
Leveraging Kubernetes in Edge-Native
Cable Access Convergence

Master of Science in Technology Thesis
University of Turku
Department of Computing
Software Engineering
2023
Janne Virtanen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

JANNE VIRTANEN: Leveraging Kubernetes in Edge-Native Cable Access Convergence

Master of Science in Technology Thesis, 117 p.
Software Engineering
July 2023

Public clouds provide infrastructure services and deployment frameworks for modern
cloud-native applications. As the cloud-native paradigm has matured, containerization,
orchestration and Kubernetes have become its fundamental building blocks. For the next
step of cloud-native, an interest to extend it to the edge computing is emerging. Primary
reasons for this are low-latency use cases and the desire to have uniformity in cloud-
edge continuum. Cable access networks as specialized type of edge networks are not
exception here. As the cable industry transitions to distributed architectures and plans
the next steps to virtualize its on-premise network functions, there are opportunities to
achieve synergy advantages from convergence of access technologies and services. Dis-
tributed cable networks deploy resource-constrained devices like RPDs and RMDs deep
in the edge networks. These devices can be redesigned to support more than one ac-
cess technology and to provide computing services for other edge tenants with MEC-like
architectures. Both of these cases benefit from virtualization. It is here where cable ac-
cess convergence and cloud-native transition to edge-native intersect. However, adapting
cloud-native in the edge presents a challenge, since cloud-native container runtimes and
native Kubernetes are not optimal solutions in diverse edge environments. Therefore,
this thesis takes as its goal to describe current landscape of lightweight cloud-native run-
times and tools targeting the edge. While edge-native as a concept is taking its first steps,
tools like KubeEdge, K3s and Virtual Kubelet can be seen as the most mature reference
projects for edge-compatible solution types. Furthermore, as the container runtimes are
not yet fully edge-ready, WebAssembly seems like a promising alternative runtime for
lightweight, portable and secure Kubernetes compatible workloads.

Keywords: cable access, cloud-native, convergence, container orchestration, edge com-
puting, Kubernetes, edge-native, WebAssembly

Contents

1 Introduction 1

2 Cloud-native orchestration 8

2.1 Cloud computing . 8

2.1.1 Introduction to the cloud . 8

2.1.2 Definition of cloud computing 10

2.1.3 History of the cloud . 13

2.1.4 Enablers of cloud computing . 14

2.1.5 Application deployment models 16

2.1.6 Cloud-native applications . 19

2.1.7 Edge computing . 22

2.2 Virtualization technologies . 26

2.2.1 Hardware virtualization . 27

2.2.2 Containerization . 32

2.3 Kubernetes . 41

2.3.1 Introduction . 41

2.3.2 Components . 43

2.3.3 Configuration and management 47

2.3.4 Cluster management . 48

2.3.5 Communication and security . 49

i

2.3.6 Network and service model . 50

2.3.7 Helm package manager . 54

3 Distributed cable access 56

3.1 Access networks . 56

3.2 Broadband data access networks evolution 58

3.3 Fiber to the X and digital optics . 60

3.4 Data Over Cable Service Interface Specification 62

3.4.1 Introduction . 63

3.4.2 DOCSIS network elements . 63

3.4.3 Physical layer . 64

3.4.4 MAC layer . 66

3.4.5 Cable modem provisioning . 69

3.5 DOCSIS extensions . 71

3.5.1 Frequency Division Duplex and Extended Spectrum 71

3.5.2 Full Duplex . 72

3.6 Distributed cable access architectures 74

4 Case: Kubernetes in edge-native cable access convergence 78

4.1 Current trends of cable access and cloud-native 78

4.1.1 Full disaggregation and virtualization of cable access 79

4.1.2 Cable access convergence . 80

4.1.3 Evolution of cable to multi-access edge-native 82

4.2 Case study introduction . 85

4.2.1 Research goals and question . 85

4.2.2 Research plan and discussion . 87

4.3 Lightweight Kubernetes solutions . 89

4.3.1 K3s . 92

ii

4.3.2 MicroK8s . 93

4.3.3 KubeEdge . 93

4.3.4 Virtual Kubelet . 95

4.3.5 Kubemark . 96

4.3.6 Kind . 97

4.3.7 KWOK . 97

4.4 Comparison of lightweight Kubernetes distributions 98

4.5 Edge-native application runtimes . 99

4.5.1 Alternative Kubernetes runtimes 101

4.5.2 Standalone WebAssembly runtimes 102

4.5.3 Kubernetes as edge-native orchestrator 105

4.6 Prospects of edge-native in cable access 106

5 Discussion 109

5.1 Cloud-native model evolution to edge-native 109

5.2 Cable access future prospects . 111

5.3 Case study considerations . 112

5.4 Study evalution and future work . 113

6 Conclusion 115

6.1 Cloud-native, cable access, and future trends 115

6.2 Case study results . 116

References 118

iii

List of Figures

2.1 Cloud-native application architecture with microservices 20

2.2 Edge computing paradigms . 23

2.3 ETSI MEC reference architecture model 24

2.4 Hypervisor types . 28

2.5 Comparison of container stack and virtual machine stack 33

2.6 Open Container Initiative standards on container engine 34

2.7 Container ecosystem runtime standards and component instances 36

2.8 Container image stacked layer structure 38

2.9 Kubernetes high-level architecture . 42

2.10 Kubernetes networking model communication paths 51

2.11 Kubernetes service model . 53

3.1 Simplified view of access network . 57

3.2 Elements of Passive Optical Network . 61

3.3 Elements of DOCSIS network . 64

3.4 EuroDOCSIS 3.0 spectrum use . 65

3.5 MAC layer functions in CMTS . 67

3.6 Traditional cable access network elements 74

3.7 Remote PHY architecture . 76

4.1 High-level view of current state of access networks 80

4.2 High-level view of access networks convergence 82

iv

4.3 Cable access Multi-access Edge Computing host architecture 83

4.4 KubeEdge architecture . 94

4.5 High-level view of Virtual Kubelet architecture 95

4.6 WebAssembly WASI runtime architecture 102

v

List of Tables

4.1 Lightweight Kubernetes distributions and Kubelet agents 90

vi

Acronyms

AWS Amazon Web Services

CATV Community Access Cable Television

CMTS Cable Modem Termination System

CNCF Cloud Native Computing Foundation

CPE Customer Premises Equipment

CRD Custom Resource Definition

CSP Cloud Service Provider

DAA Distributed Access Architectures

DOCSIS Data Over Cable Service Interface Specification

DS Downstream

DSL Digital Subscriber Line

ETSI European Telecommunications Standards Institute

FTTH Fiber to the Home

HFC Hybrid Fiber-Coaxial

IoT Internet of Things

K8s Kubernetes

vii

MAC Medium Access Control

MEC Multi-access Edge Computing

MSO Multiple System Operator

NIST The National Institute of Standards and Technology

OCI Open Container Initiative

OLT Optical Line Terminal

OOB Out-of-band

OSS Operations and Support Systems

PON Passive Optical Network

QAM Quadrature Amplitude Modulation

QoS Quality of Service

RAN Radio Access Network

RMD Remote MAC-PHY Device

RPD Remote PHY Device

SCTE Society of Cable Telecommunications Engineers

SIG Special Interest Group

SLA Service Level Agreement

US Upstream

VM Virtual Machine

viii

1 Introduction

Distributed computing systems are composed of nodes that are interconnected by a net-

work of some type. Seen as a whole, the system has underlying physical infrastructure

layer that executes software for the system. The connected nodes can be seen as logical

entities with varying quantity of compute-enabling resources, such as processing, mem-

ory or storage. A node can be dedicated physical server machine, as in the traditional

system architecture model [1]. However, in recent years, this traditional physical node

representation has evolved to virtual representation. Virtualization technologies have de-

coupled node execution environment from underlying physical resources. Analogously,

the diverse set of traditional network functions are evolving to virtual form, decoupled

from physical infrastructure. The same virtualization trend can be seen to have occurred

also for software. Distributed systems now use abstract service interfaces to communi-

cate with other services. It has become canonical to refer to this aggregation of virtual

nodes and services as the cloud [2]. Adoption of cloud has been strong in recent years,

especially in enterprise, and seems no signs of stopping [3].

While computing systems must have underlying physical representation, increasingly

that detail is relevant only for intermediary system agents. For example, a control software

that orchestrates allocation of virtual nodes over physical infrastructure is an intermedi-

ary agent for node end-users. In case of computing nodes, the orchestrator might allocate

virtual machines to be run on physical server machines. For network functions, another

orchestrator might configure virtualized switching and routing functions to physical net-

CHAPTER 1. INTRODUCTION 2

work devices. For end-users who operate virtual nodes or network functions, the physical

context has lost much of its meaning. While cloud service providers such as Amazon [4],

Google [5] and Microsoft [6] are well-known major vendors who offer virtualized base

infrastructures as a service, there are others who offer higher-layer platforms that utilize

the base infrastructures for more targeted purposes.

The motivation for using virtualized computing resources emerges from its benefi-

cial attributes that increase flexibility and improve physical resources utilization [7]. In

essence, virtualization allows for more applications on fewer number of physical servers,

which reduces total power consumption, bringing costs down. Traditionally hypervisor-

based virtual machines have been used as virtualization technology for infrastructures and

applications. However, in recent years containerization has emerged as more lightweight

virtualization method for applications [2]. Containerization uses so-called containers,

which are prepackaged applications that run isolated from each other. The main benefit

with containers compared to virtual machines is reduced execution overhead and greater

portability. However, the challenge until recently has been the orchestration of container-

ized applications in distributed systems [8].

Kubernetes [9] is currently the most popular platform used to orchestrate container-

ized applications in the cloud and distributed systems [10]. It has become the canonical

interface, or "operating system", between users and cloud infrastructures. Few years back,

many trends and studies indicated this would happen [11–13]. Largest cloud providers

have already integrated Kubernetes into their platforms. Along with Kubernetes, the con-

cept of cloud-native application, as an application that is intentionally developed for the

cloud, has also matured. Kubernetes and cloud-native model are inherently coupled. Con-

sequently, Kubernetes has major focus in this thesis, as will be further explained below.

While there are other container orchestration platforms, they are out of scope for this

thesis.

Yet another development in distributed computing has been the emergence of low-

CHAPTER 1. INTRODUCTION 3

resource edge devices, which include so-called Internet of Things (IoT) devices. Here the

term edge is used to refer to distributed systems located close to end-users. While central-

ized cloud infrastuctures have been virtualized and have mature cloud-native frameworks,

the edge devices present a challenge [14]. They generally do not have enough computing

capacity to employ virtualization platforms, such as hypervisors or container orchestra-

tors, in their standard form. Furthermore, the edge environment is highly heterogenous

which goes against core assumptions behind many of the virtualization platforms, de-

signed for homogenous data center environments. A suggested solution has been edge

computing, where edge devices offload computing to intermediate servers residing close

to cloud edge [2]. To this end, the current desire of the industry and cloud community

is to move now-mature cloud-native model from centralized clouds to the network edge

[14]. To realize this edge-native model, first it requires more lightweight virtualization

platforms that can work in constrained edge environments. To this end, there are al-

ready some alternative Kubernetes distributions that are targeted for the edge. Secondly,

while containers have much smaller resource footprint compared to virtual machines, that

may still not be enough for many edge devices. Thus, the edge-native requires even

more lightweight solutions to run workloads in resource-constrained devices. Here, We-

bAssembly [15] seems like a promising alternative to traditional container runtime solu-

tions [14].

Changing the focus a bit, broadband access networks are type of networks located in

the edge. They enable broadband data access to the Internet for end-users [16]. Cable

access networks use coaxial cable as their physical medium in last kilometers. In re-

cent years, cable access has seen transformation of their architectures to more distributed

form. The same has happened with other types of access networks. In distributed archi-

tectures, some of the network functions that are located at operator’s on-premise sites,

are moved closer to end-users. The functions, which usually relate to particular physical

access medium, are now implemented in remote access nodes located in the field. At the

CHAPTER 1. INTRODUCTION 4

same time, the optical feeder network between operator’s centralized site and the nodes

becomes pure IP network. This brings opportunity to share the same feeder network for

multiple access services. For example, if a cable system operator in parallel manages

passive optical network (PON) or radio access network (RAN), they can all use the same

IP feeder network. In addition to unified IP, another opportunity is to co-locate more

than one access network functions in the same remote node. For example, a remote node

could have output ports for both coaxial and optical fiber mediums. While not all network

functions can be combined due to fundamental differences between access mediums, it is

still possible to use one access medium as overhaul network for protocol packets of other

access types [17]. For example, a small-cell of RAN could be located behind cable sys-

tem’s modem, while the RAN protocol packets were sent over a cable system to the RAN

management system. While this general convergence of access network technologies is

an important trend that underlies this thesis, the convergence is not the main focus.

Access network operators have a desire to virtualize their backend site services, while

moving physical medium access functions to remote nodes in the field. For this goal, the

now mature cloud platforms provide partial solutions [18]. While many network services

can be moved to run in centralized public clouds either as VM-based services, or as mod-

ern cloud-native services, that is not possible for all the services. Some services may be

latency sensitive, or there are other restrictions, which do not permit the services to run

far away from access network end-users. Some of these services can still be virtualized

on standard server machines running in operator’s own premises. Here, the cloud-native

approach may still be applicable, depending on capabilities of operator’s site. However,

convergence and virtualization of remote nodes is also in the sights [18]. Edge devices in

end-user premises might also benefit from having deep edge computing support. How-

ever, when moving deeper into the access network, virtualization and cloud-native model

gets increasingly more difficult to implement using currently existing tools, as already

discussed. Therefore, to fully embrace cloud-native model in access networks domain

CHAPTER 1. INTRODUCTION 5

requires careful analysis of alternative orchestration solutions. Works like by Vanõ et al.

[14] indicate there are still many unsolved problems, and that the research for edge-native

is still in early stages.

Understanding the requirements and available options for cloud-native model adapta-

tion to the edge-native model is the main focus of this thesis. Here, cable access networks

work as the driving background context. However, this is not how this work was orig-

inally envisioned to be. The study began with intention to study interfaces of different

cloud cluster platforms that existed back then, with goal to implement the interface of the

platform that was found most suitable. The implementation would have been used to inte-

grate a specific cable access network product with the chosen platform. While Kubernetes

was one of the early canditate platforms right from the start, it was not the only one that

was considered at the time. Furthermore, the scope of platforms was not limited to only

container orchestrators. Over time, however, the original study transformed into what it

is here. At least two events are responsible for this change. First, the target edge product

was canceled, which obsoleted part of the thesis. Second, during first half of the study,

understanding of the topics of cable access networks and cloud-native model increased to

the extent, that there became a realization that the original study goals did not make sense

anymore. The learned fact that Kubernetes has practically become the de facto container

orchestrator of the cloud, could not be ignored.

Therefore, Kubernetes is another central topic of this thesis. Any edge-native solu-

tion most likely will have Kubernetes in some form as one piece of the puzzle that will

orchestrate containers. However, in edge-native context, containers may not always be

the optimal deployment method for applications and workloads. Even if containers are

lightweight, they still require certain capabilities from underlying runtime environment.

The edge devices may also lack other resources to run containers. Consequently, alter-

native Kubernetes-compatible application runtimes suitable for the edge are also studied.

Here, the already mentioned WebAssembly is one interesting possibility. To gather better

CHAPTER 1. INTRODUCTION 6

understanding how to exploit Kubernetes in cable access cloud-native transformation, this

thesis conducts a case study which is described in Chapter 4.

This thesis has its research questions come in two parts. The questions in the first part

are about understanding the current status and future trends of the topics discussed above,

namely cloud-native model and cable access networks. These questions are explored

mostly through informal literature study. The research questions for the first part are:

RQ1. How the cloud concept has evolved to its current state with respect to cloud-native

model and container orchestration?

RQ2. What is the current state of cable access networks in context of general access

networks evolution?

RQ3. What are the future trends of cloud-native model and cable access networks, and

how these trends intersect and relate to each other?

The RQ1 and RQ2 are explored extensively in Chapter 2 and Chapter 3. Historical con-

text is also included to better understand the background. The results of RQ1 and RQ2 are

summarized in Chapter 6, but the role of these questions is primarily to widen the under-

standing of their respective topics, in order to help guide the exploration of any following

questions. For RQ3, the future trends of the two seemingly separate topics explored for

RQ1 and RQ2 are studied, and their relation to each other is analysed. The RQ3 is ex-

plored at the beginning of case study Chapter 4. The results of all the questions RQ1,

RQ2 and RQ3 in part one are used as a background context and motivation for further

exploring RQ4 in the second part of this thesis through a case study.

The second part has only one question. It derives directly from the first part as de-

scribed above, as the answers to first part’s questions took form, and as understanding of

the topics increased. A follow-up research question was formulated, which is:

RQ4. What are the current options to leverage Kubernetes in context of edge-native

cable access convergence?

CHAPTER 1. INTRODUCTION 7

The RQ4 is studied and analysed as a case study in Chapter 4. The case study is conducted

through the use of literature sources. Among extensive use of literature sources, online

sources, such as GitHub for different software resources are also used. Chapter 4 contains

analysis and discussion of the case results, while Chapter 5 presents possible steps for

future work. The final Chapter 6 gives concluding remarks for this work.

2 Cloud-native orchestration

This chapter provides an overview of concepts related to the cloud-native model. Two

main branches of virtualization technologies are covered in dedicated sections, since vir-

tualization is the most important enabler of the cloud. The chapter concludes with de-

scription of Kubernetes fundamentals, as the orchestrator platform is at the core of this

thesis.

2.1 Cloud computing

This section provides an overview of cloud computing. Relevant concepts, history, tech-

nologies and paradigms related to cloud and cloud-native are covered.

2.1.1 Introduction to the cloud

Some ten years ago cloud computing was seen as still evolving paradigm with much

potential [19, 20]. Now, a decade later, there is little doubt that the cloud has brought

the prospect of computing as a metered utility close to a reality [21, Ch. 1], similar to

how electric grids evolved to standardized, always available utility service [22]. Large

cloud service providers (CSPs) of today, such as Google, Amazon, or Microsoft have

mature and extensive public cloud service offerings, while open source community has

produced many mature platforms, such as Kubernetes [9], which can be used to deploy

cloud infrastuctures and applications for various needs.

2.1 CLOUD COMPUTING 9

According to McHaney [23, Ch. 1], the cloud emerged as a solution to the problem

of IT systems having become too complex to manage by specialists within different or-

ganizations. The challenges of IT relate to cost reduction and capacity planning efforts

that arise from owning resources, such as on-premise equipment or software. Ownership

management of resources leads to unpredictable costs and lack of organizational agility.

McHaney and others [24] assert cloud computing is a solution to simplify management

of infrastructures that complex software systems need. Furthermore, cloud is a solution

to simplify management of applications themselves. The simplication is made possible

by a software-based abstraction layer, namely virtualization layer, that allows sharing of

computing resources efficiently. Using cloud system, an organization can purchase com-

puting capacity or software services from one of the CSPs, without need to own dedicated

equipment. Still, the organization has always an option to purchase equipment as owned

on-premise infrastructure and install private cloud to get many of the same benefits as

public cloud offerings.

Cloud computing can be simplified to mean a system that delivers various computing

applications and services1 over a network such as the Internet [23, Ch. 1]. But cloud com-

puting has also broader meaning, encompassing not only the interconnected applications

and services, but also the whole technology stack underlying all the software [2] [23, Ch.

1]. In cloud computing, the services can be thought as resources, which make use of other

cloud resources in layered and shared fashion. Often the exact location of the resources

and their technical details are not known to the users of cloud system. Cloud computing

can also be seen as a mindset in which various computing resources are shared and can

be used almost from anywhere [23, Ch. 1].

1Applications and services such as servers, databases, storage, networking, software, data analytics,

security solutions, organizational systems, virtual computers and more. [23, Ch. 1]

2.1 CLOUD COMPUTING 10

2.1.2 Definition of cloud computing

While there are many definitions for cloud computing, literature often refers to one pro-

posed by The National Institute of Standards and Technology (NIST):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly pro-

visioned and released with minimal management effort or service provider

interaction.” [25]

The NIST definition concludes with:

“This cloud model is composed of five essential characteristics, three service

models, and four deployment models.”

The referred characteristics are:

On-demand self-service. Cloud system users can decide to independently provision

more computing resources as needed. This can be done automatically without direct

human interaction.

Broad network access. The cloud services are available over a network and accessed

through standard techniques that promote use by different client platforms.

Resource pooling. Same physical computing resources are opaquely shared between

users using multi-tenant model. A user has no direct low-level control or knowledge

over the location of the reserved resources. The resources can include storage, com-

puting, memory and network bandwidth.

Rapid elasticity. Resources can be manually or automatically scaled outwards or in-

wards in proportion to demand. To the user, the available cloud system resources can

appear to be unlimited.

2.1 CLOUD COMPUTING 11

Measured service. System state and usage is measured at infrastructure level or at

some higher service level. Metrics are collected for purposes of control, optimiza-

tion and billing. Examples of infrastructure measurements are computing and storage

usage metrics. At service software level, number of user connections and consumed

bandwith are examples of used metrics.

The three service models, or cloud layers, in context of public cloud are:

Infrastructure as a Service (IaaS). Service provider offers fundamental computing re-

sources, such as CPUs, storage or networks to users. Typically the resources are vir-

tualized and exposed as virtual machines or containers. Users deploy software of their

own choosing on the virtual resources, while the physical resources are in control of

service provider. A physical unit can be opaquely shared by more than one user, as in

multi-tenant model. By definition, users can request more capacity on-demand.

Platform as a Service (PaaS). Service provider offers an environment or platform on

which users can deploy their application. The platform supports a set of languages,

services and tools related to one or more application domain. Users are in control of

application and configuration of its environment, but typically have no control over

the underlying hardware or operating system.

Software as a Service (SaaS). Applications or services whose functionality is avail-

able for users using either a thin client interface or a programming interface. Users

usually have control of only limited number of application configuration options.

The four cloud deployment models in NIST definition are:

Private Cloud. Cloud infrastructure is deployed for exclusive use by single organiza-

tion. Cloud ownership and management may be held by the organization, by a third

party, or any combination of them. The physical infrastructure can be located on

organization premises or rented off-premise.

2.1 CLOUD COMPUTING 12

Community Cloud. A private cloud that is intended for exclusive use by a specific

community of users.

Public Cloud. The cloud provides resources and services that are open for use by the

general public through the Internet. The cloud infrastructure is located on provider

premises.

Hybrid Cloud. Composition of at least two distinct cloud infrastructures. Commonly

it comprises of a private cloud for critical business resources and public cloud chosen

for its cost-efficiency.

Research literature and other sources seem to agree with all or parts of the NIST

definition, especially with the service and deployment models: for example, taxonomical

research in [19], more recent publications [21, Ch. 1] [2, 26], Wikipedia [27] or Amazon

web article [28]. For sake of simplicity, this thesis will ignore community cloud model

and merges it with private cloud model. Other than that, the NIST definition as presented

here is assumed.

Finally, it should be noted that cloud trends include other service models [27]:

Serverless Computing. A model or architecture where service provider fully manages

the underlying cloud resources and pricing is based on actual amount of resources

used.

Function as a Service or FaaS. A model that leverages serverless computing to de-

ploy user defined stateless functions in the cloud, which are executed in response to

events. Each function call is billed on actual execution time. FaaS runtime platform

manages lifetime of function instances.

Many of the traditional cloud service models use techniques where at least some of the

application software components must be always resident, i.e. always-on, implying that

associated resources may be billed continuosly. FaaS is premised on serverless computing

2.1 CLOUD COMPUTING 13

model where resources are meant to be active only for as long as really needed. It is

thus possible to scale the resource usage close to zero, which is one major benefit of the

serverless model [26].

2.1.3 History of the cloud

The evolutionary path to cloud computing has had many incremental steps according to

McHaney [23, Ch. 1] as gradual changes of technology and use of computers has taken

place. While the commercial mainframes of 1960s can be taken as a starting point, they

had little similarities to today’s cloud systems. It was the multi-user mainframes from

1970s that first had some resemblance to cloud systems, only in much smaller scale. In

that era, users accessed mainframes through simple terminal device to get access to shared

resources. Since the mainframe used virtual machine computing model, it seemed like the

users had their own private computer system.

Invention of microprocessor eventually led to the intermediate era of personal comput-

ers in 1980s. This event saw some of the computing power move from mainframes closer

to users, while mainframes were delegated more to the role of backend servers for request

processing. At first custom networkings of the time restricted communication to work

only within organizations. This was later solved in the 1980s by the TCP/IP networking

standard, which eventually became the protocol behind the Internet. In the early 1990s

the Internet got its easy-to-use web interface in form of the World Wide Web (WWW).

The protocol behind WWW was called Hypertext Transfer Protocol (HTTP), which made

it much easier to access standardized web resources and services.

This all led to explosion of WWW and more advanced Internet services started to ap-

pear, such as social media. Many companies developed web applications, which required

technology solutions in problem areas such as distributed databases and processing for

millions of users. These solutions and systems became known as Web 2.0, and now some

of the computing power moved back to shared resources in data centers owned by com-

2.1 CLOUD COMPUTING 14

panies. The web applications were accessed through thin-clients running in a browser

on user’s computer or mobile device. McHaney concludes that the cloud computing era

truly began around 2005, both for individuals and organizations. From that point on,

cloud computing can be seen to have been driven predominantly by Amazon, Google and

Microsoft [20]. [23, Ch. 1]

2.1.4 Enablers of cloud computing

McHaney [23, Ch. 1] lists two hardware and two software developments as the main

drivers of change in cloud computing evolutionary path:

Significant changes in hardware capabilities. Increases in computing power and stor-

age density allow using more complex algorithms and techniques as required by ad-

vanced cloud environments.

Advances in network technology. High capacity and low-latency broadband networks

in gigabit ranges make distances shorter. It becomes less relevant to have locality of

data as performance optimization.

Service oriented architecture. SOA is both an enterprise-level software architecture

style and vision of how to develop, build and deploy systems. Its main concept is

reusable services or modules that are integrated as large scale system. The difference

to traditional design systems is that SOA is specifically network-oriented. Software

module communication is defined as well-defined network APIs, not as procedures

and their parameters.

Advances in virtualization technologies. Virtualization allows to share hardware re-

sources in isolation between multiple users. This increases resource utilization rate,

which reduces power consumption.

The traditional method to deploy only limited set of applications on single physical

machine underutilizes hardware resources [1]. This is because the resources reserved

2.1 CLOUD COMPUTING 15

for unused applications could be potentially used for other purpose. The static nature of

the underlying system makes it difficult to plan deployments for optimal resource usage.

From McHaney’s list of major technology developments, virtualization can be seen as the

solution to the hardware underutilization problem, because it can be used to efficiently

share resources of a single system to achieve economies of scale [23, Ch. 1].

Virtualization means to have an abstraction unit that represents subset of shared com-

puting resources [1]. Other software deploys against the unit as if the software was run-

ning directly on real resources. In truth, the abstraction maps its apparent resources, or

virtual resources, to subset of available real resources. The mapping can typically vary

dynamically adjusting to changing workloads [29]. Virtualization enables multi-tenancy,

where multiple unrelated services can be deployed simultaneously on the same underlying

system. For example, if the abstraction unit presents complete virtualized server machine,

as in case of hardware virtualization, multiple virtual servers could be deployed on single

physical computer hardware. If the abstraction presents OS kernel and its resources, as

in operating-system-level virtualization, multiple separate OS environments along with

applications could be deployed on single OS installation. All this leads to more effective

utilization of computing resources and enables resource sharing between users [23, Ch.

3].

Virtualization is often implemented as a virtualization layer where the abstraction

units are managed by a specialized control software [7]. The control software may run

directly on hardware or it might run as user space application inside operating system.

The control software can be used to create new abstraction units on-demand, if there are

enough free resources in the underlying system. A user with access to an abstraction unit

can deploy software of own choosing inside the unit, limited only by constraints of the

virtualization technology. For example, in hardware virtualization, a full operating system

along with other software can be deployed, while in OS-level virtualization the kernel is

shared between all the units [2].

2.1 CLOUD COMPUTING 16

Virtualization can be seen as the most important cloud enabling technology according

to McHaney [23, Ch. 3] and others [1, 20], especially for IaaS. This can be seen also

from that virtualization directly contributes to three of the five essential NIST cloud char-

acteristics: on-demand service, resource pooling and elasticity. Elasticity by itself is an

important characteristic, so much that it could be also listed as one of the cloud enablers

[2]. Elasticity is the degree to which a cloud system adapts to changing workloads [26].

An elastic system automatically provisions or de-provisions virtual resources according

to current demand. Highly elastic system, however, requires efficient management and

monitoring of virtual resources. Efficient resource management is thus of great impor-

tance as it results in high scalability of the cloud and in reduced operational costs [2]. To

a large degree, virtualization makes this all possible.

2.1.5 Application deployment models

Evolution of cloud computing and its application architecture has been a continuous

process to improve resource utilization, according to Kratzke [26]. Over time this has

changed application development and deployment models. Early approach was to use

virtual machines (VMs) to consolidate large numbers of bare metal machines to utilize

physical resources more efficiently. Each server machine had running many isolated VMs

along with their applications, which in essence increased the application density of phys-

ical servers. At the same time, the VM model affected how applications were deployed

to the servers. An application and its dependencies was now deployed as a VM image,

which became the standard deployment unit of the cloud. While the images were more

lightweight compared to traditional application deployments to bare metal hardware, they

were still relatively heavy by their size. Virtual machines now form the backbone of IaaS

services [26].

Service oriented architecture (SOA) style was another early deployment model, listed

by McHaney as one of the important cloud enabling technologies [23, Ch. 1]. SOA is

2.1 CLOUD COMPUTING 17

monolithic architecture from deployment point of view [26]. This means that the appli-

cation modules cannot be deployed indepedently, because the modules cannot execute

in isolation from the application2 [30]. The complete application must be deployed as a

whole, or not at all. For ease of deployment, this often leads to packaging an application

as single VM image [26]. Monolithic architectures are not applicable for many mod-

ern distributed cloud applications, as they often have strict requirement of no downtime.

