relative orbit numbers should be- 

have similarly but not in sync as the measurements are taken at different time. One 

can think that the different orbits measure some latent change in the ground that 

is masked by noisy measurements. These measurements may also be out of sync so 

one potential idea for finding the events from the coherence data is to combine these 

different measurements to cut out noise in individual orbits and predict the event 

from the combined signals. 

Voormansik et al. also state that daily precipitation affects coherence and subse- 

quently rainfall just before the Sentinel-1 data capture can hide the farming event. 

The rainfall provides noise that need to be taken account when preprocessing the 

signals. The farming event may be recognisable from the other relative orbit num- 

bers as the article found out that the effect of rainfall to a coherence-signal was 

stronger in some relative orbits. 

3.2 Modelling attempts 

There are various methods attempting to predict and model agricultural events 

from the satellite signal time series. Lobert et al. [13] compared different sets of 

signals acquired from Sentinel-1, Sentinel-2 and Landsat 8 by using them on one 

dimensional convolutional neural network [14] and comparing which set of signals 

receive the best accuracy. The study was conducted on 64 meadows for an overall 

of 257 mowing events between 2017 and 2019 in Germany. 

Major conclusions from the Lobert et al. is that neither optical/SAR alone 

(Sentinel-1 or Sentinel-2) is not enough alone to classify mowing events. The NDVI 

is a good input feature to detect mowing events and performs generally better than 

SAR alone, but underperformed in comparison to optical/SAR combinations. 

Lobert et al. used various metrics for evaluating time series predictions such as 

mean error (ME), mean absolute error (MAE) and normalized mean absolute error 
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(nMAE):

 

ME = 

1

 

n 

n∑︂ 

i =1 

(︂ ˆ︁Yi 

− Yi 

)︂ 

, 

MAE = 

1

 

n 

n∑︂ 

i =1 

⃓⃓⃓
 

ˆ︁Yi 

− Yi 

⃓⃓⃓
 
, 

nMAE = 

1

 

n 

n∑︂ 

i =1 

⃓⃓⃓⃓
⃓ 

ˆ︁Yi 

− Yi

 

Yi 

⃓⃓⃓⃓
⃓ 

,

 

(1) 

where n is the number of meadows or parcels, 

ˆ︁Yi 

is the predicted mowing frequency 

for each meadow and Yi 

is the true mowing frequency. ME is a measure of the 

average difference between the predicted values from a model and the true values. 

It is computed by taking the mean of all the differences between the predicted and 

true values. ME does not give information about the magnitude of the errors, but it 

does indicate if the model tends to overestimate or underestimate the target values 

on average. [13] 

MAE measures average error regardless of the sign and gives the error in the 

same units as the prediction. The frequency of the events varies between parcels 

different parcels so nMAE is useful metric to compare errors between parcels with 

high and low counts of events. For example if the model is worse at predicting 

parcels with high number of events the ME and MAE weight these errors highly but 

with nMAE the error is capped at the maximum of 1 per parcel regardless of event 

count.[13] 

Lobert et al. used only a single relative orbit number for each area from the S1 

signals. The relative orbit was chosen so that the orbit covers all of the parcels in 

the given area and used only ascending orbits as they are generally acquired in the 

late afternoon in the area of study. The reasoning behind using late afternoons is 

that the study tried to combat the varying amount of morning dew that might have 

an effect on the S1 signals. 

Lobert et al. also tested Savitzky-Golay filter to smooth all optical and SAR 

features. Savitzky-Golay is a filter commonly used in signal processing to smooth 

noisy data. In this context the filter was used to smoothen out noise made by 

cloudy images or spikes on S1-signals caused by precipitation. Lobert et al. used 

five for polyorder parameter and seven for filter length parameter. We come back 

Savitzky-Golay filter more in depth in Section 4.3. 

The analysis in Lobert et al. is not directly comparable to our study. In their 

study they had well-defined date when the mowing events happened compared to 

our study in which we only had a a time period when the event had happened. But 

the metrics defined in Equation (1) are directly comparable to our study as they 

are computed for time periods instead of specific dates. The metrics found in their 

study are included in Table 3. 
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Reference mowing frequency

 

ME MAE nMAE

 

1

 

0 . 310 0 . 369 0 . 369 

2

 

0 . 083 0 . 321 0 . 161 

3

 

− 0 . 304 0 . 420 0 . 140 

4

 

− 1 . 440 1 . 440 0 . 360 

Table 3: Event detection metrics for best model in Lobert et. al. [13] 

4 Methods 

4.1 Gradient boosting 

This Section presents an introduction to gradient boosting method based approach 

in Chen et. al. [15]. Given data set D = { ( xi 

, yi) } ( |D | = n, xi 

∈ Rm , yi 

∈ R ) tree 

ensemble methods create K additive functions to predict the dependent variable y :

 

y ̂  i 

= ϕ ( xi) = 

K∑︂ 

k =1 

fk 

( xi) , fk 

∈ F ,

 

where F is the space of regression trees (also known as CART). The space of re- 

gresssion trees is defined by

 

F = 

{︁
f ( x ) = wq ( x ) 

}︁ (︁
q : Rm → T , w ∈ RT 

)︁ 

,

 

where q denotes the structure of each tree mapping example to the corresponding 

leaf index and T is the number of leaves in the tree. Each function fk 

corresponds 

to individual tree structure q and leaf weights w . Each regression tree contains a 

continuous score on each individual leaf and we use wi 

to represent score on i -th leaf. 

For example datapoint in each tree we follow decision rules given by q to classify it 

into leaves and get the final predictions by summing up the corresponding leaves. 

To find the set of functions for this model we have to minimize

 

L ( ϕ ) = 

∑︂ 

i 

l ( y ̂  i 

, yi) + 

∑︂ 

k 

Ω ( fk) , 

where Ω( fk) = γ T + 

1

 

2 

λ ∥ wk 

∥2 for k ∈ { 1 , . . . , K } .

