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Human perception has been a subject of study for centuries. Various eye tracking methods in many 

study designs have shed light on individual differences in perception and visual navigation. However, 

accurately identifying individuals based on gaze behaviour remains a challenge. Artificial intelligence 

(AI) based methods have led to large successes in domains such as vision and language; they are also 

making their introduction in human factors & neuroscience (HFN). Leveraging AI for HFN requires 

quantities of data several orders of magnitude larger than the field is used to organising; there exists a 

clear discrepancy in the standardisation of data publication. In this work, we work towards foundation 

models (FM) for HFN by highlighting important data insights from AI. A multimodal bottleneck 

transformer is proposed, a model architecture that can effectively and efficiently represent and work 

with the varying modalities encountered in HFN. Results indicate that classification of individuals and 

prediction of gaze is possible, given more training data.  
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1 Introduction 

Human perception has been a subject of study for centuries. Due to the development of 

various research methodologies, among them eye tracking, visual perception can readily be 

studied. We navigate the world by observing, making sense of our observations, and then 

making decisions. The order and importance attributed to observations varies from person to 

person and the extent to which individual observational patterns differ has been widely 

studied. The effect and underlying causes of said differences is poorly understood and 

remains under continuous study. Identification of differences in eye-movements takes on 

many forms, for example, facial scanning recognition strategies, in which distinctions like 

“eye-looker” and “nose-looker” are discernible (Peterson & Eckstein, 2013). Moreover, 

idiosyncrasies in observed oculomotor patterns can be used in various contexts, such as 

security and privacy applications (Katsini et al., 2020). Another notable field of application is 

the widespread use of eye-tracking based medical screening, which utilises the fact that eye 

movements rely on the integrity of a distributed network of brain areas, and so may provide 

useful information in an initial assessment of, for example, Parkinson’s disease, or autism 

spectrum disorder (Itti, 2015). While purely eye tracking based medical diagnoses are 

unlikely to be prevalent in the near future, studying features of individual oculomotor 

characteristics may aid in the identification of markers that are diagnostic of a neurological 

condition. Notably, visual orientation is not solely done with information from the ocular 

modality, it integrates multiple senses. For example, when balancing, the visual system works 

closely together with the proprioceptive and the vestibular system to integrate various hints 

about posture and body positioning (Redfern et al., 2001); studying gaze behaviour is a 

multimodal endeavour. 

On a high level, analysis of gaze behaviour, with a focus on saliency, may provide a basis of 

successful differentiability of individuals. Saliency is a property ascribed to entities that are 

perceived to be significant or important in some way, such as objects, people, and emotions 

(J. Xu et al., 2014). When exploring our visual surroundings, we tend to orient our eyes to 

regions that are in high salience and evidence suggests that a saliency map is constructed by 

the brain to keep track of salient entities in space (Itti & Koch, 2000). Distinguishing patterns 

in the selection of such entities, or even the construction of such maps may provide a fruitful 

basis for the classification of gaze-related idiosyncrasies. De Haas et al. (2019) found stable 

individual differences in the allocation of attention to different categories, demonstrating the 
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predictability of salience. However, these differences were not predicted by other known 

idiosyncratic properties in gaze, such as the tendency for visual exploration. Nonetheless, 

saliency dimensions found by de Haas et al. (2019) are excellent predictors of gaze on a group 

level.  

Human vision is also subject to study on a lower level. The human visual field is relatively 

large, spanning over 200 degrees horizontally and 135 degrees vertically. However, it is 

highly foveated, meaning that only a fraction of the entire field, less than two degrees, falls in 

the central part of the retina and is thus subject to highly detailed vision (Zigmond et al., 

1999). Given this, we explore our environments and construct saliency maps using a series of 

rapid, ballistic movements, saccades, that direct our fovea (Zigmond et al., 1999). Research 

on the oculomotor systems that give rise to these saccades can aid in the identification of 

individual differences. These differences lie in things such as temporal characteristics of 

saccades and pursuits (Bargary et al., 2017a) and saccadic (de)acceleration (Rigas & 

Komogortsev, 2016). In addition to more traditional approaches, where features are selected 

and crafted based on the literature’s understanding of eye-movements, more recently 

developed approaches seek to tackle the problem with artificial intelligence (AI). AI-based 

methods automatically extract patterns from the data and learn a meaningful representation 

for a given task.  

This work is structured as follows: The goals and hypotheses are explained, after which the 

achieved contributions are summarised. Then, the theoretical background is built up by 

highlighting three key research works. The first work is one on foundation models (FM) by 

Bommasani et al. (2021); second, the transformer architecture by Vaswani et al. (2017); third 

and final, the multimodal bottleneck transformer architecture by Nagrani et al. (2021). 

Combined, these works serve to construct a basis for the present study. After that, important 

literature for the study of human gaze is discussed, covering primarily AI-based methods. 

Then, through the combination of the key works and discussed literature, a novel approach to 

the multimodal study of human gaze will be introduced and developed. The architecture of the 

approach is such that it can be expanded to the study of all human factors and human 

neuroscience (HFN). Concrete methods based on the concepts and insights developed in the 

framework are described, after which they are situated in the current meta of HFN research. 

Finally, a discussion will take place surrounding the limitations of the current implementation 

and recommendations for the future are presented.  
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1.1 Goals 

The overarching goal of the present study is to work towards the standardisation of a system 

in which human-factor & neuroscience (HFN) data are collected and processed. As it stands, 

many of the studies that combine neuroscience and AI are conducted on metaphorical islands. 

Each island has its own language, making it very difficult to bundle the knowledge of said 

islands. One has to go on a search for such islands, learn to speak the language, translate the 

findings (through which some of the knowledge will be misrepresented), and bundle all 

gained insights and data. Only then can a study be done on a larger collection of concepts. 

Recently, many fields have started moving towards open science. Thousands of datasets are 

published each year, in a myriad of fields. Given ample time and expertise, new, AI-suitable 

datasets can be created. However, this process is prohibitively arduous and expensive. There 

is simply a lack of consensus in the field when it comes to standardisation. Dolmans et al. 

(2021) talk about modularity and generality (MG) as a set of tools by which methods are to be 

evaluated. Similar to the concept of polymorphism, MG seeks to mould research pipelines 

into ones that can be grasped and reused with minimal effort; these MG requirements should 

also apply to datasets. By following a set of guidelines, a common format can be agreed upon 

and enforced by a field. What are valuable guidelines for standardisation of behavioural and 

human-factor related data for AI usage? 

The overarching goal of working towards standardisation is applied to the classification of 

individuals based on eye tracking data collected during image viewing, as a proof of concept. 

Xu et al. (2014) constructed a dataset of 700 images for which semantic-level information is 

available, named Object and Semantic Images and Eye-tracking (OSIE). They show that 

semantic attributes significantly explain the saliency of viewed images. Properties that are 

particularly impactful for saliency are the presence of a face, both with and without an 

emotion, text, and watchability (objects that are designed to be looked at, like paintings and 

signs). De Haas et al. (2019) further show that (i) the saliency weights of these semantic 

attributes vary substantially between individuals and (ii) the variation between individuals is 

consistent across different images within a viewing session and across viewing sessions on 

different days. 

The present study seeks to outline a framework for accurately classifying individuals in eye 

tracking studies, as well as to predict an individual’s gaze pattern for both seen and unseen 

stimuli. As previously discussed, the study of vision is a multimodal study by nature; the 
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framework must be modality extensible to HFN. A neural network that is able to distinguish 

individual viewers based on their gaze behaviour will be devised. Furthermore, due to recent 

advancements in sequence-to-sequence modelling, the same network can predict raw gaze, 

given an understanding of individual viewing patterns and a stimulus. Can such a network 

conceivably be designed and trained? The OSIE paradigm provides an excellent example case 

since it lends itself to multimodal study by combining images, their respective semantic 

labels, and eye tracking data. On the basis of the above, the following goals are identified: 

• G1: Create an example case that meaningfully and concretely contributes to the 

standardisation of data organisation in eye tracking, making use of multimodal AI. 

o G1.a: Determine whether it is possible to classify individuals using a 

multimodal bottleneck transformer in eye tracking tasks.  

o G1.b: Determine whether it is possible to predict a specified individual’s gaze 

behaviour using a multimodal bottleneck transformer. 

• G2: Provide concrete guidelines for the contribution of data and pipelines to human 

factors & neuroscience foundation models. 

1.2 Hypotheses 

We hypothesise that the design and implementation of a modular and generalisable (MG) 

multimodal bottleneck transformer (MBT) meaningfully contributes to the standardisation of 

HFN research; imposing the MG criteria forces the expansion of scope such that the devised 

methodology can be applied to arbitrary multimodal configurations. We further hypothesise 

that the large-scale data ingestion requirements and the necessary workflow of data 

contributes to the communication about and publication of data in HFN.  

1.3 Contributions 

This present work contributes several key components to the field of eye tracking studies and 

human factors and neuroscience (HFN). First and foremost, a flexible implementation of a 

multimodal bottleneck transformer (MBT) for usage in HFN is developed. The MBT was 

developed and implemented with modularity and generalisability in mind (Dolmans et al., 

2021); to be modular, new modalities should be easy to add and their data should fit within 

the data processing pipeline with minimal structural implications. Generalisability refers to 
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that the addition of new modalities should contribute to the overall performance of the system. 

The code is openly published on GitHub (Eye4AI, 2023), see Figure 1 for a high-level 

overview of the model architecture. 

Secondly, several key bottlenecks for the development of next-generation AI-based platforms 

for research are identified and suggestions are made for overcoming said bottlenecks. 

Concretely, consensus on the generation and publication of data in common format for AI 

purposes needs to be reached. Several suggestions are made to overcome these issues in a 

multimodal setting through vector-based organisation of data. Further, embedding methods 

are introduced for various modalities in similar fashion to language (Pennington et al., 2014; 

Peters et al., 2018). Recommendations for the generalisation to arbitrary modalities are made.  

Third, we expand on the scope in which multimodal AI is approached by moving away from 

what is conventionally considered multimodal: language-image understanding and generation 

(J. Li et al., 2022; OpenAI, 2023). We expand to the prospect of including an extensible 

number and variety of modalities in a single unified model inductively through the inclusion 

of eye tracking, vision, and semantic labels.  

 

Figure 1 High-level overview of the multimodal bottleneck transformer (MBT) implementation. From 
bottom to top, modalities are embedded and fed to an encoder. The encoder builds a representation of 
the data using multiple layers. Encoded states = representations of input data after encoder layers; 
encoder = MBT encoder, adapted from (Nagrani et al., 2021); bottleneck token = tokens that are used 
to communicate information between the encoded states of different modalities; decoder = transformer 
decoder (Vaswani et al., 2017); head = head network that converts decoded states to the correct 
dimensionality; task = downstream objective of the model. 
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2 Key Works 

2.1 Foundation models 

As previously indicated, one of the key works in the context of this work is the introduction of 

Foundation Models by Bommasani et al. (2021). A foundation model (FM) is a model that is 

trained on a vast collection of broad data in a specific domain or modality. From said FM, a 

wide range of applications can be developed through down-stream adaptation, or so-called 

finetuning. The strength of FMs follow from their emergent capabilities and homogenisation. 