Therefore, service oriented architecture eventually evolved to more indepedently deploy-

able microservice architecture model [26]. In a sense, microservices can be seen as more

pragmatic version of SOA.

A microservice is an independent software module with a single responsibility that

it implements well [30]. Other distributed modules and applications communicate with

the microservice using a well-defined messaging interface. Microservice architecture is

a composition of many microservice modules, which work as a cohesive unit. Microser-

vice architecture makes a cloud application more scalable and maintainable, because each

microservice can be deployed independently [30]. For example, an updated version of a

microservice can be deployed in parallel to old one, making gradual transitions to new

application versions possible. Consequently, it is not necessary to reboot the full appli-

cation when a single module gets updated. According to Kratzke, a major reason why

microservice architectures have seen success may have been that the service instances

could be standardized as self-contained deployment units known as containers [26]. Con-

tainers make use of operating-system-level virtualization, which is inherently much more

lightweight compared to hardware virtualization. Containers have also faster startup time,

further enhancing the inherent elasticity that microservice architectures already have. It

can be said that microservices naturally lend themselves to containerization [30]. Con-

tainerization will be discussed in section 2.2.2.

2The modularisation abstraction of SOA requires that the modules share resources of underlying host

machine, such as memory or file system database. [30]

2.1 CLOUD COMPUTING 18

Microservice architecture and containers provide efficient model for cloud deploy-

ments, but they are still conceptually always-on [26]. This means that even when there

are no service requests, at least some services must be always instantiated, leading to per-

sistent resource consumption. Furthermore, microservice architecture faces the challenge

of efficiently managing each service container for elasticity [26]. For the management

concern, orchestration platforms such as Kubernetes have emerged as an important so-

lution. However, orchestration platforms do not solve the always-on issue. For that,

Kratzke predicted in 2018 that serverless architectures and especially function as the ser-

vice (FaaS) could be the next trend in cloud deployment model evolution [26]. In FaaS,

the deployment units are fine-grained stateless functions, which are fully managed by a

platform of a cloud service provider. The function execution is triggered by events from

client application, and is billed by function runtime.

Today, all major cloud service providers include serverless and FaaS among their of-

ferings, AWS Lambda being possibly the most prominent [26]. Among organizations that

already lean to the cloud platforms and services, FaaS has become one of the mainstream

models [31]. FaaS has the beneficial attributes of fine-grained deployment, bounded life-

time and stateless service concept, which can lead to near zero resource usage when there

are no service requests. According to case study by Villamizar et al., FaaS can lead to

up to 75% cost reduction compared to microservices, at least in web application con-

texts [32]. However, serverless computing is not without open challenges and drawbacks

[26]. Runtime constraints present themselves as startup latency from zero requests state,

while function state constraints require some form of external cache to be used. Fur-

thermore, function compositions have "double billing" issue when functions blindly call

other functions synchronously. Vendor lock-in, client software complexity, and develop-

ment time complexities are some other problems. Furthermore, serverless architectures

have increased security concerns from their larger attack surface.

2.1 CLOUD COMPUTING 19

2.1.6 Cloud-native applications

As the cloud as a platform has evolved over the years, so have application development,

deployment and management models. The industry has transitioned from monolithic ap-

plication models to service-oriented models [26], with microservices being the current

preferred architectural style. As already discussed, loose coupling and isolated state of

microservices naturally lend to containerization. Container orchestration platforms, such

as Kubernetes, have proven to be efficient tools to automatize much of the complex con-

tainer orchestration in scalable and elastic manner. Combining cloud models and tools

with principles that increase collaboration between software developers and IT operations

has enabled faster application development and deployment processes.

An application that is intentionally developed for the cloud from the start using the

principles and tools mentioned above is known as cloud-native application (CNA) [14].

Along with maturation of the cloud by strong pragmatic push from the industry, the defi-

nition of cloud-native application has reached more concrete form, entailing much of the

topics mentioned above. Few years back the situation was different, as the definition of

CNA was only taking its form, with research like by Kratzke [33] seeking to understand

CNA concept on theoretical level. As for one definition of CNA, following is from Cloud

Native Computing Foundation:

“Cloud native technologies empower organizations to build and run scalable

applications in modern, dynamic environments such as public, private, and

hybrid clouds. Containers, service meshes, microservices, immutable infras-

tructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manage-

able, and observable. Combined with robust automation, they allow engineers

to make high-impact changes frequently and predictably with minimal toil.”

[34]

2.1 CLOUD COMPUTING 20

As CNA paradigm emphasizes microservice model, it is worthwhile to examine how

that model has evolved. Here, according to Kratzke [26], based on Jamshidi et al. [35],

there has been three generations. In the first generation, microservices were simply pack-

aged as containers managed by some orchestration framework. Each service was respon-

sible for discovering other services and implementing communication protocols. How-

ever, as the number of services per application increased over time, management of all the

complexity and variety among service implementations became problematic. Therefore,

in the second generation, microservices started to use service discovery and fault-tolerant

communication libraries to reduce complexity and increase service reliability [26]. Ser-

vice discovery technologies let services communicate with each other without knowing

their exact network location, while fault-tolerant communication libraries improve com-

munication efficiency and reliability [35].

The third microservice generation introduced standard service proxies, or sidecars, as

intermediaries to improve reusability [26], as seen in Figure 2.1. Sidecar encapsulates

Container A Container B

Service A

Business
logic

Sidecar

Service B

Business
logic

Discovery and
fault tolerance

Traffic
management

Service discovery

Sidecar

Discovery and
fault tolerance

Traffic
management

Figure 2.1: Cloud-native application implemented as microservices that run inside containers. A co-located

sidecar provides discovery, communication and monitoring services for the application microservice. [35]

reusable communication functions, presenting them as another co-located service to ap-

plication service developers [35]. Finally, building on sidecar technology, service mesh

technologies present a fully integrated communication, monitoring and management plat-

form for service networks [35]. While in previous generations a service communicated

2.1 CLOUD COMPUTING 21

directly with other services, now with service meshes, the application communicates ex-

plicitly with co-located sidecar interface, which relays the operations to other services

through the service mesh.

Jamshidi et al. envisioned in 2018 that the next generation of microservices would be

serverless architectures, such as FaaS, to essentially turn an application to collection of

functions [35]. Since then, while the serverless model has been successful especially in

public clouds [14], it has not fully replaced the traditional microservice model. Serverless

computing is still one viable architectural design choice how to implement CNAs for

modern cloud.

From the above it is clear that microservice-based applications, and thus CNAs, have

many interacting software components. Intermediary service meshes are important design

elements which allow building reliable and scalable applications, while also abstracting

the runtime environment for individual service component. Still, deployment of CNAs in

elastic and scalable manner would hardly be possibly without automatized deployment of

application components, sidecars and other support services. The automation is enabled

by container orchestration platforms, which are considered as essential pieces in the full

CNA paradigm [26]. In practice, Kubernetes has taken the place as canonical container

orchestrator that is used for modern CNAs [14].

Finally, as CNAs have their characteristic architecture designs and deployment tools,

they also have their own characteristic development methods. The intent behind these

methods is to build quality software quickly, to be run at any cloud layer. The underly-

ing methods are to separate software component development to dedicated teams (i.e. by

a microservice), to increase co-operation between development and IT operations inside

organization, to update software in higher frequency, to test and commit code changes

often to shared repositories (Continuous Integration), to deploy applications into produc-

tion through well-defined testing and validation pipelines (Continuous Deployment), and

to automatize all these procedures as much as possible. Together, these methods and

2.1 CLOUD COMPUTING 22

principles are known as DevOps practice [26].

2.1.7 Edge computing

Public clouds are usually located in small number of centralized places far away from the

end users at the network edge [36]. The consequence is that these clouds cannot prop-

erly serve real-time applications on devices located at the edge [24]. These applications

may have strict operating requirements, such as low latency, low jitter, high bandwidth

consumption, and mobility functions. On one hand such edge applications would signif-

icantly benefit from cloud computing capacity, because they can be hard to fully localize

on battery-limited or resource-constrained devices [36]. But the distances to centralized

cloud servers bring implementation challenges, and the application requirements cannot

be met without degrading the user experience.

The trending of mobile computing3 in the early 2000s started the evolution of propos-

als on how to extract the full potential of mobile but low-resource edge devices [36]. After

some initial suggestions in the context of pervasive computing, which included Cyber For-

aging by Satyanarayanan [38], the soon to be emerging cloud computing eventually gave

the answer at least to the question who would own the computing servers. The integration

of centralized cloud and mobile computing became known as Mobile Cloud Computing.

However, because the computing is still done in far away centralized cloud, MCC alone

does not meet the requirements of real-time applications [24]. Other practical solutions

to move computing nodes closer to the edge devices were needed. Figure 2.2 illustrates

differences between some solutions that are discussed next.

One of the next early proposals was Cloudlet, introduced in 2009 [40], which is de-

fined as a cluster of Internet-enabled computing infrastructure available for use by nearby

mobile devices [36]. Cloudlet was meant to implement a full service, so that it did not

access the centralized cloud. Mobile devices offloaded computing to these clusters, which

3Computing performed via mobile, portable devices, such as laptops, tablets, or mobile phones [37].

2.1 CLOUD COMPUTING 23

Full
ServiceCloud

Devices

Edge

Core
Network

MCC MEC FC

Full
Service

Cloud
Services

Partial
Service

Partial
Service

Partial
Service

Partial
Service

Partial

Service

Full
Service

CC

Figure 2.2: A comparison of Cloud Computing (CC), Mobile Cloud Computing (MCC), Mobile Edge

Computing (MEC) and Fog Computing (FG) paradigms. Adapted from [36].

made low-latency cloud-like platform available to them. Cloudlet usage for mobile de-

vices was also the de facto birth of a paradigm known as Mobile Edge Computing (MEC).

Since cloudlet model emerged as a viable solution, the European Telecommunications

Standards Institute (ETSI) formed in 2014 an industry specification group to define and

create a standard reference implementation of MEC for cellular networks [36], which

became known as ETSI Mobile Edge Computing (ETSI MEC). The standard has been

recently renamed as Multi-access Edge Computing [39] to emphasize that it can be used

for other than mobile networks, even if the driving factor are wireless networks [40]. The

ETSI MEC architecture is shown in Figure 2.3.

Fog computing (FC) introduced by Cisco in 2012 was another attempt to overcome

cloud integration challenges [36]. Fog computing can be defined as a system architecture

that distributes computing, storage, control and networking functions closer to the end

users near the cloud edge. Fog computing is based on concept of co-operating Fog Nodes

(FNs), which form a multi-level hierarchy that distributes cloud services for edge devices.

A fog node can be any device that has enough computing, storage and networking capacity

to implement complex services [36]. Fog computing encourages cloud systems where a

service is decomposed and provided by many FNs located at any level from cloud edge to

2.1 CLOUD COMPUTING 24

 MEC system level management

MEC host

MEC
platform MEC host level

management
MEC applications

Virtualization infrastructure

MEC app MEC app

MEC app MEC app

Cellular
network

WiFi
network

Local
network

N
et

w
or

ks
M

EC
 h

os
t l

ev
el

M
EC

 s
ys

te
m

le
ve

l

OSS MEC orchestrator

MEC platform
manager

Other Access
network

Virtualization
infrastructure

manager

...

Figure 2.3: High-level view of ETSI Multi-access Edge Computing (MEC) framework. MEC host contains

application instances and MEC platform, which is a collection of functions needed to run MEC applications

on particular virtualization infrastructure. System level MEC orchestrator has the complete overview of the

MEC system, implements constraints based selection of suitable hosts to instantiate MEC applications, and

manages application life cycles. MEC host level management handles host specific MEC functionality. [39]

the cloud backbone, as seen in Figure 2.2. Fog computing does not replace the centralized

cloud, but complements it. In contrast to early MEC, where the cloudlet implemented the

full service, fog computing premise is to include the centralized cloud as part of the overall

service when needed.

In general, the extension of cloud from centralized model to a distributed model where

data processing and storage functions are deployed close to network edge is known as

Edge Computing [24]. It encompasses or overlaps many paradigms, including the ones

already outlined above:

• Use of cloudlets for any device at the edge, whether mobile or fixed [36].

• Fog computing by its definition.

• Mobile Edge Computing and its successor Multi-access Edge Computing.

Edge computing improves overall application efficiency through reduced latency and jit-

2.1 CLOUD COMPUTING 25

ter, reduced bandwidth usage of core cloud, enhanced mobility at network edge, and

improved service availability [24]. Edge computing also improves privacy since data can

be stored closer to end-users, while at the same time it brings new security challenges

from its wide distribution of heterogenous computing nodes. If definition of edge com-

puting is extended to mean that the cloud is complementary to the paradigm, then that

leaves the FC and MEC as the two prominent popular paradigms for edge computing

[24]. Both paradigms have seen standardization efforts [36]. While they have differences

that inherit from their separate origins, there are enough similarities to say that both have

contributed to the convergence of edge computing as a concept. Nowadays, fog comput-

ing can be understood either as a near synonym to edge computing [2], or as an umbrella

term that encompasses computing at any point in cloud-to-edge continuum, i.e. it is a

superset of edge computing [37]. On the other hand, ETSI MEC is more a practical ar-

chitecture model within edge computing context for wireless edge devices. While many

different implementations exist for MEC, it is still immature technology with many un-

solved problems [40]. All this said, edge computing and related concepts discussed here

are an evolving research topic with no fully accepted definitions.

The fundamental enabling technology for edge computing is virtualization, as it is

for the centralized cloud [24]. Virtualization effectively decouples applications from un-

derlying hardware. This is especially important for edge computing because its node

computing performances vary a lot. However, there are other distinctive differences with

cloud computing, which include location-awareness, mobility-based services, resource-

constrained devices and wide-spread distribution of devices. The consequence is that

heavy-weight virtualization techniques like virtual machines (section 2.2.1) are not as

applicable for edge computing. Alternative, more lightweight technologies such as con-

tainers (section 2.2.2) are needed. But even containers are not always enough, as some

edge devices such as sensors or actuators are so resource-constrained that they do not

support any virtualization techniques [24].

2.2 VIRTUALIZATION TECHNOLOGIES 26

In addition to virtualization of traditional computing resources, edge computing has

strong emphasis on Network Function Virtualization (NFV) and Software Defined Net-

works (SDN), because they further decouple edge applications from underlying hardware

[24]. NFV virtualizes different network functions, such as firewalls or load balancers,

and implements them as software solutions that run in common servers and use basic

network elements [41]. SDN decouples networking to data and control planes, allowing

configuration and management by software means [41]. The two networking concepts are

complementary and they can be used either in isolation or in parallel.

2.2 Virtualization technologies

The two dominant virtualization technologies used in cloud are hardware virtualization

and operating-system-level virtualization [29]. Hardware virtualization uses virtual ma-

chine as its deployment unit [7]. It is used especially in IaaS space, and when deployments

need security or flexibility in choice of operating system [1]. OS-level virtualization is

the more recent technology in cloud context. It is the underlying technology behind con-

tainerization trend. Containerization has so-called containers as deployment units, which

share the resources of underlying single kernel. Containerization, however, is more a

technique to standardize deployment units in lighter weight form compared to virtual ma-

chines [26]. The following sections introduce these two technologies. Unikernels are a

third technique comparable to containers as suggested by Kratzke [26]. Unikernels, how-

ever, have seen little research and have not reached widespread use. They are therefore

mostly out of scope for this thesis.

2.2 VIRTUALIZATION TECHNOLOGIES 27

2.2.1 Hardware virtualization

The traditional technique to virtualize physical hardware resources is to use specialized

control software called hypervisor4 to manage instances of virtual machines [42]. A vir-

tual machine (VM) is logically isolated abstraction unit that presents full computing en-

vironment with CPUs, memory, storage and networking, which map to a subset of under-

lying physical resources [29]. The virtual machine seems like a real machine to software

running in it. The physical machine where the hypervisor runs is known as the host ma-

chine, while a VM is known as guest machine. Each guest machine is loaded with user

chosen operating system, libraries and application software, i.e. the full software stack

[2]. This type of virtualization technique is known as hardware virtualization, since it

decouples the guest machine environment from physical hardware resources. [23, Ch. 3]

At high-level view, hypervisor manages life-cycle of guest machines with operations

such as create, run, monitor and delete [23, Ch. 3]. The primary function of hypervisor,

however, is to provide a virtual environment for each guest OS, arbitrating their access to

host hardware functions [29]. The hardware functions include CPU instruction execution,

memory operations, and I/O operations. Each shared access function requires different set

of software and hardware mechanisms from the hypervisor and host hardware to work. In

some cases, the hardware supports direct access, which requires no hypervisor interven-

tion, while in others the hypervisor must detect and intervene to emulate the access [43].

While the distinction is not always clear [7], hypervisor implementations can be classified

into Type-1 and Type-2 (Figure 2.4) [23, Ch. 3]:

Type-1. The hypervisor is installed as a standalone operating system. This is known

as native or bare-metal hypervisor, since the hypervisor runs directly on host hard-

ware. The hypervisor runs with the highest CPU privilege level, while the guest OSs

have lower privileges than hypervisor. VMware ESX/ESXi, Microsoft Hyper-V, open

source Xen, and open source KVM are examples of Type-1 hypervisor.

4Hypervisor is also known as virtual machine manager (VMM).

2.2 VIRTUALIZATION TECHNOLOGIES 28

Type-2. The hypervisor is installed as ordinary software in conventional host operat-

ing system. A virtual machine instance runs as a process of the OS. Type-2 hypervisor

is also known as hosted hypervisor. VMware Workstation and Oracle VirtualBox are

examples of Type-2 hypervisor. Type-2 hypervisors are convenient for desktop usage,

because they offer nearly seamless integration between host and guest OS graphical

environments.

Hardware

Hypervisor (Type-1)

VM

App A

Bins/Libs

VM

App C

Bins/Libs

VM

App B

Bins/Libs

Guest OS Guest OS Guest OS

Hardware

Host OS

Other
processes
running on
Host OS

VM

App C

Bins/Libs

VM

App B

Bins/Libs

Guest OS Guest OS

Hypervisor (Type-2)

Figure 2.4: Hypervisors are classified to two types depending on their location in software stack. Type-1

hypervisor executes directly on underlying hardware, while Type-2 hypervisor executes as ordinary user

process in host operating system.

Generally Type-1 hypervisors are more efficient than Type-2 [2], because Type-1 hypervi-

sor can manage resources directly with no intermediate host OS intervention. Most cloud

providers use Type-1 hypervisors to manage their infrastructure.

The underlying hardware architecture defines how much a guest software can use na-

tive hardware resources directly, and how much the hypervisor must intervene by other

means, such as emulating trapped instructions or using binary translation. If the archi-

tecture support for virtualization was known to be heavily limited, in theory a hypervisor

could still use intervention to implement most of the hardware features. But such a hy-

pervisor would not be efficient. As Popek and Goldberg formally presented in 1974, for

hypervisor to be efficient, it should fulfill three conditions [44]:

• A guest software behaves essentially identical to running directly on host.

2.2 VIRTUALIZATION TECHNOLOGIES 29

• Hypervisor is in complete control of hardware resources.

• A dominant number of guest instructions are executed by the real processor with no

hypervisor intervention.

Popek and Goldberg further presented the sufficient conditions for an instruction set ar-

chitecture (ISA) that fulfills the above properties. First, they classify instructions roughly

in two categories: 1) privileged instructions that trap in unprivileged user mode, and 2)

sensitive instructions that affect the shared state of the system. In essence, an efficient

hypervisor can be implemented when sensitive instructions are subset of privileged in-

structions, i.e. when all sensitive instructions can be always trapped by the hypervisor.

This kind of trap-and-emulate hypervisor was so prevalent in 1974, that the correspond-

ing architecture became later known as classically virtualizable architecture [45].

In addition to CPU functions, virtual machines share the memory functions of the

host hardware [46]. In modern architectures, even without any VM present, the host OS

virtualizes the physical memory, so that a host process sees only virtual address space

[46]. The virtual address space is further partitioned to pages. A hardware memory

management unit (MMU) translates virtual addresses to physical addresses using page

tables managed by the OS. Since a VM and its guest OS naturally assume the same vir-

tual memory model, the virtualization layer must support translation from guest physical

address space to host physical address space, i.e. there must be a second level address

translation. Hypervisors can do this using software techniques that use shadow structures

for page tables [46]. Software methods are, however, inefficient compared to hardware-

assisted memory virtualization. In hardware-assisted memory virtualization MMU sup-

ports two levels of address mappings. The first level translates guest virtual addresses

to guest physical addresses, while the second level translates guest physical addresses to

host physical addresses. The level page tables are managed by the guest OS and hyper-

visor respectively. Hardware-assisted virtualization improves memory utilization and the

performance is higher compared to software methods [46].

2.2 VIRTUALIZATION TECHNOLOGIES 30

Virtualization of I/O functions is another task that hypervisor must be able to do to

share resources between VMs. Software and hardware-assisted solutions that exist are full

virtualization with device emulation, paravirtualization and direct I/O [46]. The methods

will not be explored here further, but the important factor in all of them is to isolate and

restrict I/O device access. Similar to CPU and memory functions, hardware-assisted I/O

functions are generally more efficient.

Hardware virtualization implementations overall can be classified into three approaches:

full virtualization, paravirtualization and hardware-assisted virtualization [23, Ch. 3]. All

present hypervisors support full virtualization, and in most cases hardware-assisted full

virtualization [47].

Full virtualization. The hypervisor presents complete set of hardware as VM instance.

An unmodified guest OS and unmodified guest software running in the VM cannot

distinguish the virtual hardware from real. To the guest software it seems as if it was

running directly on hardware. Full virtualization approach requires that all hardware

functions needed by guest software are supported in the virtualization layer by some

method. Classical virtualization is an example of full virtualization.

Paravirtualization. The hypervisor provides an API for a guest OS to communicate

its privileged resource needs. The API invocations from the guest OS are known as

hypercalls. The guest OS is thus aware of hypervisor presence. Paravirtualization

requires that the guest OS is modified by replacing privileged instructions with hyper-

calls for direct hypervisor access. This approach improves virtualization performance

and efficiency [43], but does not permit unmodified guest operating system to be used.

Hardware-assisted virtualization. Host computer hardware has a role in creation and

management of virtual machines. The host CPU has built-in command extensions

that support virtual machines. In practice, most full virtualization solutions of today

require hardware-assistance to improve virtualization performance.

2.2 VIRTUALIZATION TECHNOLOGIES 31

An efficient hypervisor can be implemented for architecture that does not support clas-

sical trap-and-emulate style. Originally x86 architecture was thought to be impossible to

virtualize classically, because it lacked mechanism to run hypervisor with higher privi-

lege level than guest OSs, and because certain sensitive instructions could not be trapped

[48]. However, WMware managed to introduce full virtualization for x86 in 1998, which

eventually led for x86 to become the dominant architecture used in cloud [46]. WMware

used binary translation technique in their hypervisor, meaning that non-virtualizable in-

structions are translated at runtime to new instruction sequences that have the intended

effect. WMware succeeded also in emulating higher CPU privilege levels for their hy-

pervisor, even if x86 did not have hardware support for such mechanism. Later, major

x86 hardware vendors added baseline hardware support for classical virtualization as in-

struction set extensions: Intel introduced VT-x in 2005, and AMD introduced AMD-V

in 2006. However, the first generation hardware had only minor performance advantages

over software based techniques such as by VMware [45]. Over the years, and continu-

ing with x86-64 architecture, the vendors have introduced more hardware extensions that

improve virtualization performance. For example, Intel EPT and AMD RVI provide sup-

port for second level address translation, which improves memory function virtualization

performance significantly, while Intel VT-d and AMD-Vi add I/O resource virtualization

features [47].

Virtual machines emerged as a solution to migrate services and applications from

fragmented deploy form to more compact and manageable image form [47]. Each VM

image contains full operating system together with application and its libraries. From

application deployment point of view, a hypervisor managed system is the deployment

target, while the image is the deployment unit. However, this approach duplicates much

of the usage of computing resources making virtual machine inefficient as application de-

ployment method. For example, a typical VM image size can be multiple gigabytes [2].

Containerization technology, as will be discussed in next section, is substitute technology

2.2 VIRTUALIZATION TECHNOLOGIES 32

for application deployments, because it uses resources more efficiently and deploys faster

[47]. However, hypervisor is still a necessary virtualization solution when applications

require different operating systems or different versions of them [43]. This holds true es-

pecially for IaaS model. In addition, virtual machines provide better isolation and security

compared to containers [47].

2.2.2 Containerization

Virtual machines are the traditional solution to increase hardware utilization rate in cloud

platforms [46]. The solution involves a hypervisor that multiplexes set of operating sys-

tems running on a shared hardware. Virtual machines bring significant performance over-

head, because the OS instances running inside VMs all have similar system resource

needs, which duplicates resource usage [47]. To combat this performance bottleneck,

cloud service providers have started to use containerization as an alternative method for

application deployments [1].

Container as an abstraction unit

Containerization employs operating-system-level virtualization. In OS-level virtualiza-

tion the kernel running on physical or virtual host is shared by each abstraction unit [2].

The abstraction unit is known as a container. The Figure 2.5 illustrates differences to

hardware virtualization. From kernel perspective each container is an ordinary user-space

process, while from inside the container the environment seems like a standard OS distri-

bution [49]. The container is isolated, so that it cannot directly access resources assigned

to other containers. Container deployment images include only the binaries, libraries and

data files that the container needs at runtime. Compared to VM images containers are

significantly smaller in size [1], so that the application density on host can be orders of

magnitude higher [47]. Containers also need less resources, have negligible performance

overhead, have up to order of magnitude smaller start and stop times, and their life-cycle

2.2 VIRTUALIZATION TECHNOLOGIES 33

Hardware

Host OS

Container Runtime runC

Container

App A

Bins/Libs

Container

App C

Bins/Libs

Container

App B

Bins/Libs

Hardware

Hypervisor

VM

App A

Bins/Libs

VM

App C

Bins/Libs

VM

App B

Bins/Libs

Guest OS Guest OS Guest OS

Figure 2.5: Containers (on the left) are abstraction units that package application code and dependencies.

They are executed in virtual environments that are managed by a container runtime. The host OS kernel is

shared between isolated container instances. Virtual machines (on the right) in contrast are an abstraction

of physical hardware. Each VM includes a full copy of an operating system, which makes VM images take

much more space compared to containers.

management is easier with help of orchestration platforms [50]. Furthermore, thanks to

open standards, containers have better portability across different cloud platforms.

Containers are based on set of Unix and Linux kernel capabilities that have now ex-

isted for ten years [49]. The two most important capabilities are 1) the capability to

logically separate and isolate process execution, and 2) the capability to set resource con-

straints for a process. For Linux kernel the capabilities are realized by implementations

known as namespaces and control groups, respectively. Acting as a kind of control soft-

ware for containers, container runtimes (Figure 2.5) use the kernel capabilities to realize

containerization [7]. Runtimes include LinuxContainers (LXC) [51], Docker’s [52] con-

tainerd, and others. LXC was one of the early popular container runtimes, while Docker

was released in 2013 as successor to LXC [2]. Docker has quickly become one of the

most popular container engines [50], and has established itself as the de facto standard

container engine used for applications [33].

Container ecosystem components

While Docker has a large footprint among container ecosystems, the whole landscape is

larger than Docker. Four ecosystem component types can be seen [49, 53]: container im-

2.2 VIRTUALIZATION TECHNOLOGIES 34

ages, container engines, container runtimes and container orchestrators. There has been

several competing industry formats and technologies for these components. However,

container industry has moved towards standards governed under the Open Container Ini-

tiative (OCI) [54], which was created to provide common base for containerization. The

OCI scope includes three standards: 1) Container Runtime Specification (runtime-spec)

that defines how a container file system bundle should be executed, 2) Container Im-

age Format Specification (image-spec) that defines the container image format to be used

by OCI implementations, and 3) container Distribution Specification (distribution-spec)

that provides standard API to distribute container images. Figure 2.6 shows how these

specifications map to different container ecosystem components. Following describes the

Container Engine

API

CLI and other tools
PUSH

Image builder

High-level container runtime

Low-level container runtime

Container

PULL

Image registry
image-spec

distribution-spec

runtime-spec

Figure 2.6: Open Container Initiative defines standards for container images, distribution and runtime. The

figure depicts how the standards are applied on container engine, such as Docker. [14]

component types in more detail [53]:

Container image. A prepackaged deployment unit that contains the application meta-

data and files. The complete image consists of one or more layers, which are dis-

tributed across container ecosystem repositories. While container ecosystems earlier

had their own dedicated container image formats, now most of the major ecosystems

support standard format as defined in Container Image Format Specification.

Container engine. A front-end component that accepts user requests, pulls container

images from repositories, and from user’s perspective seems to run the container. To

2.2 VIRTUALIZATION TECHNOLOGIES 35

run the container, the engine compiles various configuration objects and setups the

file system layout from container image layers. The layers are merged with union

mount to present single file system view with copy-on-write semantics to the con-

tainer instance [50]. The configurations include meta information that gets passed to

the instance, affecting its runtime behavior. As part of the process, the engine will

call a container runtime, which in turn uses lower level kernel capabilities to run the

container instance as isolated execution environment. Docker is a prime example of

container engine.

Container runtime. A component that manages container images and interacts with

kernel capabilities to launch containerized processes [55]. Container runtimes can be

decoupled to high-level and low-level runtime components, as shown in Figure 2.6.

The high-level runtime handles the general container image management functions

[55]. It delegates runtime control to low-level runtime, which uses the kernel features

to create and run container processes. The low-level runtime can also be seen as low-

level driver that manages kernel-specific functions [49]. Container runtimes used to be

tightly coupled so that no component separation was apparent, even if one might have

existed on implementation level. Several runtime subcomponents have since been

decoupled from their original projects to open source container libraries and tools.

