

Providing Identity Privacy in 5G Networks

by Using Pseudonyms

UNIVERSITY OF TURKU

Department of Mathematics and Statistics

Master of Science Thesis

Cryptography and Data Security

May 2018

Gizem Akman

Supervisors:

Prof. Valtteri Niemi

Dr. Ville Junnila

UNIVERSITY OF TURKU
Department of Mathematics and Statistics

AKMAN GIZEM: Providing Identity Privacy in 5G Networks by Using

Pseudonyms

Master of Science Thesis, 65 p., 39 app. p.

Information Security and Cryptography - Cryptography and Data Security
May 2018

The originality of this thesis has been checked in accordance with the University of
Turku quality assurance system using the Turnitin Originality Check service

This thesis aims for presenting a solution for providing the identity privacy in mobile

networks. The user is identified in mobile networks by an International Mobile
Subscriber Identity (IMSI). An IMSI catcher is a device that acts like a fake base

station and targets information such as identity and location. Location tracking is
one of the most serious outcomes, in case attacker captures these details. Since

building an IMSI catcher is now cheaper than before and detecting one is very hard,
threat caused by this device has become a serious issue, especially while developing
5G.

Several solutions to protect against IMSI catchers are explained in this thesis, and

one solution for defeating IMSI catchers is using pseudonyms instead of real identity.
We claim that pseudonym can be an effective solution for providing identity privacy

in 5G networks and can be also compatible with legacy networks. We have
implemented a prototype that demonstrates how pseudonym can be imposed to an
existing Authentication and Key Agreement (AKA) procedure. This prototype has

been presented in two public demonstration sessions.

This thesis includes the history of the mobile networks including 5G. The changes
between generations of networks show the requirements for better infrastructure, and

also for improved security. We have also examined the development of AKA, since
AKA is one of the most important procedures to provide secure service to valid users.
Moreover, our prototype is about enhancing AKA for adapting pseudonym

approach.

This thesis also mentions about a block cipher called KASUMI, which is used for
encrypting and decrypting pseudonym during AKA in the prototype. Since

KASUMI is designed specifically for 3GPP and cryptanalyses show it is still safe to
use KASUMI, it was chosen to be used in the prototype.

Keywords: 5G, mobile networks, pseudonym, identity privacy, authentication and

key agreement, KASUMI.

Acknowledgements

I want to thank to my supervisors, Prof. Valtteri Niemi and Dr. Ville Junnila,

for their support throughout my studies and thesis.

I specially express my gratitude to Valtteri Niemi for accepting me for

internship in my first year and making me learn about this topic. I am happy that I

had a chance to study with such a valuable supervisor and a mentor. I sincerely thank

him for being supportive and patient. I hope to continue working with him and learn

more from him.

Finally, I want to thank to my mother, my father, and my sister for always being

there for me. I would not succeed any of this without their support. They have been

invaluable in my life.

i

Abbreviations

3GPP - 3rd Generation Partnership Project

5G HE AV - 5G Home Environment Authentication Vector

5G-AIR - 5G Authentication Initiation Request

5G-GUTI - 5G Globally Unique Temporary Identifier

AES - Advanced Encryption Standard

AIR - Authentication Information Request

AK - Anonymity Key

AKA - Authentication and Key Agreement

AMF - Authentication Management Field

also: - Core Access and Management Function

ARPF - Authentication Credential Repository and Processing Function

AS - Access Stratum

AuC - Authentication Center

AUSF - Authentication Server Function

AUTN - Authentication Token

AV - Authentication Vector

BTS - Base Transceiver Station

CA - Certificate authority

CK - Cipher Key

DN - Data Network

DoS - Denial of Service

ECC - Elliptic Curve Cryptography

EDGE - Enhanced Data rates in GSM Environment

eNodeB - Evolved NodeB

EPS - Evolved Packet System

E-UTRAN - Evolved-Universal Terrestrial Radio Access Network

ii

GPRS - General Packet Radio Services

GSM - Global System for Mobile Communications

GUAMI - Globally Unique AMF ID

GUMMEI - Globally Unique MME Identifier

GUTI - Globally Unique Temporary UE Identity

HLR - Home Location Register

HN - Home Network

HSPA - High Speed Packet Access

HSS - Home Subscriber Server

IK - Integrity Key

IMSI - International Mobile Subscriber Identity

IMT - International Mobile Communications

KDF - Key Derivation Functions

LTE - Long Term Evolution

MAC - Message Authentication Code

MCC - Mobile Country Code

ME - Mobile Equipment

MME - Mobility Management Entity

MNC - Mobile Network Code

MSC - Mobile Switching Center

MSIN - Mobile Subscriber Identification Number

NAI - Network Access Identifier

OP - Operator Variant Algorithm Configuration Field

PIN - Personal Identification Number

PKI - Public Key Infrastructure

QoS - Quality of Service

RAN - Radio Access Network

SCMF - Security Context Management Function

SEAF - Security Anchor Function

iii

S-GW - Serving Gateway

SIM - Subscriber Identity Module

SMF - Session Management Function

SMS - Short Message System

SN - Serving Network

SPCF - Security Policy Control Function

SQN - Sequence Number

SUCI - Subscription Concealed Identifier

SUPI - Subscription Permanent Identifier

TMSI - Temporary Mobile Subscriber Identity

UDM - Unified Data Management

UE - User Equipment

UPF – User Plane Function

USIM - User Subscriber Identity Module

VLR - Visitor Location Register

Wi-Fi - Wireless Fidelity

XRES - Expected Response

iv

List of Figures

Figure 1 - Number of unique mobile subscribers worldwide from 2010 to 2020 …. 1

Figure 2 - Relations of elements during international call from User A to User B .. 7

Figure 3 - Mobile Network Security Architecture …………………………………. 15

Figure 4 - E-UTRAN architecture …………………………………………………. 18

Figure 5 - GSM AKA ……………………………………………………………….. 22

Figure 6 - UMTS AKA ……………………………………………………………… 23

Figure 7 - EPS AKA ………………………………………………………………… 25

Figure 8 - FL Function ……………………………………………………………… 27

Figure 9 - FO Function ……………………………………………………………… 28

Figure 10 - FI Function ……………………………………………………………... 28

Figure 11 - KASUMI encryption …………………………………………………… 31

Figure 12 - KASUMI decryption …………………………………………………… 31

Figure 13 - 5G network architecture ……………………………………………….. 33

Figure 14 - Initiation phase of 5G AKA …………………………………………… 35

Figure 15 - EAP-AKA’ ……………………………………………………………… 37

Figure 16 - 5G AKA (EPS-AKA*) …………………………………………………. 38

Figure 17 - Authentication and Key Agreement stated in Prototype …………….. 51

v

TABLE OF CONTENTS

Abbreviations .. i

List of Figures ... iv

Introduction ... 1

1. Identification in Mobile Networks .. 4

2. History of Mobile Networks ... 8

2.1. First Generation (1G) ... 8

2.2. Second Generation (2G) ... 8

2.3. Third Generation (3G) ... 9

2.4. Fourth Generation (4G) ... 10

2.5. Fifth Generation (5G) .. 10

3. Security Issues in Mobile Networks .. 11

3.1. Security Issues in 4G .. 11

3.2. IMSI Catchers .. 12

4. Mobile Network Elements .. 15

4.1. Home Network (HN) ... 15

4.2. Serving Network (SN) .. 17

4.3. User Equipment (UE) ... 19

5. Authentication and Key Agreement (AKA) .. 21

5.1. GSM (2G) AKA .. 21

5.2. UMTS (3G) AKA .. 22

5.3. EPS (4G) AKA .. 24

6. KASUMI ... 26

6.1. Design of KASUMI ... 26

6.2. Key schedule .. 27

6.3. Functions ... 27

6.4. Encryption ... 30

6.5. Decryption ... 30

7. Structure of 5G ... 32

7.1. 5G Architecture ... 32

7.2. 5G AKA .. 33

8. Identity Privacy in 5G .. 39

vi

8.1. Public Key Approach ... 39

8.2. Pseudonym Approach .. 42

8.3. Comparison of Public Key and Pseudonym Approaches 43

9. Implemented Prototype .. 45

9.1. Illustration of Pseudonym Mechanism .. 45

9.2. User Interface ... 52

9.3. Further Comments on Prototype .. 53

9.4. Technical Details ... 55

Conclusions ... 58

References ... 60

APPENDIX A – Source Code .. 66

A.1. INPUT.java .. 66

A.2. UE.java... 67

A.3. SN.java ... 75

A.4. HN.java .. 78

A.5. METHODS.java ... 86

APPENDIX B – Output of Demonstration ... 128

APPENDIX C – Screenshots.. 136

APPENDIX D – Public demonstrations ... 145

1

Introduction

Throughout the history, mankind has been required to communicate with each

other. As time passed, social conditions have evolved, and communication methods

have changed from body language to speech, then to written materials. Along with

many devices that were used in history, telephone was invented in 1876 [1]. The

sound was transmitted across a wire from one telephone to another. In the beginning

of 1900s, radio was invented and became popular in a short span of time [1]. Finally,

in the end of 1970s, cell phone, which can be considered as composition of telephone

and radio, came to existence. With this invention, the history of mobile networks

begins and keeps growing continually.

Over the years, cell phones and mobile networks developed along with the

improvement of technology. In 1990, the number of mobile subscribers was counted

to be 11 million worldwide [2]. This number increased to 300 million by the end of

1998 and was expected to reach 500 million before 2000 [2]. The rapid growth in

mobile networks never stopped and is still increasing. Figure 1 displays the number

of the mobile subscribers in the world between the years 2010 and 2020 [3].

Comparing the estimation in 2000 and the number of 2010 in the Figure 1, the

Figure 1: Number of unique mobile subscribers worldwide from 2010 to 2020

(in billions) [3]

2

number of subscribers increased for 3 billion. Numbers for the years after 2015 are

the estimations of GSMA, made in 2015. So far, estimations for 2017 came true and

the number of mobile subscribers reached 5 billion. According to GSMA, “the 5

billion milestone means that more than two-thirds of the global population is now

connected to a mobile service” [4]. Gradually technology has become relatively

cheaper and significantly more accessible, so it made and will make more people to

benefit from this opportunity.

On the other hand, ever since the mankind managed to communicate, people

tried to intercept communication of others. Especially in history, messages that are

related to military issues were worth protecting. Therefore, cryptography was

conceived more than 4000 years ago [5]. Cryptography can be defined as “the science

or study of the techniques of secret writing, especially code and cipher systems” [6].

Invention of radio helped the improvement of cryptography, but it was still in use of

military. Then, cell phones were invented, and mobile networks started to evolve.

After 2G was introduced, digital communication era, which made encryption and

decryption possible, started.

Next, we take a closer look at how cryptography is applied in mobile networks.

Cryptography is first involved during the Authentication and Key Agreement (AKA)

phase between home network and the subscriber in mobile networks. In this way,

trusted subscriber can get service from a trusted network. However, attackers may

aim for the beginning of authentication. Subscribers need to provide their identifiers

in order to start authentication with the home network and attackers target for these

identifiers. This attack can be performed through IMSI catchers, which are fake base

stations and are explained in detail in Chapter 4. After the attacker gets the identifier

of the subscriber, then attacker can track the location of the subscriber as well.

Location tracking is only one of the consequences the IMSI catcher creates but is a

great threat against identity privacy. Every person has right to have the identity

privacy.

In this thesis, we discuss a method for avoiding the threat against identity

privacy. Since cryptography cannot be used during the identification process, this

method is necessary for protecting the identity privacy. This method, explained in

3

the thesis, is using pseudonyms that only home network can relate to real identifiers.

Moreover, in the thesis, a prototype is implemented to demonstrate one way of using

pseudonyms during AKA procedure.

This thesis starts with the background information of mobile networks and

continues with the recent developments along with an implemented prototype, which

demonstrates one way of improving identity privacy in mobile networks. Chapter 1

explains identifiers and process of identification in mobile networks. Then, brief

history of mobile networks is presented in Chapter 2. It becomes easy to see the

progress between different generations, by the help of this chapter. Chapter 3 explains

security issues in mobile networks. In this chapter, 4G network owns greater margin,

because 4G is the latest network in use and improving the controversial

circumstances in 4G would provide better service for 5G. The elements of mobile

networks are explained in Chapter 4. Each generation is an improved version of the

one before. Therefore, 4G network is explained briefly in this chapter. Chapter 5

shows the alteration and development of Authentication and Key Agreement

procedures in all networks since 2G. In order to provide security and privacy, AKA

has important place in mobile networks. Therefore, AKA needs to be improved and

optimized for 5G network. Chapter 6 gives the details about the KASUMI

cryptosystem. KASUMI is one of the block ciphers that can be used during AKA.

Moreover, KASUMI is preferred in the prototype for encrypting the pseudonyms. In

Chapter 7, developments in 5G, which are already accepted by 3GPP, are presented.

Then, Chapter 8 displays the comparison of two methods for ensuring identity

privacy in 5G. Chapter 9 includes the details of the implemented prototype for

demonstrating pseudonym approach in 5G to provide identity privacy. The prototype

is written in Java and the source codes can be found in Appendix A. Appendix B

presents the output after the prototype is executed. Appendix C includes some

screenshots from the demonstration. Finally, the demonstration is presented in demo

sessions of two conferences and the details of the public demonstrations are given in

Appendix D.

4

1. Identification in Mobile Networks

For mobile networks, identification of a user is an important process. With the

help of identification, mobile networks provide proper service to the right user.

Therefore, in order to understand this process, it is important to clarify some

concepts. A subscriber is the person who registered for the Subscriber Identity Module

(SIM). User can be anyone else who is given access to the phone. Hence, subscriber

and user are not necessarily the same person. However, in this thesis, we simplify

handling by not making a difference between subscriber and user. So, the term user

refers to subscriber as well.

Subscriber Identity Module is a smart card that stores the credentials and

necessary information of subscriber. However, the name of SIM changed into

Universal Subscriber Identity Module (USIM), after 3G is established. The USIM is

inserted in mobile devices, for example smartphones, and contributes in

authentication and key agreement as well.

International Mobile Subscriber Identity (IMSI) is permanent identity number with

a unique 15-digit number that corresponds to a USIM. The IMSI is composed of

three parts, such that 𝐼𝑀𝑆𝐼 = 𝑀𝐶𝐶 ∥ 𝑀𝑁𝐶 ∥ 𝑀𝑆𝐼𝑁. Mobile Country Code, MCC, has

3 digits that specifically identifies the home country of the USIM. Moreover, MNC,

Mobile Network Code, is 2-digits and describes the home network, in other words,

operator. Finally, rest of the 10 digits form MSIN, Mobile Subscriber Identification

Number, which is the specific number that is assigned to the subscriber [7]. For

example, 244 is MCC code for Finland and 12 is MNC code for DNA Oy [8], so

244121234567890 would be the IMSI, where 1234567890 is MSIN.

Each subscriber is assigned to a phone number as well as IMSI. The IMSI and

phone number have almost similar structure. Both start with country code and

operator code and continue with some amount of unique numbers. Next, we discuss

differences between IMSI and the phone number. First of all, IMSI is permanent for

the specific SIM card, it is not possible for user to change IMSI without changing the

SIM card. On the other hand, phone number is assigned to SIM and IMSI by the

5

operator. The phone number is used, e.g. by others to point to this particular user and

call him/her. The phone number is included in the phone catalogues etc. and also is

used for routing calls to right network. In practice, it is possible to change phone

number without changing the SIM card. Moreover, it is also possible to change SIM

card and IMSI, but to keep phone number same [9]. Another point relevant from the

privacy point of view is that user knows the phone number and shares this number

with necessary people, whereas IMSI is only known by the operator and the system

behind the network. Therefore, it is harder for anyone to associate a phone number

to corresponding IMSI number.

Temporary Mobile Subscriber Identity (TMSI) is temporary identity number, the

shorter replacement of IMSI. The local operator assigns the TMSI for each IMSI that

has arrived at their network. The local operator also sends the TMSI to the subscriber

over encrypted channel. The main differences between two identities are that IMSI

is global and permanent, whereas TMSI is local and temporary. The IMSI has to be

unique all over the world. It follows that, two different SIM cards cannot have same

IMSI. However, same TMSI can be used by different operators, even in the same

country. Since different operators have different radio frequencies, potentially

identical TMSIs from two different operators would not intercept each other.

In order to understand the functionality of MCC and MNC, let us assume that

a user A has subscription from a Finnish operator and travels to another country, for

example Turkey. User A tries to connect to a local operator. There should be an

agreement between the local operator and the home operator of the user, which is

called roaming agreement [10]. When the visited operator receives the IMSI number,

then it immediately understands that the home operator is in Finland and informs

the home operator that A is now in Turkey.

Figure 2 displays the relations between two users, home operators and visited

operators of the users. In this figure, it is assumed that both users have subscriptions

from operators in different countries and both users are visiting other countries. In

other words, all visited operators and home operators are in different countries. User

A connects to Visited Operator A’, because Home Operator of User A has a roaming

agreement with the Visited Operator A’. Likewise, User B connects to Visited

6

Operator B’, because Home Operator of User B has a roaming agreement with the

Visited Operator B’. In the Figure 2, Phone Number of User A and Phone Number

of User B are abbreviated to respectively PN_A and PN_B.

Figure 2 also shows the procedure with dashed lines, when User A uses PN_B

to initiate a call for User B. The process is explained in detail as:

1- User A sends a message containing the PN_B to the Visited Operator A’.

2- Visited Operator A’ reaches to the Home Operator of User B by using the

country and operator code in the phone number. Visited Operator A’ also

includes PN_A to inform who is trying to call User B.

3- Home Operator of User B knows that User B is in different country and

connected to Visited Operator B’. Therefore, Home Operator of User B

informs Visited Operator B’ about the call by sending the IMSI of User B

along with the PN_A.

4- When User B and Visited Operator B’ connected, Visited Operator B’

assigned TMSI for User B. So, Visited Operator B’ sends the call request by

sending TMSI of User B along with the PN_A.

User A and User B start talking after User B accept the call request from Visited

Operator B’.

5- After the call ends, Visited Operator A’ sends the charging information to

the Home Operator of User A.

6- After the call ends, Visited Operator B’ sends the charging information to the

Home Operator of User B.

7

Figure 2: Relations of elements during international call from User A to User B.

Figure 2 displays the general case, in which each element is in different country.

Many other special cases can also be derived from the Figure 2. For example, if the

User B is not in different country, then Visited Operator B’ would be same as Home

Operator of User B. Therefore there would not be a roaming agreement, Step 3 would

integrate with Step 4, and Step 6 would not exist. Another example can be given for

User A being in the same country of the Home Operator of User B, whereas Visited

Operator A’ and Home Operator of User B would be the same. In this case, Step 1

unites with Step 2 and Home Operator of User B charges Home Operator of User A.

There can be more examples for the special cases.

8

2. History of Mobile Networks

The history of mobile networks can be seen as an evolution story. The

difference between the technologies of first generation and what we have today is

massive. Ever since the first utilization of mobile services, it became so popular.

When it is assumed that enough people are willing to pay for better services, the

existing services are needed to be advanced. If the service level doesn’t increase after

some upgrades, then there is a necessity for changing the whole technology. When

in fact the whole technology changes, then the security can also be improved and

adapted to the new technology. On the way to enhance 5G networks, it is essential

to understand the progress and weaknesses of prior mobile networks.

2.1. First Generation (1G)

First Generation was introduced in the beginning of 1980s [11] and 1G used

analog techniques for speech services [13]. There were many complications in this

system. First, establishing communication was not possible between the countries

[13], which was not convenient. Then, capacity and service, provided by 1G, could

not suffice the need of people. Moreover, security of 1G was falling short, since

“voice calls were stored and played in radio towers” [12] and this situation gave

opportunity for eavesdroppers.

2.2. Second Generation (2G)

Second Generation was introduced at the beginning of 1990s. Unlike 1G, 2G

uses digital techniques, which means it was possible to start using cryptography for

providing better security. In addition, 2G provided higher efficiency and improved

data services [13]. Global System for Mobile Communications (GSM) was the first system

of 2G, which helped to standardize the properties. GSM was used for speech services,

9

Short Message System (SMS), and data rate up to 64 kbps [12]. Furthermore, GSM

“enabled seamless services throughout Europe by means of international roaming”

[13] and helped 2G to have precedence over 1G.

Thereafter, a new system, called General Packet Radio Services (GPRS), was

developed for 2G, which was also known as 2.5G. The main idea behind GPRS was

connecting to internet. Therefore, even though 2.5G had many properties same as

2G, GPRS had packet switching as an extra protocol. This new protocol speeded up

the connection time by sending and receiving IP packets, so that data rate could go

up to 144 kbps [12,13]. Along with the need of increasing the data rate more,

Enhanced Data rates in GSM Environment (EDGE) was developed. Development of

EDGE raised the data rate up to 384 kbps [13].

2.3. Third Generation (3G)

Towards the end of 1990s, around the same time when EDGE was founded,

3G was being developed. Moreover, throughout the world, there were various kinds

of standards for developing network. Therefore, a decision “to have a network which

provides services independent of the technology platform and whose network design

standards are same globally” [13] was made. Thus, every country around the world

would work collaboratively. For this aim, an organization with name 3rd Generation

Partnership Project (3GPP) was founded.

Thereupon, 3G extended the transmission rate to 2 Mbps with the opportunity

of global roaming [12]. With 3G, voice quality was improved. In addition, several

features were adopted in 3G, such as video calls and broadband wireless data [13].

Improvements did not end with 3G, new features were added to existing system. High

Speed Packet Access (HSPA) and some other developments kept the data rate around

5-30 Mbps [12]. These new features built a bridge between 3G and 4G, which is why

inclusion of HSPA was also called 3.5G.

10

2.4. Fourth Generation (4G)

Long Term Evolution (LTE) was the successor of 3G, designed by 3GPP [14].

One of the important outcomes of LTE was that LTE had only packet switching, not

voice call. Therefore, LTE provided “better coverage with improved performance for

less cost” [12]. This was indeed the aim since the very beginning of mobile networks,

and yet LTE made it accessible.

After some number of upgrades of LTE, LTE-Advanced was meeting the

requirements for 4G, which were determined by ITU [15]. Beside the escalated data

rate, framework of 4G embodied differences compared to 3G. The object of this new

framework is “to accomplish new levels of user experience and multi-service capacity

by also integrating all the mobile technologies that exist such as GSM, GPRS, IMT-

2000, Wi-Fi, and Bluetooth” [13]. Here IMT stands for International Mobile

Communications and Wi-Fi stands for Wireless Fidelity. This unity of the services would

make it easier to reach higher data rates with less expenses. Moreover, 4G is still

developed and will be until 5G completely settles.

2.5. Fifth Generation (5G)

By the time of late 2017 and early 2018, 5G is not in use and still under

construction. Developers have great expectations on 5G. 3GPP and ITU are

planning to release the specification of 5G towards the end of 2019. However, by

some commercial means, release date can be moved to earlier time, such as 2018

[16]. On the other hand, there are already test trials that are been conducted. For

example, one of the trial was completed by Samsung and SK Telecom in Suwon,

South Korea, in June of 2017. They have achieved “speeds over 1 Gbps and low

latency of 1.2 millisecond” [17]. These are promising results, since 5G aims for higher

data rate and lower end-to-end latency. Furthermore, faster broadband, higher

capacity, higher responsive connectivity, and reduced cost are also goals of 5G [12,

16].

11

3. Security Issues in Mobile Networks

Early generations of mobile networks had serious security vulnerabilities. As

stated in Chapter 2.1, First Generation was not only open to eavesdropping, but it

was also possible to intercept the information and clone the mobile phones. In fact,

2G started using Authentication and Key Agreement (AKA), which was achieved by

challenge and response technique and increased its security level comparing to 1G.

However, 2G stayed secure only one-way, because User Equipment (UE) could not

authenticate the Serving Network (SN), while SN could authenticate UE. Therefore,

2G was still vulnerable to false network attacks, in other words, fake networks that

pretends to be real. Some of the false network attacks are eavesdropping, identity

spoofing, man-in-the-middle. With 3G, AKA was changed into mutual AKA, where

both UE and SN can authenticate each other. In addition, sequence number was

introduced to make sure that Home Network (HN) and UE were synchronized, so that

an attacker cannot try to attempt connecting with former information of UE. This

solution was also risky, because with a possible Denial of Service (DoS) attack, the

synchronization might be lost and disturb the connection [18]. These and some other

vulnerabilities obliged developers to solve all the problems.

3.1. Security Issues in 4G

Expectations from 4G were comparatively high. Other than higher data rates

with less cost, it should be unobstructed under attacks or meet Quality of Service (QoS)

standards without a problem [18]. On the other hand, 3GPP required many security

objectives for 4G. The main purpose of objectives is providing a secure channel for

network elements to communicate with each other without any obstruction.

However, vulnerabilities in 4G were remarked either soon after launching it or

were already known. Bikos and Sklavos listed some of the threats [20], one of the

threats is against user identity and privacy. In this case, the attacker gains access to

the UE, uses the services by his own purposes, and manipulates the identity

12

information so that the real user becomes locked out of its own UE. If the attacker

does not confiscate the UE, he can obtain the identity details such as IMSI. From the

connection between IP address and IMSI, location tracking of the user can be an

issue, which is a significant problem for privacy. Another threat is against SN. The

attacks to SN can be done both physically and remotely [20]. UEs tend to connect to

any base station around them with higher signaling frequency. Under these

circumstances, UE would connect to compromised but stronger base station, thereby

hand over its identity and security to attacker.

Denial of Service (DoS) attacks may create serious problems for both UE and

SN. There are at least three types of DoS attacks. The first one aims UE, where the

attacker sends a signal to UE with the name of SN. This may cause SN to become

confused and UE to lose the service. Another type of DoS attack arises because of a

feature of UE, gained with 4G, which is “in LTE, the UE is allowed to stay in active

mode, but turn off its radio transceiver to save power consumption. During

discontinuous reception period, the UE is still allowed to transmit packets because

the UE may have urgent traffic to send” [21]. Hence, the attacker can trigger UE to

send packets to the other UEs and cause a DoS attack. The third type imitates the

real UE and sends fake buffer reports to SN. Consequently, SN assumes that it deals

with enough amount of workload and rejects the connection requests of any new UEs

[21]. There are many other threats that are not mentioned here, but they all have

different methods with similar aims: defrauding the property, security, and privacy

of the users.

3.2. IMSI Catchers

In 4G, UE sends its identity details, in other words IMSI, to SN via

unencrypted channel. Exposing IMSI provides opportunity for eavesdropping and

man-in-the-middle attacks [19], which would cause the attacker to capture IMSI of

the user. This could create a threat against the user, because “IMSI is used by the

mobile network to identify and locate subscribers to connect incoming calls and

13

more” [22]. Therefore, captured IMSIs are great menace against identity privacy and

may create a danger for location tracking.

The IMSI is valuable information for the attackers, therefore an attack device

called ‘IMSI catcher’ has been developed already against 2G. IMSI catcher is the

general name for a device that is used for eavesdropping and location tracking [22].

These devices aim to catch the IMSI from the wireless traffic between UE and SN

[23]. Moreover, if there are more than one SN around the UE, UE tends to connect

to the one with higher signal strength [24]. Especially in the beginning of AKA, there

is no way for the UE to differentiate between the real SN and the fake ones. The UE

has to share its IMSI with SN in order to start authentication. Therefore, IMSI

catchers try to exploit this feature.

There are two types of IMSI catchers, passive and active. Passive IMSI catcher

only gathers the information and identifies the IMSIs from the wireless traffic of the

region. Passive one is only able to observe the specific neighborhood and detect IMSI

if the UE tries to connect to SN [23]. Therefore, it is only possible to track the UE

when the UE decides to send its IMSI. This typically happens only when the UE

connects to the SN the first time. Another reason for UE to send its IMSI is when

something has gone wrong in the network or in the UE. An active IMSI catcher is

more compelling on getting IMSIs from the UEs. Active IMSI catcher is a “fake base

station which acts as a preferred base station in terms of signal strength” [23]. Since

there is not a chance for UE to authenticate the base station before it tries to connect,

UE connects to the fake base station without a doubt. Moreover, when the IMSI

catcher requests for identity, UE reveals its IMSI according to the standard process.

IMSI catchers are not newly developed devices that start to threaten security of

people. The danger of IMSI catchers was already known by 3GPP during the

development of 3G, because the history of IMSI catchers goes back to at least 1993

[25, 26]. This threat was not taken into consideration before, because it was difficult

and expensive to build such device. One of the earlier IMSI catcher devices, called

Stingray, was created in 2001 and was sold for $68,500, and the improved version of

it came out six years later with a price of $135,000 [27]. Moreover, “only a few

manufacturers existed, and the economic barrier limited the device’s use mostly to

14

governmental agencies” [26]. However, building IMSI catcher became cheaper

recently. In 2010, an IMSI catcher was built for $1,500, then with the introduction of

femtocells the cost of building a fake base station went even lower [23]. Obtaining

cheap IMSI catchers enabled anyone, even other than government agencies, to use

such devices for their own wills.

There are benefits of using active IMSI catchers as well as the harms. IMSI

catchers can be used by a diversified range of people. Besides government and

attackers, IMSI catchers are preferred by some companies for commercial issues [7].

By tracking movements of a person, a lot can be revealed about routines and

preferences of people. Passive IMSI catchers help personalize advertisements for

specific customers. This cannot be considered dangerous, but it is a serious violation

of privacy. Benefits of location tracking are undeniable, if IMSI catchers are used

correctly. For example, “law enforcement teams in the U.S. have used the technology

to locate people of interest, to find equipment used in the commission of crimes” [28].

Thus, there is a chance to prevent terrorist attacks, or any kinds of physical assaults

by using IMSI catchers. On the other hand, if the attackers aim for hurting people,

they can wait for the target’s arrival [23] or for the place to get crowded by observing

through IMSI catcher and attack whenever the target area is full. In this case, the

damages of IMSI catchers can be more crucial than the benefits, which makes it vital

to look for readjustments of the current conditions.

15

4. Mobile Network Elements

Ever since the foundation of 1G, developments in mobile networks are

sustained continuously and will continue developing. Despite the preservation of the

basic overall structure, there have been some adjustments. Fourth Generation was

using the Evolved Packet System (EPS) security architecture. Prior networks provided

a basis for EPS, but some of the elements were improved or replaced. Necessary

adjustments helped EPS to work with legacy networks, too. That is why, it is

important to learn preceding networks very well, in order to break a new ground for

new network. In this case, it is essential to learn about 4G and EPS so that 5G can

be built on. In this chapter, only the elements of the network that take part in AKA

will be explained. Figure 3 displays mentioned elements and their communication

order.

Figure 3: Mobile Network Security Architecture

4.1. Home Network (HN)

Home network is the operator, which provides service for user according to

user’s subscription. Authentication Center (AuC) and Home Subscriber Server (HSS)

are main two components of HN that take part in AKA.