Emergence refers to the “spontaneous” behaviour that is implicitly induced, rather than 

explicitly crafted, whereas homogenisation refers to the convergence of machine learning 

methods for a wide range of applications. Hence, the availability of an FM in a domain allows 

for the creation of a variety of downstream implementations through careful finetuning. 

Bommasani et al. (2021) attribute the possibility of FMs to three factors: (i) the continuing 

improvements of hardware (specifically GPUs and TPUs); (ii) the availability of much more 

data; (iii) the widespread implementation of the Transformer architecture (Vaswani et al in 

2017), which will be extensively discussed in later sections. The quality of the emergent 

capabilities inherently depends on the quality of the FM.  

As per (i, ii), modern AI has been able to make such large strides due to the exponential 

increase in data availability and computational power. Consumer-grade computational power 

continues to make significant strides, all the while still reaping the benefits of Moore’s law 

and other cost-reducing innovations (Shalf, 2020). Regarding increased data availability, 

almost 82% of all websites use images in PNG format, closely followed by JPEG at almost 

78%; SVGs also hold a sizable 54% stake (W3Techs 2023). Images are often also 

conveniently accompanied by a written description or title, providing ample training data of 

text-image pairs for model training. Furthermore, the open availability of over 750GB of text 

data allows for the training of increase large, large language models (LLM) (Thompson, 

2022). There exists such a widespread consensus on the format and organisation of text and 

image data that truly massive compilations of data can be crafted. Anyone is able to take a 

stab at the problem of building FMs, provided they can afford the significant costs associated 

with the expertise and hardware. For a sense of scale, generative pre-trained transformers 

(GPT) such as GPT-4, OpenAI’s latest FM, cost more than $100 million to train, according to 

CEO Sam Altman (WIRED, 2023). However, training costs are not all. According to 

SemiAnalysis’ chief analyst Dylan Patel, daily operation costs for ChatGPT (a finetuned 
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version of the GPT class FM) could be around $700,000 per day (Patel & Mok, 2023). 

Midjourney, a model created by an independent research lab with the same name can 

synthesise images from textual data (Midjourney, 2023). Given the availability of vast 

collections of images and art alike, Midjourney can be considered an FM in the visual 

domain.  

If one were to attempt to reproduce the creation of FMs such as GPT-4 and Midjourney for 

HFN by compilation data such as EEG, fMRI, eye-movement data, etc., one would fail. The 

problem is twofold. First, not nearly all data are publicly available, restricting the size of the 

theoretically creatable dataset. Second, the formats and organisation in which these data are 

presented are incredibly diverse; cracking the experimental paradigms, research objectives, 

and quirky programming habits that “encode” the data is prohibitively expensive. Luckily, 

there has been a recent push for standardisation for the collection and reporting methods in 

eye tracking studies by Holmqvist et al. (2022). Their paper presents various factors that 

affect the data quality in eye tracking studies and further outlines standard practices that can 

be used to improve reproducibility. However, even this most up-to-date guideline for eye 

tracking research does not address the need to provide a structure in which eye tracking data 

can be stored and shared such that the data are easily reusable from an AI perspective. The 

commonly used FAIR (Findable, Accessible, Interoperable, and Re-usable) principles provide 

a framework for concrete actions that aid research collaboration (The FAIR Data Principles – 

FORCE11, 2023). Section R1.3 states that (meta)data should meet domain-relevant 

community standards. However, such standards do not exist for many of the aforementioned 

modalities.  

The fields of HFN and AI are too different, leading to discrepancies in understanding from 

either side. There exists a gap between what is understood in the field of HFN and what is 

needed for the large-scale sharing of data. Data principles that might suffice in the 

reproducibility of individual research works fall short when it comes to the compilation of 

datasets on the scale of the abovementioned available text and image sets. Conversely, the 

field of AI is inadequately equipped to interpret and make the most of HFN data, even if it 

were available. There exists a clear discrepancy in the currently available model architectures 

for the purpose of HFN. It is up to those who have knowledge of both fields to start 

connecting the disciplines. It is also pertinent to improve communication between experts in 

the two fields, rather than rely solely on individuals with simultaneous expertise in both. In 
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this work, we will work towards a framework in which a FM for HFN can be constructed, 

from data creation to deployment.  

In order to be able to concretely work towards FMs in HFN, several key components are 

missing. Bommasani et al. (2021) provide five clear stages in the development of FMs. In this 

section, we will explore what these five stages entail in the field of HFN. For the sake of 

brevity, we limit the scope of the following considerations to eye-tracking and neuroimaging 

data. Later, in the more practical parts of this work, we focus on eye-tracking only.  

2.1.1 Data Creation 

The creation of data is the first step in this process. Data are typically generated for a specific 

purpose. In HFN, the purpose generally pertains to the study of, for example, human 

psychology, decision making, physiology, and perhaps more importantly, their dynamical 

interaction. The recent push for unification of data creation by Holmqvist et al. (2022) bodes 

well for the field of eye-tracking. Other fields, such as (f)MRI and radiology already enjoy a 

more unified data organization through the NIFTI, MINC, and DICOM formats 

(Sriramakrishnan et al., 2019). Of course, these formats are not without problems, see 

Larobina & Murino (2014) for a discussion. Nonetheless, through several software packages, 

such as MRIcro, researchers are able to navigate most of the prevalent data formats (MRIcro: 

Tool/Resource Info). 

2.1.2 Data Curation 

Unfortunately, no perfect distribution of data has ever or will ever exist. Some level of 

curation is always required. Depending on the considerations that underlie the creation of an 

FM, legal and ethical concerns must be addressed, preferably at the data creation stage. Trade-

offs between data quality and quantity are to be carefully considered during this stage. 

Currently, it is hard to find amply large datasets that consists of intrinsically well-aligned 

sample/label pair in HFN. For example, the largest publicly available eye tracking related 

dataset is TEyeD, which contains 20 million real-world eye images for the purpose of 

improving gaze estimation in VR and AR (Fuhl et al., 2021); one of the larger MRI (and other 

modalities) dataset contains some 1350 participants (Snoek et al., 2021). We will later discuss 

just how much data is required for FMs. Creating such large datasets requires considerable 

effort and collaboration between labs, universities, and countries. As put wisely by a 
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colleague: “Fields that can generate data in common format are going to move faster than 

fields that can’t.”  

2.1.3 Training 

The architecture of the model and training pipeline are determined prior to the 

commencement of the training. Data ingestion methods that retain domain information must 

be designed, which requires expertise. Besides the conservation of signal, the ingestion 

methods must focus on efficiency. On large scale projects like the creation of FMs, an 

efficiently organised training sequence can save several orders of magnitude; the difference 

between 1023 and 1025 FLOPs (Hoffmann et al., 2022). This affects not only the end-to-end 

time, but also limits the environmental impact of training large models. Gopher, a 280B 

parameter model, was trained on 4096 TPUv3 chips, which emitted an estimated 380 tons of 

CO2, rather than the estimated emissions of 552 tons of CO2 as a result of training the 175B 

parameter GPT-3 (Rae et al., 2021). It is evident that efficiency considerations should be 

made carefully, they have significant impacts on emissions and energy usage. 

The Chinchilla model was specifically trained and evaluated with the performance to cost 

ratio in mind (Hoffmann et al., 2022). It was found that current LLMs are significantly 

undertrained, and performance could be improved by increasing the training data. Conversely, 

the same performance can be achieved with much smaller models. In general, Hoffman et al 

(2022) recommend 20 times the number of parameters worth of tokens. However, in the case 

of FMs for HFN, it becomes unclear what “one token” pertains to, since datatypes vary 

significantly. This issue is comprehensively discussed in the Embedding section.  

2.1.4 Adaption 

After training a domain specific FM, it must be finetuned to the context in which it will be 

deployed (Hu et al., 2021). During training, the range of possible contexts in which the model 

will operate should be taken into consideration to ensure that it is able to generalise over the 

scope of indented adaptations. This phase also defines the rules that guide behaviour, 

objectives, as well as the restrictions of the network. Undesirable qualities and behaviours 

must be identified and resolved. In LLMs, these undesirable qualities are often referred to as 

bias and toxicity (Chowdhery et al., 2022). Extensive testing is done to assess the degree to 

which an LLM tends to display such behaviours. Similarly, the bias and toxicity of any FM 

should be assessed in ways that fulfil requirements of the respective domain. 
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In HFN, bias is the largest concern, as these models are used for classification, intervention, 

and medical decisions and advice. A recent work developed a unified and generalist 

Biomedical GPT, which effectively makes use of the methodological breakthroughs achieved 

in language modelling, such as self-supervised learning (Zhang et al., 2023). The authors find 

that BiomedGPT is competitive in tasks spanning vision, language, and various multimodal 

domains in the biomedical sector, such as disease predition. Notably, Zhang et al. (2023) 

further draw attention to the sensitivity to training data balance, indicating that careful 

planning and extensive testing is required to find a balance in data diversity. Concerningly, 

BiomedGPT sometimes fails to understand instructions and outputs irrelevant data types to 

the task at hand; such mode collapses should be identified and resolved prior to deployment. 

2.1.5 Deployment 

During deployment, any interested party might ideally be able to publish and work with their 

adapted application for an FM. The impacts of every deployment should carefully be assessed 

prior to release to the public. Every domain has specific requirements. In the case of HFN, 

there is an increased need for privacy-oriented implementation. One of the largest strengths of 

FMs are the emergent capabilities and behaviours. However, this might also be one of the 

largest pitfalls; current legislation is not oriented towards this rapidly developing regime and 

will fall short in the protection of human rights (Ienca & Andorno, 2017). At a low level, it is 

currently often not possible to perform inference without giving up privacy, simply because 

the infrastructure does not support it. The concept of MPCFormer outlines a design which 

tackles encrypted inference, allowing for inference without compromising privacy or speed 

(D. Li et al., 2022). More fundamentally, the dawning age of neuroinformation threatens 

several, currently relatively undefined, human rights. Lenca & Andorno (2017) identify an 

initial four human rights that are threatened by current developments: cognitive liberty, 

mental privacy, psychological continuity, and mental integrity. While these concerns may 

seem relatively out of scope for our current state, the increasingly rapid development of FMs 

urges us to leave no stone unturned in our considerations.  

2.1.6 Proposed: Evaluation 

We propose a sixth stage to the development of foundation models: evaluation. We are 

entering an era where FMs are displaying human-level capabilities, increasingly in 

multimodal settings (OpenAI, 2023; Zhang et al., 2023). With the increasing capabilities 
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comes increasing evaluation difficulties. There exist many benchmarks that can be used to 

evaluate models, with many more in development. Examples are planning (Valmeekam et al., 

2022), vision-language tasks (Zhou et al., 2022), and using API’s (M. Li et al., 2023). 

However, many fields and modalities are still lacking clear standards. Furthermore, as will be 

discussed further in later sections, performance metrics are not always to be trusted due to 

various issues such as unresolved session bias. An eye-tracking example of session bias: if 

train and test data are collected on the same day, there exists inherent uncertainty about what 

the data are classified on. Rather than classifying solely on eye-movement features, the 

network can classify on noise, such as the angle at which a participant is viewing the screen, 

the brightness of environmental light, or even the presence of electrical noise in the signal. 