For example, Docker split part of its runtime to high-level containerd runtime, which

is now used as high-level runtime in other container ecosystem platforms, such as

Kubernetes. Furthermore, containerd itself uses low-level runC runtime [56], which

used to be component of Docker5. Today, runC is the standard OCI reference container

runtime implementation. All major container engines use runC as their low-level

runtime.

5LXC was the original container runtime for Docker. Later, Docker team developed libcontainer as a

replacement for LXC. When the Open Container Initiative (OCI) was created, libcontainer was donated as

a standalone utility known as runC to OCI. [53]

2.2 VIRTUALIZATION TECHNOLOGIES 36

Container orchestrator. Software controller that schedules and manages container-

ized workloads in cluster of container-enabled hosts. User-provided declarative con-

figuration defines the intended state of the container cluster, while builtin monitoring

functions provide realtime information for the orchestrator about the cluster hosts and

their container instances. Orchestrator uses the intended cluster state, the current state

and current cluster load as basis for scheduling decisions. While not required if intent

is to just run containers at single host, orchestrator platforms such as Kubernetes have

a crucial role in scalable and highly elastic containerized clouds.

Figure 2.7 illustrates the described container components as layered stack, when Ku-

bernetes orchestrator platform is also included as one possible container tool or engine.

Along with Kubernetes comes another important container ecosystem standard: Container

Runtime Interface (CRI). It allows Kubernetes to use any CRI compatible container run-

time. Kubernetes is described in section 2.3.

Container Runtime Interface (CRI)

Open Container Initiative (OCI)

container container container

runC

containerd CRI-O

KubernetesDocker

runtime-spec

Figure 2.7: Stack of container ecosystem component instances at different layers. There are two major con-

tainer standards that define various interfaces. The first, Open Container Initiative (OCI) defines interfaces

for high-level container runtimes (containerd, CRI-O) and low-level runtimes (runC here). The second,

Container Runtime Interface (CRI) is a standard that allows to use many different container runtimes in

Kubernetes. [57]

2.2 VIRTUALIZATION TECHNOLOGIES 37

Application and system containers

Containers at kernel level are based on Linux namespaces, cgroups and other kernel ca-

pabilities. It is still possible to distinguish between two types of containers based on

their usage [50]. Application containers are intended to run single application and its

dependencies. Preference is for the application to be easily portable and scalable mi-

croservice [50]. System containers on the other hand are intended to run full operating

system distributions along with their applications. System containers have resemblance

to virtual machines, with negligible overhead compared to them, but without the flexibil-

ity of choosing the OS kernel. While the intents are different, both container types share

many similarities, because they utilize the same underlying kernel technology. Docker

[52] is a prime example of an application container engine [1], while OpenVZ [58] is an

example of system container platform. LXC [51] is container runtime that supports both

application and system containers [1].

Image layers

The complete image for application container is formed by a stack of dependent layers,

which are union mounted to final file system view [50]. Figure 2.8 depicts the layer

structure. The root layer contains the files that form a OS distribution [29]. Above the

root layer there can be more layers with specific purposes [59]. For example, a mid-layer

might contain the files necessary for a web server, while another layer might contain an

environment for a database system. The application layer itself is positioned above the

other layers. Container engine sets these layers as read-only. Any file system change by

the container is made to a write-only layer that the engine places at the top of the layer

stack. The benefit of layered image structure is that the layers can be shared between

different application instances [29]. For example, if multiple containers use the same

base image as their dependency, the base image needs to be downloaded only once from

a container ecosystem repository. Similarly to application containers, system containers

2.2 VIRTUALIZATION TECHNOLOGIES 38

Container Container
Container

Container

Layer (MySQL) Layer (Apache)

Layer (AppA)

Layer (AppB)

Layer (AppD)

Layer (AppB config)
RW Layer

RW Layer

RW LayerLayer (AppC)

RW Layer

Base Layer
(e.g. Ubuntu, Alpine)

Figure 2.8: The complete container image is a stack of readonly image layers. The container engine mounts

the layers as union file system, and adds writable top layer. The base image contains tools, libraries and

data needed by a OS distribution. Mid-layers above base layer have additional software packages. The

layered structure reduces overall needed network transmits from image repositories, and encourages reuse

of layers.

can also use layered image structure. The root layer contains the base operating system,

while mid-layers customize it with additional libraries, tools and data. The top layer is

writable, like in application containers.

As container instance gets shutdown and deleted, all the data in writable top layer will

be lost [50]. If container needs persistent data storage, the container engine may have

support for a virtual disk that the application can mount and use. For example, Docker

has volumes that can be used to write persistent data. Virtual disks may be mounted

simultaneously by many containers, which allows containers to share data. Engines may

also provide other ways to store data persistently. For example, Docker has efficient but

non-portable bind-mount that allows to store data in host system.

Deployment model and orchestration

Both virtual machine images and containers can be used to package application software.

However, compared to VMs, containers have much smaller image footprint. They have

also other properties that make them suitable for modern collaborative development and

IT operations models, i.e. DevOps [26]. These and the success of Docker ecosystem has

2.2 VIRTUALIZATION TECHNOLOGIES 39

made containers popular method to package and deploy applications in cloud environ-

ments [29].

At the early stage of containerization evolution, containers were used to simply pack-

age and deploy applications to individual hosts. There was no unified solution to au-

tomate deployment and management of multi-tier container applications, i.e problem of

container orchestration was still largely unsolved [8]. As the number of containers and

their dependencies got larger, the container deployment and management became more

difficult. Organizations at first used ad-hoc solutions or complex PaaS solutions to or-

chestrate containers across hosts. Nowadays, the orchestration problem has been mostly

solved and Kubernetes [9] has taken the place as industry standard, and as the most popu-

lar orchestration platform [60]. While there are other container orchestration frameworks,

such as Apache Mesos or Docker swarm, they will not be discussed in this thesis.

Performance analysis

When it comes to performance overhead, containers overall are comparable to native

systems [7]. As containers were still rising in popularity, research community had much

interest in studying container performance in various settings, especially compared to

virtual machines and bare-metal machines [50]. Today, the study results converge to three

understandings [1, 42, 50]:

1. Containers have negligible CPU and memory performance overhead. Containers are

native processes and most of the overhead comes from kernel that realizes container

abstraction [29]. The performance overhead of containers is much smaller than with

virtual machines. This is because guest OS is never idle, and the hypervisor must

multiplex hardware functions, which requires VM state management [43].

2. Containers have better local I/O performance compared to VMs, because containers

have more direct access to system hardware. Containers I/O performance still depends

heavily on used filesystem type and configuration.

2.2 VIRTUALIZATION TECHNOLOGIES 40

3. Containers network I/O is worse than with virtual machines.

This noted, the cloud environment is often complex, where diverse set of co-located con-

tainers run in VMs on shared hardware resources. Performance characteristics show large

variance for containers, as they can be influenced by many different interference effects

from co-located applications competing for resources. While VMs have greater overhead

compared to containers, VMs offer better noise isolation from neighbors so that their

performance characteristics are more robust [7].

Benefits and challenges

Containers are now mature technology with proven benefits. Their small overall per-

formance overhead has been discussed, but in addition their startup latency and power

efficiency is better than virtual machines [7]. While a VM instance can take up to a

minute to boot, container can boot in mere seconds. However, containers are not without

issues. For one, migration of live containers to transfer the runtime state to other host is

harder to implement compared to virtual machines [29]. Robust migration requires that

large amount of kernel state is transfered along with memory pages. Container security is

also a concern. They are properly isolated and secured by design [50], but the shared ker-

nel has consequence that any compromise of the kernel will expose all running container

instances. Solutions to improve isolation include hardening of existing security mecha-

nisms, while propositions exist to use various hardware based mechanisms, such has Intel

SGX enclaves. Another security issue is how to guarantee confidentiality of container

image layer data [50]. Proposed solutions mainly have techniques to encrypt the data at

rest and at runtime.

2.3 KUBERNETES 41

2.3 Kubernetes

Virtualization technologies that were discussed in section 2.2 operate at the granularity

of a single server, i.e. a physical host or container-enabled virtual host [29]. Cloud data

centers, however, employ many of these servers partitioned as large clusters. The scale

of operations makes management of all the infrastructure hosts, virtual hosts, and con-

tainers a complex task. Consequently, the task has been for the most part automatized

and assigned to different management frameworks that operate over clusters. Kubernetes

[9] is the most popular management framework used to orchestrate containerized applica-

tions [60]. This section describes Kubernetes fundamentals, and how it is used to manage

containers. While other management frameworks have a role in management of cloud

infrastructures and virtual machines, they are out of scope for this thesis. Unless cited

otherwise, official Kubernetes website [9] and its concepts documentation [61] is used as

main source of information.

2.3.1 Introduction

Kubernetes is an open source platform used to orchestrate containerized applications and

workloads across a distributed cluster of hosts [9]. While the origins are in Google’s Borg

[62], nowadays Kubernetes along with many other cloud-native projects are hosted and

developed by Cloud Native Computing Foundation (CNCF) [63]. The platform and much

of its ecosystem is implemented with go programming language.

The platform architecture follows master-slave model [64], as depicted in Figure 2.9.

The cluster hosts can be either physical or virtual machines. The slave nodes are known as

worker nodes. The master node has the overall responsibility to manage containers run-

ning in worker nodes across the cluster. It exposes Kubernetes REST API implemented in

the API server component, acting as an entry point to control the entire Kubernetes clus-

ter. The API is used by both internal cluster components and clients outside the cluster.

2.3 KUBERNETES 42

Kubernetes Cluster

Master Node
(control plane) Worker Node

Kubelet

API serverScheduler

etcd

*

Controller
manager containerd Image

Registry

Pod Pod Pod

Users

CLI

UI

Kube-proxy . . .

Container Runtime Interface (CRI)

Internet

Figure 2.9: High-level view of Kubernetes architecture showing a cluster with master node and representa-

tive worker node.

The API is accessible either through built-in kubectl CLI tool or through one of the

many Kubernetes API client libraries. There is also web-based UI Dashboard that can be

used to monitor and manage containerized applications, as well as the cluster itself [61].

The distributed key-value pair data storage component etcd is responsible for persis-

tently storing configurations and other state information of the cluster [64]. The storage

content is shared with rest of the Kubernetes components. The other components use

the shared data to synchronize themselves with the cluster state. Controller Manager

is responsible for monitoring overall cluster state using the state information stored in

etcd. When the system state changes, Controller Manager informs of new state to other

components through API server.

Each worker node has an agent known as Kubelet that is responsible for monitoring

deviations of the actual node state from the desired cluster state [64]. When the two states

do not match, Kubelet attempts to launch or terminate containers as necessary to reach

the desired state for the node. Kubelet is also responsible for reporting node events and

resource usage to master node.

A smallest working unit of Kubernetes cluster is known as a Pod [64]. It represents

a collection of often tightly coupled containers and their associated computing resources.

2.3 KUBERNETES 43

Containers in different Pods are isolated from each other. The master node schedules a

Pod on a specific worker node, based on current cluster configuration and availability of

free resources across the whole cluster. The assigned node first downloads the necessary

container images from repositories, and then launches the container. The scheduler com-

ponent in master node implements the actual functions that decide to which node a Pod

should be deployed. The default scheduler of Kubernetes is known as kube-scheduler.

2.3.2 Components

As already discussed, Kubernetes master-slave architecture consists of multiple compo-

nents. The master node has the API server, the scheduler, the etcd database, and con-

trollers, while the Kubelet agent on each node manages the deployed Pods and their con-

tainer instances that represent applications and services. While the master node in Figure

2.9 is presented as a single host, in reality the master node components can be located

at different host machines. Furthermore, the master node components can have dupli-

cate instances to implement high-availability clusters. The components of master node,

its communication paths, and their endpoints are referred as the control plane [61]. The

following two sections describe components shown in Figure 2.9 in more detail, starting

from worker node [61, 64].

Worker node components

Pod. Smallest working unit of Kubernetes that encapsulates one or more containers

with shared storage and shared network resources, along with configuration needed

to run the containers. Containers inside a Pod share the runtime context, i.e. the

Linux namespaces and cgroups. For example, each Pod gets assigned a single IP

address, which along with port space is shared. Pod containers are intended to be

tightly coupled, representing a single application or microservice. The most common

use case for Kubernetes is to run a single container in Pod. Another, more complex

2.3 KUBERNETES 44

use case is to have two or more containers co-located in the Pod forming a cohesive

unit of service. A common co-located model is to have one container serving the

Internet, while one or more sidecar containers implement other supporting functions,

such as data persistency or logging.

Kubelet. An agent of worker node that manages lifecycle of Pods and their containers.

It reads Pod specifications scheduled to run at the node from API server, ensuring that

Pod containers are running as desired and healthy. On agent startup, it registers itself

to API server, and thereafter acts as a node endpoint for Kubernetes control plane.

Kubelet also reports to the control plane the health of the host where it is running.

Kube-proxy. An agent in worker node that operates as a network proxy [65]. It main-

tains network rules, which enable communication between nodes and Pods. The agent

can route traffic directly or it can use node’s operating system packet filter functions.

Container Runtime Interface (CRI). A standardized API that allows Kubernetes to

use different container runtimes at worker node. Kubelet uses the CRI for its container

related management operations. In context of Kubernetes networking, container run-

time gets the configuration for its enabled Container Network Interface (CNI) plugins

through CRI. The plugins implement the Kubernetes networking model discussed in

detail in 2.3.6. Some examples of CRI-compliant container runtimes are containerd

and CRI-O. The first, containerd, originally comes from Docker team, but is now

published as an open source container runtime component. It has become industry

standard due to its widespread adoption [55]. It is made CRI-compliant with spe-

cial cri plugin. CRI-O is Kubernetes-optimized and CRI-compliant runtime from Red

Hat, IBM, etc. [66]. It has many of the same functions as containerd [65]. Both com-

ponents use runC as their default low-level container runtime, while also supporting

other implementations.

2.3 KUBERNETES 45

Master node components

API server. A component that implements REST API and acts as the frontend to Ku-

bernetes control plane. It implements the actual API request functions, but also au-

thenticates and authorizes each request using one or more of the configured methods.

Kubernetes internal components, application services and external users can access

the cluster shared state through the exposed API. The default API server implemen-

tation is kube-apiserver, which is also designed to be scalable by deploying more

instances. Built-in kubectl tool can be used to access the API by normal users.

Web-based UI addition known as Dashboard can be also deployed into system to

monitor and manage the Kubernetes cluster. There are many client libraries for differ-

ent programming languages to help implement custom tools and applications for API

server communication. The client library used by Kubernetes internal components is

also among these helper libraries.

Controller manager. A component that runs several distinct controller processes. Log-

ically each Kubernetes controller is separate entity with specific function, but to re-

duce complexity they are compiled as a single controller binary, knowns as kube-

controller-manager. The purpose of a Kubernetes controller is to implement control

loop that observes the cluster state through API server, and makes state change re-

quests in attempt to transit the current cluster state closer to the desired state. There are

many controllers in Kubernetes, all of which can be read from Kubernetes documen-

tation [61]. For some examples: Node controller is responsible for managing various

worker node aspects, which include monitoring nodes’ health, and keeping contoller

internal node list up to date with the actual cluster state. Job controller watches for

configured one-off batch jobs to create and run as Pods. Replica controller manages

number of Pod replicas (duplicate instances) for specific configured Pod object. De-

ployment controller is responsible for managing set of Pods as an deployment that

supports automatic Pod updates with no down time, and rollbacks when deployment

2.3 KUBERNETES 46

is unstable. The deployment uses similar replica set model as replica controller.

Scheduler. A scheduler purpose is to ensure that Pods are optimally matched to suit-

able worker nodes where Kubelet can run them [61]. The default Kubernetes sched-

uler, known as kube-scheduler (KS), uses two-stage selection process for every Pod

that needs to be scheduled. The unscheduled Pods are added to a waiting queue, which

is being constantly monitored by the KS. As the first step of the selection process, the

KS takes a Pod from the queue and triggers node filtering process for it. The filtering

searches for all the nodes that are feasible, i.e. capable of running the Pod. The search

process applies a set of filter functions, known as predicates, each matching specific

set of Pod attributes to corresponding node attributes. For example, the Pod could

have minimum CPU and memory resource requirements, which would be matched to

free resources of the node by the PodFitsResources predicate. If there are no feasible

nodes for the Pod, the Pod is set in unscheduled state and KS triggers an failure event.

The second step of selection is scoring process that is applied over the feasible nodes.

Each feasible node is scored and ranked based on one or more weighted rules called

priorities. Priorities base their scoring on conditions such as available resources on

the node, number of Pods already running on the node, and the node overall status.

KS selects the node with the highest score as the Pod deploy target. Then, in a pro-

cess called binding, the KS informs the concerned controllers about the made decision

through API server. The filtering predicates and scoring priorities used by the sched-

uler algorithm can also be seen as hard and soft constraints, respectively. They can be

configured through API server with kube-scheduler Profiles.

etcd. A distributed, reliable and highly-available key-value data storage that holds

persistent configuration, service discovery, and cluster state information on Kuber-

netes cluster [67]. API server is the only component that has direct access to etcd

for security reasons. With help of watchers, etcd enables notifications about database

changes for interested nodes through API server. The notification produces API re-

2.3 KUBERNETES 47

quest for a node to update its state information.

2.3.3 Configuration and management

Kubernetes has configuration objects that map to persistent entities of the system, which

together represent the cluster state [61]. The objects describe entities like actual con-

tainerized applications, the available cluster resources, and the policies that guide how

the applications should behave. The objects describe the intent, the what and how the sys-

tem should look and behave. Kubernetes works constantly to achieve this desired state.

Configuration objects are defined as YAML or JSON files that are applied to Kuber-

netes database through Kubernetes API [61]. The same API is used to create, update and

delete configuration objects. The API is used through kubectl or one of the available

API client libraries. Configuration files that contain one or more object specifications are

known as Kubernetes manifests, while the Kubernetes API URL endpoints corresponding

to specific objects are known as API resources.

There are certain configuration fields that must be always set, while others are op-

tional. All objects have field kind that defines the object’s general type, such as Pod, De-

ployment, Service and many others. Field apiVersion defines Kubernetes API com-

patibility as a version string. Field metadata contains nested fields, such as mandatory

metadata.name that provides object name, and optional metadata.namespace

and metadata.labels. Together, metadata fields provide identifying information

about the object. Namespaces is Kubernetes feature that allows for isolating cluster re-

sources from each other, while Labels are key-value pairs that provide a method to tag

objects with context specific information.

Almost all configuration objects have spec field that describes the desired entity

state [61]. The stat field on the other hand describes the current state of the object.

The Kubernetes system constantly compares these two states and strives to correct the

situation by actions such as launching new object instances. For example, a Deployment

2.3 KUBERNETES 48

spec could indicate that there should be ten application instances. If there was less than

ten instances, for example because one of them had a failure, Kubernetes would try to

launch new instance in its place.

Custom resource definitions (CRDs) are objects that allow extending Kubernetes with

third party object types. They are usually accompanied with custom controllers that are

implemented and added into the system. The custom resources are manipulated using the

same methods as built-in objects. Many common Kubernetes addons use CRDs as part of

their implementation.

Specialized ConfigMap objects allow to decouple environment-specific configuration

data from container images and application code [61]. Pods and containers can be made

to have access to ConfigMap values via environment variables, CLI arguments, or as

configurations files in Pod volumes. The configuration for ConfigMap object has fields

data and binaryData instead of spec. The fields are used to specify key-value pairs

as data entries. The ConfigMap data fields are configured to be accessible for containers

in Pod manifests.

2.3.4 Cluster management

Kubernetes control plane operates over a cluster, which is simply a interconnected set of

physical or virtual hosts. Each host machine is required to have base Linux operating

system with kernel support for container runtimes (i.e. control groups, namespaces and

capabilities). The recommended hardware requirements for cluster nodes vary by use

case and system provider, but generally they are quite high. The minimum requirements

for worker nodes can be estimated as 1 CPU core and 1 GB RAM, while the master node

minimum requirements should be doubled from this. Actual recommendations for nodes

are from two to four times these limits.

Setting up functional Kubernetes cluster is a complex task that requires many compo-

nents to be configured correctly. It is easy to make an error that leads to non-functional

2.3 KUBERNETES 49

cluster. To this end, Kubernetes has designed kubeadm tool that can be used to boot-

strap minimum viable cluster that conforms to best Kubernetes practices. Many alterna-

tive Kubernetes distributions and installers today use kubeadm to bootstrap their clusters.

However, kubeadm does not solve all the long term issues of cluster management, which

include: provisioning machines and network components across multiple providers, au-

tomation of cluster lifecycle management, and scaling these processes on any number

of clusters. Cluster API is a project started by Kubernetes SIG Cluster Lifecycle that

addresses these issues [68].

Cluster API project provides tools to simplify provisioning, upgrading, and operating

multiple Kubernetes clusters [68]. It uses Kubernetes-like declarative API to configure

cluster infrastructures and components, which include items like VMs, networks and load

balancers. Cluster API uses various providers that implement support for any particular

infrastructure providers (AWS, Azure, Google, etc.), cluster bootstrap tools, and control-

plane implementations. Cluster API separates cluster management concerns to a separate

management cluster, where the various providers for actual target workload clusters are

running. The providers are implemented as ordinary Kubernetes controllers that con-

sume custom CRDs, all running inside management cluster. By default, Cluster API uses

kubeadm provider to bootstrap clusters.

2.3.5 Communication and security

Kubernetes uses centralized communication model, where all API usage from normal

users, worker nodes, Pods, or control plane components, terminates at the API server

[61]. The server listens for remote connections on secure HTTPS port. Each API request

must be authenticated by some supported method. For this the client must provide valid

credentials. Kubernetes has different modules for password, certificate and various token

based authentication methods. If the request is authenticated, there are still authorization

and admission stages which the request must pass, before the request action is allowed to

2.3 KUBERNETES 50

execute.

API server holds its own certificate with cluster root CA as the issuer. Nodes can

securely connect API server using public cluster root certificate that has been provisioned

for them. Nodes can then pass their own credentials, such as a client certificate, to API

server. Pods can securely access API server using Kubernetes service account. When

a Pod is configured to use service account, Kubernetes injects the public cluster root

certificate and a bearer token for each Pod instance. The instance can then use the token

to authenticate itself to API server.

After the API server request user has been authenticated, Kubernetes authorization

modules try to authorize the user requested action on target object. Policy objects get

consulted, and if an existing policy indicates that the user is allowed to perform the action,

the request gets authorized. Multiple authorization modules can be enabled at the same

time, and if any of them authorizes request, the request passes to the last security check

stage, which is admission control.

As last stage, admission control modules can reject the request or they can modify the

request’s target object. They act only on requests that modify objects, i.e. create, modify

or delete actions. Readonly requests are not acted on by admission control modules. All

admission control modules must accept the request or it will be rejected.

2.3.6 Network and service model

Kubernetes has straightforward networking model that assigns unique cluster-wide IP

address to each Pod [61]. One requirement of the model is that a Pod has direct access to

all other Pods in any other node in the same cluster. Second requirement is that agents,

such as system daemons and Kubelet, have access to all Pods running on the same node.

Containers that run inside a Pod share the network context, i.e. they use the same kernel

network namespace. Container intances running in Pod have the same IP address, but

they can listen for different ports. Communication between containers of same Pod is

2.3 KUBERNETES 51

possible through localhost (as seen in Figure 2.10), shared Volumes, or any standard

IPC methods. Kubernetes network model is similar to how workloads running in a VM

might work, which helps porting them to container based workloads. One way to look at

Pod is as if it represented processes running on a single host. Pod in many respects acts

like a single server host.

Node1

 Pod1

eth0

veth0

Pod2

eth0

Kube-proxy

Node2

Pod3

eth0 Virtual
bridge

veth0

Pod4

eth0

veth1

Kube-proxy

Cluster Network

iptables / IPVS

eth0

iptables / IPVS

eth0

Container2

localhost

Container1

veth1
Virtual bridge

Figure 2.10: Communication paths between different Kubernetes components. Container-to-Container

communication (blue) can use loopback interface since Pod containers share network namespace. Node-

local Pod-to-Pod communication (green) happens through virtual bridge in the host network namespace.

Traffic destined to a Pod located at other node (red), possibly discovered via Kubernetes Service mecha-

nism or DNS, leaves the node according to kernel routing rules configured by Kube-proxy agent. Adapted

from [69].

While the network model allows Pods to freely communicate with other Pods in the

same cluster, the same is not true for clients outside the cluster. A Pod can be made reach-

able to cluster outsiders using Kubernetes Service API. Here, Kubernetes uses Service

concept as a logical unit that maps to a service running as one or more Pods listening

at specific ports [61]. The Service abstraction allows decoupling an application from

transient network topology details of other services the application is using. Individual

application container, which could have multiple running replicas, should not care where

another service that it uses is located in the cluster, or how many replicas that service may

have. Since containers can be started and stopped frequently, with no guarantee which

node will be running them, Service is a very necessary abstraction of Kubernetes. In ad-

2.3 KUBERNETES 52

dition to service discovery function, Service provides automatic load balancing when it

has more than one backing service Pod available.

Services are defined as Kubernetes configuration objects with their kind field set to

Service. Service’s spec has selector field that is used to filter backend Pods that

implement the Service, and ports field that maps incoming ports to target ports listened

by the container instances inside Pods. Service field spec.type defines the service

type. By default it has value ClusterIP, which makes Kubernetes assign unique vir-

tual IP address (clusterIP) for the Service that is accessible only inside the cluster. Figure

2.11 shows an example Service that uses ClusterIP type. Here it should be emphasized

that Kubernetes Service is a logical concept. The actual implementation of its routing and

load balancing mechanism does not map to single physical cluster element. Instead, all

cluster nodes participate in the implementation. Specifically, the Service virtual IP is han-

dled by Kube-proxy agent running on every node, as illustrated in Figure 2.10 and Figure

2.11. The agent watches API server for Service and EndPointSlice configuration object

changes, and modifies host kernel forwarding rules accordingly. EndPointSlices are ob-

jects that hold state information of Pods that are selected as Service backend destinations.

They are updated by slice controller that watches for changes in Service objects.

The virtual IP of Service can be exposed to clients outside the cluster by using Node-

Port or LoadBalancer types. Other expose methods are Ingress and Gateway API. NodePort

is one of the possible Service spec.type values. It has each cluster node listen for a

configured port, and forwarding traffic to the Service, as shown in Figure 2.11. If any

cluster node is configured to be accessible outside the cluster, the Service is then also

accessible. LoadBalancer is another spec.type value that allows using external

cloud provider load balancer to access the service. Here, Kubernetes configures nodes

to listen traffic to Service port, and forward it to one backend destination port, similar to

NodePort. Cloud-provider controllers see the new Service object and configure their

external load balancer to route traffic to the node port. Ingress manages cluster Service

2.3 KUBERNETES 53

Cluster

Service1
name: my-service
type: ClusterIP
port: 8080
targetPort: 80
selector: myapp

Node1

IP: 10.96.0.2

Container Port:80

Container Port:7892

IP: 10.96.0.3

Container Port:123

Node2

IP: 10.96.8.7

Container Port:80

IP: 10.96.8.8

Container Port:3242

Ingress
Load Balancer

or Router

manages &
configures

routing
rule

Ingress1

name: my-ingress
rule1: /path
 service: my-service
rule2: ...

HTTP
HTTPSClient

Service2
name: node-service
type: NodePort
port: 6220
targetPort: 3242
nodePort: 1700
selector: nodeapp

Node3

IP: 10.97.3.1

Container Port:3242

Kube-proxy
eth0

Kube-proxy
eth0

Kube-proxy
eth0

TCP at
port: 1700

Client

1700

1700

routing routing routing8080

17006220

8080 6220

Pod (myapp) Pod (nodeapp)

Pod (nodeapp)

Pod (myapp)

Pod

Figure 2.11: Kubernetes logical Service maps virtual service IP address and port to target container port.

Service backend Pods are filtered by selector definition spec. Kubernetes automatically updates End-

PointSlice objects, which are used by Kube-proxy agents to configure kernel level network routing rules in

the node.

external access, mainly for HTTP(S) based applications, as illustrated in Figure 2.11. It

is a configurable Kubernetes resource that aims to route and load balance requests that

originate from outside the cluster to cluster-internal Service IPs. A Ingress controller is

responsible for watching Ingress configuration object changes and implementing neces-

sary changes in physical network elements, such as load balancer or edge router. Ingress

resource is configured to have a list of match rules that it listens for, and forwarding rules

that tell which Service the request should be sent. Gateway API is set of custom resource

objects intended to extend Kubernetes networking with role-oriented service interfaces

[70].

Containers have two primary methods how to find cluster Services [61]. The first

method is built-in to Kubernetes and uses environment variables. As Kubelet starts a Pod,

it will also add environment variables of all active cluster Services for the Pod consump-

tion. An application simply uses the variables to connect to services that it needs. The

2.3 KUBERNETES 54

second method uses Kubernetes add-on, such as CoreDNS, to enable DNS service for

the cluster. Unsurprisingly, the add-on by itself is a Kubernetes Service instance. When

enabled, the DNS service constantly watches the API server for new Services, and au-

tomatically adds DNS records for them. Application containers can then access cluster

services using standard domain name resolvers.

2.3.7 Helm package manager

Each application deployed on Kubernetes cluster has a set of YAML configurations which

correspond to different target environments. For example, the configurations for a SaaS

application are different between staging and production deployments. While custom de-

ployment scripts may be a workable solution for a simple application, the custom solution

does not scale. As the number of containers for application increases along with increase

in complexity, few issues and limitations are known to emerge [71]:

1. Discrepancies between environments get more significant leading to complex scripts.

2. Templating setups using tools like sed or envsubs become insufficient to manage com-

plex YAMLs.