 

(2) 

Here l is differentiable and convex loss function that measures the error between the 

predictions y ̂  and the true target values y . The second term is used to penalize the 

complexity of the model and the complexity of individual trees, which in turn helps 

the model to avoid overfitting and learning to generalize better. When the regular- 

ization parameters γ and λ are set to zero the objective is the same as traditional 

gradient tree boosting. 

The loss function defined in Equation (2) can not be optimized using traditional 

optimization methods as the parameters include functions. Instead of trying to 

optimize the function we can build the model in additive manner. Let y ̂

( t ) 

i 

be the 

prediction for the i -th data point and at the t -th iteration we need to add function 

ft 

to minimize the objective function: 
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L( t ) = 

n∑︂ 

i =1 

l 

(︂ 

yi 

, y ̂

( t − 1) 

i 

+ ft ( xi) 

)︂ 

+ Ω ( ft) .

 

This leads to approach where we greedily add new decision trees ft 

which most 

improve our model according the loss function defined in Equation (2). We can use 

second-order approximation to optimize the objective in the general setting:

 

L( t ) ≃ 

n∑︂ 

i =1 

[︃ 

l 

(︂ 

yi 

, y ̂

( t − 1) 

)︂ 

+ gi 

ft ( xi) + 

1

 

2 

hi 

f 2 

t 

( xi) 

]︃ 

+ Ω ( ft) ,

 

(3) 

where gi 

= ∂y ̂

( t − 1) 
l 

(︂ 

yi 

, y ̂

( t − 1) 

)︂ 

and hi 

= ∂2 

y ̂

( t − 1) 

l 

(︂ 

yi 

, y ̂

( t − 1) 

)︂ 

are first and second order 

gradient statistics on the loss function. After removing the constant terms from 

Equation (3) we get the following objective function at step t :

 

L̃( t ) 

= 

n∑︂ 

i =1 

[︃ 

gi 

ft ( xi) + 

1

 

2 

hi 

f 2 

t 

( xi) 

]︃ 

+ Ω ( ft) .

 

(4) 

If we define Ij 

= { i | q ( xi) = j } as the instance set of leaf j we can rewrite Equation 

(4) by expanding Ω term as

 

L̃( t ) 

= 

n∑︂ 

i =1 

[︃ 

gi 

ft ( xi) + 

1

 

2 

hi 

f 2 

t 

( xi) 

]︃ 

+ γ T + 

1

 

2 

λ 

T∑︂ 

j =1 

w2 

j 

= 

T∑︂ 

j =1 

⎡ ⎣ 

⎛ ⎝∑︂ 

i ∈ Ij 

gi 

⎞ ⎠ wj 

+ 

1

 

2 

⎛ ⎝∑︂ 

i ∈ Ij 

hi 

+ λ 

⎞ ⎠ w2 

j 

⎤ ⎦ + γ T .

 

For a fixed tree-structure q ( x ) , optimal leaf weight w 

∗ 

j 

can be computed for j -th leaf 

by

 

w 

∗ 

j 

= − 

∑︁ 

i ∈ Ij 

gi

 

∑︁ 

i ∈ Ij 

hi 

+ λ 

,

 

and the corresponding optimal value is given by

 

L̃( t )
( q ) = −1

 

2 

T∑︂ 

j =1 

(︂∑︁ 

i ∈ Ij 

gi 

)︂2

 

∑︁ 

i ∈ Ij 

hi 

+ λ 

+ γ T .

 

By using this function as a scoring function we can measure the quality of tree 

structure q . The score can be compared to impurity score for decision tree evaluation 

with the exception that it is derived for a wider range of objective functions. Usually 

it is impossible to enumerate through all the possible tree structures q and instead 

we opt to build the branches greedily. The algorithm starts from a single leaf and 

iteratively adds branches to the tree. This is called greedy strategy as we are making 

locally optimal choices at each step without considering the entire search space. If 

IL 

and IR 

are the sets of left and right nodes after the split and lettting I = IL 

∪ IR, 

then the loss reduction for the split is given by

 

Lsplit 

= 

1

 

2 

[︄ (︁∑︁ 

i ∈ IL 

gi 

)︁2

 

∑︁ 

i ∈ IL 

hi 

+ λ 

+ 

(︁∑︁ 

i ∈ IR 

gi 

)︁2

 

∑︁ 

i ∈ IR 

hi 

+ λ 

− 

(︁∑︁ 

i ∈ I 

gi 

)︁2

 

∑︁ 

i ∈ I 

hi 

+ λ 

]︄ 

− γ .
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This formula can be applied to find the best split candidates. 

The tree-ensemble methods often achieve higher accuracy than a single decision 

tree at the cost of interpretability. Following the decision path for hundreds or 

thousands of decision trees gets out of hand pretty fast. 

4.2 Evaluation metrics 

Classification errors can be measured by accuracy which is a percentage of correct 

predictions out of all predictions. This is an intuitive metric but it loses it’s meaning 

quickly if the different classes are unbalanced. For example if we have 100 datapoints 

where 98 datapoints belong to one class and the remaining two to other. It is quite 

easy to build a classifier with accuracy of 98% by just classifying all the datapoints 

to majority class. 

In this analysis we will use precision, recall and F1-score. Precision is the pro- 

portion of true positives out of all positive predictions. Recall is defined as the 

proportion of true positives among all the actual positive instances and it measures 

how well the model identifies the actual positives. F1-score is a way to combine both 

of these measures into a one metric. By using the harmonic mean the F1-score can 

not be high without both of the values being high [16]. Equations for the precision, 

recall and the F1-score are found in Equation (5).

 

Precision = 

tp

 

tp + f p 

, 

Recall = 

tp

 

tp + f n 

, 

F1-score = 2 × 

precision × recall

 

precision + recall 

,

 

(5) 

where tp indicates the true positives, f p the false positives and f n the false negatives. 