Hence, we deem it essential that that evaluation and specifically the open communication 

about said evaluation is emphasised during the creation of new FMs.  

2.2 Transformers 

In this section, the transformer architecture as introduced by Vaswani et al. (2017) is 

discussed. Transformers are the second key concept relevant for the present work. This forms 

the basic building block for later sections of theoretical background, as well as the practical 

implementation of the present work. Crucially, the success of transformers can be attributed to 

three properties: self-attention, universality, and scalability. Self-attention extensively 

discussed in the following section. The universality is demonstrated through the application of 

transformers in the modelling of many different modalities, such as language (OpenAI, 2023), 

vision (Dosovitskiy et al., 2020), eye tracking (Rolff et al., 2022), biomedical imaging (Zhang 

et al., 2023), and many more. It is considered to be a “universal” architecture that can be 

adapted to any arbitrary organisation of information. Lastly, transformers are highly scalable 

when distributed across modern GPUs with many cores, allowing for bigger models and thus 

performance improvements (T. Lin et al., 2022). However, scalability remains an open 

challenge for transformers (Peng et al., 2023). Transformer’s time and space costs scale 

quadratically with sequence length. I.e., time: 𝑂(𝑇2𝑑); space: 𝑂(𝑇2 + 𝑇𝑑) where 𝑇 is the 

number of tokens in the sequence and 𝑑 is the hidden dimension of the network. 

Transformers come in various flavours, depending on how its components are combined. 

Specifically, the encoder and decoder components. The encoder is used to map an input 

sequence to a sequence of representations of said sequence. The decoder is used to generate 

the output sequence based on both its own representations, as well as the representations 
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produced by the encoder. Transformers thus come in the following varieties: encoder only, 

decoder only, and encoder-decoder (J. Yang et al., 2023). Encoder only and encoder-decoder 

models are generally used in masked learning, where items in a sequence are masked and 

predicted. Decoder only models are generally autoregressive, meaning that they produce 

future items based on past items (Weber & Gühmann, 2021). 

2.2.1 Attention 

One of the key characteristics of transformer networks is the implementation of self-attention, 

more specifically scaled dot-product attention as introduced by Vaswani et al. (2017). Their 

attention maps an input to an output by computing a similarity measure. Attention is 

computed using several vectors, namely the query, key, and value vectors, by computing a 

weighted sum of their values. The query vector represents the data or positions in a sequence 

for which we want to compute attention. The key vector represents the tokens or positions that 

are being attended to. It contains information that can be compared to the query vector to 

measure the relevance and comparability between the query and the keys. Finally, the value 

vector contains the actual information that is used to compute the weighted sum during the 

attention mechanism. It is associated with each token in the input sequence. Each of these 

vectors is obtained by multiplying the input sequence with a learned weight matrix. It is 

important to note that the input sequence is not raw data, rather a latent representation, or 

embedding, of said data. The mechanisms underlying embedding are discussed in the 

embedding section. 

The dimensionalities of the query, key, and value vectors are 𝑑𝑞, 𝑑𝑘 and 𝑑𝑣, respectively. The 

weight assigned to each value vector is computed by a scaling factor √𝑑𝑘. The dot product of 

the query with all keys is calculated simultaneously in matrix form. A SoftMax function is 

applied to obtain the weights on the values. Equation 1 describes the computation of attention 

as described above. The benefit of dot-product attention is its efficiently scaling and space-

efficient matrix-multiplication based implementation. This implementation is identical to dot-

product attention, except for the scaling factor of 
1

√𝑑𝑘
.  

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉   (1) 

Vaswani et al. (2017) found that linearly projecting the queries, keys, and values ℎ times 

allows the model to jointly attend different (latent)subspaces of the input, which is beneficial 
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for generalisation. This leads to the concept of multi-head attention (MHA). By scaling the 

dimensionality of each head down, the total computational cost is comparable to single-

headed attention in a scenario where full dimensionality is retained. Equation 2 describes the 

implementation of MHA. 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂   (2) 

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) 

Where the projections are learnable parameter matrices 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾, 𝑊𝑖
𝑉, and 𝑊𝑂 is a learnable 

matrix which’ weights balance the contribution of the various heads. Figure 2 visualises the 

construction of scaled dot-product attention and MHA. The weight matrices are what define 

the effectivity of the model’s learning and they are subject to optimisation through 

backpropagation. Backpropagation was introduced by Finnish mathematician Seppo 

Linnainmaa in their master’s thesis, albeit without reference to neural networks (Linnainmaa, 

1970). To make use of backpropagation, a metric is defined by which the model’s 

performance is evaluated by introducing a loss function. The loss function defines how well 

the model performs on a single input-output pair. If the loss is non-zero, backpropagation 

computes the gradients of the loss with respect to the weights in an efficient manner. From 

this gradient, a step can be taken in the direction that reduces the loss, this process is called 

stochastic gradient descent and was introduced by Robbins & Monro in 1951. Modern 

adaptations of these core concepts have accelerated AI considerably. 

 

Figure 2: Adapted from (Vaswani et al., 2017). Scaled dot-product attention and the multi-head 
implementation of it. Q, K, and V represent query, key, and value, respectively. 𝑊𝑖 refers to a weight 
matrix where the letter in superscript refers to Q, K, V, or output (O) and 𝑖 refers to the current head of 
the multi-head block.  
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2.2.2 Transformer Blocks 

In order to effectively use MHA, it is used in transformer blocks. These blocks are 

constructed by stacking and connecting multiple components. The blocks are similar in both 

the encoder and decoder, the differences will be discussed in the paragraph following the 

current one. For the construction of transformer blocks, first, MHA is computed over 𝑄, 𝐾, 𝑉 

and stacked with layer normalisation (LN). The LN also ingests a residual connection from 𝑄,

𝐾, 𝑉 (He et al., 2015). In the original model architecture, the LN follows the MHA. Networks 

that use this order of operation are known post-LN transformers (Vaswani et al., 2017). After 

many attempts at improving the transformer architecture, it was found that one of the very 

few meaningful changes that can be made to the architecture, is shifting from a post-LN to a 

pre-LN architecture. This small change leads to more stable initialisation when using a warm-

up stage and is thus favourable for some tasks (Xiong et al., 2020). However, in this work, we 

apply a post-LN architecture, because we do not deploy the model in such a way that this 

improvement would bear fruits. After the MHA and LN two components, the hidden 

dimension of the network is expanded by a certain factor and fed to a densely connected feed-

forward layer. Conventionally, the expansion factor is kept at four. After the forward 

expansion, another LN is done on the outputs of the linear layer together with another residual 

connection from first LN. Then, and finally, dropout is introduced as a regularisation 

(Srivastava et al., 2014). This completes the basic implementation of a transformer block. The 

blocks are stacked, leading to “layers”. The definition of layers in this context differs from the 

definition of layers in the context of multilayer perceptrons (MLPs), where it refers to the 

number of densely connected linear feed-forward layers (Rosenblatt, 1958).  

The transformer block described above is the “vanilla” block as encountered in the encoder 

section of a network. In the decoder, the block is similar, barring a few adjustments. The 

decoder transformer block consists of the same stacking of LN an MHA but is repeated an 

extra time, rather than being immediately followed by a feed-forward layer. Depending on the 

implementation of the transformer, the decoder block performs its second iteration of LN and 

MHA over queries produced by the first MHA and the outputs of the final encoder block. 

Similar to the encoder, the decoder also utilises residual connections (He et al., 2015). 

Furthermore, the self-attention in the decoder can be masked such that the predictions for item 

𝑖 in the sequence cannot depend on 𝑖 + 1. Attending items that follow the current item would 
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lead to a form of cheating, since the network would be able to copy what follows the current 

item as its prediction. See Figure 3 for visual intuition on the interaction between encoder and 

decoder blocks. 

 

Figure 3: Encoder and Decoder blocks in the transformer architecture, adapted from (Vaswani et al., 
2017). Embed = embedder class for input data; POS = positional embedding; MHA = multi-head 
attention, described in Figure 1; LN = layer normalization, FF = feed forward; Head = head network; 
Nx = number of layers for the Encoder and Decoder. 

 

2.3 Multimodal Bottleneck Transformers 

The third and final key work is the work on attention bottlenecks for multimodal fusion 

(Nagrani et al., 2021). Transformers can be extended to a multimodal context by computing 

attention over multiple sequences of length 𝑇, one for each modality. These sequences are 

essentially ‘fused’ into one, allowing for the attendance of tokens from multiple modalities in 

a single stroke. As highlighted in a survey of SotA transformer architectures by Xu et al. 

(2022), there are several paths that lead to multimodal network capabilities, with various 

options for early, intermediate, or late fusion. Options span from early concatenation of data, 

to using multi-stream architectures that fuse somewhere, to architectures that keep modalities 

separate for several transformer blocks and later concatenate to one stream (J. Lin et al., 2020; 

P. Xu et al., 2022). Intermediate fusion is favourable due to the improved performance that is 
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observed compared to early and late fusion (Nagrani et al., 2021); such fusion requires self-

attendance across modalities.  

However, as previously indicated, the time and space complexity scales quadratically with 

𝑇 (Peng et al. , 2023). Hence, computing attention over multiple modalities imposes large 

restrictions on 𝑇. Naively extending 𝑇 is computationally very expensive. Several options for 

improving performance through multimodal fusion are available. First, by concatenating 

sequences of modalities such that  

𝑇 =  ∑ 𝑇𝑖

𝑀

𝑖=1

 

where 𝑀 is the number of modalities and 𝑇𝑖 is the sequences length of the 𝑖𝑡ℎ modality and 

accepting the increased computational overhead. The second option is to truncate 𝑇𝑖 

hyperbolically in order to occupy equal time and space: 

𝑇 =  ∑
𝑇𝑖

𝑀

𝑀

𝑖=1

 

Context length is directly related to performance, increasing 𝑀 thus leads to increasingly 

diminished utility from the same computational footprint (Takahashi & Tanaka-Ishii, 2018). 

The third option for tackling efficient communication about cross-modal interactions is using 

a cross-modal attention bottleneck (Nagrani et al., 2021). The bottleneck consists of a 

relatively small, and crucially constant, number of learnable tokens that are shared across 

encoders for all modalities. Nagrani et al (2021) introduce these tokens and demonstrate how 

limiting the time and space for the exchange of information between modalities is beneficial 

to the performance of the network. To make effective use of these bottleneck tokens, attention 

is computed over the concatenation of each modality’s tokens and the bottleneck tokens. The 

bottleneck is updated separately and simultaneously with information from all modalities. 

Because all communication between modalities is now highly restricted, the model learns to 

populate the bottleneck with only highly relevant information.  

There exists contrasting evidence on where the bottlenecked attention sharing should be done. 

You et al. (2022) indicate that freely allowing cross-model attention yields the best results. 

Conversely, Nagrani et al. (2021) claim that allowing free attendance is not as effective as 

restricting it to several of the later layers in a network. The ideas of multi-stream cross-

attention and MBT allow for the design of efficient, cross-modal self-attending networks in 
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any context. However, this does require that the input space can be somehow tokenised and 

embedded representatively, which requires domain knowledge.  

