
Enabling Multi-LiDAR Sensing in
GNSS-Denied Environments: SLAM

Dataset, Benchmark, and UAV Tracking
with LiDAR-as-a-camera

Master of Science Thesis
University of Turku
Department of Computing
Turku Intelligent Embedded and
Robotic Systems (TIERS) Lab
2023
Ha Sier

Supervisors:
MSc. Xianjia Yu
Prof. Tomi Westerlund

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

HA SIER: Enabling Multi-LiDAR Sensing in GNSS-Denied Environments: SLAM
Dataset, Benchmark, and UAV Tracking with LiDAR-as-a-camera

Master of Science Thesis, 81 p.
Turku Intelligent Embedded and Robotic Systems (TIERS) Lab
August 2023

The rise of Light Detection and Ranging (LiDAR) sensors has profoundly impacted indus-
tries ranging from automotive to urban planning. As these sensors become increasingly
affordable and compact, their applications are diversifying, driving precision, and innova-
tion. This thesis delves into LiDAR’s advancements in autonomous robotic systems, with
a focus on its role in simultaneous localization and mapping (SLAM) methodologies and
LiDAR as a camera-based tracking for Unmanned Aerial Vehicles (UAV).
Our contributions span two primary domains: the Multi-Modal LiDAR SLAM Bench-
mark, and the LiDAR-as-a-camera UAV Tracking. In the former, we have expanded our
previous multi-modal LiDAR dataset by adding more data sequences from various sce-
narios. In contrast to the previous dataset, we employ different ground truth-generating
approaches. We propose a new multi-modal multi-lidar SLAM-assisted and ICP-based
sensor fusion method for generating ground truth maps. Additionally, we also supple-
ment our data with new open road sequences with GNSS-RTK. This enriched dataset,
supported by high-resolution LiDAR, provides detailed insights through an evaluation of
ten configurations, pairing diverse LiDAR sensors with state-of-the-art SLAM algorithms.
In the latter contribution, we leverage a custom YOLOv5 model trained on panoramic
low-resolution images from LiDAR reflectivity (LiDAR-as-a-camera) to detect UAVs,
demonstrating the superiority of this approach over point cloud or image-only methods.
Additionally, we evaluated the real-time performance of our approach on the Nvidia Jet-
son Nano, a popular mobile computing platform.
Overall, our research underscores the transformative potential of integrating advanced
LiDAR sensors with autonomous robotics. By bridging the gaps between different
technological approaches, we pave the way for more versatile and efficient applications
in the future.

Keywords: LiDAR, multi-modal LiDAR, LiDAR SLAM benchmark, SLAM, Dataset,
LiDAR-as-a-camera, UAV Tracking

Contents

List Of Acronyms 1

1 Introduction 2

1.1 Significance and Motivation . 3

1.2 Related Works . 5

1.3 Contribution . 7

1.4 Structure . 8

2 Background 10

2.1 LiDAR Sensor . 10

2.1.1 Solid-state LiDAR . 11

2.1.2 Spinning LiDAR . 13

2.2 3D LiDAR SLAM . 15

2.3 SLAM Benchmarking Datasets . 17

2.3.1 Vehicle-based Dataset . 18

2.3.2 Mobile Robot or Human-carried Dataset 19

2.4 UAV Detection and Tracking . 20

2.4.1 UAV tracking with cameras . 20

2.4.2 UAV tracking with LiDARs . 21

2.4.3 Applications of UAV tracking 22

2.5 Robot Operating System . 23

I

2.6 Object Detection . 25

2.6.1 Traditional Object Detection . 25

2.6.2 Deep Learning-Based Techniques 26

2.6.3 3D Object Detection . 26

2.6.4 Lidar-as-a-camera based Object Detection 27

2.7 3D Piont Could Processing . 28

2.7.1 Point Cloud Clustering . 29

2.7.2 Point Cloud Registration . 30

2.7.3 Point Cloud Noise Removal . 31

3 Multi-Modal LiDAR SLAM Benchmark 34

3.1 Design Overview . 34

3.1.1 Hardware Design . 34

3.1.2 Software Information . 36

3.1.3 Calibration and Synchronization 37

3.1.4 SLAM assisted Ground Truth Map 38

3.1.5 Data Structures of the Dataset 41

3.2 Implementation . 44

3.2.1 Collect Data for Multi-modal LiDAR Dataset 44

3.2.2 Ground Truth Evaluation . 47

3.2.3 Setup for LiDAR Odometry Benchmarking 48

3.2.4 Setup for Run-time Evaluation 49

3.3 Results . 50

3.3.1 LiDAR Odometry Benchmarking 50

3.3.2 Mapping Quality Comparison 52

3.3.3 Run-time Evaluation across Certain Computing Platforms 53

4 LiDAR-as-a-camera Based UAV Tracking 55

4.1 Design Overview . 55

4.1.1 Hardware Design . 55

4.1.2 Software Design . 58

4.1.3 Object Detection with YOLOV5 59

4.1.4 Point Cloud Precessing . 62

4.2 Implementation . 71

4.2.1 UAVs Used for Experiments . 71

4.2.2 Collect Ground Truth with MoCAP System 72

4.2.3 Setup for Ground Truth Evaluation and Run-time Evaluation . . 74

4.3 Results . 75

4.3.1 UAV in the Ouster LiDAR Point Cloud 75

4.3.2 Trajectory Validation . 75

4.3.3 Velocity Validation . 77

4.3.4 Resource Consumption . 78

5 Conclusion and Future Works 80

5.1 Conclusion . 80

5.2 Future Works . 81

References 82

List of Figures

1.1 Ground truth map for one of the indoor sequences generated based on the

proposed approach (SLAM-assisted ICP-based prior map). 4

1.2 Exampe of signal image (top) and its corresponding point cloud(bottom,

background removed). 5

1.3 Multi-modal sensor data acquisition system with their coordinate frames

(front view). 8

2.1 Point cloud patterns of the Livox Horizon LiDAR accumulated over an

extended period [19] . 12

2.2 Simultaneous real-time image layers output from the OS0. From top to

bottom are ambient, intensity, range, and point cloud data. 14

2.3 A brief working principle of ROS. 24

2.4 The results of running YOLOV5 on the signal images from the Ouster

OS0-128. 29

3.1 Our data collection interface, shown from above (on the left) and from the

front (on the right). 35

3.2 ROS interfaces and sampling rates for the distinct LiDAR sensors inte-

grated into our platform. 36

IV

3.3 From an aerial perspective of the point cloud data assembled during the

calibration of diverse LiDARs, the Livox Horizon and Avia are distinctly

represented by shades of red and green. Concurrently, the VLP-16, OS1,

OS0, and L515 sensors manifest themselves through point clouds colored

in respective hues of purple, yellow, blue, and black. 37

3.4 The change in the yaw value of the IMU of each LiDAR in the dataset.

It can be seen from the picture that the average time offset of the dataset

does not exceed 3ms. 38

3.5 NDT localization with ground truth map (blue) where the current laser

scan (orange) is aligned. 41

3.6 Our dataset is captured by a rich set of sensors. A subset of the data from

the Indoor11 sequence is visualized here. The first row displays laser

radar data from OS1, OS0, and VLP-16, as well as a fisheye image from

T265; the second row displays point cloud data from Avia and Horizon,

as well as depth and RGB images from L515; the third and fourth rows

display images from OS1 and OS0 respectively. 42

3.7 Samples of map data from varied dataset sequences are presented. Ar-

ranged from left to right and subsequently top to bottom, the visualiza-

tions showcase maps derived from a forest, an open road, an elongated

corridor, followed by a spacious indoor lab area, another extensive corri-

dor, and lastly, a hall. 46

3.8 Remove the noise in the ground turth map, the red point cloud is the noise

point cloud, and the blue point cloud is the environment point cloud. . . . 47

3.9 (a) (b) (c): Ground truth position values for the first 10 seconds of the

dataset when the device was stationary. Red lines show the mean values

over this period of time. (d): Comparison of NDT-based ground-truth

z-values (green) to MoCAP-based z-values (red) over the course of 60

seconds of the dataset while the device was in motion. 48

3.10 From left to right, the trajectory comparison of sequences Indoor10, Road03,

and Forest01 . 51

3.11 Qualitative comparison of the mapping quality. Frist row from left to

right shows RGB full view image, full view Horizon-based LIOL and

close view RGB image. Second row row from left to right shows OS0,

OS1, Velodyne, Avia and Horizon-based FLIO. Bottom row from left to

right shows the Horizon-based LIOL, Horizon, OS1-based LLOM and

LLOMR, Velodyne’s LeGo-LOAM maps and Horizon-based LVXM, re-

spectively. 53

4.1 Converting the point cloud data from the Ouster OS0-128 and Livox Hori-

zon to 2D signal images. 58

4.2 FoV of Livox Horizon, Livox Avia and Ouster OS0-128. 59

4.3 Setup for LiDAR-based drone tracking. 60

4.4 Flowchart of the Ouster LiDAR based drone tracking system. 61

4.5 Traing data for YOLOV5 model for datecting UAV. 62

4.6 Plots of box loss, objectness loss over the training epochs for the training

set. 63

4.7 The first column shows the signal image of Ouster LiDAR, the top and

middle are the output of YOLOV5 detection, and the bottom is the ex-

ploration range outside the detection range of YOLOV5. The second and

third columns correspond to the original point cloud and clustered point

cloud of the region of interest. 64

4.8 The point cloud data of drones at different distances, the bottom line

shows the point cloud data of 4 consecutive frames of drones at long dis-

tances. 65

4.9 Segment the point cloud data from the drone from the environment with

DBSCAN. 66

4.10 UAV point cloud cluster separated from the environment. 69

4.11 Holybro X500 V2 quadcopter equipped with onboard computer, the ob-

ject identified by the red frame is Optitrack Marker. 72

4.12 OptiTrack MoCAP system (left) and OptiTrack Prime camera (right). . . 73

4.13 Absolute position error (APE) value of three data sequences. 76

4.14 Comparison of estimated trajectories with the point cloud tracking method

and our proposed method from three different projections. 76

4.15 Velocity estimation error for each linear component in the three data se-

quences. 78

List of Tables

2.1 Comparison of related datasets with ours [9]. 18

3.1 List of data sequences in our extended dataset. The table includes the se-

quences introduced in our previous work [9], together with new sequences

showcasing new ground truth data sources. The five LiDARs indicated

(5x LiDARs) and cameras are listed in Table 4.1. 45

3.2 Absolute position error (APE) (µ/σ) in cm of the selected methods (N/A

when odometry estimations diverge). Best results in bold. 50

3.3 Average run-time resource (CPU/RAM) utilization and performance (pose

calculation speed) comparison of selected SLAM methods across multi-

ple platforms. For the pose publishing frequency, the data is played at 15

times the real speed. CPU utilization of 100% equals one full processor

core. 54

4.1 The sensor specifications for the dataset introduced in our previous work [9].

. 56

4.2 Comparison of technical specifications of different UAVs. 71

4.3 Details of sequences that use for our experiment. 74

4.4 Performance(Detectable distance, frame rate, and APE error) and initial

conditions comparison of selected tracking methods. 77

VIII

4.5 Average run-time resource (CPU/RAM) utilization and performance (pose

calculation speed) comparison of selected tracking methods across mul-

tiple platforms. CPU utilization of 100% equals one full processor core.

. 78

List Of Acronyms

APE Absolute Pose Errors

API Application Programming Interfaces

CNN Convolutional Neural Network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DOF Degrees of Freedom

DL Deep Learning

FOV Field of View

FOG Fiber Optic Gyro

GICP Generalized Iterative Closest Point

GNSS Global Navigation Satellite Systems

GPS Global Positioning System

GNN Graph Neural Network

HOG Histogram of Oriented Gradients

ICP Iterative Closest Point

IMU Inertial Measurement Unit

iSAM Incremental Smoothing and Mapping

INS Inertial Navigation System

KF Kalman Filter

LiDAR Light Detection and Ranging

LOAM LiDAR Odometry and Mapping

CHAPTER 0. LIST OF ACRONYMS 1

Mocap Motion Capture

MOT Multi-Object Track-ing

MEMS Micro-electro-mechanical Systems

NDT Natural Distribution Transform

PTP Precise Timestamp Protocol

RTK Real Time Kinematics

ROI Region of Interest

ROS Robot Operating System

RANSAC Random Sample Consensus

RMSE Root Mean Square Error

R-CNN Region-based Convolutional Neural Network

SLAM Simultaneous Localization and Mapping

SOT Single-Object Tracking

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SPAD Single-photon Avalanche Diode

SDK Software Development Kit

SSD Single Shot Detector

SVM Support Vector Machine

UAV Unmanned Aerial Vehicles

UGV Unmanned Ground Vehicles

VRS Virtual Reference Station

VCSEL Vertical-cavity Surface-emitting Laser

YOLO You Only Look Once

1 Introduction

LiDAR sensors have been adopted as the core perception sensor in many applica-

tions, from self-driving cars [1] to unmanned aerial vehicles (UAV) [2], including forest

surveying and industrial digital twins [3]. High-resolution spinning LiDARs enable a

high degree of awareness of the surrounding environments. More dense 3D point clouds

and maps are increasing demand to support the next wave of ubiquitous autonomous sys-

tems as well as more detailed digital twins across industries. However, higher angular

resolution comes at an increased cost in analog LiDARs requiring a higher number of

laser beams or a more compact electronics and optics solution. New solid-state and other

digital LiDARs are paving the way to cheaper and more widespread 3D LiDAR sensors

capable of dense environment mapping [4]–[7].

So-called solid-state LiDARs overcome some challenges of spinning LiDARs in

terms of cost and resolution, but introduce some new limitations in terms of a relatively

small field of view (FoV) [6], [8]. Indeed, these LiDARs provide more sensing range at

significantly lower cost [9]. Other limitations that affect traditional approaches to LiDAR

data processing include irregular scanning patterns or increased motion blur.

Ouster LiDARs are a notable example among the latest generation of LiDARs, owing

to their ability to generate dense point clouds and 360° panoramic views. Additionally,

they capture low-resolution images that encode information about depth, reflectivity, or

near-infrared light in their image pixels. This new type of LiDAR is referred to as a

“LiDAR-as-a-camera sensor". One of the unique features of this sensor is its compatibility

1.1 SIGNIFICANCE AND MOTIVATION 3

with deep learning (DL) models of vision sensors without requiring additional camera

setup and calibration [10]. This has the potential to improve upon traditional lidar-based

object detection and tracking methods, which tend to be more complex and less advanced

than vision sensors.

LiDAR datasets have emerged as a critical tool for applications advancing autonomous

systems and improving environmental mapping. By structuring and organizing data sys-

tematically, these datasets lay a robust foundation for endeavors such as algorithm de-

velopment, calibration techniques, and performance benchmarking. Such a framework

permits researchers and technicians to detect anomalies, refine data processing strategies,

and test solutions in simulated or virtual environments before venturing into real-world

implementations. However, a lacuna exists in the current scenario. Comprehensive Li-

DAR datasets encompassing these nascent LiDAR technologies are few and far between.

Furthermore, applications tailored to leverage the characteristics of these emerging Li-

DAR systems are still in their infancy, and their developmental potential remains to be

fully realized.

This thesis seeks to fill the existing void in the field. Drawing from our prior re-

search [9], we provide an in-depth assessment of cutting-edge SLAM algorithms using a

diverse multi-modal LiDAR setup. For the robotics community, we present a rich multi-

LiDAR dataset paired with a thorough LiDAR SLAM benchmark analysis. Beyond this,

we detail a unique approach to craft ground truth trajectories, specially tailored for scenar-

ios where MOCAP or GNSS/RTK isn’t an option. Expanding our scope, we also inves-

tigate the promising capabilities of the innovative digital LiDAR, Ouster, with a specific

focus on its utility in UAV tracking.

1.1 Significance and Motivation

There are few works that have benchmarked the performance of both spinning Li-

DAR and solid-state LiDAR in diverse environments, which limits the development of

1.1 SIGNIFICANCE AND MOTIVATION 4

general-purpose LiDAR-based simultaneous localization and mapping (SLAM) algorithms [9].

To bridge the gap in the literature, we present a benchmark that compares different modal-

ities of LiDARs (spinning, solid-state) in diverse environments, including indoor offices,

long corridors, halls, forests, and open roads. To allow for a more accurate and fair com-

parison, we introduce a new method for ground truth generation in larger indoor spaces

(see Fig. 1.1). This enables benchmarking of LiDAR odometry and mapping algorithms

in larger environments where a motion capture system or similar is not available, with sig-

nificantly higher accuracy than GNSS/RTK solutions, which also enhanced ground truth

enables a significantly higher degree of quantitative benchmarking and comparison with

respect to our previous work [9]. We hope for the extended dataset and ground truth la-

bels, as well as more detailed data, to provide a performance reference for multi-modal

LiDAR sensors in both structured and unstructured environments to both academia and

industry.

Figure 1.1: Ground truth map for one of the indoor sequences generated based on the proposed approach

(SLAM-assisted ICP-based prior map).

Here, we also propose a drone tracking system based on the Ouster OS0-128 LiDAR,

consisting of only a single Ouster LiDAR placed on the ground or nearby. The results

1.2 RELATED WORKS 5

demonstrate that this design can provide precise drone flight trajectories and serve as an

alternative to expensive equipment such as MoCAP systems and GNSS receivers. The

core attribute of this project is that, with only a single Ouster LiDAR as the data input

device, it combines the signal images of the LiDAR and point cloud data (see Fig. 1.2) to

output accurate positioning results.

This project combines object detection in computer vision with point cloud data

processing, rapidly locating the target of interest in the LiDAR’s signal image, which

greatly reduces the computation in point cloud processing. To the best of our knowledge,

there is no existing work on drone tracking systems using this method. In our experiments,

we use only one Ouster LiDAR and achieve an average reconstruction error of 3 cm when

the UAV is 8.0 m from the LiDAR.

Figure 1.2: Exampe of signal image (top) and its corresponding point cloud(bottom, background removed).

1.2 Related Works

Previous research directly related to this project [11] includes the use of the Leica

BLK360, an advanced precision imaging laser scanner, to generate a ground truth map.

1.2 RELATED WORKS 6

The research then used handheld OS1-64 point cloud data and the ground truth map to

perform iterative closest point (ICP) matching, resulting in a 6 degrees of freedom (DOF)

ground truth trajectory with an error of less than 3cm. However, the sensors used in this

project were limited to only an Ouster OS1-64 and a Realsense stereo camera. Another

study [12] used a car as a data collection platform and equipped it with 2 Velodyne-

16 LiDARs, 2 SICK 2D LiDARs, 2 Setero cameras, and IMU, GPS, and other sensors.

The study used an Incremental Smoothing and Mapping (iSAM [13]) pose graph SLAM

framework to estimate the baseline trajectory and obtained rotation measurements from

Fiber Optic Gyro (FOG) and VRS-GPS to compute sequential relative constraints for the

SLAM framework. The data obtained from the sensors and optimization process can

be used for high-precision pose graph computation. However, study [14] lacked point

cloud data from new solid-state LiDARs such as Livox Horizon. The MIT Stata Center

dataset used a PR2 ground robot as a platform for data collection, which was equipped

with 2 RGBD cameras, 2 laser scanners, and IMU and other sensors. The study used 2D

building floor plans for each level of the building and LiDAR point cloud data to perform

iSAM matching, resulting in a reliable ground truth trajectory. However, the LiDAR used

in this study was a laser scanner rather than modern solid-state LiDAR or new rotational

radar LiDARs such as Ouster OS0-128.