16

Authentication Center (AuC)

Authentication Center cooperates with HSS and generates necessary

components for AKA. Later, HSS gathers these components and composes an

Authentication Vector (AV). Authentication vector includes necessary information that

is needed to be sent to UE, so that UE can successfully perform AKA. First, AuC

begins with creating a sequence number (SQN) suitable for the UE. The main

requirement for SQN is that it has not been used yet for this UE, but it should also

be in some interval that helps UE and HSS to stay synchronized with each other.

Then, AuC creates a random bit strings, called RAND, to use in the authentication

challenges. After obtaining SQN and RAND, then AuC computes some values such

as Message Authentication Code (MAC), Expected Response (XRES), Cipher Key (CK),

Integrity Key (IK), Anonymity Key (AK), and Authentication Token (AUTN) by using

SQN and RAND with secret key K [29]. These new computed values have particular

tasks during AKA. For example, MAC helps UE to confirm that the message is sent

from an authentic sender and not changed during communication. Then, XRES is

for SN to authenticate UE, by comparing it to the parameter RES that UE computes

and sends later in the protocol. This works because the correct RES can be calculated

only by a correct UE that also has the same secret key K. Moreover, CK and IK are

used by SN and UE for deriving further keys, starting from a key called KASME, so

that they would not need to use a key more than once. Finally, AK is used for keeping

SQN secret during the communication. The cryptographic MILENAGE functions

are used for computing MAC, XRES, CK, IK, and AK [30]. Authentication Token

includes necessary information that UE needs for participating and completing the

authentication and is calculated as 𝐴𝑈𝑇𝑁 = (𝑆𝑄𝑁 ⊕ 𝐴𝐾) ∥ 𝐴𝑀𝐹 ∥ 𝑀𝐴𝐶, where

AMF is Authentication Management Field and used for revealing some specific

information about other parts in AV or determining the time period of the key [29].

In the end, AuC forwards these parameters to HSS.

17

Home Subscriber Server (HSS)

Home Subscriber Server stores the subscription details of all subscribers in a

database, such as “user identification, numbering and addressing information,

security information, location information, and profile information” [31]. These

details need to be preserved by HSS in order to ensure authentication and

authorization. Moreover, HSS keeps track on Mobility Management Entity (MME) and

makes sure that they are valid, while UEs are attaching them [32]. On the other hand,

HSS trusts MME that MME would perform authentication honestly with short dated

information, which comes in AV; but does not trust with the long-term credentials

[23].

Home Subscriber Server is in interaction with AuC. When HSS needs to create

an AV, AuC generates necessary components for HSS. Then, HSS computes KASME

with the CK and IK, along with SQN [29]. Finally, HSS prepares

 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥ 𝑋𝑅𝐸𝑆 ∥ 𝐾_𝐴𝑆𝑀𝐸 ∥ 𝐴𝑈𝑇𝑁 and sends it to MME.

4.2. Serving Network (SN)

Serving network “provides the actual connectivity and mobility services” [23],

by acting as a bridge between UE and HN. In roaming cases, SN can belong to

different operator than the operator of the user. The two main components of SN,

which take role in AKA, are Evolved NodeB (eNB) and Mobile Management Entity

(MME).

Evolved NodeB (eNB)

Evolved NodeB is the name of base station in LTE [33]. Base station is a

communication station, which receives and sends signals between the user and the

rest of the network elements. The collection of eNBs is called Evolved-Universal

Terrestrial Radio Access Network (E-UTRAN) and E-UTRAN manages the

18

communication between UE and rest of the network. Both UE and MME send the

requests and responses to eNB, then eNB forwards them back to MME and UE. On

the other hand, eNBs in E-UTRAN have connections between each other, as well as

to MME and to Serving Gateway (S-GW)1. The connection between eNBs with MME

and S-GWs are shown in Figure 4.

 Figure 4: E-UTRAN architecture

Each eNB follows some protocols, which are collectively called Access Stratum

(AS), during its communication with UE [33]. There are many functions that E-

UTRAN is responsible for. First function is Radio Resource Management, which

takes care of everything about radio bearers, such as “radio bearer control, radio

admission control, radio mobility control, scheduling and dynamic allocation of

resources to UEs in both uplink and downlink” [32]. Another function is Header

Compression, and it compresses the IP packet header to increase efficiency of the

network. The function that satisfies security requirements, sends all the data as

encrypted [32]. The important point is that all these functions are embedded in eNBs,

because each eNB can respond with the function that are restored in themselves. So,

this gathering of the functions in eNB aims for decreasing latency, increasing

1 S-GW tries to interwork with legacy networks, acts like the administrator of the visiting network in

terms of billing the UE and supports lawful interception [32].

19

efficiency, providing high-availability, reducing the cost, and more importantly

avoiding single point failures [32]. Because, all the eNBs possess the functions and

can communicate with each other, they can share the information in case of a failure

of one single eNB.

Mobility Management Entity (MME)

The MME takes care of authenticating the UE and supports providing service

to the UE. When UE wants to connect to the network, MME requests authentication

vector from HSS. Then, HSS returns with AV, which is prepared for this specific UE

and this specific MME [29]. After obtaining AV, MME performs mutual

authentication with UE by using the elements of AV. If the authentication succeeds,

MME assigns TMSI to UE [32]. Later, UE uses TMSI instead of IMSI, when UE

needs to connect to the network. By this way, MME can provide faster service, since

MME already knows that UE is authenticated user.

As the main purpose, MME is responsible for tracking the location of UE on a

large scale [12]. MME provides the location information to HSS and HSS keeps it in

the database. If MME needs to check the location of UE, MME sends a message to

trigger eNBs in the area, where UE is supposed to be. So, all the eNBs page UE, and

UE replies to nearest one [32]. By the location of that base station, MME will be able

to refresh the location information of the UE.

4.3. User Equipment (UE)

User equipment is the combination of Universal Subscriber Identity Module

(USIM) and the Mobile Equipment (ME) together. User can connect to network

through UE.

20

Universal Subscriber Identity Module (USIM)

Universal Subscriber Identity Module is included in a smart card, which is

imbedded in a mobile device [23]. Important information that is necessary for

authentication is stored in USIM. For example, IMSI and secret key K are stored in

USIM. More generally, “the USIM contains all the operator-dependent data about

the subscriber, including the permanent security information” [14]. Moreover, USIM

also generates new keys from K by using Key Derivation Functions (KDF) and prepares

responses for authentication protocol [33]. Universal Subscriber Identity Module

takes an active role in generating new keys and responses, because secret information

can be kept safer when it is not shared with anything else, even not with the ME.

Mobile Equipment (ME)

Mobile Equipment is the communication device that has “the radio

functionality and all the protocols that are needed for communications with the

network” [14], smartphone is an example of ME. In order to use the services, USIM

is inserted in ME. Among other tasks, ME is responsible for sending and receiving

necessary information between USIM and SN, as well as responding when an eNB

is paging.

Apart from AKA, USIM has a separate authentication mechanism with ME.

In the beginning, USIM requests for a Personal Identification Number (PIN), which

only USIM and user knows. User needs to enter the PIN to ME to prove that the

User is the correspondent to the USIM. In addition, there can actually be another

PIN between the User and the ME. This PIN prevents anyone other than the

authentic User to use ME.

21

5. Authentication and Key Agreement (AKA)

All the elements in a network interact with each other in many ways while

providing and using service. During the interaction, they need to ensure that each

element is valid and trustable. Verifying the identity is called authentication. In

mobile networks, authentication consists of challenge response protocols [14].

5.1. GSM (2G) AKA

In GSM, UE consists of ME and SIM. Base Transceiver Station (BTS) and Mobile

Switching Center / Visitor Location Register (MSC/VLR) are the components of SN.

Home Location Register (HLR) and Authentication Center (AuC) form HN [14]. For

GSM, only authentication of user is examined, SN and HN are trusted parties.

For each subscriber, there exists a master key Ki and this is located in the SIM

of the user and in AuC. For providing security, Ki is never supposed to leave these

locations.

Authentication is primarily based on checking if the user has possession of the

specific Ki. Authentication process is summarized in Figure 5 and explained step by

step:

 UE wants to connect to the network by sending its IMSI (or TMSI) to SN.

 SN forwards the IMSI to HN.

 HN assigns random RAND for the IMSI, calculates XRES and Kc by using the

RAND and Ki. Then, HN returns (RAND, XRES, Kc) to SN.

 SN keeps XRES and Kc for itself and sends RAND to UE.

 UE calculates SRES and Kc. Then keeps Kc and sends SRES to SN.

 SN compares SRES and XRES, if they do not match, then connection request is

rejected. Otherwise, the authentication is completed. Then, SN assigns TMSI to UE

and sends it to UE after encrypting with Kc [14]. The Kc would be used for encrypting

all messages until the authentication is redone.

22

Figure 5: GSM AKA [14]

5.2. UMTS (3G) AKA

Principally, design of UMTS AKA relies on GSM AKA protocol, but with

improvements. For example, GSM AKA is not meant to be secure against the active

attacks from false base stations, because “such attacks, which would require the

attacker to effectively have their own base station, would be too expensive compared

to other methods of attacking GSM” [14]. As it is also mentioned in Chapter 3.2, it

was thought that only governmental departments could afford such devices.

However, 3G tried to reduce danger of false base stations and three new features were

added to 3G UMTS AKA: authentication of the network (in addition to

authenticating the user), generation of a key for integrity protection of signalling and

prevention of replay of authentication messages [14]. These three are the biggest

differences between GSM AKA and UMTS AKA.

Compared to GSM, in UE, SIM is replaced by USIM while ME remains under

the same name. Then, SN consists of VLR/SGSN (Serving GPRS Support Node) and

base stations, and HN is same as the HN in the GSM network.

As well as GSM AKA, there is also master key, Ki, which only USIM and AuC

can possess. In UMTS AKA, mutual authentication is used, which means that while

SN checks the identity of the user, user also checks if the SN is authorized by HN

[14]. Even if the mutual authentication does not stop fake base stations completely,

it would prevent serious outcomes.

23

Authentication process of UMTS is summarized in Figure 6 and explained step

by step:

 UE sends its IMSI or TMSI to VLR/SGSN (SN).

 SN sends authentication request for related IMSI to AuC in HN.

 AuC prepares RAND, AUTN, XRES, CK (Cipher Key), and IK (Integrity Key) for

requested IMSI, and sends it to SN.

 SN sends RAND and AUTN as authentication request to UE.

 USIM makes several calculations with Ki and RAND. First calculation, which is

for verifying that AV is authentically produced in AuC, is compared with a value in

AUTN. Then, USIM calculates RES, CK, and IK and sends RES back to SN.

 SN compares RES and XRES. If the results match, then authentication is

successful [14]. Later, SN assigns TMSI for the user, encrypts it with a key CK and

sends it to UE.

 After the authentication has been completed, all traffic between the UE and the

network is encrypted by the key CK, and integrity of all control traffic is protected by

the key IK.

 Figure 6: UMTS AKA [14]

24

5.3. EPS (4G) AKA

The EPS AKA is improved and reformed version of UMTS AKA. Therefore,

some of the features are same in UMTS AKA and EPS AKA, but there are also

differences. As network elements, MME in SN handles the roles of VLR/SGSN from

UMTS [14] and a base station in EPS is called eNodeB (eNB). For HN, AuC is same

as in UMTS, but HN has HSS instead of HLR. Moreover, UE does not have any

new parts in EPS comparing to UMTS, it has still USIM and ME.

The structure of IMSI is also the same in EPS as in UMTS and GSM. It consists

of MCC, MNC, and MSIN, which are explained in Chapter 1. Master key, K, is

stored in USIM and AuC, and is not supposed to be transferred to anywhere else.

The EPS names temporary user identities in a new way. Both GSM and UMTS were

using TMSI, but now EPS uses Globally Unique Temporary UE Identity (GUTI).

Globally Unique Temporary UE Identity is composed of two parts, Globally Unique

MME Identifier (GUMMEI) and M-TMSI [14], where GUMMEI uniquely proclaims

the MME that creates certain GUTI and GUMMEI consists of MCC, MNC, and

MME Identifier, and M-TMSI is used to identify the UE that the GUTI is created

for. Essentially, M-TMSI corresponds to the TMSI.

Authentication process of EPS AKA starts with the Identity Request, from MME

to UE [34] and continues as:

 UE sends its IMSI or GUTI to MME. The UE captures SNid of MME before

sending its identifier to MME.

 MME sends an Authentication Information Request with IMSI and its SNid to HN

[35].

 AuC generates the elements of an authentication vector, RAND, XRES, CK, IK,

and AUTN. Another difference of EPS AKA compared to UMTS AKA is with

AMF, which is a component of AUTN. AMF is modified to store information about

the AV. The reason for this change is that “it must be possible to use UMTS AKA

and EPS AKA simultaneously in a single operator’s network, and even in a single

HLR/HSS and with the same AuC” [14]. So, by modifying a specific bit in AMF,

25

UE can understand if the AV is suitable for EPS or for legacy services. Then, for the

EPS case, HSS obtains the components from AuC and computes KASME such as

𝐾𝐴𝑆𝑀𝐸 = 𝐾𝐷𝐹(𝐶𝐾, 𝐼𝐾, 𝑆𝑁𝑖𝑑, 𝑆𝑄𝑁 ⊕ 𝐴𝐾). KDF is a key derivation function, which is

explained in 3GPP TS 33.401 [35]. After KASME is ready, HSS sends authentication

vector, 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥ 𝑋𝑅𝐸𝑆 ∥ 𝐾𝐴𝑆𝑀𝐸 ∥ 𝐴𝑈𝑇𝑁, to MME as Authentication Information

Response.

 MME keeps XRES and KASME for itself, then sends RAND and AUTN to UE as

User Authentication Request.

 When UE receives AV, USIM immediately checks the freshness of the AV by

controlling if the SQN is in acceptable range. To do this, USIM computes AK and

reveals SQN. If the freshness is verified, then the authenticity of the sender is checked.

USIM computes XMAC itself, and compares XMAC with MAC value in AV. If the

authenticity is also verified, then USIM computes CK, IK, and RES. Then, ME sends

RES to MME as User Authentication Response and computes KASME from CK, IK, and

SNid. The ME stores the new key.

 MME compares RES with XRES. If they match, then authentication is successful.

MME creates GUTI for UE, encrypts it from a key, which is derived from KASME and

sends it to UE.

Authentication and key agreement process in EPS is summarized and shown

in Figure 7.

 Figure 7: EPS AKA [14]

26

6. KASUMI

KASUMI is a symmetric key block cipher, which was designed for security

architecture of 3GPP systems. KASUMI was accepted as a standard cipher in Europe

for mobile phones in the beginning of 2000s [36]. Moreover, KASUMI was restricted

to be used in encryption and integrity protection for the keys that are used in 3G and

LTE.

KASUMI accepts 64-bit input and produces 64-bit output by using 128-bit key.

This block cipher consists of 8 rounds. In each round, specific functions, which are

defined for KASUMI, are executed.

Since KASUMI is the preference of 3GPP and each day users tend to use

mobile technology more, this block cipher has liability for the security. There are

many cryptanalyses for KASUMI, but until now there are no successful practical

attacks. There are publications of attacks to 6 rounds of KASUMI, which would still

leave 2 more rounds for security. Jia et al. performed impossible differential attack

on the 7 rounds of 8 rounds. For this attack 2115 encryptions are required [37]. Even

though the success of the attack is possible, it would require tremendous amount of

time. On the other hand, Biham et al. tried another attack, called the related-key

rectangle attack, on the full rounds of KASUMI. It requires 276 encryptions [38]. This

new attack is more compelling than the previous one, but still it is not fast enough.

6.1. Design of KASUMI

Before encryption, key scheduling is configured. In this phase, different keys

are derived from the main key. Thereby, in each round of 8, different keys are used.

After the key scheduling is completed, encryption starts. Both encryption and

decryption are composed of various functions, which are explained below by

following the rules of TS 35.202 [39].

27

6.2. Key schedule

For KASUMI block cipher, 128-bit key is used. In each round, each

subfunction uses different keys. These keys are derived from the main 128-bit key, 𝐾.

First, 128-bit key is divided into 8 subkeys, each containing 16 bits:

𝐾 = 𝐾1 ∥ 𝐾2 ∥ 𝐾3 ∥ 𝐾4 ∥ 𝐾5 ∥ 𝐾6 ∥ 𝐾7 ∥ 𝐾8 .

Then, for each integer j, 1 ≤ 𝑗 ≤ 8 , 𝐾𝑗′ is computed such as 𝐾𝑗′ = 𝐾𝑗 ⨁ 𝐶𝑗 ,

where 𝐶𝑗 is the constant value. These constant values are defined in the Table 2 in

TS 35.202 [39]. For each integer j, 1 ≤ 𝑗 ≤ 8, 𝐾𝑗′ is used during the derivation of

round subkeys.

For the functions 𝐹𝐿, 𝐹𝑂, and 𝐹𝐼, the keys 𝐾𝐿𝑖, 𝐾𝑂𝑖, and 𝐾𝐼𝑖 are derived

respectively, where 𝑖 represents the round of the cipher. The Table 1 in TS 35.202

[39] shows how to create subkeys for each round.

6.3. Functions

Function FL

Function 𝐹𝐿 takes 32-bit input 𝐼 and produces 32-

bit output 𝑂. The 32-bit subkey 𝐾𝐿𝑖 is divided into two

pieces of 16 bits, such that 𝐾𝐿𝑖 = 𝐾𝐿𝑖,1 ∥ 𝐾𝐿𝑖,2.

32-bit input is also divided into two pieces of 16

bits, such that 𝐼 = 𝐿 ∥ 𝑅.

Then, the computations are,

 𝑅′ = 𝑅 ⊕ 𝑅𝑂𝐿(𝐿 ∧ 𝐾𝐿𝑖,1) and

 𝐿′ = 𝐿 ⊕ 𝑅𝑂𝐿(𝑅′ ∨ 𝐾𝐿𝑖,2) ,

where 𝑅𝑂𝐿 is circular left rotation by one bit. Finally, 𝑂 = 𝐿′ ∥ 𝑅′.

Figure 8: FL Function [39]

28

Function FO

Function 𝐹𝑂 accepts 32-bit input 𝐼 and produces 32-

bit output 𝑂. Two subkeys of 48 bits are used in this

function, 𝐾𝑂𝑖 and 𝐾𝐼𝑖. All of 𝐼, 𝐾𝑂𝑖, and 𝐾𝐼𝑖 are divided into

pieces of 16 bits such as, 𝐼 = 𝐿0 ∥ 𝑅0, 𝐾𝑂𝑖 = 𝐾𝑂𝑖,1 ∥ 𝐾𝑂𝑖,2 ∥

𝐾𝑂𝑖,3 , and 𝐾𝐼𝑖 = 𝐾𝐼𝑖,1 ∥ 𝐾𝐼𝑖,2 ∥ 𝐾𝐼𝑖,3.

Then, for each integer j, 1 ≤ 𝑗 ≤ 3 , 𝑅𝑗 and 𝐿𝑗 is

calculated as,

𝑅𝑗 = 𝐹𝐼(𝐿𝑗−1 ⊕ 𝐾𝑂𝑖,𝑗 , 𝐾𝐼𝑖,𝑗) ⊕ 𝑅𝑗−1

𝐿𝑗 = 𝑅𝑗−1 .

Finally, the output is 𝑂 = 𝐿3 ∥ 𝑅3.

Function FI

Function 𝐹𝐼 takes 16-bit input 𝐼 and gives 16-

bit output 𝑂 in the end. The subkey 𝐾𝑖,𝑗 has 16 bits.

Both 𝐼 and 𝐾𝑖,𝑗 are divided into two pieces of 9 bits

and 7 bits:

𝐼 = 𝐿0 ∥ 𝑅0 , where 𝐿0 has 9 bits and 𝑅0 has 7 bits,

and 𝐾𝐼𝑖,𝑗 = 𝐾𝐼𝑖,𝑗,1 ∥ 𝐾𝐼𝑖,𝑗,2 , where 𝐾𝐼𝑖,𝑗,1 has 7 bits

and 𝐾𝐼𝑖,𝑗,2 has 9 bits.

In this function, there are two S-boxes, 𝑆7 and

𝑆9. TS 35.202 [39] explains the working principle of

these boxes. Moreover, two other functions are also

used for 𝐹𝐼. One of the functions is 𝑍𝐸, which

converts 7-bit string into 9-bit string by adding zeroes

to the left. The other function is 𝑇𝑅 and it converts

Figure 9: FO Function [39]

Figure 10: FI Function [39]

29

9-bit string to 7-bit string by deleting 2 values on the left end.

Then, the operations of function 𝐹𝐼 are,

𝐿1 = 𝑅0 𝑅1 = 𝑆9[𝐿0] ⊕ 𝑍𝐸(𝑅0)

𝐿2 = 𝑅1 ⊕ 𝐾𝐼𝑖,𝑗,2 𝑅2 = 𝑆7[𝐿1] ⊕ 𝑇𝑅(𝑅1) ⊕ 𝐾𝐼𝑖,𝑗,1

𝐿3 = 𝑅2 𝑅3 = 𝑆9[𝐿2] ⊕ 𝑍𝐸(𝑅2)

𝐿4 = 𝑆7(𝐿3) ⊕ 𝑇𝑅(𝑅3) 𝑅4 = 𝑅3

Therefore, the output becomes 𝑂 = 𝐿4 ∥ 𝑅4.

Function fi

Finally, function 𝑓𝑖 combines former functions and makes them ready for

encryption. Function 𝑓𝑖 accepts 32-bit input 𝐼 and produces 32-bit output 𝑂, by using

subkeys 𝐾𝐿𝑖, 𝐾𝑂𝑖, and 𝐾𝐼𝑖.

When the round 𝑖 is odd number, then

𝑓𝑖(𝐼, 𝐾𝑖) = 𝐹𝑂(𝐹𝐿(𝐼, 𝐾𝐿𝑖), 𝐾𝑂𝑖, 𝐾𝐼𝑖)

When the round 𝑖 is even number, then

𝑓𝑖(𝐼, 𝐾𝑖) = 𝐹𝐿(𝐹𝑂(𝐼, 𝐾𝑂𝑖, 𝐾𝐼𝑖), 𝐾𝐿𝑖)

30

6.4. Encryption

For the encryption, input 𝐼 of 64-bit and key 𝐾 of 128-bit are required. In the

end, the ciphertext 𝐶 will be also 64-bit.

Before starting the encryption, 𝐼 is divided into two pieces of 32-bit values, such

as 𝐼 = 𝐿0 ∥ 𝑅0. Moreover, 𝐾 is also processed in key schedule, so a triplet

𝐾𝑖 = (𝐾𝐿𝑖, 𝐾𝑂𝑖, 𝐾𝐼𝑖), is obtained.

Encryption starts as,

𝑅𝑖 = 𝐿𝑖−1

𝐿𝑖 = 𝑅𝑖−1 ⊕ 𝑓𝑖(𝐿𝑖−1, 𝐾𝑖) .

Finally, 𝐾𝐴𝑆𝑈𝑀𝐼(𝐼, 𝐾) = 𝐿8 ∥ 𝑅8.

6.5. Decryption

Decryption of KASUMI starts in a similar way like encryption. The 64-bit

ciphertext 𝐶 and key 𝐾 are accepted as inputs. In the beginning, 𝐶 = 𝐿8 ∥ 𝑅8 and 𝐾𝐼𝑖

are ready for decryption.

Decryptions starts as,

𝐿𝑖−1 = 𝑅𝑖

𝑅𝑖−1 = 𝐿𝑖 ⊕ 𝑓𝑖(𝐿𝑖−1, 𝐾𝑖) .

In the end, 𝐿0 ∥ 𝑅0 is the plaintext.

31

Figure 11, on the left, describes KASUMI encryption; whereas Figure 12, on

the right, describes KASUMI decryption [39].

32

7. Structure of 5G

In spring 2018, Phase 1 of 5G development is coming to an end, but refinement

process is still continuing. As well as the other protocols of 5G, 3GPP agreed on

certain concepts of 5G AKA for Phase 1. Even though 5G AKA is open for

improvements for further phases, the specifics about 5G AKA in Phase 1 are

presented in 3GPP TS 33.501 [40]. It is important to learn about the architecture and

AKA procedure in Phase 1 of 5G to continue improving the system.

7.1. 5G Architecture

There are many differences in 5G compared to the earlier generations and there

are new elements introduced to the network. In the paper of Zhang et al., some of

the changes in 5G architecture are explained, whereas in this section, only the

separation of user plane from control plane is explained [41].

After user plane is taken apart from the control plane, UE lies in user plane

along with base station, User Plane Function (UPF) and Data Network (DN). On

the other hand, UE and base station are also in control plane where mobility and

session management are divided into two functions. These are Core Access and

Management Function (AMF) and Session Management Function (SMF). Other than

AMF and SMF, there are new elements in 5G architecture, some of which are listed

as follows:

• Security Anchor Function (SEAF)

• Authentication Server Function (AUSF)

• Authentication Credential Repository and Processing Function (ARPF)

• Security Context Management Function (SCMF)

• Security Policy Control Function (SPCF) [41].

First, SEAF is adjoined with AMF and used for creating key to provide security

between UE and SN for the authentication. Another function that is adjoined with

33

AMF is SCMF, which extracts keys that are created in SEAF and derives into other

keys to participate in different areas of network. Then, ARPF is adjoined with

Unified Data Management (UDM) and keeps credentials related to security, like the

key for AKA. Moreover, AUSF interacts between SEAF and ARPF, concludes the

requests from SEAF and collaborates with ARPF. In the end, SPCF provides security

policies for all the elements of the network [41]. All the network elements of 5G and

the connection between them are displayed in Figure 13.

Figure 13: 5G network architecture [41].

7.2. 5G AKA

Even though the topic is open for further improvements, 3GPP presented the

specifics about 5G AKA in Phase 1 in 3GPP TS 33.501 [40]. All the information in

this Chapter (7.2) is adapted from this specification, unless stated otherwise.

In 5G, names of identifiers are different comparing to the earlier generations.

One of the new identifier is Subscription Permanent Identifier (SUPI). The SUPI is the

combination of IMSI and Network Access Identifier (NAI). Since IMSI is required in

3GPP legacy networks, SUPI is generally preferred to be same as IMSI for 3GPP

networks. On the other hand, introducing NAI to SUPI will help SUPI to be used in

non-3GPP networks as well, which do not require IMSI [43]. Another identifier is

Subscription Concealed Identifier (SUCI) and SUCI is concealed version of IMSI-like

SUPI. In other words, MSIN part of SUCI is concealed, while the other parts are in

34

plaintext. Still another identifier is 5G Globally Unique Temporary Identifier (5G-

GUTI), which is assigned to UE by AMF and can be used for both 3GPP and non-

3GPP access. Moreover, 5G-GUTI is composed of two components: GUAMI

(Globally Unique AMF ID) and 5G-TMSI. Along with some codes, which defines

the identity of AMF, GUAMI includes MCC and MNC, and 5G-TMSI is the same

as TMSI, which identifies UE specifically to one AMF [43].

There are two types of AKA in 5G, one is EAP-AKA’ and the other is 5G AKA

(for the latter, also the term EPS-AKA* is used) [44]. Selection between the types of

AKA is left up to the operators. Both AKA processes start with same initiation phase,

then continue according to the selected type. The main idea of authentication and

key agreement is same as earlier networks, like 3G and 4G. However, some

improvements are applied to 5G AKA to provide more secure environment.

In the result of the authentication and key agreement procedure, the end-

product is the key called KSEAF. The importance of KSEAF lies behind the fact that SNid

is used during the calculation of KSEAF. In other words, KSEAF specifically displays the

SN that UE is connecting to. Thus, fake or unauthorized SNs would not be able to

pretend as they are legitimate. Therefore, this feature gives UE a chance to

authenticate SN.

Initiation:

Initiation of AKA is the same for both types. This process is summarized in

Figure 14 and explained:

 UE starts authentication by sending its SUCI or 5G-GUTI to SEAF in SN. In

some cases, SEAF can force UE to start the authentication.

 SEAF receives the identifier of UE. So, SEAF should send ‘5G Authentication

Initiation Request’ (5G-AIR) to AUSF. If the identifier is a valid 5G-GUTI, then it

means that SEAF authenticated UE before. So, SEAF places SUPI as identifier in

5G-AIR. On the other hand, if the identifier is SUCI, then SEAF puts SUCI to 5G-

AIR. In 5G-AIR, the identifier of UE, an indication that shows if the connection is

35

for 3GPP or non-3GPP access2, and the SN name are included. Moreover, SN name

is determined with the concatenation of 5G and SNid. Hence, SEAF sends 5G-AIR

to AUSF.

 AUSF receives the ‘5G Authentication Initiation Request’ and directly checks if

SEAF is entitled to send authentication request. If SEAF is valid, then AUSF

prepares ‘Authentication Information Request’ (AIR) for UDM. Authentication

Information Request includes SUCI or SUPI, depending on the 5G-AIR content, SN

name, an indication that shows if the connection is for 3GPP or non-3GPP access,

and the number of AVs that are requested. AUSF sends AIR to UDM.

 UDM receives AIR from AUSF. First of all, if the identifier is SUCI, then AUSF

gets the SUPI out of concealed identity SUCI. After getting SUPI, the UDM decides

which AKA type is going to be used. This choice is made “based on the subscription

data and the access network type, 3GPP access or non-3GPP access” [40].

Then, AKA continues with either EAP-AKA’ or EPS AKA*. While EAP-

AKA’ can be chosen for both 3GPP access and non-3GPP access, EPS AKA* can

only be chosen for 3GPP access [40].

Figure 14: Initiation phase of 5G AKA [40]

2 3GPP access is when the protocols are determined by 3GPP, such as GSM, 3G, LTE, and 5G.

Non-3GPP access is the other connections like WIFI, cable, ethernet.

36

EAP-AKA’

After the authentication method is specified and chosen as EAP-AKA’:

 UDM generates AV. UDM modifies the separation bit in AMF according to their

choice of AKA procedure and computes CK’ and IK’, as they are specified in TS

33.501 [40]. Then, authentication vector becomes ready as

𝐴𝑉 = (𝑅𝐴𝑁𝐷, 𝐴𝑈𝑇𝑁, 𝑋𝑅𝐸𝑆, 𝐶𝐾’, 𝐼𝐾’). Finally, UDM sends AV in ‘Authentication

Information Response’ to AUSF.

 AUSF receives the AV, forwards it to SEAF as EAP-Request/AKA’-Challenge in

the message, ‘5G Authentication Initiation Answer’.

 SEAF is trusted to send the EAP-Request/AKA’-Challenge without intercepting

the content. So SEAF sends it in ‘Authentication Request’ message to UE.