2.3.1 Bottlenecking in the Brain 

The brain has implemented communication between regions in a bottlenecked fashion. White 

matter tracts facilitate communication between regions by, among other things, providing 

functional connectivity (Bijsterbosch et al., 2018). The authors further find that spatial 

‘connectivity-fingerprints’ are more predictive of cross-subject variance than temporal 

equivalents. This suggests that the organisation of connectivity gives rise to substantial 

variability from brain to brain. The axons that make up white matter tracts provide ‘long-

distance’ communication between regions. Identifying faulty communication between brain 

regions, or faulty bottlenecks, has led to the improved classification of mild cognitive 

impairment (MCI) associated with Alzheimer's disease (AD) (Wee et al., 2012). Of course, 

the brain does not solely consist of such white matter tracts, suggesting that not all matter in 

the brain is structured around communication between regions. A parallel can be drawn 

between the functional localisation in the brain and the processing of multimodal data. The 

visual cortex then becomes, for example, a vision transformer (Dosovitskiy et al., 2020). The 

white matter tracts connecting the visual cortex to the motor cortex then become the 

bottleneck: communication is expensive and should thus be reserved for highly relevant 

information. Expand this functional localisation and functional connectivity to the full faculty 

of our senses and a complex system is born: the brain.  
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3 Further Literature 

Previous work has been done on the use of AI-based methods for the classification of 

individuals in eye tracking studies. In this section, a variety of works are discussed to identify 

(un)promising methodologies, gain perspective on the effectiveness of these methods, and 

identify shortcomings. Then, various developments in deep learning are summarised and 

issues are highlighted. Lastly, the conversion from data to transformer-ingestible data is 

discussed. This process is referred to as embedding.  

3.1 Deep Learning for Eye Tracking 

Researchers in the field have been tirelessly working to accurately determine what individual 

differences in eye movements may be and what physical or cognitive processes underlie them. 

Experimental designs can be categorised into having a set of properties which help quickly 

understand a paradigm. For one, a distinction is made between explicit and implicit tasks. In 

explicit tasks, individuals perform a set of precise and fixed patterns of eye-movements within 

a pre-determined space. Key low-level characteristics, such as fixations, smooth pursuit, and 

saccadic information, are then used to identify an individual (Katsini et al., 2020). In implicit 

tasks, individuals freely view a stimulus and inference can be done based on, for example, 

gaze-behaviour (Biedert et al., 2012) and scan-patterns (Buswell, 1935). A further distinction 

can be made between a controlled versus uncontrolled task, and a dynamic versus static task. 

In a controlled task, the visual task consumes the full attention of the individual. Conversely, 

an uncontrolled task would be, for example, traversing an environment or browsing the web 

freely. A dynamic task would involve moving targets, whereas a static task is non-variable. 

Bargary et al. (2017) performed a controlled, static, explicit study with over 1000 healthy 

young adults. They were able to identify individuals approximately 60% of the time in a 

subsample of retested participants (N=104) based on their position in a multidimensional 

space created by 18 crafted saccade features. They also found that over 90% of the classified 

users were in the top 10 closest predictions. They further indicate that the rich variation in 

eye-movements between individuals is poorly understood and that many differentiating 

factors are likely to be associated with this variation. Differences can come from implicit 

origins, such as central decision-making processes (Carpenter et al., 2009), but also more 

explicit origins, such as muscle tissue and differences in motor control (Komogortsev et al., 

2012). 
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Existing methods of user classification with eye-movement data using deep learning are 

scarce. Li & Chen (2018) found that there are distinct individual differences in both low- and 

high-level abstractions of eye movement. They believe that deep features learnt by neural 

networks, or latent representations, are valuable for saliency mapping. While some deep 

features are valuable for the distinction between individuals, they also found that some 

features are too similar across individuals. This suggests that there exists a learnable set of 

features that are valuable for understanding human gaze behaviour in general. However, this 

set contains both usable and unusable features for the classification of individuals. This 

provides a balancing challenge in the training of neural networks: general understanding of 

human gaze behaviour, or eye tracking, versus individual distinguishability.  

Jäger et al. (2020) also attempted to tackle the issue of biometric identification using learned 

latent representations of eye movements. They demonstrated that the addition of hand-crafted 

features, such as fixational or saccadic features lead to inferior performance compared to 

using latent features alone. This begs the question how effective and predictive these metrics 

are in conventional (fixation and saccade based) eye tracking studies. Based on a series of 

explanatory experiments, Jäger et al. (2020) indicate that the information contained in manual 

heuristic categorisation, i.e., classifying the types of fixations, contributes very little to the 

performance of their deep neural network. Rather than high-level features, low-level features, 

such as involuntary micro-movements provide valuable insight into to individuality. This 

suggests that raw data, including low-level information, such as angular velocity of eye 

movements, contains valuable information for identification purposes. Feature 

extraction/crafting provides noise reduction, but at the cost of potentially useable information, 

leading to lower performance. Lastly, they demonstrate that deep learning can lead to a 

significant speed increase compared to traditional methods. Most traditional works in 

biometric identification make use of sequences of data that are of the considerable length of 

around a minute. However, Jäger et al. (2020), show 91.4% accuracy in a 75-class problem 

after only one second of data, climbing up to 99.77% when using 10 seconds of data. The 

authors do not comment on time saving from the perspective of the researcher. 

This deep learning-based approach shows promising results. Not only is classification much 

quicker, reliant on less data and feature crafting, it also far exceeds the traditionally achieved 

accuracies. However, the approach suffers from serious drawbacks, the most pressing of 

which is the opaque decision making of neural networks. While Jäger et al. (2020) perform 

some explanatory tests, the used dataset by Makowski et al. (2019) demonstrates a commonly 
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occurring key vulnerability: The excellent classification results are achieved when 

classification is done based on a ‘leave one out’ paradigm, meaning that classification is done 

on a single unseen segment of data. This problem of session bias is somewhat circumvented 

by collecting training and testing data on separate days, or at least in separate sessions. Jäger 

et al. (2020) show that removing the session bias by classifying on a different session reduces 

the accuracy by nearly 20% in a binocular setting and nearly half in a monocular setting. 

Increasing the number of sessions to three allows for the accuracy to increase, though not 

match the performance that includes session bias. This clearly demonstrates the uncertainty 

about the basis of classification and begs the question whether deep learning-based methods 

are really outperforming classical approaches based on feature crafting.  

A recent work by Rolff et al. (2022) introduces a pipeline that utilises transformer-based deep 

learning for the prediction of gaze angle in virtual environments. The impact on performance 

of a total of five different pre-processing methods is evaluated. As input data for the network, 

they use the following four measures: horizontal and vertical gaze position (in degrees), head 

velocity, and several of the final rendered frames of their virtual environment. These input 

data are combined with early fusion, meaning that they are fused prior to injection into the 

transformer. Alternatives to early fusion are intermediate and late fusion, which are described 

by Dolmans et al. (2020). Rolff et al. (2022) propose five pre-processing methods, after each 

of which the fused data is encoded by a small MLP network and fed to the transformer. 

Results indicate that the devised pre-processing methods either contribute very little or even 

reduce performance compared to directly feeding the fused data to the transformer. Their 

implementation that does not make use of pre-processing outperforms the state of the art 

when evaluated on the mean angular error of gaze.  

The discussed work of Rolff et al. (2022) confirms the findings of Li & Chen (2018) and 

Jäger et al. (2020): raw, time-series, gaze data is favourable. Furthermore, a transformer 

architecture that ingests and predicts raw gaze is achievable. However, to the best of our 

knowledge, no work that predicts raw gaze currently exist. Lastly, the opaque nature of latent 

spaces does not lend itself to human-interpretable decision making, an ever-present issue in 

deep learning (Salahuddin et al., 2022).  

3.2 Sequence Modelling 

Yang & Molano-Mazón (2021) discuss the future of recurrent neural networks (RNNs) in 

cognitive neuroscience, because of their ability to work with time series data. They argue that 
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an approach ought to be found which strikes a balance between functionality and biological 

realism. Concretely, they propose modelling distinguishable biological functions through 

connecting several smaller RNNs to tackle issues such a varying temporal dimensions, or 

varying modalities across tasks. Furthermore, this multi-network approach allegedly helps 

prevent the issues of vanishing and exploding gradients. When moving to a set of tasks that 

differs from the trained tasks, there is a distributional shift in the data, as well as the 

evaluation of the network. This shift will likely lead to vanishing or exploding gradients (Ma 

et al., 2022). The reason for this is that during training, backpropagation updates the weights 

of the network on each iteration. The size of the update is proportional to the weight that is to 

be updated. When the partial derivative of the error function with respect to the current weight 

is vanishingly small, the weight cannot be meaningfully updated (Basodi et al., 2020). On the 

other hand, exploding gradients occur when the partial derivatives of the error function with 

respect to the weights become very large. This can cause the weights to update with 

excessively large values, leading to instability and convergence issues during training. The 

occurrence of this is thus when a variety of tasks is done interspersedly, or when moving from 

unimodal to multimodal tasks. RNNs can be resilient to gradient issues (Ribeiro et al., 2020) 

and they can be functionally separated (Yang & Molano-Mazón, 2021).  

However, the gap between modalities and cross-modal communication is not bridged by the 

framework that Yang & Molano-Mazón (2021) outline. Furthermore, RNNs demonstrate 

scalability issues. The strength (and weakness) of RNNs lies in the recurrence relations. The 

strength is that temporal dependencies can be captured through recurrent operations (Chung et 

al., 2014). The weakness is that the formulation of such temporal dependencies is reliant on 

sequential operations. In other words, operations must be performed in order and are therefore 

not parallelisable over time. A recent work by Peng et al. (2023) aim to combine the effective 

temporal recurrence capturing of RNNs with the parallelisability of transformer networks by 

introducing the receptance weighted key value (RWKV) architecture. The architecture 

introduces a linearly scaling attention mechanism, which efficiently operates on modern 

hardware, leading to the first non-transformer architecture that was scaled to tens of billions 

of parameters. More research on the effectiveness of this architecture is required. 

3.3 Embedding 

The attention mechanism of transformers allows for the excellent performance. However, this 

attendance comes at a heavy computational cost, sometimes even for individual modalities, 
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such as vision, which relies on a raster of pixels. At high resolutions, sequence lengths can 

quickly scale out of hand if no truncation is done. Therefore, embedding, that is, the 

conversion from raw data to usable tokens, is an essential step in processing various types of 

data for use in machine learning models. It involves breaking down data into smaller, 

representative units or tokens, which can then be processed efficiently by the model. In the 

context of different data types, embedding methods vary, adapting to the unique 

characteristics of each data modality. Embeddings should capture the underlying structure and 

semantics of the data while preserving sufficient information for downstream tasks. This 

requires balancing between the granularity of the tokenisation and the computational 

complexity associated with processing high-dimensional embeddings. Furthermore, finding 

the optimal tokenisation method and embedding size for a given task can be a complex and 

data-dependent process. Despite these challenges, converting data from raw to latent 

embeddings using learned networks has proven to be effective in various applications, such as 

language and vision (Dosovitskiy et al., 2020; Ryoo et al., 2021; Sennrich et al., 2015). 