4.3 Savitzky-Golay filter 

Savitzky-Golay filter is a one-dimensional filter, although it has been generalized for 

two/threedimensional signal, which can be used to smooth time series data. The 

primary purpose for smoothing the data is to increase the precision of the data and 

remove noise. In our example this filter is used to smoothen the noise in the input 

signals. For example the radar images are quite sensitive to precipitation and optical 

signals are affected by cloudy images. There is a process where we try to discard 

cloudy pixels using a cloudmask but some clouds make it through the mask and the 

filter reduces the effect of these clouds. 

The Savitzky-Golay filter achieves data smoothing by fitting a polynomial to 

datapoint and some surrounding datapoints by method of linear least squares. The 

order of the polynomial fit and the amount of surrounding datapoints are parameters 

for the filter. If the datapoints are equally spaced an analytical solution can be found 

and the filter becomes much faster to calculcate. For evenly spaced datapoints the 

coefficients for the moving window can be precalculated into a table and they can 

be used in a convolution. 
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Convolution is defined as

 

x∗ 

j 

= 

∑︁i = m 

i = − m 

Ci 

× xj + i

 

N 

,

 

where the index j represents the running index of the ordinate data in the original 

data table, Ci 

, i ∈ { 1 , . . . , N } are the convolution coefficients and N is the length of 

the convolution. For example the centered moving average is a convolutional filter 

where the weights are Ci 

= 

1

 

N 

and N is the length of the mowing window. The 

centered mowing average is equal to the Savitzky-Golay filter with the order of the 

polynomial equal to 1. [17] 

5 Analysis 

5.1 Raw datasets 

At this point our dataset is split to three parts: S1 signals, S2 signals and the ground 

truth events. The S1 dataset is described in Table 4 and it consist of different radar 

measurements from various orbits for each one of the parcels. The S2 dataset is more 

straightforward compared to the S1 dataset. The S2 dataset consists of observation 

times, parcels and various optical signal index measurements which are described in 

the Table 1. 

The ground truth dataset has been preprocessed to a format where we have parcel 

id, date and status. For every parcel we have one status for every day throughout 

the entire data collection period. The raw, i.e. unprocessed dataset is made of 

weekly data collections and the observations are interpolated so we have one status 

for each day. The preprocessing is not part of this thesis although improvements to 

this step could improve results dramatically as the errors in this step are propagated 

to later parts of the analysis.

 

Zonal statistic median Relative orbit Signal type Parcel id Observation time

 

0.52 130 BS_VH 520 2022-06-23 13:24 

0.42 120 BS_VV 520 2022-06-24 01:30 

0.1 130 C12_VH 520 2022-06-23 13:24 

... ... ... ... ... 

0.9 90 BS_VV 130 2022-08-23 03:24 

Table 4: The S1 dataset before doing any data manipulation. BS denotes backscatter 

and C12 is the 12 day coherence. 

The major challenge is to normalize the datasets in such way all of the informa- 

tion can be used together. In high level the approach is as follows: 

1. Combine the relative orbits together for S1 signals so we have only one mea- 

surement from any given day for each signal type. 

• This means that dataset can be transformed into the same shape as the 

S2 dataset. 
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• Some orbits are more sensitive to many variables such as precipitation. If 

we join the measurements from multiple orbits together we reduce random 

noise. The resulting signal should be more robust to minor events in 

parcel. 

• This step is explored more thorougly in the next Section. 

2. Interpolate both S1 and S2 data so we have one value for every day. 

• We used linear interpolation but in further experimentation other inter- 

polation methods could be explored. 

3. Apply a Savitzky-Golay filter for all of the signal types. 

• This does not change the format of the data and only the values are 

changed. 

4. Finally join the ground truth status to this dataset by merging the two afore- 

mentioned datasets to ground truth by parcel id and date. 

• The resulting dataset is described in the Table 5. 

• In each row we have S1 and S2 signal values and the corresponding date, 

parcel and event information. 

5.2 Relative orbit numbers 

In Figures 4 and 5 there are coherence and backscatter signal values plotted from 

various different relative orbits. The two different mowing events happened between 

(2022-06-28 to 2022-07-08) and (2022-07-27 to 2022-08-03). On the first mowing 

event there is a sharp rise in both backscatter values but it is hard to distinguish 

the other mowing event from the noisy signals. 

The approach in this thesis is to combine the information from different relative 

orbits together and use the combined signals as an input in our model. The way 

we approach combining the orbits into one signal is by linearly interpolating them 

into one signal and then smoothing out the output. Each one of the signals is quite 

noisy on their own but when we combine them together we find major changes in 

the signals and the minor deviations smoothen out. With the optical signals from 

S2 there is no need to combine any of the signals, but smoothing can be helpful in 

processing the signals. The optical signals suffer greatly from clouds and we try to 

filter these out in the signal extraction process but the cloud mask is not perfect. 

By applying smoothing into optical signals we can reduce the effect of clouds and 

find the responses to real changes in the ground. 

We can see from Figure 6 that there is some notable peaks in the backscatter 

signals. The parcel in Figures 6 and 5 is a grassland parcel that had cutting events 

between (2022-06-28 to 2022-07-08) and (2022-07-27 to 2022-08-03) although there 

might have been more events before 21.6. and some after September as we have 

no ground truth data from these time periods. We see that the preprocessed signal 

peaks after the cutting events but this is not as clear if we look at raw signals in 

Figure 5. 
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Figure 4: Twelve day coherenses plotted for individual orbit numbers which overlap 

the parcel. Different colors correspond to different relative orbits. Parcel contains 

two mowing events which happened between (2022-06-28 to 2022-07-08) and (2022- 

07-27 to 2022-08-03). 

5.3 Signal responses to events 

The effects on S1 signals described by Voormansik et al. are also observed on our 

dataset. In Figure 7 we notice that 12 day coherence rises sharply after the ploughing 

event. The VV-polarization responds more to the the ploughing compared to VH- 

polarization. VV-backscatter is noticeably lower before the event and raises after 

the event. VH-backscatter does not seem to have response to ploughing event. Note 

that the signal responses in figures of this section are aggregated across all of the 

relative orbits. 

Signal responses to mowing are not as coherent as they are with ploughing event. 