3. Application version management for different environments becomes challenging.

The solution to these and other issues that relate to application management automa-

tion is to use the Kubernetes package manager Helm [72]. Helm is based on packaging

format called charts. A chart is a package of various meta files which describe a set of re-

lated Kubernetes resources [72]. A chart contains at least a package description in YAML

format, and one or more templates used to generate Kubernetes resource manifests. The

templates use Go template language [73] with some add-on functions. Default values to

the templates can be provided in YAML values meta file. A chart can also contain depen-

dencies to other existing charts. A single chart can describe Kubernetes resources at any

complexity level. For example, a chart can be used to deploy a simple Pod, but as well

2.3 KUBERNETES 55

it can deploy complex web application that builds from many different resources such as

backends, load balancers, or databases.

Helm has a client CLI tool helm with various subcommands that can be used to man-

age chart packages [72]. The tool can reference charts at local host, but the preference is

to load them over HTTP from chart repositories. The latest Helm versions can also load

charts from OCI compliant container registries. The tool has subcommands to handle both

chart repositories and OCI registries. When the tool is used to install a chart with install

subcommand, a new release gets instantiated. The install process first generates the Ku-

bernetes resource manifests from chart templates based on effective configuration values,

and then applies the manifests on Kubernetes cluster. A single chart can be installed many

times, each release having unique name and its own configuration values. An upgrade

subcommand gracefully updates a release to new version by doing the least amount of

changes in Kubernetes. The subcommand does this by analysing the differences between

the old and new generated release resource manifests. Finally, an upgrade can always be

rolled back to old version, while any release can be always uninstalled. Uninstall sub-

command removes all the associated chart resources from Kubernetes, which prompts

Kubernetes to eventually remove the corresponding containers from cluster.

While the use of Helm is not mandatory to use Kubernetes, it can greatly help in

managing complex clusters. It is especially helpful when applications have many depen-

dencies, which should all be deployed to cluster or removed from cluster at the same

time as a single unit along with the application. Helm is semantically similar to package

managers used in other contexts, such as Debian’s apt or Node.js npm. One clear dif-

ference is that Helm commands modify only the desired cluster state, while the addition

and removal of actual containers and other resources is executed later by the Kubernetes

system.

3 Distributed cable access

This chapter explores the second background for the case study in Chapter 4. The tech-

nological context of the study relates to cable access business, which is currently transi-

tioning to become more distributed and virtualized. To this end, and for completeness,

the chapter presents broad overview of broadband data access networks evolution up to

present day1. To better understand the reasons behind historical development of cable

access networks, it is necessary to consider all the major technology types which have

emerged over the years to serve a specific need, such as voice transmissions, TV broad-

casting and wireless voice transmissions. While initially each provider has had unique

technology requirements, over the years there has been convergence of service offerings

and technologies. This includes broadband data services earlier, and IP convergence re-

cently. Focus here will be on cable technology, but telephony and cellular are considered

too. Most of the historical backround is from Gorshe et al. [74], Tornatore et al. [75] and

Jia et al. [16, Ch. 1]. Cable data access technology details are based on specifications

from CableLabs [76–79] and Gorshe et al. [74, Ch. 11].

3.1 Access networks

Network operators work with distributed systems that cover vastly different geographical

areas. On the one hand are long-haul and metro operator networks that cover the full span

1Some of the material may be more detailed than the thesis scope would mandate, such as DOCSIS

specification details. These sections may be freely skipped when reading.

3.1 ACCESS NETWORKS 57

between the cloud and the edge networks. At the edge, on the other hand, are located

smaller-scale operator networks which connect subscribers to the operator core network

through a distribution network. Such edge networks are called access networks since they

provide connectivity for a large number of subscribers. Figure 3.1 illustrates an access

network that is made up of a signal aggregation station and the distribution network be-

tween the station and subscribers. Cable operators refer to the station as a hub or headend,

while telephone and cellular operators use the term central office. Distribution network

is further divided to a feeder segment and edge-distribution segments. A feeder segment

is used to distribute signals over long distances to a remote node. For the last kilome-

ters or so, the node transmits the signal to subscribers over edge distribution segments

which can have drop segments. While the feeder segment is almost always fiber-based,

the edge-distribution employs many different physical layer (PHY) technologies. The

industry terminology used for access distribution networks varies a lot.

Fiber
To Core
Network Aggregation

station

Access Network

Analog optics,
Digital optics (PON, AON)

Feeder segment

Distribution Network

Distribution segment

PHY
Node

Subscriber
Subscriber

Subscriber
Coaxial, Twisted-Pair,

Wireless, Optical

Node
Subscriber

Subscriber
Subscriber

drop

Figure 3.1: Simplified view of an access network that connects subscribers to service provider core network

through distribution network. The distribution network employs fiber in its feeder segment up to the node

closer to the subscribers. The edge connectivity physical interface (PHY) between the node and subscribers

varies by provider.

The variable-scale distributed network systems employ vast number of technologies to

transmit video, voice and data between various end-points of the system. Analog payload

signals have long been replaced by digital signals because of their many benefits. Optical

3.2 BROADBAND DATA ACCESS NETWORKS EVOLUTION 58

fibers dominate in the cloud and core network domains, but in access networks one can

still find hybrids of fibre, coaxial, twisted pair and radio based transmission mediums.

While coaxial medium is still widely deployed due to cable TV industry legacy, high

capacity optical fibers have reached deep into the domain of access networks, often as far

as subscriber premises. Traditionally plain telephone, cable and cellular access networks

have been designed for the delivery of specific services. Consequently, operators have had

distinct technical requirements for their access networks. However, broadband access,

digitalization, universal IP delivery and the attractive attributes of optical fiber has led

to convergence of access network technologies, resulting in network operator solutions

resembling each other at the distribution network. Single technology operators have in

many cases become Multiple System Operators (MSOs) who serve customers with more

than one technology.

3.2 Broadband data access networks evolution

From their inception, cable television (CATV2) access networks were based on unidirec-

tional downstream analog broadcast video transmissions over coaxial medium. In par-

allel, telephone operators had their own bidirectional point-to-point wireline networks

which initially carried only baseband voice signals. Broadband data access on telephone

networks began with the introduction of modems that could receive and transmit mod-

ulated data signal within voiceband. While in the mid-1990s there was still uncertainty

about the future prospects of broadband data access, nowadays it has of course become

the norm.

Over the years cable and telephone operators have developed wide range of technolo-

gies as a response to progressively increased broadband demand. Traditionally the cable

and telephone providers have directly competed for market share in broadband data access

2Originally known as Community Access Television or Community Antenna Television.

3.2 BROADBAND DATA ACCESS NETWORKS EVOLUTION 59

domain, which has pushed the development forward and provided motivation for infras-

tructure upgrades. For example, CATV operators were initially forced to upgrade coaxial

network repeater equipment to support upstream data transmissions. Telephone operators

on the other hand had greater pressure to replace low bandwidth twisted pair distribu-

tion lines with optical fibers, which in part has forced a response from CATV operators.

Later appearance of cellular based radio access networks (RANs) has given rise to mobile

broadband access which has further stirred the situation. The increasing demand for wire-

less mobile access has rapidly pushed development of cellular technology. For example,

in later RAN generations the mobile feeder or backhaul distribution segment increasingly

utilizes fast Ethernet/IP-based optical fibers to serve the capacity requirement of more

numerous but smaller cells. This in turn has also affected the more general evolution of

fiber optics use in wired access networks.

In CATV networks a hub receives video, voice and data content from various sources,

such as satellites, terrestial antennaes, the Internet or other hubs. The received content

is then filtered, processed and augmented with regional content. Digital data is mod-

ulated using techniques such as quadrature amplitude modulation (QAM). The down-

stream access is provided by combining the final video, voice and data signal elements.

The combining is done using frequency division multiplexing (FDM) where signal ele-

ments are divided to non-overlapping frequency channels. Multiplex signal consisting of

video, voice and broadband data, each modulated at different channel is known as radio

frequency (RF) signal.

The data channels of CATV RF signal are received by a cable modem (CM) located

at subscriber premises. To enable bidirectional access, part of the shared RF bandwidth

is dedicated for the upstream data. Originally the bandwidth reserved for upstream was

much smaller compared to downstream, but later cable access specifications have per-

mitted more symmetrical splits. In order to better utilize the upstream spectrum, CMs

at first used time division and frequency division multiple access (TDMA/FDMA) meth-

3.3 FIBER TO THE X AND DIGITAL OPTICS 60

ods to share the medium. Later specifications allow code division multiple access (CD-

MA/FDMA) method. Most recent specifications include orthogonal frequency division

multiple access (OFDMA) to increase the upstream capacity in situations where channel

noise characteristics permit it. The current data over cable service interface specification

(DOCSIS) is explained in more detail in section 3.4.

In the early days of CATV the downstream RF signals were transmitted from the hub

to the CMs over pure coaxial network with no optical fiber feeder segments. Amplifier

nodes were used to cover longer distances. However, as the optical fiber signal attenuation

issues over long distances were eventually solved, it became cost-efficient to replace all

or part of the coaxial network with fiber. Cable networks that started to use analog fiber in

their initial 5 to 40 km feeder segment, and coaxial cable in the last few kilometers before

reaching subscribers became known as hybrid fiber-coaxial (HFC) networks [80]. In HFC

topology one or more fibers extend outwards from the hub, each ending at optical fiber

node (FN) located closer to subscribers. In the node the received optical RF signal gets

converted to electrical format and is then distributed to subscribers over coaxial medium.

The shared coaxial segment is known as a service group, and can be shared by up to 500

subscriber modems.

3.3 Fiber to the X and digital optics

Along with cable operators, other network operators have seen interest in transforming

data access networks to fiber-based to meet increasing demand for broadband data capac-

ity. Initially telephone operators utilized modems for data transmissions, first at voiceband

and later using various out-of-band (OOB) technologies known as digital subscriber lines

(xDSL). Later it became apparent that in order to compete in data services against CATV

operators and their high bandwidth coaxial networks, at least partial fiber distribution

lines would be needed. Because twisted pair copper has limited bandwidth compared to

3.3 FIBER TO THE X AND DIGITAL OPTICS 61

coaxial cable, it has further increased the incentive to offer fiber as complete end-to-end

solution where fiber extends all the way from the central office to the subscribers. These

passive or active optical networks (PON, AON) are known as fiber to the home (FTTH),

and they compete directly with the HFC networks. The latest trends point FTTH becom-

ing the most common fixed broadband access method according to OECD statistics [81].

However, deploying fiber is still considered expensive [82], and often fiber is deployed

only up to a remote optical network terminal or unit (ONT/ONU) located close to sub-

scribers. Final connectivity to subscribers is then served using other techniques, such as

DSL or mobile-cellular. The partial fiber deployments are known as fiber to the node

(FTTN). Depending on use case, variations such as fiber to the curb, cabinet, building or

premise do exist (FTTC/FTTCab/FTTB/FTTP).

In typical PON system (Figure 3.2) downstream and upstream signals are transmitted

over the same fiber segment at two or more distinct wavelengths. The shared fiber seg-

ment is power split multiple times so that each fiber ends at a node close to subscriber

premises. The fiber ends are called either optical network units (ONU) or optical network

ONU/ONT

ONU/ONT

Fiber

ONU/ONT

ONU/ONT

Optical Distribution Network
SubscribersCentral

Office

Power
Splitter

Power
Splitter

Power
Splitter

OLT

Figure 3.2: Elements of Passive Optical Network.

terminals (ONT), depending on which PON standard is used. The role of ONU or ONT

is to do optical-to-electrical conversion for subscriber premise network. Typical num-

ber of connected ONUs is 32 or 64, but higher node counts are not uncommon. Optical

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 62

line terminal (OLT) located at central office broadcasts downstream traffic to all ONUs.

Individual ONU extracts the data intended for it based on time slots, encoded packet ad-

dress or wavelength. Upstream medium is shared between ONUs, therefore downstream

data also includes MAC protocol information on how and when the ONU should transmit

upstream. Time division multiple access (TDMA) is the most common protocol used to

share the upstream. Earlier PONs used fixed time slots, but newer systems use dynamic al-

location model where ONT notifies its bandwidth requirements to OLT. PON systems use

wavelength division multiplexing (WDM) to better utilize fiber capacity. Typical method

is to use separate wavelengths for downstream and upstream direction, and possibly use a

third wavelength for video services3. Very high speed PON systems support dense wave-

length division multiplexing (DWDM) or use coherent optics. However, full WDM PON

is still not as cost-effective compared to TDM. Recent PON systems are based on IP and

carry Ethernet frames, contributing to harmonization of access network packetization.

3.4 Data Over Cable Service Interface Specification

HFC access networks today still have partial coaxial medium backing in the last kilome-

ters before they reach customer premises. This is due to the still untapped bandwidth

potential in coaxial cables, and the tendency of CATV operators to choose cost effective

solutions. In the 1990s there were several competing regional standards aiming to address

bidirectional transmissions over HFC networks. Data Over Cable Service Interface Spec-

ification (DOCSIS) eventually became the standard which in its original form specifies

how IP-based broadband data is transmitted as RF signal over coaxial medium.

3Downstream broadband data is transmitted over 1490 nm wavelength, upstream over 1310 nm and

video over 1550 nm.

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 63

3.4.1 Introduction

The first DOCSIS version 1.0 was released in 1997 and included only a minimal set of fea-

tures to support broadband data access. Currently cable operators are transitioning their

networks to DOCSIS version 3.1 released in 2013 [76, 77]. The latest version 4.0 [78,

79] supports features which enable higher capacities and more symmetric downstream

and upstream splits. Important feature of DOCSIS is that each new release is backwards

compatible with earlier releases. The specification has regional variability from its histor-

ical origin on competing regional standards. For example, the DOCSIS specification for

North America has some important differences to European system (EuroDOCSIS).

DOCSIS specifies the required elements, protocols and parameters of functional cable

system at different layers of the OSI network reference model. All layers have regional

variability and options. Of special interest here are the data link PHY and MAC layers.

At the PHY layer, DOCSIS specifies how data is transmitted in RF channel slots over the

shared medium, including modulation and line coding formats. The MAC specifies how

the medium is shared between subscriber modems in downstream and upstream direction.

Seen from service level, DOCSIS specifies how data streams of different services can

be classified and divided into QoS service flows to guarantee service level agreement

(SLA) measures. Since the transmission medium is shared, DOCSIS also specifies various

security features.

3.4.2 DOCSIS network elements

The core elements of DOCSIS network are shown in Figure 3.3. The cable modem ter-

mination system (CMTS) is located at the hub and terminates the DOCSIS protocol at

operator side. The cable modem (CM) terminates the protocol at the subscriber side. Be-

tween the CMTS and CM is the HFC network which includes all the fiber lines, fiber

nodes (FNs) and RF amplifiers used to transmit RF signals. A fiber node is relatively

simple device whose function is to do optical-to-electrical (O/E) and electrical-to-optical

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 64

xGE CMTS

fiberRF
combiner

shelf

coax
Node

data

Subscriber

PremisesHUB

video video

voice

CM

CPE

STB
HFC

network

data CM

EQAM

OOB

line card

line card

line card

xGE

Figure 3.3: Elements of DOCSIS network.

(E/O) conversions. A RF combiner network equipment located at the hub mixes, filters

and converts various signals between the hub and HFC network.

A line card in the CMTS initiates DOCSIS downstream protocol RF signal and trans-

mits it over a coax line to the combiner network. The combiner mixes the data signals

from all the line cards with video and OOB signals, E/O converts the multiplex and feeds

the result to HFC network. A CM extracts packets destined for it from the downstream

RF signal and converts them to suitable customer side network interface format, which

for data traffic is usually Ethernet based. The customer premise equipment (CPEs) behind

the CM send and receive the service data.

The upstream RF signals received from HFC network are O/E converted by the com-

biner. The combiner filters DOCSIS specific upstream RF components originating from

cable modems and transmits them to CMTS line cards, which will demodulate and further

process the data signals.

3.4.3 Physical layer

Signaling between cable system elements occurs at the physical layer (PHY). At PHY

layer EuroDOCSIS 3.0 specifies spectrum band of roughly 5-85 MHz for upstream (US)

channels (Figure 3.4). Spectrum from 108 to 1002 MHz is available for downstream (DS)

channels. DOCSIS 3.1 extends the DS band upper edge up to 1218 MHz while future

plans are up to 1794 MHz. DOCSIS 3.1 also introduces more flexibility in upstream and

DS split plans, so that corresponding upper and lower edges can extend as high as 204

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 65

Frequency
(MHz)

5 85 1002108

Upstream Downstream

DOCSIS upstream

DOCSIS downstream

Digital video

Figure 3.4: EuroDOCSIS 3.0 spectrum use. The DOCSIS 3.1 extends the maximum US and DS frequencies

up to 204 MHz and 1218 MHz, respectively.

MHz ("high-split") and 258 MHz.

The only supported DS modulation orders in DOCSIS 3.0 and before are 64-QAM and

256-QAM. EuroDOCSIS uses QAM channel width of 8 MHz while the North American

DOCSIS uses 6 MHz. Differences inherit from regional video transmission standards

used on cable systems before DOCSIS, such as European PAL system. Consequently, the

DS channel band is still shared with digital video signals and other OOB signals.

DOCSIS 3.1 introduces more spectrum efficient orthogonal frequency division mul-

tiplexing (OFDM) modulation scheme. Single OFDM downstream channel can occupy

frequency band up to 192 MHz divided to large number of smaller subcarriers. Each sub-

carrier can have different QAM modulation order from 16-QAM to 4096-QAM. Modula-

tion orders 8192-QAM and 16384-QAM are optional. An enabling feature for use of such

high-order modulations is the low-density parity-check (LDPC) forward error correction

(FEC) encoding introduced in DOCSIS 3.1. The earlier channel schemes are referred as

single carrier QAM (SC-QAM) systems in contrast to OFDM.

In upstream the medium must be shared between all the transmitting CMs. To this

end DOCSIS upstream access methods are based on separate frequency bands (FDMA)

and time slots (TDMA). Synchronous code division multiple access (S-CDMA) method

has been also available since DOCSIS 2.0, allowing CMs to transmit simultanously over

same time slots with more tolerance to noise. Upstream transmissions have burst nature

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 66

since the CMs transmit at dynamic time slots assigned by the CMTS MAC scheduler. The

CMTS configures CM upstream channel base burst parameters, which include modulation

order. Many of the parameters can be set on each individual burst.

DOCSIS 3.0 supports US modulation orders from QPSK to 64-QAM for TDMA and

S-CDMA channels. For S-CDMA channels QPSK to 128-QAM with trellis coding is

supported. Supported US channel symbol modulation rates are 1280, 2560 and 5120

kHz.

DOCSIS 3.1 introduces OFDMA upstream channels for more efficient use of spec-

trum. A single OFDMA channel can occupy up to 95 MHz band. Similar to downstream

OFDM, each subcarrier can have different modulation order ranging from QPSK to 4096-

QAM. Earlier SC-QAM channel schemes are also supported, and they can be mixed to-

gether width OFDMA channels.

3.4.4 MAC layer

A cable system end points transmit service data over shared medium. To allow collision-

free and efficient data transmissions, the system needs controller, management and sched-

uler functions together with associated protocols in the MAC layer. DOCSIS medium

access control (MAC) layer specification [77] describes these functions and protocols.

DOCSIS MAC is a complex system and has requirements for upper layers and PHY

layer. This section provides only summary introduction of the MAC. Here the CMTS is

assumed to contain all the MAC functions. However, the DOCSIS evolution is on a path

to have some or all the MAC functions to be relocated to the node for more flexibility.

This evolution process is partly described in section on distributed architectures 3.6 and

in more detail in specification for flexible MAC architecture (FMA) [83].

Figure 3.5 depicts a high level view of MAC elements of CMTS. A MAC domain

is CMTS managed logical unit that provides Layer 2 data forwarding for set of CMs

registered to the domain. There can be multiple MAC domains in the CMTS, but a CM

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 67

is ever registered to a single domain. Each MAC domain has one or more associated

downstream channels and one or more logical upstream channels to enable bidirectional

communication. A logical upstream channel maps to a physical channel as defined in

PHY layer. If logical channels overlap, CMTS multiplexes the physical channel access

in time domain. For management and control purposes MAC domain sends and receives

special MAC messages to and from registered modems.

 CMTS

Line card 1

MAC domain 1 MAC domain 2..

IPv4 forwarder IPv6 forwarder

D0 U0

RF RF

Regional Network

L2VPN forwarder

Line card 2..

RF RF

D1

RF

U1

RF

Figure 3.5: MAC layer functions in CMTS. MAC domain provides layer 2 data forwarding for cable

modems using set of downstream and upstream channels. The forwarder components provide layer 2 bridg-

ing and upper layer 3 routing functions.

The MAC domain receives service level data packets from forwarder components of

CMTS. The packets are classified to different service flows based on information in layer

2,3 and 4 packet headers. The service flows in turn are mapped to a set of downstream

channels, and the packets are scheduled for forwarding to the channels as determined by a

MAC domain downstream scheduler entity in CMTS. The scheduler provides each service

flow a Quality of Service (QoS) as determined by the flow classification QoS parameters,

which include traffic priority, data rate and latency.

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 68

In upstream direction, MAC domain recognizes the source CM of a received packet

based on MAC address, and notifies the forwarders of received data. The forwarders

bridge or route the packet to the regional network, or send it back to a MAC domain.

Similar to CMTS downstream classification, a CM also classifies upstream packets to

different service flows and schedules the transmissions according to flow QoS parameters.

Communication between CMTS and CMs involves MAC protocol frames. The generic

frame structure includes a header and an optional variable size payload PDU. The PDU in-

cludes source and destination MAC addresses, the user data and a CRC. Downstream SC-

QAM frames are encapsulated as MPEG-TS packets while OFDM frames are transmitted

without any encapsulation. In upstream direction MAC packets have overhead which size

depends on used PHY transmission mode. DOCSIS uses special MAC-specific frames

for system management and control purposes. Various MAC frames exist for purposes

such as initial CM registration, bandwidth management, state management and dynamic

modification of protocol parameters.

DOCSIS 3.0 MAC introduced channel bonding as an important feature that increases

peak data rates in both downstream and upstream direction. In downstream channel bond-

ing, a CM can receive sequenced frames intended for it from more than one channel si-

multaneously. The CM resequences the data with help of sequence numbers in MAC

frame header before forwarding the packets to subscriber network. Similarly, in upstream

channel bonding a CM transmits data to CMTS using multiple channels at the same time.

Channel bonding can increase peak data rates dramatically to and from CM, because in

a sense multiple smaller bandwidth channels are bonded together as conceptually single

superchannel.

Upstream MAC has additional complexities due to shared nature of the medium. To

this end, special MAP frames contain information on allocated time-slots when a CM

is expected to transmit its queued upstream data. A CM notifies CMTS of its trans-

mission need by sending a MAC request message to CMTS. The CMTS collects all the

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 69

requests from different CMs and sends them to scheduler component for processing. The

scheduler uses multiple parameters and complex algorithm to allocate time-slots so that

available upstream bandwidth is optimally utilized. The CMTS transmits the time-slot

allocations to the CMs in MAP messages as grants. For the request-grant scheduling to

work efficiently, the scheduler and CM notion of time must be accurately synchronized.

For this purpose CMTS periodically sends SYNC messages which contain global timing

reference information. CMs determine the exact time to send upstream frames based on

the reference, MAPs and timing offsets received in the ranging process. This kind of

centralized scheduling intrinsically brings latency to the DOCSIS system. To combat the

latency, future trend seems to be to move the scheduler element closer to the subscribers

as described in section 3.6.

3.4.5 Cable modem provisioning

The DOCSIS protocol as related to a cable modem initialization has four stages: 1) chan-

nel topology resolution, 2) authentication, 3) IP provisioning, and 4) registration.

First, on power-up a CM scans the downstream spectrum and locks on one of the

channels flagged as primary. A primary channel carries periodically sent special MAC

frames. These include frames that provide time synchronization information (SYNC),

scheduled upstream transmit time-slot allocations (MAPs) and descriptors of available

upstream channels (UCDs). In addition, DOCSIS 3.0 CMTS transmits periodic MAC

domain descriptor (MDD) frame on all downstream channels. MDD contains reference

to a primary channel and other meta information on available spectrum channels. After

CM has received enough information on PHY layer, it attempts to range on one selected

upstream channel. The ranging process involves number of MAC frames being sent and

received between CMTS and CM. The aim is to find reliable operating parameters for

the upstream channel. The parameters relate to CM transmission power, timing, and

frequency offsets. The ranging process is repeated periodically for each CM channel in at

3.4 DATA OVER CABLE SERVICE INTERFACE SPECIFICATION 70

least every 20 seconds to tune the transmission parameters against changing conditions.

Next, after successful ranging DOCSIS 3.0 CMs may try to initialize authentication

and encryption functions if they have been enabled. If not, the CM may attempt the same

initialization after the CM has been registered.

In third stage CM will first request an IP address from operator network. The address

can be either IP version 4 or 6. Depending on provisioning mode, one or both of the

address versions may be requested. After the address is known, the CM requests time-of-

day information and downloads binary configuration file from the operator network. The

configuration file contains important operating parameters and limits for the CM, such as

information on access control and parameters of available service flows. The returned CM

configuration may be generated dynamically, depending on parameters of the subscriber

agreement associated with the CM MAC address.

In fourth stage CM initiates three-way handshake with the CMTS, in which some

of the content of the configuration file gets sent to the CMTS. The CMTS validates the

content, allocates necessary MAC layer resources for the modem, and notifies modem

of registration result. The CM will acknowledge the registration and at that point CM

initialization is complete. The cable modem will continue to operate in the network as per

the initial operating parameters permit, and bridges ethernet data packets to and from the

subscriber network. Changing operating conditions and protocol messages from CMTS

may cause the modem behavior to change the parameters, but otherwise the modem tries

to keep the connection stable and low latency.

After registration, the CM functions as ordinary IP addressable network element in

the operator network. In network layer CM and CMTS support various services, such as

SNMP for management or DHCP relaying for CPEs.

3.5 DOCSIS EXTENSIONS 71

3.5 DOCSIS extensions

Over the years, cable industry has been forced to respond to competition from other access

network providers. As a result, DOCSIS standard has received many improvements and

extensions. Channel bonding was first introduced to enable multiple channels to transmit

data simultaneously to and from a single CM. Constellation orders for QAM have been

progressively increased. Current specification enables higher spectral efficiencies thanks

to OFDM. But the demand is ever for more capacity. To this end the next DOCSIS 4.0

has two more important PHY and MAC layer additions, whose focus is on increasing the

downstream and upstream to symmetric 10 Gbps speeds.

3.5.1 Frequency Division Duplex and Extended Spectrum

Frequency Division Duplex (FDD) refers to concept of splitting the spectrum to dedi-

cated frequency bands for simultaneous downstream and upstream transmissions. DOC-

SIS has always used FDD splits as discussed in section 3.4.3. Split ratios of DOCSIS

3.1 are asymmetric, around 1:10 to the benefit of downstream [84]. DOCSIS 4.0 FDD,

or extended spectrum DOCSIS (ESD) as it is commonly termed, significantly increases

the maximum upstream and downstream spectrum limits. The upstream upper limit is

extended up to 684 MHz and downstream upper limit is extended to 1794 MHz [78]. Re-

search and development efforts are ongoing to eventually reach 3 GHz spectrum limit at

the downstream [85].

To achieve the greatest benefits from such high splits requires that HFC network de-

vices such as nodes, amplifiers and passives must be upgraded to support higher band-

widths. This can be expensive for operators, but in many cases it might be less so than

moving to full FTTH solutions, such as PON technology.

3.5 DOCSIS EXTENSIONS 72

3.5.2 Full Duplex

DOCSIS Full Duplex (FDX) is an extension that aims to alleviate the asymmetry of US

and DS spectrum regions to achieve higher upstream capacity. FDX was first introduced

as an addition of DOCSIS 3.1, but is now included as part of DOCSIS 4.0 [78]. FDX

extends the available upstream spectrum by allowing frequency overlap with downstream

region, so that in the overlap region downstream and upstream signals can be active at

the same time. DOCSIS FDX specification defines the spectrum from 108 to 684 MHz

as the full duplex band (FDB), where DS and US channels can overlap. The spectrum

below FDB is reserved for non-FDX upstream channels, and the spectrum above FDB for

non-FDX downstream channels.

Full duplex presents multiple technical challenges, one of which is the interference at

a network device receiver port. The interference originates from various sources [86]:

• leakage and reflections from simultaneous transmit in the same channel as the receive

channel

• leakage and reflections from out-of-band components of simultaneous transmit in the

adjacent channel

• simultaneous upstream transmits from other devices in the cable network.

The first two interference sources are commonly called echo, since they originate from

the transmit signal of the device itself. The echo in turn has two components: 1) self-

interference, which is the internal signal leakage power from transmitter to the receiver

at the same port, and 2) microreflections, which are caused by impedance mismatches at

network crossover points, such as device port, taps or coaxial cable itself [87].

Interference problems can be mitigated with echo cancellation techniques. The full

details of such technical solutions are out of scope for this thesis, but examples and de-

scriptions can be read in papers such as [86, 88, 89]. At the CMTS end solutions often

3.5 DOCSIS EXTENSIONS 73

involve modeling and estimating the transmitted signal echo components, and then can-

celing the interference effects to reach acceptable SNR levels. The echo canceling at the

node is in fact the enabling technology for FDX DOCSIS [87].

In theory echo cancellation could also be implemented at CM side, but this would

lead to high CM complexity and cost. For this reason, CMs in DOCSIS FDX operate

in half-duplex FDD mode, with separate transmit and receive channels. The interference

from other modems is solved at the CMTS MAC layer. This involves first grouping the

CMs in interference groups, so that upstream transmits of CMs in the same group disturb

each other, but so that they do not disturb CMs in the other groups [84]. The CMs in the

same group are provided the same FDX upstream channels, and the upstream scheduler

manages the transmit opportunities so that there is no interference. The CMs present in

other interference group use different set of US channels, which can overlap DS channels

of other groups, resulting in aggregate FDX at the CMTS level.