3D object tracking can be broadly categorized into two types: multi-object tracking

(MOT) and single-object tracking (SOT). In [15], it was proposed to use pre-existing

3D object detectors to extract oriented 3D bounding boxes from LiDAR point clouds.

State estimation and data association were then performed using a combination of the

3D Kalman filter and the Hungarian algorithm. Research [16] introduced a novel joint

MOT method based on graph neural networks (GNN), which can model relationships

between variable objects in both spatial and temporal domains. SOT methods aim to

track a single object based on a given template. Study [17] developed a Siamese tracker

that encodes the model and candidate shape into a compact latent representation. The

1.3 CONTRIBUTION 7

encoding is regularized by decoding the latent representation into the object model shape.

Research [18] utilizes spatiotemporal data association to robustly achieve object tracking,

comprising two main parts: estimating object time information and updating the region

of interest (ROI) using a cross-frame temporal motion model, then updating the predicted

state based on paired spatiotemporal data.

In the presented study [5], a sophisticated multimodal tracking technique was delin-

eated. This technique employs high-frequency scans to achieve precise state determina-

tion, whereas low-frequency scans are utilized to ensure sustained and resilient tracking.

Additionally, terahertz processing is integrated for the discernment of both trajectories

and targets. Nonetheless, a notable prerequisite for this approach is the provision of the

UAV’s initial positioning.

1.3 Contribution

In summary, this work analyzed state-of-the-art SLAM algorithms with a multi-

modal multi-LiDAR platform as an extension of our previous work [9]. And we also

propose a UAV tracking approach based on the integration of images and 3D point clouds

generated by an Ouster LiDAR sensor. This provides an effective supplement for posi-

tioning and external tracking in a GNSS-denied environment. The main contributions of

this work are as follows:

1. A ground truth trajectory generation method leveraging the multi-modality of the

data acquisition platform and high-resolution sensors with an average absolute pose

error (APE) of 0.048 m, for environments where MoCAP or GNSS/RTK are un-

available or unreliable;

2. A new dataset in various environments with data from 5 different LiDAR sensors,

one LiDAR camera, and one stereo fisheye camera as illustrated in Fig. 1.3. Ground

truth data is provided for all sequences;

1.4 STRUCTURE 8

VLP-16

HorizonL515

OS-0 OS-1

AVIA

OptiTrack

Markers

X

Y

Z

T265

GPS RTK

Figure 1.3: Multi-modal sensor data acquisition system with their coordinate frames (front view).

3. A benchmarking of ten state-of-the-art filter-based and optimization-based SLAM

methods on our proposed dataset in terms of the accuracy of odometry, memory,

and computing resource consumption. The results indicate the limitations of current

SLAM algorithms and potential future research directions.

4. A UAV tracking method for estimating trajectories of drones in the absence of Mo-

CAP or GNSS/RTK that fuse signal image and point cloud data of Ouster LiDAR

based on LiDAR-as-a-camera with an average absolute pose error (APE) of 0.06 m.

1.4 Structure

This paper is divided into 5 chapters as follows:

1. Chapter 2 briefly describes the open-source hardware and software systems that

form the basis of the project’s development.

2. Chapter 3 comprehensively introduces the Multi-model LiDAR SLAM benchmark

from three levels of design overview, implementation, and experimental results.

1.4 STRUCTURE 9

3. Chapter 4 provides an in-depth exploration of the use of the new Ouster LiDAR in

UAV tracking, presenting a comprehensive overview of the design, implementation,

and experimental results of UAV tracking based on LiDAR-as-a-camera, covering

all aspects of the technology.

4. Finally, the conclusions of the project and ideas for further research can be found

in Chapter 5.

2 Background

In the present chapter, we conduct an exhaustive exploration into the core principles

and theoretical constructs associated with Multi-Model Simultaneous Localization and

Mapping (SLAM) Benchmarking and LiDAR-based Unmanned Aerial Vehicle (UAV)

tracking. This entails an extensive exposition on 3D LiDAR, its integration with SLAM,

and the methodology of SLAM Benchmarking. Simultaneously, this chapter will scru-

tinize auxiliary technologies including the Robot Operating System (ROS), point cloud

processing techniques, trajectory estimation methodologies, and strategies for object de-

tection.

2.1 LiDAR Sensor

LiDAR (Light Detection and Ranging) is a sensor technology that employs laser

emission to scan an environment and subsequently constructs a three-dimensional repre-

sentation of the surrounding landscape. The operational mechanism involves the emission

of a laser beam, with subsequent measurement of the elapsed time required for the beam to

reflect off an object and return to the sensor. Through calculating the distance to an array

of points within the environment, a LiDAR system is capable of formulating a comprehen-

sive 3D map of its vicinity. This technology finds extensive application in areas such as

robotics, autonomous vehicles, and other disciplines that require a nuanced understanding

of the environment, due to its real-time, high-resolution 3D modeling capabilities, prov-

ing particularly efficacious for tasks encompassing navigation, localization, and obstacle

2.1 LIDAR SENSOR 11

avoidance. One of the principal merits of LiDAR technology is its capacity to generate

high-resolution 3D environmental maps. These maps hold potential for a multitude of

uses, including but not limited to, localization, path planning, and object detection and

classification. Additionally, LiDAR sensors demonstrate commendable operational flexi-

bility, exhibiting functionality in an array of settings, both indoor and outdoor. Compared

to alternative sensing technologies, LiDAR exhibits superior robustness and reliability.

In terms of operational distance, LiDAR sensors exhibit a broad range, from mere cen-

timeters to several hundred meters. Furthermore, these sensors demonstrate versatility

in mounting options, with compatibility extending to ground vehicles, aerial drones, and

handheld devices.

LiDAR sensors comprise numerous variants, spanning from small, economically fea-

sible sensors to larger, high-resolution systems. Broadly, these can be categorized into two

main types: solid-state LiDAR and mechanically rotating LiDAR.

2.1.1 Solid-state LiDAR

Solid-state LiDAR represents a variant of LiDAR technology that utilizes a solid-

state laser coupled with a detector to comprehend its environmental context. This technol-

ogy primarily hinges upon the reflection or reception of waves to identify the properties of

targets, drawing significantly from research conducted in the realm of 3D image sensors.

The design of solid-state LiDAR, in fact, originates from infrared focusing plane imagers,

incorporating a photodetector array positioned strategically on the focusing plane of the

detector. Infrared rays emanating from an infinite distance traverse the optical system and

are imaged upon these photodetectors on the system focusing plane. The detector then

transposes the received light signal into an electrical equivalent, subsequently executing

integrative amplification, sampling and holding. The electrical signal ultimately reaches

the monitoring system through the output buffer and a multi-channel transmission sys-

tem to materialize as an image. A salient advantage of solid-state LiDAR is its compact

2.1 LIDAR SENSOR 12

dimensions and cost-effective production. The absence of moving components enables

the design to be significantly smaller and more economical than its traditional LiDAR

counterparts. As such, solid-state LiDAR is an optimal choice for applications where size

and cost considerations hold paramount significance, such as in the case of autonomous

vehicles and drones.

Figure 2.1: Point cloud patterns of the Livox Horizon LiDAR accumulated over an extended period [19] .

Within the burgeoning industry of solid-state LiDAR production, Livox emerges as

one of the most prominent companies, distinguished by its substantial manufacturing scale

and formidable research capabilities. Livox LiDAR systems are engineered to offer high-

resolution, long-range three-dimensional sensing, facilitating a myriad of applications

such as autonomous vehicles and robotics, among others.

A defining attribute of Livox LiDAR systems is their capacity to provide high-

resolution three-dimensional sensing at extensive distances. For instance, certain models,

including the Livox Mid-40, can scan up to a range of 200 meters. Conversely, other

models, such as the Livox Horizon, extend their scanning reach up to 300 meters. This

extended range renders Livox LiDAR systems highly suitable for applications demanding

long-range sensing, such as autonomous vehicles or unmanned surveillance drones [20].

Moreover, the compact size and light weight of Livox LiDAR further solidifies its stand-

ing in the market.

The Livox Horizon specifically utilizes the company’s unique non-repetitive scan-

ning technology in conjunction with multi-laser and multi-Avalanche PhotoDiode (APD)

DL-Pack technology, guaranteeing the generation of high-density point clouds. Fig. 2.1 il-

2.1 LIDAR SENSOR 13

lustrates the distribution of point clouds within the Horizon’s Field of View (FOV) within

time intervals of 0.1s, 0.2s, and 0.5s. It is evident that as time progresses, the coverage

within the FOV significantly augments.More detailed information about the surrounding

environment revealed in [8].

2.1.2 Spinning LiDAR

Mechanical spinning LiDAR constitutes a variant of LiDAR technology that em-

ploys a mechanical system for environmental scanning, facilitating the creation of a three-

dimensional map of the surroundings. Its operational mechanism involves emitting a laser

beam and subsequently measuring the time taken for the beam to reflect off an object and

return. The laser and detector are installed on a rotating platform, allowing the laser beam

to encompass a broad FOV. Mechanical spinning LiDAR systems possess the capacity to

generate high-resolution 3D environmental maps, which are invaluable for diverse pur-

poses including localization, path planning, and object detection and classification. Me-

chanical spinning LiDARs also exhibit robustness and reliability, rendering them func-

tional in a variety of environments, including indoor and outdoor settings. Nevertheless,

mechanical rotation LiDARs have certain limitations as follows.

• Cost: Mechanical rotating LiDARs are typically expensive, especially for high-

resolution systems, with current prices ranging approximately from 5000 to 10000

EUR.

• Size and weight: their size and weight can be considerable, making them challeng-

ing to install and integrate into smaller or lightweight systems.

• Complexity: due to its mechanical components, these systems exhibit increased

complexity and a greater propensity for wear and failure than other types of LiDAR.

However, it is worth noting that the prices for smaller industrial LiDAR systems have

significantly declined in recent years, and are projected to further decrease due to emerg-

2.1 LIDAR SENSOR 14

ing technologies such as Micro-Electro-Mechanical Systems (MEMS) mirrors, optical

phased arrays, Single-Photon Avalanche Diode (SPAD) detectors, and Vertical-Cavity

Surface-Emitting Laser (VCSEL) sources, as suggested in research [21] [22].

A noteworthy example of advancements in LiDAR technology is San Francisco-

based LiDAR startup, Ouster, which has developed "digital LiDAR" systems. This refers

to a fully semiconductor-based design of LiDAR, where thousands of optoelectronic de-

vices, such as emitters and receivers, traditionally incorporated into LiDAR products are

integrated into chips to achieve a "solid-state" form. In addition, Ouster has incorporated

a rotating device into the LiDAR, enabling 360-degree scanning, giving rise to "rotating

solid-state LiDAR".

Figure 2.2: Simultaneous real-time image layers output from the OS0. From top to bottom are ambient,

intensity, range, and point cloud data.

Digital LiDAR systems, such as Ouster’s OS1 [23] series, are compact and lightweight,

with resolutions ranging from 16 to 128 lines and weights less than 400 grams. Ouster

2.2 3D LIDAR SLAM 15

further supplements its offering with a powerful and efficient LiDAR driver [24] for cus-

tomer service, which includes Application Programming Interfaces (APIs) for real-time

access to LiDAR data and tools for data visualization and analysis. Fig. 2.2 displays the

environmental, intensity, range, and point cloud data from the Ouster OS0, demonstrat-

ing the capabilities of these systems. The Ouster SDK also provides sample code and

documentation to facilitate developers’ integration of Ouster LiDARs into their systems.

2.2 3D LiDAR SLAM

Simultaneous Localization and Mapping (SLAM) serves as a crucial technology

for autonomous systems including drones, robots, and self-driving cars. This technol-

ogy enables these systems to navigate and concurrently map their surroundings in real-

time, thus facilitating informed decision-making regarding environmental interaction and

movement. 3D LiDAR (Light Detection and Ranging) sensors are frequently employed

for SLAM due to their capacity to generate high-resolution 3D point clouds of the envi-

ronment. By persistently measuring the distance to surrounding objects utilizing lasers,

3D LiDAR sensors are capable of crafting a meticulous map of the proximate envi-

ronment. Numerous methodologies exist for implementing 3D LiDAR SLAM, among

which feature-based methods (identifying distinct features in the point cloud data) and

optimization-based methods (employing optimization algorithms to minimize the error

between the current pose estimate and measured data) are the most common. A signifi-

cant advantage of employing 3D LiDAR for SLAM is its ability to provide exceptionally

accurate and dense 3D maps of the environment. This accuracy proves particularly benefi-

cial for applications such as autonomous navigation, localization, and object recognition.

The primary 3D LiDAR SLAM algorithms currently in use include LiDAR-only [25]

and those loosely-coupled [26] or tightly-coupled [27] with IMU data. Tightly-coupled

approaches incorporate LiDAR and IMU data at an early stage, contrasted with SLAM

methodologies that loosely fuse LiDAR and IMU outputs towards the end of their respec-

2.2 3D LIDAR SLAM 16

tive processing pipelines.

Regarding LiDAR-only methods, early work by Zhang et al. on LiDAR Odome-

try and Mapping (LOAM) introduced a method capable of achieving low-drift and low-

computational complexity as early as 2014 [28]. Subsequent advancements have led to

multiple variations of LOAM, enhancing its performance. LeGO-LOAM, for instance, in-

corporated ground point segmentation and a loop closure module, making it more lightweight

while maintaining accuracy, and improving computational expense and lowering long-

term drift [29]. Nevertheless, LiDAR-only approaches tend to be limited by a high sus-

ceptibility to featureless landscapes [30], [31]. By incorporating IMU data into the state

estimation pipeline, SLAM systems can achieve greater precision and flexibility.

In LIOM [27], authors proposed a tightly-coupled approach with LiDAR-IMU fu-

sion based on graph optimization which outperformed state-of-the-art LiDAR-only and

loosely coupled systems. This better performance has caused subsequent research to

concentrate on tightly-coupled approaches.Fast-LIO [32] is a practical tightly-coupled

method that provides computational efficiency and robustness by fusing the feature points

with IMU data through an iterated extended Kalman filter. By extending FAST-LIO,

FAST-LIO2 [33] introduced a dynamic structure ikd-tree to the system, facilitating the in-

cremental map update at every step and addressing computational scalability issues, while

inheriting the tightly-coupled fusion framework from FAST-LIO.

While the vast majority of these algorithms perform effectively with spinning Li-

DARs, novel approaches are in demand, given the emergence of new sensor types such

as solid-state Livox LiDARs. These have ushered in innovative sensing modalities, re-

duced FoV, and irregular samplings [9]. Current research efforts are focusing on enhanc-

ing existing SLAM algorithms to accommodate these new LiDAR characteristics. Loam

livox [34] exemplifies these endeavors, providing a robust and real-time LOAM algo-

rithm specifically designed for such LiDAR types. LiLi-OM [6], another tightly-coupled

method, jointly minimizes the cost derived from both LiDAR and IMU measurements,

2.3 SLAM BENCHMARKING DATASETS 17

catering to both solid-state LiDARs and traditional LiDARs.

It merits attention that several other studies are targeting LiDAR odometry and map-

ping, not merely by integrating IMU data, but also incorporating visual information or

other ranging data. This approach seeks to achieve more robust and accurate state estima-

tion [35], [36].

2.3 SLAM Benchmarking Datasets

The evaluation of Simultaneous Localization and Mapping (SLAM) algorithm per-

formance is a crucial task in the advancement of autonomous systems such as drones,

robots, and self-driving cars. These systems are reliant on precise and efficient SLAM

algorithms for real-time navigation and mapping of their environments. To compare the

performance of various SLAM algorithms, researchers commonly employ benchmarks,

consisting of standardized datasets and evaluation criteria. These benchmarks facilitate

a fair and consistent comparison of different algorithms, enabling researchers to distin-

guish the most promising approaches and identify areas for potential improvement. In

terms of the platforms hosting the sensors, extant datasets can be divided into two sub-

categories: extensive datasets with vehicles serving as platforms, commonly utilized in

outdoor settings, and datasets employing ground robots or humans as platforms, typically

used indoors, focusing on vision, IMU, and LiDAR modules. Table 2.1 presents funda-

mental information regarding the datasets discussed below. A systematic comparison of

the popular datasets has been previously provided in Table 2.1 of our preceding work [9].

Among these datasets, it is noteworthy to mention that not all possess an analytical bench-

mark of 3D LiDAR SLAM based on multi-modality LiDARs.

2.3 SLAM BENCHMARKING DATASETS 18

Table 2.1: Comparison of related datasets with ours [9].

Dataset Year Environment Ground Truth LiDARs Other

KITTI[37] 2013 Urban road RTK_GPS/INS 3D-Velodyne HDL-64E @10 Hz 4× cameras , accel/gyro

NCLT[38] 2017
Urban Indoor

Outdoor GPS/INS
3D-Velodyne HDL-64E@10 Hz

2× 2D-Hokuyo @10/40 Hz camera

Oxford RobotCar[39] 2017 Urban Road GPS/INS
2× 2D-SICK @50 Hz
3D-SICK @12.5Hz 4 Camera; accel/gyro

RUGB Dataset[40] 2019
Unstructured

outdoor - 3D-Velodyne HDL-32E @10 Hz GPS&IMU ; 3× cameras

nuScences[41] 2020 Urban Road - 3D-32-Beams Lidar @20 Hz
6x Camera (RGB);GPS&IMU;

5x Radar@13Hz

Newer Colleage[11] 2020
Urban outdoor

Vegetated 6DOF ICP 3D-Ouster-64 @10 Hz D435i (Infrared); accel/gyro

DARPA[11] 2010
Structured

Urban GPS/INS 3D-Velodyne HDL-64E @15 Hz Point Grey Firefly MV; accel/gyro

PandaSet[42] 2021 Urban road -
3D-Hesai-Pandar64 @10 Hz
3D solid-state lidar@10 Hz 6x Cameras. GNSS&IMU

M2DGR [43] 2022 Urban In/Outdoors
Laser 3D tracker
RTK_GPS/INS 3D VLP-32C @10 Hz 3 Cameras. GNSS&IMU

TIERS LiDAR Dataset 2022

Urban indoor
Urban road

Forest

6DOF MoCAP
SLAM/ICP
GNSS/RTK

3x 3D-Spinning lidar(16,64,128) @10 Hz
2x 3D-Solid-State-lidar @10 Hz

LiDAR-Camera @30 Hz
2x accel/gyro @200 Hz
2x accel/gyro @100 Hz

2.3.1 Vehicle-based Dataset

The KITTI benchmark [37] merits significant attention as a dataset capable of assess-

ing various tasks, including odometry, SLAM, object detection, tracking, among others.