 UE receives ‘Authentication Request’ with EAP-Request/AKA’-Challenge. At

this step, UE verifies the message and makes necessary calculations. Then, prepares

and sends ‘Authentication Response’ with EAP-Response/AKA’-Challenge to

SEAF.

 SEAF receives EAP-Response/AKA’-Challenge transfers it directly to AUSF

without intercepting.

 AUSF receives EAP-Response/AKA’-Challenge and verifies it. If the verification

is successful, AUSF creates KSEAF from KAUSF. Moreover, AUSF prepares EAP-

Success message. Then, AUSF sends EAP-Success message and KSEAF to SEAF. If

SEAF sent SUCI in the initiation part, then AUSF also sends SUPI to SEAF.

 SEAF receives EAP-Success messages along with KSEAF and, as occasion requires,

SUPI. Then, SEAF forwards EAP-Success message to UE.

 After receiving EAP-Success message, UE computes KSEAF after computing KAUSF,

similarly as AUSF computed these keys.

Figure 15 summarizes the communication between the elements during EAP-

AKA’.

37

 Figure 15: EAP-AKA’ [40]

5G AKA (EPS-AKA*)

After the authentication method is specified and chosen as 5G AKA,

 UDM generates 5G HE AV (5G Home Environment Authentication Vector). To

generate 5G HE AV, UDM first modifies AMF’s separation bit as necessary. Then,

UDM computes KAUSF from CK, IK, 𝑆𝑄𝑁 ⊕ 𝐴𝐾, and SN’s name. Moreover, UDM

prepares XRES* by using CK, IK, XRES, RAND, and SN’s name. Thus, the 5G HE

AV is composed with 𝑅𝐴𝑁𝐷, 𝐴𝑈𝑇𝑁, 𝑋𝑅𝐸𝑆 ∗, 𝐾𝐴𝑈𝑆𝐹 and is sent to AUSF in

‘Authentication Information Response’ message.

 AUSF receives the 5G HE AV and prepares 5G AV from 5G HE AV. To do this,

first AUSF calculates hash of XRES* to create HXRES*. Besides, AUSF should store

XRES* until the time stamp expires. Then, AUSF computes KSEAF from KAUSF.

Finally, AUSF gathers the components of 5𝐺 𝐴𝑉 = 𝑅𝐴𝑁𝐷, 𝐴𝑈𝑇𝑁, 𝐻𝑋𝑅𝐸𝑆 ∗, 𝐾𝑆𝐸𝐴𝐹

and sends 5G AV in ‘5G Authentication Initiation Answer’ to SEAF. If SEAF sent

SUCI in the initiation part, then AUSF sends also SUPI of UE to SEAF.

 SEAF receives 5G AV and sends RAND and AUTN in ‘Authentication Request’

message to UE.

 UE receives the message and USIM in UE computes RES, CK, and IK. Then,

USIM sends them to ME and ME calculates RES* with respect to necessary

functions. Later, ME sends RES* in ‘Authentication Response’ message to SEAF

38

and UE calculates KAUSF and KSEAF, just the way UDM and AUSF calculated,

respectively.

 After receiving RES*, SEAF calculates hash of RES*, which is called HRES*.

Then, SEAF compares HRES* with HXRES*. If these two are the identical, then it

means that authentication is successful. SEAF sends RES* to AUSF in ‘5G

Authentication Confirmation’ message.

 AUSF receives RES* and compares it with XRES*, which was stored earlier. If

these two are identical same, AUSF understand that the authentication is done

successfully.

Figure 16 summarizes the communication between the elements during 5G

AKA (EPS-AKA*).

Figure 16: 5G AKA (EPS-AKA*) [40]

39

8. Identity Privacy in 5G

IMSI catchers are causing insecurity for the users and invading their identity

privacy, as explained in Chapter 3.2. Therefore, providing identity privacy became

one of the main issues for developing 5G. In order to provide identity privacy for the

users, the important point is to avoid exposing IMSI to untrusted parties. Some

different approaches are being discussed for executing AKA without endangering the

identity privacy. In this section, we focus on the case where SUPI equals IMSI. The

discussion could be generalized also to cover the case where SUPI equals NAI.

8.1. Public Key Approach

In public key approach, HN shares its public key with UEs, and keeps the

private key safe. Then, UE encrypts only the MSIN part of its IMSI and keeps MCC

and MNC as a plaintext. If MCC and MNC would also be encrypted, since none of

the components other than UE and HN have access to the private key of HN, it

would be impossible to transfer IMSI to a correct end. Therefore, UE identifies itself

to the network with the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐼𝑀𝑆𝐼 = 𝑀𝐶𝐶 ∥ 𝑀𝑁𝐶 ∥ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑀𝑆𝐼𝑁.

Afterwards, AV is prepared with using plaintext IMSI [45].

It is important in public key approach is to end up with different ciphertexts

each time when IMSI is encrypted. If the encrypted IMSI is the same at every turn,

attackers can easily identify the same users without knowing their IMSIs. Therefore,

anonymity and privacy would be damaged. To provide the security, a way should be

found to randomize the encryption [25]. If attackers get the public key of HN, they

can encrypt some random IMSIs and try connecting to network with someone else’s

account. Moreover, attackers can intercept the connection and provide UE with

some wrong key, which would cause UE to lose connection. Therefore, to provide

the confidentiality, one option is to install the public key in the SIM card, before

delivering the SIM card to user. Otherwise, presenting valid certificate to UE

becomes obligatory, so UE can be sure that the public key is trustable.

40

Root-key solution is the example of installing the public key to SIM card. In

this solution, there is only one pair of public-private key pair for HN. Therefore, HN

shares its public key with all the UEs, in other words with all of its subscribers. When

UE wants to identify itself, UE encrypts MSIN part of IMSI with the public key of

HN and sends the result to SN. After SN forwards the attach request to corresponding

HN, HN decrypts and reveals the plaintext IMSI. Then, HN replies SN with cleartext

IMSI and AV in a secure channel. At this point, AKA is executed between UE and

SN, and SN assigns TMSI for UE. Therefore, there would not be a reason for using

encrypted IMSI for the next session, because TMSI could be used instead.

In case of building certificate-based Public Key Infrastructure (PKI) for public key

approach, then there are different types of solutions. To clarify the terms, the role of

Certificate Authority (CA) in general can be explained as “a (digital) certificate is a

signature by a trusted certificate authority (CA) that securely binds together several

quantities. Typically, these quantities include at least the name of a user and its public

key” [46]. Root CA is a trusted source, who can sign for its own certificate. In this

sense, root certificate means self-signed certificate. First type of certificate-based PKI

is choosing a trusted global entity for root CA. SN gives the public key and certificate,

issued for the public key, to UE. If UE verifies the certificate, then UE encrypts its

IMSI with the public key of SN and sends to SN.

In the second type, HN is the root CA. So, HN creates and signs the certificate

for the public key and UE obtains the certificate beforehand. Moreover, HN creates

a certificate for public key of SN, too. When UE wants to connect to the network,

sends the public key of HN with corresponding network ID to SN. Then, SN presents

its own certificate and signed public key to UE. If UE can verify the certificate of SN,

UE encrypts IMSI with the public key of SN.

Third type has HN as the root CA as type two, but there is not any other CAs.

In this type, UE have obtained the certificates of all possible SNs that UE can visit.

Therefore, when UE wants to connect to SN, UE encrypts IMSI corresponding

public key of SN [47]. Third type is more straightforward than the others, which

eliminates the verification process and reduces calculation time. On the other hand,

creating public-private key pairs for each authentication session, preparing certificate

41

for the public key, and having an agreement between two parties would cause latency

and workload.

One of the proposals about key agreement is based on Diffie-Hellman key

exchange. Jimenez et al. suggest that the public-private key pair of HN always stays

the same, but UE creates new pair of public-private key pair each time [48].

Therefore, same plaintext (IMSI) would be encrypted by different key, so the

ciphertext would be different all the time. Then UE would send 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐼𝑀𝑆𝐼 =

𝑀𝐶𝐶 ∥ 𝑀𝑁𝐶 ∥ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑀𝑆𝐼𝑁 ∥ 𝑈𝐸 𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 to SN.

Another issue about public key approach is about encryption. Since the public

key belongs to HN, UE makes encryption, while HN makes decryption. There are

some algorithms that are proven secure with required length of bits, such as RSA and

Elliptic Curve Cryptography (ECC) [49], which can be chosen for the implementation

of public key approach in 5G. According to Ginzboorg and Niemi, encryption is

faster than decryption in RSA cryptosystem, but both encryption and decryption take

approximately same time in ECC [25]. Moreover, the effect on bandwidth also differs

between RSA and ECC. For example, “The European Union Agency for Network

and Information Security (ENISA) recommends for RSA for the length of n 3072 bits

for medium term, 15360 bits for long term security; for ECC for the greatest prime

divisor of the group order 160 bits for medium term and 512 its for long term security”

[49], where n is product of two large prime numbers. Summarizing, security with

ECC can be provided with shorter keys, than with RSA.

One of the negative impacts of public key approach is computational load and

bandwidth. In total, IMSI has 15 digits (60 bits) and MSIN has 10 digits (40 bits).

However, after applying public key encryption (e.g. RSA) on 40 bits, the ciphertext

would have more than 2000 bits [48]. Therefore, size of encrypted IMSI would create

a huge bandwidth problem. The limit of computational load depends on the chosen

cryptosystem and the chosen key.

Another negative side is that public key approach is not backward compatible.

In the interview of Business Today, Joakim Sorelius from Ericsson claims “5G will

be introduced across new spectrum bands that are not available today because it will

not be backward compatible. So new devices will have to be developed. All device

42

manufacturers are working on developing 5G and testing the same” [49]. This

explanation means that each component of network needs to be changed or

developed. Investments of the phone companies would be in high quantities, which

would lead for expensive service for the subscribers. Other than service, financial

effect would come to surface, when all the devices should be replaced with the ones

with 5G compatibility.

8.2. Pseudonym Approach

Pseudonyms are temporary identifiers that are allocated for the UEs [47]. As a

structure, a pseudonym looks like an IMSI and shares the same MCC and MNC with

the IMSI. However, MSIN part of pseudonym differs from MSIN of IMSI. Only HN

can correlate the pseudonym with the IMSI of the user. Therefore, when UE uses the

pseudonym for identification, none of the attackers or SN would understand if it is

real IMSI or not.

Creating pseudonym is an issue with some various proposals. The pseudonym

replaces the MSIN part of IMSI, not the whole IMSI. The MCC and MNC would

stay the same in order to make the destination HN clear. The most important point

is that the new pseudonym should not match to any existing IMSI. One of the ways

of creating pseudonym is choosing some random numbers [25]. After creating the

random number, it can be compared to the existing IMSIs. If it does not have a

match, then it is assigned to be the pseudonym of the UE. Another way is creating

pseudonym from IMSI with a specific function by using KASME [23]. Therefore, HN

can easily follow up the pseudonym from IMSI, in case the connection is lost. One

more suggestion of creating pseudonym is encrypting IMSI with some random

number and a session key [45]. Therefore, the new pseudonym would look random

and be unknown if it is related to the real IMSI.

There are different approaches about the initial attach of UE with pseudonym-

based approach. One suggestion is assigning UE a pseudonym in advance [25]. A

pseudonym might be embedded to the SIM card along with IMSI, master key, and

43

other necessary information. In this way, UE would start by using pseudonym

instead of disclosing the IMSI. Another approach is encrypting IMSI before sending

for attach request [23]. UE encrypts the MSIN part of the IMSI with the public key

of HN. The difference of this approach with the public key approach is that

encryption only occurs in initial attach, until HN assigns a pseudonym for UE.

An important point of pseudonym-based approach is the necessity of renewing

pseudonym periodically [25]. Each time UE uses the pseudonym and HN needs to

prepare AV for UE, where HN creates a new pseudonym and encrypts it with a key.

This key can be the master key or some other key that is derived by the master key.

Then, HN embeds the encrypted pseudonym in the AV as explained in Chapter 9.1.

One of the benefits of pseudonym is that this approach can be compatible with

legacy networks. “The pseudonym mechanism could work even when the serving

network is not aware of the existence of such mechanism” [25]. It is very important

feature, because if the user travels to some places without 5G technology, he still can

use pseudonym mechanism and preserve his/her identity privacy. Since pseudonyms

have IMSI-like structure, no one in the middle of UE and HN would notice the

difference.

The main problem of pseudonym shows up when the synchronization between

UE and HN is lost. Attacker can force UE to reveal its IMSI by spoiling its

connection with HN. For example, if UE uses encrypted IMSI mechanism and SN

does not support 5G requirements, then UE is supposed to give plaintext IMSI for

identification. The only way to avoid revealing IMSI as plaintext is if UE visits HN

physically and share information in secure environment [47]. This is time-consuming

and complex action to do in order to provide synchronization again securely.

8.3. Comparison of Public Key and Pseudonym Approaches

Both Public Key Approach and Pseudonym Approach have their own benefits.

Even though it is agreed that public key approach is used for 5G Phase 1, applying

only public key approach to 5G is not completely solving the problem. Public key

44

approach does not have compatibility with legacy systems. All components should

have ability to comply with legacy systems. For example, someone with 5G phone

can travel to a foreign country with 4G or even earlier technologies. In this case, this

user suddenly becomes vulnerable for identity privacy issues, and the dangers that

5G aims to discard. Moreover, in some areas in the country with 5G can have weaker

connection. Then, phone automatically switches back to 4G or earlier networks,

which makes the user vulnerable, again. Therefore, attackers can exploit this

situation by forcing phones to fall back to legacy networks. In these cases, the public

key approach loses its meaning. Public key approach on an individual basis can be

securely applicable, when it becomes possible to abandon all the former networks.

On the other hand, pseudonym approach can work with legacy networks,

because SN does not need to know whether UE sends IMSI or pseudonym. In this

case, even when the user with 5G UE goes to another country with 4G, the user can

give pseudonym as an identifier and HN will provide necessary AV. The problem

here appears if the pseudonym synchronization is lost, because then cleartext IMSI

should be revealed and attackers might exploit this situation. On the other hand, since

pseudonyms look alike IMSI, there might be shortage for finding suitable pseudonym

after a while. Before finding solution, it is important to decide how many

pseudonyms should be stored related to a specific IMSI in HN or UE. Then, target

number of the customers can be determined. If the number of the customers exceeds

the limit, then additional MNC can be added, so same MSINs for IMSIs and

pseudonyms can be used again.

Combination of public key approach and pseudonym approach can provide

more secure environment, especially in case of identity privacy. Encrypting IMSI

while sending to SN would avoid the risk of revealing the identity. The same way,

pseudonyms can be encrypted like IMSI, too. However, if the user needs to be in a

place without 5G, then he can use pseudonym to identify himself and keep his

privacy intact.

45

9. Implemented Prototype

During the times that 5G development is in progress, we decided to make a pre-

standard prototype for 5G security. We chose pseudonym approach for prototype

implementation for this purpose. In this section, we describe this prototype. Due to

the possiblity that pseudonym approach can be compatible with legacy networks,

protection can be introduced immediately with pseudonym approach. In order to

understand how this feature works, the implementation of the prototype is

developed. A live demonstration can be done with the prototype and this helps in

distinguishing the advantages and disadvantages of the pseudonym mechanism.

9.1. Illustration of Pseudonym Mechanism

The prototype is implemented for demonstrating identification, authentication

and key agreement between UE and HN through SN. Before the actual

demonstration starts, some preparations are needed in the prototype. Unique number

IMSI, secret key Kmaster, OP (Operator Variant Algorithm Configuration Field), and

SQN (Sequence Number) are derived.

User Equipment has its own database. In the database, IMSI, Kmaster, OP, and

SQN are stored. Pseudonyms, Pnew and Pused, are also stored in the database after they

have been created. Home Network has also its own database, similar to the one that

UE has. In the database, IMSI, Kmaster, OP, and SQN are stored. Pseudonyms, Pnew

and Pused are also stored in the database. Serving network has a database to store IMSI

and XRES together.

There are 3 types of RANDs in the prototype and these are called R1-, R2-, and

R3-type RAND. Each type has different tasks in AKA. R1-type and R3-type RANDs

are randomly generated 128-bit arrays. The R1-type RAND is used for key creation,

and this key will be used for encrypting and decrypting the new pseudonym. The R3-

type RAND does not have any specific purposes in addition to what is specified for

46

AKA.When the R2-type RAND is in use, then there is a need for assigning a new

pseudonym for UE. First, random 10-digit number is generated and crosschecked

with all the numbers in the database to avoid overlapping with other IMSIs or

pseudonyms. Then, the pseudonym is stored in the HN database as Pnew. After that,

pseudonym would be encrypted and embedded in RAND. Then, this RAND

becomes R2-type RAND.

To make a request for attachment to the network, UE needs to send its IMSI or

one of the stored pseudonyms to SN. As explained earlier, IMSI is composed of three

parts, which are MCC, MNC, and MSIN. For example, 244 is MCC code for Finland

and 12 is MNC code for DNA Oy [8], so 244 12 1234567890 is a representative

example of IMSI, where MSIN is 1234567890. Pseudonym that corresponds to this

IMSI would have exactly same structure, but different MSIN.

 In the beginning, only IMSI is stored in both the UE database and the HN

database. So, the demonstration starts by UE sending its IMSI to SN.

 After UE has sent a request for attachment, SN receives IMSI of the user and

stores it to its own database. According to the MCC and MNC codes, SN diverts the

attachment request to the corresponding HN.

 HN receives IMSI from SN, starts a search in its database in order to check if IMSI

belongs to a valid user. If the IMSI is valid, then HN prepares a R1-type RAND for

key creation. After finalizing RAND generation, HN creates the key and stores it to

the database for the next time. Moreover, AUTN is generated corresponding to the

RAND as 𝑆𝑄𝑁⨁𝐴𝐾 ∥ 𝐴𝑀𝐹 ∥ 𝑀𝐴𝐶. In the end, HN attaches XRES to the message

to be sent to SN, then sends 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥ 𝐴𝑈𝑇𝑁 ∥ 𝑋𝑅𝐸𝑆 to SN.

 SN receives AV from HN for the corresponding IMSI. AV consists of 𝑅𝐴𝑁𝐷 ∥

𝐴𝑈𝑇𝑁 ∥ 𝑋𝑅𝐸𝑆. Next, SN takes XRES out from the AV, and sends the rest to UE. In

the meantime, SN stores XRES to its database with IMSI.

 UE receives an AV from SN. This AV includes RAND and AUTN.

Authentication token was prepared as 𝐴𝑈𝑇𝑁 = 𝑆𝑄𝑁⨁𝐴𝐾 ∥ 𝐴𝑀𝐹 ∥ 𝑀𝐴𝐶. Here,

AMF stores information about the type of RAND, so UE understand the purpose of

RAND by checking AMF. At this point of the procedure, the AMF reveals that the

47

type of RAND is R1-type and the purpose is then key creation for decrypting

pseudonym later. Therefore, UE prepares the key by using this RAND and stores to

the database. Then, MAC is used for authenticating HN and making sure that AV is

not modified by someone else. First, UE computes MAC itself by using RAND and

Kmaster. Then, UE compares computed MAC with the MAC from AUTN. If the

comparison is successful, UE continues processing. Just as UE calculated MAC, UE

can calculate AK by using similar functions. Therefore, UE can easily recover SQN

by computing 𝐴𝐾 ⊕ (𝑆𝑄𝑁⨁𝐴𝐾) and check if SQN is in acceptable interval. If the

check is successful, UE computes RES and sends it to SN.

 SN receives RES from UE and compares RES with XRES, because RES is a value

that only an authentic UE can calculate. Then, SN notifies both UE and HN about

the result. If the result is a match, authentication is successful, so that the UE can

start using services through SN. Otherwise, connection drops and SN waits for

further connection requests.

 HN receives the result of RES comparison from SN. Depending on the outcome,

HN finalizes the procedure. If the outcome is positive, then HN knows that

authentication is succeeded, and UE started using the services. However, if the

comparison has failed, then HN understands something went wrong and services

cannot be used.

 UE receives the result of RES comparison from SN. If the result is successful,

authentication is succeeded. Otherwise, authentication fails, and UE needs to make

another attempt for network attachment.

 When authentication has succeeded after sending IMSI for the first time, UE

immediately sends IMSI to SN again and starts a new authentication automatically.

 SN receives the attach request and sends it directly to HN.

 HN receives IMSI along with the attach request. When HN receives IMSI for the

second time, immediately after the first attempt, HN knows it should prepare R2-

type RAND for assigning a pseudonym for UE. Then, HN prepares AUTN and

XRES by using the generated RAND and sends 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥ 𝐴𝑈𝑇𝑁 ∥ 𝑋𝑅𝐸𝑆 to SN.

48

 SN receives AV from HN and keeps XRES in its database. Then, SN forwards

RAND and AUTN to UE.

 UE receives a message from SN and extracts RAND and AUTN. First, UE checks

MAC and SQN. If they both check out, UE checks AMF to understand the purpose

of the RAND. Here, RAND is R2-type and there is an encrypted pseudonym in the

RAND. Therefore, by using the key obtained from previous AKA, UE decrypts the

pseudonym and stores to its database as Pnew for further use. After that, UE computes

RES and sends it to SN.

 SN receives RES from UE. Then, SN compares RES with XRES and notifies both

UE and HN about the result.

 UE and HN receive result from SN. If the result is positive, then UE starts using

the service. Otherwise, both UE and HN erase the new pseudonym from their

databases.

 Next time when UE wants to attach, UE sends the new pseudonym Pnew (instead

of IMSI) to SN.

 SN receives the pseudonym from UE. However, SN would not understand that

the pseudonym belongs to the previous UE, so SN assumes that the pseudonym

belongs to a new UE. Therefore, SN stores the pseudonym to the database and

forwards attach request to HN.

 HN receives the pseudonym from SN. Then, HN checks its database and

understands that the pseudonym is the new pseudonym, earlier assigned to IMSI.

Since the identifier is the pseudonym Pnew, HN must assign another pseudonym to

UE. Therefore, HN prepares R2-type RAND, computes corresponding AUTN and

XRES. Finally, HN sends 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥ 𝐴𝑈𝑇𝑁 ∥ 𝑋𝑅𝐸𝑆 to SN.

 SN receives AV from HN and keeps XRES to the database. Then, SN forwards

RAND and AUTN to UE.

 UE receives a message from SN and extracts RAND and AUTN. First, UE checks

MAC and SQN. If they both check out, then UE checks AMF to understand the

purpose of the RAND. Here, RAND is again R2-type and there is an encrypted

49

pseudonym in the RAND. Before decrypting pseudonym, UE rearranges database

by putting the stored pseudonym from Pnew to the Pused slot. Next, UE decrypts the

pseudonym and stores to the database as Pnew for further use. Then, UE computes

RES and sends it SN.

 SN receives RES from UE. Then, SN compares RES with XRES and notifies both

UE and HN about the result.

 UE and HN receive result from SN. If the result is positive, then UE starts using

the service. Otherwise, both UE and HN erase the new pseudonym from their

databases. In this case, they need to put the pseudonym from Pused slot back to Pnew

slot.

 If UE wants to send used pseudonym to attach, UE sends Pused to SN.

 SN receives the attach request and sends it directly to HN.

 HN receives the pseudonym from SN. Then, HN checks the database and

understands that the pseudonym is a pseudonym that has already been used at least

once. Because the used pseudonym is sent for AKA, there is no need for assigning a

new pseudonym or creating a new key. Therefore, HN prepares R3-type RAND,

computes corresponding AUTN and XRES. Finally, HN sends 𝐴𝑉 = 𝑅𝐴𝑁𝐷 ∥

𝐴𝑈𝑇𝑁 ∥ 𝑋𝑅𝐸𝑆 to SN.

 SN receives AV from HN and keeps XRES to the database. Then, SN forwards

RAND and AUTN to UE.

 UE receives a message from SN and extracts RAND and AUTN. First, UE checks

MAC and SQN. If they both check out, UE checks AMF to understand the purpose

of the RAND. Here, RAND is R3-type and does not serve for any specific purpose

and it is just a random bit string. Then, UE computes RES and sends it SN.

 SN receives RES from UE. Then, SN compares RES with XRES and notifies both

UE and HN about the result.

 UE and HN receive the result from SN. If the result is positive, UE starts using

the services.

50

Next time UE wants to attach and start AKA, UE can choose between IMSI,

Pnew, and Pused. In this section, we have already explained how each choice affects the

AKA session.

What happens after the authentication has succeeded is not implemented in the

prototype. The prototype focuses on AKA procedure. That is why, in the

demonstration, the UE can start from the beginning by sending identifier to SN, even

after the authentication has just succeeded.

The demonstration could be stopped at any moment by the user, but the natural

point to stop is when the authentication has succeeded.

Figure 17 summarizes how the prototype works.

51

 Figure 17: Authentication and Key Agreement stated in Prototype

52

9.2. User Interface

This implementation is designed for demonstrating authentication and key

agreement with pseudonym-based approach for protection of identity privacy in 5G

mobile networks. The communication occurs between the components, UE, SN, and

HN. In the demonstrator, each AKA session starts with UE sending its identifier and

ends with SN sending confirmation to both ends. We can call each AKA session a

cycle, and the demonstrator allows performing more than one cycle. To be precise,

the upper limit is 1000 cycles in the prototype, but this number does not represent

anything specific in the real world.

The Demonstrator User, who runs the code, has some tasks to do during the

demonstration. First of all, User should start by running the INPUT.java file to

prepare the initial data (master key, IMSI, SQN, OP), that both UE and HN should

possess from the beginning. Then, User should run UE.java, SN.java, and HN.java

simultaneously. After that, User needs to jump between the windows and press enter

to carry on the communication. However, this does not mean that User has the power

to choose which component to go next. Each component knows if it is their turn or

not. Therefore, if the User presses enter for the component whose turn did not come

yet, then that component displays an error message and continues displaying this

message until its turn comes. In the end, if User wants to leave the demonstrator,

then User needs to write ‘STOP’ and press enter.

When the demonstration starts, UE is supposed to send its identifier to SN. The

options for identifier are IMSI, new pseudonym, and used pseudonym. In this point,

the User needs to act on behalf of UE and choose which identifier to send. Initially,

UE has only IMSI recorded in the database. Therefore, if the User chooses something

other than IMSI, UE displays error message and requests for new entry. Same error

continues when the User chooses an identifier, which is not stored in the database

yet.

53

9.3. Further Comments on Prototype

In the beginning of the demonstration, UE identifies itself with its IMSI in

plaintext. It looks like it spoils the identity privacy. However, after UE and HN agrees

on a pseudonym, UE will not need to use its IMSI again. Besides, since pseudonyms

and IMSI look the same as a structure, an attacker would not be able to tell the

difference between them and would not understand that IMSI and corresponding

pseudonym represent same UE. However, if the synchronization gets lost between

UE and HN, UE should use its IMSI as an identifier, when none of the pseudonyms

are accepted by HN.

To avoid the connection being lost between UE and HN, both parties should

be notified by SN in the end of AKA whether the authentication is successful or not.

In 5G Phase 1, EPS AKA* includes informing HN about the result of authentication

by sending RES back to HN. This might not be only way of letting HN know about

the result, but a good start for informing both UE and HN. Moreover, if the

confirmation does not arrive to both ends or it takes more time than usual (timer can

be set), both UE and HN would not store the new pseudonym.

Despite informing both ends, there can still be problems against gaining the true

pseudonym. There can be errors in one of the ends and pseudonym can be stored in

database with a faulty bit. In this case, next time of attachment attempt, either UE

will send false pseudonym or HN will not recognize true pseudonym. Therefore, UE

will either try to send another recorded pseudonym, if such exists, or send IMSI for

authentication. If the attacker realizes that the specific UE uses pseudonyms, then

attacker would target UE until UE reveals its IMSI. However, it would not be so easy

to realize if the identifier is IMSI or pseudonym, since they look alike. In this case,

number of pseudonyms that are stored in database is an important issue. Eventually,

having more than one pseudonym in the database would mitigate the problem.

In the prototype, only two consecutive pseudonyms are stored in the database.

In real life, amount could change. This amount depends on the capacity of the

database in HN. For each subscriber, HN should store at least 3 identifiers.

Moreover, as the number of subscribers increase, the need of empty slot will increase,

54

too. On the other hand, finding suitable pseudonym, which does not match with any

existing IMSIs or pseudonyms, would get harder. Therefore, it is important for the

operator to consider all advantages and disadvantages before deciding on the number

of pseudonyms to store.

Pseudonyms are created randomly by random number generator in the

prototype. Then, each number is checked through the database, to see if it is used

before as an IMSI or as a pseudonym. Other than generating a random number, HN

can come up with a proper function, which would create pseudonyms from previous

pseudonyms, starting with IMSI. This helps keeping HN and UE synchronized, if

either one of them loses synchronization, they can resynchronize again. However,

there is a danger of generating pseudonym which belongs to another IMSI.

Therefore, if some mechanism is designed for generating pseudonym, conflicts

should be avoided by some mechanism.

Furthermore, SQN is the sequence number, which helps UE and HN to

understand if they are synchronized. In the prototype, SQN is produced in INPUT

class and kept as constant during whole demonstration. According to SQN’s role in

AKA, it was supposed to increase after each cycle. However, since the prototype

includes only one user and forces all components to work, when it is their turn, there

is no possibility for loss of synchronization. Moreover, SQN is necessary for most of

the calculations. Summarizing, SQN is used in prototype as constant, unlike in the

real life.

In the prototype, KASUMI cryptosystem is used for encrypting and decrypting

the new pseudonym. KASUMI is preferred, because it is designed for 3GPP systems

and is still considered as secure. However, in real life implementations or in any

improvements of this prototype, any other block ciphers, other than KASUMI, can

be used as well.

Procedure of encrypting the pseudonym and embedding it in RAND is not the

only way to realize the pseudonym-based approach. The methods and paddings in

the prototype can be changed for specific purposes. The procedure starts when MSIN

of IMSI, which is 10-digit number, is converted into bits and becomes 40-bit array.

Later, randomly generated 24 bits are padded to 40-bit pseudonym to have 64-bit

55

array. This 64-bit array becomes the input for KASUMI encryption with the key

Kkasumi. The ciphertext is again padded with two different and randomly generated

32-bit arrays from both left and right. So, the result is 128-bit of 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑑 ∥

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑝𝑠𝑒𝑢𝑑𝑜𝑛𝑦𝑚 ∥ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑑 and this result becomes R2-type RAND.

Another issue with the prototype is about RAND. The purpose of using

RAND, is to provide randomness in the calculations, so that attackers would not

guess the following RAND and somehow use that in attacks. However, in the

prototype, there are 3 types of RAND with different purposes. The first and third

types of RAND are just random numbers, but the second type of RAND is not

completely random. Encrypted pseudonym is embedded in the Type-2 RAND and

concatenated with random numbers. Therefore, even though the RAND is not

completely random, encrypted pseudonym looks random and does not reveal any

information about the pseudonym itself. Thus, this situation does not harm the main

purpose of RAND.