Another relevant technical challenge is that FDX requires more power from the node,

as the complex circuitry increases the consumption. However, such increase is not exclu-

sive to FDX, because any addition of new functionality for increased data rates increases

power consumption. Around fifty percent of consumption can be traced to power ampli-

fiers used to boost transmitted signal [87].

Amplifiers bring another challenge to FDX scheme in that they would also need to

have echo canceling support [86]. Replacing the amplifiers would be costly. For this

reason DOCSIS FDX initially assumes so-called Node+0 setup, in which there are zero

amplifiers in the coaxial part of the network. However, for many operators such a large

network change may be too expensive. For this reason, some research and developments

efforts towards a FDX amplifier with echo cancellation support are continuing, to enable

FDX in N+1 or N+2 architectures [90]. DOCSIS FDX also assumes new distributed

HFC architecture, in which the physical RF generation occurs at the node. Distributed

architecture is described in section 3.6.

3.6 DISTRIBUTED CABLE ACCESS ARCHITECTURES 74

3.6 Distributed cable access architectures

Baseband digital optics can be used in feeder segments of HFC networks to provide band-

widths of 10 Gbps or more over longer distances [80]. However, until recently it has been

more cost-efficient to transmit RF signal over fiber using analog intensity modulation.

At the same time, analog optics is showing limitations in achieving carrier-to-noise re-

quirements of higher DOCSIS modulations [16]. This and increasing demand for more

bandwidth, along with competitive pressure from other network providers, is forcing ca-

ble operators to find solutions on how to increase capacity. One technique that operators

use is node splitting in which more nodes and fiber are deployed to serve more but smaller

size service groups. Traditionally, the most complex cable system equipment has been lo-

cated at the hub (Figure 3.6), while the distribution network has had relatively simple

devices, such as analog nodes or amplifiers. However, as the number of fibers extending

from the hub to nodes increases, so does the number of needed network equipment at the

hub. This increases spacing, power and cooling requirements at the hub.

Regional Network (Ethernet / IP)

Internet
Access

Video on Demand
(VOD)

Broadcast
Video

Analog
Video CMTS EdgeQAM OOB

RF Combiner Network

Analog Optics

Analog Fiber

Hub

Headend

Optical
Node

Optical
Node

Optical
Node

Optical
Node

Optical
Node

HFC
network

Figure 3.6: Traditional cable access network elements. Adapted from [91].

3.6 DISTRIBUTED CABLE ACCESS ARCHITECTURES 75

The traditional cable access network hub has many different functions, such as CMTS,

video EdgeQAM, OOB, routing and switching, as shown in Figure 3.6 [91]. The func-

tions are implemented as distinct physical devices whose outputs go through complex RF

splitter-combiner network before electrical-to-optical conversion. Consequently the hub

has became a complex platform which is challenging to manage, in addition to the spac-

ing and power challenges. A solution to these problems eventually took a form where the

traditional cable functions became aggregated to a single platform known as Converged

Cable Access Platform (CCAP) [91]. This evolution of functional convergence started

already in the late 2000s. The main driver for convergence was the desire to integrate

DOCSIS and video data services [91], along with PON functions for multiple system

operators [82].

However, as the number of node splittings continue to increase, more than one CCAP

is needed at the hub. Power and cooling requirements start to again be the limiting factor.

After years of efforts to integrate network functions at the hub, the cable access evolution-

ary process took a sharp turn and the industry began to consider decentralizing the same

functions [82]. The industry chosen solution has been various forms of distributed access

architecture (DAA) types that use digital optics in HFC. For one introduction of DAA by

one industry actor, see [92]. These systems have started to replace existing cable access

network deployments in recent years.

In the first type of DAA that has got industry support, the analog node is replaced

with digital optics node. The node has a device that receives digital data over IP network

and modulates it to RF format as required by the DOCSIS. In other words, the physical

layer (PHY) is moved from CCAP to the node [91] as seen in Figure 3.7. At the hub old

CCAP gets transformed into one or more CCAP Cores, one of which must be so-called

Principal Core that oversees a set of nodes. Operators are free to divide DOCSIS and

video functions between CCAP Cores as fits the purpose. This specific style of distributed

architecture is known as remote PHY (R-PHY), while the devices are called remote PHY

3.6 DISTRIBUTED CABLE ACCESS ARCHITECTURES 76

CCAP Core

DOCSIS MAC
Subsystem

MPEG MAC
Subsystem

Timing
Interface

L2TP
Pseudowire
Termination

RPD
(Digital Node)

L2TP
Pseudowire
Termination

10
GE

Timing
Interface

DS
PHY

US
PHY

Time and
Frequency

Control and
Data Plane10

GE

Figure 3.7: Remote PHY architecture. Physical layer (PHY) has been moved from CCAP to remote node.

Control and data packets are transmitted over IP-based digital optics feeder segment. [91]

devices (RPD). Remote PHY specification [93] from CableLabs defines the standard4.

Another DAA variant that is being considered is remote MAC-PHY. Here the cable

system MAC functions are also moved out of CCAP to remote location. A node in the

field which includes MAC function is called remote MAC-PHY device (RMD). In remote

MAC-PHY architecture, the hub might only contain routing, switching and control func-

tions. For even more flexibility a recent CableLabs specification allows locating MAC and

PHY functions as separate network entitities. Depending on distance between MAC and

PHY elements, one advantage of MAC-PHY architecture is that upstream latency can be

improved by a large margin [95]. This is because DOCSIS request-grant round-trip times

are reduced the more closer MAC and PHY are to each other. The downside is that system

complexity outside the hub increases, thus the cost increases.

Most cable operators are currently in process of converting access networks to use

RPDs [92]. However, there are operators who are also using RMDs instead of RPDs.

Nevertheless, whichever DAA variant is used, there are common system requirements.

First, DAA requires high capacity and low latency IP connectivity between the hub, RPDs

4The precursor to R-PHY architecture is Modular Headend Architecture (MHA) [94] as defined in the

mid 2000s. In MHA video edge-QAM network element is extended to support DOCSIS downstream PHY.

This allows the hub to contain MAC and upstream PHY, while the downstream PHY could be located

outside the hub. In addition to other features, R-PHY allows moving DOCSIS upstream PHY also outside

the hub. [82]

3.6 DISTRIBUTED CABLE ACCESS ARCHITECTURES 77

and RMDs. This network is called Converged Interconnect Network (CIN), as it brings

additional synergy advantages from integration of other operator IP services to the cable

system. Currently 10G xPON systems are envisioned and being deployed. Second, DOC-

SIS time synchronization issues get more complex, because MAC and R-PHY are not

necessarily co-located. The CableLabs R-PHY specification includes new synchroniza-

tion model which uses Precision Time Protocol (PTP) to keep MAC and PHY elements

synchronized.

4 Case: Kubernetes in edge-native

cable access convergence

This chapter describes the case study conducted in this thesis. The technological context

of the study relates to cloud-native model and cable access industry, which were explored

in Chapter 2 and Chapter 3. The first section discusses cable industry virtualization and

convergence trends, providing background and motivation for the case study. Next, the re-

search goals and a plan are introduced based on the discussed background. The following

sections include comparison for a set of lightweight Kubernetes distributions and Kubelet

agents. Alternative Kubernetes runtimes are also explored, including WebAssembly. The

chapter concludes with an analysis of prospects and possible directions for implementing

edge-native model in cable access.

4.1 Current trends of cable access and cloud-native

This section discusses the current trends of cable access domain in relation to cloud-native

transformation to edge-native model. The discussion here is in context of background

information explored in Chapter 2 and Chapter 3.

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 79

4.1.1 Full disaggregation and virtualization of cable access

As hinted in Chapter 3, cable access industry is currently on evolutionary path to disag-

gregate its core functions [96]. While the operator hubs in many cases still have purpose

built CCAPs, the relocation of PHY layer outside the hub in form of RPDs or RMDs is

already taking place. However, spacing, power and latency issues are driving the industry

to find solutions for more disaggregation and flexibility. To this end, Cablelabs has re-

leased Flexible MAC architecture (FMA) [83] specification that supports virtualization of

DAA. FMA abstracts most of the DOCSIS system physical elements as virtualized soft-

ware elements, while introducing new management elements and interfaces. To connect

the network elements, FMA embraces network function virtualization (NFV) and soft-

ware defined networks (SDN) models. The specification assumes digital fiber optics to

be deployed in access network feeder segments. Another target of FMA is to allow cable

system MAC layer to be located almost anywhere in the access network. This makes it

possible to serve latency sensitive edge applications. FMA also supports the use of DOC-

SIS protocol as a backhaul for RAN small cells, which is one part of general convergence

trend of access networks, as discussed below.

Virtualization provides many benefits, which include increased cost-efficiency, re-

duced application development time, and simplified deployment processes. Therefore,

it is no surprise that cable access industry is no exception in its desire to virtualize the ac-

cess network system elements [97]. Flexible MAC architecture is one piece of the puzzle

that contributes to this goal. While many of the cable system elements can be virtual-

ized, the PHY layer is one that cannot. As long as the system uses coaxial medium to

transmit RF signal, there must be dedicated equipment that do the conversion from digital

baseband optics to electrical form. Virtualization efforts will first entail implementing the

cable system components as containerized microservices that can run on any commercial-

off-the-shelf server, either in operator’s premises or in centralized public clouds. To some

extent, this virtualization process has already occurred for operations and supports sys-

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 80

tems (OSS). For CCAP and other components closer to the edge, virtualization process

is still mostly developing, as vendors have only in recent years started to implement con-

tainerized CCAPs that run on standard servers located at operator premises [18]. One of

the next steps will be to iteratively move the virtualized components out of the on-premise

servers to the public cloud, to complete the transformation of on-premise applications and

equipment to full cloud-native paradigm [97].

4.1.2 Cable access convergence

Another evolutionary step of cable industry is to be part of a more general convergence

of broadband access networks [98, 99]. On high level, Figure 4.1 illustrates the current

state of access networks for the three most dominant access mediums and technologies.

While coaxial, fiber and radio access technologies all use different technologies to provide

FIBER

Cable Modem
Management

(CMTS)

Passive Optical
Network (PON)
Management

(OLT)

Wireless
Management

(e.g. 5G)

Multiple Access
Network Operator's site

COAXIAL

Remote
PHY
Node

Optical
Remote

Node

Feeder
network

FIBER

FIBER

Cable Modem

Subscribers

Optical
Network
Terminal

FIBER

Mobile
Device

RADIO

PHY
"last kilometers"

Base Station
(macro cell)

The "Edge"

Figure 4.1: High-level view of current state of access networks.

broadband data to subscribers [100], the high-level architectural view reveals similarities.

First, as cable access moves to replace analog fiber optics with digital optics of DAA, all

the wireline and wireless access systems and their services will be using digital baseband

transmission technologies in their feeder networks. This permits converging on IP for

all communication between different network elements [96, 100]. Second, all access

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 81

technologies will employ some type of remote access node deeper in the edge, which

role is to receive IP data packets and convert them to signal format that corresponds with

node’s access medium. The management protocols are still different, as are many of

the employed OSS platforms, while RAN systems in particular have many additional

complexities to consider, such as subscriber mobility. On the other hand, when comparing

upstream protocols of MAC layer for DOCSIS and PON technologies, as described in

Chapter 3, similarities can be found also at protocol level. Third case where convergence

opportunities can be seen is in that one access method can leverage existing infrastructure

of another access technology. Of particular interest are wireless RAN networks, which

can leverage wireline cable DOCSIS or PON networks as overhaul network in the last

kilometers [17]. For example, RAN small cell unit located behind cable modem could

transmit its PDUs to RAN management systems inside DOCSIS PDUs. Finally, there

are convergence opportunities to be found also in management systems and service layers

located at the operator premises, and even beyond that when moving towards the core

clouds [101]. Clearly, all the various unification prospects of the three different access

"silos" at different network layers is enticing, especially for MSOs. Figure 4.2 illustrates

some of these on an architectural level.

Convergence can be defined as any system transformation that leads to operational

simplification and improved economies of scale [96]. Dictionary meaning of conver-

gence is a process of harmonization and unification. In cable access context, convergence

is often used to refer to more specific fixed-mobile convergence, which is an industry term

for desire to unify services and components of wireless and wired broadband access net-

works [98]. More generally, there are many opportunities to harmonize access networks,

as touched upon above.

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 82

Cable Modem
Management

(CMTS)

Passive Optical
Network (PON)
Management

(OLT)

Wireless
Management

(e.g. 5G)

Operator's site

COAXIAL

Remote
Access
Node

FIBER

Cable Modem

Subscribers

Optical
Network
Terminal

FIBER

Mobile
Device

RADIO

PHY
"last kilometers"

Base Station
(macro cell)

small
cell

small
cell

The "Edge"

CIN

Converged
Interconnect

Network

Figure 4.2: Access networks architecture has many convergence opportunities: The feeder network be-

comes shared IP interconnect network. Remote access nodes at the edge can support more than one access

medium technology. Mobile access protocol packets can be overhauled using DOCSIS or PON access pro-

tocols.

4.1.3 Evolution of cable to multi-access edge-native

The viability of using virtualized platforms and network functions instead of purpose-

built hardware solutions has been acknowledged by the cable, fiber and mobile indus-

tries. While the virtualization has at first occurred in OSS level, and now in operators’

on-premise aggregation station level, next the process is moving deeper into the access

networks edge [100]. Multi-access Edge Computing (MEC) model, despite its origin and

major drive coming from mobile industry, is one technology model that cable MSOs are

trying to implement or emulate at the network edge. MEC in this context is extended

to mean a cloud-native enabled remote device in the network edge with support for one

or more access technologies, such as cable or PON. Together with converged IP-based

distribution networks, i.e. converged interconnect networks (CIN), MEC can make con-

vergence of all access network technologies to single shared platform or physical edge

node a reality.

While the ETSI MEC architecture reference model [39] has its roots in using virtual

machines as virtualization infrastructure in MEC hosts, the model is general enough that

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 83

other virtualization infrastructures can be used. In fact, recent ETSI work supports use of

containers as one possible virtualization infrastructure. Figure 4.3 illustrates a virtualized

cable access host platform that has many similarities to MEC architecture, as outlined by

Vladyka et al. in their SCTE paper [100]. Another paper suggests that an architecture that

Applications

Platform

Hardware

MGMT vCMTS vOLT vBNG SPA

OSS

CPU RAM Storage Network

Kernel OS
Drivers
and
Tools

Telemetry Logging Container
runtime

Wasm
runtime Kubelet CNI

plugins
Kube-
proxy

Figure 4.3: Cable access MEC-like host architecture located at operator premises. Application layer corre-

sponds with ETSI MEC applications. In cable context it runs virtualized access management services for

Optical Line Terminals (vOLT), Broadband Network Gateways (vBNG), and Cable Modem Termination

Systems (vCMTS). Management and Service Provisioning Applications (SPA) provide other converged

platform and service functions. Platform layer corresponds with ETSI MEC platform and virtualization en-

tities. The MEC system level is realized by OSS and other services external to the virtualized host platform.

Adapted from [100].

fits MEC definition can be deployed using Kubernetes orchestrator [102]. However, the

paper elaborates that for complete MEC deployment, Kubernetes must be sided with addi-

tional extensions to enable VMs, to chain VMs to containers, and to implement constraint

based connectivity scheduling.

As discussed in section 4.1.1, moving applications from operator premises to public

clouds as containerized microservices is one of the next steps in path to adopt cloud-native

paradigm in access networks. At the same time, as discussed above, and as mentioned

in this paper [18], the same process that has already began in operator premises should

continue, while taking convergence aspects into account in form of MEC or something

else. However, to further continue with this process, the future step is to take the cloud-

4.1 CURRENT TRENDS OF CABLE ACCESS AND CLOUD-NATIVE 84

native model evolution deeper into access networks. This new deep edge-native paradigm

involves finding opportunities to virtualize low-resource edge nodes and devices located

outside operator premises. The general convergence of interconnect networks and the

consequent convergence of remote access nodes to support different types of physical

access technologies is a natural focus point. Therefore, in context of this thesis, conver-

gence of feeder network is assumed, while convergence of remote nodes are given the

main focus.

Serving more than one type of access technology from shared access node requires

hardware solutions that provide multigigabit speeds and low-latency packet routing to

node PHY components. Above the hardware layer in the node is the software stack that

implements control plane functions for configuring the hardware and the node. The soft-

ware components can be designed as dedicated software solutions, without much consid-

eration for cloud-native models. However, access networks and particularly mobile access

industry has a strong desire to apply edge computing principles in their edge networks.

The driving factor here are emerging edge computing use cases, such as augmented real-

ity, driverless cars and big data analytics [24].

The edge computing facilities are not limited to providing services to the node itself.

Their main purpose is to have other edge devices offload computing workloads to them

and to make use of dynamic services deployed in the nodes. This kind of capability for

dynamic workloads and services in the edge nodes requires portable service deployment

units and advanced methods to orchestrate them. Kubernetes and cloud-native model

already supports these features. Therefore, an important question is whether cloud-native

is applicable in the edge as such. The outlined cable access evolution to converged edge

platforms motivates to explore options how this new edge-native can be realized.

4.2 CASE STUDY INTRODUCTION 85

4.2 Case study introduction

This section introduces the case study conducted for this thesis. It describes the research

goals and states the primary research question. It also elaborates how the research is

conducted.

4.2.1 Research goals and question

The research questions in this thesis come in two parts. The first three questions, RQ1,

RQ2 and RQ3, were listed in Chapter 1. The first two questions RQ1 and RQ2 were

explored extensively in Chapter 2 and Chapter 3. Their results are summarized in Chapter

6. The results were used to understand the background context for this thesis. They were

also used to elaborate the single follow-up RQ4 of part two.

The RQ3 was analysed above in section 4.1. The general observed trend in the indus-

try and academy is the desire to bring computing closer to the edge [14]. To achieve this,

it is beneficial if the succesful and now mature cloud-native application (CNA) paradigm,

along with its tools and methods, was brought to the edge as edge-native model. Ku-

bernetes as the de facto container orchestrator is one obvious choice among the tools to

move to the edge. However, as can be inferred from overview in section 2.3, the standard

Kubernetes release from CNCF is a rather heavyweight platform intended to run on ho-

mogeneous set of hosts that have access to significant computing resources, predictable

and uniform configurations, strong security, and near unlimited connectivity with high

reliability [14]. Kubernetes, like most other container orchestrators, is meant to run in the

centralized cloud platforms and data centers [103].

Consequently, the assumption taken for this case study without quantitative analy-

sis is that the standard Kubernetes release [9], or native Kubernetes in following, is too

heavyweight and inflexible to use for edge computing and edge devices as such. The

reason is that the edge environment is highly heterogenous and diverse. Compared to

4.2 CASE STUDY INTRODUCTION 86

cloud environments, computing performances, configurations, security features, network

bandwidths, and network reliability at the edge vary by a large margin. While native

Kubernetes has incorporated large number of components that increase its adaptability

to diverse infrastructures, these addons also increase its size, resource needs, and de-

ployment complexity [104]. Furthermore, the approach taken in these addons is more to

leverage features that exist in cloud provider’s platform, instead of optimizing the actual

resource usage. Works by Goethals et al., Marco et al., Kjorveziroski et al., Vanõ et al.

[14, 103–105] give validity to the stated assumption.

In parallel to general edge-native trend, broadband access networks as one concrete

category of edge networks are evolving to become converged systems in several of their

aspects. While the transition to cloud-native in this domain is still occurring, the future

trends as discussed are towards edge computing and edge-native. Specifically in cable

access context, the edge devices are RPDs, RMDs, and other distributed cable access

network devices with spare computing resources. Customer premises equipment (CPEs)

must also be considered, as they can leverage edge node resources. Alternatively, the

applications residing in edge nodes or in operator premises can be used to manage CPEs.

Whether cable systems will adopt MEC-like architectures or something else, the cloud-

native model no doubt will have a role. It is precisely here where the looming edge-native

trend and cable access trends intersect.

From the stated assumption regarding native Kubernetes, and the related trends of ca-

ble access networks, it becomes apparent that to realize benefits of CNA paradigm in cable

access, alternative lightweight Kubernetes platforms and solutions should be researched

and analysed. If no suitable alternative solution yet exist, analysis of how to implement

one should be done. Performances for existing solutions should be measured and com-

pared, or at minimum literature should be searched for applicable performance studies.

Therefore, the follow-up primary research question of this thesis, formulated based on

results of the three other questions, is as follows:

4.2 CASE STUDY INTRODUCTION 87

RQ4. What are the current options to leverage Kubernetes in context of edge-native

cable access convergence?

Rest of this chapter explores this question through a case study and presents the findings.

Before that, research scope and selection criteria for alternative lightweight Kubernetes

solutions are stated. Other relevant aspects and topics that relate to this research are also

discussed.

4.2.2 Research plan and discussion

As a major part of this case study, alternative lightweight Kubernetes solutions for edge-

native use in cable access context are researched and analysed. A valid solution may be

an alternative full Kubernetes distribution. As well a valid solution can be to replace one

Kubernetes component, such as Kubelet, with more lightweight implementation. Here,

the selection criteria for edge solutions was intentionally chosen as not too restricting. A

solution that does not meet all the criteria may still be a valid canditate for analysis. More

so, because the research in domain of interest is still fast evolving topic. A solution that

might be invalid in respect to the criteria may still contain innovative features that can be

useful when adopted in another implementation. The following list has the used criteria:

• The solution is targeted for edge computing, or it can be deployed in the edge context

without reducing its inherent performance.

• The solution has lower resource footprint than native Kubernetes for worker node,

especially for memory, but also for CPU and storage capacity.

• The size of binaries for worker node is smaller than in native Kubernetes.

• Container runtime is OCI compatible, i.e. it supports standard container images.

• Cluster node component is compatible with native Kubernetes control plane, either

directly or via proxy mechanism.

4.2 CASE STUDY INTRODUCTION 88

• The solution is open-source.

The case study is conducted primarily using literature review method. The criteria

above are used to narrow set of canditate implementations to a core set, which is then used

as a baseline for further analysis and research design. However, in addition to the criteria

above, limitations derive also from the edge nodes themselves. Hardware limitations,

such as available memory, computing power and networking capabilities are important,

but software brings other limitations [103]. For example, some operating systems do

not by default support kernel capabilities, such as Linux cgroups, which are required to

enable containerization. Some of the software requirements could be ignored if intention

was to only leverage monitoring capabilities of Kubernetes cluster for the edge nodes,

and support for running containerized workloads was considered secondary. However,

for true future proof edge-native solution, support for running workloads is close to a

requirement.

As already discussed, the edge environment can be harsh with unreliable network

connections and low bandwidths, but still with expectations of low latency. Native Ku-

bernetes architecture relies heavily on its distributed etcd database for strong consistency.

On one hand, the consistency is necessary also in the edge. However, as noted by Jeffery

et al. in [106], increasing the etcd cluster availability by scaling out brings performance

issues for applications that require low-latency operations, while also reducing availabil-

ity and scalability of the overall Kubernetes system. In their work, Jeffery et al. explain

why etcd is a bottleneck in Kubernetes clusters, while also giving solutions how these

issues might be solved in the edge. As a consequence of these observations, any design

for further research should take into account the data consistency model and the cluster

database performances. Relying purely on native etcd might not be an option.

Making optimal decisions on resource allocation and provisioning requires more con-

sideration in the edge, because in contrast to centralized cloud, the edge environment is

heterogenous. It is therefore necessary to evaluate the extent of how much the lightweight

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 89

Kubernetes solutions allow edge nodes to provide state information for the Kubernetes

platform. The platform will need this state information, which include amount of available

resources, and congestation level of network paths, when making resource provisioning

decisions. Works like from Abouaomar et al. [107] have studied and experimented this

problem in detail. In many cases the problem solutions require application of advanced

optimization schemes, and efficient models for them. For more concrete examples, Kayal

[13] has studied how Kubernetes core platform should be modified and extended for edge

computing, while Bainbridge et al. in [102] have studied how MEC-like platform can be

implemented using Kubernetes. For this thesis, the topic is given at least some consider-

ation when evaluating different edge solutions.

In addition to alternative Kubernetes solutions, this case study considers other possi-

bilities to improve Kubernetes in the edge. While standard Linux containers are mature

CNA deployment units in centralized clouds, there are certain issues when adopted in the

edge. Therefore, alternative container runtimes that are also Kubernetes compatible are

researched. This aspect of edge-native is explored in section 4.5.

4.3 Lightweight Kubernetes solutions

This section describes the alternative lightweight Kubernetes solutions that were chosen

for analysis in this case study. Table 4.1 lists all the solutions with descriptions and

attributes.

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 90

Table 4.1: Lightweight Kubernetes distributions and Kubelet agents. Values inside parenthesis in require-

ments column indicate recommended values. Native Kubernetes is included as a reference.

Name

(Author)

Description Group Size Min worker node

requirements

Architectures

Kubernetes

(CNCF)

Official Kubernetes distribution. - +1 GB CPU: 2 cores

RAM: 2 GB

amd64

armhf/arm64

ppc64le

s390x

K3s

(Rancher Labs)

Distribution for IoT and Edge

Computing. Single-package bi-

nary that encapsulates all con-

trol plane components.

A 70 MB CPU: 1 core (2)

RAM: 256 MB (1GB)

amd64

armhf/arm64

s390x

MicroK8s

(Canonical)

Lightweight, minimal and low

operations production-grade

Kubernetes.

A 170 MB RAM: 540 MB (4 GB) amd64

arm64

s390x

power9

KubeEdge

(CNCF)

Kubernetes workloads and de-

vice management at the edge

nodes.

B 70 MB RAM: 10 MB amd64

armhf/arm64

Virtual Kubelet

(CNCF)

Kubelet implementation that

masquerades as a kubelet for

the purposes of connecting

Kubernetes to other APIs.

C +40 MB Low amd64

armhf/arm64

ppc64le

s390x

Kubemark

(K8s SIG)

Kubernetes cluster that runs

mock nodes called hollow nodes

as Pods.

C - Low -

Kind

(K8s SIG)

Tool for running local Kuber-

netes clusters using Docker con-

tainer nodes.

C - - -

KWOK

(K8s SIG)

Simulation tool for Kubernetes

nodes and clusters.

C - Low amd64

Overall, based on literature search and Internet repository readings, the alternative

lightweight Kubernetes solutions for the edge can be categorized in three groups. Two of

the categories described below are noted in work by Vanõ et al. [14]. Consequently, these

two groups A and B are listed also here.

Group A. The first group includes Kubernetes distributions whose approach is to take

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 91

the native Kubernetes release and to remove unnecessary components from it, reduc-

ing its size and increasing performance by various degrees. These platforms may also

employ other optimization methods. One is to converge many components into one,

with intention to reduce inter-component communication overhead. The implication

of convergence optimization is that Kubernetes internal interfaces are made less gener-

alized, and consequently less scalable. The downside of this approach is that features

that might be useful at the edge in certain scenarios may have been selected for re-

moval. While it is possible that such features can be plugged back in, there are no

guarantees. That said, platforms that choose reductionist approach generally include

features that are most useful and suitable in edge environment, assuming the platform

is targeted for the edge. K3s [108] and MicroK8s [109] belong in this category.

Group B. The second group includes edge platforms which aim to keep native Ku-

bernetes cluster and its control plane in the cloud, while implementing Kubernetes

compatible edge platform consisting of autonomous edge node agents. An edge node

runs container workloads using standard container runtimes, manages edge device

communication, and has internal state cache so that the edge node can work even

when there is no connection to the control plane at the cloud. One method used to

integrate the edge platform and Kubernetes control plane is by using Kubernetes cus-

tom controllers and custom resource definitions. In addition to container workload

management, edge device management may require their own custom controllers and

Kubernetes resources. KubeEdge is probably the most promising canditate in this

group [110].

Group C. Third group of solutions reimplement Kubelet agent for specific purpose.

This is the most limited alternative solution, since the edge platform side can at most

implement what the Kubernetes standard Kubelet API allows. While this approach

provides the most potential for optimizing worker nodes corresponding to resources,

it is also the most laborous method from implementation point of view. However,

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 92

some of the labour can be reduced if an extendable base implementation for Kubelet

could be found that already exists. To some extent Virtual Kubelet [111] provides this

kind of base implementation.

4.3.1 K3s

K3s is a lightweight Kubernetes distribution from Rancher Labs [112] that packs every-

thing in a single binary less than 70MB in size [108]. One of the goals of K3s is to allow

use of edge devices and other low-resource devices as Kubernetes cluster nodes. In K3s

cluster, the master and worker nodes are launched from the same binary. The node role as

either master or agent is given via command line argument. The binary runs all the Ku-

bernetes control plane components and agent components in single process. In addition

to binary size, the runtime memory footprint is smaller compared to native Kubernetes.

The chosen implementation approach of K3s is to take a native Kubernetes source

release and remove unnecessary code and functionality from it. K3s is therefore a fully

compliant and production-ready Kubernetes distribution. However, since K3s worker

nodes have slightly modified cluster join mechanisms, the nodes cannot be used in native

Kubernetes clusters. While K3s has limited default feature set, it comes prepackaged with

all the necessary components to run a Kubernetes cluster. The features include containerd,

Flannel for CNI, CoreDSN, Traefik for Ingress, Helm-controller and more. For CRI, K3s

uses containerd runtime that cannot be changed. By default K3s uses database backend

that is based on SQLite3. For larger cluster setups that require high availability, K3s has

etcd, MySQL and PostgreSQL available as data storage.

In addition to K3s, Rancher provides dedicated operating system for it, known as

k3OS [113]. Just like K3s, the k3OS is better tuned for low-resource host nodes. To get

best results from K3s, it should be combined with k3OS.