It provides 3D LiDAR point cloud data and ground-truth poses in authentic environments,

thus allowing researchers to evaluate the precision and efficiency of disparate SLAM al-

gorithms. KITTI utilizes RTK-GPS/INS to provide 6 degrees of freedom ground truth

trajectories with an error of less than 10 cm across all traversals. However, the lack of

synchronization between this dataset’s IMU data and images could potentially impact the

performance of numerous visual-inertial odometry methods. Furthermore, since GPS ac-

curacy may be compromised in regions such as urban canyons, assured accuracy cannot

be guaranteed in such areas. The MIT DARPA Urban Challenge dataset [38] is one of the

main Unmanned Ground Vehicle (UGV) datasets, originally developed at MIT. It con-

tains imagery, GPS, and point cloud data from Talos vehicles during a 90km traversal that

spans seven hours of autonomous driving. The ground truth is furnished by the integration

of high-precision GPS/INS.

The Oxford RobotCar dataset [39], currently the most extensive autonomous driv-

2.3 SLAM BENCHMARKING DATASETS 19

ing dataset, includes over 1000 km of driving in central Oxford across all conceivable

weather conditions. This dataset encapsulates multiple features of complex urban areas,

such as GPS loss, diverse pedestrian scenes on sidewalks, and dynamic entities like bi-

cyclists. The nuScenes dataset [41], developed by the Motional team, is a large-scale

dataset intended for autonomous driving that provides a comprehensive sensor suite from

autonomous vehicles, including six cameras, one LiDAR, five radars, GPS, and IMU.

The dataset comprises 1,000 driving scenarios in Boston and Singapore, two cities noto-

rious for dense traffic and challenging driving environments. The selected scenes, each

20 seconds long, depict a diverse and intriguing assortment of driving maneuvers, traffic

situations, and unexpected behaviors. The PandaSet dataset [42], a collaborative effort

by Hesai and Scale AI, merges Hesai’s leading-edge LiDAR sensor with Scale AI’s high-

quality data annotation. PandaSet includes data collected using a forward-looking LiDAR

(PandarGT) and a mechanically rotating LiDAR (Pandar64) with similar image resolu-

tion. The gathered data is annotated using a combination of cuboid and segmentation

annotation (Scale 3D Sensor Fusion Segmentation).

2.3.2 Mobile Robot or Human-carried Dataset

The newer University Vision and LiDAR Dataset [11] was motivated by the need for

more inclusive mobile mapping sensors. This dataset encapsulates almost 6.7 kilometers

at typical walking speeds around New College, Oxford University. Utilizing commer-

cially available sensors, it includes challenging sequences characterized by rapid motion,

severe shaking, abrupt lighting changes, and texture-less surfaces. The North Campus

Long Term (NCLT) dataset [44] is another significant dataset discussed herein. Collected

using a Segway ground robot, it covers the entirety of a university campus, both indoors

and outdoors, spanning a distance of 147.4 kilometers. This dataset differentiates itself

by employing LiDAR scan matching and high-precision RTK-GPS for ground truth.

The RUGD dataset [40], is designed with a focus on semantic comprehension of

2.4 UAV DETECTION AND TRACKING 20

unstructured outdoor environments for off-road autonomous navigation applications. The

dataset comprises video sequences captured by cameras on mobile robotic platforms. The

platforms employed for data collection are sufficiently compact to maneuver in cluttered

environments and sufficiently robust to traverse challenging terrain, thereby exploring

more unstructured aspects of the environment.

The M2DGR dataset [43], gathered by a ground robot outfitted with various sensors,

including six fisheye and an RGB camera oriented skyward, an infrared camera, an event

camera, a visual-inertial sensor (VI-Sensor), Inertial Measurement Unit (IMU), LiDAR,

consumer-grade Global Navigation Satellite System (GNSS) receivers, and GNSS-IMU

navigation systems with real-time kinematics (RTK) signals. This dataset encompasses

36 sequences captured in disparate environments, with ground-truth trajectories obtained

using motion capture devices, among other methods.

2.4 UAV Detection and Tracking

This section reviews the literature in the field of UAV detection and tracking. Due to

the limited research on tracking small objects such as UAVs based on LiDAR, we focus

on: (i) UAV tracking with cameras; (ii) UAV tracking with LiDARs; and (iii) Applications

of UAV tracking.

2.4.1 UAV tracking with cameras

Vision-based methods are widely used to track small objects and UAVs [45]–[47].

They can be divided into two categories: those that rely on passive or active visual mark-

ers, and those that detect and track objects in general, e.g., with traditional computer vi-

sion or deep learning. For example, [46] introduces a trinocular system with ground-based

cameras to control a rotary-wing UAV in real time based on its key features. Alternatively,

[48] presents an infrared binocular vision system with PTU and exosensors to track drones

2.4 UAV DETECTION AND TRACKING 21

cheaply under any weather and time conditions based on their infrared spectra. Recent

developments in deep convolutional neural networks (CNNs) have boosted adoption in

the field of object detection and tracking. Arguably, a large part of the state-of-the-art

in tracking is based on deep learning methods. Recent advances in deep CNNs have

improved object detection and tracking performance [49]. For instance, [47] proposes a

CNN-based markerless UAV relative positioning system that allows the stable formation

and autonomous interception of multiple UAVs.

Depth cameras can also detect UAVs and help them avoid obstacles using deep learn-

ing models that process depth maps [50]. While depth cameras can provide accurate po-

sition and size measurements, and vision sensors are generally capable of robust tracking

and relative localization, our focus in this paper is on the use of Ouster LiDARs because

of their flexibility with respect to environmental conditions and their ability to provides

more accurate and informative signal images than depth cameras.

2.4.2 UAV tracking with LiDARs

While LiDAR systems are often employed for detecting and tracking objects, they

pose unique challenges in detecting and tracking UAVs due to their small size, varied

shapes and materials, high speed, and unpredictable movements.

When deployed from a ground robot, a crucial parameter is relative localization be-

tween different devices. Li et al. [5] suggest a new approach for tracking UAVs using

LiDAR point clouds. They take into account the UAV speed and distance to adjust the

LiDAR frame integration time, which affects the density and size of the point cloud to be

processed.

By conducting a probabilistic analysis of detection and ensuring proper setup, as

shown in [51], it is possible to achieve detection using fewer LiDAR beams, while per-

forming continuous tracking only on a small number of hits. The limitations in the 3D

LiDAR technology can be overcome by moving the sensor to increase the field of view

2.4 UAV DETECTION AND TRACKING 22

and improve the coverage ratio. Additionally, combining a segmentation approach and

a simple object model while leveraging temporal information in [52] has been shown to

reduce parametrization effort and generalize to different settings.

Another approach, departing from the typical sequence of track-after-detect, is to

leverage motion information by searching for minor 3D details in the 360◦ LiDAR scans

of the scene. If these clues persist in consecutive scans, the probability of detecting a UAV

increases. Furthermore, analyzing the trajectory of the tracked object enables the classi-

fication of UAVs and non-UAV objects by identifying typical movement patterns [53],

[54].

2.4.3 Applications of UAV tracking

Recently, researchers have shown interest in tracking and detecting UAVs due to

two primary reasons: the rising demand for identifying and detecting foreign objects or

drones in areas with controlled airspace, like airports [55], [56], and the potential for

optimizing the utilization of UAVs as versatile mobile sensing platforms through tracking

and detection [57].

The ability to track UAVs from unmanned ground vehicles (UGVs) allows for minia-

turization and greater flexibility in multi-robot systems, reducing the need for high-accuracy

onboard localization. This was demonstrated in the DARPA Subterranean challenge [58],

[59], where UAVs were dynamically deployed from UGVs in GNSS-denied environ-

ments. Localization and collaborative sensing were key challenges, with reports indi-

cating that LiDAR-based tracking was useful in domains where visual-inertial odometry

(VIO) has limitations, such as low-visibility situations [7], [60].

Similarly, tracking UAVs is crucial in the landing phase of the aerial system. Differ-

ent methods using a ground-based stereo camera [61] or having the UAV carry an infrared

camera to detect signals from the destination [62] have been proposed. As these works

employ cameras as their main sensory system, they can be easily affected by background

2.5 ROBOT OPERATING SYSTEM 23

lighting conditions while in our approach we prefer a LiDAR which is more resilient in

these environmental conditions.

2.5 Robot Operating System

The Robot Operating System (ROS) serves as a robust framework for creating robotics

applications. It equips users with a comprehensive suite of tools and libraries for facil-

itating hardware abstraction, low-level device control, the implementation of frequently

used functionalities, and inter-process message passing. A fundamental aspect of ROS is

the notion of a node, which embodies a functional unit within a robotic system. Nodes

communicate through a publish-subscribe model, where a node publishes data to a topic,

and other nodes subscribe to the same topic to receive the data. This approach fosters a

loosely coupled system, facilitating the addition, removal, or modification of functionali-

ties without adversely affecting the entire system (refer to Fig. 2.3).

ROS also incorporates numerous libraries for typical robotic tasks, such as robot nav-

igation, perception, and control. These libraries are realized as nodes that can be effort-

lessly integrated into a ROS system. Beyond the core ROS framework, a vast ecosystem

of open-source packages extends further functionality. These packages offer capabilities

including drivers for specific hardware platforms, support for robot simulations, and tools

for robot integration and deployment.

ROS is widely deployed across various industries. For instance, Open Robotics is

collaborating with Blue Origin (the suborbital spaceflight company established by Jeff

Bezos) and NASA to cultivate Space ROS, a ROS variant engineered to fulfill the veri-

fication and validation requirements mandated for aerospace software ahead of mission

deployment [63].

In essence, ROS simplifies the process for researchers and developers to create and

experiment with robotics applications, courtesy of its comprehensive toolset and libraries

designed for common tasks. Its modular and flexible design enables users to effortlessly

2.5 ROBOT OPERATING SYSTEM 24

develop and disseminate new functionality, while its dynamic community ensures a rich

repository of knowledge and support.

Leveraging ROS, we can design a package that enables specific LiDAR to interface

with the entire system. A LiDAR driver procures data from a LiDAR sensor, processes

the data, and publishes it to a ROS network in the form of a point cloud or other data

types. Subsequently, other ROS nodes can subscribe to this data for executing tasks like

localization, mapping, and obstacle avoidance. Generally, a LiDAR driver incorporates a

configuration file that allows users to specify settings such as the LiDAR’s IP address, port

number, and data format. It may also comprise parameters for configuring the processing

and publishing of LiDAR data, including the frame of reference, point cloud resolution,

and data publishing frequency.

Figure 2.3: A brief working principle of ROS.

In the context of this thesis, ROS is employed, which necessitates the dissemination

of ROS messages within a free space comprising three-dimensional coordinates (X, Y,

Z). This mechanism facilitates inter-node information exchange and the coordination of

actions within ROS, enabling the integration of our designs into more intricate robotic

systems as modular components. This system setup further bestows upon our design an

inherent flexibility and extensibility, allowing for the straightforward inclusion of new

data types as necessitated by evolving project requirements.

2.6 OBJECT DETECTION 25

2.6 Object Detection

Object detection, a critical task in the field of computer vision, aims to identify and

localize specific classes of objects within an image or video. This technology finds exten-

sive application in various fields, including facial recognition, autonomous vehicles, and

security surveillance systems. Depending upon the utilized algorithms and the intricacy

of the task, object detection techniques, derived from computer vision, can be broadly

classified into three primary categories: Traditional Object Detection Techniques, Deep

Learning-Based Techniques, and 3D Object Detection Techniques. The three categories

mentioned above will be discussed in the next subsections, and the last subsections will

discuss object detection based on LiDAR-as-a-camera.

2.6.1 Traditional Object Detection

Traditional object detection techniques hinge on handcrafted feature descriptors and

machine learning classifiers. Widely employed feature extraction methods include the

Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), and

Histogram of Oriented Gradients (HOG) [64]–[66]. These algorithms identify points or

regions of interest within an image and generate feature vectors predicated on the charac-

teristics of these regions. For instance, HOG algorithms calculate histograms of gradient

directions within localized sections of an image, thereby capturing shape information cru-

cial for object identification.

Following feature descriptor computation, a machine learning classifier, such as a

Support Vector Machine (SVM), is trained to differentiate between objects of interest

and the background. An object detection system typically scans an image with a sliding

window, extracting features and using the classifier to determine the presence of an object

within each window. While these methods are fairly simple and computationally efficient,

they may struggle with object appearance variations, intricate backgrounds, and other

2.6 OBJECT DETECTION 26

complex conditions.

2.6.2 Deep Learning-Based Techniques

Deep learning-based techniques have significantly transformed the realm of object

detection by enabling direct learning of feature representations from data, resulting in

substantial improvements in accuracy.

Two-stage detectors such as R-CNN, Fast R-CNN, and Faster R-CNN [67], [68] ini-

tially generate a series of region proposals that might contain objects and subsequently

classify each proposed region. This approach allows the system to concentrate compu-

tational resources on promising image areas, albeit the two-stage process can be slower

than alternative methods.

One-stage detectors like YOLO [69] (You Only Look Once) and SSD [70] (Single

Shot Detector) eschew the region proposal stage, directly conducting classification and

bounding box regression on a dense sample of potential object locations. This approach

can expedite detection times, but it may lead to a higher number of false positives.

Anchor-free detectors like CornerNet [71], CenterNet [72] predict the location and

size of objects directly from feature maps, eliminating the need for predefined anchor

boxes. This technique can potentially enhance detection performance by obviating the

need to match ground truth objects with appropriate anchors—a process often prone to

errors and difficulties.

2.6.3 3D Object Detection

3D object detection methods endeavor to identify the location and spatial extent of

objects in three dimensions, thereby providing a more comprehensive understanding of

a scene than their 2D counterparts. This technique is particularly crucial in applications

like autonomous driving, where discerning the 3D layout of the environment is essential.

LiDAR-based techniques, such as PointRCNN and VoxelNet [73], [74], employ

2.6 OBJECT DETECTION 27

point cloud data captured by a LiDAR sensor for object detection. While these methods

can accurately estimate the 3D position and size of objects, they necessitate specialized

hardware and substantial computational resources.

RGB-D-based methods, like Frustrum PointNets [75], utilize data from RGB-D cam-

eras that capture both color images (RGB) and depth information (D). These methods

strike a balance between accuracy and computational complexity but rely on the avail-

ability of depth information, which may not always be accessible.

Monocular image-based methods, such as Mono3D and MonoGRNet [76], [77], es-

timate the 3D position and size of objects from a single 2D image. While this is a chal-

lenging task due to the loss of depth information, these methods can operate with simple

camera setups and are often more computationally efficient than other 3D object detection

techniques.

2.6.4 Lidar-as-a-camera based Object Detection

Computer vision has made significant contributions to the field of robotic perception

by enabling robots to understand and interpret visual information from their environment.

Many autonomous systems across various commercial and research platforms rely heav-

ily on computer vision for situational awareness, particularly through the use of vision

sensors such as recognizing objects in the robot’s environment. This allows the robot to

understand the layout and structure of its surrounding environment and make informed

decisions based on this information.

In recent years, the development of LiDAR technology has also played a crucial role

in advancing robotic perception. LiDARs, such as the Ouster LiDAR OS0, OS1, and

others, provide users with low-resolution infrared light images with a 360-degree field of

view. LiDARs measure the time-of-flight of a laser signal to objects in the environment

and the reflectivity of object reflections, making them not affected by changes in light such

as darkness and daylight, and providing information that contains sufficient information.

2.7 3D PIONT COULD PROCESSING 28

Research by Xianjia et al [10]. has shown the potential of deep learning-based image

object detection and instance segmentation on LiDAR signal images. Xianjia et al found

that some advanced DL models can process low-resolution images by interpolating them

to sufficient resolution, and have good performance. This demonstrates the potential of

deep learning in expanding the capabilities of LiDARs and further enhancing the percep-

tion capabilities of robots. In the next section, we tested the effect of the YOLOv5 object

detection algorithm on the information image of Ouster OS0-128, and the final results

were particularly optimistic, as shown in Fig. 2.4

In our project, we applied the yolov5 algorithm to the signal images generated by the

Ouster OS0-128 LiDAR in order to perform object detection and classification. YOLOv5 [78]

is a real-time object detection system developed by ultralytics company. It is the latest ver-

sion in the YOLO series of object detection systems, which are known for their speed and

accuracy. YOLOv5 is based on a convolutional neural network (CNN) architecture, which

is trained to predict object bounding boxes and class labels from input images. The archi-

tecture consists of several layers, including a backbone network, neck, and head layers.

The backbone network extracts features from the input image, while the neck and head

layers refine these features and predict the object bounding boxes and class labels. One of

the key features of YOLOv5 is its use of anchor boxes, which are pre-defined bounding

boxes used to guide the prediction of the object bounding boxes. This allows YOLOv5 to

be more efficient and accurate compared to other object detection systems that do not use

anchor boxes.

We applied the yolov5 algorithm to the signal images generated by Ouster OS0-128,

and our experiments showed good results, as shown in Fig. 2.4.

2.7 3D Piont Could Processing

Point cloud computation is the process of processing and analyzing point clouds to

extract useful information or generate new representations. The point cloud clustering

2.7 3D PIONT COULD PROCESSING 29

Figure 2.4: The results of running YOLOV5 on the signal images from the Ouster OS0-128.

algorithm, point cloud registration algorithm, and point cloud noise removal algorithm

are introduced in this chapter.

2.7.1 Point Cloud Clustering

Point cloud clustering is a specialized technique utilized to partition a set of points

within a point cloud into unique groups or clusters. This method is predominantly em-

ployed in the analysis of 3D point cloud data generated by sensors like 3D LiDAR (Light

Detection and Ranging) and RGB-D cameras. This technique has significant applications

in object recognition, scene segmentation, and 3D reconstruction, contributing to an auto-

mated separation of different objects or structures within a scene, and thereby facilitating

more precise analysis and interpretation of the data. The prevalent approaches to point

cloud clustering, including density-based [79], region-growing [80], and model-based

methods [81], offer distinct advantages and limitations in their application.

Density-based methods, such as DBSCAN (Density-Based Spatial Clustering of Ap-

plications with Noise) [79] [82], identify clusters based on the density of points within a

region. Points in dense regions are assigned to the same cluster, while points in sparse

areas are typically treated as noise or outliers. This technique is effective in discovering

clusters of arbitrary shapes and sizes, and it is resistant to noise. However, it may struggle

in datasets with varying density regions.

Region-growing methods [80], on the other hand, initiate clusters by growing a re-

2.7 3D PIONT COULD PROCESSING 30

gion around a seed point. This approach is often used in the segmentation of 3D point

clouds, where the geometric relationships between points are used to grow the regions.

The primary advantage of region-growing methods, such as the Euclidean Cluster Extrac-

tion algorithm, is their ability to identify non-convex clusters based on spatial proximity.

However, these methods can be sensitive to the choice of seed points and are susceptible

to noise and varying densities.

Model-based clustering methods [81], like Gaussian Mixture Models (GMM) [83] [84],

use a probabilistic model to assign points to clusters. They fit a parametric model to

the data and assign points to clusters based on their likelihood under the model. These

methods can effectively handle clusters of different sizes and shapes and are capable of

inferring missing data. Nevertheless, they can be computationally expensive and rely on

the assumption that data inherently follows the model, which may not always hold true.

In conclusion, each point cloud clustering method provides its unique set of benefits and

challenges. Their efficiency largely depends on the characteristics of the dataset, includ-

ing its density, noise level, and the inherent geometric or spatial relationships within the

data. Thus, the selection of a suitable clustering approach should be influenced by the

specific requirements of the task at hand.