We can notice from the non-normalized Figure 8 that the signal has larger variance 

at the time of the event compared to ploughing event. This may be attributed to the 

fact that most of the mowings are on grassland parcels and the observations from 

grassland parcels are more heterogenic compared for example to cereals. Although 

the signals are quite noisy there is some evidence that coherence rises after the 

mowing event. In Figure 8 we see that quantiles of normalized C12 signal are above 

zero after 20 days meaning that the coherence should rise. 

As coherence measures similarity between two signals we should expect the co- 
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Figure 5: S1 signal backscatters plotted for all relative orbits which overlap the 

parcel. Different colors correspond to different relative orbits. Parcel contains two 

mowing events which happened between (2022-06-28 to 2022-07-08) and (2022-07-27 

to 2022-08-03). 

herence to momentarily decrease and then start rising. Right after the event the 

coherence should be lower compared to a baseline as it is calculated between grass- 

land and mowed or ploughed ground. Some time after the event the coherence should 

rise as it is calculated between two mowed/ploughed parcels. One explanation why 

the grassland does not have such clear response to event is that the grass is left to 

ground after the mowing so the coherence does not change as much or the grass is 

collected on some parcels and left on the ground for some parcels and consequently 

we cannot detect this from the aggregated data. 

5.4 Feature generation 

At this point our dataset looks like the example in Table 5. Date and parcel id 

columns are not used as a features in our model so the feature matrix at this point 

consists of S1 signals and indices created from the S2 signals. Now we are going to 

create more features out of the existing features. 
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Figure 6: Signal preprocessing for the signals shown in Figure 5. In blue the sig- 

nals are interpolated together and in red there is a smoothing function applied to 

interpolated values.

 

Date Parcel id BS_VV BS_VH NDVI . . .

 

30.6.2022 521 0.2 0.5 0.7 . . . 

31.6.2022 521 0.21 0.49 0.71 . . . 

... 

... 

... 

... 

... . . . 

31.10.2022 20520 0.7 0.6 0.1 . . . 

Table 5: The dataset after interpolation and smoothing, but before the feature 

generation. 

In the previous two sections we looked at the signal time series and concluded 

that observing how signal changes is a valid way to determine if there was some 

agricultural event on the parcel. The absolute signal values are useful features but it 

also might be useful to observe the changes in signals. To add temporal dimensional 

information to our model we can calculate how the signal changes between two days 

and add it as a feature to our model. For example we can calculate how much signal 

value has changed from 10 days ago compared to today by taking difference of signal 

value from 10 days ago and today. If the change is positive it means that the signal 

value has risen which might indicate some kind of agricultural event. To make this 
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Figure 7: Median, lower and upper quartiles of extracted S1-signal medians response 

to ploughing event. Coherence (C12) is plotted on the left side and backscatter (BS) 

is plotted on the right side. Upper graphs have been normalized with respect to 

event time, whereas lower graphs have not been normalized. The ploughing event 

has occurred on day 0. Note that because of the data collection method the true 

event may have actually been up to seven days earlier compared to day 0 in the 

plot. 

approach more robust to date selection we can divide the signal difference by the 

time difference, i.e., number of days. This leads to a formula that looks a bit like the 

derivative of the signal function. The larger time difference we take the smoother 

the derivative function looks. 

By examining Figures 8 and 7 we can observe that the potential variations in the 

signal in future with respect to event could hold valuable information. If utilize this 

information we cannot be employed instantenously and instead it needs a buffer to 

see how the signal changes in the future. Preprocessing steps also need information 

from the future observations so computing the signal change in future just adds a 

larger buffer before we can predict the status of the parcel. 

More formally: for a given parcel if we have signal value xt0 

at the time step t0 

then the signal difference n days backwards dt0 

− tn 

is defined as

 

dt0 

− tn 

= 

xt0 

− xt0 

− tn

 

n 

.

 

We can create a matrix for these values by applying this formula to all observations. 

This creates a matrix with a shape of Rn × (2 × # number of signals ) where we have column 
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Figure 8: Same signals plotted as in the Figure 7 for the mowing event. 

indicating the derivative calculated backwards and a column for the forward facing 

derivate for all of the signals. This operation requires more signal observations that 

are in the observation matrix X . X consists only from the dates that we have ground 

truth observations but we have signal data readily available from the longer period 

that is used in this study so there is no problem calculating the differences. 

The time differences that we add as features in our model are part of our hy- 

perparameters that we consider in our model and optimal values for these need 

to determined in our model validation. Importantly these pseudo-derivatives are 

calculated after the smoothing step. 

The final feature which we add to our model is the information about the crop 

in the given parcel, i.e., grass, cereal or something else. Majority of the parcels in 

the dataset contain grass or cereals and the agricultural events look very different 

depending on the crop. The frequencies of the events are also depend on the crop 

type: the cereals rarely have multiple cutting events during the seasons and the grass 

does not ripen in the sense that cereals do. To capture this information we create a 

vector C = Rn × 2 ∈ { 0 , 1 } where each row encodes the crop code information. The 

crop code ci 

of the i th observation is derived from the crop code matrix with the 

formula:

 

ci 

= 

⎧ ⎪⎨ ⎪⎩ 

Cereal if Ci, 1 

= 1 and Ci, 2 

= 0 

Grassland if Ci, 1 

= 0 and Ci, 2 

= 1 

Other crop type if Ci, 1 

= 0 and Ci, 2 

= 0 

, i ∈ { 1 , . . . , n } .

 

From now on we treat the crop type and the derivative matrices as part of feature 
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matrix and refer them as part of the feature matrix X ∈ Rn × p where n is the number 

of observations and p is the number of features. 

At this point our dataset has the following information: 

1. Parcel id 

2. Date 

3. Crop information 

4. Processed S1 signals and S2 indices 

5. The pseudo-derivative calculated forwards and backwards for all of the afore- 

mentioned signals 

and the resulting number of features is

 

p = 3 (crop code) 

+ 12 (current signal values) 

+ 12 (pseudo derivatives backwards) 

+ 12 (pseudo derivatives backwards) 

= 39 .