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 93

4.3.2 MicroK8s

MicroK8s is a production-grade minimal Kubernetes distribution that aims to have low-

operational burden [109]. It runs on Windows, Linux and macOS. Intended use cases are

development environments, DevOps, edge computing, and IoT applications. MicroK8s

has extensive support for high-availability Kubernetes clusters. Additional features can

be enabled via add-on mechanism. Canonical has Core repository that hosts addons that

are officially supported by MicroK8s, while Community repository hosts additional non-

official third party addons. Some of the addons, such as dns, are recommended to be

always enabled by MicroK8s team. MicroK8s by default has only core features of native

Kubernetes, including api-server, controller-manager, scheduler, kubelet, cni and kube-

proxy, and more. It supports containerd and kata container runtimes. Kata containers are

lightweight virtual machines that run through container runtime compatible APIs. Mi-

croK8s by default uses snapd to install itself, but other install methods are also provided.

4.3.3 KubeEdge

KubeEdge is an official CNCF hosted project that extends native Kubernetes to the edge

for purposes of edge computing and management of edge devices [110]. It consists of

cloud part and edge part as seen in Figure 4.4. The cloud part (CloudCore) implements

pair of Kubernetes controllers that consume Kubernetes CRDs. The edge part (EdgeCore)

implements event-based messaging functions, Pod and container management functions,

data persistency functions, device management functions, MQTT functions, and HTTP

client proxy functions. KubeEdge employs MQTT as Pub/Sub broker to connect edge

devices to the edge node and the cloud. According to [114] the EdgeCore agent memory

footprint can be as low as 10 MB at runtime.

The CloudCore and EdgeCore use their respective CloudHub and EdgeHub compo-

nents to communicate through HTTP over web-socket connection. CloudHub acts as

a mediator between CloudCore controllers and edge side components. It watches for

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 94

CloudCore

Kubernetes
API Server

 Controllers

DeviceControllerEdgeController

Cloud Hub

 EdgeCore
Edge Hub

Cloud

Edge

Edged

MetaManager DeviceTwinNodeLevel
DataStore

ServiceBus

EventBus

http://
APP

Docker containerd CRI-O

Pod Pod Pod

Broker Mapper
(Protocol)

Volume Configmap ProberPod Event ...

Device

Figure 4.4: KubeEdge architecture. Kubernetes is extended with custom resource definitions and controllers

in the CloudCore. EdgeCore has Edged agent that manages containerized applications, DeviceTwin that

handles edge device management, and MetaManager that handles data persistency. [110]

changes at the cloud side and reports them to the EdgeHub, while listening for incoming

messages from EdgeHub and transmitting them to controllers. EdgeHub has a similar

role in EdgeCore to forward messages from the cloud side to the correct components at

the edge, and to send messages and responses back to CloudCore. EdgeHub in addition

acts as broker to edge site’s inter-component messaging.

The role of Edged component is to manage Kubernetes Pod lifecycles at the edge node.

Users can launch various workloads using kubectl via Kubernetes API. Edged supports

several OCI-compliant runtimes through CRI, as seen in Figure 4.4. Edged implements

functions as submodules that have different roles. For some examples, Pod Management

submodule handles Pod additions, deletions and modifications, Volume Management sub-

module attaches and mounts volumes for Pods scheduled on the edge node, Status Man-

ager submodule sends Pod status information to the cloud side, and Probe Management

submodule provides Pod monitoring functions.

MetaManager component is the message processor between Edged and EdgeHub. In

addition, it is responsible for management of metadata in lightweight SQLite database.

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 95

MetaManager processes messages that pass through it, and depending on message type,

it reads or modifies the local database content. Local data persistency allows EdgeCore

to function even when it has no access to the CloudCore. As the data storage is designed

to work in offline mode, the etcd performance issues should not affect KubeEdge.

DeviceTwin component stores edge device statuses, handles device digital twin oper-

ations, creates memberships between edge devices and the edge node, and synchronizes

device status and twin information between the edge and cloud side. In brief, DeviceTwin

implements most of the edge device management aspects of the KubeEdge.

4.3.4 Virtual Kubelet

Virtual Kubelet is an open-source implementation of kubelet agent that masquerades as

real Kubelet [111]. It can be used in parallel with nodes which are running native Kubelet,

as in Figure 4.5. Its purpose is to connect Kubernetes cluster to APIs of other cloud

Figure 4.5: High-level architecture of Virtual Kubelet. Virtual Kubelet masquerades as node kubelet agent

that provides the cluster access to third party cloud container services. Source: [115]

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 96

container services and platforms. The primary use case is to connect with serverless

container platforms, such as Azure Container Instances (ACI) or AWS Fargate. When

started on a cluster node, Virtual Kubelet registers with Kubernetes API in the same way

as native Kubelet would do. Kubernetes sees the Virtual Kubelet as an ordinary Kubelet

instance running on a node, and will try to schedule Pod workloads to it. Virtual Kubelet

can be installed to run either external to any clusters, or it can be deployed as a normal

Pod that is run inside a cluster. There is also a Helm chart that can be used to install

Virtual Kubelet as a Pod.

Virtual Kubelet has providers as extension points. Virtual Kubelet project [115] im-

plements only some of the core features of Kubelet, and delegates the actual Pod manage-

ment functions to provider implementations. Providers are expected to conform to Virtual

Kubelet API, and they should implement any necessary backend operations that enable

proxying workloads to provider-specific external services. Several builtin providers are

available. Among these are Kubernetes CRI Provider, which in essence provides similar

container runtime support as native Kubelet. However, that provider is not fully featured

Kubelet in its feature set, and it does not aim to replace Kubelet. However, it could still

be useful starting point to implement custom lightweight alternative runtimes.

4.3.5 Kubemark

Kubemark is a performance testing tool that simulates Kubernetes clusters [116]. The

simulated clusters can be larger than real ones, which is useful for scalability testing.

Kubemark cluster has a real master node, and number of virtual worker nodes, called

hollow nodes. The hollow nodes include number of "hollow" components which are mock

implementations of corresponding real Kubernetes components. The hollow components,

such as HollowKubelet, do not really do anything, but they report to Kubernetes control

plane as if they did. The master node of Kubemark runs on dedicated host. Hollow nodes,

on the other hand, are run as Pods inside external real Kubernetes cluster. In other words,

4.3 LIGHTWEIGHT KUBERNETES SOLUTIONS 97

the hollow nodes are not real host nodes, but containers running inside Pods.

Kubemark is not suitable as an alternative Kubernetes edge solution as such, since its

hollow components do not really do anything. In addition, it may deploy several hollow

nodes on same underlying real cluster node. However, it might be possible to use "empty"

implementation of the HollowKubelet as a base to extend when implementing own custom

Kubelet agent for low-resource edge use.

4.3.6 Kind

Kind (kubernetes-in-docker) is set of go tools to bootstrap local Kubernetes clusters,

which nodes are simulated by running them in Docker containers [117]. Kind is not

lightweight Kubernetes alternative, since it by default uses fully-fledged native Kuber-

netes to manage the Docker container based nodes. Kind has been developed for the

purpose of testing native Kubernetes platform. To create a cluster, single command line

tool needs to be run. It will download prebuilt Docker images when bootstrapping clus-

ter nodes. The prebuilt images contain system features to run nested containers, systemd

for Kubelet, and required Kubernetes components. To use different Kubernetes version,

Kind command line tool provides option to change the Docker image that is used for

nodes. Kind supports cluster configurations with variable number of nodes, including

high-availability setups.

Clearly, Kind is not applicable for production use in edge environments, as it is tar-

geted for local testing. It is still included here since it can be useful tool to experiment

with alternative Kubernetes distributions that actually are more lightweight.

4.3.7 KWOK

Kubernetes WithOut Kubelet (KWOK) is another testing toolkit that can be used to gener-

ate clusters with thousands of simulated nodes [118]. It has low resource footprint which

allows it to be used on single development machine. Since the tool only simulates nodes

4.4 COMPARISON OF LIGHTWEIGHT KUBERNETES DISTRIBUTIONS 98

and Pods running on them, it cannot be used to run any real container workloads. Under

the hood, KWOK implements two Kubernetes resource controllers which are responsible

for simulating the lifecycle of nodes, Pods and other related API resources. KWOK is rel-

atively new project, with its origins in now-deprecated fake-kubelet and fake-k8s, which

were also tools for testing Kubernetes.

As it is purely a testing tool, obviously KWOK is not applicable for true lightweight

edge solution. However, as the simulated nodes and Pods are configurable, it can be used

to test any lightweight Kubernetes solutions. Furthermore, it is also possible to envision

using KWOK as a baseline project to modify and extend for it to have at least some level

of support for edge devices. For example, existing KWOK controllers could be replaced

with modified versions that were able to communicate with custom lightweight edge node

agents to pull state information about the nodes. This approach would not enable any

Kubernetes workload orchestration, but it would enable Kubernetes management of edge

device states for monitoring purposes.

4.4 Comparison of lightweight Kubernetes distributions

The alternative Kubernetes solutions have different architectures and they have differ-

ent intended purposes. This makes direct comparison of all of them somewhat artificial.

However, comparing solutions that share architectural style is beneficial to find out best

solutions. Literature was searched for comparisons between these. Following has perfor-

mance comparisons for solutions in group A.

In their work, Telenyk et al. [119] have compared performances of K3s and MicroK8s

(Group A) to native Kubernetes. All the tests were run on virtual nodes that had 2 virtual

CPUs and 8 GB of RAM. As results, they noted that native Kubernetes was actually more

performant compared to the other two. Lightweight solutions had slightly worse overall

CPU and memory utilization compared to native, as would be expected from their smaller

4.5 EDGE-NATIVE APPLICATION RUNTIMES 99

size. K3s was shown having slightly better overall performance than MicroK8s, and it also

showed much better disk utilization among all. From edge-native deployment perspective,

this study does not give that much information, because the runtime nodes used in the tests

were not representative of low-resource edge devices. It is to be expected that running

native Kubernetes cluster on nodes that are well within Kubernetes requirements specs

shows its best potential performance.

Kjorveziroski et al. [104] have made similar performance comparison as by Telenyk

et al. for Kubespray1, K3s and MicroK8s. They used OpenFaaS serverless platform as

the test target, with more than ten different benchmarks to measure performance. Both

lightweight Kubernetes solutions provided better overall performance than native-like

Kubespray. The differences between K3s and MicroK8s were not significant. The host

nodes used for testing all had fast CPU with 8 cores, and 8 GB of memory. The runtime

environment was therefore not fully comparable to edge-native environment in this study

either. While focus of this thesis is not serverless computing, this study still gives positive

signal that lightweight solutions can be more performant than native Kubernetes.

4.5 Edge-native application runtimes

Containers are lightweight deployment units for applications and workloads, suitable for

running in the edge. As discussed, Kubernetes abstracts the containers with its Pod con-

cept. The Pods can then be orchestrated to run in edge devices, assuming the target

devices have capacity and capability to do so. Kubernetes Container Runtime Interface

(CRI) allows for using different container runtimes, in addition to default containerd. For

example, CRI-O is more lightweight container runtime, originally targeted as the refer-

ence implementation of CRI. CRI-O uses runC by default as its low-level container run-

1Kubespray is another Kubernetes distribution that contains all standard native components. It has

significant hardware requirements comparable to native Kubernetes, and therefore is not targeted for edge

environments.

4.5 EDGE-NATIVE APPLICATION RUNTIMES 100

time, similar to containerd. However, the low-level runC isolates each container only in

a separate kernel namespace, which brings security concerns in respect to isolation [50],

as discussed in section 2.2.2. Since the edge is particularly vulnerable in many aspects of

security, any edge-native solution needs more robust security mechanisms than standard

cloud-native models currently provide.

Containers are also not fully agnostic to their environment in the sense that they could

be built once and run everywhere. While edge devices typically host some type of Linux

OS, it cannot be guaranteed. Therefore, container developers cannot fully trust the host

OS interface running on any specific device will match with the runtime needs of their

container instance [120]. Also, the edge has wide variety of hardware architectures in

use, which include x86, amd64 and arm. The implied solution for these issues is that

containers need to be built for all the possible combinations of operating systems and

architectures, which considerably increases complexity for application development and

deployment. The same heterogeneity has further consequence in terms of Kubernetes

orchestrator, in that there is no guarantee that any particular device node can be used

as deployment target. It can be seen that orchestration complexity increases in the edge

context when using standard container solutions.

One solution could be to use a platform that already exists and can run applications

everywhere. The Java Virtual Machine (JVM) is one such platform and runtime [120].

With JVM, it is possible to compile Java source code once to common binary byte code

format, and then run the binary anywhere with JVM instance. However, JVM does not fill

the requirement of lightweightness that is required in the edge, and is therefore more suit-

able in data centers and powerful server machines. However, there is another byte code

language known as WebAssembly [15] that has recently emerged. It shares the beneficial

attribute of JVM in that it can execute in heterogenous environments without recompi-

lation. WebAssembly has also lightness comparable to containers. Before discussing

WebAssembly in more detail, next section briefly introduces other alternative runtimes

4.5 EDGE-NATIVE APPLICATION RUNTIMES 101

that currently exist and may be suitable in edge context.

4.5.1 Alternative Kubernetes runtimes

Reference component runC is not the only low-level runtime that high-level Kubernetes

runtimes, such as containerd and CRI-O, can use. Any OCI compliant low-level run-

time can be used with Kubernetes, provided that the runtime is also supported by a CRI

runtime.

For one, Kata containers [121] is a type of runtime that executes containers inside

lightweight virtual machines, or in so-called microVMs. Each container runs over dedi-

cated kernel in microVM, instead of running the container directly over the shared kernel.

Kata container VMs provide extra security for running containers, although the new layer

brings runtime performance overhead [122]. Another container runtime example, which

is also security oriented, is gVisor’s runsc [123]. Instead of wrapping containers inside

VM, it acts as a system call proxy, or an application kernel, between the container and host

kernel. This allows for tighter control and monitoring of application behaviour, which in-

creases security. The downside is that the system call interception mechanism that it uses

brings serious overhead [122].

Yet another type of container runtimes are ones that utilize unikernel approach for

more isolated container environments. Unikernels can be more performant than contain-

ers in many aspects [122]. However, they have also many disadvantages that reduce their

applicability [14], not only in edge context, but also in centralized cloud context. One of

the most prominent is lack of standardization, but lack of development tools and debug-

ging capabilities are other.

Lastly, there are container runtimes that are focusing on high-density, high-concurrency

and secure serverless FaaS deployments. Here, RunD [124] is prime example. It is ca-

pable of launcing over 200 containerized function invocations concurrently per second,

while achieving container density of over 2500 in single VM node. However, serverless

4.5 EDGE-NATIVE APPLICATION RUNTIMES 102

computing should be understood predominantly as public cloud offering, since it heavily

relies on assumption of homogenous and uniform data center infrastructure [14]. These

assumptions do not hold in the edge. Therefore, container runtimes and serverless meth-

ods in general may not be considered optimal solution for edge-native.

4.5.2 Standalone WebAssembly runtimes

Recently, another type of lightweight application runtime known as WebAssembly [15]

has emerged. WebAssembly (Wasm) is a general-purpose virtual binary instruction set

architecture (ISA) that is executed in stack-based virtual machine [15, 120]. While origi-

nally developed for the Web in mind, the current Wasm is designed to be executed both in

web browsers and in server-side using standalone Wasm runtimes. Wasm runtime is the

software component responsible for actually executing Wasm virtual binary instructions,

using runtime specific execution models such as interpretation, just-in-time-compilation

(JIT) or ahead-of-time compilation (AOT) [120]. Wasm runtimes integrate with the under-

lying OS through standard API known as WebAssembly System Interface (WASI) [125],

as depicted in Figure 4.6.

Wasm module 1 Wasm module 2 Wasm module 3

Wasm Runtime implementing WASI

OS kernel

WASI calls

System calls

Figure 4.6: Wasm runtime that implements WebAssembly System Interface (WASI) translates functions,

which Wasm module imports and calls, into kernel system calls. [14]

WASI is a modular API that allows creating Wasm runtimes outside browser context

that provide common OS integration interface for Wasm modules. The core principles

behind WASI are security and portability [126]. For portability, WASI provides access

to OS capabilities and features through its API modules. For example, wasi-core module

4.5 EDGE-NATIVE APPLICATION RUNTIMES 103

provides standard POSIX-like interface with file access, networking, time functions and

more. Wasm runtimes are expected to implement the WASI modules in a way that suits

their specific use case. For security, WASI takes capability-based approach [126]. Instead

of relying on kernel to manage access to system resources, Wasm runtime must be given

explicit set of access privileges, which defines the level of access that any Wasm module

can at most have. In other words, where as containers typically use allow-by-default

model relying on standard OS security features, Wasm takes deny-by-default model.

As of now, many different Wasm runtimes outside the web context have been devel-

oped, which are interestingly often targeted for edge computing, embedded computing

and IoT. Following briefly describes some of them in no particular order of importance:

• Wasmtime [127] is a Bytecode Alliance [128] project that presents fast, standards

compliant Wasm runtime. It uses Cranelift as the compiler backend, therefore sup-

porting several execution models. Wasmtime was one of the first non-browser run-

times that implemented WASI. It has CLI tool to run Wasm modules, and it can be

used as a library module embedded in several programming languages. Wasmtime is

written in Rust, but it has native C API, allowing for native embedding in these two

languages. Bindings to C API exist for other languages.

• WebAssembly Micro Runtime (WAMR) [129] is another Bytecode Alliance project

that provides a lightweight standalone runtime with small footprint and high perfor-

mance for many use scenarios, including the edge. It supports interpretation, AOT

and JIT as execution models. WAMR can be embedded into C, C++, Go and Python

host programming languages, but it also comes with CLI tool to run Wasm binaries.

• WasmEdge is a lightweight, high-performance and extensible Wasm runtime targeted

for the edge, cloud and distributed applications [130]. It is an official sandbox project

of CNCF. It supports all standard WebAssembly features and it has also number of

custom extensions, or plugins, for cloud-native and edge computing scenarios. It has

4.5 EDGE-NATIVE APPLICATION RUNTIMES 104

CLI tool, and it can be embedded as a library runtime for Wasm in several languages,

including C, Rust, Go Python and Node.js.

• Wasmer [131] is runtime that enables lightweight containers to run anywhere from

Desktop to the cloud, the edge and IoT devices. The runtime can be embedded in

many different languages, which makes it possible to run Wasm binaries in wide range

of ways.

• Wazero is a newly released Wasm runtime written purely in Go language, targeted for

Go developers [132]. It is Wasm standards compliant and supports basic set of WASI

features. It comes with standalone CLI tool to run modules, and the runtime libary

can be embedded in other Go programs.

While the above list is by no means exhaustive, it can already be seen that Wasm

runtimes are typically implemented as lightweight libraries that can be embedded in other

tools that may use wide variety of programming languages. In Wasm terminology, the

embbedding application process is referred as the host. For other terminology and details,

the current WebAssembly Core Specification 1.0 standard is available at [133].

Wasm has several benefits when running applications and workloads in edge contexts.

First, Wasm binaries can be compiled using wide variety of toolchains and high-level

programming languages, including C, C++, Rust, Python and Go. More languages and

toolchains are expected to be supported in the future [134]. Second, Wasm modules have

near-native runtime performance [120], although some benchmarks indicate the perfor-

mance can at times be clearly worse. Third, Wasm module startup times are significantly

better compared to containers. Fourth, Wasm module binaries have very small size, with

low memory footprint [14]. Fifth, Wasm modules are executed in sandboxed environment

with particular consideration given to security, very much similar to how web applications

are run in restricted browser context. Furthermore, many of the existing Wasm runtimes

provide support for different hardware based Trusted Execution Environments (TEE). Fi-

4.5 EDGE-NATIVE APPLICATION RUNTIMES 105

nally, WASI is designed to be portable [14], meaning that it is easier to implement Wasm

runtimes on wide variety of systems. Compiled Wasm binaries that import WASI features

can be executed without modification on any environment where a WASI compatible run-

time exists.

Works like from Ménétrey et. al and Vanõ et al. [14, 120] suggest that Wasm mod-

ules can be perfect fit for adapting cloud-native model to edge-native. However, Wasm

is not going to replace current container based workloads. Instead Wasm is expected to

complement containers, especially in low-resource edge devices. However, one challenge

that remains to fully adapt Wasm in the edge relate to extending WASI host capabilities

that runtimes expose for Wasm modules [120]. There is a clear trade-off between WASI

portability and the surface area of the system calls that it exposes. While full system call

compatibility would allow implementing and porting wider range of applications, it com-

plicates portability between heterogenous host devices in the edge. This said, WASI does

provide extension points for native code, to enable access to host hardware functions that

are not otherwise exposed. This way the WASI common interface can be kept compact

and portable, while still allowing for custom OS integrations by other means. Finally,

the Wasm and WASI are trending topics in industry and academy, which means that the

standards are still changing and evolving. At this point in time it is not clear which Wasm

features, capabilities and toolsets will remain after the "hype" phase stabilizes.

4.5.3 Kubernetes as edge-native orchestrator

RuntimeClass is Kubernetes resource type that is used to define cluster runtime support for

different workloads, such as Linux containers and Wasm binaries. Pods and Deployments

can be bound to specific runtime type by setting their spec.runtimeClassName field

to refer to metadata.name field of a RuntimeClass. The RuntimeClass has nested

scheduling.nodeSelector field that contains label-based selector matchers that

Kubernetes scheduler uses when choosing suitable nodes where to assign Pods. The Run-

4.6 PROSPECTS OF EDGE-NATIVE IN CABLE ACCESS 106

timeClass resource has also handler field that defines the target runtime. As an example

of using RuntimeClass, Pods could by default run as standard runC containers when no

runtime was set for them, and as Kata containers inside lighweight VMs if their runtime

was set as kata-container.

However, a third set of Pods could be configured to run through Wasm runtimes.

Here, the enabling component for Kubernetes orchestration is OCI compatible low-level

container runtime that supports running one or more of Wasm runtimes. For containerd,

there is a shim library component known as runwasi [135] that supports WasmEdge and

Wasmtime runtimes. Wasm binaries can be packaged as OCI compatible images, and

if Kubernetes and containerd are configured to use the Wasm shim, the image payload

gets executed as Wasm application instead of Linux container. Another option is to use

crun [136], which is low-level OCI container runtime implemented in C language. It

has native support for running WasmEdge, Wasmer and Wasmtime. By replacing default

runC in containerd or CRI-O with crun, it is possible to run Wasm binaries in Kubernetes

cluster.

This kind of support for hybrid Kubernetes cluster in respect to runtimes is clearly

beneficial in edge-native context. Since the edge is highly heterogenous, use of different

runtimes based on device capabilities brings flexibility.

4.6 Prospects of edge-native in cable access

Native Kubernetes is a heavyweight platform that assumes centralized and uniform cloud

infrastructures. While certain level of uniformity is present in cable access edge net-

works, use of Kubernetes as such in these networks for edge-native transition is not prac-

tical solution. Three groups of suitable alternative lightweight Kubernetes solutions are

recognized.

In the first group, K3s and MicroK8s are solutions targeted for the edge as lightweight

4.6 PROSPECTS OF EDGE-NATIVE IN CABLE ACCESS 107

and fully compliant Kubernetes distributions. Both distributions provide simplified instal-

lation procedures. The common approach these solutions take is to strip away unnecessary

Kubernetes features. K3s in addition modifies the native architecture to further improve

performance. The downside of this K3s approach is that components of K3s, such as the

node agent, are incompatible with native Kubernetes components. Both solutions have

low worker node RAM footprint, and their binary sizes are small. Both solutions pro-

vide good support for variety of architectures. However, K3s is better suited for restricted

edge deployments, since it has support also for arm32 architecture. K3s replaces etcd with

SQLite database by default, which when taking case study preconsiderations into account

may bring better performance on the cable edge. Analysis of performance comparisons

found in literature shows that between the two, K3s has slightly better performance than

MicroK8s, while the comparison to native Kubernetes gives mixed results. However, the

analysed performance tests were all executed on powerful test hardware, which cannot be

considered as representative of the edge. Overall, of the two solutions, K3s can be seen

as the more mature and more edge-ready solution for cable access.

KubeEdge was the only analysed solution in the second group. The approach that

KubeEdge takes is to leverage real Kubernetes cluster running in the centralized cloud

as CloudCore, while having custom CloudEdge agent implementation that supports OCI

workloads. An interesting feature of KubeEdge is that the edge agent can function au-

tonomously without connection to its counterpart in the cloud. For diverse edge environ-

ments with unreliable cloud connections, such offline capability is useful. Furthermore,

since each edge agent has its own local database, the performance issues that were noted

regarding native Kubernetes etcd are not so prevalent. KubeEdge has also facilities to

support edge devices through its inbuilt support for MQTT protocol. Although such capa-

bility may not be directly useful for cable access networks as such, the capability could be

useful for MEC-like systems that allow third party applications to execute in EdgeCores

as MEC applications that can leverage other available edge services. Compared to K3s

4.6 PROSPECTS OF EDGE-NATIVE IN CABLE ACCESS 108

solution, KubeEdge overall is more complete edge solution for cable access. However, the

choice between the two depends on how much support for other edge devices is needed.

Furthermore, KubeEdge architecture distances the edge agents from native Kubernetes

platform, which might become an issue if the EdgeD component starts to lag behind in

development.

In the last group are alternative lightweight Kubelet implementations. The underlying

prospect is that an existing lightweight Kubelet can be taken as a basis which to extend.

The base can be used as a starting point to implement a custom Kubelet agent that fulfills

any explicit requirements in cable access context, i.e. integration with real Kubernetes

cluster. Virtual Kubelet is the most ready and mature solution within its own group. That

said, the other solutions in the group can be used as reference implementations if the

purpose was to implement Kubelet agent almost from the ground up.

In addition to alternative lightweight Kubernetes solutions, it is also necessary to adopt

lightweight workload runtimes in edge-native cable access. Here, WebAssembly provides

architecture agnostic, secure runtime environment. Wasm can be combined with all of the

highlighted solutions, K3s, KubeEdge and Virtual Kubelet, which makes it an ideal solu-

tion to use as lightweight deployment unit in any cable access edge-native architectures.

5 Discussion

This chapter presents additional discussion points that this study may have revealed. First,

extended considerations are given on cloud-native and cable access topics that were ex-

plored in Chapter 2 and Chapter 3. Next, any left over points that relate to case study

conducted in Chapter 4 are covered. The chapter concludes with evaluation of study

weaknesses and future work.

5.1 Cloud-native model evolution to edge-native

As discussed in Chapter 2, the cloud from its inception in 2005 has seen rapid evolution.

Although tools and techniques used to provision virtual machines at IaaS layer have seen

improvements, the role of IaaS as the fundamental base over which other platforms and

services operate seem to have not really changed. The same is not true for the upper

cloud layers PaaS and SaaS, which have seen many changes in their development and

deployment models. In essence, the heavyweight VM model used to deploy monolithic

applications as described in section 2.2.1, has seen transformation to more lightweight

methods and tools. Now, it can be also seen that Kubernetes has taken the place as the

de facto standard container orchestrator. This point was seen stated throughout the online

and literature sources used for this thesis. Alongside Kubernetes, the containerization

trend has been popularized by Docker. While Docker has had significant role to play in

containerization evolution, the ecosystem today is larger, thanks to open-source runtime

components and standards like OCI and CRI.

5.1 CLOUD-NATIVE MODEL EVOLUTION TO EDGE-NATIVE 110

On top of issues noted in case study section 4.5, there are other issues and improve-

ments to be made with cloud-native containers. For one, while containerized microser-

vice architectures are scalable and elastic, they require some resources to be always provi-

sioned, even if the services have no load. Serverless computing has been suggested as one

solution by many authors, with FaaS being one of implementations offered by most cloud

providers. Serverless was not covered extensively in this thesis, although it was seen there

is an interest to move serverless architectures from public clouds to the edge. This inter-

est aside, serverless has still inherent startup latencies and performance issues, which may

make it non-optimal solution, unless recent runtime improvements like in RunD can be

moved to the edge. Unikernels are another microservice oriented solution, which can be

faster than containers. However, unikernels have not yet seen wide adoption, most likely

because there are development and runtime transparency related problems with their use.

It is well known that centralized clouds are operated in large data centers built over

homogenous infrastructures. This is the result of why cloud model has been succesful

in the first place. With combination of hardware virtualization and uniform infrastruc-

ture, it is possible to achieve the greatest benefits through economies of scale. Whereas

virtualization solves the underutilization problem, uniform infrastructure brings needed

predictability. Therefore, it is possible to infer that the issues mentioned above, while

problematic to an extent, are not so crippling that they could have stopped cloud-native

paradigm from establishing itself in the way that it has.

Edge computing is another concept that has seen many evolutionary forms. Origins

of edge computing are in the larger order vision of pervasive computing, which has been

predicted to materialize many times over the years. Fog computing can be considered one

later appearance of the same vision, with some practical implementations. Fog computing

is interesting in that it includes the whole continuum from the central cloud to the edge

in its architectural semantics. Still, fog computing can be seen more as a theoretical

concept that aligns with pervasive computing. On the other hand, cloudlets model and its

5.2 CABLE ACCESS FUTURE PROSPECTS 111

later successor multi-access edge computing are edge architectures designed and targeted

particularly for mobile devices.

As edge computing architectures and models are taking shape, some degree of integra-

tion with centralized cloud models is needed, since edge computing should be understood

as only part of the larger cloud continuum. However, as this work noted, the edge envi-

ronment is more diverse, insecure and unpredictable compared to the core clouds. These

aspects bring difficulties. Consequently, there are still unsolved problems in the edge

that relate to application migration and orchestration, communication reliability, mobil-

ity functions and security. Solutions to these problems will require dedicated methods,

which are not found in centralized cloud. Nevertheless, as far as possible, the comput-

ing and development models that exist in the public cloud should be adapted and moved

to the edge. As cloud-native model in central clouds has matured, an interest to move its

characteristics to the edge has emerged. This new model can be called edge-native model.

However, it can be seen this edge-native transition is still in the early stages.