2.7.2 Point Cloud Registration

Point cloud registration involves aligning two or more point clouds to a common

coordinate system. This process is commonly utilized in robotics and computer vision for

a range of purposes, such as 3D mapping, object recognition, and pose estimation. There

are various methods for performing point cloud registration, including feature-based and

point-based approaches. An optimization algorithm is typically employed to minimize

the difference between the point clouds by adjusting their pose. The effectiveness of the

registration depends on the chosen optimization algorithm and the initial pose of the point

clouds.

2.7 3D PIONT COULD PROCESSING 31

In our design, we employ Generalized Iterative Closest Point (GICP) [85], which is

an algorithm for point cloud registration, which aligns two point clouds by minimizing

the error between point clouds. It is an extension of the Iterative Closest Point (ICP)

algorithm, a widely used technique for point cloud registration. GICP is designed to

handle point clouds with non-uniform density, which can be a problem for traditional

ICP. It does this by weighting the points in the point cloud using a covariance matrix,

which allows it to give more weight to points with more information. GICP works by

iteratively aligning point clouds by minimizing the error between point clouds. In each

iteration, it finds the closest point in the two point clouds and adjusts the pose of one of the

point clouds to minimize the error. It continues this process until the error between point

clouds is minimized or the algorithm converges. GICP has been shown to be effective for

various point cloud registration tasks and is often used in robotics and computer vision

applications. Finally, we use this algorithm to obtain a dense and accurate ground turth

map, as shown in Fig. 1.1.

2.7.3 Point Cloud Noise Removal

Point cloud noise removal is a technique used to clean and filter point cloud data,

which is commonly used in 3D scanning and mapping applications and it is an important

step in the point cloud processing pipeline. These points are typically collected using

laser scanners or other 3D sensing devices, and they can contain a significant amount

of noise, such as outliers, errors, and inaccuracies. Noise removal is an essential step

in the point cloud processing pipeline as it improves the overall quality and accuracy of

the data. The goal of noise removal is to separate the useful information from the noise,

while preserving the integrity of the underlying data. There are many different methods

for removing noise from point clouds, including statistical methods, spatial methods, and

machine learning techniques. Statistical methods are based on the assumption that noise

is random and follows a specific distribution. These methods typically involve identify-

2.7 3D PIONT COULD PROCESSING 32

ing and removing points that fall outside of a specified threshold or range. For example,

the RANSAC [86] (Random Sample Consensus) algorithm is a popular statistical method

that uses a random sampling technique to identify and remove outliers from point clouds.

Spatial methods, on the other hand, are based on the spatial properties of the data. These

methods typically involve grouping points into clusters or regions, and then removing

points that do not conform to the characteristics of the surrounding points. For example,

the DBSCAN [79] (Density-Based Spatial Clustering of Applications with Noise) algo-

rithm is a popular spatial method that groups points into clusters based on their density

and proximity to other points. Machine learning techniques are also used for point cloud

noise removal. These methods typically involve training a model on a set of labeled point

cloud data, and then using the model to classify and remove noise from new point cloud

data. For example, deep learning-based methods like Convolutional Neural Networks

(CNN) can be trained to classify points as noise or signal, and then remove the noise

points.

The point cloud map used in this study contains a variety of scenes, including forests,

open roads, indoor halls, and corridors. The characteristics of point cloud data in indoor

and outdoor environments are quite different. In indoor environments, there are more

planar features such as walls, tables, and cabinets, while in outdoor environments, there

are more objects with variable characteristics such as branches and trunks. The significant

difference between indoor and outdoor environments makes it difficult to use spatial meth-

ods for point cloud noise removal, as these methods require specific parameter settings

such as minimum radius and minimum number of points. Generalization is a challenge for

machine learning-based point cloud noise removal techniques because the model needs to

be able to perform well on new, unseen scenes, even if it has not been trained on them be-

fore. Additionally, these techniques can be computationally expensive, particularly when

dealing with large point clouds. Our ground truth map have a high number of points, such

as the indoor hall point cloud map which consists of 180,000 points. This can make it

2.7 3D PIONT COULD PROCESSING 33

challenging to use these techniques in real-time applications or on resource-constrained

devices. After evaluating various point cloud noise removal techniques, it was determined

that statistical filtering was the most appropriate method for eliminating noise in the point

cloud data. This decision was based on the following reasons:

• Robustness: Statistical methods have been shown to be robust to outliers and capa-

ble of handling large amounts of noise in the point cloud data.

• Versatility: These techniques can be applied to different types of noise, including

Gaussian noise, impulse noise, and mixed noise.

• Efficiency: Many statistical techniques can be implemented using fast algorithms,

allowing for real-time processing of large volumes of point cloud data.

In light of the above considerations, statistical filtering was deemed the most suitable

method for this specific application.

3 Multi-Modal LiDAR SLAM

Benchmark

In this chapter, the overall design of the Multi-model slam benchmark is first intro-

duced in detail. The design includes the design principles and layout of the software and

hardware, and then the execution steps of the SLAM benchmark and related experimental

settings are shown, and finally the experimental results are comprehensively analyzed.

3.1 Design Overview

In this section, the hardware and software design of the data collection platform for

the Multi-model SLAM Benchmark is discussed in detail. The algorithm for generating

the ground truth map is carefully introduced, as well as the calibration of multiple LiDARs

and the data structure of the multi-modal LiDAR dataset.

3.1.1 Hardware Design

The primary objective of our sensor system is to offer data from a diverse range of

LiDAR sensors, each boasting unique characteristics. These range from cutting-edge,

cost-effective solid-state LiDARs, to 3D rotating LiDARs of varying resolutions and ver-

tical fields of view, as well as LiDAR-based cameras. To this end, our data collection

apparatus comprises three rotating LiDARs: the 16-channel Velodyne LiDAR (VLP-16),

3.1 DESIGN OVERVIEW 35

Figure 3.1: Our data collection interface, shown from above (on the left) and from the front (on the right).

the 64-channel Ouster LiDAR (OS1), and the 128-channel Ouster LiDAR (OS0). In the

domain of solid-state LiDAR, we have incorporated two models from Livox: the Horizon,

characterized by its near-rectangular field of view, and the Avia, which possesses an al-

most circular visual field. The configuration is rounded off with the inclusion of the Intel

RealSense L515 LiDAR camera.

In terms of the spatial arrangement, both the Horizon and Avia LiDARs are centrally

mounted, oriented forward. To their left front sits the L515 camera. The OS0 and OS1

sensors are positioned slightly elevated; the OS1 is tilted 45 degrees to the right and the

OS0, 45 degrees to the left. Crowning the setup, the Velodyne LiDAR is positioned with

its x-axis front-facing. For a more granular insight into the relative distances, positions,

and orientations, one can consult Fig. 3.1. Affixed atop an aluminum rod is the Optitrack

marker set, purposed for MoCAP-based ground truth. This placement strategy optimizes

its visibility and detection span, conveniently adjacent to the Holybro H-RTK F9P Helical

GPS Module. On the technical front, to guarantee brisk and uninterrupted data transfer,

the LiDAR is tethered to a Gigabit Ethernet router and an integrated computer, which

boasts specs like an Intel i5-9300HF processor, 16 GB DDR4 RAM, and an SSD storage

of 1 TB. The Optitrack system is hardwired to this computer via Ethernet, but on a distinct

3.1 DESIGN OVERVIEW 36

Figure 3.2: ROS interfaces and sampling rates for the distinct LiDAR sensors integrated into our platform.

interface separate from the LiDAR. Rounding off the connectivity, the RealSense L515

camera interfaces through a USB 3.0 port.

3.1.2 Software Information

Our software infrastructure is constructed exclusively on ROS Melodic, running on

Ubuntu 18.04. A visual representation of the ROS drivers and the data publishing rates

for various sensors can be found in Fig. 3.2. Given the absence of hardware signals for

synchronizing sensor data, similar to other documented datasets in references like [87],

we tackle the data synchronization challenge by operating all sensor drivers and data

recording applications locally on a high-performance computing system. This strategy,

combined with our networking hardware, effectively diminishes data transmission latency

both at the hardware and software junctures, ensuring data is timestamped right at the

ROS driver level. Broadening the dataset’s utility, we’ve also incorporated timestamps

from the built-in internal oscillators of both Livox and Ouster LiDARs. This is pertinent

for both point cloud and IMU data. Moreover, every ROS message header includes its

own timestamp.

3.1 DESIGN OVERVIEW 37

Figure 3.3: From an aerial perspective of the point cloud data assembled during the calibration of diverse

LiDARs, the Livox Horizon and Avia are distinctly represented by shades of red and green. Concurrently,

the VLP-16, OS1, OS0, and L515 sensors manifest themselves through point clouds colored in respective

hues of purple, yellow, blue, and black.

3.1.3 Calibration and Synchronization

Efficient extrinsic parameters calibration is crucial to multi-sensor platforms, es-

pecially for handmade devices where the extrinsic parameters may change due to un-

stable connections or distortion of the material during transit. Similar to our previous

work [9], we calculated the extrinsic parameter of sensors before each data collecting

process. Fig 3.3 shows the calibration result of sample LiDAR data from one of the in-

door data sequences. Different to our previous work[9], where the timestamp of Ouster

and Livox LiDARs are kept based on their own clock, we synchronized all LiDAR sen-

sors in ethernet mode via the software-based precise timestamp protocol (PTP) [88]. We

compared the orientation estimation between the sensor’s built IMUs, and SLAM results

with LiDARs and concluded that the latency of our system is below 3 ms, as shown in

Fig. 3.4.

3.1 DESIGN OVERVIEW 38

Figure 3.4: The change in the yaw value of the IMU of each LiDAR in the dataset. It can be seen from the

picture that the average time offset of the dataset does not exceed 3ms.

3.1.4 SLAM assisted Ground Truth Map

To provide accurate ground truth for large-scale indoor and outdoor environments,

where the MoCAP system is unavailable or GNSS/RTK positioning result becomes unre-

liable due to the multi-path effect, we propose a SLAM-assisted solid-state LiDAR-based

ground map generation framework.

Inspired by the prior map generation methods in [11], where a survey-grade 3D

imaging laser scanner Leica BLK360 scanner is unitized to obtain static point clouds of

the target environment, we employed a low-cost solid-state LiDAR Livox Avia and high

resolution spinning LiDAR to collect undistorted point clouds from environments. Ac-

cording to the Livox Avia datasheet,the range accuracy of the Avia sensor is 2 cm with a

maximum detection range of 480 m. Due to the non-repetitive scanning pattern, the envi-

ronment coverage of the point clouds within the FoV increases with time. Therefore, we

integrated multiple frames when the platform was stationary to get more detailed undis-

torted environmental sampling. Each integrated point cloud contains more than 240,000

points. The Livox built-in IMU is used to detect the stationary state of the platform when

the acceleration values are smaller than 0.01 m/s2 along all axes. After gathering multiple

undistorted point clouds submaps from the target environment, the next step is to match

and merge all submap into a global map by ICP. As the ICP process requires a good initial

3.1 DESIGN OVERVIEW 39

guess, we employ a high-resolution spinning LiDAR OS0 with a 360-degree horizontal

FOV to provide raw position by performing real-time SLAM algorithms. This process is

outlined in Algorithm 1. A dense and high-definition ground truth map can be obtained by

denoising the map generated by the algorithm described above to remove noise. Fig. 1.1

shows a ground truth map of sequence indoor08 generated based on Algorithm 1.

3.1 DESIGN OVERVIEW 40

Algorithm 1: SLAM-assisted ICP-based prior map generation for ground truth

data.
Input:

Spinning LiDAR pointcloud: Psk

Solid-state LiDAR pointcloud: Pdk

IMU data: Ik

Output:

Platform state: pk

Prior map:Map

while new Psk do

pk ← SLAM(Psk);

// Cached still clouds and raw pose

Scache = {};

// Cached still cloud

Pcache = [];

while new Pdk do

if Ik.Vangular < tha, pk.Vlinear < thv then

s = True;

Pm = Pm + Pdk;

else

s = False;

Pcache.clear();

Scache ← (Pm, pk);

while Scache.size() > 0 do

Map ← ICP (Scache, pk,Map);

Scache.clear();

LetPsk be the point clouds produced by the spinning LiDAR,Pdk be the point clouds

generated by solid-state LiDAR, and Ik be the IMU data from built-in IMU. Our previous

work has shown high resolution spinning LiDAR has the most robust performance in

3.1 DESIGN OVERVIEW 41

Figure 3.5: NDT localization with ground truth map (blue) where the current laser scan (orange) is aligned.

diverse environments. Therefore, LeGo-LOAM [29] is performed with a high resolution

spinning LiDAR (OS0-128) and outputs the estimated pose for each submap.

The cached data Scache stores submaps and the related poses. Let Pi be the point

clouds and related pose pi in Scache[i]. The submap Pi will be first transformed to map

coordinate as Pm
i based on estimated pose pi; then GICP methods are employed on Pm

i

to minimize the Euclidean distance between closest points against point cloudsMap it-

eratively; Pm
i will be transformed by the transformation matrix generated from GICP

process, then merged to the map Map. The result map Map is treated as ground truth

map.

After the ground truth map is generated, we employ the normal NDT method in [89]

to match the real-time point cloud data from spinning LiDAR against the HR map as the

Fig. 3.5 shows to get the platform position in ground truth map. The matching result from

the NDT localizer is treated as the ground truth.

3.1.5 Data Structures of the Dataset

The data used in this research is collected using the Robot Operating System (ROS)

and is stored in the rosbag format, which is a widely used standard in the robotics com-

3.1 DESIGN OVERVIEW 42

Figure 3.6: Our dataset is captured by a rich set of sensors. A subset of the data from the Indoor11 sequence

is visualized here. The first row displays laser radar data from OS1, OS0, and VLP-16, as well as a fisheye

image from T265; the second row displays point cloud data from Avia and Horizon, as well as depth and

RGB images from L515; the third and fourth rows display images from OS1 and OS0 respectively.

munity. A subset of the data from various sensors is displayed in Fig. 3.6. The dataset

includes the following types of data:

• Spinning LiDARs Point Clouds: Data from three spinning LiDARs (VLP-16,

OS0-128, and OS1-64) is captured using the ROS message type“sensor_msgs/PointCloud".

Every point in this cloud carries four values: x, y, z (the local Cartesian coordinates),

I (laser reflectance for that specific point).

• Solid-State LiDARs Point Clouds: The Avia and Horizon solid-state LiDARs uti-

lize Livox’s proprietary format, labeled “livox_ros_driver/CustomMsg". This for-

mat includes a base timestamp for the inaugural point of each frame and offset times

for the ensuing points. This design accommodates the unique, non-repetitive pat-

tern of these LiDARs, ensuring time differences between points are discernible.

Such data is pivotal for the de-skew process that rectifies point cloud data dis-

tortions due to sensor motion [90]. Recognizing the versatility of standard ROS

3.1 DESIGN OVERVIEW 43

messages for visualization and compatibility [91], tools have been supplied for

data conversion. This process transforms the Livox format into the standard “sen-

sor_msgs/PointCloud", yielding data points with five values:x, y, z, I and C - the

last representing the line number and the point’s timestamp.

• LiDAR Camera Imagery: The RealSense L515 LiDAR camera yields RGB im-

ages (resolution: 1920x1080) and depth images (resolution: 1024x768) at a 10

Hz frequency. They are channeled through the message type sensor_msgs/Image.

Depth estimations benefit from the integral LiDAR sensor.

• High-Resolution Spinning LiDAR Imagery: Both high-res Ouster LiDARs, OS0-

128 and OS1-64, provide fixed-resolution range images, near-infrared imagery, and

signal images. Each pixel imparts data on distance, light intensity, and object re-

flectance. These images are relayed at 10 Hz, boasting a 16-bit linear photo re-

sponse per pixel, under the message type sensor_msgs/Image.

• Inertial Data: Four integrated 6-axis IMU sensors exist across the Ouster and

Livox LiDARs. These IMUs, comprising 3-axis gyroscopes and 3-axis accelerom-

eters, broadcast data at frequencies of 100 Hz and 200 Hz for the Ouster and Livox

respectively. The rosbags carry this IMU data under the type sensor_msgs/Imu.

• Ground Truths: Various sequences hold distinct ground truths. For indoor settings,

MoCAP or Slam/ICP techniques are utilized. Conversely, outdoor sequences lean

on GNSS/RTK. MoCAP data is framed in the format geometry_msgs/PoseStamped.

GNSS/RTK adheres to sensor_msgs/NavSatFix, while Slam/ICP-derived ground

truth is also in the geometry_msgs/PoseStamped format.

3.2 IMPLEMENTATION 44

3.2 Implementation

This section describes in detail the details of the data collection of the Multi-model

slam benchmark, including the environment of the dataset sequence, how to obtain ground

truth from the high-definition point cloud map, and the details of the Odometry benchmark

and run-time evaluation experiments.

3.2.1 Collect Data for Multi-modal LiDAR Dataset

In order to implement the mobile data collection platform, as outlined in Section

3.1.1, a total of five different LiDARs and two LiDAR cameras were incorporated into

the platform. The platform also includes an independent power supply to provide power,

as illustrated in Fig. 1.3. In order to ensure the completeness of the dataset, a variety of

environments such as indoor offices, long corridors, halls, forests, and open roads were

selected as the sequences for the dataset, as illustrated in Table 3.1.

Fig. 3.7 illustrates the various sequences of data sets, composed of map data sam-

ples. The first row, from left to right, shows the sequence Forest01, the sequence Road03,

and the sequence Indoor10. The second row, from left to right, displays the sequence

Indoor06/Indoor07 and the sequence Indoor09, followed by the sequence Indoor11. Two

sequences are provided for the forest environment. The data was collected in the for-

est of Turku, Finland (60°28014.3”N22°19054.8”E) during winter, specifically on snow-

covered ground. Sequence Forest01 features a square-shaped trajectory, while Forest02

comprises a straight trajectory. Both sets contain MoCAP data. These sequences can sup-

port research in various areas such as tree counting and tree trunk diameter estimation.

The significant difference in the structure of the environment between urban and forest

settings also allows for a better evaluation of LiDAR-based general odometry, localiza-

tion, and mapping algorithms, as well as the robustness of these algorithms.

Indoor dataset consists of 11 data sequences, with six of them being a new sequence

3.2 IMPLEMENTATION 45

Table 3.1: List of data sequences in our extended dataset. The table includes the sequences introduced in

our previous work [9], together with new sequences showcasing new ground truth data sources. The five

LiDARs indicated (5x LiDARs) and cameras are listed in Table 4.1.