Embedding data in various modalities is non-trivial. In language modelling, tokenisation 

typically involves dividing text into words, subwords, or even characters, traditionally based 

on the Byte Pair Encoding (BPE) algorithm as introduced by Gage (1994). More recently, 

sophisticated algorithms that leverage statistical information to identify frequently occurring 

subword units have been employed for the learning of efficient token representations of 

language (Sennrich et al., 2015). The latter approach is essential for handling out-of-

vocabulary, or previously unseen, words and improving the model's ability to generalise 

across languages and text domains. In vision, embedding becomes problematic because of the 

high dimensionality of the data. One proposed solution relies on reshaping an image into a 

sequence of 2D patches and tokenising said patches (Dosovitskiy et al., 2020). Alternatively, 

there exist hybrid approaches in which an initial network is used to embed the tokens. For 

example, a CNN can be used to embed the tokens into a latent space, this embedding can then 

be attended by a transformer head (Song et al., 2022). In multimodal settings, each modality 

can be embedded by a separate learnt embedder class.  

Tokenising time-series data requires a different approach, as the data consists of sequential 

observations measured at regular intervals. In video, a common method is treating individual 

frames like images and embedding them into a fixed-size vector as a whole (Dosovitskiy et 

al., 2020). Alternatively, sliding window segmentation can be done, where a fixed-size 

window is moved across the time series, and each window's data is treated as a separate token 
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(Bagnall et al., 2017). This results in spatiotemporal features from a sequence of frames, 

represented in tokens. The latter approach results in a more compact and expressive 

representation for videos (Feichtenhofer et al., 2019; Ryoo et al., 2021).  

Embeddings can be learnt at scale for a specific domain and can be fine-tuned or adapted to 

specific tasks or domains, improving their versatility and applicability across a wide range of 

problems. Several pre-trained language embedders are available, such as ELMo (Peters et al., 

2017) as used in the BERT model (Devlin et al., 2018). The benefit of using pre-trained 

representation is the reduced need of labour-intensive engineering for task-specific 

architectures. Once the effectivity of an embedder has been verified, the weights can be 

frozen such that it becomes deterministic. This improves reproducibility and consistency, 

giving one more control over other parameters that determine network performance. A 

drawback of learnt embedders is that they are subjected to the same calculated loss as the rest 

of the network. This means that the evaluation and thus the backpropagation that adjust the 

embedder’s weights is highly dependent on the task used to train the embedder. If the task 

does not line up well with the intended use of the embedder, this may lead to issues. 

Finetuning pre-trained embedders can offer a solution to the issue of suboptimally aligned 

embedders. An embedder can be prepended to a neural network, with a small adapter layer 

(Pfeiffer et al., 2020). Instead of having to adjust all weights of the entire embedder network, 

only the small number of parameters of the adapter are adjusted. This is referred to as 

parameter efficient fine-tuning (PEFT) and can be done with low-rank adapters (LoRA), 

which makes use of matrix decomposition to reduce workloads (Hu et al., 2021). Open-source 

communities, such as HuggingFace (Hugging Face, 2023) leverage the dynamic environment 

of modern AI by taking on the challenge of large pre-trained models to specific tasks with 

limited hardware. This allows for increased flexibility in the usage of large pretrained models 

without the need for high-cost hardware. Thus, pretrained embedders with small adapters are 

identified as a promising development for multimodal research. 

3.4 Summary 

In conclusion, idiosyncrasies in eye-tracking have been extensively studied and have been 

shown to correlate with both low and high-level features. However, the challenge lies in 

distinguishing personalised saliency from the overall saliency in the performance of neural 

networks. Transformer based approaches are promising because they show good scalability, 

domain agnosticism, and effective cross-modal learning through self-attention. Tokenisation 
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and learning embeddings are essential components in the processing pipeline for transformers 

applied to diverse data types. By understanding the unique challenges and opportunities 

associated with each data modality, researchers can develop more effective and efficient 

transformer-based models, leading to improved performance across a wide range of tasks and 

domains. Furthermore, modern platforms allow for easy and efficient sharing of (pre-trained) 

embedding techniques. However, to the best of our knowledge, no such embedder classes 

currently exist for HFN data. If the abovementioned challenges are properly overcome, the 

way is paved for the utilisation of foundation models in HFN. This would allow for 

applications such as screening of MCI associated with AD (Wee et al., 2012), sped-up 

development of medicine (Acosta et al., 2022), and increased access to high-quality 

personalised healthcare (Zhang et al., 2023). The possibilities seem endless. 
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4 On the Current State of Data 

To work towards a unified framework of collecting, processing, and publishing eye 

movement data, it is important to understand the various forms of it. There are many 

methodologies that are used to measure eye movements, two of which will be highlighted 

here: Electro-OculoGraphy (EOG), and video-based combined pupil and corneal reflection 

(PC-R) eye tracking (Duchowski, 2007; Holmqvist et al., 2022). EOG is a more traditional 

approach in which electrodes that are placed around the eye measure the skin’s electrical 

changes as a result of eye movements. This method is still used today, especially in 

combination with electroencephalography with the purpose of improving signal quality by 

removing eye movement artifacts (Schlögl et al., 2007). The currently dominant eye tracking 

method is PC-R. Many modern eye tracking devices, such as those developed by Tobii, work 

by beaming infrared onto the face of participants and using one or more video cameras 

capture the reflection on the cornea (Gibaldi et al., 2017). The trackers are calibrated, after 

which they can output a variety of pre-processed data types. Generally, eye trackers produce 

“raw” data in several possible formats and a sampling frequency. For example, gaze position, 

or X and Y coordinates on a 2D plane from one or both eyes. Alternatively, gaze direction, or 

vectors that describe the line of sight for one or both eyes, can be output (Holmqvist et al., 

2022). However, these raw data are rarely published, instead, the undergo processing into 

high-level analysable chunks such as fixations and saccades. Fixation data is obtained by 

processing raw eye tracking data into segments that are semantically meaningful and during 

which the eye is relatively stationary. Saccades are the movements between fixates. Pre-

processing the data into this type of data is undesirable for AI methods, as described by (A. Li 

& Chen, 2018; Makowski et al., 2020; Rolff et al., 2022). 

Transformer networks are incredibly data hungry, requiring upwards of 109 examples to reach 

state of the art performance, depending on the domain (Chowdhery et al., 2022). There exists 

no dataset for eye tracking of this size. As previously discussed, the largest publicly available 

eye tracking related dataset is TEyeD, which contains 20 million real-world eye images for 

gaze estimation, falling several orders of magnitude short (Fuhl et al., 2021). Several other 

mid-sized datasets are available, such as GazeCapture (Krafka et al., 2016), GazeBase (GB) 

(Griffith et al., 2021), and Gaze in Wild (GW) (Kothari et al., 2020). GazeCapture uses 

crowdsourcing to gather data from a total of 1474 subjects that each perform a dot-tracking 

task (Krafka et al., 2016). GB collects data with the same participants up to nine times, 
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performing 7 different tasks each time (Griffith et al., 2021). These tasks vary from lower-

level tasks e.g., tracking dots and horizontal saccades, to more ecologically valid tasks e.g., 

video viewing and reading. GW contains eye and head movements, as well as video footage 

of the tasks: indoor navigation, ball catching, object search, and tea making. 

Unfortunately, even though the above-mentioned datasets are of considerable size, each of 

them datasets report different eye tracking measures: gaze direction, cyclopean eye 

distribution vectors in a custom coordinate system, and yaw and pitch relative to head 

position. The structure of the data organisation varies greatly, some datasets are organised by 

task, whereas others are organised by participant. Furthermore, the data itself is published in 

different formats. For example, GB is organised in .CSV files per round, per session, per task, 

per participant (Griffith et al., 2021), whereas GW provides .mat files per participant that 

contain all data across tasks and provide the relevant labels in structs. This variation in data 

reporting habits inhibits the field’s ability to combine large datasets by requiring significant 

consideration and work to ‘stitch’ all of them together. In order to perform this task, one must 

first carefully decipher the original format. Then, provided metrics in the original format 

should be converted such that they align with metrics from other datasets. Then, the 

organisation of the files should make sense from the perspective of using them with the same 

pieces of code. The difficulty of the latter lies in the varying tasks and goals of the datasets, 

each requiring different information in addition to the eye tracking. Clearly, a solution to the 

organisation of eye tracking data is non-trivial. 

A crucial requirement for a comprehensive framework is the establishment of standardized 

metrics and units. Normalizing the data over the input dimension is a simple technique that 

can help mitigate the problem of one dataset overpowering the rest. By mapping the data to 

the same range, it becomes easier to compare and combine datasets. However, it is essential to 

recognize that variability in units and dimensionality still exists. Therefore, efforts should be 

made to establish a consistent set of metrics and units that can be universally applied across 

different datasets. This standardization would enable researchers to interpret and compare eye 

tracking measures accurately. Additionally, assuming some universal agreement, existing 

datasets can be adapted to the newly established agreement. This would enable use of 

previously collected data, given that efforts are made to convert the data.  

It appears most reasonable to ground the reported data to the stimuli, rather than the 

orientation of the eyes since eye tracking only gains value when it is understood in the context 
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of the stimuli being observed. The stimuli, which represent the visual environment, play a 

significant role in interpreting eye movement patterns. Therefore, a comprehensive 

framework should include ample information about the stimuli presented during the eye 

tracking experiments. This information could encompass various aspects such as visual 

properties, task instructions, and contextual and timing cues. For instance, in dynamic scenes 

or videos, precise temporal alignment between the eye tracking data and the corresponding 

frames or events is vital for analysing gaze behaviour accurately. All recorded data should 

incorporate mechanisms for synchronizing and annotating eye tracking data with the stimuli 

in a precise, consistent, and automated manner. This would facilitate more robust analysis and 

enable researchers to investigate the relationship between visual stimuli and eye movements 

more effectively. 

Eye tracking experiments can encompass various domains, such as reading, visual search, 

scene perception, and biometric identification (Broda & de Haas, 2022; Jäger et al., 2020; 

Mézière, 2022). Each task may require different additional information beyond eye tracking 

data, such as behavioural responses, task performance metrics, or cognitive measures. The 

richer the data, the richer the potential understanding. A multimodal framework can 

accommodate diverse data types and task-specific information, allowing for comprehensive 

analyses across multiple domains. By combining stimuli-related data with eye tracking data, 

researchers, as well as trained AI, can gain a more comprehensive understanding of visual 

attention and gaze behaviour. This understanding can then be distilled into a generalised 

understanding of human gaze, which may then be applied to novel stimuli and environments. 

Fixation datasets are often organised by participant, by stimulus, by fixation. Several options 

for the conversion to tensors are available and the selected organisation depends on the hold-

out paradigm that is used for the training and testing of the neural network. 