Finally, TMSI and KASME are not included in the prototype, because the aim of

the prototype is to demonstrate pseudonym exchange during AKA. This prototype

does not implement encryption and integrity protection. Therefore, after ending

AKA, TMSI and KASME would be used in real life but not in the prototype. Moreover,

AV that HN sends to SN normally includes CK and IK. Because of the same reasons

stated here, these keys are not included in the prototype. SN does not need to use CK

and IK during the prototype and UE can already compute CK and IK on its own.

9.4. Technical Details

All the program codes are written in JAVA language by using NetBeans IDE

8.2. The communication between networks (UE, SN, HN) are made by writing to

and reading from .txt files.

All the codes are written by the author of this thesis. The code for one algorithm

has been obtained from an existing library. This algorithm is HMAC, which can be

found in METHODS.java. I have adapted it from a blog, see [51]. All the algorithms,

56

other than HMAC, are implemented by the author according to the algorithm

specifications from several sources, which will be specified in detail.

For generating key for KASUMI cryptosystem, I implemented the KASME

derivation function by using the specifications from 3GPP TS 33.401 [35] and 3GPP

TS 33.220 [52].

For implementing KASUMI cryptosystem, I used the specifications from

3GPP TS 35.202 [39]. I created specific functions in Java for the components and

subfunctions of KASUMI. DivideFirst, DivideSecond, CircularLeftRotation,

CircularRightRotation, ZE, TR, S7, S7_inv, S9, S9_inv, fi, FL, FL_inv, FI, FI_inv,

FO, FO_inv, fi_odd, fi_odd_inv, fi_even, fi_even_inv are the functions that are

created for implementing encryption and decryption of KASUMI cryptosystem.

Moreover, KASUMI_enc is the code for KASUMI encryption and KASUMI_dec is

for KASUMI decryption. All these listed functions can be found in METHODS.java.

After writing the codes, I have tested the results by using test data from 3GPP TS

35.203 [53].

Advanced Encryption Standard 128-bit (AES-128) is preferred to be used in

MILENAGE functions. Therefore, I implemented AES by using specifications from

NIST (National Institute of Standards and Technology)’s publication [54] and

explanations of algorithms from Kretzschmar’s Application Report [55] about the

implementation of AES-128. Some of the functions that are created for helping the

implementation of AES are SBOX, ByteSubstitution, ShiftRow, T2, T3,

MixColumn, AddRoundKey, and GenRoundKey. Finally, AES is the name of the

function and all the listed functions can be found in METHODS.java file.

MILENAGE functions are used for generating certain elements for

authentication and the key agreement. During the computation, MILENAGE uses

a block cipher. This block cipher is chosen to be AES-128 by 3GPP [30]. The end

products from MILENAGE functions are MAC, RES, CK, IK, and AK. Therefore,

each of them has its own function in METHODS.java, so that they can be called any

time it is necessary by HN or UE. I have implemented these functions by using the

specifications from 3GPP TS 35.206 [30] and tested, whether they work or not, from

3GPP TS.35.207 [56].

57

There are some functions in METHODS.java file, which are already existed in

java, such as AND, OR, XOR, CopyArray functions. However, I decided to rewrite

them in more explicit way, which became more convenient and easy for me.

Moreover, random() function creates array of 0 and 1, by calling SecureRandom()

class. I aimed to use Java’s random creator securely.

58

Conclusions

Mobile networks are in the center of people’s lives through smart phones,

tablets, and even computers. Therefore, these devices dominate a huge portion of the

users’ life. Besides the information that the user provides willingly, some details are

needed to be kept away from the irrelevant companies. For example, the real identity

and the location of the user are not supposed to be known by anyone other than home

network, which needs this information in order to provide proper service according

to the subscription. Identity privacy in mobile networks aims to keep sensitive

information, such as real identity and location of the user, away from third parties.

In this thesis, it is discussed how to provide identity privacy in 5G network.

This thesis starts with the explanation of the evolution of mobile networks.

Then, Authentication and Key Agreement (AKA), which is a crucial process to

provide authenticity and integrity, is described in all generations. A cryptosystem,

which is called KASUMI, is explained in this thesis. KASUMI is designed to be used

in encryption and integrity protection in mobile networks. Therefore, KASUMI can

also be a part of 5G network. Then, existing ideas and approved decisions about the

structure of 5G and 5G AKA are explained in detail. Thereupon, an idea for

providing identity privacy is introduced. This idea involves using pseudonym instead

of real identifier and could be adapted to the AKA in 5G. Even though, encrypting

the real identifier with public key is accepted for 5G Phase 1, the two methods are

compared and discussed in the thesis. In the end, a prototype is introduced, which

presents pseudonym approach. The implementation of this prototype has been done

by using Java. The prototype does not include all components of AKA. The main

idea behind the prototype is presenting a possible way of creating pseudonyms and

placing them in the components of AKA. If necessary, enhancements for the

prototype can be done according to what are accepted for 5G AKA in the

standardization.

For the future improvements of 5G, there is a need for an alternative or an

additional method to public key approach for identity privacy. In case the user cannot

connect to 5G network, the connection automatically falls to 4G, 3G, or 2G, in order

59

to provide service to the user. However, this situation brings the privacy issues back

to the surface. Since public key approach does not work for the networks other than

5G, then the user will need to use the real identifier and the identity privacy of the

user would be put in risk. Thus, this situation creates an open door for attackers to

exploit. IMSI catchers can convince the user that 5G is not available and force the

user to fall back to other generations. Therefore, public key approach is a good

solution for sustaining security and identity privacy, but not enough with older

networks. In order to expect for high level of privacy, the other mobile networks

should first be eliminated. However, this situation might take a long time. Therefore,

until then, pseudonym approach can be introduced and be an efficient solution to

protect identity privacy.

60

References

[1] "History of Communication from Cave Drawings to the Web", Creative Displays

Now. [Online]. Available: https://www.creativedisplaysnow.com/articles/history-

of-communication-from-cave-drawings-to-the-web/. [Accessed: 22- Mar- 2018].

[2] "World Communication Development Report 1999", ITU, 1999. [Online].

Available: https://www.itu.int/ITU-

D/ict/publications/wtdr_99/material/wtdr99s.pdf. [Accessed: 03- Apr- 2018].

[3] "Unique Mobile Subscribers Worldwide 2010-2020", Statista, 2017. [Online].

Available: https://www.statista.com/statistics/371780/unique-mobile-subscribers-

worldwide-from-2008/. [Accessed: 03- Apr- 2018].

[4] "Number of Mobile Subscribers Worldwide Hits 5 Billion", GSMA, 2017.

[Online]. Available: https://www.gsma.com/newsroom/press-release/number-

mobile-subscribers-worldwide-hits-5-billion/. [Accessed: 03- Apr- 2018].

[5] F. Cohen, "A Short History of Cryptography", All.net, 1995. [Online].

Available: http://www.all.net/books/IP/Chap2-1.html. [Accessed: 23- Mar-

2018].

[6] Dictionary.com, "cryptography," in Dictionary.com.

Available: http://www.dictionary.com/. Accessed: March 23, 2018.

[7] F. van den Broek, R. Verdult and J. de Ruiter, "Defeating IMSI Catchers", in

CCS '15 - Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, Denver, USA, 2015, pp. 340-351.

[8] "Mobile Network Codes (MNC) for the international identification plan for

public networks and subscriptions", ITU, 2014. [Online]. Available:

https://www.itu.int/dms_pub/itu-t/opb/sp/T-SP-E.212B-2014-PDF-E.pdf.

[Accessed: 20- Aug- 2016].

[9] L. McLeary, "The Difference Between IMSI and MSISDN", Techwalla.com,

2015. [Online]. Available: https://www.techwalla.com/articles/the-difference-

between-imsi-and-msisdn. [Accessed: 29- Mar- 2018].

[10] "International Roaming Explained", Gsma.com, 2012. [Online]. Available:

https://www.gsma.com/latinamerica/wp-content/uploads/2012/08/GSMA-

Mobile-roaming-web-English.pdf . [Accessed: 27- Mar- 2018].

https://www.gsma.com/latinamerica/wp-content/uploads/2012/08/GSMA-Mobile-roaming-web-English.pdf
https://www.gsma.com/latinamerica/wp-content/uploads/2012/08/GSMA-Mobile-roaming-web-English.pdf

61

[11] T. Damico, "A Brief History of Cryptography", Inquiries Journal, 2009.

[Online]. Available: http://www.inquiriesjournal.com/articles/1698/a-brief-

history-of-cryptography. [Accessed: 23- Mar- 2018].

[12] A. Gupta and R. Jha, "A Survey of 5G Network: Architecture and Emerging

Technologies", IEEE Access, vol. 3, pp. 1206-1232, 2015.

[13] A. Kumar, Y. Liu and J. Sengupta, "Evolution of Mobile Wireless

Communication Networks: 1G to 4G", IJECT, vol. 1, no. 1, pp. 68-72, 2010.

[14] D. Forsberg, W. Moeller, V. Niemi and G. Horn, LTE security. Wiley, 2010.

[15] I. Akyildiz, D. Gutierrez-Estevez, R. Balakrishnan and E. Chavarria-Reyes,

"LTE-Advanced and the evolution to Beyond 4G (B4G) systems", Physical

Communication, vol. 10, pp. 31-60, 2014.

[16] D. Hutton, "Five Things You Wanted to Know about 5G, But Never Dared

to Ask - Future Networks", Future Networks, 2016. [Online]. Available:

https://www.gsma.com/futurenetworks/digest/five-things-wanted-know-5g-never-

dared-ask/. [Accessed: 20- Nov- 2017].

[17] "SK Telecom and Samsung Complete 5G End-to-End Network Trial Based

on 3.5GHz 5G New Radio (NR) Technologies", Samsung Newsroom, 2017.

[Online]. Available: https://news.samsung.com/global/sk-telecom-and-samsung-

complete-5g-end-to-end-network-trial-based-on-3-5ghz-5g-new-radio-nr-

technologies. [Accessed: 20- Nov- 2017].

[18] Y. Park and T. Park, "A Survey of Security Threats on 4G Networks", 2007

IEEE Globecom Workshops, 2007.

[19] D. Bhasker, "4G LTE Security for Mobile Network Operators", Journal of

Cyber Security and Information Systems, pp. 20-29, 2013.

[20] A. Bikos and N. Sklavos, "LTE/SAE Security Issues on 4G Wireless

Networks", IEEE Security & Privacy, vol. 11, no. 2, pp. 55-62, 2013.

[21] N. Seddigh, B. Nandy, R. Makkar and J. Beaumont, "Security Advances and

Challenges in 4G Wireless Networks", in Eighth Annual International Conference

on Privacy, Security and Trust, Ottawa, Canada, 2010, pp. 62-71.

[22] K. Norrman and P. Nakarmi, "Protecting 5G Against IMSI Catchers",

Ericsson Research Blog, 2017. [Online]. Available:

https://www.ericsson.com/research-blog/protecting-5g-imsi-catchers/. [Accessed:

14- Sep- 2017].

62

[23] K. Norrman, M. Näslund and E. Dubrovq, "Protecting IMSI and User

Privacy in 5G Networks", in MobiMedia '16 - Proceedings of the 9th EAI

International Conference on Mobile Multimedia Communications, Xi'an, China,

2016, pp. 159-166.

[24] D. Strobel, "IMSI Catcher", IT-Sicherheit Seminar 2007, 2007. [Online].

Available:

https://www.emsec.rub.de/media/attachments/files/2011/11/imsi_catcher_upda

te.pdf. [Accessed: 14- Sep- 2017].

[25] P. Ginzboorg and V. Niemi, "Privacy of the Long-term Identities in Cellular

Networks", in MobiMedia '16 - Proceedings of the 9th EAI International

Conference on Mobile Multimedia Communications, Xi'an, China, 2016, pp. 167-

175.

[26] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani and E. Weippl, "IMSI-

catch me if you can: IMSI-catcher-catchers", in ACSAC '14 - Proceedings of the

30th Annual Computer Security Applications Conference, New Orleans, USA,

2014, pp. 246-255.

[27] R. Gallagher, "Meet the machines that steal your phone’s data", Ars

Technica, 2013. [Online]. Available: https://arstechnica.com/tech-

policy/2013/09/meet-the-machines-that-steal-your-phones-data/. [Accessed: 11-

Oct- 2017].

[28] Langston, "Catching the IMSI-catchers: SeaGlass brings transparency to cell

phone surveillance", UW News, 2017. [Online]. Available:

http://www.washington.edu/news/2017/06/02/catching-the-imsi-catchers-

seaglass-brings-transparency-to-cell-phone-surveillance/. [Accessed: 14- Sep- 2017].

[29] K. Prakash, "Authentication and Key Agreement in 3GPP Networks", in

Fifth International Conference on Advances in Computing and Information

Technology, Chennai, India, 2015, pp. 143-154.

[30] 3GPP TS 35.206 version 13.0.0 (2016): “Specification of the MILENAGE

Algorithm Set: An example algorithm set for 3GPP authentication and key

generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm

Specification”.

[31] 3GPP TS 23.002 version 14.1.0 (2017): “Digital cellular telecommunications

system (Phase 2+) (GSM); Universal Mobile Telecommunications System

(UMTS); LTE; Network architecture”.

63

[32] S. Palat and P. Godin, "Network Architecture", in LTE – The UMTS Long

Term Evolution: From Theory to Practice, 1st ed., S. Sesia, I. Toufik and M. Baker,

Ed. John Wiley & Sons, Ltd, 2009, pp. 21-50.

[33] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi and J. Seifert, "Practical

Attacks Against Privacy and Availability in 4G/LTE Mobile Communication

Systems", in Network and Distributed System Security Symposium, San Diego,

United States, 2016.

[34] D. Lanzenberger, "Formal Analysis of 5G Protocols (Bachelor Thesis)",

ETHZ - Swiss Federal Institute of Technology Zurich, 2017. [Online]. Available:

https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-

infsec/information-security-group-dam/research/software/5G_lanzenberger.pdf.

[Accessed: 09- Dec- 2017].

[35] 3GPP TS 33.401 version 13.3.0 (2016): “3GPP System Architecture

Evolution (SAE); Security architecture”.

[36] M. Matsui and T. Tokita, "MISTY, KASUMI and Camellia Cipher

Algorithm Development", Mitsubishi Electric ADVANCE, vol. 100, pp. 2-4, 2002.s

[37] K. Jia, L. Li, C. Rechberger, J. Chen and X. Wang, "Improved Cryptanalysis

of the Block Cipher KASUMI", in SAC 2012 - International Conference on

Selected Areas in Cryptography, Windsor, Canada, 2012, pp. 222-233.

[38] E. Biham, O. Dunkelman and N. Keller, "A Related-Key Rectangle Attack on

the Full KASUMI", in ASIACRYPT 2005 - 11th International Conference on the

Theory and Application of Cryptology and Information Security, Chennai, India,

2005, pp. 443-461.

[39] 3GPP TS 35.202 version 13.0.0 (2016): “3G Security; Specification of the

3GPP Confidentiality and Integrity Algorithms; Document 2: KASUMI

Specification”.

[40] 3GPP TS 33.501 version 0.6.0 (2017): “Security Architecture and Procedures

for 5G System”.

[41] X. Zang, A. Kunz and S. Schröder, "Overview of 5G security in 3GPP", in

IEEE Conference on Standards for Communications & Networking, Helsinki,

Finland, 2017, pp. 1-6.

[42] P. Rost, A. Banchs, I. Berberana, M. Breitbach, M. Doll, H. Droste, C.

Mannweiler, M. Puente, K. Samdanis and B. Sayadi, "Mobile network architecture

64

evolution toward 5G", IEEE Communications Magazine, vol. 54, no. 5, pp. 84-91,

2016.

[43] 3GPP TS 23.501 version 15.0.0 (2017): “System Architecture for the 5G

System; Stage 2”.

[44] 3GPP TS 33.899 version 1.3.0 (2017): “Study on the Security Aspects of the

Next Generation System”.

[45] 3GPP TS 33.821 version 9.0.0 (2009): “Rationale and track of security

decisions in Long Term Evolved (LTE) RAN / 3GPP System Architecture

Evolution (SAE)”.

[46] C. Gentry, "Certificate-Based Encryption and the Certificate Revocation

Problem", in EUROCRYPT'03 Proceedings of the 22nd International Conference on

Theory and Applications of Cryptographic Techniques, Warsaw, Poland, 2003, pp. 272-

293.

[47] M. Khan and V. Niemi, "Concealing IMSI in 5G Network Using Identity

Based Encryption", in Network and System Security: 11th International

Conference, NSS 2017, Helsinki, Finland, 2017, pp. 544-554.

[48] E. Jiménez, P. Nakarmi, M. Näslund and K. Norrman, "Subscription

identifier privacy in 5G systems", in 2017 International Conference on Selected

Topics in Mobile and Wireless Networking (MoWNeT), Avignon, France, 2017,

pp. 1-8.

[49] R. Schulz, "RSA vs. ECC", 2015. [Online]. Available: http://page.mi.fu-

berlin.de/rhschulz/Krypto/RSA_or_ECC.pdf. [Accessed: 12- Feb- 2018].

[50] M. Kaushik, "5G not backward compatible; we need new spectrum, devices:

Ericsson's Joakim Sorelius", Businesstoday.in, 2017. [Online]. Available:

http://www.businesstoday.in/opinion/interviews/5g-not-backward-compatible-

we-need-new-spectrum-devices-ericssons-joakim-sorelius/story/251668.html.

[Accessed: 01- Feb- 2018].

[51] K. Tan, "Generating HMAC MD5/SHA1/SHA256 etc in Java",

Supermind.org, 2012. [Online]. Available:

http://www.supermind.org/blog/1102/generating-hmac-md5-sha1-sha256-etc-in-

java. [Accessed: 01- Aug- 2016].

[52] 3GPP TS 33.220 version 13.0.0 (2016): “Generic Authentication Architecture

(GAA); Generic Bootstrapping Architecture (GBA)”.

65

[53] 3GPP TS 35.203 version 13.0.0 (2016): “3G Security; Specification of the

3GPP Confidentiality and Integrity Algorithms; Document 3: Implementors’ Test

Data”.

[54] National Institute of Standards and Technology, "Specification for the

ADVANCED ENCRYPTION STANDARD (AES)", Federal Information

Processing Standards Publication 197, 2001.

[55] U. Kretzschmar, "AES128 – A C Implementation for Encryption and

Decryption", Ti.com, 2009. [Online]. Available:

http://www.ti.com/lit/an/slaa397a/slaa397a.pdf. [Accessed: 05- Aug- 2016].

[56] 3GPP TS 35.207 version 13.0.0 (2016): “Specification of the MILENAGE

Algorithm Set: An example algorithm set for 3GPP authentication and key

generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 3: Implementors’ Test

Data”.

66

APPENDIX A – Source Code

INPUT, UE, SN, and HN are presented here. METHODS file can be obtained

separately.

A.1. INPUT.java

 1 import java.io.IOException;
 2
 3 public class INPUT extends METHODS{
 4
 5 public static void main(String[] args) throws IOException{
 6
 7 //Random and initial inputs for both UE and HN
 8 //K, OP, IMSI
 9 int[] K_MASTER=random(128);
10 int[] OP=random(128);
11 int[] IMSI=rand_number(10);
12 int[] IMSI_bit=PseudoToBits(IMSI);
13
14 WriteFileHex("K_MASTER_hex.txt", K_MASTER);
15 System.out.println("Key_hex is: "+ReadFileString("K_MASTER_hex.txt"));
16
17 WriteFileHex("OP_hex.txt", OP);
18 System.out.println("OP_hex is: "+ReadFileString("OP_hex.txt"));
19
20 WriteFileHex("IMSI_hex.txt", IMSI_bit);
21 System.out.println("IMSI is: "+ReadFileString("IMSI_hex.txt"));
22
23 //SQN should be synced between UE and HN
24 int[] SQN=random(48);
25 WriteFileHex("SQN_hex.txt", SQN);
26 System.out.println("SQN is: "+ReadFileString("SQN_hex.txt"));
27
28 //Checkpoints tells each UE, SN, and HN, if it is their turn to continue.
29 //Always UE starts the process so checkpoint0 is 1 and the others are 0.
30 WriteFileInt("checkpoint0.txt",1);
31 WriteFileInt("checkpoint1.txt",0);
32 WriteFileInt("checkpoint2.txt",0);
33 WriteFileInt("checkpoint3.txt",0);
34 WriteFileInt("checkpoint4.txt",0);
35 WriteFileInt("checkpoint5.txt",0);
36 WriteFileInt("checkpoint6.txt",0);
37 WriteFileInt("checkpoint7.txt",0);

67

38
39 System.out.println("Checkpoints are ready.");
40 }
41 }
42

A.2. UE.java

 1 import java.io.IOException;
 2 import java.util.Scanner;
 3
 4
 5 public class UE extends METHODS{
 6
 7 public static void main(String[] args) throws IOException {
 8 Scanner scan = new Scanner (System.in);
 9
 10 //db[0]=IMSI
 11 //db[1]=new pseudonym
 12 //db[2]=used pseudonym
 13 //db[3]=K_MASTER
 14 //db[4]=OP
 15 //db[5]=SQN
 16
 17 String[] db=new String[6]; //database of UE
 18
 19 db[0]=ReadFileString("IMSI_hex.txt");
 20 db[3]=ReadFileString("K_MASTER_hex.txt");
 21 db[4]=ReadFileString("OP_hex.txt");
 22 db[5]=ReadFileString("SQN_hex.txt");
 23 db[1]="";
 24 db[2]="";
 25
 26 int x=0;
 27 System.out.println("----------|User Equipment|----------");
 28 System.out.println("----------------|UE|----------------\n");
 29
 30 do{
 31 if(ReadFileInt("checkpoint0.txt")==1){
 32 proceed();
 33
 34 while(ReadFileInt("checkpoint0.txt")==1){
 35
 36 //UE needs to choose between IMSI and pseudonym
 37 //Each choice requires different calculations afterwards
 38 System.out.println("Choose what to send for ID:");
 39 System.out.println("Write 'P1' to send IMSI");

68

 40 System.out.println("Write 'P2' to send new pseudonym");
 41 System.out.println("Write 'P3' to send used pseudonym");
 42
 43 //If the pseudonyms are not stored yet, it needs to ask again
 44 String msg=scan.nextLine();
 45 if(msg.equalsIgnoreCase("stop")||msg.equalsIgnoreCase("no")){
 46 System.exit(0);}
 47
 48 if(msg.equalsIgnoreCase("p1")){
 49 WriteFileInt("checkpoint0.txt",0);
 50 WriteFileString("msg.txt",msg);}
 51 else if(msg.equalsIgnoreCase("p2")&& !(db[1].isEmpty())){
 52 WriteFileInt("checkpoint0.txt",0);
 53 WriteFileString("msg.txt",msg);}
 54 else if(msg.equalsIgnoreCase("p3")&& !(db[2].isEmpty())){
 55 WriteFileInt("checkpoint0.txt",0);
 56 WriteFileString("msg.txt",msg);}
 57 else if(msg.equalsIgnoreCase("p3")&& (db[2].isEmpty())){
 58 System.out.println("|UE| The pseudonym doesn't exist. Please try P1 or
P2.\n");
 59 System.out.println("--"+"\n");}
 60 else if(msg.equalsIgnoreCase("p2")&& db[1].isEmpty()){
 61 System.out.println("|UE| The pseudonym doesn't exist. Please try P1.\n");
 62 System.out.println("--"+"\n");}
 63 else{
 64 System.out.println("|UE| Invalid choice. Please try again.\n");
 65 System.out.println("--"+"\n");}
 66 }}
 67 else if(ReadFileInt("checkpoint0.txt")==0){
 68 String msg=ReadFileString("msg.txt");
 69 System.out.println();
 70
 71 //UE chooses to send IMSI
 72 if(msg.equalsIgnoreCase("p1")){
 73 part1(db,msg);
 74
 75 System.out.println("|UE| Attachment request is sent to SN.");
 76 System.out.println("\n"+"--"+"\n");
 77 WriteFileInt("checkpoint1.txt",1);
 78
 79 proceed();
 80 if(ReadFileInt("checkpoint4.txt")==0){
 81 do{
 82 System.out.println("|UE| There isn't a new file yet. Try again later.");
 83 System.out.println("\n"+"--"+"\n");
 84 proceed();
 85 } while(ReadFileInt("checkpoint4.txt")==0);}
 86 else if(ReadFileInt("checkpoint4.txt")==1){}
 87 WriteFileInt("checkpoint4.txt",0);
 88
 89 //HN sends RAND and AUTN through SN, which are components of Authentication and
Key Agreement

69

 90 System.out.println("|UE| AV is received from SN. \n");
 91
 92 //UE makes necessary calculations with RAND and AUTN
 93 db=part2(db);
 94
 95 System.out.println("|UE| RES is sent to SN.");
 96 System.out.println("\n"+"--"+"\n");
 97 WriteFileInt("checkpoint5.txt",1);
 98
 99 proceed();
100 if(ReadFileInt("checkpoint7.txt")==0){
101 do{
102 System.out.println("|UE| There isn't a new file yet. Try again later.");
103 System.out.println("\n"+"--"+"\n");
104 proceed();
105 } while(ReadFileInt("checkpoint7.txt")==0);}
106 else if(ReadFileInt("checkpoint7.txt")==1){}
107 WriteFileInt("checkpoint7.txt",0);
108
109 //Calculates RES that is necessary for sending to SN
110 res_respond(db);
111 System.out.println("\n"+"--"+"\n");
112
113 //After UE recieves key from HN, also need a pseudonym
114 //Triggers automatically to start another authentication
115 msg="p1";
116 part1(db,msg);
117
118 System.out.println("|UE| Attachment request is sent to SN.");
119 System.out.println("\n"+"--"+"\n");
120 WriteFileInt("checkpoint1.txt",1);
121
122 proceed();
123 if(ReadFileInt("checkpoint4.txt")==0){
124 do{
125 System.out.println("|UE| There isn't a new file yet. Try again later.");
126 System.out.println("\n"+"--"+"\n");
127 proceed();
128 } while(ReadFileInt("checkpoint4.txt")==0);}
129 else if(ReadFileInt("checkpoint4.txt")==1){}
130 WriteFileInt("checkpoint4.txt",0);
131
132 //HN sends RAND and AUTN through SN, which are components of Authentication
and Key Agreement
133 System.out.println("|UE| AV is received from SN. \n");
134
135 //UE makes necessary calculations with RAND and AUTN
136 db=part2(db);
137
138 System.out.println("|UE| RES is sent to SN.");
139 System.out.println("\n"+"--"+"\n");
140 WriteFileInt("checkpoint5.txt",1);

70

141
142 proceed();
143 if(ReadFileInt("checkpoint7.txt")==0){
144 do{
145 System.out.println("|UE| There isn't a new file yet. Try again later.");
146 System.out.println("\n"+"--"+"\n");
147 proceed();
148 } while(ReadFileInt("checkpoint7.txt")==0);}
149 else if(ReadFileInt("checkpoint7.txt")==1){}
150 WriteFileInt("checkpoint7.txt",0);
151
152 //Calculates RES that is necessary for sending to SN
153 res_respond(db);
154 System.out.println("\n"+"--"+"\n");
155 WriteFileInt("checkpoint0.txt",1);
156 }
157
158 //UE chooses to send used pseudonym
159 else if(msg.equalsIgnoreCase("p2")){
160 part1(db,msg);
161
162 System.out.println("|UE| Attachment request is sent to SN.");
163 System.out.println("\n"+"--"+"\n");
164 WriteFileInt("checkpoint1.txt",1);
165
166 proceed();
167 if(ReadFileInt("checkpoint4.txt")==0){
168 do{
169 System.out.println("|UE| There isn't a new file yet. Try again later.");
170 System.out.println("\n"+"--"+"\n");
171 proceed();
172 } while(ReadFileInt("checkpoint4.txt")==0);}
173 else if(ReadFileInt("checkpoint4.txt")==1){}
174 WriteFileInt("checkpoint4.txt",0);
175
176 //HN sends RAND and AUTN through SN, which are components of Authentication
and Key Agreement
177 System.out.println("|UE| AV is received from SN. \n");
178
179 //UE makes necessary calculations with RAND and AUTN
180 db=part2(db);
181
182 System.out.println("|UE| RES is sent to SN.");
183 System.out.println("\n"+"--"+"\n");
184 WriteFileInt("checkpoint5.txt",1);
185
186 proceed();
187 if(ReadFileInt("checkpoint7.txt")==0){
188 do{
189 System.out.println("|UE| There isn't a new file yet. Try again later.");
190 System.out.println("\n"+"--"+"\n");
191 proceed();

71

192 } while(ReadFileInt("checkpoint7.txt")==0);}
193 else if(ReadFileInt("checkpoint7.txt")==1){}
194 WriteFileInt("checkpoint7.txt",0);
195
196 //Calculates RES that is necessary for sending to SN
197 res_respond(db);
198 System.out.println("\n"+"--"+"\n");
199 WriteFileInt("checkpoint0.txt",1);
200 }
201
202 //UE chooses to send new pseudonym
203 else if(msg.equalsIgnoreCase("p3")){
204 part1(db,msg);
205
206 System.out.println("|UE| Attachment request is sent to SN.");
207 System.out.println("\n"+"--"+"\n");
208 WriteFileInt("checkpoint1.txt",1);
209
210 proceed();
211 if(ReadFileInt("checkpoint4.txt")==0){
212 do{
213 System.out.println("|UE| There isn't a new file yet. Try again later.");
214 System.out.println("\n"+"--"+"\n");
215 proceed();
216 } while(ReadFileInt("checkpoint4.txt")==0);}
217 else if(ReadFileInt("checkpoint4.txt")==1){}
218 WriteFileInt("checkpoint4.txt",0);
219
220 //HN sends RAND and AUTN through SN, which are components of Authentication
and Key Agreement
221 System.out.println("|UE| AV is received from SN. \n");
222
223 //UE makes necessary calculations with RAND and AUTN
224 db=part2(db);
225
226 System.out.println("|UE| RES is sent to SN.");
227 System.out.println("\n"+"--"+"\n");
228 WriteFileInt("checkpoint5.txt",1);
229
230 proceed();
231 if(ReadFileInt("checkpoint7.txt")==0){
232 do{
233 System.out.println("|UE| There isn't a new file yet. Try again later.");
234 System.out.println("\n"+"--"+"\n");
235 proceed();
236 } while(ReadFileInt("checkpoint7.txt")==0);}
237 else if(ReadFileInt("checkpoint7.txt")==1){}
238 WriteFileInt("checkpoint7.txt",0);
239
240 //Calculates RES that is necessary for sending to SN
241 res_respond(db);
242 System.out.println("\n"+"--"+"\n");