Sequence Description Ground Truth Sensor setup

Forest01-02 Previous dataset [9] MoCAP/ SLAM

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
5x LiDARs

L515

Optitrack

Indoor01-05 Previous dataset [9] MoCAP/ SLAM

Road01-02 Previous dataset [9] SLAM

Indoor06 Lab space (easy) MoCAP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5x LiDARs

L515

T265

Optitrack

GNSS

Indoor07 Lab space (hard) MoCAP

Indoor08 Classroom space SLAM+ICP

Indoor09 Corridor (short) SLAM+ICP

Indoor10 Corridor (long) SLAM+ICP

Indoor11 Hall (large) SLAM+ICP

Road03 Open road GNSS RTK

called Indoors06-11, which was collected in various indoor environments such as class-

rooms, labs, and corridors of ICT-City in Turku, Finland. Sequence Indoors06-7 was

collected in a laboratory, where data from a motion capture system (MoCAP) is also avail-

able. This sequence features faster rotations and sudden movements, as the sensors were

positioned closer to objects in front of and around them. This poses a more challenging

situation for odometry estimation algorithms that are primarily based on scan-matching

methods, as most of the solid-state LiDAR views are covered by single-featured objects

or walls in close proximity.

The environment of sequence Indoor10 is a rectangular corridor on the 3rd floor

of ICT-City, which contains less rotation and sudden movement. The data of sequence

Indoor08 was recorded in a classroom of ICT-City, where the sensors moved in an ellip-

3.2 IMPLEMENTATION 46

Figure 3.7: Samples of map data from varied dataset sequences are presented. Arranged from left to right

and subsequently top to bottom, the visualizations showcase maps derived from a forest, an open road, an

elongated corridor, followed by a spacious indoor lab area, another extensive corridor, and lastly, a hall.

tical trajectory. While the number of rotations was more, the rotation speed was slower

compared to the sequence Indoors07. The environment corresponding to the sequence

Indoor09 is a narrow and long corridor on the sixth floor of ICT-City. It includes not

only a relatively gentle straight corridor, but also a rotating place where the sensors are

very close to the wall. Sequence Indoor11 was collected in the hall on the first floor of

ICT-City, which roughly contains all possible environments, such as a wide hall, a narrow

storage cabinet wall, and a narrow corridor on a slope. Finally, the dataset includes there

open road environmental sequences around the ICT-City building in Turku, Finland. The

length of the Road01 is more than 50m, while the traversed length of the track in Road02

and Road03 is about 500 m. The difference between Sequence Road02 and Road03 is

that the sequence Road03 uses Real Time Kinematic (RTK) to record the ground turth

track, which has higher positioning accuracy and no cumulative error.

In order to improve the accuracy of the ground truth map, it is necessary to remove

3.2 IMPLEMENTATION 47

Figure 3.8: Remove the noise in the ground turth map, the red point cloud is the noise point cloud, and the

blue point cloud is the environment point cloud.

noise, outliers, errors, and inaccurate points from the point cloud. In this study, we em-

ployed statistical filtering to eliminate point cloud noise, as shown in Fig. 3.8. The effec-

tiveness of this approach is demonstrated in the results.

3.2.2 Ground Truth Evaluation

The evaluation of the accuracy of the proposed ground truth prior map method is

challenging for some scenes in the dataset, as both GNSS and MoCAP systems are not

available in indoor environments such as long corridors. Fig. 3.9 (a),(b),(c) shows the

standard deviations of the ground truth generated by the proposed method during the

first 10 seconds when the device is stationary from sequence Indoors09. The standard

deviations along the X , Y , and Z axes are 2.2 cm, 4.1 cm, and 2.5 cm, respectively, or

about 4.8 cm overall. However, evaluating localization performance when the device is

in motion is more difficult. To better understand the order of magnitude of the accuracy,

we compare the NDT-based ground truth Z values with the MoCAP-based ground truth

Z values in the sequence Indoor06 environment. The results in Fig. 3.9 (d) show that the

maximum difference does not exceed 5 cm.

3.2 IMPLEMENTATION 48

0 1 2 3 4 5 6 7 8 9 10

−0.16

−0.14

−0.12

−0.1

X
(m

)

(a)

0 1 2 3 4 5 6 7 8 9 10

−0.28

−0.26

−0.24

Y
(m

)

(b)

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

4

6
·10−2

Z
(m

)

(c)

0 10 20 30 40 50 60

1.14

1.16

1.18

1.2

1.22

Time (sec)

Z
(m

)

(d)

Figure 3.9: (a) (b) (c): Ground truth position values for the first 10 seconds of the dataset when the device

was stationary. Red lines show the mean values over this period of time. (d): Comparison of NDT-based

ground-truth z-values (green) to MoCAP-based z-values (red) over the course of 60 seconds of the dataset

while the device was in motion.

3.2.3 Setup for LiDAR Odometry Benchmarking

Different types of SLAM algorithms are selected and tested in our experiment. LiDAR-

only algorithms LeGo-LOAM (LEGO) 1 and Livox-Mapping (LVXM) 2 are applied on

data from the VLP-16 and Horizon separately; Tightly-coupled iterated extended Kalman

1https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
2https://github.com/Livox-SDK/livox_mapping

https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/Livox-SDK/livox_mapping

3.2 IMPLEMENTATION 49

filter-based methods, FAST-LIO (FLIO) 3 [92], are applied on both spinning LiDAR and

solid-state LiDAR with built-in IMUs; A tightly coupled LiDAR inertial SLAM system

based on sliding window optimization, LiLi-OM 4 [91] is tested with OS1 and Horizon.

Furthermore, a tightly coupled method featuring sliding window optimization developed

for Horizon LiDAR, LIO-LIVOX (LIOL)5 has also been tested on Horizon LiDAR data.

In this study, the operating system used is Ubuntu 18.04. All SLAM algorithms were

executed in the Robot Operating System (ROS) Melodic environment. Additionally, the

default configuration value was used for each hyperparameter in each SLAM system.

3.2.4 Setup for Run-time Evaluation

We conducted this experiment on 4 different platforms. First, a Lenovo Legion

Y7000P with 16 GB RAM, a 6-core Intel i5-9300H (2.40 GHz) and an Nvidia GTX

1660Ti (1536 CUDA cores, 6 GB VRAM). Then, the Jetson Xavier AGX, a popular com-

puting platform for mobile robots, has an 8-core ARMv8.2 64-bit CPU (2.25 GHz), 16 GB

RAM and 512-core Volta GPU. From its 7 power modes, we chose MAX and 30 W (6

core only) modes. The Nvidia Xavier NX is also a common embedded computing plat-

form with a 6-core ARM v8.2 64-bit CPU, 8 GB RAM, and 384-core Volta GPU with 48

Tensor cores. For the NX, we choose the 15 W power mode (all 6 cores). Finally, the UP

Xtreme board features an 8-core Intel i7-8665UE (1.70 GHz) and 16 GB RAM.

These platforms all run ROS Melodic on Ubuntu 18.04. The CPU and memory uti-

lization is measured with a ROS resource monitor tool 6. Additionally, for minimizing the

difference of the operating environment, we unified the dependencies used in each SLAM

system into same version, and each hyperparameter in the SLAM system is configured

with the default values.

3https://github.com/hku-mars/FAST_LIO
4https://github.com/KIT-ISAS/lili-om
5https://github.com/Livox-SDK/LIO-Livox
6https://github.com/alspitz/cpu_monitor

https://github.com/hku-mars/FAST_LIO
https://github.com/KIT-ISAS/lili-om
https://github.com/Livox-SDK/LIO-Livox
https://github.com/alspitz/cpu_monitor

3.3 RESULTS 50

Table 3.2: Absolute position error (APE) (µ/σ) in cm of the selected methods (N/A when odometry esti-

mations diverge). Best results in bold.

Sequence FLIO_OS0 FLIO_OS1 FLIO_Velo FLIO_Avia FLIO_Hori LLOM_Hori LLOMR_OS1 LIOL_Hori LVXM_Hori LEGO_Velo

Indoor06 0.015 / 0.006 0.032 / 0.011 N/A 0.205 / 0.093 0.895 / 0.447 N/A 0.882 / 0.326 N/A N/A 0.312 / 0.048

Indoor07 0.022 / 0.007 0.025 / 0.013 0.072 / 0.031 N/A N/A N/A N/A N/A N/A 0.301/0.081

Indoor08 0.048 / 0.030 0.042 / 0.018 0.093 / 0.043 N/A N/A N/A N/A N/A N/A 0.361 / 0.100

Indoor09 0.188 / 0.099 N/A 0.472 / 0.220 N/A N/A N/A N/A N/A N/A N/A

Indoor10 0.197 / 0.072 0.189 / 0.074 0.698 / 0.474 0.968 / 0.685 0.322 / 0.172 1.122 / 0.404 1.713 / 0.300 0.641 / 0.469 N/A 0.930 / 0.901

Indoor11 0.584 / 0.080 0.105 / 0.041 0.911 / 0.565 0.196 / 0.098 0.854 / 0.916 0.1.097 / 0.0.45 1.509 / 0.379 N/A N/A N/A

Road03 0.123 / 0.032 0.095 / 0.037 1.001 / 0.512 0.211 / 0.033 0.351 / 0.043 0.603 / 0.195 N/A 0.103 / 0.058 0.706 / 0.396 0.2464 / 0.063

Forest01 0.138 / 0.054 0.146 / 0.087 N/A 0.142 / 0.074 0.125 / 0.062 0.116 / 0.053 0.218 / 0.110 0.054 / 0.033 0.083 / 0.041 0.064 / 0.032

Forest02 0.127 / 0.065 0.121 / 0.069 N/A 0.211 / 0.077 0.348 / 0.077 0.612 / 0.198 N/A 0.125 / 0.073 0.727 / 0.414 0.275 / 0.077

3.3 Results

In this study, we evaluated popular 3D Lidar SLAM algorithms in multiple data

sequences of various scenarios, including indoor, outdoor, and forest environments.

3.3.1 LiDAR Odometry Benchmarking

We provide a quantitative analysis of the odometry error based on the ground truth

in Table 3.2. To compare the trajectories in the same coordinate, we treat the coordinate

of OS0 as a reference coordinate and transformed all trajectories generated by selected

SLAM methods to reference coordinate. The absolute pose errors (APE) [93] is employed

as the core evaluation metric. We calculated the error of each trajectory with the open-

source EVO toolset 7.

The findings indicate that FAST_LIO, when paired with high-resolution spinning

LiDARs OS0 and OS1, delivers the most consistent and robust performance, adeptly

completing trajectories across various sequences with commendable precision. This ro-

7https://github.com/MichaelGrupp/evo.git

https://github.com/MichaelGrupp/evo.git

3.3 RESULTS 51

bustness is particularly evident in the Indoor09 sequence, which features an elongated

corridor. In this challenging environment, while other methods faltered, FAST_LIO us-

ing high-resolution LiDAR remained unyielding.

In outdoors, solid-state LiDAR-based SLAM systems, exemplified by LIOL_Hori,

match or even surpass the performance of rotating LiDARs when paired with suitable

algorithms. However, their efficacy diminishes considerably in indoor settings. Examin-

ing the open road sequence, Road03, all SLAM methods showcased stellar performance,

producing trajectories without notable hindrances. In contrast, for the indoor sequence,

Indoor06, both Avia-based and Horizon-based FLIO systems managed to trace the sensor

trajectory, but they did so with significant drift accumulation.

Across all sequences, the spinning LiDAR-based methods demonstrated consistent

efficiency. This was anticipated given their comprehensive environmental view, which

typically possesses distinct geometrical features. Observing the Indoor10 sequence, which

also features a lengthy corridor, nearly all methods reconstructed the entire trajectory.

Standout performances were evident from OS0-FLIO and OS1-FLIO, as they achieved

precise alignment between the start and end positions. This superior performance can be

attributed to OS0’s channel superiority over OS1, which we theorize results in reduced

cumulative angular drift.

Figure 3.10: From left to right, the trajectory comparison of sequences Indoor10, Road03, and Forest01

In addition to the quantitative trajectory analysis, we visualize trajectories gener-

3.3 RESULTS 52

ated by selected methods in 3 representative environments (indoors, outdoors, forest) in

Fig. 3.10. Full reconstructed paths are available in the dataset repository.

3.3.2 Mapping Quality Comparison

In an analysis of the mapping results produced by various LiDARs in indoor set-

tings, as depicted in Fig. 3.11, we find intriguing distinctions between the performances

of different methodologies and devices.

Fig. 3.11 vividly showcases that the LIOL approach, when used with solid-state Li-

DAR, yields the most intricate and lucid map structures. Intriguingly, these maps were

produced using the default configurations for each method, without any alterations to

parameters, such as map update frequencies. This observation aligns perfectly with the

quantitative outcomes gleaned from experiments in forested terrains using identical sen-

sors and algorithms.

A deeper dive into Fig. 3.11 reveals that among the methods studied, the Horizon-

based LIOL emerges as the top performer in mapping capability. However, its prowess

diminishes in intricate environments, as demonstrated by sequences like indoors06-09,

where LIOL encounters mapping failures attributed to drift. Nonetheless, the FLIO method,

when coupled with OS0 and OS1 LiDARs, also demonstrates commendable mapping pro-

ficiency. This is likely owed to the expansive field of view (FOV) and superior resolution

presented by OS0 and OS1. When these performances are set against Velodyne’s efforts,

the latter seems to fall short. Velodyne’s larger resolution is its Achilles’ heel, evident

in its near inability to accurately reconstruct the letter B sign, as displayed in Fig. 3.11.

Methods such as LVMX, LLOM, and LLOMR predominantly prioritize the estimation

of the mobile platform’s pose over point cloud mapping capabilities. Consequently, the

maps they generate are comparatively less detailed and lack the clarity seen with other

methods.

3.3 RESULTS 53

Figure 3.11: Qualitative comparison of the mapping quality. Frist row from left to right shows RGB full

view image, full view Horizon-based LIOL and close view RGB image. Second row row from left to

right shows OS0, OS1, Velodyne, Avia and Horizon-based FLIO. Bottom row from left to right shows

the Horizon-based LIOL, Horizon, OS1-based LLOM and LLOMR, Velodyne’s LeGo-LOAM maps and

Horizon-based LVXM, respectively.

3.3.3 Run-time Evaluation across Certain Computing Platforms

We conducted this experiment on 4 different platforms. First, a Lenovo Legion

Y7000P with 16 GB RAM, a 6-core Intel i5-9300H (2.40 GHz) and an Nvidia GTX

1660Ti (1536 CUDA cores, 6 GB VRAM). Then, the Jetson Xavier AGX, a popular com-

puting platform for mobile robots, has an 8-core ARMv8.2 64-bit CPU (2.25 GHz), 16 GB

RAM and 512-core Volta GPU. From its 7 power modes, we chose MAX and 30 W (6

core only) modes. The Nvidia Xavier NX is also a common embedded computing plat-

form with a 6-core ARM v8.2 64-bit CPU, 8 GB RAM, and 384-core Volta GPU with 48

Tensor cores. For the NX, we choose the 15 W power mode (all 6 cores). Finally, the UP

Xtreme board features an 8-core Intel i7-8665UE (1.70 GHz) and 16 GB RAM.

These platforms all run ROS Melodic on Ubuntu 18.04. The CPU and memory uti-

3.3 RESULTS 54

Table 3.3: Average run-time resource (CPU/RAM) utilization and performance (pose calculation speed)

comparison of selected SLAM methods across multiple platforms. For the pose publishing frequency, the

data is played at 15 times the real speed. CPU utilization of 100% equals one full processor core.

(CPU utilization (%), RAM utilization (MB), Pose publication rate (Hz))

FLIO_OS0 FLIO_OS1 FLIO_Velo FLIO_Avia FLIO_Hori LLOM_Hori LLOMR_OS1 LIOL_Hori LVXM_Hori LEGO_Velo

Intel PC (79.4, 384.5, 74.0) (73.7, 437.4, 67.5) (69.9, 385.2, 98.6) (65.0, 423.8, 98.3) (65.7, 423.8, 103.7) (126.2, 461.6, 14.5) (112.3, 281.5, 25.8) (186.1, 508.7, 19.1) (135.4, 713.7, 14.7) (28.7, 455.4, 9.8)

AGX MAX (40.9, 385.3, 13.6) (54.5, 397.5, 21.2) (44.4, 369.7, 29.1) (40.8, 391.5, 32.3) (37.6, 408.4, 34.7) (128.5, 545.4, 9.1) (70.8, 282.3, 9.6) (247.2, 590.3, 9.6) (162.3, 619.0, 10.5) (42.4, 227.8, 7.0)

AGX 30 W (55.1, 398.8, 13.2) (73.9, 409.2, 15.4) (58.3, 367.6, 21.4) (47.4, 413.4, 24.5) (50.5, 387.9, 26.8) (168.5, 658.5, 1.5) (107.1, 272.2, 6.5) (188.1, 846.0, 4.1) (185.86, 555.81, 5.0) (62.8, 233.4, 3.5)

UP Xtreme (90.9, 401.8, 47.3) (125.9, 416.2, 58.0) (110.5, 380.5, 89.6) (113.2, 401.2, 90.7) (109.7, 422.8, 91.0) (130.1, 461.1, 12.8) (109.0, 253.5, 13.6) (298.2, 571.8, 14.0) (189.6, 610.4, 7.9) (39.7, 256.6, 9.1)

NX 15 W (53.7, 371.1, 14.3) (73.3, 360.4, 14.2) (57, 331.5, 19.5) (51.2, 344.8, 21.9) (47.5, 370.7, 23.4) (N / A) (N / A) (239.0, 750.5, 4.54) (198.0, 456.7, 5.5) (36.9, 331.4, 3.7)

lization is measured with a ROS resource monitor tool 8. Additionally, for minimizing the

difference of the operating environment, we unified the dependencies used in each SLAM

system into same version, and each hyperparameter in the SLAM system is configured

with the default values. The results are shown in Table 3.3. The memory utilization

of each selected SLAM approach among the two processor architectures platforms are

roughly equivalent. However, the CPU utilization of the same SLAM algorithm running

on Intel processors is generally higher than the other algorithms, and also the highest

publishing frequency is obtained. LeGO_LOAM has the lowest CPU utilization but its

accuracy is towarsd the low end (see Table 3.2), and has a very low pose publishing

frequency. Fast-LIO performs well, especially on embedded computing platforms, with

good accuracy, low resource utilization, and high pose publishing frequency. In contrast,

LIO_LIVOX has the highest CPU utilization due to the computational complexity of the

frame-to-model registration method applied to estimate the pose.

A final takeaway is in the generalization of the studied methods. Many state-of-the-

art methods are only applicable to a single LiDAR modality. In addition, those that have

higher flexibility (e.g., FLIO) still lack the ability to support a point-cloud resulting from

the fusion of both types of LiDARs.

8https://github.com/alspitz/cpu_monitor

https://github.com/alspitz/cpu_monitor

4 LiDAR-as-a-camera Based UAV

Tracking

In this chapter, firstly, the overall design of LiDAR Based UAV tracking is intro-

duced in detail, mainly related to hardware and the principle of fusion of Ouster LiDAR

signal image and point cloud, and a multi-method comparison experiment is designed,

and finally, its experiment is comprehensively analyzed

4.1 Design Overview

In this section, the hardware equipment used in LiDAR-based UAV tracking is dis-

cussed in detail, and the software design of the UAV tracking algorithm is introduced.

The fusion algorithm of Ouster LiDAR signal image and point cloud is emphasized.

4.1.1 Hardware Design

The first consideration in the hardware design for this UAV tracking system is the

identification of an appropriate LiDAR system. In the acquisition of a LiDAR sensor or

system for a specialized undertaking, a careful assessment of several critical parameters

is indispensable. These encompass but are not confined to FOV, resolution, range, and

operational environment.