4.1 Selected Data 

Several datasets that can be used were identified. Generally, the available datasets fall in 

either of two categories: raw, and fixation data. Table 1 provides an overview of the authors, 

task, number of participants, and the estimated number of usable samples for each dataset, as 

well as the type of data. In the methods section, a generalised approach is discussed for the 

use of one the two dataset types. GazeBase (Griffith et al., 2021), referred to as GB, is used 

for the validation of the pipeline for the raw data variant. In principle, the process described to 
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integrate GB into the MBT pipeline applies to datasets that consist of raw eye tracking data. 

Furthermore, the process for the integration of fixation datasets is also described.  

GB (Griffith et al., 2021) provides raw monocular data of 332 participants performing seven 

different tasks, sampled at 1000Hz. Participants participated in up to nine sessions, spanning 

37 months. Collecting data in multiple different sessions with the same participants is 

valuable for the identification and elimination of session bias. The tasks in GB vary from 

lower level e.g., tracking dots and horizontal saccades, to more ecologically valid tasks e.g., 

video viewing and reading. Data in the OSIE task as described in Table 1 contain fixation 

data, images used as stimuli, as well as semantic labels of said images.  

Table 1: Overview of currently available datasets and their estimated number of usable samples. OSIE 
= Object and Semantic Images and Eye-tracking and contains 700 images and their respective 
semantic labels. Various = seven tasks spanning lower level e.g., tracking dots and horizontal 
saccades, to more ecologically valid tasks e.g., video viewing and reading. Comments indicate the 
stage of training where the data can be used. 

Authors Task N Samples Comments 

de Haas et al. (2019) OSIE 117 ~245,700 Fixation, Finetune 

Broda & de Haas (2022) OSIE (and videos) 44 ~92,400 Fixation, Finetune 

Linka & de Haas (2020) OSIEshort 103 ~278,100 Fixation, Finetune & 
Test 

GazeBase, Griffith et al. (2021) Various 322 ~250,000 Raw, Pretrain 

Total  755 ~796,000+  

4.2 Data Cards 

Google Research published a guideline and format for “Data Cards” (Pushkarna et al., 2022). 

As stated by the authors, the purpose of data cards is to provide a clear and thorough 

understanding of the dataset’s creation, curation, purposes, considerations, and maintenance. 

Whereas a full-fledged data card may be overkill for many small datasets, the creation of such 

data cards will facilitate authors in their considerations. Data cards serve as a valuable 

resource for both data creators and data consumers. For data creators, the process of 

developing data cards encourages a thorough examination of various aspects related to the 

dataset. This includes considerations such as data collection methodologies, pre-processing 

techniques, quality assurance measures, and ethical considerations. By documenting these 

details in a structured manner, data creators can ensure transparency, accountability, and 

reproducibility in their research endeavours. Data consumers, on the other hand, benefit from 

the availability of data cards as they provide essential information about the dataset's 
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characteristics and limitations. Understanding the dataset's creation and curation processes 

enables researchers to assess its suitability for their specific research questions or applications. 

Additionally, data cards highlight any potential biases, anomalies, or data quality issues that 

may impact the validity and reliability of the results derived from the dataset. Furthermore, 

the existence of data cards promotes efficient data reuse and repurposing. Researchers often 

spend a significant amount of time and effort understanding the intricacies of a new dataset 

before they can effectively utilize it. Data cards can somewhat alleviate this burden by 

offering a structured overview of the dataset, saving researchers valuable time and resources. 

By providing a standardized format for presenting essential information, data cards facilitate 

seamless integration and comparison of different datasets, leading to more comprehensive 

analyses and meaningful insights. Moreover, data cards contribute to the broader goals of data 

sharing and collaboration. The availability of data cards enables researchers from diverse 

backgrounds to explore and build upon existing datasets, leading to new discoveries and 

advancements in various fields of study. Furthermore, it allows for the bundling of several 

datasets for the purpose of training AI.  

In conclusion, a comprehensive framework for eye tracking data sharing must address not 

only the issues of inconsistent measures, data organization, and formats but also several other 

requirements. These include standardizing metrics and units, incorporating stimuli-related 

information, establishing accurate correlations between stimuli and eye tracking data, and 

accommodating the diverse range of tasks and stimuli encountered in the natural world. 

Lastly, the framework should have multimodality at its core. By meeting these requirements, 

the field can overcome the challenges associated with combining large eye tracking datasets 

and foster more effective collaboration and knowledge advancement in the future, as well as 

retroactively. Data cards may provide both a framework for standardisation, as well as 

retrofitting existing data to a more modern standard. 
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5 Methods 

In this section, the methods are discussed. First, the available and used data will be discussed. 

Then, the designed network will be discussed in detail. In addition to the MBT, an MLP is 

implemented to serve as a baseline for comparisons. Then, the training, finetuning and testing 

are discussed. It is recommended to keep the GitHub repository on which all code is 

published handy while reading the MBT Implementation section, as several references will be 

made to it [https://github.com/tcdolmans/Eye4AI] (Eye4AI, 2023). As stated in the Goals of 

this work, this section contains recommendations for the implementation of an MBT in HFN. 

However, no meaningful results are to be expected given that there simply is not enough data.  

The proposed MBT implementation can operate in two modes: classification and prediction. 

In classification mode, the network will seek to classify which participant a sample of eye-

tracking data belongs to. The network is provided with all available modalities, such as eye 

tracking as well as stimuli, and is tasked the prediction of the participant label. In other words, 

given some unseen stimulus, can the eye tracking data be connected to a specific participant? 

The second mode is prediction, in which the network is provided with the participant label, as 

well as the stimulus, but crucially not the eye tracking data; it is tasked with the prediction of 

eye tracking data. In other words, given a known participant and an unseen stimulus, can the 

gaze behaviour be predicted? The predicted gaze’s format depends on the input format and 

can be reconstructed to visually interpretable data.  

All experiments were done on a Lenovo Legion 5 Pro (Intel) with the following hardware: 

12th Gen Intel® Core ™ i7-12700H, 16.0 GB RAM, with an NVIDIA GeForce RTX 3070 

Laptop GPU.  

5.1 Datasets and Pre-Processing 

For present purposes, the data of GB have been organised in tensor files that are organised by 

round (a total of nine rounds), session (two sessions per round), and task (seven tasks per 

round), resulting in a total of 126 tensor files. Each of the files contains data from all 

participants for that specific task. The data has been sanitised by checking for validity of 

observations at a threshold of 85%. If the proportion of observations to NaNs is below the 

threshold, the data is rejected. If the proportion of observations is above the threshold, NaNs 

are replaced by values that are linearly interpolated between valid samples. After sanitation, 

the data are downsampled by a factor of 10 by finding the mode of 10 observations and 

https://github.com/tcdolmans/Eye4AI
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iterating over the total length of the sample. This is done by the replace_nans and 

downsample functions in pipeline/convert_sets.py, respectively (Eye4AI, 2023). Other 

raw datasets can be treated in similar ways by organising the data sample-wise. This structure 

adheres to the data principles relevant for AI. Practically, a tensor-based storage is used since 

this method allows for flexible use of the data by allowing for easy access to and grouping of 

samples. Access meaning the quick and easy loading of tensors to memory for training, 

testing, or manipulation. Grouping meaning the quick and easy reorganisation of the tensors 

for e.g., participant or task-wise holdout methods. 

In order to make use of the second type, fixation data, there are several options. Frist, an 

embedding method can be applied to the fixation data directly. Second, they can be converted 

to a “raw” signal by reconstructing the intra-fixation gaze behaviour, so as to simulate 

saccades. During fixations, slight noise can be added to the datapoints, to simulate realistic 

gaze characteristics. The reconstructed data is then embedded. The former option is 

favourable for the sake of simplicity. Furthermore, the reconstructed information might not 

contain valuable information for the classification and prediction of eye tracking data since 

the data is not based on reality but rather simple assumptions about reality. Nonetheless, these 

‘re-rawing’ methods may be necessary to prevent exploding and vanishing gradients. 

Regardless, this means that only high-level information about gaze behaviour can be used for 

classification and prediction from fixation datasets; lower-level information, such as saccadic 

(de)acceleration and micro vibrations, are simply not present. 

As an example case for the inclusion of fixation-based data, the OSIE paradigm is selected. 

This paradigm uses images and stimuli and provides semantic labels for every image. Image 

names range from 1001 to 1700, totalling 700 images and they are stored in .jpg format. 

Pillow is used to load the images, then they are converted to a PyTorch Tensor of size 

3,600,800 and stacked in a tensor of size 700,3,600,800 (Pillow, n.d.; PyTorch, n.d.). This 

tensor is kept in memory and sliced by selecting the relevant image based on the sample. To 

integrate OSIE’s visual stimuli, two approaches can be used. First, a pretrained network, such 

as ResNet (He et al., 2015), can be used to create embeddings by using the penultimate layer’s 

output. The benefit to this approach is that ResNet has a validated performance on visual 

tasks. Alternatively, a custom image embedder can be trained for the OSIE set. The benefit to 

this approach is that the learned embedder is more specialised for OSIE. A generic visual 

classifier may not be optimal, since it is not specifically trained for the OSIE task, but for 

image classification in general.  
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The semantic labels of the OSIE paradigm are organised in twelve dimensions, being the 

presence of faces, emotions, text, operable objects, etc. For each semantic dimension, a pixel-

wise mask is constructed that indicates the presence of the respective dimension. Multiple 

dimensions can be flagged present in any given pixel e.g., a face in addition to an emotion. 

The pipeline/Osie.m file combines each of the twelve semantic dimensions into a single 

matrix of size 12,600,800. In similar fashion to the images, these semantic matrices are 

stacked into a single tensor of size 700,12,600,800 which is sliced by indexing for stimuli.  

5.1.1 Dataloaders 

After conversion to the desired organisation of tensor files, they can be made available to the 

MBT for training and testing. In the current implementation, PyTorch’s Dataset and 

DataLoader are used. (PyTorch, 2023). First, a Dataset is constructed, this creates a map that 

connects keys to data samples. For raw data, such as GB, we then further split the tensor files 

into samples of the desired length that is passed as an argument. For fixation data, individual 

fixations or collections of fixations can serve as samples; function arguments can be passed to 

determine the number of fixations, which is subject to hyperparameter optimisation. When the 

dataset is constructed, it is converted to a DataLoader, which combines the dataset with a 

sampler and provides an iterable with which the Dataset can be sampled per item or batch of 

items. A split is made between training and testing data, which is available to train_dl and 

test_dl, respectively. Please refer to models/dataloaders.py for details.  

5.2 MBT Implementation 

In this section, the implementation of a multimodal bottleneck transformer (MBT) is 

described. Learning multimodal representations gives a more complete understanding of the 

environment and its predictors and thus leads to better classification; the MBT leverages 

information from one modality to assist in the comprehension of another (P. Xu et al., 2022). 

The MBT is designed to work with the following modalities: eye tracking (referred to as ET), 

images (img), and semantic labels of said images (sem). However, extensibility is kept in mind 

and the implementation allows for easy addition of modalities. 