72

243 WriteFileInt("checkpoint0.txt",1);
244 }}
245 }while (x<1000);
246 }
247
248 //According to the input, proper element from database is written into the file
249 public static void part1(String[] db, String message) throws IOException{
250 String send="";
251 if(message.equalsIgnoreCase("p1")){ //p1=IMSI
252 send=db[0];}
253 else if(message.equalsIgnoreCase("p2")){ //p2=new pseudonym
254 send=db[1];}
255 else if(message.equalsIgnoreCase("p3")){ //p3=used pseudonym
256 send=db[2];}
257
258 System.out.println("|UE| IMSI: DNA " + send);
259 WriteFileString("UE_IMSI.txt",send);
260 }
261
262 //UE performs Authentication and key agreement in this part. If exists, pseudonym is
extracted
263 public static String[] part2(String[] db) throws IOException{
264
265 int[] AV_UE=HexToBinary(ReadFileString("AV_toUE.txt"));
266 int[] RAND_UE=new int[128], AUTN_UE=new int[128];
267 int[] AMF_UE=new int[16], MAC_UE_ext=new int[64];
268 int[] RES_UE, MAC_UE;
269 int[] K_MASTER,OP,SQN;
270 K_MASTER=HexToBinary(db[3]);
271 OP=HexToBinary(db[4]);
272 SQN=HexToBinary(db[5]);
273
274 System.out.println("|UE| Extracting RAND and AUTN..");
275
276 CopyArray(AV_UE,RAND_UE,0,0,128);
277 CopyArray(AV_UE,AUTN_UE,128,0,128);
278
279 System.out.println("|UE| RAND and AUTN are extracted.\n");
280
281 System.out.println("|UE| Extracting and calculating MAC.");
282 System.out.println("|UE| Checking MAC..");
283
284 CopyArray(AUTN_UE,MAC_UE_ext,64,0,64);
285 CopyArray(AUTN_UE,AMF_UE,48,0,16);
286
287 MAC_UE=MAC(RAND_UE,K_MASTER,OP,SQN,AMF_UE);
288 String tmp=Compare(MAC_UE_ext,MAC_UE);
289 if(tmp.equals("same"))
290 System.out.println("|UE| MAC is verified."+"\n");
291 else{
292 System.out.println("|UE| MAC is not verified."+"\n");
293 System.exit(0);}

73

294
295 System.out.println("|UE| Extracting AMF..");
296 System.out.println("|UE| AMF is extracted.\n");
297
298 System.out.println("|UE| Checking AMF..");
299 String temp;
300
301 //Process continues differently according to the value stored in AMF
302 int amfue=CheckAMF(AMF_UE);
303 WriteFileInt("AMF_result.txt",amfue);
304
305 //AMF shows that new pseudonym is stored in RAND.
306 if(amfue==2){
307 int[] RAND_KEY=ReadFile("RAND_key.txt",128);
308 int[] AMF_KEY=ReadFile("AMF Key.txt",16);
309
310 System.out.println("|UE| Extracting Pseudonym..");
311
312 //Encrypted pseudonym is extracted from RAND
313 int[] PSEUDO_ENCRYPTED=new int[64],PSEUDO_DECRYPTED,
PSEUDONYM_bit=new int[40];
314 CopyArray(RAND_UE, PSEUDO_ENCRYPTED, 32, 0, 64);
315 int[] KeyKasumi=KeyKasumi(RAND_KEY,K_MASTER,OP,SQN,AMF_KEY);
316 //Extracted and encrypted pseudonym is decrypted
317 PSEUDO_DECRYPTED=KASUMI_dec(PSEUDO_ENCRYPTED,KeyKasumi);
318 CopyArray(PSEUDO_DECRYPTED,PSEUDONYM_bit,0,0,40);
319 String s=BinaryToHex(PSEUDONYM_bit);
320 System.out.println("|UE| Pseudonym is extracted.");
321 System.out.println("|UE| Pseudonym is "+s+"\n");
322 int[] PSEUDONYM=PseudoHexToBit(s);
323 WriteFile("Pseudo_extracted.txt",PSEUDONYM);
324 //New pseudonym is recorded to the database for further uses
325 temp=db[2];
326 db[2]=db[1];
327 db[1]=BinaryToText(PSEUDONYM);
328 WriteFileString("temp.txt",temp);}
329 //AMF shows that RAND will be used as K_kasumi for decrypting pseudonym
330 else if(amfue==1){}
331 //AMF shows that RAND doesn't have a function in this round
332 else if(amfue==3){}
333 //If AMF doesn't include the proper information, then it is not authentic.
334 else
335 System.exit(0);
336
337 System.out.println("|UE| Preparing RES..");
338
339 //RES will let SN know that UE is valid user
340 RES_UE=RES(RAND_UE,K_MASTER,OP,SQN,AMF_UE);
341 WriteFileHex("RES_UE.txt",RES_UE);
342
343 System.out.println("|UE| RES is prepared.\n");
344

74

345 return db;
346 }
347
348 //It prepares the RES that is needed to be sent to SN
349 public static void res_respond(String[] db) throws IOException{
350 System.out.println("|UE| Result for RES challenge is received from SN.\n");
351 System.out.println("|UE| Checking result..");
352
353 String snres=ReadFileString("SN_RES_result.txt");
354 int amf_type=ReadFileInt("AMF_result.txt");
355 if(snres.equalsIgnoreCase("valid")){
356 System.out.println("|UE| Authentication succeeded.");}
357 else if(snres.equalsIgnoreCase("invalid")){
358 System.out.println("|UE| Authentication failed.");
359 if (amf_type==2){
360 String temp=ReadFileString("temp.txt");
361 db[1]=db[2];
362 db[2]=temp;
363 System.out.println("|UE| Database is corrected.");
364 }
365 }
366 }
367
368 //AMF includes information about the usage of RAND
369 public static int CheckAMF(int[] AMF){
370 int x=0;
371
372 if(AMF[1]==1 & AMF[2]==0){
373 System.out.println("|UE| This RAND is to be used for creating new key.\n");
374 x=1;}
375 else if(AMF[1]==0 & AMF[2]==1){
376 System.out.println("|UE| This RAND includes pseudonym.\n");
377 x=2;}
378 else if(AMF[1]==0 & AMF[2]==0){
379 System.out.println("|UE| This RAND doesn't include pseudonym and isn't to be
used for creating new key.\n");
380 x=3;}
381
382 return x;
383 }
384
385 //Creates Key for Kasumi encryption
386 public static int[] KeyKasumi(int[] RAND, int[] K_MASTER, int[] OP, int[] SQN, int[]
AMF) throws IOException{
387
388 int[] CK, IK, AK;
389 CK=CK(RAND, K_MASTER, OP, SQN, AMF);
390 IK=IK(RAND, K_MASTER, OP, SQN, AMF);
391 AK=AK(RAND, K_MASTER, OP, SQN, AMF);
392
393 int[] K,S;
394 int[] FC, P0, L0, P1, L1;

75

395 int[] oct1, oct2, oct3;
396
397 K=Concatenate(CK, IK);
398 FC=HexToBinary("60");
399
400 //For MCC and MNC, I will use DNA Oy, which is 244 12.
401 oct1=Concatenate(HexToBinary("4"),HexToBinary("2"));
402 oct2=Concatenate(HexToBinary("f"),HexToBinary("4"));
403 oct3=Concatenate(HexToBinary("2"),HexToBinary("1"));
404 P0=Concatenate(Concatenate(oct1,oct2),oct3);
405 L0=Concatenate(HexToBinary("000"),HexToBinary("3"));
406 P1=XOR(SQN, AK);
407 L1=Concatenate(HexToBinary("000"),HexToBinary("6"));
408
409 // S=FC || P0 || LO || P1 || L1.
410 S=Concatenate(Concatenate(Concatenate(Concatenate(FC,P0),L0),P1),L1);
411
412 int[] KEY_kasumi=HMAC(S,K);
413
414 return KEY_kasumi;
415 }
416
417 }

A.3. SN.java

 1 import java.io.IOException;
 2
 3 public class SN extends METHODS{
 4
 5 public static void main(String[] args) throws IOException {
 6
 7 //db[x][y]
 8 //x=order of the user. for every new user, x+1
 9 //y=0 == IMSI, y=1 == XRES
 10 String db[][]=new String[1000][2];
 11 db[0][0]="IMSI";
 12 db[0][1]="XRES";
 13 int x=1;
 14
 15 System.out.println("----------|Serving Network|----------");
 16 System.out.println("----------------|SN|-----------------\n");
 17
 18 do{
 19 proceed();
 20 if(ReadFileInt("checkpoint1.txt")==0){
 21 do{

76

 22 System.out.println("|SN| There isn't a new file yet. Try again later.");
 23 System.out.println("\n"+"--"+"\n");
 24 proceed();
 25 } while(ReadFileInt("checkpoint1.txt")==0);}
 26 else if(ReadFileInt("checkpoint1.txt")==1){}
 27 WriteFileInt("checkpoint1.txt",0);
 28
 29 //Attach attempt from UE
 30 part1(db,x);
 31
 32 System.out.println("|SN| Attachment request is sent to HN.");
 33 System.out.println("\n"+"--"+"\n");
 34 WriteFileInt("checkpoint2.txt",1);
 35
 36 proceed();
 37 if(ReadFileInt("checkpoint3.txt")==0){
 38 do{
 39 System.out.println("|SN| There isn't a new file yet. Try again later.");
 40 System.out.println("\n"+"--"+"\n");
 41 proceed();
 42 } while(ReadFileInt("checkpoint3.txt")==0);}
 43 else if(ReadFileInt("checkpoint3.txt")==1){}
 44 WriteFileInt("checkpoint3.txt",0);
 45
 46 //XRES is extracted from AV
 47 System.out.println("|SN| Authentication Vector from HN.\n");
 48
 49 part2(db,x);
 50
 51 System.out.println("|SN| AV is sent to UE.");
 52 System.out.println("\n"+"--"+"\n");
 53 WriteFileInt("checkpoint4.txt",1);
 54
 55 proceed();
 56 if(ReadFileInt("checkpoint5.txt")==0){
 57 do{
 58 System.out.println("|SN| There isn't a new file yet. Try again later.");
 59 System.out.println("\n"+"--"+"\n");
 60 proceed();
 61 }while(ReadFileInt("checkpoint5.txt")==0);}
 62 else if(ReadFileInt("checkpoint5.txt")==1){}
 63 WriteFileInt("checkpoint5.txt",0);
 64
 65 //Comparison of RES and XRES is done
 66 part3(db,x);
 67
 68 System.out.println("|SN| Result of RES challenge is sent both to UE and HN.");
 69 System.out.println("\n"+"--"+"\n");
 70 WriteFileInt("checkpoint6.txt",1);
 71 WriteFileInt("checkpoint7.txt",1);
 72
 73 x++;

77

 74
 75 } while(x<1000);
 76 }
 77
 78 //Attach attempt from UE is received. It is recorded to database.
 79 public static String[][] part1(String[][] db, int x) throws IOException{
 80
 81 String IMSI=ReadFileString("UE_IMSI.txt");
 82 System.out.println("|SN| Attach attempt from DNA " + IMSI+"\n");
 83 WriteFileString("SN_IMSI.txt",IMSI);
 84 db[x][0]=IMSI;
 85
 86 return db;
 87 }
 88
 89 //XRES is extracted from the AV from HN
 90 public static String[][] part2(String[][] db, int x) throws IOException{
 91
 92 Authenticate_UE(db[x][0]);
 93 int[] XRES=ReadFile("XRES_SN.txt",64);
 94
 95 String XRES_str=BinaryToHex(XRES);
 96 db[x][1]=XRES_str;
 97
 98 System.out.println("|SN| AV for UE is prepared.\n");
 99
100 return db;
101 }
102
103 //RES comparison is done
104 public static void part3(String[][] db, int x) throws IOException{
105
106 System.out.println("|SN| RES is received from UE.\n");
107 System.out.println("|SN| Checking if RES matches XRES..");
108
109 int[] XRES=HexToBinary(db[x][1]);
110 int[] RES_SN=HexToBinary(ReadFileString("RES_UE.txt"));
111
112 String RES_result=Compare(XRES,RES_SN);
113
114 if(RES_result.equalsIgnoreCase("same")){
115 System.out.println("|SN| RES challenge succeeded.\n");
116 WriteFileString("SN_RES_result.txt","VALID");}
117 else {
118 System.out.println("|SN| RES challenge failed.\n");
119 WriteFileString("SN_RES_result.txt","INVALID");}
120 }
121
122 //SN eliminates the part for itself and for UE
123 public static void Authenticate_UE(String IMSI) throws IOException {
124
125 String AV_HN=ReadFileString("AV_HN.txt");

78

126 int[] AV_SN=HexToBinary(AV_HN);
127
128 System.out.println("|SN| Extracting XRES..");
129
130 int[] XRES_SN=new int[64];
131 int[] AV_toUE=new int[256];
132
133 CopyArray(AV_SN,XRES_SN,256,0,64);
134
135 System.out.println("|SN| XRES is extracted.\n");
136 System.out.println("|SN| Preparing AV for UE..");
137
138 CopyArray(AV_SN,AV_toUE,0,0,256);
139
140 WriteFileHex("AV_toUE.txt",AV_SN);
141 WriteFile("XRES_SN.txt",XRES_SN);
142 }
143
144 }

A.4. HN.java

 1 import java.io.IOException;
 2
 3 public class HN extends METHODS{
 4
 5 public static void main(String[] args) throws IOException {
 6
 7 //db[0]=IMSI
 8 //db[1]=new pseudonym
 9 //db[2]=used pseudonym
 10 //db[3]=K_MASTER
 11 //db[4]=OP
 12 //db[5]=SQN
 13
 14 String[] db=new String[6];
 15
 16 db[0]=ReadFileString("IMSI_hex.txt");
 17 db[3]=ReadFileString("K_MASTER_hex.txt");
 18 db[4]=ReadFileString("OP_hex.txt");
 19 db[5]=ReadFileString("SQN_hex.txt");
 20 db[1]="";
 21 db[2]="";
 22 WriteFileString("track.txt","0");
 23
 24 //AMF Creation
 25 int[] AMF_key=new int[16];

79

 26 int[] AMF_pseudo=new int[16];
 27 int[] AMF_empty=new int[16];
 28 AMF_key[1]=1;
 29 AMF_pseudo[2]=1;
 30
 31 WriteFile("AMF Key.txt",AMF_key);
 32 WriteFile("AMF Pseudo.txt",AMF_pseudo);
 33 WriteFile("AMF Empty.txt",AMF_empty);
 34
 35 int x=0;
 36
 37 System.out.println("----------|Home Network|----------");
 38 System.out.println("--------------|HN|----------------\n");
 39
 40 do{
 41 proceed();
 42 if(ReadFileInt("checkpoint2.txt")==0){
 43 do{
 44 System.out.println("|HN| There isn't a new file yet. Try again later.");
 45 System.out.println("\n"+"--"+"\n");
 46 proceed();
 47 } while(ReadFileInt("checkpoint2.txt")==0);}
 48 else if(ReadFileInt("checkpoint2.txt")==1){}
 49 WriteFileInt("checkpoint2.txt",0);
 50
 51 //Verifies if the UE is valid party
 52 part1(db);
 53
 54 String type;
 55 type=ReadFileString("AV_type_req.txt");
 56
 57 //R1 type -- RAND will be used for creating K_kasumi
 58 if(type.equalsIgnoreCase("R1")){
 59
 60 //R1-type AV is created
 61 part2(db, type);
 62
 63 System.out.println("|HN| " + type.toUpperCase() + "-type AV is sent to SN.");
 64 System.out.println("\n"+"--"+"\n");
 65 WriteFileInt("checkpoint3.txt",1);
 66
 67 proceed();
 68 if(ReadFileInt("checkpoint6.txt")==0){
 69 do{
 70 System.out.println("|HN| There isn't a new file yet. Try again later.");
 71 System.out.println("\n"+"--"+"\n");
 72 proceed();
 73 } while(ReadFileInt("checkpoint6.txt")==0);}
 74 else if(ReadFileInt("checkpoint6.txt")==1){}
 75 WriteFileInt("checkpoint6.txt",0);
 76
 77 //Result of the RES comparison is received

80

 78 System.out.println("|HN| Result for RES challenge is received from SN.\n");
 79 System.out.println("|HN| Checking result..");
 80
 81 String res=(ReadFileString("SN_RES_result.txt"));
 82 if(res.equalsIgnoreCase("valid")){
 83 System.out.println("|HN| Authentication succeeded.");
 84 System.out.println("\n"+"--"+"\n");}
 85 else if(res.equalsIgnoreCase("invalid")){
 86 System.out.println("|HN| Authentication failed.");
 87 System.out.println("\n"+"--"+"\n");}
 88 else{
 89 System.out.println("|HN| There is an error!");
 90 System.exit(0);}
 91 }
 92
 93 //R2 type -- RAND will include pseudonym
 94 else if(type.equalsIgnoreCase("R2")){
 95
 96 System.out.println("|HN| Creating pseudonym..");
 97 PseudonymCreate(db);
 98
 99 String temp=db[2];
100 db[2]=db[1];
101 db[1]=BinaryToText(ReadFile("Pseudonym.txt",10));
102
103 //R2-type AV is created
104 part2(db, type);
105
106 System.out.println("|HN| " + type.toUpperCase() + "-type AV is sent to SN.");
107 System.out.println("\n"+"--"+"\n");
108 WriteFileInt("checkpoint3.txt",1);
109
110 proceed();
111 if(ReadFileInt("checkpoint6.txt")==0){
112 do{
113 System.out.println("|HN| There isn't a new file yet. Try again later.");
114 System.out.println("\n"+"--"+"\n");
115 proceed();
116 } while(ReadFileInt("checkpoint6.txt")==0);}
117 else if(ReadFileInt("checkpoint6.txt")==1){}
118 WriteFileInt("checkpoint6.txt",0);
119
120 //Result of the RES comparison is received
121 System.out.println("|HN| Response result from SN.\n");
122 System.out.println("|HN| Checking response..");
123
124 System.out.println("|HN| Result for RES challenge is received from SN.\n");
125 System.out.println("|HN| Checking result..");
126
127 String res=(ReadFileString("SN_RES_result.txt"));
128
129 if(res.equalsIgnoreCase("valid")){

81

130 System.out.println("|HN| Authentication succeeded.");
131 System.out.println("\n"+"--"+"\n");}
132 else if(res.equalsIgnoreCase("invalid")){
133 System.out.println("|HN| Authentication failed.");
134 db[1]=db[2];
135 db[2]=temp;
136 System.out.println("|UE| Database is corrected.");
137 System.out.println("\n"+"--"+"\n");}
138 else{
139 System.out.println("|HN| There is an error!");
140 System.exit(0);}
141 }
142
143 //R3 type -- RAND isn't used in specific task
144 else if(type.equalsIgnoreCase("R3")){
145
146 //R3-type AV is created
147 part2(db, type);
148
149 System.out.println("|HN| " + type.toUpperCase() + "-type AV is sent to SN.");
150 System.out.println("\n"+"--"+"\n");
151 WriteFileInt("checkpoint3.txt",1);
152
153 proceed();
154 if(ReadFileInt("checkpoint6.txt")==0){
155 do{
156 System.out.println("|HN| There isn't a new file yet. Try again later.");
157 System.out.println("\n"+"--"+"\n");
158 proceed();
159 } while(ReadFileInt("checkpoint6.txt")==0);}
160 else if(ReadFileInt("checkpoint6.txt")==1){}
161 WriteFileInt("checkpoint6.txt",0);
162
163 //Result of the RES comparison is received
164 System.out.println("|HN| Result for RES challenge is received from SN.\n");
165 System.out.println("|HN| Checking result..");
166
167 String res=(ReadFileString("SN_RES_result.txt"));
168 if(res.equalsIgnoreCase("valid")){
169 System.out.println("|HN| Authentication succeeded.");
170 System.out.println("\n"+"--"+"\n");}
171 else if(res.equalsIgnoreCase("invalid")){
172 System.out.println("|HN| Authentication failed.");
173 System.out.println("\n"+"--"+"\n");}
174 else{
175 System.out.println("|HN| There is an error!");
176 System.exit(0);}
177
178
179 x++;
180 }
181

82

182 } while(x<1000);
183
184 }
185 //Verification process in HN, when there is a connection attempt from UE
186 public static void part1(String[] db) throws IOException{
187
188 System.out.println("|HN| Attach attempt from DNA
"+ReadFileString("SN_IMSI.txt")+"\n");
189 System.out.println("|HN| Checking IMSI..");
190 String track;
191
192 //IMSI is sent. HN receives IMSI twice. One for key and one for new pseudonym
193 if(db[0].equals(ReadFileString("SN_IMSI.txt"))){
194 System.out.println("|HN| IMSI is valid.\n");
195 track=ReadFileString("track.txt");
196 if(track.equals("0")){
197 WriteFileString("AV_type_req.txt","R1");//generate R1-type AV
198 WriteFileString("track.txt","1");}
199 else if(track.equals("1")){
200 WriteFileString("AV_type_req.txt","R2");//generate R2-type AV
201 WriteFileString("track.txt","0");}}
202 //New pseudonym is sent. New pseudonym is required
203 else if(db[1].equals(ReadFileString("SN_IMSI.txt"))){
204 System.out.println("|HN| Pseudonym is valid.\n");
205 WriteFileString("AV_type_req.txt","R2");}//generate R2-type AV
206 //Used pseudonym is sent.
207 else if(db[2].equals(ReadFileString("SN_IMSI.txt"))){
208 System.out.println("|HN| Pseudonym is valid.\n");
209 WriteFileString("AV_type_req.txt","R3");}//generate R3-type AV
210 else{
211 System.out.println("|HN| IMSI is not valid.");
212 System.exit(0);}
213
214 }
215
216 //AV is created in order to send necessary information to UE
217 public static void part2(String[] db, String type) throws IOException{
218
219 System.out.println("|HN| " + type.toUpperCase() + "-type AV is required.\n");
220 System.out.println("|HN| Creating "+ type.toUpperCase() + "-type AV..");
221
222 int[] K_MASTER=HexToBinary(db[3]);
223 int[] OP=HexToBinary(db[4]);
224 int[] SQN=HexToBinary(db[5]);
225
226 if(type.equalsIgnoreCase("r1")){
227 RAND("key");
228 int[] RAND_KEY=ReadFile("RAND_key.txt",128);
229 int[] AMF_KEY=ReadFile("AMF Key.txt",16);
230 int[] XRES_KEY=RES(RAND_KEY,K_MASTER,OP,SQN,AMF_KEY);
231 int[] AK_KEY=AK(RAND_KEY,K_MASTER,OP,SQN,AMF_KEY);
232 int[] MAC_KEY=MAC(RAND_KEY,K_MASTER,OP,SQN,AMF_KEY);

83

233 int[] AUTN_KEY=AUTN(SQN,AK_KEY,AMF_KEY,MAC_KEY);
234 int[] AV_KEY=AV(RAND_KEY,XRES_KEY,AUTN_KEY);
235
236 WriteFileHex("KEY_KASUMI_HN.txt",KeyKasumi(RAND_KEY, K_MASTER, OP,
SQN, AMF_KEY));
237
238 System.out.println("|HN| R1-type AV is created.\n");
239 WriteFileHex("AV_HN.txt",AV_KEY);
240 }
241
242 else if(type.equalsIgnoreCase("r2")){
243
244 RAND("pseudonym");
245 int[] RAND_PSEUDO=ReadFile("RAND_pseudo.txt",128);
246 int[] AMF_PSEUDO=ReadFile("AMF Pseudo.txt",16);
247 int[] XRES_PSEUDO=RES(RAND_PSEUDO,K_MASTER,OP,SQN,AMF_PSEUDO);
248 int[] AK_PSEUDO=AK(RAND_PSEUDO,K_MASTER,OP,SQN,AMF_PSEUDO);
249 int[] MAC_PSEUDO=MAC(RAND_PSEUDO,K_MASTER,OP,SQN,AMF_PSEUDO);
250 int[] AUTN_PSEUDO=AUTN(SQN,AK_PSEUDO,AMF_PSEUDO,MAC_PSEUDO);
251 int[] AV_PSEUDO=AV(RAND_PSEUDO,XRES_PSEUDO,AUTN_PSEUDO);
252
253 System.out.println("|HN| R2-type AV is created.\n");
254 WriteFileHex("AV_HN.txt",AV_PSEUDO);
255 }
256
257 else if(type.equalsIgnoreCase("r3")){
258 RAND("empty");
259 int[] RAND_EMPTY=ReadFile("RAND_emp.txt",128);
260 int[] AMF_EMPTY=ReadFile("AMF Empty.txt",16);
261 int[] XRES_EMPTY=RES(RAND_EMPTY,K_MASTER,OP,SQN,AMF_EMPTY);
262 int[] AK_EMPTY=AK(RAND_EMPTY,K_MASTER,OP,SQN,AMF_EMPTY);
263 int[] MAC_EMPTY=MAC(RAND_EMPTY,K_MASTER,OP,SQN,AMF_EMPTY);
264 int[] AUTN_EMPTY=AUTN(SQN,AK_EMPTY,AMF_EMPTY,MAC_EMPTY);
265 int[] AV_EMPTY=AV(RAND_EMPTY,XRES_EMPTY,AUTN_EMPTY);
266
267 System.out.println("|HN| R3-type AV is created.\n");
268 WriteFileHex("AV_HN.txt",AV_EMPTY);
269 }
270 }
271
272 //Creates RAND according to the input. Writes to the file
273 public static void RAND(String reason)throws IOException{
274
275 int[] RAND_key, RAND_pseudo, RAND_empty;
276
277 if(reason.equalsIgnoreCase("key")){
278 RAND_key=random(128);
279 WriteFile("RAND_key.txt",RAND_key);}
280
281 else if(reason.equalsIgnoreCase("empty")){
282 RAND_empty=random(128);
283 WriteFile("RAND_emp.txt",RAND_empty);}

84

284
285 else if(reason.equalsIgnoreCase("pseudonym")){
286 int[] Pseudo_IMSI, Pseudo_bit, Pseudo_pad;
287 int[] pad, rnd1, rnd2;
288 Pseudo_IMSI=ReadFile("Pseudo_IMSI.txt",10);
289 Pseudo_bit=PseudoToBits(Pseudo_IMSI);
290 pad=ReadFile("pad.txt",24);
291 Pseudo_pad=Concatenate(Pseudo_bit,pad);
292
293 int[] ciphertext, KEY_kasumi;
294 KEY_kasumi=HexToBinary(ReadFileString("KEY_KASUMI_HN.txt"));
295 ciphertext=KASUMI_enc(Pseudo_pad,KEY_kasumi);
296
297 rnd1=ReadFile("rnd1.txt",32);
298 rnd2=ReadFile("rnd2.txt",32);
299
300 RAND_pseudo=Concatenate(Concatenate(rnd1,ciphertext),rnd2);
301 WriteFile("RAND_pseudo.txt",RAND_pseudo);}
302 }
303
304 //Creates AUTN with the inputs
305 public static int[] AUTN(int[] SQN, int[] AK, int[] AMF, int[] MAC){
306 int[] temp=XOR(SQN,AK);
307 int[] output;
308 output=Concatenate(Concatenate(temp,AMF),MAC);
309
310 return output;
311 }
312
313 //Creates AV-authentication vector
314 public static int[] AV(int[] RAND, int[] XRES, int[] AUTN){
315 int[] output = Concatenate(Concatenate(RAND,AUTN),XRES);
316
317 return output;
318 }
319
320 //Create Key for Kasumi encryption
321 public static int[] KeyKasumi(int[] RAND, int[] K_MASTER, int[] OP, int[] SQN, int[]
AMF) throws IOException{
322
323 int[] CK, IK, AK;
324 CK=CK(RAND, K_MASTER, OP, SQN, AMF);
325 IK=IK(RAND, K_MASTER, OP, SQN, AMF);
326 AK=AK(RAND, K_MASTER, OP, SQN, AMF);
327
328 int[] K,S;
329 int[] FC, P0, L0, P1, L1;
330 int[] oct1, oct2, oct3;
331
332 K=Concatenate(CK, IK);
333 FC=HexToBinary("60");

85

334 //For MCC and MNC, I will use DNA Oy, which is 244 12.
335 oct1=Concatenate(HexToBinary("4"),HexToBinary("2"));
336 oct2=Concatenate(HexToBinary("f"),HexToBinary("4"));
337 oct3=Concatenate(HexToBinary("2"),HexToBinary("1"));
338 P0=Concatenate(Concatenate(oct1,oct2),oct3);
339 L0=Concatenate(HexToBinary("000"),HexToBinary("3"));
340 P1=XOR(SQN, AK);
341 L1=Concatenate(HexToBinary("000"),HexToBinary("6"));
342
343 // S=FC || P0 || LO || P1 || L1.
344 S=Concatenate(Concatenate(Concatenate(Concatenate(FC,P0),L0),P1),L1);
345
346 int[] KEY_kasumi=HMAC(S,K);
347
348 return KEY_kasumi;
349 }
350
351 //Creates random pseudonym with the necessary random inputs and writes to the
file
352 public static void CreatePseudonym() throws IOException{
353 int[] Pseudo_IMSI;
354 int[] pad, rnd1, rnd2;
355
356 Pseudo_IMSI=rand_number(10);
357 pad=random(24);
358 rnd1=random(32);
359 rnd2=random(32);
360
361 WriteFile("Pseudo_IMSI.txt",Pseudo_IMSI);
362 WriteFile("pad.txt",pad);
363 WriteFile("rnd1.txt",rnd1);
364 WriteFile("rnd2.txt",rnd2);
365 }
366
367 //Makes sure that created pseudonym is not used before
368 public static void PseudonymCreate(String[] db) throws IOException{
369
370 CreatePseudonym();
371 int[] pseudonym=ReadFile("Pseudo_IMSI.txt",10);
372 int[] temp1=HexToBinary(db[0]);
373 int[] temp2=HexToBinary(db[1]);
374 int[] temp3=HexToBinary(db[2]);
375
376 String t=Compare(temp1,pseudonym); //Check if the pseudonym is used before
377 String tt=Compare(temp2,pseudonym); //Check if the pseudonym is used before
378 String ttt=Compare(temp3,pseudonym); //Check if the pseudonym is used before
379
380 if(t.equalsIgnoreCase("same") || tt.equalsIgnoreCase("same") ||
ttt.equalsIgnoreCase("same")){
381 do{
382 CreatePseudonym();
383 pseudonym=ReadFile("Pseudo_IMSI.txt",10);

86

384 t=Compare(temp1,pseudonym);
385 tt=Compare(temp2,pseudonym);
386 ttt=Compare(temp3,pseudonym);
387 }
388 while(t.equalsIgnoreCase("same") || tt.equalsIgnoreCase("same") ||
ttt.equalsIgnoreCase("same"));
389 }
390
391 System.out.println("|HN| New Pseudonym is created.");
392 System.out.println("|HN| New Pseudonym is "+BinaryToText(pseudonym)+"\n");
393 WriteFile("Pseudonym.txt",pseudonym);
394 }