Among these elements, FOV and resolution are frequently deemed as principal con-

4.1 DESIGN OVERVIEW 56

siderations. FOV, in reference to a LiDAR sensor or system, denotes the angular range

within which it can detect objects. It is of utmost importance to select a LiDAR system

with a FOV that is well-suited for the intended application. In contrast, the resolution of

the LiDAR sensor or system pertains to the density of detectable points or beams within a

delineated area. A LiDAR system of higher resolution has the capacity to generate more

granular data, thereby improving the precision of the output.

Table 4.1: The sensor specifications for the dataset introduced in our previous work [9].

IMU Type Channels FoV Angular Resolution Range Freq. Points

Velodyne VLP-16 N/A spinning 16 360°×30° V:2.0°, H:0.4° 100 m 10 Hz 300,000 pts/s

Ouster OS1-64 ICM-20948 spinning 64 360°×45° V:0.7°, H:0.18° 120 m 10 Hz 1,310,720 pts/s

Ouster OS0-128 ICM-20948 spinning 128 360°×90° V:0.7°, H:0.18° 50 m 10 Hz 2,621,440 pts/s

Livox Horizon BOSCH BMI088 solid-state N/A 81.7°×25.1° N/A 260 m 10 Hz 240,000 pts/s

Livox Avia BOSCH BMI088 solid-state N/A 70.4°×77.2° N/A 450 m 10 Hz 240,000 pts/s

RealSense L515 BOSCH BMI085 LiDAR camera N/A 70°×43°(±3°) N/A 9 m 30 Hz -

RealSense T265 BOSCH BMI055 fisheye cameras N/A 163±5° N/A N/A 30 Hz -

For a detailed comparison, we may refer to Table 4.1 from our previous work [94],

which delineates the characteristics and parameters of several LiDAR systems. Notably,

the OS1-64 system offers configurable angular resolution by adjusting the vertical field

of view. Livox LiDARs employ a non-repetitive scanning pattern to attain higher angu-

lar resolution, albeit at the cost of extended integration times. Range measurements for

LiDARs are typically provided by the manufacturer and are based on 80% Lambertian

reflectivity and 100 klx sunlight, a methodology distinct from other range measurement

techniques. By comparing the FOV parameters of various LiDAR systems, it becomes ev-

ident that rotating LiDARs generally exhibit superior FOVs. The Ouster OS0-128 stands

out as the optimal choice, with coverage that is nearly comprehensive. Fig. 4.1 offers a

more intuitive depiction of the FOV discrepancies among several LiDAR systems, reveal-

ing the FOV of the Ouster OS0-128 to be approximately 16 times and 6 times that of the

Livox Horizon and Livox Avia, respectively.

4.1 DESIGN OVERVIEW 57

When assessing the resolution, as per Table 4.1, it is noteworthy that solid-state Li-

DAR does not present explicit resolution data. This omission is due to Livox’s adoption of

an innovative scanning pattern [95] characterized by a non-repetitive scan mode, causing

the LiDAR’s light beams to accumulate over time. For a more intuitive comparison of the

resolution between the Ouster OS0-128 and Livox Horizon, please refer to Fig. 4.1. The

image at the bottom represents a single frame of signal data from the Ouster OS0-128,

while images a, b, c, and d respectively present signal data merged from 1 frame, 3 frames,

5 frames, and 10 frames of Livox Horizon point cloud data. As time progresses, the sig-

nal image of Livox Horizon becomes progressively distinct. Upon reaching a cumulative

time of 0.5 seconds, the image clearly exhibits a drone, though two circular regions on the

left and right remain comparatively blurry. A comprehensive view of the full range only

emerges when the cumulative time reaches 1.0 seconds.

In contrast, the signal image of the Ouster OS0-128 does not rely on the accumula-

tion of time, providing a clear representation of both drone and human figures within a

single frame. It should be noted that while the Livox Horizon can generate a point cloud

with higher density than that of the Ouster OS0-128, provided there is sufficient time for

accumulation, this method proves inadequate for tracking drones due to their potential

maximum speed of 15m/s.

From the above comparison, we can conclude that Ouster OS0-128 is superior to

Livox LiDAR in terms of FOV and instantaneous resolution.

Once the appropriate LiDAR sensor is selected, the remainder of the system’s hard-

ware design is relatively straightforward. The components involved in this design are

minimalistic, comprising an Ouster OS0-128 LiDAR, an associated power supply, an Eth-

ernet cable, and a laptop computer. The Ouster OS0-128 LiDAR is strategically placed at

an elevated height from the ground to maximize its visibility and detection range.

To ensure low latency and high-speed data transmission, the Ouster OS0-128 Li-

DAR is connected to a gigabit Ethernet router. The system is complemented by a laptop

4.1 DESIGN OVERVIEW 58

Figure 4.1: Converting the point cloud data from the Ouster OS0-128 and Livox Horizon to 2D signal

images.

equipped with an Intel i5-9300HF processor, 16 GB DDR4 RAM, and 1 TB SSD stor-

age, as depicted in Fig. 4.3. This setup provides the necessary computing power and data

storage for processing the incoming data stream from the LiDAR in real-time.

4.1.2 Software Design

Before delving into the detailed description of the individual software modules upon

which the localization algorithm is based, it is useful to provide an overview of the entire

system. The basic requirements of the algorithm are to take raw point cloud data output

by the Ouster LiDAR (with the 128-line laser radar being the preferred option) as input

and calculate the output, namely the x, y,and z spatial coordinates of the unmanned aerial

4.1 DESIGN OVERVIEW 59

Figure 4.2: FoV of Livox Horizon, Livox Avia and Ouster OS0-128.

vehicle (UAV), recorded in the format of ROS messages as geometry_msgs/PoseStamped.

Fig. 4.4 provides a general understanding of the system and its inputs (raw point

cloud data from the Ouster LiDAR) and outputs (the x, y, z spatial coordinates of the

UAV). The core of the design is the effective fusion of the signal images and point cloud

data output by the Ouster LiDAR. The raw point cloud data of the Ouster LiDAR placed at

a certain height is first transformed to obtain the corresponding 2D signal image, and the

image target recognition algorithm is run to obtain the target frame, which is then mapped

to the point cloud data to obtain the point cloud data of the interested area. If the UAV

is far away from the Ouster LiDAR, the image recognition algorithm is unable to find

the corresponding target frame, it will find the target point cloud from the area near the

spatial coordinates of the UAV in the previous frame. The middle position information is

obtained from the point cloud data of the UAV. The effective fusion of signal images and

point cloud data has effectively solved the processing speed and localization precision of

point cloud data computation.

4.1.3 Object Detection with YOLOV5

The default model of YOLOv5s is trained on the COCO dataset, which primarily

contains RGB images (e.g. 640x640) that are completely different from signal images

4.1 DESIGN OVERVIEW 60

Figure 4.3: Setup for LiDAR-based drone tracking.

(e.g. 512/1024/2048x128). As a result, the model’s performance on signal images is not

as good as typical RGB images. Therefore, we will attempt to re-train the model using

some custom data to improve its performance. To re-train the YOLOv5 model using Li-

DAR data, we need to construct our own dataset. In our design, we collected multiple

OS0-128 PCAP files and utilized the Ouster Python SDK to extract the reflectance infor-

mation of each frame scan. We then utilized OpenCV’s cv2.imwrite function to save the

reflectance data as grayscale images for data labeling. As shown in Fig. 4.5, our selected

images depict drones of various sizes and angles. To improve network learning and en-

hance the generalization ability of our network models, we employed data augmentation

techniques. Specifically, we utilized image rotation, image flipping, and brightness bal-

ancing as our data augmentation methods . Rotating and flipping images improves the

detection performance and robustness of the network, while brightness balancing elim-

inates the impact of brightness deviation caused by environmental lighting changes and

sensor differences on network performance [96]. After data enhancement, we obtained

4.1 DESIGN OVERVIEW 61

ROI Search

Track Initialize

YOLOv5

UAV Position and
Trajectory Tracking Kalman Filter

Signal Image Point Cloud

No Yes

Pointcloud
ProcessingDBSCAN

Ground removal

Figure 4.4: Flowchart of the Ouster LiDAR based drone tracking system.

a total of 920 images, which were divided into a training dataset, a validation dataset,

and a test dataset in the ratio of 7:2:1. The results of our final training are illustrated in

Fig. 4.6. Our method is based on the signal image of Ouster LiDAR and YOLOv5, and

has achieved a high accuracy rate. When the epoch is 45, the box loss is 0.02, and the

object loss is about 0.01, as shown in Fig. 4.6. The speed of our method is 30 frames per

second (FPS), allowing for accurate detection of drones in the signal images of Ouster

LiDAR. Our results indicate that the resolution of the training images plays a significant

4.1 DESIGN OVERVIEW 62

Figure 4.5: Traing data for YOLOV5 model for datecting UAV.

role in determining detection accuracy. We found that as the resolution of the input image

increases, the detection accuracy also increases. Furthermore, the fusion strategy that we

employed was an important factor in achieving these results.

4.1.4 Point Cloud Precessing

One of the key features of Ouster LiDAR is its 1:1 spatial correspondence of data

points. This means that each pixel in the 2D structured data corresponds to a 3D point

in the LiDAR data, without the need for any discretization or resampling. As a result,

the perception process is not affected by unnecessary noise or artifacts, which helps to

improve accuracy and significantly reduce computational requirements. This is why 2D

4.1 DESIGN OVERVIEW 63

Figure 4.6: Plots of box loss, objectness loss over the training epochs for the training set.

algorithms can directly use the 3D data output by the Ouster LiDAR.

In the previous section, we obtained the target frame of the Ouster LiDAR signal

image, and subsequently mapped the 2D target frame to the 3D point cloud. With the

assistance of the Ouster SDK, we were able to easily complete this step. Our unmanned

aerial vehicle (UAV) was able to successfully extract the region of interest from the point

cloud at different distances, as shown in the first two columns of Fig. 4.7. We observed

that the number of point clouds in the region of interest was 2904, 714, and 6160 points at

near, medium, and long distances, respectively. This is in obvious contrast to the number

of point clouds in the full range, which is 261440. The small number of point clouds also

lays the foundation for the next step.

In the context of this project, it is imperative to adopt a dependable method to seg-

regate the point cloud representing the drone from the environmental context. Due to the

drone’s physical attributes, including size and structural elements, the point cloud data

derived from it can vary with the distance from the LiDAR sensor. Particularly at sub-

stantial distances, the 3D structure of the drone’s point cloud data exhibits a wide range

4.1 DESIGN OVERVIEW 64

Figure 4.7: The first column shows the signal image of Ouster LiDAR, the top and middle are the output of

YOLOV5 detection, and the bottom is the exploration range outside the detection range of YOLOV5. The

second and third columns correspond to the original point cloud and clustered point cloud of the region of

interest.

of variations, as represented in Fig. 4.8.

One could contemplate the use of model-based clustering for this project, integrating

a high-capacity model, for instance, a deep neural network with an extensive number of

layers. However, this approach is not deemed practical due to its time-intensive training

requirements, imposing a significant burden on users to develop their unique models tai-

lored to the task. The region-growing method, as referenced in [80], while having its

advantages, necessitates manual interaction for the procurement of seed points. More-

over, it is susceptible to over-segmentation and noise sensitivity, rendering it less suit-

able for this project. This limitation becomes more pronounced when considering point

cloud data derived from long-range drones, which is susceptible to being misinterpreted

as noise. Given these considerations, the DBSCAN algorithm, known for its proficiency

in distinguishing high-density clusters from low-density clusters, was selected for this

project. The decision to adopt the DBSCAN algorithm was guided by its demonstrated

4.1 DESIGN OVERVIEW 65

Figure 4.8: The point cloud data of drones at different distances, the bottom line shows the point cloud data

of 4 consecutive frames of drones at long distances.

capacity to proficiently handle the inherent variability and noise within the point cloud

data of the drone, as evidenced in Fig. 4.9 and Fig. 4.8. Given this ability, it is proposed

that DBSCAN is expected to yield optimal results within the parameters of this particu-

lar project. It is pivotal to highlight the critical role of the appropriate ϵ value (distance

threshold) selection when deploying the DBSCAN algorithm, as noted in the study by

E. Schubert [82] et al. Through empirical testing, it was determined that an ϵ value of

0.3, within an indoor environment, was effective in segregating the drone’s point cloud

data. This outcome aligns with the findings of E. Schubert et al. [82]. Furthermore, it

was observed that at ϵ = 0.3, the best point cloud clustering results were achieved when

the neighborhood sample number threshold (MinPts) was in a linear relationship of 1:1.2

with the number of points representing the drone. This correlation is illustrated in the

third column of Fig. 4.7.

After clustering the point clouds of the region of interest, we need to distinguish

the point clouds of the drone from the clustered clusters. For point cloud tracking, the

judgment of the first frame is crucial, unless the algorithm provides sample point clouds

4.1 DESIGN OVERVIEW 66

Figure 4.9: Segment the point cloud data from the drone from the environment with DBSCAN.

as a comparison object. In this design, we use the first target box determined by YOLOv5

as the starting point, and use the distance of the center point of the cluster from the Ouster

LiDAR as a criterion, as outlined in Algorithm 2, Proi represents the point cloud of the

region of interest, while Pdrone represents the point cloud of the final output drone. The

cache data, Dcache, stores the distance information of different clusters from the Ouster

LiDAR. The first step in the process involves the removal of ground points from the point

cloud of the input region of interest. This is followed by the application of the DBSACN

point cloud clustering operation on the output result. Subsequently, the cluster closest to

the Ouster LiDAR is selected as the point cloud of the drone for the final output. The

resulting effect is illustrated in Fig 4.10.

Algorithm 3 is designed to extract the UAV point cloud when the UAV is within the

detection range of YOLOv5. The algorithm uses three inputs: the raw point cloud of the

current frame, P t
raw, the signal image of the current frame, St, and the UAV point cloud

4.1 DESIGN OVERVIEW 67

Algorithm 2: Get UAV initial position.
Input:

ROI pointcloud: Proi

Output:

Drone pointcloud: Pdrone

Point cloud clusters label : L ← DBSCAN(Proi);

Distance cache of point cloud clusters: Dcache = [];

P ′
roi = RemoveGround(Pdrone)

for Pi in P ′
roi(L) do

Di = Distance (Pi , (0,0,0))

Dcache.append(Di)
Drone point cloud index : idx = L (Dcache = Min (Dcache))

Pdrone = P ′
roi(idx)

of the previous frame, P t−1
auv . The steps involved in Algorithm 3 are as follows:

1. Step 1: Perform YOLOv5 object detection for each St.

2. Step 2: Perform object extraction on the point cloud within the ROI range. The ROI

range is defined based on the output of the YOLOv5 object detection.

3. Step 3: Use the number and distance of the UAV point cloud in the previous frame

of object extraction as a reference. This helps to confirm that the extracted points

correspond to the UAV.

4. Step 4: If the object extraction fails, the result predicted by KF shall prevail. This

means that the Kalman filter (KF) output is used to estimate the position of the UAV.

4.1 DESIGN OVERVIEW 68

Algorithm 3: UAV tracking in middle range
Input:

Raw pointcloud: Pt
raw

Signal image: St

Target UAV point cloud: Pt−1
uav

Output:

Drone pose: Pt
uav

Function object_extraction(Pt
raw, Pt−1

uav ,ROItyolo):
Pt
roi = Pt

raw (ROItyolo)

Pt ←− ground_removal(Pt
roi)

Pt
i ←− DBSCAN(Pt) , i ∈ (0, R)

foreach P ∈ Pt
i do

if Min (num(P) - num(Pt−1
uav)) then

if Min (dis(P) - dis(Pt−1
uav)) then

flag = 1 ;

Pt
uav ←− P;

else

flag = 0 ;

else

flag = 0 ;

return Pt
uav , flag;

foreach new St do
ROItyolo ←− Y OLOv5(St)

Pt
uav , flag = object_extraction (Pt

raw, Pt−1
uav) ; if flag = 0 then

Pt
uav = KF_predict (get_center(Pt−1

uav))

KF_update (Pt
uav)

else
Pt
uav = get_center(Pt

uav)

KF_update (Pt
uav) ;

By using YOLOv5 object detection and object extraction, the algorithm can accu-

rately extract the UAV point cloud when it is within range. Additionally, using the previ-

ous frame’s UAV point cloud as a reference helps to improve the accuracy of the extraction

4.1 DESIGN OVERVIEW 69

process. If the object extraction fails, the algorithm relies on the KF output to estimate

the position of the UAV, ensuring that the algorithm always provides a result.The resulting

effect is illustrated in Fig 4.10.

Figure 4.10: UAV point cloud cluster separated from the environment.

When the UAV exceeds the object detection range, the number of point clouds of the

UAV is small, and the structure is large, making it difficult to detect the UAV accurately

using YOLOv5. In such scenarios, we need to expand the ROI by referring to the coor-

dinates of the UAV in the previous frame to detect the UAV accurately. This process is

illustrated in the third row of the first column in Fig. 4.7.

The input to the Algorithm 4 consists of point cloud data from the current frame,

denoted as the raw point cloud of the current frame, P t
raw, the signal image of the current

frame, St, and the UAV point cloud of the previous frame, P t−1
auv . Using the center point of

P t−1
auv as a reference, the ROI of the current frame is determined, allowing the specific ROI

of the point cloud to be identified, and P t obtained. To reduce the computational burden,

the ground is removed from P t, and clusters with a similar number of points to P t−1
auv are

filtered out to obtain a new cluster. Then, the point cloud closest to the target point cloud

is selected as the point cloud of the UAV. This process helps to identify the UAV point

cloud accurately while reducing the computational complexity of the algorithm. The final

effect of this process is shown in Fig. 4.10. Overall, expanding the ROI based on the

previous frame’s coordinates and filtering out similar clusters in the point cloud of the

current frame provides an effective way to detect the UAV accurately when it is beyond

4.1 DESIGN OVERVIEW 70

the detection range of YOLOv5.

Algorithm 4: UAV tracking with searching ROI
Input:

Raw pointcloud: Pt
raw

Signal image: St

Target UAV point cloud: Pt−1
uav

Output: Drone pose: Pt
uav;

Function object_extraction(Pt
raw, Pt−1

uav):
ROIt ←− KF

(︁
get_center

(︁
Pt−1
uav

)︁)︁
Pt ←− ground_removal (Pt

ROI)

Pt
i ←− DBSCAN (Pt) , i ∈ (0, R)

foreach P ∈ Pt
i do

if Min (num(P) - num(Pt−1
uav)) then

if Min (dis(P) - dis(Pt−1
uav)) then

flag = 1 ;

Pt
uav ←− P ;

else

flag = 0;

else

flag = 0;

return Pt
uav , flag

foreach new St do
Pt
uav , flag = object_extraction (Pt

raw, Pt−1
uav)

if flag = 0 then
Pt
uav = KF_predict (get_center(Pt−1

uav))

KF_update (Pt
uav)

else
Pt
uav = get_center(Pt

uav)

KF_update (Pt
uav) ;

4.2 IMPLEMENTATION 71

4.2 Implementation

This section describes in detail the software and hardware settings and experimental

steps of the UAV tracking experiment.