5.2.1 Encoder 

Building on the earlier-described transformer blocks, we will now describe the encoder 

architecture in our implementation of an MBT. First, a positional encoding is added to the 
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constructed embedding of the input data for each modality. This ensures that the attention 

mechanism is able to use information about the location and order of things in the input 

sequences. Transformer networks have no way of determining the absolute or relative position 

of tokens in a sequence inherently, therefore, it is essential to inject such information into the 

embedded data. Vaswani et al. (2017) indicate that the position embeddings can either be 

learned or fixed, with very little effect on their performance. For the sake of simplicity, we 

follow their implementation, which summates an index-based sine and cosine value for even 

and odd indices, respectively. Second, for each modality, an encoder is initialised. The 

operations of the transformer blocks are performed 𝐿 times, where 𝐿 is the number of layers. 

On the basis of Nagrani et al. (2021), we introduce bottleneck tokens to the encoder, allowing 

for limited communication between the transformer blocks of each modality. When the 

forward method of the encoder has reached the fusion layer (𝐿𝑓), the bottleneck tokens are 

concatenated to the output of the previous layer. 𝐿𝑓 then performs operations as normal, after 

which the bottleneck tokens are sliced from the outputs and bottleneck is updated and 

appended to the inputs for 𝐿𝑓+1. As such, the inputs for layer 𝐿𝑓+1 are the outputs of 𝐿𝑓 +

𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘. For an intuitive understanding of this process, please refer to both Figure 4 as well 

as the models/mbt_encoder.py file in the GitHub repository (Eye4AI, 2023). 

 

Figure 4: Multimodal Bottleneck Transformer Encoder. ET = Eye tracking, IMG = image, SEM = 
semantic labels, these serve as input to; Embed = embedder classes; POS = positional embedding; 
Bottleneck = learnable bottleneck tokens; MHA = multi-head attention, described in Figure 1; LN = 
layer normalization, FF = feed forward; Nx = number of layers; Lf = fusion layer. The bottleneck tokens 
are concatenated to embedded data and fed through encoder blocks if N = Lf. Then, the bottleneck is 
sliced from the outputs and updated, to be concatenated for layers N > Lf. 
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5.2.2 Decoder 

The current implementation of the MBT uses PyTorch’s standard implementation of a 

decoder (TransformerDecoder — PyTorch 2.0 Documentation, n.d.). It receives the outputs 

of the encoder, as well as a position-encoded target sequence, which is subject to prediction. 

As previously described, in order to make sure that the decoder does not attend future time 

points in the sequence as a basis for prediction, a mask is applied which renders them 

unusable until they are permitted to be used. The decoder contains the number of layers 𝐿 as 

the encoder. In future versions of the MBT, experiments can be carried out with the goal of 

discovering whether a custom multimodal decoder with bottleneck contributes to the task. The 

prospect of this is further explored in the Discussion section. 

5.2.3 Embedders 

As discussed in the Embedding section, in order to properly use input data in transformer 

networks, input data must be embedded into a different representation. The embedding 

methods for each data type will be discussed, the code for the embedder classes can be found 

in models/embedders.py. 

In the GB task, ET is split into of samples by the GazeBaseDataset dataloader that have size 

4,300, where the columns are the timestamp, x-coordinate, y-coordinate, and a pupil size 

measure. The length of the sample is set to three seconds of data, corresponding to 300 

observations after downsampling by a factor of 10. The splitting into sections of three seconds 

is done to conform to the stimulus presentation length in the OSIE task; Pre-training the 

network on the same length of inputs will aid the consistency of the pipeline. In the OSIE 

task, ET samples are of size 4,300, where the columns are the timestamp, x-coordinate, y-

coordinate, and a pupil size measure. 

All ET samples are fed to the ETPatchEmbed class which sequentially performs several 

operations that are selected from commonly used eye tracking processing techniques 

(Makowski et al., 2021). In order of operation: A 1D convolution, a ReLU activation 

function, 1D adaptive average pooling, and finally, a layer normalisation. The output 

dimensions of the class depend on the selected hyperparameters for embedding dimension and 

kernel size, which are subject to optimisation. The optimisation of all hyperparameters is 

discussed in the Hyperparameters section. Similar to ET, img is processed with a 2D 

convolution, a ReLU activation function, followed by 2D adaptive average pooling and a 
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layer normalisation in the ImagePatchEmbed class. Samples of img are of size 3,600,800. 2D 

convolutional layers are commonly used for image processing and the thereafter following 

steps are kept the same as ET for the sake of consistency. As previously discussed, a 

pretrained ResNet model can also be implemented for the embedding of images (He et al., 

2015). The processing of sem is identical to that of img, barring the input dimensionality of the 

data: 12,600,800. It takes place in the SemanticPatchEmbed class. 

5.2.4 Modes 

The network operates in two different modes to achieve the various goals of this research. 

These modes are classification and et_prediction. In classification mode is provided 

with ET, img, and sem, and is tasked the prediction of the participant label p_num. In this mode, 

the loss is calculated through cross entropy (CrossEntropyLoss — PyTorch 2.0 

Documentation, 2023). The second mode is et_reconstruction, in which the network is 

provided with p_num, img, and sem, and is tasked with the prediction of ET. The predicted ET 

can be reconstructed to visually interpretable data. In this mode, the loss is calculated using 

the mean squared error between the prediction and the target (MSELoss — PyTorch 2.0 

Documentation, 2023). 

5.2.5 Head Networks 

The MBT can select between two head networks that are used for the two modes. In 

classification, the head consists of a single linear layer that essentially converts the 

decoder logits to the number of classes as indicated in config. The outputs of this layer are 

directly fed into the loss function. In et_prediction, the head consists of a single linear layer 

that converts the decoder logits to a matrix the size of the missing snipper of ET, which is also 

governed by config. 

5.2.6 Hyperparameters 

Several hyperparameters can be searched in order to optimise model performance, which will 

be discussed in this section. They are summarised in Table 2. Optuna is used to automatically 

search over possible combinations of hyperparameters (Optuna, 2023). An objective function 

is defined n_trials times in each of which the model is initiated based on a configuration 

dictionary. config contains all parameters that are set for the network, from embedder 

settings, to current hyperparameters. objective further trains and tests the model based on 
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config. If a trial is unpromising according to Optuna, it is pruned. If the results of the trial are 

the best so far, the checkpoint of the model is saved, and the best parameters are returned.  

Table 2: Overview of hyperparameters that are searched. For each hyperparameter, the symbol, 
description, and searched over range are provided.  

Symbol Parameter Description Value range 

𝑙 Number of layers (encoder and decoder) {2, 8} 

ℎ Number of heads (MHA) {8, 16} 

𝐹𝐸 Forward expansion factor in transformer blocks {2, 8} 

d Dropout rate {0.1, 0.5} 

α Learning rate {1e-5, 1e-3} 

batch Batch size {64, 256} 

B Number of bottleneck tokens {4, 16} 

Lf Fusion layer {2, 8} 

Ne Number of epochs {50, 200} 

L2 L2 Weight decay {1e-5, 1e-3} 

d Embedding dimension {40*ℎ, 80*ℎ} 

5.2.7 Trainer Flow 

This section describes the order of operations of the models/trainer.py file. First, the mode 

and task are set, from which a DataLoader will be constructed. Optuna is called and the 

toolbox suggests hyperparameters to initialise the model with, which are stored in config. To 

initialise the model, config is passed as an argument. Training is started with the 

hyperparameters that are selected by Optuna. As previously discussed, the passed data 

depends on the mode. In classification, the p_num is withheld from the input data. Then the 

loss is calculated using CrossEntropyLoss over the difference between the model output and 

the true p_num. Conversely, if the model is in et_prediction, it is provided with only a 

snippet of ET with the objective of predicting the remaining part of the original ET sample. 

The length of the snippet is adjustable and can also be considered a hyperparameter. The loss 

is then determined by calculating the MSELoss over the predicted ET versus the original ET.  

The MBT flexibly ingests a dictionary of data from various modalities: x. Currently supported 

modalities are described in the embedders section; adding additional modalities is relatively 

straightforward with very few network adjustments. The present modalities in x are embedded 

by the respective embedders, after which the time dimension is adjusted to ensure 

compatibility. The time dimension is governed by config and should therefore be consistent, 

the adjustment is thus done as a sanity check. From the embedded sequences, a source and 
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target sequences are constructed, src and tgt, respectively. src is the original sequence of 

tokens retrieved from the embedders. tgt is the original sequence of interest, in our case ET, 

offset by one token and preceded by a start token to indicate the start of the sequence. After 

this, src and bottleneck are passed to the encoder, which returns a dictionary with logits for 

each of the modalities. The logits for ET are extracted and passed to the decoder along with 

tgt and a mask that prevents the network from attending future tokens. The output logits from 

the decoder are passed to the correct head network for the mode. During training, data is 

provided by train_dl, the loss is evaluated, and the weights are updated with 

backpropagation. When the training is completed, the weights are frozen and test_dl 

provides samples for testing.  

5.3 MLP Baseline 

As a baseline for the performance, a densely connected MLP is constructed and tested for 

unimodal embedded inputs of ET. The implementation consists of four linear layers that are 

stacked with ReLU activation functions. After the final linear layer, a dropout layer randomly 

drops a portion of the connections. The portion of dropout is defined as a hyperparameter. For 

the precise implementation, please refer to models/MLP.py in the GitHub repository (Eye4AI, 

2023). The MLP baseline is only tested in classification mode. 

5.4 Evaluation 

During testing, GazeBase will be evaluated (Griffith et al., 2021). This set is beneficial since 

data for participants is collected on nine different occasions, which allows for the elimination 

of session bias. Furthermore, it provides raw gaze. Data from the first seven sessions are used 

as training data, the final two sessions are used for testing. Participants that made it to the last 

round are present in all rounds, leading to improved session bias elimination (Jäger et al., 

2020). The performance of the model will be evaluated by the following metrics: 

1. Classification accuracy in classification mode: match the correct individual to the 

label. This is tested on a top-k basis, referring to the top k likely predictions. When 

k=5, if the correct participant is in the top 5 most likely predictions, the sample is 

considered correct.  
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a. GB contains data of 322 participants, therefore, random chance for k=5 gives 

an accuracy rating of 0.0156, or 1.56%. Always guessing the same participant 

(contained in the testing set) gives an accuracy rating of 0.322, or 3.22%.  

2. Prediction accuracy in et_reconstruction mode: MeanSquareError is calculated over 

the predicted gaze (MSELoss — PyTorch 2.0 Documentation, n.d.). Furthermore, by 

treating the prediction of the model as though it were ET, the 2D timeseries can be 

visualised and further evaluated visually.  



43 
 

6 Results 

In this section the preliminary results are discussed. We emphasize that the expected number 

of samples required for optimal performance of a network of this size is several orders of 

magnitude larger than the number of samples that are available. Therefore, this section serves 

more as an indication of how results can be reported, rather than as a section containing 

meaningful results. 

6.1 MLP Performance 

The MLP performed as follows on the classification task: Loss: 4.498 with a Top-5 accuracy 

of 0.2377, or 23.77%. This was achieved with the following parameters: {dropout: 0.5, 

learning rate: 1.45e-4, batch size: 256, number of epochs 4, L2: 9.68e-4, embedding 

dimension: 144} 

6.2 MBT Performance 

The MBT performed as follows on the classification task: Loss: 4.764 with a Top-5 accuracy 

of 0.1426, or 14.26%. This was achieved with the following parameters: {number of layers: 4, 

heads: 8, forward expansion: 4, dropout: 0.5, learning rate: 7.58e-4, batch size: 128, number 

of bottlenecks: 16, fusion layer: 3, L2: 1.88e-4, embedding dimension: 128}.  