 

(6) 

5.5 Creating the train and test splits 

In order to train the model and accurately measure out of sample prediction error 

we need to split our dataset so that we use a part of the dataset for model creation 

and the remaining data to test how the model works. If we would use the same 

dataset in both steps the classification results would be too optimistic as the model 

has already seen some of the datapoints and knows the label associated with those 

observations [16]. 

Our dataset contains time series data so we can’t use the naive approach of just 

splitting the dataset randomly because of the data leakage. For example if put in the 

training set the observations and the related labels from Monday and Wednesday 

for some parcel, the model could probably predict the correct label for Tuesday. 

Consequently this leads to optimistic model validation results. 

The way we approach this problem in this thesis is that we split the data in to 

two sets by parcel ids. We could just randomly sample parcels to two sets but the 

sets we generate might not be representative as some of the events are less common 

than others. To try to make the sets representative we use the algorithm described 

in 1. 

The algorithm works by first creating empty sets for training and test parcels 

and then we populate the two sets by adding parcels in a loop. We start with the 

parcels which contain rare events such as light tillage and move to more common 

events such as growing or mowing. If for example we would first divide the parcels 

that contain light tillage events we get a list of parcels which contain the light tillage 

events and shuffle those randomly. Then we start putting all the parcels in the list 

to either training or test set. If a parcel in the list does not belong to a training set 

we insert it into the test set and otherwise we skip over the parcel. We keep putting 

events which contain a light tillage event to test set until we have inserted half of 

the parcels to the test set and rest of the parcels go to the training set. Then we 
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Algorithm 1: Algorithm for creating training and test splits.

 

training parcels ← ∅ ; 

test parcels ← ∅ ; 

for E ← Unique events ordered from least to most common do

 

p ← { parcel | parcel contains event E } ; 

p ← shuffle( p ) ; 

total parcels containing event ← length( p ) ; 

samples for event ← 0 ; 

for candidate ← p do

 

if candidate / ∈ training parcels then

 

test parcels ← test parcels ∪ { candidate } ; 

samples for event ← samples for event + 1 ; 

end if 

if samples for event > total parcels containing event / 2 then

 

training parcels ← training parcels ∪ ( p \ test parcels ) ; 

Stop inner loop iteration; 

end if 

end for 

end for

 

take a look at the parcels which contain the second most common event and repeat 

this procedure until we have exhausted all of the events. 

Both of the resulting sets are similar in size but one could tweak the algorithm 

to create sets with different balances. Usually the training to test set size is about 

80/20 [16] but we have relatively rare events and would like to have smaller test 

error bounds for those. For example only 152 parcels (about 6% ) have a light tillage 

event. 

In this analysis we have only one more rare event (light tillage) and the split 

in this case could have been done with random sampling and checking if both of 

the sets are reprenstative compared to original set. In the first iterations we had 

more event types and it could have been tedious to try to randomly split the dataset 

in to representative sets. After running the split for a fixed random seed we have 

1143 parcels (109848 datapoints) in our training set and 902 parcels (90782 data- 

points) in the test set. We use the training set to train the model and tweak the 

hyperparameters. The test set is used to measure the model error. 

5.6 Predictive model 

We fit the gradient boosted tree model using the training set with a one-versus- 

all method. In this thesis we use the gradient boosted tree model framework called 

XGBoost [15]. For each label (e.g. ploughing, ripening, mowing, etc.) we fit a binary 

classifier which produces the predicted probability for the specified label against all 

other labels. This leads to k different binary classifiers, where k is the number of 

unique events in the dataset. 

Given that X ∈ Rn × p is our data matrix, y ∈ Rn × 1 is our target variable and k 
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is the number of unique classes in the target vector y the classifier prediction is as 

follows:

 

p ˆ i,j 

= f̂  

j( Xi) ,

 

where f̂  

j 

denotes the binary classifier for class j , Xi 

the features for the i th obser- 

vation and the p ˆ i,j 

is the predicted probability that the i th observation belongs to 

a class j . The function f̂  

j 

is a mapping from the feature space into the probability 

space:

 

f̂  

j 

: Rp → [0 , 1] , j ∈ 1 , . . . , k

 

The output of our classification is a n × k matrix where element p ˆ i,j 

is the 

probability that the i th observation belongs to group k . These values have been 

scaled so that the rows sum to one:

 

k∑︂ 

j =1 

p ˆ i,j 

= 1 , ∀ i ∈ 1 , . . . , n.

 

The scaling of the predictions corresponds to a softmax function. One approach 

would have been not to scale the predictions which corresponds to a sigmoid function 

which is the unscaled probability. The primary difference between these two is the 

interpretation of the results. In the former case we are assuming there can only be 

one event at the time and the probabilities correspond to confidence that a specific 

event is happening out of all the events. In the latter case the interpretation could be 

"given these signals the probability corresponds this event happening". We chose 

to scale the predictions as the interpretation is more natural in this case as the 

parcel can only have one primary event at the time, e.g., the parcel can’t be cut and 

growing at the same time. 

In order to generate a prediction when the event started and when it ended we 

need to process these probabilities further. We approached this problem by taking 

the event with the highest probability and assigning it as the prediction for given 

day. After that we calculate most frequent event in a centered moving window and 

output that as prediction. The window with a mode function helps to reduce noisy 

predictions, i.e., events that only last a day or two. 

If we have a function

 

f ( p ˆ i) = argmax 

j 

p ˆ i,j 

,

 

which outputs the most likely prediction for the day i then the smoothed prediction 

is defined as yî = mode( f ( y ̂( i − ( t/ 2) ,j )) , ..., f ( y ̂( i +( t/ 2) ,j)) , where t is length of some 

sliding window and mode is a function that outputs the most frequent element in a 

given set. Now we can define the start and end dates for the events. The start date 

of an event is the index i where the event changes:

 

Day i is = 

{︄ 

start date , if y ̂  i − 1 

̸ = yî 

end date , if yî ̸ = y ̂  i +1 

.