4.2.1 UAVs Used for Experiments

During the experiment, a drone model called Holybro X500 V2 (refer to Figure 4.1)

was used. It is a versatile quadcopter frame. Compared to other quadcopters such as DJI

S1000 and DJI Matrice 300, Holybro X500 V2 has a smaller size, suitable for indoor safe

flight, and smaller weight and projection area under Ouster LiDAR, making it a better

choice to test this design and its robustness. Table 4.2 shows the technical specifications

of the three drones Holybro X500 V2, DJI S1000, and DJI Matrice 300.

Table 4.2: Comparison of technical specifications of different UAVs.

Technical specifications Holybro X500 V2 DJI S1000 DJI Matrice 300

Maximum takeoff weight 2.5 kg 9.0 kg 11.0 kg

Flight Time 18 min 55 min 15 min

Radio Control Range 300 m 8 km 300 m

Battery 4S LiPo 12S LiPo 6S LiPo

Assembling the Holybro model requires us to install the general hardware architec-

ture of the drone and various components (flight controller, telemetry radio, RC receiver,

GNSS sensor, power supply, etc.). In addition, we must overcome the inherent challenges

of complex hardware design, such as installing different cameras, choosing the best loca-

tion for the onboard computer and sensors, and ensuring that the newly assembled drone

is ready to fly. In this experiment, we assembled Holybro according to the official recom-

4.2 IMPLEMENTATION 72

Figure 4.11: Holybro X500 V2 quadcopter equipped with onboard computer, the object identified by the

red frame is Optitrack Marker.

mended configuration and carried Realsense T265 LiDAR camera and OptiTrack Marker,

as shown in Fig. 4.11.

4.2.2 Collect Ground Truth with MoCAP System

In order to validate and evaluate the effectiveness of our design, we need to obtain

ground truth and compare it with the results of the experiment. In this experiment, we

chose to use the OptiTrack MoCAP system to obtain ground truth. The OptiTrack system

typically produces measurement errors of less than 0.2 millimeters, and in smaller mea-

surement areas, the OptiTrack system typically produces errors of 0.1 millimeters or less.

Each motion capture camera emits infrared light. The infrared light is reflected by the

markers on the UAV (refer to Fig. 4.11) and is sent back as a two-dimensional image to

each camera (refer to Fig. 4.12). Fig. 4.12 shows the OptiTrack MoCAP system as well

as the motion capture camera from the perspective of a brother angle. Finally, the Opti-

Track markers will be published by the OptiTrack MoCAP system’s operating software

Motive 1 in the ROS message format PoseStamped.

1https://github.com/ros-drivers/MoCAP_optitrack

https://github.com/ros-drivers/MoCAP_optitrack

4.2 IMPLEMENTATION 73

Figure 4.12: OptiTrack MoCAP system (left) and OptiTrack Prime camera (right).

While collecting ground truth data, it is necessary to concurrently execute our drone

tracking program. This allows for the simultaneous acquisition of two sets of data, with

corresponding timestamps, which can then be saved in the Rosbag format for further

analysis in chapter 4.3.

We collected three sequences, denoted as Sequence 1, Sequence 2, and Sequence 3,

all of which were captured in the environment shown in Fig. 4.12. Details of the three

sequences are provided in Table 4.3, where the trajectory of the UAV in Sequence 1 is

a relatively smooth elliptical path, and the average flight speed of the UAV is relatively

slow. The farthest distance of the UAV from the Ouster OS0-128 LiDAR is 7.0 meters.

The trajectory of the UAV in Sequence 2 is a spiral ascent, and the average flight speed

of the UAV is relatively fast. The farthest distance of the UAV from the LiDAR is 6.3

meters. Sequence 3 has a longer duration than Sequence 2, and the average flight speed

of the UAV is slower than that in Sequence 2. However, the farthest distance of the UAV

in Sequence 3 is greater than that in Sequence 2, reaching 8.0 meters.

4.2 IMPLEMENTATION 74

Table 4.3: Details of sequences that use for our experiment.

Sequences Time (s) Ground Truth Trajectory Distance (m)

Sequences 1 35.8 MoCAP elliptical trajectory 7.0

Sequences 2 26.9 MoCAP spiral trajectory 6.3

Sequences 3 32.7 MoCAP spiral trajectory 8.0

4.2.3 Setup for Ground Truth Evaluation and Run-time Evaluation

To validate the precision of the UAV estimated poses and velocities by our approach,

we calculate the absolute pose error (APE) and velocity error based on the ground truth

from the MoCAP system. We conducted a comparative analysis of our proposed method

with a UAV tracking method that solely relies on either Ouster LiDAR images or point

clouds. The point cloud tracking method uses only Ouster OS0-128 LiDAR point cloud

data as input, with a frame rate of 10Hz. When tracking the UAV using point cloud data,

the initial position of the UAV needs to be known as the point cloud of the UAV is sparser

than that of larger objects, such as cars or humans, and distinguishing the point cloud

of the UAV from the environment using features is challenging. On the other hand, the

image tracking method uses only Ouster OS0-128 LiDAR signal images with a frame

rate of 10 Hz. Firstly, the signal image undergoes target detection processing to obtain the

UAV’s bounding box in the signal image. Subsequently, the image in the bounding box

is converted into point cloud data. The point cloud clustering algorithm is then utilized to

separate the UAV’s point cloud from the environment based on the number and distance

features of the point cloud clusters. This approach allows us to obtain the trajectory of

the UAV. Both of these methods are estimated by the Kalman filter method to obtain the

UAV’s trajectory.

We conducted the experiments on two different platforms to assess real-time perfor-

4.3 RESULTS 75

mance, the Lenovo Legion Y7000P equipped with 16GB RAM, 6-core Intel i5-9300H

(2.40GHz) and Nvidia GTX 1660Ti (1536 CUDA cores, 6GB VRAM), as well as the

commonly used embedded computing platform Jetson Nano with 4-core ARM A57 64-

bit CPU (1.43GHz), 4GB RAM, and 128-core Maxwell GP

4.3 Results

In this section, we report the experimental results, based on the three data sequences

gathered in the indoor test environment.

4.3.1 UAV in the Ouster LiDAR Point Cloud

The first parameter to analyze is the number of points that reflect from the UAV at

different distances. Our analysis, shown in Fig. 4.8, reveals that the point cloud struc-

ture generated by the UAV is significantly influenced by the distance from the target. At

short distances, the point cloud produced by LiDAR is abundant and presents compre-

hensive details. When the distance extends to a medium range, the number of UAV point

clouds decreases to less than 100, but the three-dimensional structure of the UAV remains

discernible. However, when the distance is at a medium range of 7 m according to our

results, the number of UAV point clouds reduces to single digits, and the point cloud

structure becomes highly unpredictable and unstructured. It is worth noting that in a more

realistic application, additional elements such as other sensor payloads or a cargo bay

would potentially increase significantly the reflective surface of the UAV.

4.3.2 Trajectory Validation

We also show a quantitative analysis of the APE based on ground truth, with the main

results summarized in Fig. 4.13. To ensure the trajectories are compared under the same

coordinates, we utilize the coordinates of the ground truth as the reference coordinates and

4.3 RESULTS 76

convert all trajectories generated by the three UAV tracking methods to these coordinates.

X Y Z

0

0.1

0.2

0.3

E
rr

or
(m

)

Tracking with only point cloud Tracking with only signal images Our approach

(a) Seq 1

X Y Z

0

0.05

0.1

0.15

E
rr

or
(m

)

(b) Seq 2

X Y Z

0

0.05

0.1

0.15

E
rr

or
(m

)

(c) Seq 3

Figure 4.13: Absolute position error (APE) value of three data sequences.

2.5 3 3.5 4

3

4

5

Ours Point Cloud GT

(a) XY trajectory plot

2.5 3 3.5 4

0.5

1

1.5

(b) XZ trajectory plot

3 4 5

0.5

1

1.5

(c) YZ trajectory plot

Figure 4.14: Comparison of estimated trajectories with the point cloud tracking method and our proposed

method from three different projections.

Table 4.4 presents a comprehensive comparison of three different UAV tracking

methods in terms of detectable distance, average APE, algorithm update frequency, and

need for initial conditions.

The image-based UAV tracking method shows a relatively small average error; how-

ever, its overall error distribution is inconsistent, as the Y-axis error in the Seq 1 sequence

reaches up to 0.3 m. Conversely, the point cloud-based UAV tracking method has the

largest average error, but its error distribution is more uniform. Our proposed method, on

4.3 RESULTS 77

Table 4.4: Performance(Detectable distance, frame rate, and APE error) and initial conditions comparison

of selected tracking methods.

Distance APE Error(Mean/RMSE) FPS Initialization

(m) (m) (Hz)

Tracking with point cloud 8.0 0.104 / 0.142 8.3 Yes

Tracking with signal images 2.4 0.078 / 0.088 10 No

Fused(Ours) 8.0 0.061 / 0.067 10 No

the other hand, achieves the smallest average error and minimal error fluctuation. Addi-

tionally, to supplement the quantitative trajectory analysis, we also provide a visualization

of the trajectories based on the point cloud tracking method and our proposed method

from three different viewpoints, as illustrated in Fig. 4.14, with more consistent behavior.

4.3.3 Velocity Validation

In addition to pose estimation, we conducted a quantitative analysis of the UAV

velocities based on the ground truth data and compared them with different UAV tracking

methods. Fig. 4.15 illustrates the velocity errors of each method along the X, Y, and

Z axes. The experimental results reveal that all methods have similar mean values of

the velocity errors, but different fluctuations. The image tracking method has a large

fluctuation in the Y-axis velocity error, reaching up to 0.75 m/s in Seq 3. The point cloud

tracking method also has relatively large fluctuations in all dimensions. In contrast, our

method achieves smaller overall velocity errors in both the mean value and fluctuation

range.

4.3 RESULTS 78

X Y Z

0

0.2

0.4

0.6

V
el

oc
ity

E
rr

or
(m

/s
)

Tracking with only point cloud Tracking with only signal images Our approach

(a) Seq 1

X Y Z

0

0.2

0.4

0.6

V
el

oc
ity

E
rr

or
(m

/s
)

(b) Seq 2

X Y Z

0

0.2

0.4

0.6

V
el

oc
ity

E
rr

or
(m

/s
)

(c) Seq 3

Figure 4.15: Velocity estimation error for each linear component in the three data sequences.

4.3.4 Resource Consumption

Both the Intel laptop and the Jetson Nano run ROS Melodic on Ubuntu 18.04. The

CPU and memory utilization is measured with a ROS resource monitor tool 2. Addition-

ally, for minimizing the difference of the operating environment, we unified the depen-

dencies used in each method into same version. The results are summarized in Table 4.5.

Table 4.5: Average run-time resource (CPU/RAM) utilization and performance (pose calculation speed)

comparison of selected tracking methods across multiple platforms. CPU utilization of 100% equals one

full processor core.

Laptop Jetson Nano

(CPU (%), RAM (MB), Pose rate (Hz))

Tracking with point cloud (422.7, 296.1, 8.3) (121.7, 179.7, 5.15)

Tracking with image (209.0, 293.6, 10) (113.8, 232.9, 6.07)

Fused (ours) (195.5, 299.0, 10) (114.5, 247.8, 6.04)

The memory utilization of each selected method was roughly equivalent in both pro-

cessor architecture platforms. However, the same algorithm showed generally higher CPU

utilization and achieved the highest publishing rate when running on the Intel processor.

2https://github.com/alspitz/cpu_monitor

https://github.com/alspitz/cpu_monitor

4.3 RESULTS 79

For the Intel processor, the point cloud tracking method had higher CPU utilization than

other methods but the lowest publishing rate. The fusion method performed well on the

laptop and had the smallest overall error. On the embedded computing platform, the CPU

utilization of all methods did not differ significantly, and the point cloud tracking method

had the lowest memory utilization but the lowest pose publication rate. The difference in

CPU utilization is caused by the use of CUDA GPU acceleration in the Open3D binaries

utilized for the Jetson Nano platform, while the Intel computer uses only the CPU for

point cloud data processing. The image processing also leverages the embedded GPU in

the Jetson Nano board. Because of the small ROI that we extract to process the point

cloud, the fused method adds little overhead on top of the vision-only method.

5 Conclusion and Future Works

5.1 Conclusion

We provide LiDAR datasets covering the characteristics of various environments

(indoor, outdoor, forest), and systematically evaluate 5 open source SLAM algorithms

in terms of LiDAR Odometry, and power consumption. The experiments have covered

9 sequences across 2 computing platforms. By including the Nvidia Jetson Xavier plat-

form, it provides further references for the application of various SLAM algorithms on

computationally resource-constrained devices such as drones. Overall, we found that in

both indoor and outdoor environments, the spinning LiDAR-based FLIO exhibited good

performance with low power consumption, which we believe is due to the ability of the

spinning LiDAR to obtain a full view of the environment . However, in the forest environ-

ment, the LIOL algorithm based on solid-state LiDAR has the best performance in terms

of accuracy and mapping quality, although it has the highest power consumption due to

the sliding window optimization.

Additionally, we present a novel approach for tracking a UAV based on the fusion

of signal images and point clouds from an Ouster LiDAR. Unlike conventional LiDAR

and camera fusion, this approach does not need any calibration and preprocessing with

external cameras and the LiDAR data is more resistant to harsh environments. We col-

lected three different data sequences in an indoor environment with the OptiTrack MoCAP

system providing ground truth positions. We compared the proposed approach with the

5.2 FUTURE WORKS 81

approaches based on either only point clouds or signal images and the results showed the

effectiveness of our proposed approach. Additionally, we found that our approach can be

utilized in a popular mobile computing platform, Jetson Nano according to our evaluation.

5.2 Future Works

Finally, we aim to extend our dataset further to provide more refined and challenging

sequences and open-source it in the future. In this thesis, our benchmark tests only focus

on SLAM algorithms based on spinning LiDAR and solid-state LiDAR. In the future, we

will add benchmark tests based on cameras and even SLAM algorithms based on multiple

sensor fusions.

With regards to our LiDAR-as-camera based drone tracking method, we aim to ex-

plore its potential application to multiple drone tracking in the future. Another direction

for improvement is to integrate the LiDAR-based tracking into the navigation of the UAV

and incorporate the onboard state estimation of the UAV into the tracking algorithm, thus

expanding the scope of application for this design.

References

[1] Q. Li, J. P. Queralta, T. N. Gia, Z. Zou, and T. Westerlund, “Multi-sensor fusion for

navigation and mapping in autonomous vehicles: Accurate localization in urban

environments”, Unmanned Systems, vol. 8, no. 03, pp. 229–237, 2020.

[2] N. Varney, V. K. Asari, and Q. Graehling, “Dales: A large-scale aerial lidar data

set for semantic segmentation”, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, 2020, pp. 186–187.

[3] J. Yang, Z. Kang, S. Cheng, Z. Yang, and P. H. Akwensi, “An individual tree

segmentation method based on watershed algorithm and three-dimensional spatial

distribution analysis from airborne lidar point clouds”, IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1055–

1067, 2020.

[4] D. Van Nam and K. Gon-Woo, “Solid-state lidar based-slam: A concise review

and application”, in 2021 IEEE International Conference on Big Data and Smart

Computing (BigComp), IEEE, 2021, pp. 302–305.

[5] L. Qingqing, Y. Xianjia, J. P. Queralta, and T. Westerlund, “Adaptive lidar scan

frame integration: Tracking known mavs in 3d point clouds”, in 2021 20th Inter-

national Conference on Advanced Robotics (ICAR), IEEE, 2021, pp. 1079–1086.

[6] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-state-lidar-

inertial odometry and mapping”, IEEE Robotics and Automation Letters, vol. 6,

no. 3, pp. 5167–5174, 2021.

REFERENCES 83

[7] J. P. Queralta, L. Qingqing, F. Schiano, and T. Westerlund, “Vio-uwb-based col-

laborative localization and dense scene reconstruction within heterogeneous multi-

robot systems”, arXiv preprint arXiv:2011.00830, 2020.

[8] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar odometry

and mapping package for lidars of small fov”, in 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), 2020, pp. 3126–3131. DOI: 10.

1109/ICRA40945.2020.9197440.

[9] Q. Li, X. Yu, J. P. Queralta, and T. Westerlund, “Multi-modal lidar dataset for

benchmarking general-purpose localization and mapping algorithms”, arXiv preprint

arXiv:2203.03454, 2022.

[10] Y. Xianjia, S. Salimpour, J. P. Queralta, and T. Westerlund, “Analyzing general-

purpose deep-learning detection and segmentation models with images from a

lidar as a camera sensor”, arXiv preprint arXiv:2203.04064, 2022.

[11] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and M. Fallon,

“The newer college dataset: Handheld lidar, inertial and vision with ground truth”,

in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), IEEE, 2020, pp. 4353–4360.

[12] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban dataset with

multi-level sensors from highly diverse urban environments”, The International

Journal of Robotics Research, vol. 38, no. 6, pp. 642–657, 2019.

[13] M. Kaess, A. Ranganathan, and F. Dellaert, “Isam: Incremental smoothing and

mapping”, IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.

[14] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit stata cen-

ter dataset”, The International Journal of Robotics Research, vol. 32, no. 14,

pp. 1695–1699, 2013.

https://doi.org/10.1109/ICRA40945.2020.9197440
https://doi.org/10.1109/ICRA40945.2020.9197440

REFERENCES 84

[15] X. Weng and K. Kitani, “A baseline for 3d multi-object tracking”, arXiv preprint

arXiv:1907.03961, vol. 1, no. 2, p. 6, 2019.

[16] Y. Wang, K. Kitani, and X. Weng, “Joint object detection and multi-object track-

ing with graph neural networks”, in 2021 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2021, pp. 13 708–13 715.

[17] S. Giancola, J. Zarzar, and B. Ghanem, “Leveraging shape completion for 3d

siamese tracking”, in Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, 2019, pp. 1359–1368.

[18] Y. Zhang, H. Niu, Y. Guo, and W. He, “3d single-object tracking with spatial-

temporal data association”, in 2022 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), IEEE, 2022, pp. 264–269.

[19] L. LiDAR, Livox horizon manual, https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/

assets/, ,Last accessed on 2022-12-12, 2020.

[20] P. Zhang, Xpeng announces its lidar supplier as livox, a company incubated by

drone maker dji, https://cnevpost.com/2021/01/01/xpeng-

announces-its-lidar-supplier-as-livox/, 2021.

[21] J. Hecht, “Lidar for self-driving cars”, Optics and Photonics News, vol. 29, no. 1,

pp. 26–33, 2018.

[22] R. Thakur, “Scanning lidar in advanced driver assistance systems and beyond:

Building a road map for next-generation lidar technology”, IEEE Consumer Elec-

tronics Magazine, vol. 5, no. 3, pp. 48–54, 2016. DOI: 10.1109/MCE.2016.

2556878.