 

Figure 5: Visualisation of randomly selected sample of data from the GB task (Griffith et al., 2021). 
Left: True sample of gaze. Right: corresponding prediction of gaze Blue visualises the x-coordinate 
over time. Red visualises the y-coordinate over time. The y-axis is normalised so that all values fit 
beteween zero and one. The x-axis corresponds to the sample number, 1 per millisecond. 
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In prediction mode, the loss remains meaninglessly high since the evaluation is done over a 

matrix of size (batch size, snippet length, number of columns). However, the predictions can 

be visualized. Figure 5 visualises a single randomly selected sample of length 100 with the 

corresponding prediction of the network. Figure 6 visualises the errors between various 

measures. 

 

Figure 6: Differences between true and predicted gaze. Blue visualises the error in x-coordinate over 
time. Red visualises the error in y-coordinate over time. Green visualises the error in pupil diameter 
over time. The y-axis is normalised so that all values fit beteween zero and one. The x-axis 
corresponds to the sample number, 1 per millisecond. 
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7 Discussion 

We set out to create an example case that meaningfully and concretely contributes to the 

standardisation of data organisation in eye tracking, making use of multimodal AI. Through 

the implementation of the MBT, we believe that important insights were gathered. First, it 

seems possible that accurate classification of individuals and prediction of their gaze can be 

achieved, given more data. Performance of the MLP baseline and MBT implementation 

reached 23.77% and 14.26%, respectively. This is significantly above random guessing: 

1.56%; and always guessing the same participant (contained in the testing set):3.22%. We 

provide a clear pipeline for the data preparation in our methods. Furthermore, 

recommendations are made for the format of storage. Lastly, the provided infrastructure 

allows for easy addition of multiple modalities. However, not without limitations and 

drawbacks, which are reflected on in the following section. 

7.1 Limitations 

The main limitation of the present study is the lack of concrete results due to data and scaling 

issues. The availability of data plays a crucial role in assessing the performance of any 

network effectively. In our case, there is not enough data available to meaningfully evaluate 

the proposed network's performance. Insufficient data can lead to unreliable or inconclusive 

results, making it challenging to draw robust conclusions about the effectiveness of the 

proposed approach. Furthermore, several large issues that are currently out of scope may 

present themselves when enough data becomes available. However, the MBT demonstrates 

GM properties as proposed by (Dolmans et al., 2021). Nonetheless, it remains unclear 

whether AI for eye tracking is viable enough to replace handcrafted features and simple 

classifiers. The lack of clear standards and benchmarks make this consideration difficult. 

Once more data becomes available, evaluation of the models can and should be further 

expanded in order to achieve better results. Better evaluation methods also aid communication 

about results and shortcomings. Due to the lack of a realistic baseline performance, it 

becomes challenging to validate the effectiveness of the proposed method against existing 

approaches or benchmarks. Without a baseline for comparison, it is difficult to assess whether 

the introduced modifications or techniques truly contribute to improved performance. Future 

research should work towards establishing good benchmarks and comprehensive evaluation 

of models. 
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Another shortcoming to consider is the vulnerability of the pretraining process, particularly in 

the context of multimodal tasks. Multimodal issues, such as mode collapse and 

vanishing/exploding gradients, have been highlighted in previous research (Ma et al., 2022). 

As it currently stands, there is no clear solution that guarantees the retention of valuable learnt 

parameters when the MBT is pretrained on a different set of modalities than it will be 

deployed in. Failure to devise a solution for this shortcoming would prevent the flexible use 

of the MBT since it would only be usable in the exact configuration that it was trained in. As 

highlighted by Zhang et al. (2023), training multimodal networks requires careful balancing 

of input data to achieve the desired performance. The employed embedders are currently 

learned and are therefore entirely dependent on the task. While this flexibility allows the 

embedders to adapt to the task requirements, it also introduces a limitation. GB consists of 

seven different tasks, the effects of these tasks on the distribution of the eye tracking data is 

unknown (Griffith et al., 2021). In the future, it might be beneficial to explore the possibility 

of pretraining the embedders in a verified manner and then freezing them. By pretraining and 

freezing the embedders, they become deterministic and less sensitive to the specific 

environment in which they were trained. This should lead to more task-robust systems. This 

limitation highlights potential directions for future research in enhancing the stability and 

generalization capabilities of the embedders in multimodal tasks. 

The available hardware was also a limiting factor in the present work. Large models require 

large GPUs and ample RAM to work with large datasets. The used hardware limited the size 

of the hyperparameter search, leading to suboptimal configurations of networks. This is 

directly reflected in the performance of the MBT. The MLP could be scaled up to the required 

size, whereas the MBT could not. This could be a possible explanation for the performance 

discrepancy. A few hyperparameters that strongly influence network sizes and performance 

are the number of layers, the number of heads in MHA, and the hidden dimension of the 

network (embed_dim) in the implementation. These parameters determine the depth and 

breadth of the attention mechanism and are therefore key players in performance.  

Based on the visualisations as a result of the prediction mode, working with fixation rather 

than raw data should be reconsidered for multiple reasons. First, the loss of fixation prediction 

is evaluated over smaller matrices, likely leading to improved effectiveness of gradient 

descent since a clearer direction can be identified. Furthermore, the field has primarily 

produced fixation data, allowing for the incorporation of such data allows for good backwards 

compatibility. The field is used to working with fixation data and this data is more 
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interpretable than raw data in some contexts. Lastly, the visualisation of fixation data might 

make more intuitive sense than visualisation methods for raw gaze. This may not always be 

the case, in for example, video or dynamic environment-based eye tracking studies.  

The selection of a transformer-based model also imposes some restrictions. As previously 

discussed, the quadratically scaling complexity of transformers quickly renders them unusable 

for many types of hardware (Peng et al., 2023). Furthermore, even with ample hardware to 

train and run the models, their use should be considered carefully as this produces 

considerable energy consumption (Rae et al., 2021). A recent work, proposed by Assran et al. 

(2023) highlights a new approach for learning highly semantic image representations in a self-

supervised manner. The Image-based Join-Embedding Predictive Architecture is the first 

implementation of the overarching Hierarchical-JEPA efforts by Yann LeCun (Lecun, 2022). 

I-JEPA for embedding, combined with transformers for vision tasks is highly scalable and 

efficient Assran et al. (2023). 

Autoregressivity, the property of predicting one token from the previous one, severely limits 

the space in which prediction can be done (Weber & Gühmann, 2021). Transformers cannot 

plan and look ahead because of this property. A single poor selection of a token forces 

transformers to keep generating with the token. When asking LLMs to reflect on their 

response, they will often be able to identify the incorrectness, they simply don’t have to 

ability to address the issue (Yao et al., 2023). A recent work aims to solve this problem by 

allowing LLMs to generate several tokens and select paths that seem promising, improving 

performance significantly (Yao et al., 2023). On the technical side, a concrete logical next 

step in this research would be to move from image to video content understanding. Such 

understanding would lead to a plethora of novel applications, ranging from novel research 

paradigms in which moving stimuli can be used. From there, ecologically valid research can 

be done by making use of head-mounted eye trackers. Making sense of such unstructured and 

dynamic environments is essential for the creation of AI-based agents that can navigate and 

interact with the world independently. 

Overall, these limitations highlight areas for improvement in several categories. They also 

highlight shortcomings of the field as a whole. Addressing these shortcomings can enhance 

the reliability, scalability, and generalizability of multimodal models, ultimately leading to 

more robust and effective solutions for various real-world applications. 
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7.2 Implications 

There are various areas in which the present study might have an impact. First, human-

cantered developments. With knowledge of individual gaze saliency and preferences, we may 

be able to develop educational software/user interfaces that adapts to the user by adjusting the 

pace of information, reducing distractors, or providing a varying degree of guidance. 

Similarly, productivity improvement may be done with adapting apps by better balancing 

workload over time and reducing individually specific sets of distractions. Furthermore, it 

may lead to insights into understanding gaze patterns in ASD, which may then be used in the 

coaching of individuals. Expanding the model capabilities by including multiple modalities 

further improves the expected impact. Certain things are not visible in the patterns of small 

datasets. Similarly, through a lot of data can see things that are not apparent on small subsets 

of the data. Imagine a doctor that has seen 1000 patients versus a doctor that has seen 100 

million patients. Which doctor is more likely to provide healthcare that is specifically 

tailored? Which doctor is more likely to understand odd edge cases?  

Perhaps, the likeliness of an individual to engage in interaction with salient entities in an 

environment can be estimated based on their visual interaction with the environment. Visual 

interaction may include the length of time an individual spends looking at a particular object 

or person, the frequency of looking at that object or person, or the nature of the interaction 

(such as whether the individual makes eye contact or gestures towards the object or person). 

By analysing an individual's visual interaction with their environment, researchers or analysts 

may be able to gain insights into that person's behaviour, interests, and priorities. These 

insights can then be used to predict behaviour and interaction.  

This research also lends itself to applications which require more careful consideration and 

come with a host of ethical issues, such as advertising and biometric identification. Given a 

personalised profile of saliency and preferred gaze patterns, advertising, when combined with 

generative AI, can become extremely personalised and targeted. Conversely, websites may 

gather usage statistics the gain insight into the organisation and legibility of the contents with 

the intention to improve the design. This may then lead to increased democratisation of 

information, since it will be more accessible. Such applications should truly be considered to 

be double edged swords and should therefore remain under constant scrutiny. Furthermore, it 

is essential that international cooperation legislates the use of AI. The European Parliament 

recently adopted a new AI Act, providing support for innovation, but also restriction AI from 
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being used for specific purposes (European Parliament, 2023). These purposes include, for 

example, real-time biometric identification systems in publicly accessible spaces, predictive 

policing systems (based on profiles, location, or past criminal behaviour), emotion recognition 

systems, and untargeted scraping of facial images to create facial recognition databases.  

Then there are philosophical implications: Are we all predictably different? Do we fall in 

specific categories? What degree of difference in our perception of the world does this lead 

to? Do we all “pass out our lives in private perceptual worlds” as stated by Mollon et al. 

(2017)? How do these differences affect our choices, social behaviours (e.g., errors of 

omission), and preference in life? Can we make meaningful changes in one’s preferences by 

nudging or adapting saliency at a subliminal level? These questions are becoming 

increasingly accessible with increasingly powerful systems that are based on large scale 

datasets.  
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8 Conclusion 

The main goal of the present work is the re-directing of gaze towards the new way of doing 

HFN research with AI. This requires significant efforts on the data organization and 

publication side; through the given overview and proposal in this work, we have contributed 

meaningfully towards this goal. We highlight several important works and place them into the 

literature relevant for eye tracking. A multimodal bottleneck transformer was developed, and 

results indicated that classification of individuals and prediction of gaze is possible, given 

more training data. We demonstrate the feasibility of storing and processing eye tracking data 

for AI purposes and highlight a path for large-scale modern AI-based research in human 

factors and neuroscience. 
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