 

With the start and end dates defined we can easily count how many events happened 

during the observation period and compare it to ground truth and calculate the error 

in predicted frequencies as in Lobert et. al. [13]. 
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5.7 Hyperparameter optimization 

The preprocessing, model building and model validation takes a couple of minutes 

to run. For example if we tried 20 different values for each one of the days used 

in the derivative feature generation, 15 values for the length parameter and five 

different order of polynomials used in the Savitzky-Golay filter this would generate 

20 × 20 × 15 × 5 = 30000 different parameter combinations. If we add the hyper- 

parameter combinations for the k different XGBoost models the hyperparameter 

space is too large. Instead, we try to optimize the complete hyperparameters by 

first finding the optimal values for the preprocessing steps, after which we optimize 

the hyperparameters for the individual predictive functions f̂  

j, e.g., the XGBoost 

hyperparameters. 

The preprocessing hyperparameters tried in the hyperparameter search are doc- 

umented in Table 6. The search consisted of 300 different hyperparameter combi- 

nations. For each one of the parameter combinations the hyperparameters for the 

XGBoost model were the same. We logged mean error and mean absolute error 3 

for all the parameter combinations and these are visualized in the Figures 9 and 10.

 

Parameter

 

Values tried

 

Savitzky-Golay filter length

 

{3, 5, 7, 11, 15} 

Savitzky-Golay filter polynomial order

 

{1, 2, 3} 

Days used when calculating derivative forwards

 

{2, 5, 7, 10, 15} 

Days used when calculating derivative backwards

 

{2, 5, 10, 15} 

Table 6: Different preprocessing hyperparameters used.

 

Figure 9: Errors against the day difference used when calculating the derivative. 

We can see from Figure 9 that the errors generally rise the closer the day param- 

eter in derivative calculation is relative to the event. The longer day difference we 
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can afford to calculate the smaller the errors tend to be. The reason for this might 

be that the amount of smoothing applied is smaller and subsequently we get more 

noise and shorter events. 

From Figure 10 we see that errors generally tend to be smaller when polynomial 

used in the filter is smaller. Higher order polynomials follow the data more accurately 

but some of the signals might be very noisy and in turn we get more entropy in the 

predictions. The results could indicate that the best parameter to use would be one. 

This is interesting as the Savitzky-Golay filter with polynomial order of one is just 

the linear unweighted mowing average filter.

 

Figure 10: Error against the order of the polynomial used in Savitzky-Golay filter. 

When comparing different Savitzky-Golay filter lengths all errors were very sim- 

ilar. When performing bootstrapping tests between the categories generally the 

longer filter lengths had the lower errors. Notably the model tends to overestimate 

all the event types as indicated by the positive ME. Generally we have more events 

that happen once or twice, e.g. ploughing, ripening or mowing the parcels once 

or twice, and less events that happen regularly, e.g., mowing the grassland parcel 

four times, so we might overestimate the less frequent events and underestimate the 

events with the higher frequency. 

We are trying to run the model live with some lag so in our case we do not have 

unlimited time to wait for the most optimal results, so we need to pick parameter 

values that allow us produce results as fast as possible while maintaining accuracy. 

We decided to use 5 for the Savitzky-Golay filter length, 1 for the polynomial, 12 for 

calculating the derivative backwards and 7 for calculating the derivative forwards. 

The results and conclusions are derived for these parameters but do note that if you 

are running the model as a one time batch run the results might be better if you 

use other parameters. 

5.8 Fitting the model 

The XGBoost implementation of the gradient boosting has an enormous number of 

different hyperparameters and we need to train six different models. The hyper- 

paramer space is massive and we leave it out of scope for this theses. Instead we opt 
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mostly for the default parameters [18]. The hyperparameters which we modify is 

the scale_pos_weight which changes the positive label class weighting. We modify 

this parameter because the different classes are very unbalanced and we would like 

to weigh the misclassification errors with respect to their frequencies. The resulting 

classification report is documented in Table 8 and the confusion matrix in Table 7. 

We can see from the confusion matrix that the growing and mowing gets easily 

confused. This is expected as the the moment when a grass parcel starts growing 

after it is mowed is very subjective. The parcel can look like it is growing very 

soon after being cut during the summer months but the satellite might not notice 

that for some time if the satellite does not pass over the parcel. Another event 

that gets mixed a lot is the light tillage class. The light tillage is quite a broad 

term and judging by the collected data the data gatherers are not even sure if the 

event is ploughing or light tillage at times. The mixup between the light tillage and 

the growing can be explained with the same reason that mowing and growing get 

mixed up. Finally the harvest and ripening get mixed up. These events are most 

commonly next to each other so the delays between the actual event, the time event 

is logged and the time event shows up in the satellite signals add up and might cause 

misclassifications. 
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Growing

 

48640

 

277

 

202

 

5211

 

198

 

28

 

Light tillage

 

472

 

972

 

511

 

68

 

202

 

14

 

Ploughing

 

117

 

382

 

2231

 

12

 

189

 

9

 

Mowing

 

3197

 

32

 

57

 

5920

 

0

 

0

 

Harvest

 

3

 

115

 

340

 

0

 

13449

 

1341

 

Ripening

 

31

 

7

 

6

 

0

 

1096

 

5453

 

Table 7: Confusion matrix for the test set. 

Some of the errors show up on the regular validation metrics as seen from Table 

8. Importantly we have high recall scores meaning if there is an event the algorithm 

finds it in most of the categories. The low recall of the mowing events is not that big 

of issue as they are mostly mixed with the growing event where the majority of the 

datapoints belong. Even if this table does not look that great the aggregated values 

look much better. Usually we do not care so much if we missclassify some here and 

there or the predicted start/end times are off by some days. We are more interested 

if the model correctly classifies longer periods of time to the right categories. 