[23] O. Inc., Os1 mid-range high resolution imaging lidar, ouster os-1 data sheet,

https://data.ouster.io/downloads/datasheets/datasheet-

revd-v2p1-os1.pdf, Last accessed on 2022-11-09, 2021.

https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/assets/
https://www.livoxtech.com/3296f540ecf5458a8829e01cf429798e/assets/
https://cnevpost.com/2021/01/01/xpeng-announces-its-lidar-supplier-as-livox/
https://cnevpost.com/2021/01/01/xpeng-announces-its-lidar-supplier-as-livox/
https://doi.org/10.1109/MCE.2016.2556878
https://doi.org/10.1109/MCE.2016.2556878
https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p1-os1.pdf
https://data.ouster.io/downloads/datasheets/datasheet-revd-v2p1-os1.pdf

REFERENCES 85

[24] O. Inc., Ouster-sdk, https://ouster.com/developers/ouster-

sdk/, Last accessed on 2022-10-16, 2022.

[25] D. Rozenberszki and A. L. Majdik, “Lol: Lidar-only odometry and localization in

3d point cloud maps”, in 2020 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, 2020, pp. 4379–4385.

[26] W. Zhen, S. Zeng, and S. Soberer, “Robust localization and localizability esti-

mation with a rotating laser scanner”, in 2017 IEEE international conference on

robotics and automation (ICRA), IEEE, 2017, pp. 6240–6245.

[27] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry and map-

ping”, in 2019 International Conference on Robotics and Automation (ICRA),

IEEE, 2019, pp. 3144–3150.

[28] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.”, in

Robotics: Science and Systems, vol. 2, 2014.

[29] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar

odometry and mapping on variable terrain”, in 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 4758–4765.

[30] Q. Li, P. Nevalainen, J. Peña Queralta, J. Heikkonen, and T. Westerlund, “Local-

ization in unstructured environments: Towards autonomous robots in forests with

delaunay triangulation”, Remote Sensing, vol. 12, no. 11, p. 1870, 2020.

[31] P. Nevalainen, P. Movahedi, J. P. Queralta, T. Westerlund, and J. Heikkonen,

“Long-term autonomy in forest environment using self-corrective slam”, in New

Developments and Environmental Applications of Drones, Springer, 2022, pp. 83–

107.

[32] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry package by

tightly-coupled iterated kalman filter”, IEEE Robotics and Automation Letters,

vol. 6, no. 2, pp. 3317–3324, 2021.

https://ouster.com/developers/ouster-sdk/
https://ouster.com/developers/ouster-sdk/

REFERENCES 86

[33] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial

odometry”, IEEE Transactions on Robotics, 2022.

[34] J. L. et al., “Loam livox: A fast, robust, high-precision lidar odometry and map-

ping package for lidars of small fov”, in 2020 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2020, pp. 3126–3131.

[35] J. Lin and F. Zhang, “R 3 live: A robust, real-time, rgb-colored, lidar-inertial-

visual tightly-coupled state estimation and mapping package”, in 2022 Interna-

tional Conference on Robotics and Automation (ICRA), IEEE, 2022, pp. 10 672–

10 678.

[36] T.-M. Nguyen, M. Cao, S. Yuan, Y. Lyu, T. H. Nguyen, and L. Xie, “Viral-fusion:

A visual-inertial-ranging-lidar sensor fusion approach”, IEEE Transactions on

Robotics, vol. 38, no. 2, pp. 958–977, 2021.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti

dataset”, The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–

1237, 2013.

[38] A. S. Huang, M. Antone, E. Olson, et al., “A high-rate, heterogeneous data set

from the darpa urban challenge”, The International Journal of Robotics Research,

vol. 29, no. 13, pp. 1595–1601, 2010.

[39] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The ox-

ford robotcar dataset”, The International Journal of Robotics Research, vol. 36,

no. 1, pp. 3–15, 2017.

[40] M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A rugd dataset for

autonomous navigation and visual perception in unstructured outdoor environ-

ments”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, 2019, pp. 5000–5007.

REFERENCES 87

[41] H. Caesar, V. Bankiti, A. H. Lang, et al., “Nuscenes: A multimodal dataset for

autonomous driving”, in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition(CVPR), 2020, pp. 11 621–11 631.

[42] P. Xiao, Z. Shao, S. Hao, et al., “Pandaset: Advanced sensor suite dataset for

autonomous driving”, in 2021 IEEE International Intelligent Transportation Sys-

tems Conference (ITSC), IEEE, 2021, pp. 3095–3101.

[43] J. Yin, A. Li, T. Li, W. Yu, and D. Zou, “M2dgr: A multi-sensor and multi-scenario

slam dataset for ground robots”, IEEE Robotics and Automation Letters, vol. 7,

no. 2, pp. 2266–2273, 2021.

[44] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University of michigan

north campus long-term vision and lidar dataset”, The International Journal of

Robotics Research, vol. 35, no. 9, pp. 1023–1035, 2016.

[45] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for uav track-

ing”, in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,

The Netherlands, October 11–14, 2016, Proceedings, Part I 14, Springer, 2016,

pp. 445–461.

[46] C. Martínez, P. Campoy, I. Mondragón, and M. A. Olivares-Méndez, “Trinocular

ground system to control uavs”, in 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2009, pp. 3361–3367. DOI: 10.1109/IROS.

2009.5354489.

[47] M. Vrba and M. Saska, “Marker-less micro aerial vehicle detection and local-

ization using convolutional neural networks”, IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 2459–2466, 2020. DOI: 10.1109/LRA.2020.

2972819.

[48] W. Kong, D. Zhang, X. Wang, Z. Xian, and J. Zhang, “Autonomous landing

of an uav with a ground-based actuated infrared stereo vision system”, in 2013

https://doi.org/10.1109/IROS.2009.5354489
https://doi.org/10.1109/IROS.2009.5354489
https://doi.org/10.1109/LRA.2020.2972819
https://doi.org/10.1109/LRA.2020.2972819

REFERENCES 88

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 2963–

2970. DOI: 10.1109/IROS.2013.6696776.

[49] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and experi-

mental comparison”, Pattern Recognition, vol. 76, pp. 323–338, 2018.

[50] A. Carrio, S. Vemprala, A. Ripoll, S. Saripalli, and P. Campoy, “Drone detec-

tion using depth maps”, in 2018 IEEE/RSJ international conference on intelligent

robots and systems (IROS), IEEE, 2018, pp. 1034–1037.

[51] S. Dogru and L. Marques, “Drone detection using sparse lidar measurements”,

IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3062–3069, 2022. DOI:

10.1109/LRA.2022.3145498.

[52] J. Razlaw, J. Quenzel, and S. Behnke, “Detection and tracking of small objects

in sparse 3d laser range data”, 2019 International Conference on Robotics and

Automation (ICRA), pp. 2967–2973, 2019.

[53] M. Hammer, M. Hebel, B. Borgmann, M. Laurenzis, and M. Arens, “Potential

of lidar sensors for the detection of UAVs”, in Laser Radar Technology and Ap-

plications XXIII, M. D. Turner and G. W. Kamerman, Eds., International Society

for Optics and Photonics, vol. 10636, SPIE, 2018, p. 1 063 605. DOI: 10.1117/

12.2303949. [Online]. Available: https://doi.org/10.1117/12.

2303949.

[54] M. Hammer, M. Hebel, M. Laurenzis, and M. Arens, “Lidar-based detection and

tracking of small UAVs”, in Emerging Imaging and Sensing Technologies for Se-

curity and Defence III; and Unmanned Sensors, Systems, and Countermeasures,

G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Mueller, Eds., International Soci-

ety for Optics and Photonics, vol. 10799, SPIE, 2018, 107990S. DOI: 10.1117/

12.2325702. [Online]. Available: https://doi.org/10.1117/12.

2325702.

https://doi.org/10.1109/IROS.2013.6696776
https://doi.org/10.1109/LRA.2022.3145498
https://doi.org/10.1117/12.2303949
https://doi.org/10.1117/12.2303949
https://doi.org/10.1117/12.2303949
https://doi.org/10.1117/12.2303949
https://doi.org/10.1117/12.2325702
https://doi.org/10.1117/12.2325702
https://doi.org/10.1117/12.2325702
https://doi.org/10.1117/12.2325702

REFERENCES 89

[55] I. Guvenc, F. Koohifar, S. Singh, M. L. Sichitiu, and D. Matolak, “Detection,

tracking, and interdiction for amateur drones”, IEEE Communications Magazine,

vol. 56, no. 4, pp. 75–81, 2018.

[56] S.Hengy et al., “Multimodal uav detection: Study of various intrusion scenar-

ios”, in Electro-Optical Remote Sensing XI, International Society for Optics and

Photonics, vol. 10434, 2017, 104340P.

[57] J. Peña Queralta et al., “Autosos: Towards multi-uav systems supporting mar-

itime search and rescue with lightweight ai and edge computing”, arXiv preprint

arXiv:2005.03409, 2020.

[58] T. Rouček, M. Pecka, P. Čıéžek, et al., “Darpa subterranean challenge: Multi-

robotic exploration of underground environments”, in International Conference

on Modelling and Simulation for Autonomous Systesm, Springer, 2019, pp. 274–

290.

[59] M. Petrlıék, T. Báča, D. Heřt, M. Vrba, T. Krajnıék, and M. Saska, “A robust uav

system for operations in a constrained environment”, IEEE Robotics and Automa-

tion Letters, vol. 5, no. 2, pp. 2169–2176, 2020.

[60] L. Qingqing, J. P. Queralta, T. N. Gia, and T. Westerlund, “Offloading monocular

visual odometry with edge computing: Optimizing image quality in multi-robot

systems”, in Proceedings of the 2019 5th International Conference on Systems,

Control and Communications, 2019, pp. 22–26.

[61] W. Kong, D. Zhang, X. Wang, Z. Xian, and J. Zhang, “Autonomous landing

of an uav with a ground-based actuated infrared stereo vision system”, in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 2963–

2970. DOI: 10.1109/IROS.2013.6696776.

https://doi.org/10.1109/IROS.2013.6696776

REFERENCES 90

[62] Y. Gui, P. Guo, H. Zhang, et al., “Airborne vision-based navigation method for uav

accuracy landing using infrared lamps”, Journal of Intelligent & Robotic Systems,

vol. 72, Nov. 2013. DOI: 10.1007/s10846-013-9819-5.

[63] E. J. Markvicka, J. M. Rogers, and C. Majidi, “Wireless electronic skin with inte-

grated pressure and optical proximity sensing”, in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020, pp. 8882–8888. DOI:

10.1109/IROS45743.2020.9340787.

[64] E. N. Mortensen, H. Deng, and L. Shapiro, “A sift descriptor with global con-

text”, in 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05), IEEE, vol. 1, 2005, pp. 184–190.

[65] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features”, in

Computer Vision–ECCV 2006: 9th European Conference on Computer Vision,

Graz, Austria, May 7-13, 2006. Proceedings, Part I 9, Springer, 2006, pp. 404–

417.

[66] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”,

in 2005 IEEE computer society conference on computer vision and pattern recog-

nition (CVPR’05), Ieee, vol. 1, 2005, pp. 886–893.

[67] R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1440–1448.

[68] L. O. Chua and T. Roska, “The cnn paradigm”, IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications, vol. 40, no. 3, pp. 147–

156, 1993.

[69] W. Lan, J. Dang, Y. Wang, and S. Wang, “Pedestrian detection based on yolo

network model”, in 2018 IEEE international conference on mechatronics and au-

tomation (ICMA), IEEE, 2018, pp. 1547–1551.

https://doi.org/10.1007/s10846-013-9819-5
https://doi.org/10.1109/IROS45743.2020.9340787

REFERENCES 91

[70] W. Liu, D. Anguelov, D. Erhan, et al., “Ssd: Single shot multibox detector”,

in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part I 14, Springer, 2016, pp. 21–

37.

[71] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints”, in Pro-

ceedings of the European conference on computer vision (ECCV), 2018, pp. 734–

750.

[72] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint

triplets for object detection”, in Proceedings of the IEEE/CVF international con-

ference on computer vision, 2019, pp. 6569–6578.

[73] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detec-

tion from point cloud”, in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2019, pp. 770–779.

[74] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d

object detection”, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 4490–4499.

[75] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d object

detection from rgb-d data”, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 918–927.

[76] Z. Qin, J. Wang, and Y. Lu, “Monogrnet: A geometric reasoning network for

monocular 3d object localization”, in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, 2019, pp. 8851–8858.

[77] C. Yan and E. Salman, “Mono3d: Open source cell library for monolithic 3-d in-

tegrated circuits”, IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 65, no. 3, pp. 1075–1085, 2017.

REFERENCES 92

[78] ultralytics, Yolov5, https://github.com/ultralytics/yolov5, ,Last

accessed on 2022-12-02, 2020.

[79] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for

discovering clusters in large spatial databases with noise.”, in kdd, vol. 96, 1996,

pp. 226–231.

[80] A.-V. Vo, L. Truong-Hong, D. F. Laefer, and M. Bertolotto, “Octree-based region

growing for point cloud segmentation”, ISPRS Journal of Photogrammetry and

Remote Sensing, vol. 104, pp. 88–100, 2015.

[81] C. Chen, G. Li, R. Xu, T. Chen, M. Wang, and L. Lin, “Clusternet: Deep hierar-

chical cluster network with rigorously rotation-invariant representation for point

cloud analysis”, in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2019, pp. 4994–5002.

[82] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,

revisited: Why and how you should (still) use dbscan”, ACM Transactions on

Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.

[83] M.-S. Yang, C.-Y. Lai, and C.-Y. Lin, “A robust em clustering algorithm for gaus-

sian mixture models”, Pattern Recognition, vol. 45, no. 11, pp. 3950–3961, 2012.

[84] Y. Zhang, M. Li, S. Wang, et al., “Gaussian mixture model clustering with incom-

plete data”, ACM Transactions on Multimedia Computing, Communications, and

Applications (TOMM), vol. 17, no. 1s, pp. 1–14, 2021.

[85] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.”, in Robotics: science and

systems, Seattle, WA, vol. 2, 2009, p. 435.

[86] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography”,

Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

https://github.com/ultralytics/yolov5

REFERENCES 93

[87] Z. Yan, L. Sun, T. Krajnıék, and Y. Ruichek, “Eu long-term dataset with multiple

sensors for autonomous driving”, in 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 10 697–10 704.

[88] M. Lixia, A. Benigni, A. Flammini, C. Muscas, F. Ponci, and A. Monti, “A

software-only ptp synchronization for power system state estimation with pmus”,

IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1476–

1485, 2012.

[89] P. Biber and W. Straßer, “The normal distributions transform: A new approach to

laser scan matching”, in Proceedings 2003 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), IEEE, vol. 3,

2003, pp. 2743–2748.

[90] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision lidar odometry

and mapping package for lidars of small fov”, in 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), IEEE, 2020, pp. 3126–3131.

[91] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-state-lidar-

inertial odometry and mapping”, IEEE Robotics and Automation Letters, vol. 6,

no. 3, pp. 5167–5174, 2021.

[92] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry package by

tightly-coupled iterated kalman filter”, IEEE Robotics and Automation Letters,

vol. 6, no. 2, pp. 3317–3324, 2021.

[93] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of rgb-d slam systems”, in 2012 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems(IROS), IEEE, 2012, pp. 573–580.

[94] H. Sier, L. Qingqing, Y. Xianjia, J. P. Queralta, Z. Zou, and T. Westerlund, “A

benchmark for multi-modal lidar slam with ground truth in gnss-denied environ-

ments”, arXiv preprint arXiv:2210.00812, 2022.

REFERENCES 94

[95] Y. Zhu, C. Zheng, C. Yuan, X. Huang, and X. Hong, “Camvox: A low-cost and ac-

curate lidar-assisted visual slam system”, in 2021 IEEE International Conference

on Robotics and Automation (ICRA), 2021, pp. 5049–5055. DOI: 10.1109/

ICRA48506.2021.9561149.

[96] J. Ma, Y. Li, Y. Chen, et al., “Estimating above ground biomass of winter wheat at

early growth stages using digital images and deep convolutional neural network”,

European Journal of Agronomy, vol. 103, pp. 117–129, 2019.

[97] K. Marneweck et al., “Why data-over-sound is an integral part of any iot engi-

neer’s toolbox: Chirp + arm = frictionless low power connectivity”, 2019.

[98] qorvo, Dwm1001, https://www.qorvo.com/products/p/DWM1001-

DEV, [Online] - Last access: 2022-11-23.

[99] G. Welch, G. Bishop, et al., “An introduction to the kalman filter”, 1995.

[100] Y. Wang, C. Wang, H. Zhang, Y. Dong, and S. Wei, “Automatic ship detection

based on retinanet using multi-resolution gaofen-3 imagery”, Remote Sensing,

vol. 11, no. 5, p. 531, 2019.

[101] G. Pandey, J. R. McBride, and R. M. Eustice, “Ford campus vision and lidar data

set”, The International Journal of Robotics Research, vol. 30, no. 13, pp. 1543–

1552, 2011.

[102] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration”, in European con-

ference on computer vision, Springer, 2016, pp. 766–782.

[103] O. Elmakis, T. Shaked, and A. Degani, “Vision-based uav-ugv collaboration for

autonomous construction site preparation”, IEEE Access, vol. 10, pp. 51 209–

51 220, 2022. DOI: 10.1109/ACCESS.2022.3170408.

https://doi.org/10.1109/ICRA48506.2021.9561149
https://doi.org/10.1109/ICRA48506.2021.9561149
https://www.qorvo.com/products/p/DWM1001-DEV
https://www.qorvo.com/products/p/DWM1001-DEV
https://doi.org/10.1109/ACCESS.2022.3170408

	List Of Acronyms
	Introduction
	Significance and Motivation
	Related Works
	Contribution
	Structure

	Background
	LiDAR Sensor
	Solid-state LiDAR
	Spinning LiDAR

	3D LiDAR SLAM
	SLAM Benchmarking Datasets
	Vehicle-based Dataset
	Mobile Robot or Human-carried Dataset

	UAV Detection and Tracking
	UAV tracking with cameras
	UAV tracking with LiDARs
	Applications of UAV tracking

	Robot Operating System
	Object Detection
	Traditional Object Detection
	Deep Learning-Based Techniques
	3D Object Detection
	Lidar-as-a-camera based Object Detection

	3D Piont Could Processing
	Point Cloud Clustering
	Point Cloud Registration
	Point Cloud Noise Removal

	Multi-Modal LiDAR SLAM Benchmark
	Design Overview
	Hardware Design
	Software Information
	Calibration and Synchronization
	SLAM assisted Ground Truth Map
	Data Structures of the Dataset

	Implementation
	Collect Data for Multi-modal LiDAR Dataset
	Ground Truth Evaluation
	Setup for LiDAR Odometry Benchmarking
	Setup for Run-time Evaluation

	Results
	LiDAR Odometry Benchmarking
	Mapping Quality Comparison
	Run-time Evaluation across Certain Computing Platforms

	LiDAR-as-a-camera Based UAV Tracking
	Design Overview
	Hardware Design
	Software Design
	Object Detection with YOLOV5
	Point Cloud Precessing

	Implementation
	UAVs Used for Experiments
	Collect Ground Truth with MoCAP System
	Setup for Ground Truth Evaluation and Run-time Evaluation

	Results
	UAV in the Ouster LiDAR Point Cloud
	Trajectory Validation
	Velocity Validation
	Resource Consumption

	Conclusion and Future Works
	Conclusion
	Future Works

	References