395

A.5. METHODS.java

 1 import java.io.File;
 2 import java.io.IOException;
 3 import java.io.PrintWriter;
 4 import java.io.UnsupportedEncodingException;
 5 import static java.lang.Math.pow;
 6 import java.security.InvalidKeyException;
 7 import java.security.NoSuchAlgorithmException;
 8 import java.security.SecureRandom;
 9 import java.util.Arrays;
 10 import java.util.Scanner;
 11 import javax.crypto.Mac;
 12 import javax.crypto.spec.SecretKeySpec;
 13
 14
 15 class METHODS {
 16
 17
 18 //---GENERAL FUNCTIONS---//
 19
 20
 21 //creates random bits of 0 and 1. Input is length of the array. Output is an array of
random bits.
 22 public static int[] random (int bitlength){
 23 int[] array;
 24 array = new int[bitlength];
 25 SecureRandom rnd = new SecureRandom();
 26 for(int i=0; i<bitlength; i++){
 27 array[i]=rnd.nextInt(2);}
 28
 29 return array;
 30 }

87

 31
 32 //creates random bits from 0 to 9. Input is length of the array. Output is an array of
random bits.
 33 public static int[] rand_number (int bitlength){
 34 int[] array;
 35 array = new int[bitlength];
 36 SecureRandom rnd = new SecureRandom();
 37 for(int i=0; i<bitlength; i++){
 38 array[i]=rnd.nextInt(10);}
 39
 40 return array;
 41 }
 42
 43 //copies the elements from one array to another.
 44 public static int[] CopyArray (int[] arrayFrom, int[] arrayTo, int a, int b, int c){
 45 //a=initial element to start copy in arrayFrom
 46 //b=initial element to past in arrayTo
 47 //c=how many elements to copy
 48
 49 System.arraycopy(arrayFrom, a, arrayTo, b, c);
 50
 51 return arrayTo;
 52 }
 53
 54 //same as previous. Only the output is String.
 55 public static String CopyArrayString (int[] arrayFrom, int[] arrayTo, int a, int b, int
c){
 56 //a=initial element to start copy in arrayFrom
 57 //b=initial element to past in arrayTo
 58 //c=how many elements to copy
 59
 60 System.arraycopy(arrayFrom, a, arrayTo, b, c);
 61 String t = Arrays.toString(arrayTo);
 62
 63 return t;
 64 }
 65
 66 //copies the elements from a String to another
 67 public static String CopyString (String from, int a, int b){
 68 String out="";
 69 for(int x=0; x<b; x++){
 70 out+=from.charAt(x+a);}
 71
 72 return out;
 73 }
 74
 75 //takes two array and concatenates them, displays as a one array
 76 public static int[] Concatenate (int[] array1, int[] array2) {
 77 int al;
 78 al=array1.length+array2.length;
 79 int[] result = new int[al];
 80 CopyArray(array1,result,0,0,array1.length);

88

 81 CopyArray(array2,result,0,array1.length,array2.length);
 82
 83 return result;
 84 }
 85
 86 //executes XOR operation. Input is two elements of operation as arrays. Output is
array of integers as a result.
 87 public static int[] XOR (int[] input, int[] key) {
 88 int[] output;
 89 output = new int[input.length];
 90 for(int x=0; x<input.length; x++){
 91 output[x] = input[x] ^ key[x];}
 92
 93 return output;
 94 }
 95
 96 //executes AND operation. Input is two elements of operation as arrays. Output is
array of integers as a result.
 97 public static int[] AND (int[] input1, int[] input2) {
 98 int[] output;
 99 output = new int[input1.length];
 100 for(int x=0; x<input1.length; x++){
 101 output[x] = input1[x] & input2[x];}
 102
 103 return output;
 104 }
 105
 106 //executes OR operation. Input is two elements of operation as arrays. Output is
array of integers as a result.
 107 public static int[] OR (int[] input1, int[] input2) {
 108 int[] output;
 109 output = new int[input1.length];
 110 for(int x=0; x<input1.length; x++){
 111 output[x] = input1[x] | input2[x];}
 112
 113 return output;
 114 }
 115
 116 //left circular rotation operation. Rotation is done by n bits.
 117 public static int[] CircularLeftRotation (int[] array, int n) {
 118 int al=array.length;
 119 int[] output;
 120 output=new int[al];
 121 CopyArray(array,output,0,0,al);
 122 for (int x=0; x<n; x++){
 123 int first = output[0];
 124 CopyArray(output,output,1,0,al-1);
 125 output[al - 1] = first;}
 126
 127 return output;
 128 }
 129

89

 130 //right circular rotation operation. Rotation is done by n bits.
 131 public static int[] CircularRightRotation (int[] array, int n) {
 132 int al=array.length;
 133 int[] output;
 134 output=new int[al];
 135 CopyArray(array,output,0,0,al);
 136 for (int x=0; x<n; x++){
 137 int last = output[al-1];
 138 CopyArray(output,output,0,1,al-1);
 139 output[0] = last;}
 140
 141 return output;
 142 }
 143
 144 //divides the array into two arrays and displays first part of n length.
 145 public static int[] DivideFirst (int[] array, int n) {
 146 int[] first = new int[n];
 147 CopyArray(array,first,0,0,n);
 148
 149 return first;
 150 }
 151
 152 //divides the array into two arrays and displays second part of array.length-n length
 153 public static int[] DivideSecond (int[] array, int n) {
 154 int al;
 155 al=array.length;
 156 int[] second = new int[al-n];
 157 CopyArray(array,second,n,0,al-n);
 158
 159 return second;
 160 }
 161
 162 //prints the array as String
 163 public static String ArrayToString (int[] input){
 164 String out="";
 165 for(int x=0; x<input.length; x++){
 166 out+=input[x];}
 167
 168 return out;
 169 }
 170
 171 //Compares two arrays and gives as output if they are identical or not
 172 public static String Compare(int[] a1, int[] a2){
 173 String result;
 174 int t=0;
 175
 176 if(a1.length==a2.length){
 177 for(int x=0; x<a1.length; x++){
 178 if(a1[x]==a2[x]){
 179 t+=1;}
 180 }
 181 if(t<a1.length){

90

 182 result="notsame";}
 183 else{
 184 result="same";}
 185 }
 186 else{
 187 result="notsame";}
 188
 189 return result;
 190 }
 191
 192 //Response process during communication
 193 public static void response(String m){
 194 if(m.equalsIgnoreCase("YES")||m.equalsIgnoreCase("y")){}
 195 else if(m.equalsIgnoreCase("NO")){
 196 System.out.println("Operation is stopped!");
 197 System.exit(0);}
 198 }
 199
 200 public static void proceed(){
 201 System.out.println("Press enter to proceed. (Write STOP to exit.)");
 202 Scanner scan = new Scanner (System.in);
 203 String t=scan.nextLine();
 204 if(t.equalsIgnoreCase("stop")||t.equalsIgnoreCase("no")){
 205 System.exit(0);}
 206 }
 207
 208 //---CONVERSIONS---//
 209
 210 //converts hex to binary array. Input is String of hexadecimal digits. Output is the 4
times bigger as the length of the input.
 211 public static int[] HexToBinaryArrayKey (String s){
 212
 213 String digits = "0123456789ABCDEF";
 214 s = s.toUpperCase();
 215 int[] hex=new int[s.length()];
 216
 217 for(int x=0; x<s.length(); x++){
 218 char c=s.charAt(x);
 219 int d=digits.indexOf(c);
 220 hex[x]=d;}
 221
 222 int[] binary=new int[4*s.length()];
 223 for(int y=0; y<hex.length; y++){
 224 if(hex[y]==0){
 225 int[] temp={0,0,0,0};
 226 CopyArray(temp,binary,0,4*y,4);}
 227 else if(hex[y]==1){
 228 int[] temp={0,0,0,1};
 229 CopyArray(temp,binary,0,4*y,4);}
 230 else if(hex[y]==2){
 231 int[] temp={0,0,1,0};
 232 CopyArray(temp,binary,0,4*y,4);}

91

 233 else if(hex[y]==3){
 234 int[] temp={0,0,1,1};
 235 CopyArray(temp,binary,0,4*y,4);}
 236 else if(hex[y]==4){
 237 int[] temp={0,1,0,0};
 238 CopyArray(temp,binary,0,4*y,4);}
 239 else if(hex[y]==5){
 240 int[] temp={0,1,0,1};
 241 CopyArray(temp,binary,0,4*y,4);}
 242 else if(hex[y]==6){
 243 int[] temp={0,1,1,0};
 244 CopyArray(temp,binary,0,4*y,4);}
 245 else if(hex[y]==7){
 246 int[] temp={0,1,1,1};
 247 CopyArray(temp,binary,0,4*y,4);}
 248 else if(hex[y]==8){
 249 int[] temp={1,0,0,0};
 250 CopyArray(temp,binary,0,4*y,4);}
 251 else if(hex[y]==9){
 252 int[] temp={1,0,0,1};
 253 CopyArray(temp,binary,0,4*y,4);}
 254 else if(hex[y]==10){
 255 int[] temp={1,0,1,0};
 256 CopyArray(temp,binary,0,4*y,4);}
 257 else if(hex[y]==11){
 258 int[] temp={1,0,1,1};
 259 CopyArray(temp,binary,0,4*y,4);}
 260 else if(hex[y]==12){
 261 int[] temp={1,1,0,0};
 262 CopyArray(temp,binary,0,4*y,4);}
 263 else if(hex[y]==13){
 264 int[] temp={1,1,0,1};
 265 CopyArray(temp,binary,0,4*y,4);}
 266 else if(hex[y]==14){
 267 int[] temp={1,1,1,0};
 268 CopyArray(temp,binary,0,4*y,4);}
 269 else if(hex[y]==15){
 270 int[] temp={1,1,1,1};
 271 CopyArray(temp,binary,0,4*y,4);}
 272 }
 273
 274 return binary;
 275 }
 276
 277 //converts binary array to hex. Input is array of binary digits. Output is 4 times
smaller as the length of the array
 278 public static String BinaryToHex (int[] binary){
 279 int[] bin;
 280 if(binary.length%4!=0){
 281 int t=binary.length + (4 - (binary.length%4));
 282 bin=new int[t];
 283 CopyArray(binary,bin,0,t-binary.length,binary.length);}

92

 284 else{
 285 bin=new int[binary.length];
 286 CopyArray(binary,bin,0,0,binary.length);}
 287
 288 String s="";
 289 for(int x=0; x<bin.length/4; x++){
 290 int h=8*bin[4*x]+4*bin[4*x+1]+2*bin[4*x+2]+bin[4*x+3];
 291 if(h==0){
 292 s+="0";}
 293 else if(h==1){
 294 s+="1";}
 295 else if(h==2){
 296 s+="2";}
 297 else if(h==3){
 298 s+="3";}
 299 else if(h==4){
 300 s+="4";}
 301 else if(h==5){
 302 s+="5";}
 303 else if(h==6){
 304 s+="6";}
 305 else if(h==7){
 306 s+="7";}
 307 else if(h==8){
 308 s+="8";}
 309 else if(h==9){
 310 s+="9";}
 311 else if(h==10){
 312 s+="A";}
 313 else if(h==11){
 314 s+="B";}
 315 else if(h==12){
 316 s+="C";}
 317 else if(h==13){
 318 s+="D";}
 319 else if(h==14){
 320 s+="E";}
 321 else if(h==15){
 322 s+="F";}
 323 }
 324 s=s.toLowerCase();
 325
 326 return s;
 327 }
 328
 329 //converts hex to binary array. Input is String of hexadecimal digits. Output is the 4
times bigger as the length of the input.
 330 public static int[] HexToBinary (String s){
 331
 332 String digits = "0123456789ABCDEF";
 333 s = s.toUpperCase();
 334 int[] hex=new int[s.length()];

93

 335
 336 for(int x=0; x<s.length(); x++){
 337 char c=s.charAt(x);
 338 int d=digits.indexOf(c);
 339 hex[x]=d;}
 340
 341 int[] binary=new int[4*s.length()];
 342 for(int y=0; y<hex.length; y++){
 343 if(hex[y]==0){
 344 int[] temp={0,0,0,0};
 345 CopyArray(temp,binary,0,4*y,4);}
 346 else if(hex[y]==1){
 347 int[] temp={0,0,0,1};
 348 CopyArray(temp,binary,0,4*y,4);}
 349 else if(hex[y]==2){
 350 int[] temp={0,0,1,0};
 351 CopyArray(temp,binary,0,4*y,4);}
 352 else if(hex[y]==3){
 353 int[] temp={0,0,1,1};
 354 CopyArray(temp,binary,0,4*y,4);}
 355 else if(hex[y]==4){
 356 int[] temp={0,1,0,0};
 357 CopyArray(temp,binary,0,4*y,4);}
 358 else if(hex[y]==5){
 359 int[] temp={0,1,0,1};
 360 CopyArray(temp,binary,0,4*y,4);}
 361 else if(hex[y]==6){
 362 int[] temp={0,1,1,0};
 363 CopyArray(temp,binary,0,4*y,4);}
 364 else if(hex[y]==7){
 365 int[] temp={0,1,1,1};
 366 CopyArray(temp,binary,0,4*y,4);}
 367 else if(hex[y]==8){
 368 int[] temp={1,0,0,0};
 369 CopyArray(temp,binary,0,4*y,4);}
 370 else if(hex[y]==9){
 371 int[] temp={1,0,0,1};
 372 CopyArray(temp,binary,0,4*y,4);}
 373 else if(hex[y]==10){
 374 int[] temp={1,0,1,0};
 375 CopyArray(temp,binary,0,4*y,4);}
 376 else if(hex[y]==11){
 377 int[] temp={1,0,1,1};
 378 CopyArray(temp,binary,0,4*y,4);}
 379 else if(hex[y]==12){
 380 int[] temp={1,1,0,0};
 381 CopyArray(temp,binary,0,4*y,4);}
 382 else if(hex[y]==13){
 383 int[] temp={1,1,0,1};
 384 CopyArray(temp,binary,0,4*y,4);}
 385 else if(hex[y]==14){
 386 int[] temp={1,1,1,0};

94

 387 CopyArray(temp,binary,0,4*y,4);}
 388 else if(hex[y]==15){
 389 int[] temp={1,1,1,1};
 390 CopyArray(temp,binary,0,4*y,4);}
 391 }
 392 return binary;
 393 }
 394
 395 //Array to ASCII converter
 396 public static String BinaryToText(int[] message){
 397 String output="";
 398 for(int x=0; x<message.length; x++){
 399 output+=message[x];}
 400
 401 return output;
 402 }
 403
 404 //Writes pseudonym in hex to an array. output 10-bits
 405 public static int[] PseudoHexToBit(String s){
 406 int[] ps=new int[10];
 407 String a="0123456789";
 408 for(int x=0; x<10; x++){
 409 if(s.charAt(x)==a.charAt(0)){
 410 ps[x]=0;}
 411 else if(s.charAt(x)==a.charAt(1)){
 412 ps[x]=1;}
 413 else if(s.charAt(x)==a.charAt(2)){
 414 ps[x]=2;}
 415 else if(s.charAt(x)==a.charAt(3)){
 416 ps[x]=3;}
 417 else if(s.charAt(x)==a.charAt(4)){
 418 ps[x]=4;}
 419 else if(s.charAt(x)==a.charAt(5)){
 420 ps[x]=5;}
 421 else if(s.charAt(x)==a.charAt(6)){
 422 ps[x]=6;}
 423 else if(s.charAt(x)==a.charAt(7)){
 424 ps[x]=7;}
 425 else if(s.charAt(x)==a.charAt(8)){
 426 ps[x]=8;}
 427 else if(s.charAt(x)==a.charAt(9)){
 428 ps[x]=9;}
 429 }
 430 return ps;
 431 }
 432
 433 //Converts IMSI-like number to bits. output 40-bits
 434 public static int[] PseudoToBits (int[] pseudonym){
 435
 436 int[] pseudonymBinary;
 437 pseudonymBinary = new int[40];
 438

95

 439 for(int c=0; c<10; c++){
 440 int c1 = 0+4*c;
 441 int c2 = 1+4*c;
 442 int c3 = 2+4*c;
 443 int c4 = 3+4*c;
 444
 445 if(pseudonym[c]==0){
 446 pseudonymBinary[c1]=0;
 447 pseudonymBinary[c2]=0;
 448 pseudonymBinary[c3]=0;
 449 pseudonymBinary[c4]=0;}
 450
 451 else if(pseudonym[c]==1){
 452 pseudonymBinary[c1]=0;
 453 pseudonymBinary[c2]=0;
 454 pseudonymBinary[c3]=0;
 455 pseudonymBinary[c4]=1;}
 456
 457 else if(pseudonym[c]==2){
 458 pseudonymBinary[c1]=0;
 459 pseudonymBinary[c2]=0;
 460 pseudonymBinary[c3]=1;
 461 pseudonymBinary[c4]=0;}
 462
 463 else if(pseudonym[c]==3){
 464 pseudonymBinary[c1]=0;
 465 pseudonymBinary[c2]=0;
 466 pseudonymBinary[c3]=1;
 467 pseudonymBinary[c4]=1;}
 468
 469 else if(pseudonym[c]==4){
 470 pseudonymBinary[c1]=0;
 471 pseudonymBinary[c2]=1;
 472 pseudonymBinary[c3]=0;
 473 pseudonymBinary[c4]=0;}
 474
 475 else if(pseudonym[c]==5){
 476 pseudonymBinary[c1]=0;
 477 pseudonymBinary[c2]=1;
 478 pseudonymBinary[c3]=0;
 479 pseudonymBinary[c4]=1;}
 480
 481 else if(pseudonym[c]==6){
 482 pseudonymBinary[c1]=0;
 483 pseudonymBinary[c2]=1;
 484 pseudonymBinary[c3]=1;
 485 pseudonymBinary[c4]=0;}
 486
 487 else if(pseudonym[c]==7){
 488 pseudonymBinary[c1]=0;
 489 pseudonymBinary[c2]=1;
 490 pseudonymBinary[c3]=1;

96

 491 pseudonymBinary[c4]=1;}
 492
 493 else if(pseudonym[c]==8){
 494 pseudonymBinary[c1]=1;
 495 pseudonymBinary[c2]=0;
 496 pseudonymBinary[c3]=0;
 497 pseudonymBinary[c4]=0;}
 498
 499 else if(pseudonym[c]==9){
 500 pseudonymBinary[c1]=1;
 501 pseudonymBinary[c2]=0;
 502 pseudonymBinary[c3]=0;
 503 pseudonymBinary[c4]=1;}
 504 }
 505 return pseudonymBinary;
 506 }
 507
 508 //bit to byte conversion
 509 public static int BitToByteConv (int[] bit){
 510 int val=0;
 511 for(int x=0; x<8; x++){
 512 val=val+bit[x]*(int)pow(2,7-x);}
 513
 514 return val;
 515 }
 516
 517 //byte to bit conversion
 518 public static int[] ByteToBitConv (int bayt){
 519 int[] bit=new int[8];
 520
 521 for(int x=0; x<8; x++){
 522 if((bayt-pow(2,7-x))<0){
 523 bit[x]=0;}
 524 else{
 525 bit[x]=1;
 526 bayt=bayt-(int)pow(2,7-x);}}
 527 return bit;
 528 }
 529
 530 //change bits to bytes and create 4x4 matrices
 531 public static int[][] ByteMatrix (int[] bits){
 532
 533 int[] arr0 = new int[8];
 534 int[] arr1 = new int[8];
 535 int[] arr2 = new int[8];
 536 int[] arr3 = new int[8];
 537 int[] arr4 = new int[8];
 538 int[] arr5 = new int[8];
 539 int[] arr6 = new int[8];
 540 int[] arr7 = new int[8];
 541 int[] arr8 = new int[8];
 542 int[] arr9 = new int[8];

97

 543 int[] arr10 = new int[8];
 544 int[] arr11 = new int[8];
 545 int[] arr12 = new int[8];
 546 int[] arr13 = new int[8];
 547 int[] arr14 = new int[8];
 548 int[] arr15 = new int[8];
 549
 550 CopyArray(bits,arr0,0,0,8);
 551 CopyArray(bits,arr1,8,0,8);
 552 CopyArray(bits,arr2,16,0,8);
 553 CopyArray(bits,arr3,24,0,8);
 554 CopyArray(bits,arr4,32,0,8);
 555 CopyArray(bits,arr5,40,0,8);
 556 CopyArray(bits,arr6,48,0,8);
 557 CopyArray(bits,arr7,56,0,8);
 558 CopyArray(bits,arr8,64,0,8);
 559 CopyArray(bits,arr9,72,0,8);
 560 CopyArray(bits,arr10,80,0,8);
 561 CopyArray(bits,arr11,88,0,8);
 562 CopyArray(bits,arr12,96,0,8);
 563 CopyArray(bits,arr13,104,0,8);
 564 CopyArray(bits,arr14,112,0,8);
 565 CopyArray(bits,arr15,120,0,8);
 566
 567 int a00=BitToByteConv(arr0);
 568 int a10=BitToByteConv(arr1);
 569 int a20=BitToByteConv(arr2);
 570 int a30=BitToByteConv(arr3);
 571 int a01=BitToByteConv(arr4);
 572 int a11=BitToByteConv(arr5);
 573 int a21=BitToByteConv(arr6);
 574 int a31=BitToByteConv(arr7);
 575 int a02=BitToByteConv(arr8);
 576 int a12=BitToByteConv(arr9);
 577 int a22=BitToByteConv(arr10);
 578 int a32=BitToByteConv(arr11);
 579 int a03=BitToByteConv(arr12);
 580 int a13=BitToByteConv(arr13);
 581 int a23=BitToByteConv(arr14);
 582 int a33=BitToByteConv(arr15);
 583
 584 int[][]
output={{a00,a01,a02,a03},{a10,a11,a12,a13},{a20,a21,a22,a23},{a30,a31,a32,a33}};
 585
 586 return output;
 587 }
 588
 589 //change 4x4 matrices with bytes to bits
 590 public static int[] MatrixBit (int[][] matrix){
 591 int[] bits=new int[128];
 592
 593 int[] a00=ByteToBitConv(matrix[0][0]);

98

 594 int[] a10=ByteToBitConv(matrix[1][0]);
 595 int[] a20=ByteToBitConv(matrix[2][0]);
 596 int[] a30=ByteToBitConv(matrix[3][0]);
 597 int[] a01=ByteToBitConv(matrix[0][1]);
 598 int[] a11=ByteToBitConv(matrix[1][1]);
 599 int[] a21=ByteToBitConv(matrix[2][1]);
 600 int[] a31=ByteToBitConv(matrix[3][1]);
 601 int[] a02=ByteToBitConv(matrix[0][2]);
 602 int[] a12=ByteToBitConv(matrix[1][2]);
 603 int[] a22=ByteToBitConv(matrix[2][2]);
 604 int[] a32=ByteToBitConv(matrix[3][2]);
 605 int[] a03=ByteToBitConv(matrix[0][3]);
 606 int[] a13=ByteToBitConv(matrix[1][3]);
 607 int[] a23=ByteToBitConv(matrix[2][3]);
 608 int[] a33=ByteToBitConv(matrix[3][3]);
 609
 610 CopyArray(a00,bits,0,0,8);
 611 CopyArray(a10,bits,0,8,8);
 612 CopyArray(a20,bits,0,16,8);
 613 CopyArray(a30,bits,0,24,8);
 614 CopyArray(a01,bits,0,32,8);
 615 CopyArray(a11,bits,0,40,8);
 616 CopyArray(a21,bits,0,48,8);
 617 CopyArray(a31,bits,0,56,8);
 618 CopyArray(a02,bits,0,64,8);
 619 CopyArray(a12,bits,0,72,8);
 620 CopyArray(a22,bits,0,80,8);
 621 CopyArray(a32,bits,0,88,8);
 622 CopyArray(a03,bits,0,96,8);
 623 CopyArray(a13,bits,0,104,8);
 624 CopyArray(a23,bits,0,112,8);
 625 CopyArray(a33,bits,0,120,8);
 626
 627 return bits;
 628 }
 629
 630 //---WRITE & READ---//
 631
 632 //Reads file. Takes the name of the file and the length of the array. Returns an array.
 633 public static int[] ReadFile (String s, int limit) throws IOException{
 634 int[] rand=new int[limit];
 635
 636 File file = new File(s);
 637 Scanner input = new Scanner(file);
 638
 639 for(int x=0; x<limit; x++){
 640 rand[x]=input.nextInt();}
 641
 642 input.close();
 643
 644 return rand;
 645 }

99

 646
 647 //Reads file. Takes the name of the file and returns the integer
 648 public static int ReadFileInt (String s) throws IOException{
 649 int rand;
 650
 651 File file = new File(s);
 652 Scanner input = new Scanner(file);
 653
 654 rand=input.nextInt();
 655
 656 input.close();
 657
 658 return rand;
 659 }
 660
 661 //Reads file. Takes the name of the file. Returns string.
 662 public static String ReadFileString (String s) throws IOException{
 663 String output;
 664
 665 File file = new File(s);
 666 Scanner input = new Scanner(file);
 667
 668 output=input.nextLine();
 669 input.close();
 670
 671 return output;
 672 }
 673
 674 //Writes to file. Take the name of the file and array to be written. Return message.
 675 public static String WriteFile (String s, int[] array) throws IOException{
 676
 677 String FileName = s;
 678 PrintWriter outFile = new PrintWriter(FileName);
 679
 680 for(int x=0; x<array.length; x++){
 681 outFile.println(array[x]);}
 682
 683 outFile.close();
 684
 685 String output="File " + s + " is created.";
 686
 687 return output;
 688 }
 689
 690 //Writes to file. Take the name of the file and array to be written. Return message.
 691 public static String WriteFileInt (String s, int in) throws IOException{
 692
 693 String FileName = s;
 694 PrintWriter outFile = new PrintWriter(FileName);
 695
 696 outFile.println(in);
 697

100

 698 outFile.close();
 699
 700 String output="File " + s + " is created.";
 701
 702 return output;
 703 }
 704
 705 //Stores the input array as converted to hex in the file
 706 public static String WriteFileHex(String s, int[] array) throws IOException{
 707
 708 String FileName = s;
 709 PrintWriter outFile = new PrintWriter(FileName);
 710
 711 String text;
 712 text=BinaryToHex(array);
 713 outFile.println(text);
 714
 715 outFile.close();
 716
 717 String output = "File " + s + " is created.";
 718
 719 return output;
 720 }
 721
 722 //Writes the string to the file
 723 public static String WriteFileString(String s, String text) throws IOException{
 724
 725 String FileName = s;
 726 PrintWriter outFile = new PrintWriter(FileName);
 727
 728 outFile.println(text);
 729 outFile.close();
 730
 731 String output = "File " + s + " is created.";
 732
 733 return output;
 734 }
 735
 736 //write matrix
 737 public static String WriteMatrix (int[][] mat){
 738 String str="";
 739 for(int s=0; s<4; s++){
 740 for(int f=0; f<4; f++){
 741 str+=mat[s][f]+"\t";}
 742 str+="\n";}
 743
 744 return str;
 745 }
 746
 747 //---AES---//
 748
 749 //S-BOX for AES

101

 750 public static int SBOX (int input){
 751 int[] sbox = {99,124,119,123,242,107,111,197,48,1,103,43,254,215,171,
 752 118,202,130,201,125,250,89,71,240,173,212,162,175,156,164,114,192,
 753 183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21,
 754 4,199, 35,195, 24,150, 5,154, 7, 18,128,226,235, 39,178,117,9,
 755 131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132,83,209,
 756 0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207,208,239,170,
 757 251, 67, 77, 51,133, 69,249, 2,127, 80, 60,159,168,81,163, 64,143,
 758 146,157, 56,245,188,182,218, 33, 16,255,243,210,205, 12, 19,236,
 759 95,151, 68, 23,196,167,126, 61,100, 93, 25,115,96,129, 79,220,34,
 760 42,144,136, 70,238,184, 20,222, 94, 11,219,224, 50, 58, 10, 73,
 761 6, 36, 92,194,211,172, 98,145,149,228,121,231,200, 55,109,141,213,
 762 78,169,108, 86,244,234,101,122,174, 8,186,120, 37, 46, 28,166,180,
 763 198,232,221,116, 31, 75,189,139,138,112, 62,181,102, 72, 3,246,
 764 14, 97, 53, 87,185,134,193, 29,158,225,248,152, 17,105,217,142,148,
 765 155, 30,135,233,206, 85, 40,223,140,161,137, 13,191,230, 66,104,
 766 65,153, 45, 15,176, 84,187, 22};
 767
 768 int output=sbox[input];
 769
 770 return output;
 771 }
 772
 773 //ByteSubstitution Transformation
 774 public static int[][] ByteSubstitution (int[][] input){
 775 int[][] output=new int[4][4];
 776
 777 for(int x=0; x<4; x++){
 778 for(int y=0; y<4; y++){
 779 output[x][y]=SBOX(input[x][y]);}
 780 }
 781
 782 return output;
 783 }
 784
 785 //ShiftRow Transformation
 786 public static int[][] ShiftRow (int[][] input){
 787 int[][] output=new int[4][4];
 788
 789 output[0][0]=input[0][0];
 790 output[0][1]=input[0][1];
 791 output[0][2]=input[0][2];
 792 output[0][3]=input[0][3];
 793 output[1][0]=input[1][1];
 794 output[1][1]=input[1][2];
 795 output[1][2]=input[1][3];
 796 output[1][3]=input[1][0];
 797 output[2][0]=input[2][2];
 798 output[2][1]=input[2][3];
 799 output[2][2]=input[2][0];
 800 output[2][3]=input[2][1];
 801 output[3][0]=input[3][3];

102

 802 output[3][1]=input[3][0];
 803 output[3][2]=input[3][1];
 804 output[3][3]=input[3][2];
 805
 806 return output;
 807 }
 808
 809 //T2 function for MixColumn
 810 public static int T2 (int input){
 811 int output;
 812
 813 if(input<128){
 814 output=2*input;}
 815 else{
 816 output=(2*input)^283;}
 817
 818 return output;
 819 }
 820
 821 //T3 function for Mix Column
 822 public static int T3 (int input){
 823 int output;
 824 output=T2(input)^input;
 825
 826 return output;
 827 }
 828
 829 //MixColumn Transformation
 830 public static int[][] MixColumn (int[][] input){
 831 int[][] output=new int[4][4];
 832
 833 for(int x=0; x<4; x++){
 834 output[0][x]=T2(input[0][x])^T3(input[1][x])^input[2][x]^input[3][x];
 835 output[1][x]=input[0][x]^T2(input[1][x])^T3(input[2][x])^input[3][x];
 836 output[2][x]=input[0][x]^input[1][x]^T2(input[2][x])^T3(input[3][x]);
 837 output[3][x]=T3(input[0][x])^input[1][x]^input[2][x]^T2(input[3][x]);}
 838
 839 return output;
 840 }
 841
 842 //round key addition process
 843 public static int[][] AddRoundKey (int[][] plaintext, int[][] key){
 844 int[][] ciphertext=new int[4][4];
 845
 846 for(int x=0; x<4; x++){
 847 for(int y=0; y<4; y++){
 848 ciphertext[x][y]=plaintext[x][y]^key[x][y];}
 849 }
 850
 851 return ciphertext;
 852 }
 853