In Figure 11 we present the predicted probabilities p ˆ and ground truth labels for 

one parcel. We can see how the model correctly classsifies the alternating mowing 

and growing events. At the beginning and at the end of the season we have more 

uncertainty in the predictions as we have no ground truth data from these periods 

and we could not train the model at these time periods. This issue will be addressed 

during the data collection for summer of 2023. 
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Precision Recall F1-score Support

 

Growing

 

0 . 917 0 . 914 0 . 915 54556 

Light tillage

 

0 . 625 0 . 427 0 . 507 2239 

Ploughing

 

0 . 727 0 . 717 0 . 722 2940 

Mowing

 

0 . 561 0 . 597 0 . 578 9206 

Harvest

 

0 . 872 0 . 915 0 . 893 15248 

Ripening

 

0 . 841 0 . 788 0 . 814 6593 

Accuracy

 

0 . 854 0 . 854 0 . 854 0 . 855 

Macro avg

 

0 . 757 0 . 726 0 . 738 90782 

Weighted avg

 

0 . 854 0 . 854 0 . 854 90782 

Table 8: Classification table for classifying the individual days computed from the 

test set.

 

Figure 11: The predicted events for one parcel. Left y-axis is the predicted proba- 

bility p ˆ and in the right y-axis there is the observed event from ground truth. 

5.9 Comparing aggregated predictions 

Now we have true frequencies of the events from the ground truth data and the 

predicted frequencies by using the methods presented in Section 5.6. By using the 

predicted start and end times we can classify individual days to periods of time 

when the parcel had one event. We can compare the total event counts of these 

two by using chi-squared test [19] and see if the model learned the true distribution 

of the frequencies. Let our null hypothesis H0 be: the frequencies of the events 

in true and predicted categories are same. The alternative hypothesis HA is that 

the frequencies in the groups are different. Set the confidence level to 99% which 

corresponds to p-value of 0 . 01 . Using the frequencies from Table 9 we get the value 

of the t-test statistic χ2 = 23 . 971 and the corresponding p-value is 0 . 00023 . This 

means we can reject the null-hypothesis and conclude that model did not learn the 

true frequencies. 

When we examine Table 9 it becomes apparent that the majority of errors stem 

26



 

from an overprediction of Growing events. With the exception of the aforementioned 

issue, the model is accurate at predicting the other event types. Usually the Growing 

is not the primary event of interest and we are more interested on the active events 

so it is more important for the model to spot the other events.

 

Event

 

True count Predicted count

 

Growing

 

855 1082 

Light tillage

 

73 70 

Ploughing

 

163 166 

Mowing

 

733 663 

Harvest

 

351 377 

Ripening

 

345 371

 

Total

 

2520 2757 

Table 9: Total event counts compared to predicted event counts. 

The mean errors, mean absolute error and normalized mean absolute errors are 

documented in Table 10. The metrics are also calculated individually for the Cereals 

and Grass parcels as some of the events only belong to either type.

 

Light Tillage Ploughing Mowing Harvest Ripenining

 

Cereals

 

ME

 

-0.037 0.014 0.00 0.032 0.063

 

MAE

 

0.077 0.112 0.00 0.193 0.092

 

nMAE

 

-0.421 -0.117 - 0.005 0.03

 

Grass parcels

 

ME

 

0.019 -0.009 -0.145 0.000 0.00

 

MAE

 

0.064 0.036 0.341 0.000 0.00

 

nMAE

 

-0.304 -0.200 -0.054 - -

 

All parcels

 

ME

 

-0.003 0.003 -0.085 0.024 0.022

 

MAE

 

0.074 0.069 0.200 0.086 0.039

 

nMAE

 

-0.396 -0.147 -0.054 0.016 0.026

 

Table 10: Total event counts compared to predicted event counts. Dashes indicate 

the value could not be calculated as the delimiter in the formula is zero (in the 

ground truth dataset there are no observations for that specific event). 

The highest errors correspond to underestimating the amount of mowing events 

on grass parcels as indicated by the negative mean error. One reason for this might 

be the lack of optical (S2) signals. The model works even with large periods of 

missing signals because of the interpolation but if we don’t receive any signals for a 

long period time we might miss the changes that would indicate the mowing events. 

The mowing events are primarily detected from changes to optical signals as seen 

from Table 13 and if we cannot record these changes the accuracy suffers. Solutions 

to this problem is furher discussed in Section 6.1. The feature importances presented 

are computed by averaging gain across all splits in all of the trees where the feature 

is used in. If the features are very correlated the the feature importance might not 

be credible as the. In this case the signals have high correlations so the credibility 

of the feature importances should be taken with a grain of salt. 
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One major thing missing from Table 10 is the information whetever the predic- 

tions are correctly predicted at the correct times. There is some subjectivity what 

counts as a "correctly predicted". Should the predicted events start and end at 

the same date as the correct ones? Should there be some overlap to be correctly 

predicted? How long overlap? We decided to drop this analysis from this thesis as 

these decisions influence the metrics wildly.

 

Figure 12: Examples of model predictions. Dropping NDVI values indicate there 

is less vegatation in the parcel which could mean there is a mowing or ripening 

event. The rising backscatter could indicate the there is more bare soil which is an 

indication of ploughing or maybe light tillage. 

Visually inspecting the predictions it seems like the model correctly predicts the 

events next to the actual events. If we take a look at Figure 12 from the top left 

corner that the model correctly finds the two mowing events although the start time 

of the second event is off by some time. In the bottom left corner we see that our 

prediction smoothing filter, described at the end of Section 5.6 does not correctly 

work and we end up with quite a few extra predictions for the harvest and the 

ripening is placed few weeks after the actual ripening. 

6 Discussion 

6.1 Improvements 

We noticed that one reason for missing events is the irregular optical data acqui- 

sition. The reason for the irregular data is cloudiness. Sentinel-2 constellations 

revisits certain location every five days [3]. This is very high frequency compared to 
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other optical satellites such as Landsat-7 that has a revisit period of 16 days [20]. 

But if we happen to have couple of cloudy acquisition days back to back we might 

easily miss some events. For example during the summer months the grass grows 

very quickly. 