5.2 Cable access future prospects

Against the backdrop of constantly increasing customer demand for more bandwidth, and

the pressure to remain competitive against other access operators who employ different

access technologies, cable industry has to look for ways how to increase their bandwidth

capacity. Transition to distributed architectures has been one response, as it gives an

opportunity to use more spectral efficient RF modulations, such as OFDM, in the last

kilometers of cable network. Other methods are to extend the limits of usable down-

stream and upstream spectrum bands, and to use full duplex transmissions as discussed

in section 3.5. In the first case, Extended Spectrum DOCSIS increases the upper limits

for upstream and downstream bands. For the second case, Full Duplex DOCSIS aims to

increase capacity by allowing use of overlapping upstream and downstream bands. All

5.3 CASE STUDY CONSIDERATIONS 112

the methods listed above are intended to realize symmetric multi-gigabit speeds for 10G

vision that is being branded by cable access industry.

Visions aside, even with improvements, cable access technology will have difficul-

ties to compete in raw capacity against fixed fiber optics like PON in new deployments.

However, as the cost of replacing existing coaxial lines with fiber is still high, many ca-

ble operators see it more cost-efficient to update existing cable systems with new cable

equipment that improves bandwidth capacity over existing coaxial lines. Here, the meth-

ods listed above, DOCSIS 4.0 extensions, and technologies like FMA will no doubt help

operators to remain competitive to an extent.

Still, as the far future trend of cable technology can be seen on decline, cable operators

are naturally forced to consider alternative options. Multiple system operators have a

strong interest in unifying and harmonizing their access networks and service offerings as

far as possible to achieve synergy benefits. Convergence of access networks is a general

trend that cable industry has to take into account in its future plans.

5.3 Case study considerations

Although KubeEdge was the only analysed solution in group B of lightweight Kubernetes

solutions, it must be noted there are other solutions that could have been studied. For the

reason why no other solutions was chosen, one is that early in the case study, arguments

were found for clear leading edge of KubeEdge compared to other solutions. It was seen

there was no point to include other solutions, although it would have made sense from

case validation perspective.

As hinted in introduction Chapter 1, the goals of this thesis were somewhat different

in its original form. In original work, it was explicitly stated that the research goal was

to leverage Kubernetes only for edge device monitoring purposes. In other words, the

original study did not consider Kubernetes container workload support as a requirement

5.4 STUDY EVALUTION AND FUTURE WORK 113

for lightweight Kubelet implementation. For this simplified purpose, Virtual Kubelet may

be the most sensible project to use. All that would have been necessary to implement is

Virtual Kubelet provider with empty functions as its extension points. However, as the

original study proceeded, this simplification was eventually dropped, as there are other

dedicated solutions for edge node monitoring purposes.

5.4 Study evalution and future work

The case study implemented in thesis did not include any experimental or practical work,

in which lightweight Kubernetes solutions in edge contexts would have been measured

and evaluated. Such evaluations are invaluable for several reasons. First, they give im-

portant feedback on strengths and weaknesses of the solutions that cannot be otherwise

found from pure literature reviews. Second, practical evaluations challenge any vague

presumptions, disproving them quickly, thus saving time and effort. Third, if the practical

work is ambitious enough, it forces to understand the topic in greater detail than one might

otherwise do. Fourth, it gives experience and new ideas in ways that cannot be predicted.

Therefore, the next research steps from here are to design, implement and evaluate

practical edge-native case setup for the most promising looking solution canditates that

were found in this thesis for RQ4. As the thesis background relates to cable access busi-

ness, the natural choice for the edge case is to use an existing cable access device, such

as RPD or RMD. The first step for the test case would be the simple integration with Ku-

bernetes platform with basic support for workload scheduling, along with any supporting

MEC-like features like telemetry and basic services. For this, Virtual Kubelet is good

starting point, as it gives flexibility to integrate standard containers on low-resource de-

vices. As WebAssembly seems like it could be the future of the edge, it also makes sense

to include support for that runtime as part of the implementation right from the start.

Next, for more ambitious case setup that would also include support for IoT devices,

5.4 STUDY EVALUTION AND FUTURE WORK 114

KubeEdge project seems like the most promising option. Similar to Virtual Kubelet,

integration with WebAssembly runtime should be considered. The benefit of KubeEdge is

that it already contains many features that would be good match in the edge-native context.

These include autonomous operation when connections to core cloud are unreliable, and

builtin support for MQTT. While the latter function may not seem like necessary in current

cable access landscape, the prospects of MEC-like functionality close to subscribers, even

in lightweight form, can be profitable feature to have. Finally, KubeEdge being CNCF

incubating project gives it sense of credibility that other similar existing projects may not

yet have.

6 Conclusion

This thesis presented a study on cloud-native transition to edge computing, where cable

access networks work as its driving background. While seemingly separate topics, this

work shows how the topics intersect in their future trends. Cloud-native and cable access

topics were explored through informal literature review to answer three research questions

RQ1, RQ2 and RQ3. Fourth research question RQ4 was formulated based on the results

of the first three questions. Following sections summarize the results of this work.

6.1 Cloud-native, cable access, and future trends

For finding an answer to RQ1, Chapter 2 explored the cloud-native landscape through in-

formal literature review, including historical perspective. As cloud-native model has ma-

tured in core clouds, it now takes direction towards edge computing. Several challenges

can be seen on this new path, which need to be solved before edge-native model can be

realized. First, containers are lightweight deployment units, but they are too resource

intensive and insecure for many of the alluring edge use cases. Second, container orches-

tration as implemented by Kubernetes standard need to be adopted in the edge. However,

Kubernetes is a resource heavy platform that assumes homogenous and predictable infras-

tructures. The edge environment is nothing like this. Therefore, for Kubernetes adoption

in the edge computing, more lightweight versions of it are needed.

The cable access networks was studied in Chapter 3 to give an answer for RQ2.

Against the backdrop of edge-native transition discussed above, cable networks are a type

6.2 CASE STUDY RESULTS 116

of edge networks. In recent years, their architectures have seen evolutionary transition

to distributed form. The same kind of development has been occurring for other access

networks types. However, the next major trend in cable access can be seen to occur in

form of technology and service convergence, in which different access network technolo-

gies will be harmonized and unified. In parallel to this convergence trend, cable access

industry has another goal in virtualizing its existing platforms. This goal is expected to

encompass adopting cloud-native principles. Therefore, as an answer for RQ3, it can be

seen that convergence of cable access networks intertwines with more general trend that

is happening in edge computing. The future of cable access is in edge-native model.

6.2 Case study results

Chapter 4 presented a case study that aimed to find answer to fourth research question

that was formulated based on the results of the first three questions:

RQ4. What are the current options to leverage Kubernetes in context of edge-native

cable access convergence?

The case study was conducted as a literature review on current landscape of Kubernetes

compatible tools and runtimes targeting the edge. The results of RQ4 were used to analyse

their prospects in edge-native cable access convergence. The original experimental work

that was planned to complement the case study was moved to any future work.

As one important result for edge container-like workloads, the standalone WebAssem-

bly, or Wasm, seems like the most promising alternative runtime environment that is also

compatible with OCI runtimes and Kubernetes CRI runtimes. Compared to Linux con-

tainers, binaries of Wasm are more lightweight, start up faster, and are executed in secure

sandboxed environments. Wasm binaries are also more portable, as they depend on un-

derlying host environment only through the WASI interface exposed by their runtime

component. While Wasm is relatively new technology, there seems to be great potential

6.2 CASE STUDY RESULTS 117

to use Wasm binaries as the edge-native deployment units.

Next, it is found that lightweight alternative Kubernetes solutions can be categorized

in three different groups. In the first group belong Kubernetes compatible distributions

that are optimized in resource footprint, and targeted for resource constrained edge de-

vices. Of the two distributions examined in this work, K3s seems more promising.

In the second group, KubeEdge takes another approach. It has specialized edge node

component that is fully autonomous, while keeping overall platform controllers in cen-

tral Kubernetes cluster. KubeEdge has builtin functions to manage fleet of edge devices

through MQTT protocol. Compared to solutions of first group, KubeEdge seems like the

more complete option for adopting edge-native model.

Solutions of third group aim to replace native Kubelet agent with custom implemen-

tation. This is the most direct and flexible method to integrate edge nodes in Kubernetes

platform. It is also the most laborous method, as depending on which Kubelet base imple-

mentation is chosen for extension, much of existing workload management and routing

functions must be reimplemented. Among the solutions examined for this group, Virtual

Kubelet is the most suitable starting point, as its provider concept is natural extension

point. Furthermore, there are reference projects that have successfully adapted it.

References

[1] A. Bhardwaj and C. R. Krishna, “Virtualization in cloud computing: Moving from

hypervisor to containerization—a survey”, Arabian Journal for Science and En-

gineering, vol. 46, no. 9, pp. 8585–8601, Sep. 1, 2021, ISSN: 2191-4281. DOI:

10.1007/s13369-021-05553-3. [Online]. Available: https://doi.

org/10.1007/s13369-021-05553-3 (visited on 06/14/2023).

[2] P.-J. Maenhaut, B. Volckaert, V. Ongenae, and F. De Turck, “Resource manage-

ment in a containerized cloud: Status and challenges”, Journal of Network and

Systems Management, vol. 28, no. 2, pp. 197–246, Apr. 1, 2020, ISSN: 1573-

7705. DOI: 10.1007/s10922-019-09504-0. [Online]. Available: https:

//doi.org/10.1007/s10922-019-09504-0 (visited on 06/14/2023).

[3] “Cloud adoption statistics for 2023”, WebTribunal. (May 23, 2023), [Online].

Available: https://webtribunal.net/blog/cloud-adoption-

statistics/ (visited on 06/14/2023).

[4] “Amazon EC2”, Amazon Web Services, Inc. (May 23, 2023), [Online]. Available:

https://aws.amazon.com/ec2/ (visited on 06/14/2023).

[5] “Compute engine: Virtual machines (VMs)”, Google Cloud. (May 23, 2023), [On-

line]. Available: https://cloud.google.com/compute (visited on

06/14/2023).

https://doi.org/10.1007/s13369-021-05553-3
https://doi.org/10.1007/s13369-021-05553-3
https://doi.org/10.1007/s13369-021-05553-3
https://doi.org/10.1007/s10922-019-09504-0
https://doi.org/10.1007/s10922-019-09504-0
https://doi.org/10.1007/s10922-019-09504-0
https://webtribunal.net/blog/cloud-adoption-statistics/
https://webtribunal.net/blog/cloud-adoption-statistics/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute

REFERENCES 119

[6] “Azure infrastructure as a service (IaaS)”. (2023), [Online]. Available: https:

//azure.microsoft.com/en-us/resources/cloud-computing-

dictionary/what-is-azure/azure-iaas/ (visited on 06/14/2023).

[7] S. K. Tesfatsion, C. Klein, and J. Tordsson, “Virtualization techniques compared:

Performance, resource, and power usage overheads in clouds”, in Proceedings

of the 2018 ACM/SPEC International Conference on Performance Engineering,

ser. ICPE ’18, Berlin, Germany: Association for Computing Machinery, Mar. 30,

2018, pp. 145–156, ISBN: 978-1-4503-5095-2. DOI: 10.1145/3184407.

3184414. [Online]. Available: http://doi.org/10.1145/3184407.

3184414 (visited on 06/14/2023).

[8] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technologies:

A state-of-the-art review”, IEEE Transactions on Cloud Computing, vol. 7, no. 3,

pp. 677–692, Jul. 2019, ISSN: 2168-7161. DOI: 10.1109/TCC.2017.2702586.

[9] “Kubernetes”. (2023), [Online]. Available: https://kubernetes.io/ (vis-

ited on 06/14/2023).

[10] “CNCF annual survey 2022”, Cloud Native Computing Foundation. (Jan. 31,

2023), [Online]. Available: https://www.cncf.io/reports/cncf-

annual-survey-2022/ (visited on 06/14/2023).

[11] “7 major trends for cloud native in 2020: Kubernetes”, Alibaba Cloud Commu-

nity. (Mar. 3, 2020), [Online]. Available: https://www.alibabacloud.

com/blog/7- major- trends- for- cloud- native- in- 2020-

kubernetes_595938 (visited on 06/14/2023).

[12] “Cloud native survey 2019”, Cloud Native Computing Foundation. (Dec. 2, 2019),

[Online]. Available: https://www.cncf.io/reports/cloud-native-

survey-2019/ (visited on 06/14/2023).

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/azure-iaas/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/azure-iaas/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/azure-iaas/
https://doi.org/10.1145/3184407.3184414
https://doi.org/10.1145/3184407.3184414
http://doi.org/10.1145/3184407.3184414
http://doi.org/10.1145/3184407.3184414
https://doi.org/10.1109/TCC.2017.2702586
https://kubernetes.io/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.alibabacloud.com/blog/7-major-trends-for-cloud-native-in-2020-kubernetes_595938
https://www.alibabacloud.com/blog/7-major-trends-for-cloud-native-in-2020-kubernetes_595938
https://www.alibabacloud.com/blog/7-major-trends-for-cloud-native-in-2020-kubernetes_595938
https://www.cncf.io/reports/cloud-native-survey-2019/
https://www.cncf.io/reports/cloud-native-survey-2019/

REFERENCES 120

[13] P. Kayal, “Kubernetes in fog computing: Feasibility demonstration, limitations

and improvement scope : Invited paper”, in 2020 IEEE 6th World Forum on Inter-

net of Things (WF-IoT), Jun. 2020, pp. 1–6. DOI: 10.1109/WF-IoT48130.

2020.9221340.

[14] R. Vaño, I. Lacalle, P. Sowiński, R. S-Julián, and C. E. Palau, “Cloud-native work-

load orchestration at the edge: A deployment review and future directions”, Sen-

sors, vol. 23, no. 4, p. 2215, Jan. 2023, ISSN: 1424-8220. DOI: 10.3390/

s23042215. [Online]. Available: https : / / www . mdpi . com / 1424 -

8220/23/4/2215 (visited on 06/14/2023).

[15] “WebAssembly”. (2023), [Online]. Available: https://webassembly.org/

(visited on 06/14/2023).

[16] Z. Jia and L. A. Campos, Coherent Optics for Access Networks. CRC Press,

Oct. 28, 2019, 123 pp., ISBN: 978-1-00-073650-2.

[17] J. Andréoli-Fang and J. T. Chapman, “Cable and mobile convergence”, presented

at the SCTE Cable-Tec Expo, 2020. [Online]. Available: https : / / www .

nctatechnicalpapers.com/Paper/2020/2020- cable- and-

mobile-convergence (visited on 06/14/2023).

[18] A. Vladyka and A. Matatyaou, “Virtualization and edge compute evolution in ca-

ble - NCTA technical papers”, presented at the SCTE Cable-Tec Expo, 2020. [On-

line]. Available: https://www.nctatechnicalpapers.com/Paper/

2020/2020-virtualization-and-edge-compute-evolution-

in-cable (visited on 06/14/2023).

[19] C. N. Höfer and G. Karagiannis, “Cloud computing services: Taxonomy and com-

parison”, Journal of Internet Services and Applications, vol. 2, no. 2, pp. 81–94,

Sep. 1, 2011, ISSN: 1869-0238. DOI: 10.1007/s13174-011-0027-x. [On-

https://doi.org/10.1109/WF-IoT48130.2020.9221340
https://doi.org/10.1109/WF-IoT48130.2020.9221340
https://doi.org/10.3390/s23042215
https://doi.org/10.3390/s23042215
https://www.mdpi.com/1424-8220/23/4/2215
https://www.mdpi.com/1424-8220/23/4/2215
https://webassembly.org/
https://www.nctatechnicalpapers.com/Paper/2020/2020-cable-and-mobile-convergence
https://www.nctatechnicalpapers.com/Paper/2020/2020-cable-and-mobile-convergence
https://www.nctatechnicalpapers.com/Paper/2020/2020-cable-and-mobile-convergence
https://www.nctatechnicalpapers.com/Paper/2020/2020-virtualization-and-edge-compute-evolution-in-cable
https://www.nctatechnicalpapers.com/Paper/2020/2020-virtualization-and-edge-compute-evolution-in-cable
https://www.nctatechnicalpapers.com/Paper/2020/2020-virtualization-and-edge-compute-evolution-in-cable
https://doi.org/10.1007/s13174-011-0027-x

REFERENCES 121

line]. Available: https://doi.org/10.1007/s13174-011-0027-x

(visited on 06/14/2023).

[20] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C.

Fox, “Analysis of virtualization technologies for high performance computing

environments”, in 2011 IEEE 4th International Conference on Cloud Computing,

Jul. 2011, pp. 9–16. DOI: 10.1109/CLOUD.2011.29.

[21] B. B. Gupta and D. P. Agrawal, Handbook of Research on Cloud Computing and

Big Data Applications in IoT. IGI Global, 2019, ISBN: 978-1-5225-8407-0.

[22] A. Slominski, V. Muthusamy, and V. Ishakian, “Future of computing is boring

(and that is exciting!) or how to get to computing nirvana in 20 years or less”,

arXiv:1906.10398 [cs], Jun. 25, 2019. arXiv: 1906.10398. [Online]. Available:

http://arxiv.org/abs/1906.10398 (visited on 06/14/2023).

[23] R. McHaney, Cloud technologies: an overview of cloud computing technologies

for managers, First edition. Hoboken, NJ: Wiley, 2021, ISBN: 978-1-119-76952-

1.

[24] Y. Mansouri and M. A. Babar, “A review of edge computing: Features and re-

source virtualization”, Journal of Parallel and Distributed Computing, vol. 150,

pp. 155–183, Apr. 1, 2021, ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2020.

12.015. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0743731520304317 (visited on 06/14/2023).

[25] P. Mell and T. Grance, “The NIST definition of cloud computing”, National In-

stitute of Standards and Technology, NIST Special Publication (SP) 800-145,

Sep. 28, 2011. DOI: https://doi.org/10.6028/NIST.SP.800-

145. [Online]. Available: https://csrc.nist.gov/publications/

detail/sp/800-145/final (visited on 06/14/2023).

https://doi.org/10.1007/s13174-011-0027-x
https://doi.org/10.1109/CLOUD.2011.29
https://arxiv.org/abs/1906.10398
http://arxiv.org/abs/1906.10398
https://doi.org/10.1016/j.jpdc.2020.12.015
https://doi.org/10.1016/j.jpdc.2020.12.015
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final

REFERENCES 122

[26] N. Kratzke, “A brief history of cloud application architectures”, Applied Sciences,

vol. 8, no. 8, p. 1368, Aug. 2018. DOI: 10.3390/app8081368. [Online].

Available: https://www.mdpi.com/2076-3417/8/8/1368 (visited on

06/14/2023).

[27] Cloud computing, in Wikipedia, May 26, 2023. [Online]. Available: https://

en.wikipedia.org/w/index.php?title=Cloud_computing&

oldid=1157135946 (visited on 06/14/2023).

[28] “Types of cloud computing - SaaS vs PaaS vs IaaS - AWS”, Amazon Web Ser-

vices, Inc. (2023), [Online]. Available: https://aws.amazon.com/types-

of-cloud-computing/ (visited on 06/14/2023).

[29] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and virtual

machines at scale: A comparative study”, in Proceedings of the 17th International

Middleware Conference, ser. Middleware ’16, New York, NY, USA: Association

for Computing Machinery, Mar. 28, 2016, pp. 1–13, ISBN: 978-1-4503-4300-8.

DOI: 10.1145/2988336.2988337. [Online]. Available: http://doi.

org/10.1145/2988336.2988337 (visited on 06/14/2023).

[30] N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow”, in Present

and Ulterior Software Engineering, M. Mazzara and B. Meyer, Eds., Cham: Springer

International Publishing, 2017, pp. 195–216, ISBN: 978-3-319-67425-4. DOI: 10.

1007/978-3-319-67425-4_12. [Online]. Available: https://doi.

org/10.1007/978-3-319-67425-4_12 (visited on 06/14/2023).

[31] Datadog. “The state of serverless”, The State of Serverless. (2022), [Online].

Available: https://www.datadoghq.com/state-of-serverless/

(visited on 06/14/2023).

[32] M. Villamizar et al., “Cost comparison of running web applications in the cloud

using monolithic, microservice, and AWS lambda architectures”, Service Ori-

https://doi.org/10.3390/app8081368
https://www.mdpi.com/2076-3417/8/8/1368
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1157135946
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1157135946
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=1157135946
https://aws.amazon.com/types-of-cloud-computing/
https://aws.amazon.com/types-of-cloud-computing/
https://doi.org/10.1145/2988336.2988337
http://doi.org/10.1145/2988336.2988337
http://doi.org/10.1145/2988336.2988337
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.datadoghq.com/state-of-serverless/

REFERENCES 123

ented Computing and Applications, vol. 11, no. 2, pp. 233–247, Jun. 1, 2017,

ISSN: 1863-2394. DOI: 10.1007/s11761-017-0208-y. [Online]. Avail-

able: https://doi.org/10.1007/s11761-017-0208-y (visited on

06/14/2023).

[33] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications after 10

years of cloud computing - a systematic mapping study”, Journal of Systems

and Software, vol. 126, pp. 1–16, Apr. 1, 2017, ISSN: 0164-1212. DOI: 10 .

1016 / j . jss . 2017 . 01 . 001. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/S0164121217300018

(visited on 06/14/2023).

[34] Cloud native computing foundation policy repo, May 4, 2023. [Online]. Available:

https://github.com/cncf/foundation/blob/d3c181735ae0478ca7b4fa4bd801551a95ef31cc/

charter.md (visited on 06/14/2023).

[35] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices:

The journey so far and challenges ahead”, IEEE Software, vol. 35, no. 3, pp. 24–

35, May 2018, ISSN: 1937-4194. DOI: 10.1109/MS.2018.2141039.

[36] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing

for the internet of things: A survey”, ACM Transactions on Internet Technology,

vol. 19, no. 2, 18:1–18:41, Apr. 2, 2019, ISSN: 1533-5399. DOI: 10.1145/

3301443. [Online]. Available: https://doi.org/10.1145/3301443

(visited on 06/14/2023).

[37] A. Yousefpour et al., “All one needs to know about fog computing and related

edge computing paradigms: A complete survey”, Journal of Systems Architec-

ture, vol. 98, pp. 289–330, Sep. 1, 2019, ISSN: 1383-7621. DOI: 10.1016/j.

sysarc.2019.02.009. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S1383762118306349 (visited on 06/14/2023).

https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1007/s11761-017-0208-y
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1016/j.jss.2017.01.001
https://www.sciencedirect.com/science/article/pii/S0164121217300018
https://www.sciencedirect.com/science/article/pii/S0164121217300018
https://github.com/cncf/foundation/blob/d3c181735ae0478ca7b4fa4bd801551a95ef31cc/charter.md
https://github.com/cncf/foundation/blob/d3c181735ae0478ca7b4fa4bd801551a95ef31cc/charter.md
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1145/3301443
https://doi.org/10.1145/3301443
https://doi.org/10.1145/3301443
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009
https://www.sciencedirect.com/science/article/pii/S1383762118306349
https://www.sciencedirect.com/science/article/pii/S1383762118306349

REFERENCES 124

[38] M. Satyanarayanan, “Pervasive computing: Vision and challenges”, IEEE Per-

sonal Communications, vol. 8, no. 4, pp. 10–17, Aug. 2001, ISSN: 1558-0652.

DOI: 10.1109/98.943998.

[39] “Multi-access edge computing (MEC); framework and reference architecture”,

ETSI, 2022. [Online]. Available: https://www.etsi.org/deliver/

etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.

pdf (visited on 06/14/2023).

[40] B. Liang, M. A. Gregory, and S. Li, “Multi-access edge computing fundamentals,

services, enablers and challenges: A complete survey”, Journal of Network and

Computer Applications, vol. 199, p. 103 308, Mar. 1, 2022, ISSN: 1084-8045. DOI:

10.1016/j.jnca.2021.103308. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S1084804521002976

(visited on 06/14/2023).

[41] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes, “Integrated NFV/SDN ar-

chitectures: A systematic literature review”, ACM Computing Surveys, vol. 51,

no. 6, 114:1–114:39, Feb. 4, 2019, ISSN: 0360-0300. DOI: 10.1145/3172866.

[Online]. Available: https://doi.org/10.1145/3172866 (visited on

06/14/2023).

[42] A. Pereira Ferreira and R. Sinnott, “A performance evaluation of containers run-

ning on managed kubernetes services”, in 2019 IEEE International Conference

on Cloud Computing Technology and Science (CloudCom), Dec. 2019, pp. 199–

208. DOI: 10.1109/CloudCom.2019.00038.

[43] M. Chae, H. Lee, and K. Lee, “A performance comparison of linux containers

and virtual machines using docker and KVM”, Cluster Computing, vol. 22, no. 1,

pp. 1765–1775, Jan. 1, 2019, ISSN: 1573-7543. DOI: 10.1007/s10586-017-

https://doi.org/10.1109/98.943998
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/03.01.01_60/gs_MEC003v030101p.pdf
https://doi.org/10.1016/j.jnca.2021.103308
https://www.sciencedirect.com/science/article/pii/S1084804521002976
https://www.sciencedirect.com/science/article/pii/S1084804521002976
https://doi.org/10.1145/3172866
https://doi.org/10.1145/3172866
https://doi.org/10.1109/CloudCom.2019.00038
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2

REFERENCES 125

1511-2. [Online]. Available: https://doi.org/10.1007/s10586-

017-1511-2 (visited on 06/14/2023).

[44] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third gen-

eration architectures”, Communications of the ACM, vol. 17, no. 7, pp. 412–

421, 1974, ISSN: 0001-0782. DOI: 10.1145/361011.361073. [Online].

Available: http://doi.org/10.1145/361011.361073 (visited on

06/14/2023).

[45] K. Adams and O. Agesen, “A comparison of software and hardware techniques

for x86 virtualization”, ACM SIGPLAN Notices, vol. 41, no. 11, pp. 2–13, 2006,

ISSN: 0362-1340. DOI: 10.1145/1168918.1168860. [Online]. Available:

http://doi.org/10.1145/1168918.1168860 (visited on 06/14/2023).

[46] I. Mavridis and H. Karatza, “Combining containers and virtual machines to en-

hance isolation and extend functionality on cloud computing”, Future Generation

Computer Systems, vol. 94, pp. 674–696, May 1, 2019, ISSN: 0167-739X. DOI:

10.1016/j.future.2018.12.035. [Online]. Available: https://

www.sciencedirect.com/science/article/pii/S0167739X18305764

(visited on 06/14/2023).

[47] R. Di Pietro and F. Lombardi, “Virtualization technologies and cloud security:

Advantages, issues, and perspectives”, in From Database to Cyber Security: Es-

says Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday, ser. Lec-

ture Notes in Computer Science, P. Samarati, I. Ray, and I. Ray, Eds., Cham:

Springer International Publishing, 2018, pp. 166–185, ISBN: 978-3-030-04834-1.

DOI: 10.1007/978-3-030-04834-1_9. [Online]. Available: https:

//doi.org/10.1007/978-3-030-04834-1_9 (visited on 06/14/2023).

[48] WMware, Understanding full virtualization, paravirtualization, and hardware as-

sist, Mar. 11, 2008. [Online]. Available: https://www.vmware.com/

https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1145/361011.361073
http://doi.org/10.1145/361011.361073
https://doi.org/10.1145/1168918.1168860
http://doi.org/10.1145/1168918.1168860
https://doi.org/10.1016/j.future.2018.12.035
https://www.sciencedirect.com/science/article/pii/S0167739X18305764
https://www.sciencedirect.com/science/article/pii/S0167739X18305764
https://doi.org/10.1007/978-3-030-04834-1_9
https://doi.org/10.1007/978-3-030-04834-1_9
https://doi.org/10.1007/978-3-030-04834-1_9
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html

REFERENCES 126

techpapers/2007/understanding-full-virtualization-paravirtualizat-

1008.html (visited on 06/14/2023).

[49] D. Ernst, D. Bermbach, and S. Tai, “Understanding the container ecosystem: A

taxonomy of building blocks for container lifecycle and cluster management”,

p. 6, 2016.

[50] E. Casalicchio and S. Iannucci, “The state-of-the-art in container technologies:

Application, orchestration and security”, Concurrency and Computation: Prac-

tice and Experience, vol. 32, no. 17, e5668, 2020, ISSN: 1532-0634. DOI: 10.

1002/cpe.5668. [Online]. Available: http://onlinelibrary.wiley.

com/doi/abs/10.1002/cpe.5668 (visited on 06/14/2023).

[51] “Linux containers - LXC - introduction”. (2023), [Online]. Available: https://

linuxcontainers.org/lxc/introduction/ (visited on 06/14/2023).

[52] “Docker: Accelerated, containerized application development”. (May 10, 2022),

[Online]. Available: https://www.docker.com/ (visited on 06/14/2023).

[53] “A practical introduction to container terminology”, Red Hat Developer. (Feb. 22,

2018), [Online]. Available: https://developers.redhat.com/blog/

2018/02/22/container-terminology-practical-introduction

(visited on 06/14/2023).

[54] “Open container initiative”. (2023), [Online]. Available: https://opencontainers.

org/ (visited on 06/14/2023).

[55] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, “Performance evaluation of con-

tainer runtimes:” in Proceedings of the 10th International Conference on Cloud

Computing and Services Science, Prague, Czech Republic: SCITEPRESS - Sci-

ence and Technology Publications, 2020, pp. 273–281, ISBN: 978-989-758-424-4.

DOI: 10.5220/0009340402730281. [Online]. Available: http://www.

https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://www.vmware.com/techpapers/2007/understanding-full-virtualization-paravirtualizat-1008.html
https://doi.org/10.1002/cpe.5668
https://doi.org/10.1002/cpe.5668
http://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
http://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://www.docker.com/
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction
https://opencontainers.org/
https://opencontainers.org/
https://doi.org/10.5220/0009340402730281
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281

REFERENCES 127

scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/

0009340402730281 (visited on 06/14/2023).