103

 854 //generate round keys
 855 public static int[][] GenRoundKey (int[][] prev, int round){
 856
 857 int round_const1=1;
 858 int round_const2=T2(round_const1);
 859 int round_const3=T2(round_const2);
 860 int round_const4=T2(round_const3);
 861 int round_const5=T2(round_const4);
 862 int round_const6=T2(round_const5);
 863 int round_const7=T2(round_const6);
 864 int round_const8=T2(round_const7);
 865 int round_const9=T2(round_const8);
 866 int round_const10=T2(round_const9);
 867
 868 int[] round_const={round_const1, round_const2, round_const3, round_const4,
 869 round_const5, round_const6, round_const7, round_const8, round_const9,
round_const10};
 870
 871 int[][] RoundKey=new int[4][4];
 872 RoundKey[0][0]=prev[0][0]^SBOX(prev[1][3])^round_const[round-1];
 873 RoundKey[1][0]=prev[1][0]^SBOX(prev[2][3]);
 874 RoundKey[2][0]=prev[2][0]^SBOX(prev[3][3]);
 875 RoundKey[3][0]=prev[3][0]^SBOX(prev[0][3]);
 876
 877 RoundKey[0][1]=prev[0][1]^RoundKey[0][0];
 878 RoundKey[1][1]=prev[1][1]^RoundKey[1][0];
 879 RoundKey[2][1]=prev[2][1]^RoundKey[2][0];
 880 RoundKey[3][1]=prev[3][1]^RoundKey[3][0];
 881
 882 RoundKey[0][2]=prev[0][2]^RoundKey[0][1];
 883 RoundKey[1][2]=prev[1][2]^RoundKey[1][1];
 884 RoundKey[2][2]=prev[2][2]^RoundKey[2][1];
 885 RoundKey[3][2]=prev[3][2]^RoundKey[3][1];
 886
 887 RoundKey[0][3]=prev[0][3]^RoundKey[0][2];
 888 RoundKey[1][3]=prev[1][3]^RoundKey[1][2];
 889 RoundKey[2][3]=prev[2][3]^RoundKey[2][2];
 890 RoundKey[3][3]=prev[3][3]^RoundKey[3][2];
 891
 892 return RoundKey;
 893 }
 894
 895 //AES128 encryption
 896 public static int[] AES (int[] P, int[] K){
 897
 898 int[][] Plaintext=ByteMatrix(P);
 899 int[][] Key=ByteMatrix(K);
 900
 901 //Zero'th round key is Key matrix
 902
 903 int[][] RoundKey1, RoundKey2, RoundKey3, RoundKey4, RoundKey5,
RoundKey6,

104

 904 RoundKey7, RoundKey8, RoundKey9, RoundKey10;
 905
 906 //Generate Round Key
 907 RoundKey1=GenRoundKey(Key,1);
 908 RoundKey2=GenRoundKey(RoundKey1,2);
 909 RoundKey3=GenRoundKey(RoundKey2,3);
 910 RoundKey4=GenRoundKey(RoundKey3,4);
 911 RoundKey5=GenRoundKey(RoundKey4,5);
 912 RoundKey6=GenRoundKey(RoundKey5,6);
 913 RoundKey7=GenRoundKey(RoundKey6,7);
 914 RoundKey8=GenRoundKey(RoundKey7,8);
 915 RoundKey9=GenRoundKey(RoundKey8,9);
 916 RoundKey10=GenRoundKey(RoundKey9,10);
 917
 918 //Encryption Starts
 919 int[][] Round0, Round1, Round2, Round3, Round4, Round5, Round6, Round7,
 920 Round8, Round9, Round10;
 921 //Initial Key Addition
 922 Round0=AddRoundKey(Plaintext,Key);
 923
 924 //Round1
 925 Round1=ByteSubstitution(Round0);
 926 Round1=ShiftRow(Round1);
 927 Round1=MixColumn(Round1);
 928 Round1=AddRoundKey(Round1,RoundKey1);
 929
 930 //Round2
 931 Round2=ByteSubstitution(Round1);
 932 Round2=ShiftRow(Round2);
 933 Round2=MixColumn(Round2);
 934 Round2=AddRoundKey(Round2,RoundKey2);
 935
 936 //Round3
 937 Round3=ByteSubstitution(Round2);
 938 Round3=ShiftRow(Round3);
 939 Round3=MixColumn(Round3);
 940 Round3=AddRoundKey(Round3,RoundKey3);
 941
 942 //Round4
 943 Round4=ByteSubstitution(Round3);
 944 Round4=ShiftRow(Round4);
 945 Round4=MixColumn(Round4);
 946 Round4=AddRoundKey(Round4,RoundKey4);
 947
 948 //Round5
 949 Round5=ByteSubstitution(Round4);
 950 Round5=ShiftRow(Round5);
 951 Round5=MixColumn(Round5);
 952 Round5=AddRoundKey(Round5,RoundKey5);
 953
 954 //Round6
 955 Round6=ByteSubstitution(Round5);

105

 956 Round6=ShiftRow(Round6);
 957 Round6=MixColumn(Round6);
 958 Round6=AddRoundKey(Round6,RoundKey6);
 959
 960 //Round7
 961 Round7=ByteSubstitution(Round6);
 962 Round7=ShiftRow(Round7);
 963 Round7=MixColumn(Round7);
 964 Round7=AddRoundKey(Round7,RoundKey7);
 965
 966 //Round8
 967 Round8=ByteSubstitution(Round7);
 968 Round8=ShiftRow(Round8);
 969 Round8=MixColumn(Round8);
 970 Round8=AddRoundKey(Round8,RoundKey8);
 971
 972 //Round9
 973 Round9=ByteSubstitution(Round8);
 974 Round9=ShiftRow(Round9);
 975 Round9=MixColumn(Round9);
 976 Round9=AddRoundKey(Round9,RoundKey9);
 977
 978 //Round10
 979 Round10=ByteSubstitution(Round9);
 980 Round10=ShiftRow(Round10);
 981 Round10=AddRoundKey(Round10,RoundKey10);
 982
 983 int[] ciphertext=MatrixBit(Round10);
 984
 985 return ciphertext;
 986 }
 987
 988 //HMAC
 989 public static int[] HMAC(int[] message, int[] keys) {
 990 String msg=BinaryToText(message);
 991 String keyString=BinaryToText(keys);
 992 int[] output;
 993 String digest = null;
 994 try {
 995 SecretKeySpec key = new SecretKeySpec((keyString).getBytes("UTF-8"),
"HmacSHA256");
 996 Mac mac = Mac.getInstance("HmacSHA256");
 997 mac.init(key);
 998
 999 byte[] bytes = mac.doFinal(msg.getBytes("ASCII"));
1000
1001 StringBuffer hash = new StringBuffer();
1002
1003 for (int i=0; i<bytes.length; i++){
1004 String hex = Integer.toHexString(0xFF & bytes[i]);
1005 if (hex.length() == 1){
1006 hash.append('0');}

106

1007 hash.append(hex);}
1008 digest = hash.toString();
1009 }catch (UnsupportedEncodingException e){
1010 }catch (InvalidKeyException e){
1011 }catch (NoSuchAlgorithmException e){}
1012
1013 output=HexToBinary(digest);
1014
1015 return output;
1016 }
1017
1018 //---KASUMI---//
1019
1020 //FL function. input: 32-bit, key: 32-bit, output: 32-bit
1021 public static int[] FL (int[] I, int[] KL){
1022 int[] output;
1023
1024 int l=I.length;
1025
1026 int[] L;
1027 int[] R;
1028 L=DivideFirst(I,l/2);
1029 R=DivideSecond(I,l/2);
1030
1031 int[] KL1;
1032 int[] KL2;
1033 KL1=DivideFirst(KL,l/2);
1034 KL2=DivideSecond(KL,l/2);
1035
1036 int[] LN;
1037 int[] RN;
1038
1039 RN=XOR(R,(CircularLeftRotation(AND(L,KL1),1)));
1040 LN=XOR(L,(CircularLeftRotation(OR(RN,KL2),1)));
1041
1042 output=Concatenate(LN,RN);
1043 return output;
1044 }
1045
1046 //FL function. input: 32-bit, key: 32-bit, output: 32-bit
1047 public static int[] FL_inv (int[] I, int[] KL){
1048 int[] output;
1049
1050 int l=I.length;
1051
1052 int[] L;
1053 int[] R;
1054 L=DivideFirst(I,l/2);
1055 R=DivideSecond(I,l/2);
1056
1057 int[] KL1;
1058 int[] KL2;

107

1059 KL1=DivideFirst(KL,l/2);
1060 KL2=DivideSecond(KL,l/2);
1061
1062 int[] LN;
1063 int[] RN;
1064
1065 LN=XOR(L,(CircularLeftRotation(OR(R,KL2),1)));
1066 RN=XOR(R,(CircularLeftRotation(AND(LN,KL1),1)));
1067
1068 output=Concatenate(LN,RN);
1069 return output;
1070 }
1071
1072 //ZE function. input: 7-bit. output: 9-bit
1073 public static int[] ZE (int[] I){
1074 int[] output=new int[9];
1075 output[0]=0;
1076 output[1]=0;
1077 CopyArray(I,output,0,2,7);
1078
1079 return output;
1080 }
1081
1082 //TR function. input: 9-bit. output: 7-bit
1083 public static int[] TR (int[] I){
1084 int[] output=new int[7];
1085 CopyArray(I,output,2,0,7);
1086
1087 return output;
1088 }
1089
1090 //S-BOX function - S7
1091 public static int[] S7 (int[] array) {
1092 int[] output = new int[7];
1093 int x0=array[6];
1094 int x1=array[5];
1095 int x2=array[4];
1096 int x3=array[3];
1097 int x4=array[2];
1098 int x5=array[1];
1099 int x6=array[0];
1100
1101 int y0, y1, y2, y3, y4, y5, y6;
1102
1103 int a=x1&x3;
1104 int b=x0&x1&x4;
1105 int c=x2&x5;
1106 int d=x3&x4&x5;
1107 int e=x0&x6;
1108 int f=x1&x6;
1109 int g=x3&x6;
1110 int h=x2&x4&x6;

108

1111 int i=x1&x5&x6;
1112 int j=x4&x5&x6;
1113
1114 y0=a^x4^b^x5^c^d^x6^e^f^g^h^i^j;
1115 output[6]=y0;
1116
1117 a=x0&x1;
1118 b=x0&x4;
1119 c=x2&x4;
1120 d=x1&x2&x5;
1121 e=x0&x3&x5;
1122 f=x0&x2&x6;
1123 g=x3&x6;
1124 h=x4&x5&x6;
1125
1126 y1=a^b^c^x5^d^e^x6^f^g^h^1;
1127 output[5]=y1;
1128
1129 a=x0&x3;
1130 b=x2&x3;
1131 c=x1&x2&x4;
1132 d=x0&x3&x4;
1133 e=x1&x5;
1134 f=x0&x2&x5;
1135 g=x0&x6;
1136 h=x0&x1&x6;
1137 i=x2&x6;
1138 j=x4&x6;
1139
1140 y2=x0^a^b^c^d^e^f^g^h^i^j^1;
1141 output[4]=y2;
1142
1143 a=x0&x1&x2;
1144 b=x1&x4;
1145 c=x3&x4;
1146 d=x0&x5;
1147 e=x0&x1&x5;
1148 f=x3&x2&x5;
1149 g=x1&x4&x5;
1150 h=x2&x6;
1151 i=x1&x3&x6;
1152
1153 y3=x1^a^b^c^d^e^f^g^h^i;
1154 output[3]=y3;
1155
1156 a=x0&x2;
1157 b=x1&x3;
1158 c=x1&x4;
1159 d=x0&x1&x4;
1160 e=x2&x3&x4;
1161 f=x0&x5;
1162 g=x1&x3&x5;

109

1163 h=x0&x4&x5;
1164 i=x1&x6;
1165 j=x3&x6;
1166 int k=x0&x3&x6;
1167 int l=x5&x6;
1168
1169 y4=a^x3^b^c^d^e^f^g^h^i^j^k^l^1;
1170 output[2]=y4;
1171
1172 a=x0&x2;
1173 b=x0&x3;
1174 c=x1&x2&x3;
1175 d=x0&x2&x4;
1176 e=x0&x5;
1177 f=x2&x5;
1178 g=x4&x5;
1179 h=x1&x6;
1180 i=x1&x2&x6;
1181 j=x0&x3&x6;
1182 k=x3&x4&x6;
1183 l=x2&x5&x6;
1184
1185 y5=x2^a^b^c^d^e^f^g^h^i^j^k^l^1;
1186 output[1]=y5;
1187
1188 a=x1&x2;
1189 b=x0&x1&x3;
1190 c=x0&x4;
1191 d=x1&x5;
1192 e=x3&x5;
1193 f=x0&x1&x6;
1194 g=x2&x3&x6;
1195 h=x1&x4&x6;
1196 i=x0&x5&x6;
1197
1198 y6=a^b^c^d^e^x6^f^g^h^i;
1199 output[0]=y6;
1200
1201 return output;
1202 }
1203
1204 //S7 inverse
1205 public static int[] S7_inv (int[] array) {
1206 int total = array[6]*1 + array[5]*2 + array[4]*4 + array[3]*8 + array[2]*16 +
array[1]*32 + array[0]*64;
1207 int[] s7 = {54,50,62,56,22,34,94,96,38,6,63,93,2,18,123,33,55,113,39,114,21,
1208 67,65,12,47,73,46,27,25,111,124,81,53,9,121,79,52,60,58,48,101,127,40,120,
1209
104,70,71,43,20,122,72,61,23,109,13,100,77,1,16,7,82,10,105,98,117,116,76,11,
1210
89,106,0,125,118,99,86,69,30,57,126,87,112,51,17,5,95,14,90,84,91,8,35,103,32,

110

1211
97,28,66,102,31,26,45,75,4,85,92,37,74,80,49,68,29,115,44,64,107,108,24,110,83,36,78,4
2,19,15,41,88,119,59,3};
1212
1213 int result=0;
1214 for(int x=0; x<128; x++){
1215 if(total != s7[x]){
1216 result++;}
1217 else{break;}
1218 }
1219
1220 int[] output=new int[7];
1221
1222 for(int a=0; a<7; a++){
1223 int b = result - (int)pow(2,6-a);
1224 if(b<0){
1225 output[a]=0;}
1226 else
1227 {output[a]=1;}
1228 result=result - ((int)pow(2,6-a))*output[a];
1229 }
1230
1231 return output;
1232 }
1233
1234 //S-BOX function - S9
1235 public static int[] S9 (int[] array) {
1236 int[] output = new int[9];
1237 int x0=array[8];
1238 int x1=array[7];
1239 int x2=array[6];
1240 int x3=array[5];
1241 int x4=array[4];
1242 int x5=array[3];
1243 int x6=array[2];
1244 int x7=array[1];
1245 int x8=array[0];
1246
1247 int y0;
1248 int y1;
1249 int y2;
1250 int y3;
1251 int y4;
1252 int y5;
1253 int y6;
1254 int y7;
1255 int y8;
1256
1257 int a=x0&x2;
1258 int b=x2&x5;
1259 int c=x5&x6;
1260 int d=x0&x7;

111

1261 int e=x1&x7;
1262 int f=x2&x7;
1263 int g=x4&x8;
1264 int h=x5&x8;
1265 int i=x7&x8;
1266
1267 y0=a^x3^b^c^d^e^f^g^h^i^1;
1268 output[8]=y0;
1269
1270 a=x0&x1;
1271 b=x2&x3;
1272 c=x0&x4;
1273 d=x1&x4;
1274 e=x0&x5;
1275 f=x3&x5;
1276 g=x1&x7;
1277 h=x2&x7;
1278 i=x5&x8;
1279
1280 y1=x1^a^b^c^d^e^f^x6^g^h^i^1;
1281 output[7]=y1;
1282
1283 a=x0&x3;
1284 b=x3&x4;
1285 c=x0&x5;
1286 d=x2&x6;
1287 e=x3&x6;
1288 f=x5&x6;
1289 g=x4&x7;
1290 h=x5&x7;
1291 i=x6&x7;
1292 int j=x0&x8;
1293
1294 y2=x1^a^b^c^d^e^f^g^h^i^x8^j^1;
1295 output[6]=y2;
1296
1297 a=x1&x2;
1298 b=x0&x3;
1299 c=x2&x4;
1300 d=x0&x6;
1301 e=x1&x6;
1302 f=x4&x7;
1303 g=x0&x8;
1304 h=x1&x8;
1305 i=x7&x8;
1306
1307 y3=x0^a^b^c^x5^d^e^f^g^h^i;
1308 output[5]=y3;
1309
1310 a=x0&x1;
1311 b=x1&x3;
1312 c=x0&x5;

112

1313 d=x3&x6;
1314 e=x0&x7;
1315 f=x6&x7;
1316 g=x1&x8;
1317 h=x2&x8;
1318 i=x3&x8;
1319
1320 y4=a^b^x4^c^d^e^f^g^h^i;
1321 output[4]=y4;
1322
1323 a=x1&x4;
1324 b=x4&x5;
1325 c=x0&x6;
1326 d=x1&x6;
1327 e=x3&x7;
1328 f=x4&x7;
1329 g=x6&x7;
1330 h=x5&x8;
1331 i=x6&x8;
1332 j=x7&x8;
1333
1334 y5=x2^a^b^c^d^e^f^g^h^i^j^1;
1335 output[3]=y5;
1336
1337 a=x2&x3;
1338 b=x1&x5;
1339 c=x2&x5;
1340 d=x4&x5;
1341 e=x3&x6;
1342 f=x4&x6;
1343 g=x5&x6;
1344 h=x1&x8;
1345 i=x3&x8;
1346 j=x5&x8;
1347 int k=x7&x8;
1348
1349 y6=x0^a^b^c^d^e^f^g^x7^h^i^j^k;
1350 output[2]=y6;
1351
1352 a=x0&x1;
1353 b=x0&x2;
1354 c=x1&x2;
1355 d=x0&x3;
1356 e=x2&x3;
1357 f=x4&x5;
1358 g=x2&x6;
1359 h=x3&x6;
1360 i=x2&x7;
1361 j=x5&x7;
1362
1363 y7=a^b^c^x3^d^e^f^g^h^i^j^x8^1;
1364 output[1]=y7;

113

1365
1366 a=x0&x1;
1367 b=x1&x2;
1368 c=x3&x4;
1369 d=x1&x5;
1370 e=x2&x5;
1371 f=x1&x6;
1372 g=x4&x6;
1373 h=x2&x8;
1374 i=x3&x8;
1375
1376 y8=a^x2^b^c^d^e^f^g^x7^h^i;
1377 output[0]=y8;
1378
1379 return output;
1380 }
1381
1382 //S9 inverse
1383 public static int[] S9_inv (int[] array) {
1384 int total = array[8]*1 + array[7]*2 + array[6]*4 + array[5]*8 + array[4]*16 +
array[3]*32 + array[2]*64 + array[1]*128 + array[0]*256;
1385 int[] s9 = {167,239,161,379,391,334,9,338,38,226,48,358,452,385,90,
1386 397,183,253,147,331,415,340,51,362,306,500,262,82,216,159,356,177,
1387 175,241,489,37,206,17,0,333,44,254,378,58,143,220,81,400,95,3,315,
1388 245,54,235,218,405,472,264,172,494,371,290,399,76,165,197,395,121,
1389 257,480,423,212,240,28,462,176,406,507,288,223,501,407,249,265,89,
1390 186,221,428,164,74,440,196,458,421,350,163,232,158,134,354,13,250,
1391 491,142,191,69,193,425,152,227,366,135,344,300,276,242,437,320,113,
1392 278,11,243,87,317,36,93,496,27,487,446,482,41,68,156,457,131,326,
1393 403,339,20,39,115,442,124,475,384,508,53,112,170,479,151,126,169,
1394 73,268,279,321,168,364,363,292,46,499,393,327,324,24,456,267,157,
1395 460,488,426,309,229,439,506,208,271,349,401,434,236,16,209,359,52,
1396 56,120,199,277,465,416,252,287,246,6,83,305,420,345,153,502,65,61,
1397 244,282,173,222,418,67,386,368,261,101,476,291,195,430,49,79,166,
1398 330,280,383,373,128,382,408,155,495,367,388,274,107,459,417,62,454,
1399 132,225,203,316,234,14,301,91,503,286,424,211,347,307,140,374,35,
1400 103,125,427,19,214,453,146,498,314,444,230,256,329,198,285,50,116,
1401 78,410,10,205,510,171,231,45,139,467,29,86,505,32,72,26,342,150,313,
1402 490,431,238,411,325,149,473,40,119,174,355,185,233,389,71,448,273,
1403 372,55,110,178,322,12,469,392,369,190,1,109,375,137,181,88,75,308,
1404 260,484,98,272,370,275,412,111,336,318,4,504,492,259,304,77,337,
1405 435,21,357,303,332,483,18,47,85,25,497,474,289,100,269,296,478,270,
1406 106,31,104,433,84,414,486,394,96,99,154,511,148,413,361,409,255,
1407 162,215,302,201,266,351,343,144,441,365,108,298,251,34,182,509,138,
1408 210,335,133,311,352,328,141,396,346,123,319,450,281,429,228,443,
1409 481,92,404,485,422,248,297,23,213,130,466,22,217,283,70,294,360,
1410 419,127,312,377,7,468,194,2,117,295,463,258,224,447,247,187,80,398,
1411 284,353,105,390,299,471,470,184,57,200,348,63,204,188,33,451,97,
1412 30,310,219,94,160,129,493,64,179,263,102,189,207,114,402,438,477,
1413 387,122,192,42,381,5,145,118,180,449,293,323,136,380,43,66,60,455,
1414 341,445,202,432,8,237,15,376,436,464,59,461};
1415

114

1416 int result=0;
1417 for(int x=0; x<512; x++){
1418 if(total != s9[x]){
1419 result++;}
1420 else{
1421 break;}
1422 }
1423
1424 int[] output=new int[9];
1425 for(int a=0; a<9; a++){
1426 int b = result - (int)pow(2,8-a);
1427 if(b<0){
1428 output[a]=0;}
1429 else{
1430 output[a]=1;}
1431 result=result - ((int)pow(2,8-a))*output[a];
1432 }
1433
1434 return output;
1435 }
1436
1437 //FI function. input: 16-bit, key: 16-bit, output: 16-bit
1438 public static int[] FI (int[] I, int[] KI){
1439 int[] output;
1440
1441 int[] L0;
1442 int[] R0;
1443 L0=DivideFirst(I,9);
1444 R0=DivideSecond(I,9);
1445
1446 int[] KI1;
1447 int[] KI2;
1448 KI1=DivideFirst(KI,7);
1449 KI2=DivideSecond(KI,7);
1450
1451 int[] L1;
1452 int[] R1;
1453 int[] L2;
1454 int[] R2;
1455 int[] L3;
1456 int[] R3;
1457 int[] L4;
1458 int[] R4;
1459
1460 L1=R0;
1461 R1=XOR(S9(L0),ZE(R0));
1462 L2=XOR(R1,KI2);
1463 R2=XOR(XOR(S7(L1),TR(R1)),KI1);
1464 L3=R2;
1465 R3=XOR(S9(L2),ZE(R2));
1466 L4=XOR(S7(L3),TR(R3));
1467 R4=R3;

115

1468
1469 output=Concatenate(L4,R4);
1470 return output;
1471 }
1472
1473 //Inverse of FI function. input: 16-bit, key: 16-bit, output: 16-bit
1474 public static int[] FI_inv (int[] I, int[] KI){
1475 int[] output;
1476
1477 int[] L4;
1478 int[] R4;
1479 L4=DivideFirst(I,7);
1480 R4=DivideSecond(I,7);
1481
1482 int[] KI1;
1483 int[] KI2;
1484 KI1=DivideFirst(KI,7);
1485 KI2=DivideSecond(KI,7);
1486
1487 int[] L1, R1, L2, R2, L3, R3, L0, R0;
1488
1489 R3=R4;
1490 L3=S7_inv(XOR(L4,TR(R3)));
1491 R2=L3;
1492 L2=S9_inv(XOR(R3,ZE(R2)));
1493 R1=XOR(L2,KI2);
1494 L1=S7_inv(XOR(XOR(R2,TR(R1)),KI1));
1495 R0=L1;
1496 L0=S9_inv(XOR(R1,ZE(R0)));
1497
1498 output=Concatenate(L0,R0);
1499 return output;
1500 }
1501
1502 //FO function. input: 32-bit, key: 48-bit two keys, output: 32-bit
1503 public static int[] FO (int[] I, int[] KO, int[] KI){
1504 int[] output;
1505
1506 int l=I.length;
1507 int t=KO.length;
1508
1509 int[] L0, R0, L1, R1, L2, R2, L3, R3;
1510
1511 L0=DivideFirst(I,l/2);
1512 R0=DivideSecond(I,l/2);
1513
1514 int[] KO1, KO2, KO2q, KO3;
1515 KO1=DivideFirst(KO,t/3);
1516 KO2q=DivideSecond(KO,t/3);
1517 KO2=DivideFirst(KO2q,t/3);
1518 KO3=DivideSecond(KO2q,t/3);
1519

116

1520 int[] KI1, KI2, KI2q, KI3;
1521 KI1=DivideFirst(KI,t/3);
1522 KI2q=DivideSecond(KI,t/3);
1523 KI2=DivideFirst(KI2q,t/3);
1524 KI3=DivideSecond(KI2q,t/3);
1525
1526 R1=XOR(FI(XOR(L0,KO1),KI1),R0);
1527 L1=R0;
1528 R2=XOR(FI(XOR(L1,KO2),KI2),R1);
1529 L2=R1;
1530 R3=XOR(FI(XOR(L2,KO3),KI3),R2);
1531 L3=R2;
1532
1533 output=Concatenate(L3,R3);
1534 return output;
1535 }
1536
1537 //Inverse of FO function. input: 32-bit, key: 48-bit two keys, output: 32-bit
1538 public static int[] FO_inv (int[] I, int[] KO, int[] KI){
1539 int[] output;
1540
1541 int l=I.length;
1542 int t=KO.length;
1543
1544 int[] L0, R0, L1, R1, L2, R2, L3, R3;
1545
1546 L3=DivideFirst(I,l/2);
1547 R3=DivideSecond(I,l/2);
1548
1549 int[] KO1, KO2, KO2q, KO3;
1550 KO1=DivideFirst(KO,t/3);
1551 KO2q=DivideSecond(KO,t/3);
1552 KO2=DivideFirst(KO2q,t/3);
1553 KO3=DivideSecond(KO2q,t/3);
1554
1555 int[] KI1, KI2, KI2q, KI3;
1556 KI1=DivideFirst(KI,t/3);
1557 KI2q=DivideSecond(KI,t/3);
1558 KI2=DivideFirst(KI2q,t/3);
1559 KI3=DivideSecond(KI2q,t/3);
1560
1561 int[] temp;
1562 R2=L3;
1563 temp=XOR(R3,R2);
1564 L2=XOR(FI_inv(temp,KI3),KO3);
1565 R1=L2;
1566 temp=XOR(R2,R1);
1567 L1=XOR(FI_inv(temp,KI2),KO2);
1568 R0=L1;
1569 temp=XOR(R1,R0);
1570 L0=XOR(FI_inv(temp,KI1),KO1);
1571

117

1572 output=Concatenate(L0,R0);
1573 return output;
1574 }
1575
1576 //fi function for odd rounds. input; 32-bit, keys: 32-bit, 48-bit, 48-bit.
1577 public static int[] fi_odd (int[] I, int[] KL, int[] KO, int[] KI){
1578 int[] output;
1579 output=FO(FL(I,KL),KO,KI);
1580
1581 return output;
1582 }
1583
1584 //fi function for odd rounds. input; 32-bit, keys: 32-bit, 48-bit, 48-bit.
1585 public static int[] fi_odd_inv (int[] I, int[] KL, int[] KO, int[] KI){
1586 int[] output;
1587 int[] temp;
1588
1589 temp=FO_inv(I,KO,KI);
1590 output=FL_inv(temp,KL);
1591
1592 return output;
1593 }
1594
1595 //fi function for even rounds. input; 32-bit, keys: 32-bit, 48-bit, 48-bit.
1596 public static int[] fi_even (int[] I, int[] KL, int[] KO, int[] KI){
1597 int[] output;
1598 output=FL(FO(I,KO,KI),KL);
1599
1600 return output;
1601 }
1602
1603 //fi function for even rounds. input; 32-bit, keys: 32-bit, 48-bit, 48-bit.
1604 public static int[] fi_even_inv (int[] I, int[] KL, int[] KO, int[] KI){
1605 int[] output;
1606 int[] temp;
1607
1608 temp=FL_inv(I,KL);
1609 output=FO_inv(temp,KO,KI);
1610
1611 return output;
1612 }
1613
1614 //Kasumi encryption. Input: 64-bit, key: 128-bit, output: 64-bit.
1615 public static int[] KASUMI_enc (int[] I, int[] K){
1616
1617 //Divide keys into 8 16-bit ki's
1618 int[] k1 = new int[16];
1619 CopyArrayString(K,k1,0,0,16);
1620 int[] k2 = new int[16];
1621 CopyArrayString(K,k2,16,0,16);
1622 int[] k3 = new int[16];
1623 CopyArrayString(K,k3,32,0,16);