This uncertainty is not seen in the predictions. One solution would be to not 

output predictions if there is too much time between signal acquisitions. If we 

happen to have a very cloudy summer this makes the monitoring very hard if we 

can’t make predictions for a long time. 

Another solution is to replace some of the optical signals with the radar coun- 

terparts. For example there have been studies to approximate NDVI from the radar 

signals such as study done by Pelta et. al. [21] where they try to predict the NDVI 

using the radar signals or to replace the NDVI altogether with the radar vegetation 

index introduced in the study done by Sahadevan et. al. [22]. It is important to note 

that that the analysis was limited to 12-day coherence, and getting more accurate 

data might make a big difference. 

For now we are using all of the variables in our analysis. We have quite a few 

indices and radar signals. When we calculate the current value, derivative forwards 

and backwards we end up with a lot of of variables. Some of these variables could 

be pruned using the feature importances that you can extract from the gradient 

boosting model. Our feature importances are presented in Appendix and we can 

clearly see that for some models the feature importances are very low. To prune 

some variables we would have to find variables that low importance score across all 

of the models. The XGBoost is quite robust to low information variables but the 

best practice would be to be prune the unnecessary variables. 

Currently the model assumes that there is only primary status at the time. The 

model is easy to train and the results are easy to interpret but if one would like to 

include grazing event in the model, which usually occurs when the grassland parcel 

is either growing or mowed, we run in to more issues. When there is a grazing, 

which usually looks like a growing event, the model does not perform greatly in our 

test cases. One issue in this study is the low number of examples from the grazing 

events which might play a role. We decided to drop the grazing from the list of 

possible events but we might have to return to modelling that later on. 

Another thing one might notice from the list of events is that none of the events 

fit in to early summer for the cereals. The seeds have been recently planted but 

the plant is not yet ripe. The data collection for the cereals in the summer of 2022 

began when the cereals ripened so we have no records on any other types of events 

before that. The data acquisitions starts sooner during the next summer with the 

goal of being able to monitor the parcels all the way from early spring until the late 

fall. 

This bring us in to the final improvement: time. The model does not know if 

it is early spring, cold winter or a late autumn. Adding the time as a feature into 

the model did not produce high improvements into the accuracy. This could be 

explained by the fact that most of the data is from one or two months. In fact the 

model does not know what the previous predicted event was. It is not physically 

possible for cereals to first be harvested and then ripen. Because the model does not 

take the order of events in to the account it is possible for model to output these 
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kinds of predictions. One possibility is to change the gradient boosted tree model 

into a Hidden Markov Model [23] which considers the probability of transitioning 

from one state to another. 

6.2 Conclusions 

In this thesis we first introduced different satellites, various signals derived from the 

satellite imaginery and associated terminology. After this we did a brief literature 

review and applied some suggestions into our own model. The metrics proposed 

in Lobert et. al. [13] are especially useful when comparing the counts of various 

predictions. 

After this we took a deep dive into the inner workings of gradient boosting 

methods and signal processing methods. We then applied the various methods and 

created a preprocessing method which created a good baseline from which we could 

start building different classifiers. After applying a classifier to the processed signals 

we created a method to detect various agricultural activities from the satellite signal 

time series. 

Overall the method proposed in this thesis works very well even if the labels 

derived for each day from the weekly visits might be inaccurate. The validation 

results indicate that errors between this method and the one proposed by Lobert et. 

al. are similar. Finally we took a look at the various challenges, inaccuracies and 

propose improvements to furher improve the model. 

The method developed in this thesis will be tested in Finland during the summer 

of 2023 and if the results prove to be succesful, additional events may be added into 

the model in the future. However, the code to produce results is not unfortunately 

open source. Although there is a a possibility that the model and analyses might 

become available for the public use at the later time, but for the time being the code 

can not be freely accessed. 

Machine learning and deep learning techniques have the potential to greatly 

enhance the capabilities of remote sensing technology in the future. One of the 

main advantages of these approaches is that they can be used to automatically 

extract patterns and recognize changes from large and complex datasets such as 

datasets generated by satellites and drones. 

Satellites generate vast quantities of data and automated and efficient processing 

of this data can help reduce the time and resources to extract meaningful insights 

from these remote sensing datasets. Using remote sensing technology, we can obtain 

up-to-date information on the land cover of the earth which can be used to derive 

valuable insights about our planet. For example remote sensing can be used to 

monitor and track changes in natural systems such as forests, rainforests and glaciers. 

Or remote sensing can be used in assessing the human impact on the planet; for 

example we can track urbanization, air pollution, agriculture or even the frontlines 

in the war in Ukraine. 

Automating these remote sensing workflows using machine learning techiques we 

can speed up the response to many natural disasters such as floods, wildfires and 

earth quakes. Using the satellites or drones in disaster areas can save human lives 

by providing accurate information. [24] 
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While the remote sensing and machine learning have the potential to provide 

many helpful benefits to society they can also be used in harmful manner. For 

example using high resolution satellite imagery it is possible to track boats [25] or 

planes [26] in a airfield and by using drones it is even possible to track individual 

humans [27]. These techniques could be used to facilitate mass surveillance. In the 

war in Ukraine we have already seen these techniques being used. Consumer-grade 

drones are dropping grenades on soldiers [28] and high resolution satellite imagery 

is tracking movements of military equipment and batallions [29]. Taking the human 

out of this equation might lead to a new levels of automation and increase the scale 

and scope of violence. 

Ultimately machine learning and remote sensing have potential to provide nu- 

merous benefits to human society by revolutionizing our understanding of natural 

and urban environments. These sources of information can help us make informed 

decisions and polices to enchance sustainability of life on earth but it is crucial to 

consider potential negative impacts and establish legal frameworks to ensure these 

technologies are used in responsible and ethical manner. 
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Appendix: Feature importances

 

Figure 13: Feature importances for Growing event 
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Figure 14: Feature importances for Light Tillage event

 

Figure 15: Feature importances for Ploughing event 
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Figure 16: Feature importances for Mowing event

 

Figure 17: Feature importances for Harvest event 
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Figure 18: Feature importances for Ripening event 
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