[56] Runc GitHub, 2023. [Online]. Available: https://github.com/opencontainers/

runc (visited on 06/14/2023).

[57] T. Donohue. “The differences between docker, containerd, CRI-o and runc”, Tuto-

rial Works. (Jan. 2, 2023), [Online]. Available: https://www.tutorialworks.

com/difference-docker-containerd-runc-crio-oci/ (visited

on 06/14/2023).

[58] “Open source container-based virtualization for linux.”, OpenVz. (2023), [On-

line]. Available: https://openvz.org/ (visited on 06/14/2023).

[59] C. Pahl, “Containerization and the PaaS cloud”, IEEE Cloud Computing, vol. 2,

no. 3, pp. 24–31, May 2015, ISSN: 2325-6095. DOI: 10.1109/MCC.2015.51.

[60] “CNCF annual survey 2021”, Cloud Native Computing Foundation. (Feb. 10,

2022), [Online]. Available: https://www.cncf.io/reports/cncf-

annual-survey-2021/ (visited on 06/14/2023).

[61] “Kubernetes: Concepts”, Kubernetes. (2023), [Online]. Available: https://

kubernetes.io/docs/concepts/ (visited on 06/14/2023).

[62] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega,

and kubernetes: Lessons learned from three container-management systems over

a decade”, Queue, vol. 14, no. 1, pp. 70–93, Jan. 1, 2016, ISSN: 1542-7730. DOI:

10.1145/2898442.2898444. [Online]. Available: https://dl.acm.

org/doi/10.1145/2898442.2898444 (visited on 06/14/2023).

[63] “Cloud native computing foundation”. (2023), [Online]. Available: https://

www.cncf.io/ (visited on 06/14/2023).

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0009340402730281
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci/
https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci/
https://openvz.org/
https://doi.org/10.1109/MCC.2015.51
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/
https://doi.org/10.1145/2898442.2898444
https://dl.acm.org/doi/10.1145/2898442.2898444
https://dl.acm.org/doi/10.1145/2898442.2898444
https://www.cncf.io/
https://www.cncf.io/

REFERENCES 128

[64] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-aware re-

source provisioning in kubernetes for fog computing applications”, in 2019 IEEE

Conference on Network Softwarization (NetSoft), Jun. 2019, pp. 351–359. DOI:

10.1109/NETSOFT.2019.8806671.

[65] “The cloud native wiki”, Aqua. (2023), [Online]. Available: https://www.

aquasec.com/cloud-native-academy/ (visited on 06/14/2023).

[66] “Cri-o”. (2023), [Online]. Available: https : / / cri - o . io/ (visited on

06/14/2023).

[67] “Etcd”, etcd. (2023), [Online]. Available: https://etcd.io/ (visited on

06/14/2023).

[68] “Introduction - the cluster API book”. (2023), [Online]. Available: https://

cluster-api.sigs.k8s.io/ (visited on 06/14/2023).

[69] N. Velayudhan. “A visual guide to kubernetes networking fundamentals | open-

source.com”. (Jun. 1, 2022), [Online]. Available: https://opensource.

com/article/22/6/kubernetes- networking- fundamentals

(visited on 06/14/2023).

[70] “Introduction - kubernetes gateway API”. (2023), [Online]. Available: https:

//gateway-api.sigs.k8s.io/ (visited on 06/14/2023).

[71] L. Mirsky. “Why do kubernetes applications need a package manager?” (2023),

[Online]. Available: https://www.opsfleet.com/articles/why-

do-kubernetes-applications-need-a-package-manager (vis-

ited on 06/14/2023).

[72] “Helm”. (2023), [Online]. Available: https://helm.sh/ (visited on 06/14/2023).

[73] “Go template package - text/template”. (2023), [Online]. Available: https://

pkg.go.dev/text/template (visited on 06/14/2023).

https://doi.org/10.1109/NETSOFT.2019.8806671
https://www.aquasec.com/cloud-native-academy/
https://www.aquasec.com/cloud-native-academy/
https://cri-o.io/
https://etcd.io/
https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://opensource.com/article/22/6/kubernetes-networking-fundamentals
https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
https://www.opsfleet.com/articles/why-do-kubernetes-applications-need-a-package-manager
https://www.opsfleet.com/articles/why-do-kubernetes-applications-need-a-package-manager
https://helm.sh/
https://pkg.go.dev/text/template
https://pkg.go.dev/text/template

REFERENCES 129

[74] S. Gorshe, A. Raghavan, T. Starr, and S. Galli, Hybrid Fiber Access Technolo-

gies, 1st ed., in collab. with S. Gorshe, T. Starr, A. R. Raghavan, and S. Galli.

Chichester, United Kingdom: Wiley, John Wiley & Sons, Ltd, 2014, ISBN: 978-

0-470-74180-1. DOI: 10.1002/9781118878774.ch06.

[75] M. Tornatore, G.-K. Chang, and G. Ellinas, Fiber-wireless convergence in next-

generation communication networks: systems, architectures, and management (Op-

tical networks). Cham, Switzerland: Springer, 2017, ISBN: 978-3-319-42822-2.

[76] “DOCSIS 3.1 physical layer specification”, CableLabs, 2013. [Online]. Available:

https://www.cablelabs.com/specifications/CM-SP-PHYv3.

1 (visited on 06/14/2023).

[77] “DOCSIS 3.1 MAC and upper layer protocols interface specification”, CableLabs,

2013. [Online]. Available: https://www.cablelabs.com/specifications/

CM-SP-MULPIv3.1 (visited on 06/14/2023).

[78] “DOCSIS 4.0 physical layer specification”, CableLabs, 2019. [Online]. Available:

https://www.cablelabs.com/specifications/CM-SP-PHYv4.

0 (visited on 06/14/2023).

[79] “DOCSIS 4.0 MAC and upper layer protocols interface specification”, CableLabs,

2019. [Online]. Available: https://www.cablelabs.com/specifications/

CM-SP-MULPIv4.0 (visited on 06/14/2023).

[80] “The digital HFC — a path to 10g”. (Feb. 19, 2020), [Online]. Available: https:

//broadbandlibrary.com/the-digital-hfc-a-path-to-10g/

(visited on 06/14/2023).

[81] “OECD broadband statistics update - OECD”. (Feb. 23, 2023), [Online]. Avail-

able: https : / / www . oecd . org / sti / broadband / broadband -

statistics-update.htm (visited on 06/14/2023).

https://doi.org/10.1002/9781118878774.ch06
https://www.cablelabs.com/specifications/CM-SP-PHYv3.1
https://www.cablelabs.com/specifications/CM-SP-PHYv3.1
https://www.cablelabs.com/specifications/CM-SP-MULPIv3.1
https://www.cablelabs.com/specifications/CM-SP-MULPIv3.1
https://www.cablelabs.com/specifications/CM-SP-PHYv4.0
https://www.cablelabs.com/specifications/CM-SP-PHYv4.0
https://www.cablelabs.com/specifications/CM-SP-MULPIv4.0
https://www.cablelabs.com/specifications/CM-SP-MULPIv4.0
https://broadbandlibrary.com/the-digital-hfc-a-path-to-10g/
https://broadbandlibrary.com/the-digital-hfc-a-path-to-10g/
https://www.oecd.org/sti/broadband/broadband-statistics-update.htm
https://www.oecd.org/sti/broadband/broadband-statistics-update.htm

REFERENCES 130

[82] M. J. Emmendorfer, “Cable operator’s access architecture from aggregation to

disaggregation and distributed”, in 2019 IEEE Photonics Society Summer Topical

Meeting Series (SUM), Jul. 2019, pp. 1–1. DOI: 10.1109/PHOSST.2019.

8795043.

[83] “Flexible MAC architecture system specification”, CableLabs, 2020. [Online].

Available: https://www.cablelabs.com/specifications/CM-

SP-FMA-SYS (visited on 06/14/2023).

[84] W. Coomans, H. Chow, and J. Maes, “Introducing full duplex in hybrid fiber coax-

ial networks”, IEEE Communications Standards Magazine, vol. 2, no. 1, pp. 74–

79, Mar. 2018, ISSN: 2471-2833. DOI: 10.1109/MCOMSTD.2018.1700011.

[85] J. T. Chapman, H. Jin, T. Hewavithana, and R. Hillermeier, “Blueprint for 3 GHz,

25 gbps DOCSIS - NCTA technical papers”, presented at the SCTE Cable-Tec

Expo, 2019. [Online]. Available: https://www.nctatechnicalpapers.

com/Paper/2019/2019- blueprint- for- 3- ghz- 25- gbps-

docsis (visited on 06/14/2023).

[86] H. Jin and J. Chapman, “Echo cancellation techniques for supporting full duplex

DOCSIS”, presented at the SCTE Cable-Tec Expo, 2017, p. 24. [Online]. Avail-

able: https://www.nctatechnicalpapers.com/Paper/2017/

2017-echo-cancellation-techniques-for-supporting-full-

duplex-docsis (visited on 06/14/2023).

[87] B. Berscheid and C. Howlett, “Full duplex DOCSIS: Opportunities and chal-

lenges”, IEEE Communications Magazine, vol. 57, no. 8, pp. 28–33, Aug. 2019,

ISSN: 1558-1896. DOI: 10.1109/MCOM.2019.1800851.

[88] N. M. Gowdal, X. Si, and A. Sabharwal, “Full-duplex DOCSIS: A modem ar-

chitecture for wideband (>1ghz) self-interference cancellation for cable modem

termination systems (CMTS)”, in 2018 52nd Asilomar Conference on Signals,

https://doi.org/10.1109/PHOSST.2019.8795043
https://doi.org/10.1109/PHOSST.2019.8795043
https://www.cablelabs.com/specifications/CM-SP-FMA-SYS
https://www.cablelabs.com/specifications/CM-SP-FMA-SYS
https://doi.org/10.1109/MCOMSTD.2018.1700011
https://www.nctatechnicalpapers.com/Paper/2019/2019-blueprint-for-3-ghz-25-gbps-docsis
https://www.nctatechnicalpapers.com/Paper/2019/2019-blueprint-for-3-ghz-25-gbps-docsis
https://www.nctatechnicalpapers.com/Paper/2019/2019-blueprint-for-3-ghz-25-gbps-docsis
https://www.nctatechnicalpapers.com/Paper/2017/2017-echo-cancellation-techniques-for-supporting-full-duplex-docsis
https://www.nctatechnicalpapers.com/Paper/2017/2017-echo-cancellation-techniques-for-supporting-full-duplex-docsis
https://www.nctatechnicalpapers.com/Paper/2017/2017-echo-cancellation-techniques-for-supporting-full-duplex-docsis
https://doi.org/10.1109/MCOM.2019.1800851

REFERENCES 131

Systems, and Computers, Oct. 2018, pp. 2202–2206. DOI: 10.1109/ACSSC.

2018.8645538.

[89] M.-S. Baek, J.-H. Song, O.-H. Kwon, and J.-Y. Jung, “Self-interference cancel-

lation in time-domain for DOCSIS 3.1 uplink system with full duplex”, IEEE

Transactions on Broadcasting, vol. 65, no. 4, pp. 695–701, Dec. 2019, ISSN:

1557-9611. DOI: 10.1109/TBC.2019.2897738.

[90] N. A. J. BAUMGARTNER, S. Editor, and L. Reading 10/1/2021. “Full duplex

DOCSIS amplifier chatter heats up”, Light Reading. (Oct. 1, 2021), [Online].

Available: https://www.lightreading.com/cable-tech/full-

duplex - docsis - amplifier - chatter - heats - up / d / d - id /

772466 (visited on 06/14/2023).

[91] P. Sowinski, “The impact of remote PHY on cable service convergence”, pre-

sented at the SCTE Cable-Tec Expo, 2016. [Online]. Available: https://www.

nctatechnicalpapers.com/Paper/2016/2016-the-impact-

of- remote- phy- on- cable- service- convergence (visited on

06/14/2023).

[92] “Distributed access architecture (DAA). the challenges & benefits of DAA”. (Sep. 10,

2019), [Online]. Available: https://www.viavisolutions.com/en-

us/distributed-access-architecture (visited on 06/14/2023).

[93] “Remote PHY specification”, CableLabs, 2015. [Online]. Available: https://

www.cablelabs.com/specifications/CM-SP-R-PHY (visited on

06/14/2023).

[94] “DOCSIS modular headend architecture”, CableLabs, 2008. [Online]. Available:

https://www.cablelabs.com/specifications/modular-headend-

architecture-technical-report (visited on 06/14/2023).

https://doi.org/10.1109/ACSSC.2018.8645538
https://doi.org/10.1109/ACSSC.2018.8645538
https://doi.org/10.1109/TBC.2019.2897738
https://www.lightreading.com/cable-tech/full-duplex-docsis-amplifier-chatter-heats-up/d/d-id/772466
https://www.lightreading.com/cable-tech/full-duplex-docsis-amplifier-chatter-heats-up/d/d-id/772466
https://www.lightreading.com/cable-tech/full-duplex-docsis-amplifier-chatter-heats-up/d/d-id/772466
https://www.nctatechnicalpapers.com/Paper/2016/2016-the-impact-of-remote-phy-on-cable-service-convergence
https://www.nctatechnicalpapers.com/Paper/2016/2016-the-impact-of-remote-phy-on-cable-service-convergence
https://www.nctatechnicalpapers.com/Paper/2016/2016-the-impact-of-remote-phy-on-cable-service-convergence
https://www.viavisolutions.com/en-us/distributed-access-architecture
https://www.viavisolutions.com/en-us/distributed-access-architecture
https://www.cablelabs.com/specifications/CM-SP-R-PHY
https://www.cablelabs.com/specifications/CM-SP-R-PHY
https://www.cablelabs.com/specifications/modular-headend-architecture-technical-report
https://www.cablelabs.com/specifications/modular-headend-architecture-technical-report

REFERENCES 132

[95] T. Liu and J. Chapman, “R-PHY with remote upstream scheduler”, presented

at the SCTE Cable-Tec Expo, 2019. [Online]. Available: https : / / www .

nctatechnicalpapers.com/Paper/2019/2019-r-phy-with-

remote-upstream-scheduler (visited on 06/14/2023).

[96] J. Rodriguez and J. Jansen, “Fixed-wireless convergence on a multi-access edge

- NCTA technical papers”, presented at the SCTE Cable-Tec Expo, 2021. [On-

line]. Available: https://www.nctatechnicalpapers.com/Paper/

2021/2021-fixed-wireless-convergence-on-a-multi-access-

edge (visited on 06/14/2023).

[97] J. Chapman and T. Liu, “Unleash the power of cloud computing for CMTS -

NCTA technical papers”, presented at the SCTE Cable-Tec Expo, 2021. [On-

line]. Available: https://www.nctatechnicalpapers.com/Paper/

2021/2021-unleash-the-power-of-cloud-computing-for-

cmts (visited on 06/14/2023).

[98] “Connexus”, CableLabs. (2023), [Online]. Available: https://www.cablelabs.

com/connexus (visited on 06/14/2023).

[99] “5g wireless wireline converged core architecture technical report”, CableLabs,

2019. [Online]. Available: https://www.cablelabs.com/specifications/

WR-TR-5WWC-ARCH (visited on 06/14/2023).

[100] A. Vladyka, A. Matatyaou, and H. Abramson, “Exploring multi-access edge com-

pute in converging access networks - NCTA technical papers”, presented at the

SCTE Cable-Tec Expo, 2021. [Online]. Available: https://www.nctatechnicalpapers.

com/Paper/2021/2021-exploring-multi-access-edge-compute-

in-converging-access-networks (visited on 06/14/2023).

[101] B. Hallahan, “Why, how, and where to converge fixed and mobile networks -

NCTA technical papers”, presented at the SCTE Cable-Tec Expo, 2022. [On-

https://www.nctatechnicalpapers.com/Paper/2019/2019-r-phy-with-remote-upstream-scheduler
https://www.nctatechnicalpapers.com/Paper/2019/2019-r-phy-with-remote-upstream-scheduler
https://www.nctatechnicalpapers.com/Paper/2019/2019-r-phy-with-remote-upstream-scheduler
https://www.nctatechnicalpapers.com/Paper/2021/2021-fixed-wireless-convergence-on-a-multi-access-edge
https://www.nctatechnicalpapers.com/Paper/2021/2021-fixed-wireless-convergence-on-a-multi-access-edge
https://www.nctatechnicalpapers.com/Paper/2021/2021-fixed-wireless-convergence-on-a-multi-access-edge
https://www.nctatechnicalpapers.com/Paper/2021/2021-unleash-the-power-of-cloud-computing-for-cmts
https://www.nctatechnicalpapers.com/Paper/2021/2021-unleash-the-power-of-cloud-computing-for-cmts
https://www.nctatechnicalpapers.com/Paper/2021/2021-unleash-the-power-of-cloud-computing-for-cmts
https://www.cablelabs.com/connexus
https://www.cablelabs.com/connexus
https://www.cablelabs.com/specifications/WR-TR-5WWC-ARCH
https://www.cablelabs.com/specifications/WR-TR-5WWC-ARCH
https://www.nctatechnicalpapers.com/Paper/2021/2021-exploring-multi-access-edge-compute-in-converging-access-networks
https://www.nctatechnicalpapers.com/Paper/2021/2021-exploring-multi-access-edge-compute-in-converging-access-networks
https://www.nctatechnicalpapers.com/Paper/2021/2021-exploring-multi-access-edge-compute-in-converging-access-networks

REFERENCES 133

line]. Available: https://www.nctatechnicalpapers.com/Paper/

2022/FTF22_CONV02_Hallahan_3736 (visited on 06/14/2023).

[102] D. K. Bainbridge, S. Barbarie, D. Fedorov, M. Naveda, and R. Ranganathan, “Im-

plementing multi-layer infrastructure management for multi-access edge comput-

ing services using kubernetes - NCTA technical papers”, presented at the SCTE

Cable-Tec Expo, 2021. [Online]. Available: https://www.nctatechnicalpapers.

com/Paper/2021/2021-implementing-multi-layer-infrastructure-

management (visited on 06/14/2023).

[103] T. Goethals, F. DeTurck, and B. Volckaert, “Extending kubernetes clusters to

low-resource edge devices using virtual kubelets”, IEEE Transactions on Cloud

Computing, pp. 1–1, 2020, ISSN: 2168-7161. DOI: 10.1109/TCC.2020.

3033807.

[104] V. Kjorveziroski and S. Filiposka, “Kubernetes distributions for the edge: Server-

less performance evaluation”, The Journal of Supercomputing, vol. 78, no. 11,

pp. 13 728–13 755, Jul. 1, 2022, ISSN: 1573-0484. DOI: 10.1007/s11227-

022- 04430- 6. [Online]. Available: https://doi.org/10.1007/

s11227-022-04430-6 (visited on 06/14/2023).

[105] N. Marco, D. Fedorov, and R. Ranganathan, “Delivering cloud-native operations

with edge compute enabled DAA: Implementing a kubernetes distributed edge

- NCTA technical papers”, presented at the SCTE Cable-Tec Expo, 2020. [On-

line]. Available: https://www.nctatechnicalpapers.com/Paper/

2020/2020-delivering-cloud-native-operations (visited on

06/14/2023).

[106] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting kubernetes for the edge”,

in Proceedings of the 4th International Workshop on Edge Systems, Analytics and

Networking, ser. EdgeSys ’21, New York, NY, USA: Association for Computing

https://www.nctatechnicalpapers.com/Paper/2022/FTF22_CONV02_Hallahan_3736
https://www.nctatechnicalpapers.com/Paper/2022/FTF22_CONV02_Hallahan_3736
https://www.nctatechnicalpapers.com/Paper/2021/2021-implementing-multi-layer-infrastructure-management
https://www.nctatechnicalpapers.com/Paper/2021/2021-implementing-multi-layer-infrastructure-management
https://www.nctatechnicalpapers.com/Paper/2021/2021-implementing-multi-layer-infrastructure-management
https://doi.org/10.1109/TCC.2020.3033807
https://doi.org/10.1109/TCC.2020.3033807
https://doi.org/10.1007/s11227-022-04430-6
https://doi.org/10.1007/s11227-022-04430-6
https://doi.org/10.1007/s11227-022-04430-6
https://doi.org/10.1007/s11227-022-04430-6
https://www.nctatechnicalpapers.com/Paper/2020/2020-delivering-cloud-native-operations
https://www.nctatechnicalpapers.com/Paper/2020/2020-delivering-cloud-native-operations

REFERENCES 134

Machinery, Apr. 26, 2021, pp. 7–12, ISBN: 978-1-4503-8291-5. DOI: 10.1145/

3434770.3459730. [Online]. Available: https://doi.org/10.1145/

3434770.3459730 (visited on 06/14/2023).

[107] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane, “Resource provisioning

in edge computing for latency-sensitive applications”, IEEE Internet of Things

Journal, vol. 8, no. 14, pp. 11 088–11 099, Jul. 2021, ISSN: 2327-4662. DOI: 10.

1109/JIOT.2021.3052082.

[108] “K3s”. (2023), [Online]. Available: https://k3s-io.github.io/ (visited

on 06/14/2023).

[109] “MicroK8s”, microk8s.io. (2023), [Online]. Available: http://microk8s.

io (visited on 06/14/2023).

[110] KubeEdge. “KubeEdge”, KubeEdge. (2023), [Online]. Available: https://

kubeedge.io/en/ (visited on 06/14/2023).

[111] “Virtual kubelet”. (2023), [Online]. Available: https://virtual-kubelet.

io/ (visited on 06/14/2023).

[112] “Rancher”, Rancher Labs. (2023), [Online]. Available: http://www.rancher.

com (visited on 06/14/2023).

[113] “The kubernetes operating system”. (2023), [Online]. Available: https://

k3os.io/ (visited on 06/14/2023).

[114] A. Lai. “KubeEdge and its role in multi-access edge computing”, The New Stack.

(Jun. 19, 2020), [Online]. Available: https://thenewstack.io/kubeedge-

and-its-role-in-multi-access-edge-computing/ (visited on

06/14/2023).

[115] Virtual kubelet GitHub, 2023. [Online]. Available: https://github.com/

virtual-kubelet/virtual-kubelet (visited on 06/14/2023).

https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1109/JIOT.2021.3052082
https://doi.org/10.1109/JIOT.2021.3052082
https://k3s-io.github.io/
http://microk8s.io
http://microk8s.io
https://kubeedge.io/en/
https://kubeedge.io/en/
https://virtual-kubelet.io/
https://virtual-kubelet.io/
http://www.rancher.com
http://www.rancher.com
https://k3os.io/
https://k3os.io/
https://thenewstack.io/kubeedge-and-its-role-in-multi-access-edge-computing/
https://thenewstack.io/kubeedge-and-its-role-in-multi-access-edge-computing/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet

REFERENCES 135

[116] KubeMark GitHub, 2023. [Online]. Available: https : / / github . com /

kubernetes/community/blob/master/contributors/devel/

sig-scalability/kubemark-guide.md (visited on 06/14/2023).

[117] “Kind”. (2023), [Online]. Available: https://kind.sigs.k8s.io/ (vis-

ited on 06/14/2023).

[118] “KWOK”. (2023), [Online]. Available: https://kwok.sigs.k8s.io/

(visited on 06/14/2023).

[119] S. Telenyk, O. Sopov, E. Zharikov, and G. Nowakowski, “A comparison of ku-

bernetes and kubernetes-compatible platforms”, in 2021 11th IEEE International

Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications (IDAACS), vol. 1, Sep. 2021, pp. 313–317. DOI:

10.1109/IDAACS53288.2021.9660392.

[120] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “WebAssembly as a common

layer for the cloud-edge continuum”, in Proceedings of the 2nd Workshop on Flex-

ible Resource and Application Management on the Edge, ser. FRAME ’22, New

York, NY, USA: Association for Computing Machinery, Jun. 27, 2022, pp. 3–

8, ISBN: 978-1-4503-9310-2. DOI: 10.1145/3526059.3533618. [Online].

Available: https://dl.acm.org/doi/10.1145/3526059.3533618

(visited on 06/14/2023).

[121] “Kata containers - open source container runtime software”. (2023), [Online].

Available: https://katacontainers.io/ (visited on 06/14/2023).

[122] X. Wang, J. Du, and H. Liu, “Performance and isolation analysis of RunC, gVisor

and kata containers runtimes”, Cluster Computing, vol. 25, no. 2, pp. 1497–1513,

Apr. 1, 2022, ISSN: 1573-7543. DOI: 10.1007/s10586- 021- 03517-

8. [Online]. Available: https://doi.org/10.1007/s10586-021-

03517-8 (visited on 06/14/2023).

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://kind.sigs.k8s.io/
https://kwok.sigs.k8s.io/
https://doi.org/10.1109/IDAACS53288.2021.9660392
https://doi.org/10.1145/3526059.3533618
https://dl.acm.org/doi/10.1145/3526059.3533618
https://katacontainers.io/
https://doi.org/10.1007/s10586-021-03517-8
https://doi.org/10.1007/s10586-021-03517-8
https://doi.org/10.1007/s10586-021-03517-8
https://doi.org/10.1007/s10586-021-03517-8

REFERENCES 136

[123] “gVisor”. (2023), [Online]. Available: https://gvisor.dev/ (visited on

06/14/2023).

[124] Z. Li et al., “{RunD}: A lightweight secure container runtime for high-density de-

ployment and high-concurrency startup in serverless computing”, presented at the

2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022, pp. 53–

68, ISBN: 978-93-91332-92-1. [Online]. Available: https://www.usenix.

org/conference/atc22/presentation/li-zijun-rund (visited

on 06/14/2023).

[125] “WASI”. (2023), [Online]. Available: https://wasi.dev/ (visited on 06/14/2023).

[126] “Standardizing WASI: A system interface to run WebAssembly outside the web

- mozilla hacks - the web developer blog”, Mozilla Hacks - the Web developer

blog. (Mar. 27, 2019), [Online]. Available: https://hacks.mozilla.

org/2019/03/standardizing-wasi-a-webassembly-system-

interface (visited on 06/14/2023).

[127] Wasmtime GitHub, 2023. [Online]. Available: https://github.com/bytecodealliance/

wasmtime (visited on 06/14/2023).

[128] “Bytecode alliance”, Bytecode Alliance. (2023), [Online]. Available: https:

//bytecodealliance.org/ (visited on 06/14/2023).

[129] WebAssembly micro runtime GitHub, Jun. 4, 2023. [Online]. Available: https:

//github.com/bytecodealliance/wasm-micro-runtime (visited

on 06/14/2023).

[130] WasmEdge GitHub, Jun. 5, 2023. [Online]. Available: https://github.

com/WasmEdge/WasmEdge (visited on 06/14/2023).

[131] Wasmerio/wasmer GitHub, 2023. [Online]. Available: https://github.

com/wasmerio/wasmer (visited on 06/14/2023).

https://gvisor.dev/
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://www.usenix.org/conference/atc22/presentation/li-zijun-rund
https://wasi.dev/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://bytecodealliance.org/
https://bytecodealliance.org/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/WasmEdge/WasmEdge
https://github.com/WasmEdge/WasmEdge
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer

REFERENCES 137

[132] “Wazero”. (2023), [Online]. Available: https://wazero.io/ (visited on

06/14/2023).

[133] “WebAssembly core specification”. (Dec. 5, 2019), [Online]. Available: https:

//www.w3.org/TR/2019/REC-wasm-core-1-20191205/ (visited on

06/14/2023).

[134] V. Kjorveziroski, S. Filiposka, and A. Mishev, “Evaluating WebAssembly for

orchestrated deployment of serverless functions”, in 2022 30th Telecommunica-

tions Forum (TELFOR), Nov. 2022, pp. 1–4. DOI: 10.1109/TELFOR56187.

2022.9983733.

[135] Containerd/runwasi GitHub, Jun. 2, 2023. [Online]. Available: https://github.

com/containerd/runwasi (visited on 06/14/2023).

[136] Containers/crun GitHub, 2023. [Online]. Available: https://github.com/

containers/crun (visited on 06/14/2023).

https://wazero.io/
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://doi.org/10.1109/TELFOR56187.2022.9983733
https://doi.org/10.1109/TELFOR56187.2022.9983733
https://github.com/containerd/runwasi
https://github.com/containerd/runwasi
https://github.com/containers/crun
https://github.com/containers/crun

	Introduction
	Cloud-native orchestration
	Cloud computing
	Introduction to the cloud
	Definition of cloud computing
	History of the cloud
	Enablers of cloud computing
	Application deployment models
	Cloud-native applications
	Edge computing

	Virtualization technologies
	Hardware virtualization
	Containerization

	Kubernetes
	Introduction
	Components
	Configuration and management
	Cluster management
	Communication and security
	Network and service model
	Helm package manager

	Distributed cable access
	Access networks
	Broadband data access networks evolution
	Fiber to the X and digital optics
	Data Over Cable Service Interface Specification
	Introduction
	DOCSIS network elements
	Physical layer
	MAC layer
	Cable modem provisioning

	DOCSIS extensions
	Frequency Division Duplex and Extended Spectrum
	Full Duplex

	Distributed cable access architectures

	Case: Kubernetes in edge-native cable access convergence
	Current trends of cable access and cloud-native
	Full disaggregation and virtualization of cable access
	Cable access convergence
	Evolution of cable to multi-access edge-native

	Case study introduction
	Research goals and question
	Research plan and discussion

	Lightweight Kubernetes solutions
	K3s
	MicroK8s
	KubeEdge
	Virtual Kubelet
	Kubemark
	Kind
	KWOK

	Comparison of lightweight Kubernetes distributions
	Edge-native application runtimes
	Alternative Kubernetes runtimes
	Standalone WebAssembly runtimes
	Kubernetes as edge-native orchestrator

	Prospects of edge-native in cable access

	Discussion
	Cloud-native model evolution to edge-native
	Cable access future prospects
	Case study considerations
	Study evalution and future work

	Conclusion
	Cloud-native, cable access, and future trends
	Case study results

	References