118

1624 int[] k4 = new int[16];
1625 CopyArrayString(K,k4,48,0,16);
1626 int[] k5 = new int[16];
1627 CopyArrayString(K,k5,64,0,16);
1628 int[] k6 = new int[16];
1629 CopyArrayString(K,k6,80,0,16);
1630 int[] k7 = new int[16];
1631 CopyArrayString(K,k7,96,0,16);
1632 int[] k8 = new int[16];
1633 CopyArrayString(K,k8,112,0,16);
1634
1635 //Binary values of each constant ci's
1636 int[] c1=HexToBinaryArrayKey("0123");
1637 int[] c2=HexToBinaryArrayKey("4567");
1638 int[] c3=HexToBinaryArrayKey("89AB");
1639 int[] c4=HexToBinaryArrayKey("CDEF");
1640 int[] c5=HexToBinaryArrayKey("FEDC");
1641 int[] c6=HexToBinaryArrayKey("BA98");
1642 int[] c7=HexToBinaryArrayKey("7654");
1643 int[] c8=HexToBinaryArrayKey("3210");
1644
1645 //Round subkeys of KLi1
1646 int[] KL11=CircularLeftRotation(k1,1);
1647 int[] KL21=CircularLeftRotation(k2,1);
1648 int[] KL31=CircularLeftRotation(k3,1);
1649 int[] KL41=CircularLeftRotation(k4,1);
1650 int[] KL51=CircularLeftRotation(k5,1);
1651 int[] KL61=CircularLeftRotation(k6,1);
1652 int[] KL71=CircularLeftRotation(k7,1);
1653 int[] KL81=CircularLeftRotation(k8,1);
1654
1655 //Round subkeys of KLi2
1656 int[] KL12=XOR(k3,c3);
1657 int[] KL22=XOR(k4,c4);
1658 int[] KL32=XOR(k5,c5);
1659 int[] KL42=XOR(k6,c6);
1660 int[] KL52=XOR(k7,c7);
1661 int[] KL62=XOR(k8,c8);
1662 int[] KL72=XOR(k1,c1);
1663 int[] KL82=XOR(k2,c2);
1664
1665 //Round subkeys of KLi
1666 int[] KL1=Concatenate(KL11,KL12);
1667 int[] KL2=Concatenate(KL21,KL22);
1668 int[] KL3=Concatenate(KL31,KL32);
1669 int[] KL4=Concatenate(KL41,KL42);
1670 int[] KL5=Concatenate(KL51,KL52);
1671 int[] KL6=Concatenate(KL61,KL62);
1672 int[] KL7=Concatenate(KL71,KL72);
1673 int[] KL8=Concatenate(KL81,KL82);
1674
1675 //Round subkeys of KOi1

119

1676 int[] KO11=CircularLeftRotation(k2,5);
1677 int[] KO21=CircularLeftRotation(k3,5);
1678 int[] KO31=CircularLeftRotation(k4,5);
1679 int[] KO41=CircularLeftRotation(k5,5);
1680 int[] KO51=CircularLeftRotation(k6,5);
1681 int[] KO61=CircularLeftRotation(k7,5);
1682 int[] KO71=CircularLeftRotation(k8,5);
1683 int[] KO81=CircularLeftRotation(k1,5);
1684
1685 //Round subkeys of KOi2
1686 int[] KO12=CircularLeftRotation(k6,8);
1687 int[] KO22=CircularLeftRotation(k7,8);
1688 int[] KO32=CircularLeftRotation(k8,8);
1689 int[] KO42=CircularLeftRotation(k1,8);
1690 int[] KO52=CircularLeftRotation(k2,8);
1691 int[] KO62=CircularLeftRotation(k3,8);
1692 int[] KO72=CircularLeftRotation(k4,8);
1693 int[] KO82=CircularLeftRotation(k5,8);
1694
1695 //Round subkeys of KOi3
1696 int[] KO13=CircularLeftRotation(k7,13);
1697 int[] KO23=CircularLeftRotation(k8,13);
1698 int[] KO33=CircularLeftRotation(k1,13);
1699 int[] KO43=CircularLeftRotation(k2,13);
1700 int[] KO53=CircularLeftRotation(k3,13);
1701 int[] KO63=CircularLeftRotation(k4,13);
1702 int[] KO73=CircularLeftRotation(k5,13);
1703 int[] KO83=CircularLeftRotation(k6,13);
1704
1705 //Round subkeys of KOi
1706 int[] KO1=Concatenate(Concatenate(KO11,KO12),KO13);
1707 int[] KO2=Concatenate(Concatenate(KO21,KO22),KO23);
1708 int[] KO3=Concatenate(Concatenate(KO31,KO32),KO33);
1709 int[] KO4=Concatenate(Concatenate(KO41,KO42),KO43);
1710 int[] KO5=Concatenate(Concatenate(KO51,KO52),KO53);
1711 int[] KO6=Concatenate(Concatenate(KO61,KO62),KO63);
1712 int[] KO7=Concatenate(Concatenate(KO71,KO72),KO73);
1713 int[] KO8=Concatenate(Concatenate(KO81,KO82),KO83);
1714
1715 //Round subkeys of KIi1
1716 int[] KI11=XOR(k5,c5);
1717 int[] KI21=XOR(k6,c6);
1718 int[] KI31=XOR(k7,c7);
1719 int[] KI41=XOR(k8,c8);
1720 int[] KI51=XOR(k1,c1);
1721 int[] KI61=XOR(k2,c2);
1722 int[] KI71=XOR(k3,c3);
1723 int[] KI81=XOR(k4,c4);
1724
1725 //Round subkeys of KIi2
1726 int[] KI12=XOR(k4,c4);
1727 int[] KI22=XOR(k5,c5);

120

1728 int[] KI32=XOR(k6,c6);
1729 int[] KI42=XOR(k7,c7);
1730 int[] KI52=XOR(k8,c8);
1731 int[] KI62=XOR(k1,c1);
1732 int[] KI72=XOR(k2,c2);
1733 int[] KI82=XOR(k3,c3);
1734
1735 //Round subkeys of KIi3
1736 int[] KI13=XOR(k8,c8);
1737 int[] KI23=XOR(k1,c1);
1738 int[] KI33=XOR(k2,c2);
1739 int[] KI43=XOR(k3,c3);
1740 int[] KI53=XOR(k4,c4);
1741 int[] KI63=XOR(k5,c5);
1742 int[] KI73=XOR(k6,c6);
1743 int[] KI83=XOR(k7,c7);
1744
1745 //Round subkeys of KIi
1746 int[] KI1=Concatenate(Concatenate(KI11,KI12),KI13);
1747 int[] KI2=Concatenate(Concatenate(KI21,KI22),KI23);
1748 int[] KI3=Concatenate(Concatenate(KI31,KI32),KI33);
1749 int[] KI4=Concatenate(Concatenate(KI41,KI42),KI43);
1750 int[] KI5=Concatenate(Concatenate(KI51,KI52),KI53);
1751 int[] KI6=Concatenate(Concatenate(KI61,KI62),KI63);
1752 int[] KI7=Concatenate(Concatenate(KI71,KI72),KI73);
1753 int[] KI8=Concatenate(Concatenate(KI81,KI82),KI83);
1754
1755 int[] L0, R0, L1, R1, L2, R2, L3, R3, L4, R4, L5, R5, L6, R6, L7, R7, L8, R8;
1756
1757 L0=DivideFirst(I,32);
1758 R0=DivideSecond(I,32);
1759
1760 //Round 1:
1761 R1=L0;
1762 L1=XOR(R0,fi_odd(L0,KL1,KO1,KI1));
1763
1764 //Round 2:
1765 R2=L1;
1766 L2=XOR(R1,fi_even(L1,KL2,KO2,KI2));
1767
1768 //Round 3:
1769 R3=L2;
1770 L3=XOR(R2,fi_odd(L2,KL3,KO3,KI3));
1771
1772 //Round 4:
1773 R4=L3;
1774 L4=XOR(R3,fi_even(L3,KL4,KO4,KI4));
1775
1776 //Round 5:
1777 R5=L4;
1778 L5=XOR(R4,fi_odd(L4,KL5,KO5,KI5));
1779

121

1780 //Round 6:
1781 R6=L5;
1782 L6=XOR(R5,fi_even(L5,KL6,KO6,KI6));
1783
1784 //Round 7:
1785 R7=L6;
1786 L7=XOR(R6,fi_odd(L6,KL7,KO7,KI7));
1787
1788 //Round 8:
1789 R8=L7;
1790 L8=XOR(R7,fi_even(L7,KL8,KO8,KI8));
1791
1792 int[] output;
1793 output=Concatenate(L8,R8);
1794
1795 return output;
1796 }
1797
1798 //Kasumi decryption. Input: 64-bit, key: 128-bit, output: 64-bit.
1799 public static int[] KASUMI_dec (int[] I, int[] K){
1800
1801 //Divide keys into 8 16-bit ki's
1802 int[] k1 = new int[16];
1803 CopyArrayString(K,k1,0,0,16);
1804 int[] k2 = new int[16];
1805 CopyArrayString(K,k2,16,0,16);
1806 int[] k3 = new int[16];
1807 CopyArrayString(K,k3,32,0,16);
1808 int[] k4 = new int[16];
1809 CopyArrayString(K,k4,48,0,16);
1810 int[] k5 = new int[16];
1811 CopyArrayString(K,k5,64,0,16);
1812 int[] k6 = new int[16];
1813 CopyArrayString(K,k6,80,0,16);
1814 int[] k7 = new int[16];
1815 CopyArrayString(K,k7,96,0,16);
1816 int[] k8 = new int[16];
1817 CopyArrayString(K,k8,112,0,16);
1818
1819 //Binary values of each constant ci's
1820 int[] c1=HexToBinaryArrayKey("0123");
1821 int[] c2=HexToBinaryArrayKey("4567");
1822 int[] c3=HexToBinaryArrayKey("89AB");
1823 int[] c4=HexToBinaryArrayKey("CDEF");
1824 int[] c5=HexToBinaryArrayKey("FEDC");
1825 int[] c6=HexToBinaryArrayKey("BA98");
1826 int[] c7=HexToBinaryArrayKey("7654");
1827 int[] c8=HexToBinaryArrayKey("3210");
1828
1829 //Round subkeys of KLi1
1830 int[] KL11=CircularLeftRotation(k1,1);
1831 int[] KL21=CircularLeftRotation(k2,1);

122

1832 int[] KL31=CircularLeftRotation(k3,1);
1833 int[] KL41=CircularLeftRotation(k4,1);
1834 int[] KL51=CircularLeftRotation(k5,1);
1835 int[] KL61=CircularLeftRotation(k6,1);
1836 int[] KL71=CircularLeftRotation(k7,1);
1837 int[] KL81=CircularLeftRotation(k8,1);
1838
1839 //Round subkeys of KLi2
1840 int[] KL12=XOR(k3,c3);
1841 int[] KL22=XOR(k4,c4);
1842 int[] KL32=XOR(k5,c5);
1843 int[] KL42=XOR(k6,c6);
1844 int[] KL52=XOR(k7,c7);
1845 int[] KL62=XOR(k8,c8);
1846 int[] KL72=XOR(k1,c1);
1847 int[] KL82=XOR(k2,c2);
1848
1849 //Round subkeys of KLi
1850 int[] KL1=Concatenate(KL11,KL12);
1851 int[] KL2=Concatenate(KL21,KL22);
1852 int[] KL3=Concatenate(KL31,KL32);
1853 int[] KL4=Concatenate(KL41,KL42);
1854 int[] KL5=Concatenate(KL51,KL52);
1855 int[] KL6=Concatenate(KL61,KL62);
1856 int[] KL7=Concatenate(KL71,KL72);
1857 int[] KL8=Concatenate(KL81,KL82);
1858
1859 //Round subkeys of KOi1
1860 int[] KO11=CircularLeftRotation(k2,5);
1861 int[] KO21=CircularLeftRotation(k3,5);
1862 int[] KO31=CircularLeftRotation(k4,5);
1863 int[] KO41=CircularLeftRotation(k5,5);
1864 int[] KO51=CircularLeftRotation(k6,5);
1865 int[] KO61=CircularLeftRotation(k7,5);
1866 int[] KO71=CircularLeftRotation(k8,5);
1867 int[] KO81=CircularLeftRotation(k1,5);
1868
1869 //Round subkeys of KOi2
1870 int[] KO12=CircularLeftRotation(k6,8);
1871 int[] KO22=CircularLeftRotation(k7,8);
1872 int[] KO32=CircularLeftRotation(k8,8);
1873 int[] KO42=CircularLeftRotation(k1,8);
1874 int[] KO52=CircularLeftRotation(k2,8);
1875 int[] KO62=CircularLeftRotation(k3,8);
1876 int[] KO72=CircularLeftRotation(k4,8);
1877 int[] KO82=CircularLeftRotation(k5,8);
1878
1879 //Round subkeys of KOi3
1880 int[] KO13=CircularLeftRotation(k7,13);
1881 int[] KO23=CircularLeftRotation(k8,13);
1882 int[] KO33=CircularLeftRotation(k1,13);
1883 int[] KO43=CircularLeftRotation(k2,13);

123

1884 int[] KO53=CircularLeftRotation(k3,13);
1885 int[] KO63=CircularLeftRotation(k4,13);
1886 int[] KO73=CircularLeftRotation(k5,13);
1887 int[] KO83=CircularLeftRotation(k6,13);
1888
1889 //Round subkeys of KOi
1890 int[] KO1=Concatenate(Concatenate(KO11,KO12),KO13);
1891 int[] KO2=Concatenate(Concatenate(KO21,KO22),KO23);
1892 int[] KO3=Concatenate(Concatenate(KO31,KO32),KO33);
1893 int[] KO4=Concatenate(Concatenate(KO41,KO42),KO43);
1894 int[] KO5=Concatenate(Concatenate(KO51,KO52),KO53);
1895 int[] KO6=Concatenate(Concatenate(KO61,KO62),KO63);
1896 int[] KO7=Concatenate(Concatenate(KO71,KO72),KO73);
1897 int[] KO8=Concatenate(Concatenate(KO81,KO82),KO83);
1898
1899 //Round subkeys of KIi1
1900 int[] KI11=XOR(k5,c5);
1901 int[] KI21=XOR(k6,c6);
1902 int[] KI31=XOR(k7,c7);
1903 int[] KI41=XOR(k8,c8);
1904 int[] KI51=XOR(k1,c1);
1905 int[] KI61=XOR(k2,c2);
1906 int[] KI71=XOR(k3,c3);
1907 int[] KI81=XOR(k4,c4);
1908
1909 //Round subkeys of KIi2
1910 int[] KI12=XOR(k4,c4);
1911 int[] KI22=XOR(k5,c5);
1912 int[] KI32=XOR(k6,c6);
1913 int[] KI42=XOR(k7,c7);
1914 int[] KI52=XOR(k8,c8);
1915 int[] KI62=XOR(k1,c1);
1916 int[] KI72=XOR(k2,c2);
1917 int[] KI82=XOR(k3,c3);
1918
1919 //Round subkeys of KIi3
1920 int[] KI13=XOR(k8,c8);
1921 int[] KI23=XOR(k1,c1);
1922 int[] KI33=XOR(k2,c2);
1923 int[] KI43=XOR(k3,c3);
1924 int[] KI53=XOR(k4,c4);
1925 int[] KI63=XOR(k5,c5);
1926 int[] KI73=XOR(k6,c6);
1927 int[] KI83=XOR(k7,c7);
1928
1929 //Round subkeys of KIi
1930 int[] KI1=Concatenate(Concatenate(KI11,KI12),KI13);
1931 int[] KI2=Concatenate(Concatenate(KI21,KI22),KI23);
1932 int[] KI3=Concatenate(Concatenate(KI31,KI32),KI33);
1933 int[] KI4=Concatenate(Concatenate(KI41,KI42),KI43);
1934 int[] KI5=Concatenate(Concatenate(KI51,KI52),KI53);
1935 int[] KI6=Concatenate(Concatenate(KI61,KI62),KI63);

124

1936 int[] KI7=Concatenate(Concatenate(KI71,KI72),KI73);
1937 int[] KI8=Concatenate(Concatenate(KI81,KI82),KI83);
1938
1939 int[] L0, R0, L1, R1, L2, R2, L3, R3, L4, R4, L5, R5, L6, R6, L7, R7, L8, R8;
1940
1941 L8=DivideFirst(I,32);
1942 R8=DivideSecond(I,32);
1943
1944 //Round 1:
1945 L7=R8;
1946 R7=XOR(fi_even(L7,KL8,KO8,KI8),L8);
1947
1948 //Round 2:
1949 L6=R7;
1950 R6=XOR(fi_odd(L6,KL7,KO7,KI7),L7);
1951
1952 //Round 3:
1953 L5=R6;
1954 R5=XOR(fi_even(L5,KL6,KO6,KI6),L6);
1955
1956 //Round 4:
1957 L4=R5;
1958 R4=XOR(fi_odd(L4,KL5,KO5,KI5),L5);
1959
1960 //Round 5:
1961 L3=R4;
1962 R3=XOR(fi_even(L3,KL4,KO4,KI4),L4);
1963
1964 //Round 6:
1965 L2=R3;
1966 R2=XOR(fi_odd(L2,KL3,KO3,KI3),L3);
1967
1968 //Round 7:
1969 L1=R2;
1970 R1=XOR(fi_even(L1,KL2,KO2,KI2),L2);
1971
1972 //Round 8:
1973 L0=R1;
1974 R0=XOR(fi_odd(L0,KL1,KO1,KI1),L1);
1975
1976 int[] output;
1977 output=Concatenate(L0,R0);
1978
1979 return output;
1980 }
1981
1982
1983 //---MILENAGE FUNCTIONS---//
1984
1985
1986 //Milenage Functions - MAC
1987 public static int[] MAC (int[] RAND, int[] K, int[] OP, int[] SQN, int[] AMF){

125

1988 int[] MAC=new int[64];
1989 int[] OPc=XOR(OP,AES(OP,K));
1990 int[] TEMP=AES(XOR(RAND,OPc),K);
1991
1992 int[] IN1=new int[128];
1993 CopyArray(SQN,IN1,0,0,48);
1994 CopyArray(AMF,IN1,0,48,16);
1995 CopyArray(SQN,IN1,0,64,48);
1996 CopyArray(AMF,IN1,0,112,16);
1997
1998 int[] c1=new int[128];
1999
2000 int r1;
2001 r1=64;
2002
2003 int[] OUT1;
2004
2005 int[]out10=CircularLeftRotation(XOR(IN1,OPc),r1);
2006 int[]out11=XOR(TEMP,out10);
2007 int[]out12=XOR(out11,c1);
2008 OUT1=XOR(AES(out12,K),OPc);
2009
2010 CopyArray(OUT1,MAC,0,0,64);
2011
2012 return MAC;
2013 }
2014
2015 //Milenage Functions - RES
2016 public static int[] RES (int[] RAND, int[] K, int[] OP, int[] SQN, int[] AMF){
2017 int[] RES=new int[64];
2018 int[] OPc=XOR(OP,AES(OP,K));
2019 int[] TEMP=AES(XOR(RAND,OPc),K);
2020
2021 int[] IN1=new int[128];
2022 CopyArray(SQN,IN1,0,0,48);
2023 CopyArray(AMF,IN1,0,48,16);
2024 CopyArray(SQN,IN1,0,64,48);
2025 CopyArray(AMF,IN1,0,112,16);
2026
2027 int[] c2=new int[128];
2028 c2[127]=1;
2029 int r2;
2030 r2=0;
2031 int[] OUT2;
2032
2033 int[] tmp=XOR(TEMP,OPc);
2034
2035 int[]out20=CircularLeftRotation(tmp,r2);
2036 int[]out21=XOR(out20,c2);
2037 OUT2=XOR(AES(out21,K),OPc);
2038
2039 CopyArray(OUT2,RES,64,0,64);

126

2040
2041 return RES;
2042 }
2043
2044 //Milenage Functions - CK
2045 public static int[] CK (int[] RAND, int[] K, int[] OP, int[] SQN, int[] AMF){
2046 int[] CK=new int[128];
2047 int[] OPc=XOR(OP,AES(OP,K));
2048 int[] TEMP=AES(XOR(RAND,OPc),K);
2049
2050 int[] IN1=new int[128];
2051 CopyArray(SQN,IN1,0,0,48);
2052 CopyArray(AMF,IN1,0,48,16);
2053 CopyArray(SQN,IN1,0,64,48);
2054 CopyArray(AMF,IN1,0,112,16);
2055
2056 int[] c3=new int[128];
2057 c3[126]=1;
2058 int r3;
2059 r3=32;
2060 int[] OUT3;
2061
2062 int[] tmp=XOR(TEMP,OPc);
2063
2064 int[] out30=CircularLeftRotation(tmp,r3);
2065 int[] out31=XOR(out30,c3);
2066 OUT3=XOR(AES(out31,K),OPc);
2067
2068 CopyArray(OUT3,CK,0,0,128);
2069
2070 return CK;
2071 }
2072
2073 //Milenage Functions - IK
2074 public static int[] IK (int[] RAND, int[] K, int[] OP, int[] SQN, int[] AMF){
2075 int[] IK=new int[128];
2076 int[] OPc=XOR(OP,AES(OP,K));
2077 int[] TEMP=AES(XOR(RAND,OPc),K);
2078
2079 int[] IN1=new int[128];
2080 CopyArray(SQN,IN1,0,0,48);
2081 CopyArray(AMF,IN1,0,48,16);
2082 CopyArray(SQN,IN1,0,64,48);
2083 CopyArray(AMF,IN1,0,112,16);
2084
2085 int[] c4=new int[128];
2086
2087 c4[125]=1;
2088
2089 int r4;
2090 r4=64;
2091

127

2092 int[] OUT4;
2093
2094 int[] tmp=XOR(TEMP,OPc);
2095
2096 int[] out40=CircularLeftRotation(tmp,r4);
2097 int[] out41=XOR(out40,c4);
2098 OUT4=XOR(AES(out41,K),OPc);
2099
2100 CopyArray(OUT4,IK,0,0,128);
2101
2102 return IK;
2103 }
2104
2105 //Milenage Functions - AK
2106 public static int[] AK (int[] RAND, int[] K, int[] OP, int[] SQN, int[] AMF){
2107 int[] AK=new int[48];
2108 int[] OPc=XOR(OP,AES(OP,K));
2109 int[] TEMP=AES(XOR(RAND,OPc),K);
2110
2111 int[] IN1=new int[128];
2112 CopyArray(SQN,IN1,0,0,48);
2113 CopyArray(AMF,IN1,0,48,16);
2114 CopyArray(SQN,IN1,0,64,48);
2115 CopyArray(AMF,IN1,0,112,16);
2116
2117 int[] c2=new int[128];
2118
2119 c2[127]=1;
2120
2121 int r2;
2122 r2=0;
2123
2124 int[] OUT2;
2125
2126 int[] tmp=XOR(TEMP,OPc);
2127
2128 int[]out20=CircularLeftRotation(tmp,r2);
2129 int[]out21=XOR(out20,c2);
2130 OUT2=XOR(AES(out21,K),OPc);
2131
2132 CopyArray(OUT2,AK,0,0,48);
2133
2134 return AK;
2135 }
2136
2137 }
2138

128

APPENDIX B – Output of Demonstration

run: (INPUT.java)

Key_hex is: 18b7ac920d5bcef54a8107e976a4d3c8

OP_hex is: 0b8a475bc123d60177a29ac3615834aa

IMSI is: 5712919082

SQN is: 8e4c2be3b530

Checkpoints are ready.

BUILD SUCCESSFUL (total time: 1 second)

run: (UE.java)

----------|User Equipment|----------

----------------|UE|----------------

Press enter to proceed. (Write STOP to exit.)

Choose what to send for ID:

Write 'P1' to send IMSI

Write 'P2' to send new pseudonym

Write 'P3' to send used pseudonym

p1

|UE| IMSI: DNA 5712919082

|UE| Attachment request is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| AV is received from SN.

|UE| Extracting RAND and AUTN..

|UE| RAND and AUTN are extracted.

|UE| Extracting and calculating MAC.

|UE| Checking MAC..

|UE| MAC is verified.

|UE| Extracting AMF..

|UE| AMF is extracted.

|UE| Checking AMF..

|UE| This RAND is to be used for creating new key.

|UE| Preparing RES..

|UE| RES is prepared.

|UE| RES is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| Result for RES challenge is received from SN.

129

|UE| Checking result..

|UE| Authentication succeeded.

--

|UE| IMSI: DNA 5712919082

|UE| Attachment request is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| AV is received from SN.

|UE| Extracting RAND and AUTN..

|UE| RAND and AUTN are extracted.

|UE| Extracting and calculating MAC.

|UE| Checking MAC..

|UE| MAC is verified.

|UE| Extracting AMF..

|UE| AMF is extracted.

|UE| Checking AMF..

|UE| This RAND includes pseudonym.

|UE| Extracting Pseudonym..

|UE| Pseudonym is extracted.

|UE| Pseudonym is 3613856892

|UE| Preparing RES..

|UE| RES is prepared.

|UE| RES is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| Result for RES challenge is received from SN.

|UE| Checking result..

|UE| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

Choose what to send for ID:

Write 'P1' to send IMSI

Write 'P2' to send new pseudonym

Write 'P3' to send used pseudonym

p2

|UE| IMSI: DNA 3613856892

|UE| Attachment request is sent to SN.

--

130

Press enter to proceed. (Write STOP to exit.)

|UE| AV is received from SN.

|UE| Extracting RAND and AUTN..

|UE| RAND and AUTN are extracted.

|UE| Extracting and calculating MAC.

|UE| Checking MAC..

|UE| MAC is verified.

|UE| Extracting AMF..

|UE| AMF is extracted.

|UE| Checking AMF..

|UE| This RAND includes pseudonym.

|UE| Extracting Pseudonym..

|UE| Pseudonym is extracted.

|UE| Pseudonym is 2890913730

|UE| Preparing RES..

|UE| RES is prepared.

|UE| RES is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| Result for RES challenge is received from SN.

|UE| Checking result..

|UE| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

Choose what to send for ID:

Write 'P1' to send IMSI

Write 'P2' to send new pseudonym

Write 'P3' to send used pseudonym

p3

|UE| IMSI: DNA 3613856892

|UE| Attachment request is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| AV is received from SN.

|UE| Extracting RAND and AUTN..

|UE| RAND and AUTN are extracted.

|UE| Extracting and calculating MAC.

|UE| Checking MAC..

131

|UE| MAC is verified.

|UE| Extracting AMF..

|UE| AMF is extracted.

|UE| Checking AMF..

|UE| This RAND doesn't include pseudonym and isn't to be used for

creating new key.

|UE| Preparing RES..

|UE| RES is prepared.

|UE| RES is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|UE| Result for RES challenge is received from SN.

|UE| Checking result..

|UE| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

stop

BUILD SUCCESSFUL (total time: 3 minutes 31 seconds)

run: (SN.java)

----------|Serving Network|----------

----------------|SN|-----------------

Press enter to proceed. (Write STOP to exit.)

|SN| Attach attempt from DNA 5712919082

|SN| Attachment request is sent to HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Authentication Vector from HN.

|SN| Extracting XRES..

|SN| XRES is extracted.

|SN| Preparing AV for UE..

|SN| AV for UE is prepared.

|SN| AV is sent to UE.

--

Press enter to proceed. (Write STOP to exit.)

|SN| RES is received from UE.

132

|SN| Checking if RES matches XRES..

|SN| RES challenge succeeded.

|SN| Result of RES challenge is sent both to UE and HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Attach attempt from DNA 5712919082

|SN| Attachment request is sent to HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Authentication Vector from HN.

|SN| Extracting XRES..

|SN| XRES is extracted.

|SN| Preparing AV for UE..

|SN| AV for UE is prepared.

|SN| AV is sent to UE.

--

Press enter to proceed. (Write STOP to exit.)

|SN| RES is received from UE.

|SN| Checking if RES matches XRES..

|SN| RES challenge succeeded.

|SN| Result of RES challenge is sent both to UE and HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Attach attempt from DNA 3613856892

|SN| Attachment request is sent to HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Authentication Vector from HN.

|SN| Extracting XRES..

|SN| XRES is extracted.

|SN| Preparing AV for UE..

|SN| AV for UE is prepared.

133

|SN| AV is sent to UE.

--

Press enter to proceed. (Write STOP to exit.)

|SN| RES is received from UE.

|SN| Checking if RES matches XRES..

|SN| RES challenge succeeded.

|SN| Result of RES challenge is sent both to UE and HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Attach attempt from DNA 3613856892

|SN| Attachment request is sent to HN.

--

Press enter to proceed. (Write STOP to exit.)

|SN| Authentication Vector from HN.

|SN| Extracting XRES..

|SN| XRES is extracted.

|SN| Preparing AV for UE..

|SN| AV for UE is prepared.

|SN| AV is sent to UE.

--

Press enter to proceed. (Write STOP to exit.)

|SN| RES is received from UE.

|SN| Checking if RES matches XRES..

|SN| RES challenge succeeded.

|SN| Result of RES challenge is sent both to UE and HN.

--

Press enter to proceed. (Write STOP to exit.)

stop

BUILD SUCCESSFUL (total time: 3 minutes 33 seconds)

134

run: (HN.java)

----------|Home Network|----------

--------------|HN|----------------

Press enter to proceed. (Write STOP to exit.)

|HN| Attach attempt from DNA 5712919082

|HN| Checking IMSI..

|HN| IMSI is valid.

|HN| R1-type AV is required.

|HN| Creating R1-type AV..

|HN| R1-type AV is created.

|HN| R1-type AV is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Result for RES challenge is received from SN.

|HN| Checking result..

|HN| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Attach attempt from DNA 5712919082

|HN| Checking IMSI..

|HN| IMSI is valid.

|HN| Creating pseudonym..

|HN| New Pseudonym is created.

|HN| New Pseudonym is 3613856892

|HN| R2-type AV is required.

|HN| Creating R2-type AV..

|HN| R2-type AV is created.

|HN| R2-type AV is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Response result from SN.

|HN| Checking response..

|HN| Result for RES challenge is received from SN.

|HN| Checking result..

135

|HN| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Attach attempt from DNA 3613856892

|HN| Checking IMSI..

|HN| Pseudonym is valid.

|HN| Creating pseudonym..

|HN| New Pseudonym is created.

|HN| New Pseudonym is 2890913730

|HN| R2-type AV is required.

|HN| Creating R2-type AV..

|HN| R2-type AV is created.

|HN| R2-type AV is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Response result from SN.

|HN| Checking response..

|HN| Result for RES challenge is received from SN.

|HN| Checking result..

|HN| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Attach attempt from DNA 3613856892

|HN| Checking IMSI..

|HN| Pseudonym is valid.

|HN| R3-type AV is required.

|HN| Creating R3-type AV..

|HN| R3-type AV is created.

|HN| R3-type AV is sent to SN.

--

Press enter to proceed. (Write STOP to exit.)

|HN| Result for RES challenge is received from SN.

|HN| Checking result..

|HN| Authentication succeeded.

--

Press enter to proceed. (Write STOP to exit.)

stop

BUILD SUCCESSFUL (total time: 3 minutes 35 seconds)

136

APPENDIX C – Screenshots

After running INPUT.java

UE,SN,HN are run simultaneously

137

138

UE process:

139

140

141

SN process:

142

143

HN process:

144

145

APPENDIX D – Public demonstrations

1. The 21st Conference of Open Innovations Association FRUCT

Helsinki, Finland

6-10 November 2017

2. TAKE5 and 5G Test Network Finland workshop

Espoo, Finland

14 December 2017

